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Abstract

World model is very important for model-based reinforcement learning. For example, a
model is frequently used in Dyna: in learning steps to select actions and in planning steps to
project sampled states or features. In this paper we propose least-squares Dyna (LS-Dyna)
algorithm to improve the accuracy of the world model and provide better planning. LS-
Dyna is a special Dyna architecture in that it estimates the world model by a least-squares
method. LS-Dyna is more data efficient, yet it has the same complexity with existing linear
Dyna that is based on gradient descent estimation of the world model. Furthermore, the
least-squres modeling is computed in an online recursive fashion and does not have to record
historical experience or tune a step-size. Experimental results on a 98-state Boyan chain
example and a Mountain-car problem show that LS-Dyna performs significantly better
than TD/Q-learning and the gradient-descent linear Dyna algorithm.

1. Introduction

Reinforcement learning (RL) features limited experience of the world, and there has been
a demand for algorithms that use data efficiently. Classical Temporal Difference (TD)
is not data efficient because each transitioning experience is used only once. A class of
data efficient algorithms are known as the least-squares methods, such as least-squares
TD (LSTD) (Bradtke and Barto, 1996; Boyan, 2002; Xu, He, and Hu, 2002), least-squares
policy evaluation (LSPE) (Bertsekas, Borkar, and Nedic, 2004), incremental LSTD (iLSTD)
(Geramifard, Bowling, and Sutton, 2006; Geramifard, Bowling, Zinkevich, and Sutton,
2007), and preconditioned TD algorithms (Yao and Liu, 2008), etc. However, the advantage
of these methods is only known for fixed-policy evaluation while practical RL tasks are more
challenging in that the policy changes from time to time.

Dyna architecture is another approach to reuse experience (Sutton, 1990; Sutton and
Barto, 1998). Dyna builds a model of the world from online experience and uses the model
for planning. Through planning, Dyna outputs an improved value function for acting and
learning, which in turn gives the world model better experience for refinement. The world
model thus projects states into more accurate future states and rewards and simulates more
realistic experience. As an integrated architecture of circulating among learning, modeling
and planning, Dyna is continuously self-improving, getting better and better experience,
world model, planning, and value functions. Dyna was recently extended to linear function
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approximation to handle problems with a large state space (Sutton, Szepesvári, Geramifard,
and Bowling, 2008). The key component of linear Dyna is a compressed linear model
estimated from real world experience. The compressed world model is composed of a set of
action models, each action model telling the results of taking the action at a given feature.

As the name suggests, the key component of model-based reinforcement learning is
the world model. If we can improve the world model, model-based algorithms can give us
better action selection, projection and planning. For example, the world model is used three
times in linear Dyna: for action selection in both learning and planning, and for projection
of sampled features in planning. In this paper, we focus on linear Dyna-style planning.
Some used a multi-step model of the world for linear Dyna and their results show that the
performance significantly outperforms that of a single-step model (Yao, Bhatnagar, and
Diao, 2009). Moreover, experimental results show that the gradient descent based linear
Dyna is sensitive to the step-size of estimating the world model (Sutton et al., 2008; Yao
et al., 2009).

Our new algorithm, called least-squares Dyna (LS-Dyna), is based on linear Dyna-
style planning and can work with large-state-space problems. LS-Dyna improves the data
efficiency of estimating the single-step model using least-squares approach. The single-step
model of linear Dyna is composed of a matrix and a vector. A recursive least squares of
the vector can be O(n2) in a similar way to value function approximation (Bradtke and
Barto, 1996; Xu et al., 2002). What is the complexity of estimating the model matrix using
recursive least-squares then? Because of the dimension is squared, it is tempting to think
that it requires as high as O(n3). In this paper, we show that this is not true. A recursive
least squares of the model matrix can be O(n2), as low as the model vector. Thus LS-Dyna
does not have to pay more price for data efficiency. Furthermore, the online recursive least-
squares method does not have a step-size that requires tuning, and thus LS-Dyna is much
easier to use for practitioners of RL.

2. Background

2.1 Linear Function Approximation and TD(0) Algorithm

Given a Markov Decision Process (MDP) with a state space S = {1, 2, . . . , N}, the problem
of policy evaluation is to predict the long-term rewards of a policy π for every state s ∈ S
(Sutton and Barto, 1998):

V π(s) =

∞
∑

t=0

γtr(st, st+1), 0 < γ < 1, s0 = s,

where r(st, st+1) is the reward received by the agent at time t. Given n (n ≤ N) feature func-
tions ϕj (·) : S 7→ R, j = 1, . . . , n, the feature of state i is φ(i) = [ϕ1(i), ϕ2(i), . . . , ϕn(i)]T .
The idea of linear function approximation is to approximate V π by V̂ π = Φθ, where θ is
the weight vector, and Φ is the feature matrix whose entries are Φi,j = ϕj(i), i = 1, . . . , N ;
j = 1, . . . , n. At time t, TD(0) adjusts the weights by (Sutton, 1988)

θt+1 = θt + αt(rt + γθT
t φt+1 − θT

t φt)φt,

where αt is a positive step-size, φt corresponds to φ(st), and rt is short for r(st, st+1).
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2.2 The Gradient Descent Linear Dyna-style Planning

For policy evaluation linear Dyna builds a compressed linear model of policy π in the feature
space: a transition model, F π ∈ Rn×n, and a reward model, fπ ∈ Rn. The transition model
and the reward model are estimated using gradient descent in linear Dyna (Sutton et al.,
2008):

F π
t+1 = F π

t + βt(φt+1 − F π
t φt)φ

T
t , (1)

and

fπ
t+1 = fπ

t + βt(rt − fπ
t

T φt)φt, (2)

respectively, where the features and reward are all from real world experience, and βt is a
step-size.

Dyna repeats some steps of planning in each of which it proposes a sampled feature
φ̃ (we use ∼ to denote a simulated experience). The next feature is projected from the
original one, i.e., φ̃(1) = F πφ̃. The rewards leaving feature φ̃ in one step correspond to
r̃(1) = φ̃T fπ. The imaginary experience is therefore φ̃ → (φ̃(1), r̃(1)). Dyna treats this
imaginary experience as if it really happened, and applies TD(0) learning to improve the
policy:

θ̃ := θ̃ + α(r̃(1) + γθ̃T φ̃(1) − θ̃T φ̃)φ̃,

where θ̃ is the parameter θ in the planning step.

For control, linear Dyna maintains a model for each action, and the general linear Dyna
control with gradient descent update of the model is shown in Algorithm 2 (Sutton et al.,
2008). Gradient descent is known for its slowness in convergence and labor in tuning of the
step-size, both of which influence the performance of linear Dyna.

In Section 3, we propose a least-squares method to estimate the world model of linear
Dyna. In Section 4, we propose LS-Dyna algorithms for both policy evaluation and control.
Section 5 presents empirical results and Section 6 concludes the paper.

3. Least-squares Estimation of the Model

3.1 The General Problem

For the time being we focus on estimating the model of a policy π. The general model
estimation problem is as follows.

We have a data set of transitioning experience Dπ = {(φi, φi+1, ri), i = 0, 1, . . . , d},
where experience are collected by following policy π. From the set Dπ, we would like to
estimate a linear model (Fd+1, fd+1), s.t.,

Fd+1 = arg min
F∈Rn×n

d
∑

i=0

||φi+1 − Fφi||
2,

and

fd+1 = arg min
f∈Rn

d
∑

i=0

||ri − fTφi||
2.
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In previous linear Dyna they used gradient descent algorithm to estimate the model (Sutton
et al., 2008). In fact, this is a linear least-squares problem, and we can solve Fd+1 and fd+1

directly using least-squares regression, which gives

Fd+1 =

[

d
∑

i=0

φi+1φ
T
i

][

d
∑

i=0

φiφ
T
i

]−1

, (3)

and

fd+1 =

[

d
∑

i=0

φiφ
T
i

]−1 [

d
∑

i=0

φiri

]

. (4)

3.2 Online Recursive Estimation

Solution (3) and (4) can be used for data set collected previously. However, we are interested
in combining least-squares solution of the model with linear Dyna-style planning, meaning
that we have to compute the least-sqares solution online. In the online setting, (3) and
(4) can use Sherman-Morison for matrix inversion, which is O(n2), but (3) requires matrix
product and is still O(n3). In the following we provide an online procedure to compute (3)
in O(n2).

Suppose our current time step is t and the historical time steps are h = 0, 1, . . . , t. At
time step t we have seen t steps of transitioning experience and can estimate the model
online using the linear least-squares (3) and (4). This computation method has to keep
a record all historical transitioning experience. The following is online procedure without
such a memory overhead.

Let Dt+1 =
∑t

h=0 φhφT
h . We can accumulate D online by

Dt+1 = Dt + φtφ
T
t .

Let Et+1 =
∑t

h=0 φh+1φ
T
h . Similarly we accumulate E online

Et+1 = Et + φt+1φ
T
t .

We first compute a de-correlated feature

xt = D−1
t φt, (5)

where the matrix inversion is updated by Sherman-Morison formula

D−1
t+1 = D−1

t −
D−1

t φtφ
T
t D−1

t

1 + φT
t D−1

t φt

. (6)

We can now compute matrix F using matrices D and E:

Ft+1 = Et+1D
−1
t+1.
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Set t = 0; Initialize θ0, F0, f0 and D−1
0

Select an initial state s0

for each time step t do
Act according to the policy, observing st+1, rt

Apply TD(0):
θt+1 = θt + αt(rt + γφT

t+1θt − φT
t θt)φt

Update the model by recursive LS procedure (5)–(8)
Set θ̃0 = θt+1

repeat for p = 1, 2, . . . , τ
Sample a random basis unit vector φ̃p

Project φ̃p:
φ̃p+1 = Ft+1φ̃p

r̃p = φ̃T
p ft+1

θ̃p+1 = θ̃p + αp(r̃p + γθ̃T
p φ̃p+1 − θ̃T

p φ̃p)φ̃p

end
Set θt+1 = θ̃τ+1

end for

Algorithm 1: LS-Dyna algorithm for policy evaluation.

According to the accumulation of E and the Sherman-Morison update of D−1, we have

Ft+1 = (Et + φt+1φ
T
t )(D−1

t −
D−1

t φtφ
T
t D−1

t

1 + φT
t D−1

t φt

)

= Ft + φt+1x
T
t −

Ftφtx
T
t

1 + φT
t xt

−
φt+1x

T
t φtx

T
t

1 + φT
t xt

= Ft +

[

φt+1 −
Ftφt

1 + φT
t xt

−
φt+1x

T
t φt

1 + φT
t xt

]

xT
t ,

which can be simplified into

Ft+1 = Ft +
φt+1 − Ftφt

1 + φT
t xt

xT
t . (7)

In a similar manner to derive the rule for Ft+1, we have

ft+1 = ft +
rt − φT

t ft

1 + φT
t xt

xt. (8)

At each time step, a time order of estimating the model can be (5), (6), (7) and (8), of
which the order of (6), (7) and (8) is not important.

The complexity of the algorithm is O(n2), which is the same as the gradient descent
rule (1) and (2). It can be proved in a straightforward manner that the least-squares esti-
mation of models converges with probability one to the same solutions as gradient descent
estimation under similar conditions.
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4. Linear Least-squares Dyna-style Planning

4.1 LS-Dyna for Policy Evaluation

In policy evaluation algorithm, learning and acting following the policy provides the transi-
tioning experience for LS-Dyna. Given these transitioning experience, we use the recursive
least-squares (LS) method developed in last section to estimate the world model of the
policy. The other parts of LS-Dyna are the same as gradient descent linear Dyna. The
complete algorithm of LS-Dyna for policy evaluation is shown in Algorithm 1.

There are interesting connections between LS-Dyna and least-squares policy evaluation
algorithms. The methods all use least-squares methods: LS-Dyna uses least-squares meth-
ods to update the model, while LSTD, iLSTD and LSPE use least-squares methods to
update the weight vector (the policy). For LSTD, the coefficients of a linear system (which
can be viewed as a model) are estimated, and the weight vector is solved by least-squares at
each time step. LS-Dyna builds the model F and b, but it does not solve the model at once
1. Instead, the model is used incrementally, simulating experience and planning based on
the simulation. In this sense, LSTD, iLSTD, and LSPE can be viewed as a batch method
of using model or experience, while LS-Dyna is an incremental method.

4.2 LS-Dyna for Control

In control, the transitioning experience is provided online through learning and acting ac-
cording to a changing policy. The data for estimating the world model is a set of transi-
tioning experience following the actions that have been taken, D = {(φh, ah, φh+1, rh), h =
0, 1, . . . t}. Notice that for control we estimate a set of action models rather than a single
model in policy evaluation problem. In particular, at each time step, after taking an action,
we update the model of the action by the action-dependent version of the recursive LS
method, while the other action models are not updated. The other part of the new Dyna
is the same as linear Dyna control algorithm. Finally the complete LS-Dyna for control is
shown in Algorithm 2 (together with gradient descent linear Dyna).

Notice that Least-squares (LS) estimation of the model helps policy evaluation only in
planning (for projection); however, besides projection in planning, LS estimation of the
action models also helps action selection steps in both learning and planning.

5. Experimental Results

5.1 The 98-state Boyan Chain

We used a 98-state Boyan chain problem extended from the original 13-state problem
(Boyan, 2002; Geramifard et al., 2007) using the same policy underlying the original Boyan
chain. The root mean square error (RMSE) was computed at each episode to measure the
performance of each algorithm:

(RMSE)e =

√

√

√

√

1

N

N
∑

i=1

(V (i) − φ(i)T θe)2,

1. One can solve in LS-Dyna for θ by θ = (I − γF T )−1f .
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Set t = 0; Initialize F a

0 , fa

0 (for all a), and θ0

Select an initial state s0

for each time step t do
Set φt = φ(st)
Select an action:

a = arg maxa{φ
T
t fa

t + γθT
t F a

t φt} (ǫ-greedy)
Take a, observing st+1 and rt

Set φt+1 = φ(st+1)
Apply TD(0):

θt+1 = θt + αt(rt + γφT
t+1θt − φT

t θt)φt

Model estimate:
gradience descent method (1)-(2) (action-dependent version), or
recursive least-squares method (5)–(8) (action-dependent version)

Set θ̃0 = θt+1

repeat for p = 1, 2, . . . , τ //τ is the number of planning steps.
Sample a random basis unit vector φ̃p

Select an action:
ã = arg max

a

{

φ̃T
p fa

t+1 + γθT
t+1F

a
t+1φ̃p

}

Project φ̃p:
φ̃p+1 = F ã

t+1φ̃p

r̃p = φ̃T
p f ã

t+1

θ̃p+1 = θ̃p + αp(r̃p + γθ̃T
p φ̃p+1 − θ̃T

p φ̃p)φ̃p

end
Set θt+1 = θ̃τ+1

end for

Algorithm 2: Gradient-descent and Least-Squares Dyna control algorithms.

where e is the episode index. In the reported figures, the RMSEs of each algorithm were
averaged over 30 data sets, each data set comprising of 1000 pre-collected trajectories fol-
lowing the policy. At each planning step, all linear Dyna algorithms sampled unit basis
vector, where the “1” component is at a random entry.

The comparisons of TD, gradient descent linear Dyna (gradient Dyna), and LS-Dyna
are summarized in Figure 1. Figure 1 (left) shows that, for all values of α, LS-Dyna are
continuously better than TD. Figure 1 (right) shows that, for all values of α, LS-Dyna is
significantly and consistently better than gradient descent linear Dyna using any β. All
linear Dyna algorithms and TD used no eligibility trace. Other parameters were θ0 = 0,
F0 = 0, f0 = 0 and D−1

0 = 100I.

5.2 Mountain-car

We used the same Mountain-Car environment and tile coding code as in the linear Dyna
paper (Sutton et al., 2008). In particular, we used 10 tilings over the continuous, four-
dimensional state space. The width of each tile in each dimension is 1/8 the length of the
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Figure 1: The 98-state Boyan chain example: LS-Dyna are significantly better than linear
TD for all values of learning step-sizes (left). Given the same learning step-size,
LS-Dyna are much faster than gradient descent linear Dyna (right). All linear
Dyna algorithms plan only once and planning step size is 0.1.

dimension. The memory size of the tile is 1, 000. For details of tile coding, please see the
RL textbook (Sutton and Barto, 1998). Discounting factor γ is 1.0. No eligibility trace or
exploration is used for all algorithms. Each run is composed of 30 episodes. In each episode
the algorithms are allowed to try a maximum of 1000 steps. Reward is constantly −1.0
every time step whether the goal is reached or not. Initial weights of all algorithms were
drawn from the normal distribution. The effect of this initialization is optimistic, in that
the initialized value functions are much larger than the true values, and thus it encourages
exploration. All reported data was averaged over 50 runs.

Figure 2 (left) shows the trajectory performance of gradient descent linear Dyna, LS-
Dyna and Q-learning. Gradient-descent linear Dyna spends much fewer steps in reaching
the goal than Q-learning with β = 0.01 and β = 0.001. LS-Dyna is the fastest algorithm
to achieve the goal of all the compared algorithms. Linear gradient descent Dyna with
β = 0.01 can perform almost as well as LS-Dyna. However, it spends quite a lot of effort in
finding the optimal β for gradient descent linear Dyna. On the other hand, LS-Dyna does
not have a modeling step-size to tune.

Figure 2 (right) summarizes the steps to goal of LS-Dyna, and gradient descent linear
Dyna using various β at the 30th episode. LS-Dyna achieves the best of gradient descent
linear Dyna algorithms. The step-size for Q-learning in all Dyna was α = 0.1, and the
planning step-size in all Dyna was αp = 0.1. Other parameters were Da

0 = 500I (used
for LS-Dyna), F a

0 = I, fa
0 = 0 (used for LS-Dyna and gradient descent linear Dyna). In

planing, all linear Dyna algorithms sampled a random basis unit vector.
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Figure 2: The Mountain-car problem. Left: Trajectory performances of LS-Dyna, linear
Dyna and Q-learning. Right: LS-Dyna achieves the best of gradient descent
linear Dyna algorithms and Q-learning. All linear Dyna algorithms plan only
once.

6. Conclusion

In this paper we proposed LS-Dyna algorithm for planning. The general motivation of
LS-Dyna is that the performance of model-based RL algorithms can be improved by a
better modeling of the world. LS-Dyna uses recursive least-squares methods to estimate
the world model. The advantage of recursive least-squares is that it is more data efficient
and free of tuning a modeling step-size. In addition, our LS-Dyna has the same complexity
as the gradient descent linear Dyna. We are aware that there has been quite an effort in
using least-squares methods to improve the data efficiency of RL controllers in literature.
However, previous results show that least-squares versions of TD/Q-learning algorithms for
control seems unstable, possibly because the policy changes from time step to step, e.g., see
(Sutton et al., 2008; Yao et al., 2009). In our Mountain-car experiment, LS-Dyna was stable
and gave much better performance than the gradient descent linear Dyna and Q-learning.
The success of LS-Dyna in our experiments may lie in that the world is modeled as the
effects of a set of actions, which is usually stationary. Our work implies that action models
are useful in representing the dynamics of the world and easier to estimate because of their
stationarity. Such features makes action models suitable for planning and improving data
efficiency of RL controllers using least-squares methods.
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