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Abstract

Complex networks represent the relationships or interactions between entities in a complex sys-

tem, such as biological interactions between proteins and genes, hyperlinks between web pages,

co-authorships between research scholars. Although drawn from a wide range of domains, real-

world networks exhibit similar structural properties and evolution patterns. A fundamental prop-

erty of these networks is their tendency to organize according to an underlying modular structure,

commonly referred to as clustering or community structure. This thesis focuses on comparing,

quantifying, modeling, and utilizing this common structure in real-world networks.

First, it presents generalizations of well-established traditional clustering criteria and propose

proper adaptations to make them applicable in the context of networks. This includes generaliza-

tions and extensions of 1) the well-known clustering validity criteria that quantify the goodness

of a single clustering; and 2) clustering agreement measures that compare two clusterings of the

same dataset. The former introduces a new set of measures for quantifying the goodness of a can-

did community structure, while the latter establishes a new family of clustering distances suitable

for comparing two possible community structures of a given network. These adapted measures

are useful in both defining and evaluating the communities in networks.

Second, it discusses generative network models and introduces an intuitive and flexible model

for synthesizing modular networks that closely comply with the characteristics observed for real-

world networks. This network synthesizer is particularly useful for generating benchmark datasets

with built-in modular structure, which are used in evaluation of community detection algorithms.

Lastly, it investigates how the modular structure of networks can be utilized in different con-

texts. In particular, it focuses on an e-learning case study, where the network modules can effec-

tively outline the collaboration groups of students, as well as the topics of their discussions; which

is used to monitor the participation trends of students throughout an online course. Then, it exam-

ines the interplay between the attributes of nodes and their memberships in modules, and present

how this interplay can be leveraged for predicting (missing) attribute values; where alternative

modular structures are derived, each in better alignment with a given attribute.
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Chapter 1

Introduction

N etworks model the relationships in complex systems, such as biological interactions be-

tween proteins and genes, hyperlinks between web pages, co-authorships between research schol-

ars, friendships between people, co-purchases between products, andmanymore. Although drawn

from a wide range of domains, the real-world networks exhibit similar properties, such as small

diameter, and heavy tail degree distribution [103]; as well as similar evolution patterns, such as

shrinking diameter, and densification power laws [84]. Figure 1.1 illustrates the four basic charac-

teristics observed for a typical random graph sample, and two real world instances.

Figure 1.1: Properties of a random Erdős and Rényi [45] graph, a real-world biological network, and a real-
world social network. All three have a small diameter (small-world), however unlike the random network, the
real-world networks also have power law degree distribution (scale-free), relatively high transitivity (clustering
coefficient), and degree correlation between connecting nodes ((dis-)assortative mixing).
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1.1. PROBLEM DEFINITION AND MOTIVATION

1.1 Problem Definition and Motivation

One fundamental property of the real world networks is that they tend to organize according to an

underlying modular structure, commonly referred to as clustering or community structure [107].

Analyzing this structure provides insights into the mesoscopic characteristics of these networks.

Therefore, module identification in networks, a.k.a. community detection, has been applied inwide

range of domains, including biology, marketing, epidemiology, sociology, criminology, zoology,

etc. For example in biology, the study of the modular structure in metabolic network of Homo

sapiens [172] revealed that there are coremodules that perform the basic metabolism functions and

behave cohesively in evolution, and periphery modules that only interact with few other modules

and accomplish specialized functions, which have a higher tendency to be gained/lost together

through the evolution. As another biological example, the discoveredmodules in the yeast protein-

protein interaction network studied in [147], are shown to outline the protein complexes (proteins

that interact to carry out a task as a single complex unit, e.g., RNA splicing), and dynamic functional

units (proteins that bind at different time to participate in a cellular process, e.g., communicating

a signal from the surface of the cell to the nucleus). We expand this discussion on the applications

of community detection in Chapter 5.

FastModularity [28]
Q = 0.434

Louvain [16]
Q = 0.445

Walktrap [120]
Q = 0.44

TopLeader(2) [127]
Q = 0.403

Infomap [141]
Q = .434

Figure 1.2: Modular structure of a classic dataset (Zachary’s Karate Club), discovered by five different com-
munity detection algorithms. Colours correspond to the discovered modules, a.k.a. communities or clusters.

The problem of finding the modular structure of networks is not well-defined. Many algo-

rithms have been proposed to detect communities in a given network; whereas a community is

loosely defined as a group of nodes that have relatively more links between themselves than to

the rest of the network. The most common implementations consider a community as a group of

nodes that (i) the number of links between them is more than chance [16, 28]; (ii) within them a

random walk is more likely to trap [120]; (iii) have structural similarity [165]; (iv) follow the same

leader node [127]; (v) coding based on them gives efficient compression of the graph [139, 141];

(vi) are separated from the rest by minimum cut, or conductance [88].

Different communitymining algorithms discover communities from different perspectives (see

Figure 1.2 for an example), outperform each-others in different settings, and have different compu-

tational complexities [47]. Therefore, an important (and less explored) research direction is how to
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1.2. THESIS STATEMENTS AND ORGANIZATION

evaluate and compare different community mining algorithms. The general theme of this thesis is

the evaluation of community detection algorithms, i.e., it studies different evaluation practices, ob-

jective criteria, comparison measures, and benchmark models for the community detection task.

Although of significant importance on its own, one should note that the findings and conclusions

presented in this thesis have a much broader impact than the evaluation; since there is a con-

gruence relation between defining communities and evaluating community mining results. For

instance, the well-known modularity Q by Newman and Girvan [108] which is commonly opti-

mized as an objective function for the community detection task (e.g., in the two biological studies

mentioned earlier i.e., [56, 147]), was originally proposed for quantifying the goodness of the com-

munity structure, and is still used for evaluating the community detection algorithms [28, 139].

1.2 Thesis Statements and Organization

This thesis starts with categorizing possible evaluation practices for community detection task,

into internal, relative, and external evaluation approaches; which are discussed in Chapter 2. The

thesis hypothesis here is that:

Thesis Statement 1. The evaluation practices for the community detection task can be categorized,

using the same classification from the traditional clustering literature, into internal, relative, and

external evaluation.

The internal evaluation practice measures the significance of the matching between the clus-

tering structure produced by an algorithm and the underlying structure of the data. The aforemen-

tioned modularity Q falls within this category. Similarly, a relative evaluation criteria quantifies

and compares different clustering solutions of the same dataset. The external evaluation practice,

on the other hand, validates a community detection algorithm by comparing its results against the

known ground-truth in benchmark datasets [38, 76].

Qi (               ) Qr (               )  >  Qr (               ) 

Figure 1.3: Internal (Qi ) and Relative (Qr ) Quality Functions

The external evaluation is the most common practice in the community mining evaluation.

The relative evaluation, on the other hand, is less explored, although many relative clustering

criteria exist in the traditional clustering literature. Hence the second thesis hypothesis is:

Thesis Statement 2. The relative clustering criteria could be adapted for quantifying network com-

munities, by generalizing them to use graph distances, and an appropriate notion of center.

Chapter 2 introduces an extensive set of general quality functions for the internal and relative

evaluation of community detection algorithms; see Figure 1.3 for an abstract illustration. These
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1.2. THESIS STATEMENTS AND ORGANIZATION

quality functions or criteria are adapted from the clustering literature, examples are: Variance

Ratio Criterion, Silhouette Width Criterion, Dunn index, etc. These criteria are compared experi-

mentally, and different factors which affect their performance are studied, including the hardness

of the problem. To summarize, this chapter compares alternative measures which quantify the

goodness of community structure in networks, concludes that their performance ranking depends

on the experimental settings, and emphasizes that choosing the relative or internal evaluation cri-

terion encompasses the same non-triviality and difficulty as of the community mining task itself.

The results from this chapter are published in [130, 131, 133].

Two non-trivial factors which affect the results in Chapter 2 are the choices of the clustering

agreement measure and benchmark datasets, which are used to assess the performance of the

quality functions. This motivates the next two chapters of this thesis, i.e., Chapter 3 and Chapter 4,

which look deeper into each of these aspects. In more details, the following thesis statements are

addressed in these two chapters, respectively.

Thesis Statement 3. The clustering agreement measures could be adapted for comparing network

communities, by generalizing them to incorporate the overlaps and structure in the data.

Thesis Statement 4. The external evaluation of community detection can be improved, by using real-

istic generative models for synthesizing benchmarks which comply with the characteristics and evo-

lution patterns of real-world networks.

Chapter 3 is focused on clustering agreement indexes which measures the similarity between

two given clusterings (see Figure 1.4). The clustering agreement indexes are used mainly in the ex-

ternal evaluation, to compare the clustering results with the ground-truth. This chapter introduces

novel generalizations of the well-known clustering agreement measures, and introduces a family

of clustering agreement indexes, which can be used to derive new indexes. In particular, overlap-

ping variations of the clustering agreement indexes are derived using this generalization, which

are applicable to the general cases of clustering and are not constrained to the disjoint clusterings.

A(       ,       )  > A(       ,       )
Figure 1.4: Agreement Measure in External Evaluation

Chapter 3 further highlights that the clustering agreement indexes only compare memberships

of data-points in the two clusterings, and overlook any relations between the data-points or any

attributes associated with them. It then discusses the effect of neglecting these relations, i.e., links

in the networks, and derives extensions of the clustering agreement measures which incorporate

the structure of the data when measuring the agreements between communities. This chapter has

been published in [123].
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1.2. THESIS STATEMENTS AND ORGANIZATION

The external evaluation is not applicable in real-world networks, as the ground-truth is not

available. However, we assume that the performance of an algorithm on the benchmark datasets

is a predictor of its performance on real networks. On the other hand, there are few and typically

small real world benchmarks with known communities available for external evaluation; therefore

the external evaluation is usually performed on synthetic benchmarks or on large networks with

explicit or predefined communities, which are discussed respectively in Chapter 4 and Chapter 5.

Chapter 4 first studies different ways to improve the common generator models which are

used for synthesizing benchmarks for community detection task. Then, it presents a realistic and

flexible benchmark generator, called FARZ, which models modular networks, and incorporates in-

tuitive parameters withmeaningful interpretation that are easy to tune to control the experimental

settings. Figure 1.5 visualizes example modular networks generated by this model. Common com-

munity detection algorithms are ranked from different perspectives using the FARZ benchmarks,

and the resulted rankings are significantly different from the rankings obtained from the previous

unrealistic benchmark networks. This new model, hence, enables a more thorough comparison of

community detection algorithms. This work is submitted and currently under review.

β = 1 β = 0.95 β = 0.9 β = 0.85 β = 0.8

Figure 1.5: Example of networks generated by FARZ, with varying strength of the community structure.

Alternative to generating benchmarks for the community detection task, large real world

benchmarks are often used where the ground-truth communities are defined based on the explicit

properties/attributes of the nodes. For instance in a collaboration network of authors obtained

form DBLP, venues are considered as the ground-truth communities, or in the Amazon product

co-purchasing network, product categories are considered as the ground-truth [166]. In general,

there exists an interplay between the characteristics of nodes and the structure of the networks

[33, 75], and in some contexts attributes or characteristics of nodes act as the primary organizing

principle of the underlying communities [152]. However, this notion of ground-truth communi-

ties is imperfect and incomplete [83]. Chapter 5 discusses this in depth, and suggests to treat these

attributes as another source of information. Hence, the last thesis statement considered here is:

Thesis Statement 5. The community structure of a network is correlated with different attributes asso-

ciated to the nodes in that network, and this correlation can be utilized to guide a community detection

algorithm to find a community perspective that best corresponds with each given attribute.
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1.2. THESIS STATEMENTS AND ORGANIZATION

In particular, Chapter 5 utilizes the attributes associated to the nodes in the given network to

guide a community detection algorithm, i.e., to refine the communities and tune parameters, which

is referred to as community guidance by attributes. Using this approach, different high quality

community perspectives can be discovered where each best correspond with the selected set of

attributes. The results of this chapter are published in [126]. Figure 1.6 visualizes the correlation

between different attributes and different community results in an example dataset.

major
62(76) values
9.94% missing

dorm
23(25) values
48.2% missing

gender
2(2) values

5.87% missing

student or faculty
5(6) values

0.03% missing

year
9(20) values
12% missing

highschool
198(2881) values
13.7% missing

(a) Nodes are coloured the same if they have the same value for the corresponding attribute; missings are white.

InfoMap
63(94) clusters

Walktrab
19(204) clusters

Louvain
10(19) clusters

FastModularity
9(27) clusters

(b) Nodes are coloured the same if they belong to the same community in the results of corresponding algorithm.

Figure 1.6: Correlations between attributes and communities for the American75 dataset from Facebook 100
dataset [153]. This network has 6386 nodes and 217662 friendships edges.

6



Chapter 2

Quantifying Modular Structure of Networks

This chapter investigates different clustering quality criteria applied for relative and internal evalu-

ation of clustering data points with attributes, and incorporates proper adaptations to make them

applicable in the context of interrelated data. The adopted measures quantify a given commu-

nity/modular structure of the network, which are useful in both defining and evaluating commu-

nities. The performances of the proposed adapted criteria are compared through an extensive set

of experiments focusing on the evaluation of community mining results in different settings. The

results from this chapter are published in [130, 131, 133].

2.1 Introduction

The recent growing trend in the Data Mining field is the analysis of structured/interrelated data,

motivated by the natural presence of relationships between data points in a variety of present-

day applications. The structures in these interrelated data are typically modeled by a graph of

interconnected nodes, known as complex networks or information networks. Examples of such

networks are hyperlink networks of web pages, citation or collaboration networks of scholars, bi-

ological networks of genes or proteins, trust and social networks of humans among others. These

networks exhibit common statistical and structural properties (see Chapter 4 for more details), in-

cluding having an underlying modular structure, which consists of regions of densely connected

nodes, known as communities. Discovering this modular structure, commonly referred to as net-

work clustering or community mining, is one of the principal tasks in the analysis of complex

networks. The community mining algorithms evolved from simple heuristic approaches to more

sophisticated optimization based methods that are explicitly or implicitly trying to maximize the

goodness of the discovered communities. Although there have been many methods proposed for

community mining, little research has been done to explore the evaluation and validation method-

ologies. Similar to the well-studied clustering validity methods in the Machine Learning field, we

can consider three classes of approaches to evaluate community mining algorithms: external, in-

ternal and relative evaluation. The first two are statistical tests that measure the degree to which a

7



2.2. BACKGROUND AND RELATED WORKS

clustering confirms a-priori specified scheme. The third approach compares and ranks clusterings

of a same dataset discovered by different parameter settings [60]. In this chapter, we investigate

the evaluation approaches for the community mining algorithms considering the same classifica-

tion framework. We classify the common community mining evaluation practices into external,

internal and relative approaches, and further extend these by introducing a new set of criteria

adapted from the clustering literature. More specifically, these evaluation approaches are defined

based on different clustering validity criteria. We propose proper adaptions that these measures

require to handle comparison of community mining results. These criteria not only can be used

as means to measure the goodness of discovered communities, but also as objective functions to

detect communities.

The remainder of this chapter is organized as follows. In the next section, we first present

some background, where we briefly introduce the well-known community mining algorithms,

and the related work regarding evaluation of these algorithms. We continue the background with

an elaboration on the three classes of evaluation approaches incorporating the common evalua-

tion practices. In the subsequent section, we overview the clustering validity criteria, and intro-

duce our proposed generalizations and adaptions of these measures for the context of interrelated

data. Then, we extensively compare and discuss the performance of these adapted validity crite-

ria through a set of carefully designed experiments on real and synthetic networks. Finally, we

conclude with a brief analysis of the results.

2.2 Background and Related Works

A community is roughly defined as a group of “densely connected" nodes that are “loosely con-

nected” to others outside their group. Different community detection algorithms have different

interpretations for this definition. Basic heuristic approaches detect communities by assuming a

set of heuristics by which the network divides naturally into some subgroups. For instance, the

Clique Percolation Method [117] finds groups of nodes that can be reached via chains of k-cliques.

The more recent optimization based approaches mine communities by defining and maximizing

the overall “goodness” of the result. This optimization is often computationally expensive, which

itself calls for different approximation algorithms. For example, the optimization of the infamous

modularity Q [108] is proved to be NP-hard [17]; and several community detection algorithms

have been proposed which optimize modularity Q as their objective [16, 26, 91, 104, 135]. Here,

we first briefly overview the most well-known algorithms for discovering communities, then we

review and classify the common practices for the evaluation of community mining algorithms.

2.2.1 Overview of Community Detection Methods

The most notable community mining method is the divisive hierarchical clustering of Girvan and

Newman [51], which repeatedly removes the edge with the highest betweenness (often measured

as the number of pairwise shortest paths that pass through an edge) from the networks, and con-
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2.2. BACKGROUND AND RELATED WORKS

structs a dendrogram as the output. The modularity Q is proposed [108] to determine where to cut

this dendrogram to get a sensible (flat) community structure. To put simply, modularity Q mea-

sures the difference between the fraction of edges that arewithin the communities and the expected

such fraction if the edges were randomly distributed, i.e., when the degree of nodes are fixed and

the community structure is ignored. More formally, we have:

Q =
∑
i

(eii − a2i ) (2.1)

where ei j denotes the fraction of edges with one endpoint in community i and the other in com-

munity j; and ai =
∑

j ei j . In a later work, Newman [105] directly optimizes the modularity Q in

an agglomerative hierarchical clustering algorithm. This greedy optimization starts by putting all

nodes in their own community; then, repeatedly merges communities that result in the highest

gain in the modularity Q , which is computed as ΔQ = 2(ei j − aiaj ) for communities i and j.

The well-known FastModularity method [29], is an efficient heap based implementation of

this algorithm, which only keeps track of the ΔQ matrix, hence reduces the time complexity of the

original algorithm fromO (n(m+n)) toO (m log2 n); wheren andm denote the number of nodes and

edges in the graph, respectively. Blondel et al. [16] point out that the agglomerative method tends

to produce super-communities, i.e., communities that include a large fraction of the nodes in the

network. As an alternative, they propose the Louvain method to optimize the modularity Q [16],

which is highly scalable and one of the best performing community detection methods. Louvain

starts with considering every node as a singleton community, and then iterates over all nodes, and

moves each node to a community that results in the largest increase in the modularity Q . In more

detail, we can rewrite Equation 2.1 as:

Q =
∑
i

∑
u,v ∈i

(wuv −wu .wv . ) (2.2)

where wuv denotes the normalized weight of the edge from node u to node v , and wu . =
∑
v wuv

i.e., the weighted degree of u. Then, the gain of adding node u to community i is computed as

ΔQ = 2
∑
v ∈i (wuv −wu .wv . ). The efficiency of the Louvain algorithm is rooted in the simplicity of

this formula. Using this formula, nodes are considered repeatedly until there is no such movement

that increases the modularity, i.e., a local maximum is reached. Then the resulted communities are

aggregated to construct a new network; in which each community is a node, the edges between

nodes are the sum of the edges between the members of their corresponding communities, and

the sum of the edges within each community forms a self-loop. The above process repeats on the

aggregated network, until there is no increase in the modularity, and hence the end result has a hi-

erarchical structure. This structure is favourable since modularity Q is shown to have a resolution

limit [48], i.e., it tends to merge small (relative to the size of the overall network) communities into

bigger modules. Fortunato and Barthélemy [48] show that, for an extreme instance, even merging
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two cliques connected with only one edge would increase the modularity Q , if they each have

less than
√
m/2 edges; and more generally, modularity Q is biased against the communities with

smaller than
√
2m edges. Another well-known modularity optimization is based on the simulated

annealing [57, 137] when community detection is modeled as finding the ground state of a spin

system. In more detail, the module to which node u belongs to is denoted by a variable σu , which

represents a spin state in a spin glass, or Potts model, the energy of which is derived in [137] as a

simplified Hamiltonian, with couplings of Juv = Auv − γpuv , as:

H ({σ }) = −
∑
u�v

(Auv − γpuv )δ (σu ,σv ) (2.3)

where A is the adjacency matrix, puv is defined by the null model, γ balances the effect of internal

links/nonlinks, and δ is the Kronecker delta. The modularity Q of Equation 2.1 is a special case

of this formula, i.e., Q = − 1
m
H ({σ }) when γ = 1 (“natural partition”), and puv =

Au .Av .

2m ; where

Au . denotes the degree of node u. Hence modularity Q is maximized by finding a spin configu-

ration that minimizes this Hamiltonian, a.k.a. its ground state. This minimization is performed

using simulated annealing and based on the local update rules derived from the change in energy

when a spin changes. More importantly, these studies [57, 137] highlight the fact that high mod-

ularity Q does not always indicate a community structure, and the need to examine the statistical

significance of the obtained modularity Q . In particular, Guimera et al. [57], show how to obtain

partitions with high modularity Q in random graphs, both Erdős and Rényi [45] and Albert and

Barabási [6] scale-free models, which by definition do not have a modular structure. There are also

spectral optimization techniques proposed for the modularity matrix [102, 105, 106]. In particular,

then×nmodularity matrix B is defined as Buv = Auv− 1
2mAu .Av . ; fromwhich themodularity Q for

when there are only two communities can be rewritten as:

Q =
1

4m

∑
uv

Buvσuσv (2.4)

where σu is either +1 or −1, which indicates the membership of node u in the two communi-

ties. Newman [102] shows that a relaxed version (i.e., σu ∈ [−√n,√n]) of this problem could

be solved by finding the second-highest eigenvalue for the normalized Laplacian of the network,

i.e., L = D−1/2AD−1/2; hence showing that for the bipartitioning case, the modularity maximization

is similar to the normalized-cut graph partitioning. There also exists a whole body of community

detection methods which are not based on optimizing modularity Q . We previously proposed a

k-medoid based community mining approach, called TopLeaders [127]. TopLeaders (implicitly)

maximizes the overall closeness of followers and leaders, assuming that a community is a set of

followers congregating around a potential leader. A closely related family of methods are based on

label propagation [15, 42, 134]. For instance, Raghavan et al. [134] consider a label for each node

that denotes its community. Then these labels are propagated iteratively, where in each step a node
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chooses to join the community of majority of its neighbours. The “Chinese whisper” algorithm

[15] is a similar approach proposed for the graph partitioning. Another notable family of methods

mines communities by utilizing information theory concepts such as compression by Rosvall and

Bergstrom [140], and entropy by Kenley and Cho [68]. For instance, the Infomapmethod proposed

in [140] finds communities that if the network is coded based on them, one can optimally describe

any random walk. Their objective for “goodness” of communities is defined in terms of the Shan-

non entropy of the random walk within and between the clusters. In more detail, they derive the

following map equation which measures the average number of bits per step to describe a random

walk on the given partitioned network.

L =
∑
i

qi log(
∑
i

qi ) − 2
∑
i

qi log(qi ) −
∑
u

pu log(pu ) +
∑
i

(qi +
∑
u ∈i

pu ) log(qi +
∑
u ∈i

pu ) (2.5)

where pu is the ergodic node visit frequency computed for node u, by a random surfer which uses

teleportation, and qi is the exit probability of module i which is derived from the node visit fre-

quencies; refer to [140] for more details. Different from the methods mentioned earlier, Ahn et al.

[4] propose a community detection algorithm which groups edges instead of nodes. They define

a similarity measure between edges, based on the neighbourhood overlap of their incident nodes,

and use a single-linkage hierarchical algorithm to derive a clustering dendrogram; which is then

cut where the average density of modules is maximized. Their method can put a node into dif-

ferent clusters, and hence generates overlapping communities. Finding overlapping communities

is in fact one of the main extensions of the community detection problem [55, 81, 94, 167]. Other

notable extensions are local[25, 91, 150], and dynamic[148, 149] communities. Local community

mining algorithms, in particular, are developed for large networks in which the global information

on the whole network is not available or computationally expensive. These methods are based on

a locally defined quality function on a subset of nodes in the network, e.g., local variants of the

modularity Q [25, 91], where the current local community expands by identifying its boundary

nodes, and according to their ratio of internal and external edges. Leskovec et al. [88] compare a

local variation of modularity Q with different alternative local objectives, including ratio cut, nor-

malized cut, conductance, etc. . In their implementation, they start with a seed node, and score the

nodes based on their proximity to the seed using a random walk, then the community is expanded

from the closest node, and the objective is computed for each expansion; whereas the local optima

of the objective correspond to the detected community. One should however note that obtaining

the global clustering structure of the network using a local method is not a straightforward task.

For instance, Tepper and Sapiro [150] highlight the challenges of this task, and present a consensus

approach to integrate local communities, which are discovered when considering each node in the

network as the seed, to reach the global community structure. More comprehensive surveys on

community detection methods are available in [32, 47, 49, 121].
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2.2.2 Classification of Common Evaluation Practices

Fortunato [47] shows that the different community mining algorithms discover communities from

different perspective and may outperform others in specific classes of networks and have different

computational complexities. Therefore, an important research direction is to evaluate and com-

pare the results of different community mining algorithms, and select the one providing more

meaningful clustering for each class of networks. An intuitive practice is to validate the results

partly by a human expert [91]. However, the community mining problem is NP-hard [17]; and

the human expert validation is limited, since it is based on narrow intuition rather than on an

exhaustive examination of the relations in the given network, specially for large real networks. To

validate the result of a community mining algorithm, one can consider three approaches: external

evaluation, internal evaluation, and relative evaluation; which are described in the following.

External evaluation compares the discovered clustering against a prespecified structure, of-

ten called ground-truth. There are few and typically small real world benchmarks with known

ground-truth communities available for external evaluation of community mining algorithms.

Hence, there exists benchmark generators which synthesize benchmarks with built-in communi-

ties. However, in a real-world application the interesting communities that need to be discovered

are hidden in the structure of the network, thus, the discovered communities can not be vali-

dated based on the external evaluation. This motivate investigating the other two alternatives

approaches – internal and relative evaluation. Before describing these evaluation approaches, we

first review the main studies relevant to the external evaluation in community detection.

Girvan and Newman [51] propose the first synthetic network generator for community eval-

uation, called GN benchmarks. Their benchmark generates graphs with 128 nodes, and expected

degree of 16, which are divided into four groups of equal sizes; where the probabilities of the ex-

istence of a link between a pair of nodes of the same group and of different groups are zin and

1 − zin , respectively. However due the simplicity of its structure, most of the algorithms per-

form well on these benchmarks. Lancichinetti et al. [79] amend the GN benchmark and propose

the well-known LFR benchmarks. LFR considers power law distributions for the degrees of nodes

and community sizes, which corresponds better with properties observed for real-world networks.

Here, each node shares a fraction 1 − μ of its links with the other nodes of its community and a

fraction μ with the other nodes of the network. For a more elaborate discussion on the synthetic

benchmark generators please refer to Chapter 4.

Apart frommany papers that use the external evaluation to assess the performance of their pro-

posed algorithms, there are recent studies specifically on comparison of different community min-

ing algorithms using the external evaluation approach. For instance, Gustafsson et al. [59] com-

pare hierarchical and k-means community mining on real networks and also synthetic networks

generated by the GN benchmark. Lancichinetti and Fortunato [76] compare a total of a dozen

community mining algorithms; where the performance of the algorithms is compared against the
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2.2. BACKGROUND AND RELATED WORKS

network generated by both GN and LFR benchmark. Orman et al. [115] compare a total of five

community mining algorithms on the synthetic networks generated by LFR benchmark. They first

assess the quality of the different algorithms by their difference with the ground-truth. Then, they

perform a qualitative analysis of the identified communities by comparing their size distribution

with the community size distribution of the ground-truth.

Internal evaluation techniques verify whether the clustering structure produced by a clus-

tering algorithm matches the underlying structure of the data, using only information inherent

in the data. These techniques are based on an internal criterion that measures the correlation

between the discovered clustering structure and the structure of the data, represented as a prox-

imity matrix –a square matrix in which the entry in cell (i, j ) is some measure of the similarity

(or distance) between the items i , and j. The significance of this correlation is examined statisti-

cally based on the distribution of the defined criteria, which is usually not known and is estimated

using Monte Carlo sampling method [151]. An internal criterion can also be considered as a qual-

ity index to compare different clusterings which overlaps with relative evaluation techniques. 1

The well-known modularity Q of Newman [107] can be considered as such, which is used both

to validate a single community mining result and also to compare different community mining

results [28, 139]. Modularity is defined as the fraction of edges within communities, i.e., the corre-

lation of adjacency matrix and the clustering structure, minus the expected value of this fraction

that is derived based on the configuration model [107]. Another work that could be considered

in this class is the evaluation of different community mining algorithms studied in [88]. Where

the authors propose network community profile (NCP) to characterize the quality of communities

as a function of their size, then the shape of the NCPs are compared for different algorithms over

random and real networks.

Relative evaluation compares alternative clustering structures based on an objective func-

tion or quality index. This evaluation approach is the least explored in the community mining

context. Defining an objective function to evaluate community mining is non-trivial. Aside from

the subjective nature of the community mining task, there is no formal definition on the term

community. Consequently, there is no consensus on how to measure “goodness” of the discovered

communities. Nevertheless, the well-studied clustering methods in the Machine Learning field are

subject to similar issues and yet there exists an extensive set of validity criteria defined for clus-

tering evaluation, such as Davies-Bouldin index [39], Dunn index [44], and Silhouette [142]; for a

survey refer to [155]. In the next section, we describe how these criteria could be adapted to the

context of community mining in order to compare results of different community mining algo-

rithms. Also, these criteria can be used as alternatives to modularity Q to design novel community

mining algorithms.

1One should note that while any internal evaluation metric could be used also for the relative evaluation, the reverse
it not the case; i.e., the relative measures could not necessarily provide an internal evaluation [151].
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2.3 Community Quality Criteria

Here, we overview several validity criteria that could be used as relative indexes for comparing

and evaluating different partitionings of a given network, i.e., a disjoint/non-overlapping cluster-

ing. All of these criteria are generalized fromwell-known clustering criteria. The clustering quality

criteria are originally defined with the implicit assumption that data points consist of vectors of

attributes. Consequently their definition is mostly integrated or mixed with the definition of the

distance measure between data points. The commonly used distance measure is the Euclidean dis-

tance, which cannot be defined for graphs. Therefore, we first review different possible proximity

measures that could be used in graphs. Then, we present generalizations of criteria that could use

any notion of proximity.

2.3.1 Proximity Between Nodes

We consider the following extensive set of distance or similarity measures, to compute the proxim-

ity between nodes i and j, which is denoted by pi j . Since similarity is more natural in the context

of networks, we directly plug-in similarities in the relative criteria definitions. For those criteria

which can not use the similarities in a straightforward way, we keep the original distance based

form and use the corresponding dissimilarity/distance (e.g., inverse of the similarity) 2.

Shortest Path (SP) distance between two nodes is the length of the shortest path between

them, which could be computed using the well-known Dijkstra’s Shortest Path algorithm.

Adjacency (A) similarity between the two nodes i and j is considered their incident edge

weight, pAij = Ai j ; where A denotes the (weighted) adjacency matrix. Accordingly, the distance

between these nodes is derived as:

dAij = Amax − pAij (2.6)

where Amax is the maximum edge weight in the graph; i.e., Amax = maxi j Ai j .

Adjacency Relation (AR) distance between two nodes measures their structural dissimilarity,

which is computed by the difference between their immediate neighbourhoods [161] as:

dARi j =

√∑
k�j,i

(Aik −Ajk )2 (2.7)

This definition does not consider the existence of an edge between the two nodes i and j. To

remedy this, Augmented AR (ÂR) is also defined; i.e.,

dÂRi j =

√∑
k

(Âik − Âjk )2 (2.8)

2 To avoid division by zero, we always have Pi j = min(Pi j , ϵ ) where ϵ is a very small number, i.e., 10E-9.
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where Â denotes the adjacency matrix augmented by self-loops, i.e., Âi j is equal to Ai j if i � j and

is Amax when i = j.

Neighbour Overlap (NO) similarity between two nodes is the ratio of their shared neighbours

[47], and is defined as:

pNO
ij =

|ℵi ∩ ℵj |
|ℵi ∪ ℵj | (2.9)

where ℵi denotes the set of nodes directly connected to node i , i.e., ℵi = {k |Aik � 0}. The corre-
sponding distance is derived as dNO

ij = 1−pNO
ij . There is a close relation between this measure and

the previous one, sincedAR can also be computed as: dARi j =
√|ℵi ∪ ℵj | − |ℵi ∩ ℵj |. We can also de-

rivedÂRi j from this formula, if we consider the neighbourhoods closed, i.e., when ℵ̂i = {nk |Âik � 0}.
Hence, we also consider the closed neighbour overlap similarity, p ˆNO , with the same analogy that

two nodes are more similar if directly connected. The closed overlap similarity, p ˆNO , could be

rewritten in terms of the adjacency matrix, which then straightforwardly generalizes for weighted

cases.

p
ˆNO

ij =

∑
k ÂikÂjk∑

k [Â
2
ik
+ Â2

jk
− ÂikÂjk ]

(2.10)

We also consider the following variation:

p
ˆNOV

i j =

∑
k (Âik + Âjk ) (Âik + Âjk ) −∑k (Âik − Âjk ) (Âik − Âjk )∑
k (Âik + Âjk ) (Âik + Âjk ) +

∑
k (Âik − Âjk ) (Âik − Âjk )

(2.11)

Topological Overlap (TP) similarity measures the normalized overlap size of the neighbour-

hoods [136], which we generalize as:

pT Pi j =

∑
k�j,i (AikAjk ) +A

2
i j

min(
∑

k A
2
ik
,
∑

k A
2
jk
)

(2.12)

and the corresponding distance is derived as dTOi j = 1 − pTOi j .

Pearson Correlation (PC) coefficient between two nodes is the correlation between their

corresponding rows of the adjacency matrix, i.e., :

pPCi j =

∑
k (Aik − μi ) (Ajk − μ j )

Nσiσj
(2.13)

where N is the number of nodes, and for the average μi and the variance σi we have:

μi = (
∑
k

Aik )/N , σi =

√∑
k

(Aik − μi )2/N

This correlation coefficient lies between −1 (when the two nodes are most similar) and 1 (when
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the two nodes are most dissimilar). Most relative clustering criteria are defined assuming distance

is positive, therefore we also consider the normalized version of this correlation, i.e., pNPC =

(pPCi j + 1)/2. Then, the distance between two nodes is computed as d (N )PC
i j = 1 − p (N )PC

i j .

In all the above proximitymeasures, the iteration over all other nodes can be limited to iteration

over the nodes in the union of neighbourhoods. More specifically, in the formulae, one can use∑
k ∈ℵ̂i∪ℵ̂j instead of

∑N
k=1. This will make the computation local and more efficient, especially

in case of large networks. This strategy will not work for the current definition of the Pearson

correlation, however, it can be applied if we reformulate it as follows:

pPCi j =

∑
k AikAjk − (

∑
k Aik ) (

∑
k Ajk )/N√

((
∑

k A
2
ik
) − (
∑

k Aik )2/N ) ((
∑

k A
2
jk
) − (
∑

k Ajk )2/N )
(2.14)

We also consider this correlation based on Â, which gives p ˆPC , in which the existence of an edge

between the two nodes, increases their correlation similarity. Note that since we are assuming a

self edge for each node, N̂ = N + 1 should be used. The above formula can be further rearranged

as follows:

pPCi j =

∑
k

[
AikAjk − (

∑
k ′
Aik ′ ) (

∑
k ′
Ajk ′ )/N

2
]

√
(
∑
k

[
A2
ik
− (
∑
k ′
Aik ′ )2/N 2

]
) (
∑
k

[
A2
jk
− (
∑
k ′
Ajk ′ )2/N 2

]
)

(2.15)

Where if the index k iterates over all nodes, it is equal to the original Pearson correlation. This is

not the case if k only iterates over the union of neighbourhoods,
∑

k ∈ℵ̂i∪ℵ̂j , which also consider

and call Pearson overlap (NPO).

Number of Paths (NP) between two nodes is the sum of all the paths between them, which is

a notion of similarity. For the sake of time complexity, we consider paths of up to a certain number

of hops i.e., 2 and 3. The number of paths of length l between nodes i and j can be computed as

npli j = (Al )i j . More specifically we have: np1i j = Ai j , np2i j =
∑

k AikAjk , and np3i j =
∑

kl AikAklAjl .

We consider the follwoing combinations of these as different proximity measures:

pNP 2
= np1 + np2, and pNP 3

= np1 + np2 + np3 (2.16)

pNP 3
L = np1 +

np2

2
+
np3

3
, and pNP 3

E = np1 + 2

√
np2 + 3

√
np3 (2.17)

Modularity (M) similarities are defined inspired by the modularity Q [107] as:

pMij = Ai j −
(
∑

k Aik ) (
∑

k Ajk )∑
kl Akl

, and pMD
ij =

Ai j

(
∑
k Aik ) (

∑
k Ajk )∑

kl Akl

(2.18)

The distance is derived as 1 − pM (D ) .
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ICloseness (IC) similarity between two nodes is computed as the inverse of the connectivity

between their scored neighbourhoods:

pICi j =

∑
k skisk j∑

k s
2
ki
+
∑

k s
2
k j
−∑k skisk j

(2.19)

where ski denotes the neighbouring score of node k to i; for complete formulation refer to [124].

This score is comouted for a neighbourhood of specified depth; here we consider 3 variations:

direct neighbourhood (IC1), neighbourhood of depth 2 i.e., neighbours up to one hop apart (IC2),

and neighbourhood of depth 3 i.e., neighbours up to two hops apart (IC3). We also consider the

following variation:

pICVi j =

∑
k
(ski + sk j ) (ski + sk j ) −∑

k
(ski − sk j ) (ski − sk j )∑

k
(ski + sk j ) (ski + sk j ) +

∑
k
(ski − sk j ) (ski − sk j ) (2.20)

The distance is then derived as d IC (V ) = 1 − pIC (V ) .

2.3.2 Community Centroid

In addition to the notion of proximity measure, most of the cluster validity criteria use averaging

between the numerical data points to determine the centroid of a cluster. The averaging is not

defined for nodes in a graph, therefore we modify the criteria definitions to use a generalized

centroid notion, in a way that, if the centroid is set as averaging, we would obtain the original

criteria definitions, but we could also use other alternative notions for centroid of a group of data

points. Averaging data points results in a point with the least average distance to the other points.

When averaging is not possible, using medoid is the natural option, which is perfectly compatible

with graphs. More formally, the centroid of the community C can be obtained as:

C = argmin
m∈C

∑
i ∈C

d (i,m) (2.21)

2.3.3 Relative Validity Criteria

Here, we present our generalizations of well-known clustering validity criteria defined as quality

measures for internal or relative evaluation of clustering results. All these criteria are originally

defined based on distances between data points, which in all cases is the Euclidean or other inner

product norms of difference between their vectors of attributes; refer to [155] for comparative anal-

ysis of these criteria in the clustering context. We alter the formulae to use a generalized distance,

so that we can plug in our graph proximity measures. The other alteration is generalizing the

mean over data points to a general centroid notion, which can be set as averaging in the presence

of attributes and the medoid in our case of dealing with graphs and in the absence of attributes.
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In a nutshell, in every criterion, the average of points in a cluster is replaced with a generalized

notion of centroid, and distances between data points are generalized from Euclidean/norm to a

generic distance. Consider a partitioningC = {C1,C2, ...Ck } of N data points, whereCl denotes the

(generalized) centroid of data points belonging toCl and d (i, j ) denotes the (generalized) distance

between point i and point j. The quality ofC can be measured using one of the following criteria.

Variance Ratio Criterion (VRC) measures the ratio of the between-cluster/community dis-

tances to within-cluster/community distances which could be generalized as follows:

VRC =

∑k
l=1 |Cl |d (Cl ,C )∑k
l=1

∑
i ∈Cl d (i,Cl )

× N − k
k − 1 (2.22)

whereCl is the centroid of the clusterCl , andC is the centroid of the entire data/network. Conse-

quently d (Cl ,C ) is measuring the distance between centroid of cluster Cl and the centroid of the

entire data, while d (i,Cl ) is measuring the distance between data point i and its cluster centroid.

The original clustering formula proposed by Calinski and Harabasz [19] for attributes vectors is

obtained if the centroid is fixed to averaging of vectors of attributes and distance to (square of)

Euclidean distance. Here we use this formula with one of the proximity measures mentioned in

the preious section; if it is a similarity measure, we either transform the similarity to its distance

form and apply the above formula, or we use it directly as a similarity and inverse the ratio to

within/between while keeping the normalization, the latter approach is distinguished in the ex-

periments as VRC ′.
Davies-Bouldin index (DB) calculates the worst-case within-cluster to between-cluster dis-

tances ratio averaged over all clusters/communities [39]:

DB =
1

k

k∑
l=1

max
m�l

dl + dm

d (Cl ,Cm )
, where dl =

1

|Cl |
∑
i ∈Cl

d (i,Cl )

If used directly with a similarity measure, we change the max in the formula to min and the final

criterion becomes a maximizer instead of minimizer, which is denoted by DB′.
Dunn index considers both theminimumdistance between any two clusters/communities and

the length of the largest cluster/community diameter (i.e., the maximum or the average distance

between all the pairs in the cluster/community) [44]:

Dunn = min
l�m
{ δ (Cl ,Cm )

maxpΔ(Cp )
} (2.23)

where δ denotes distance between two communities and Δ is the diameter of a community. Differ-

ent variations of calculating δ and Δ are available; δ could be single, complete or average linkage,

or only the difference between the two centroids. Moreover, Δ could be maximum or average
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distance between all pairs of nodes, or the average distance of all nodes to the centroid. For ex-

ample, the single linkage for δ and maximum distance for Δ are δ (Cl ,Cm ) = min
i ∈Cl , j ∈Cm

d (i, j ) and

Δ(Cp ) = max
i, j ∈Cp

d (i, j ). Therefore, we have different variations of Dunn index in our experiments,

each indicated by two indexes for different methods to calculate δ (i.e., single(0), complete(1), aver-

age(2), and centroid(3)) and different methods to calculate Δ (i.e., maximum(0), average(1), average

to centroid(3)).

Silhouette Width Criterion (SWC) measures the average silhouette scores, which is com-

puted individually for each data point. The silhouette score of a point shows the goodness of the

assignment of this point to the community it belongs to, by calculating the normalized difference

between the distance to its nearest neighbouring community and the distance to its own commu-

nity [142]. Taking the average one has:

SWC =
1

N

k∑
l=1

∑
i ∈Cl

min
m�l

d (i,Cm ) − d (i,Cl )

max {min
m�l

d (i,Cm ),d (i,Cl )} (2.24)

where d (i,Cl ) is the distance of point i to communityCl , which is originally set to be the average

distance, i.e., 1/|Cl |∑j ∈Cl d (i, j ), which we call SWC0. The d (i,Cl ) could also be the distance to

the centroid, i.e., d (i,Cl ), which we call SWC1. An alternative formula for Silhouette is proposed

in [155] :

ASWC =
1

N

k∑
l=1

∑
i ∈Cl

min
m�l

d (i,Cm )

d (i,Cl )
(2.25)

Similar to DB, if used directly with a similarity proximity measure, we change the min to max and

the final criterion becomes a minimizer instead of maximizer, which is denoted by (A)SWC ′.
PBM criterion is based on the within-community distances and the maximum distance be-

tween centroids of communities[116]:

PBM =
1

k
×

max
l,m

d (Cl ,Cm )

∑k
l=1

∑
i ∈Cl d (i,Cl )

(2.26)

Again similar toDB, here also if used directly with a similarity measure, we change the max to min

and consider the final criterion as a minimizer instead of maximizer, which is denoted by PBM ′.
C-Index criterion compares the sum of the within-community distances to the worst and best

case scenarios [36]. The best case scenario is where the within-community distances are the short-

est distances in the graph, and the worst case scenario is where the within-community distances

are the longest distances in the graph.

CIndex =
θ −minθ

maxθ −minθ
, where θ =

1

2

k∑
l=1

∑
i, j ∈Cl

d (i, j ) (2.27)
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The minθ /maxθ is computed by summing the Θ smallest/largest distances between every two

points, where Θ = 1
2

∑k
l=1 |Cl |( |Cl | − 1). C-Index can be directly used with a similarity measure as

a maximization criterion, whereas with a distance measure it is a minimizer. This is also true for

the two following criteria.

Z-Statistics criterion is defined similar to C-Index [65]:

ZIndex =
θ − E (θ )√
var (θ )

, where (2.28)

d̄ =
1

N 2

N∑
i=1

N∑
j=1

d (i, j ) , E (θ ) = Θ × d̄ , Var (θ ) =
1

4

k∑
l=1

∑
i, j ∈Cl

(d (i, j ) − d̄ )2

Point-Biserial (PB) This criterion computes the correlation of the distances between nodes

and their cluster co-membership which is dichotomous variable [97]. Intuitively, nodes that are in

the same community should be separated by shorter distances than those which are not:

PB =
M1 −M0

S

√
m1m0

m2
(2.29)

where m is the total number of distances i.e., N (N − 1)/2 and S is the standard deviation of all

pairwise distances i.e.,
√

1
m

∑
i, j (d (i, j ) − 1

m

∑
i, j d (i, j ))2, whileM1,M0 are respectively the average

of within and between-community distances, andm1 andm0 represent the number of within and

between community distances. More formally:

m1 =

k∑
l=1

Nl (Nl − 1)
2

, m0 =

k∑
l=1

Nl (N − Nl )

2
, M1 = 1/2

k∑
l=1

∑
i, j ∈Cl

d (i, j ) , M0 = 1/2
k∑
l=1

∑
i ∈Cl
j�Cl

d (i, j )

Modularity is the well-known criterion proposed by Newman and Girvan [108] specifically

for the context of community mining. Let E denote the number of edges in the network i.e., E =
1
2

∑
i j Ai j , then Q-modularity is defined as:

Q =
1

2E

k∑
l=1

∑
i, j ∈Cl

[Ai j −
∑

k Aik
∑

k Ak j

2E
] (2.30)

2.3.4 Computational Complexity Analysis

The computational complexity of different clustering validity criteria is provided in the previous

work by Vendramin et al. [155]. For the adapted criteria, the time complexity of the indexes is

affected by the cost of the chosen proximity measure. All the proximity measures we introduced

here can be computed in linear time, O (n), except for the A (adjacency) which is O (1), the NP

(number of paths) which is O (n2) and the IC (Icloseness) which is O (E). However, for the case
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of sparse graphs and using a proper graph data structure such as incidence list, this complexity

can be reduced toO (d̂ ), where d̂ is the average degree in the network, i.e., the average neighbours

of a node in the network. For example, let us revisit the formula for AR (adjacency relation):

dARi j =
√∑

k�j,i (Aik −Ajk )2. In this formula we can change
∑

k to
∑

k ∈ℵi∪ℵj since the expression
(Aik −Ajk )

2 is zero for other values of k , i.e., for nodes that are not neighbour to either i or j and

therefore have Aik = Ajk = 0. The same strategy could be applied to other proximity measures.

The other cost that should be considered is the cost of computing the medoid ofm data points,

which is O (pm2), where p is the cost of the proximity measure. Therefore the VRC criterion

that require computing the overall centroid, is in order of O (pn2). This is while the VRC for

traditional clustering is linear with respect to the size of the dataset, since it uses averaging for

computing the centroid which is O (n). Similarly, any other measure that requires computing all

the pairwise distances will have the Ω(pn2). This holds for the adapted Dunn index which is in

order of O (pn2), becuase for finding the minimum distances between any two clusters, it requires

to compute the distances between all pair of nodes. Similarly, theZIndex computes all the pairwise

distances, and is in order of O (pn2). The same also holds for the PB. The CIndex is even more

expensive since it not only computes all the pairwise distances but also sorts them, and hence is in

order of O (n2 (p + loдn)). These orders (except forVRC) are along the computational complexities

previously reported in Vendramin et al. [155], where the cost of the p is the size of the feature

vectors there.

The adapted DB and PBM , on the other hand, do not require computing the medoid of the

whole dataset nor all pairwise distances. Instead they only compute the medoid of each cluster,

which makes them in Ω(pkm̂2), where k is the number of clusters and the m̂ is the average size

of the clusters. Consequently, this term will be added to the complexity of these criteria, giving

them the order of O (p (n + k2 + km̂2)). Finally for the silhouette criterion, the (A)SWC0 that uses

the average distance, has the order of O (pn2), however the order for (A)SWC1 is simplified to

O (kp (n + m̂2)) since it uses the distance to centroid instead of averaging. The latter is similar

to the order for modularity Q which is O (k (n + m̂2)). To sum up, none of the adapted criteria is

significantly superior or inferior in terms of its order, therefore one should focus onwhich criterion

is more appropriate according to its performance which is demonstrated in the experiments.

2.4 Comparison Methodology and Results

In this section, we first describe our experimental settings. Then, we report the performances of

the proposed community quality criteria in relative evaluation of communities.

2.4.1 Experiment Settings

We have used three sets of benchmarks as our datasets: Real, GN and LFR. The Real dataset con-

sists of fivewell-known real-world benchmarks: Karate Club (weighted) by Zachary [171], Sawmill

Strike data-set [111], NCAA Football Bowl Subdivision [51], and Politician Books from Amazon
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[73]. The GN and LFR datasets, each include 10 realizations of the GN and LFR synthetic bench-

marks [79], which are the benchmarks widely used for community mining evaluation. For each

realization, we generate different partitionings to sample the space of all possible partitionings.

For doing so, given the ground-truth, we generate different randomized versions of the true parti-

tioning by randomly merging and splitting communities and swapping nodes between them. The

sampling procedure is described in more detail in Appendix A. The set of the samples obtained

covers the partitioning space in a way that it includes very poor to perfect samples.

2.4.2 Comparison Methodology

The performance of a criterion could be examined by howwell it could rank different partitionings

of a given dataset. More formally, consider for the dataset d , we have a set ofm different possible

partitionings: P (d ) = {p1,p2, . . . ,pm }. Then, the performance of criterion c on dataset d could be

determined by how much its values, Ic (d ) = {c (p1), c (p2), . . . , c (pm )}, correlate with the “good-

ness” of these partitionings. Assuming that the true partitioning (i.e., ground-truth) p∗ is known
for dataset d , the “goodness” of partitioning pi could be determined using partitioning agreement

measure a. Hence, for dataset d with set of possible partitionings P (d ), the external evaluation

provides E (d ) = {a(p1,p∗),a(p2,p∗), . . . ,a(pm ,p∗)}, where (p1,p
∗) denotes the “goodness” of par-

titioning p1 comparing to the ground-truth. Then, the performance score of criterion c on dataset

d could be examined by the correlation of its values Ic (d ) and the values obtained from the ex-

ternal evaluation E (d ) on different possible partitionings. Finally, the criteria are ranked based on

their average performance score over a set of datasets. The following procedure summarizes our

comparison approach.

D ← {d1,d2, . . . ,dn }
for all dataset d ∈ D do

P (d ) ← {p1,p2, . . . ,pm } {generatem possible partitionings}
E (d ) ← {a(p1,p∗),a(p2,p∗), . . . ,a(pm ,p∗)} {compute the external scores}
for all c ∈ Criteria do

Ic (d ) ← {c (p1), c (p2), . . . , c (pm )} {compute the internal scores}
scorec (d ) ← correlation(E, I ) {compute the correlation}

scorec ← 1
n

∑n
d=1 scorec (d ) {rank criteria based on their average scores}

External scores are obtained using a clustering agreement measure. There are several choices

for this agreement measure, we consider four commonly used ones: Jaccard Coefficient [5], Ad-

justed Rank Index (ARI) [64], Normalized Mutual Information (NMI) [38], and Adjusted Mutual

Information (AMI) [157]. There are also different ways to compute the correlation between two

vectors, most notably Pearson Product Moment coefficient and the Spearman’s Rank correlation

coefficient. The reported results in our experiments are based on the Spearman’s Correlation, since

we are interested on the correlation of rankings that a criterion provides for different partitionings

and not the actual values of that criterion. However, the reported results mostly agree with the
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results obtained by using Pearson correlation.

2.4.3 Results on Real World Datasets

Table 2.1 shows general statistics of our real world datasets and their generated samples. We can

see that the randomized samples cover the space of partitionings according to their external index

range.

Dataset K∗ # K ARI

strike 3 100 3.2±1.08∈[2,7] 0.45±0.27∈[0.01,1]
polboks 3 100 4.36±1.73∈[2,9] 0.43±0.2∈[0.03,1]
karate 2 100 3.82±1.51∈[2,7] 0.29±0.26∈[-0.04,1]
football 11 100 12.04±4.8∈[4,25] 0.55±0.22∈[0.16,1]

Table 2.1: Statistics for sample partitionings of each real world dataset. For example, for the Karate Club
dataset which has 2 communities in its ground-truth, we have generated 100 different partitionings with average
3.82±1.51 clusters ranging from 2 to 7 and the “goodness” of the samples is on average 0.29±0.26 in terms of
their ARI agreement.

Figure 2.1 exemplifies how different criteria exhibit different correlations with the external

index. It visualizes the correlation between few selected relative indexes and an external index for

one of our datasets listed in Table 2.1.

ZIndex with
Topological Overlap

Point-Biserial with
Pearson Correlation

Silhouette with
Modularity Proximity

Q modularity

Figure 2.1: Visualization of correlation between an external agreement measure and some relative quality
criteria for Karate dataset. The x axis indicates different random partitionings, and the y axis indicates the value
of the index. While, the blue/darker line represents the value of the external index for the given partitioning and
the red/lighter line represents the value that the criterion gives for the partitioning. Please note that the value of
criteria are not generally normalized and in the same range as the external indexes, in this figure ARI. For the
sake of illustration therefore, each criterion’s values are scaled to be in the same range as of the external index.

Similar analysis is done for all 4 datasets × 645 criteria (combination of relative indexes and

distances variations) × 5 external indexes, which produced over 12900 such correlations. The top

ranked criteria based on their average performance over these datasets are summarized in Table

2.2. Based on these results, ZIndex when used with almost all of the proximity measures, such

as Topological Overlap (TO), Pearson Correlation Similarity (PC) or Intersection Closeness (IC);

has a higher correlation with the external index comparing to the modularity Q. And this is true

regardless of the choice of ARI as the external index, since it is ranked above Q by other external
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indexes, e.g., , NMI and AMI. Other criteria, on the other hand, are all ranked after the modularity

Q, except theCIndex SP. Onemay conclude based on this experiment that ZIndex is a more accurate

evaluation criterion comparing to Q.

Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex ′ TO 0.925±0.018 9 148 9 7
2 ZIndex ′ ˆPC 0.923±0.012 2 197 2 2
3 ZIndex ′ ˆNPC 0.923±0.012 3 198 1 1
4 ZIndex ′ IC2 0.922±0.024 8 182 5 3
5 ZIndex ′ ˆTO 0.922±0.016 10 153 8 8
6 ZIndex ′ ˆNPO 0.921±0.014 6 204 3 4
7 ZIndex ′ ICV2 0.919±0.04 18 163 12 10
8 ZIndex ′ PC 0.918±0.018 4 207 10 11
9 ZIndex ′ IC3 0.918±0.039 19 165 15 12
10 ZIndex ′ ˆNOV 0.915±0.014 11 213 6 9
11 ZIndex ′ IC1 0.912±0.02 5 235 13 20
12 ZIndex ′ NPE2 0.911±0.03 26 168 21 15
13 ZIndex ′ NOV 0.91±0.023 12 225 18 21
14 ZIndex ′ ICV1 0.91±0.023 13 226 19 22
15 ZIndex ′ ˆNPE2 0.91±0.025 23 184 22 19
16 ZIndex ′ NPL2 0.909±0.02 24 202 14 13
17 ZIndex ′ M 0.908±0.028 25 149 26 23
18 ZIndex ′ ICV3 0.908±0.057 29 176 28 25
19 ZIndex ′ NP2 0.907±0.021 20 212 16 14
20 ZIndex ′ ˆNPL2 0.906±0.022 21 216 17 17
21 ZIndex ′ ˆNP2 0.906±0.022 22 217 20 18
22 ZIndex ′ ˆNO 0.905±0.022 16 253 11 16
23 ZIndex ′ NO 0.904±0.034 7 250 23 31
24 ZIndex ′ ˆMM 0.903±0.037 17 233 24 30
25 CIndex SP 0.9±0.02 1 251 31 42

...

36 ZIndex ′ MD 0.894±0.048 34 179 33 32
37 ZIndex ′ Â 0.891±0.05 27 241 37 37
38 Q 0.878±0.034 45 110 45 44
39 CIndex ′ NPE3 0.876±0.054 43 9 4 6
40 CIndex ′ ICV3 0.869±0.069 44 4 7 5

Table 2.2: Overall ranking of criteria on the real world datasets, based on the average Spearman’s correlation
of criteria with the ARI external index, ARIcorr . Ranking based on correlation with other external indexes is
also reported. The full ranking of the top 50 criteria is reported in Appendix A.

The correlation between a criterion and an external index depends on how close the random-

ized partitionings are from the true partitioning of the ground-truth. This can be seen in Figure 2.1.

For example, SWC1 (Silhouette with Criterion where distance of a node to a community is com-

puted by its distance to the centroid of that community) with the Modularity M proximity agrees

strongly with the external index in samples with higher external index value, i.e., closer to the

ground-truth, but not on further samples. We can also see the similar pattern in the Point-Biserial

with PC proximity. With this in mind, we have divided the generated clustering samples into three

sets of easy, medium and hard samples and re-ranked the criteria in each of these settings. Since
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Near Optimal Samples
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex ′ ˆNPC 0.851±0.081 1 3 4 5
2 ZIndex ′ ˆPC 0.851±0.081 2 4 3 3
3 ZIndex SP 0.847±0.084 18 2 8 8
4 ZIndex ′ ˆNPO 0.845±0.088 3 9 6 6
5 DB ICV2 0.845±0.065 30 1 31 30
6 ZIndex ′ ˆNPE3.0 0.842±0.082 10 5 2 2
7 ZIndex ′ ICV3 0.839±0.084 4 20 20 21

...

37 Q 0.762±0.166 39 21 41 41
38 DB ICV3 0.757±0.126 37 35 38 36
39 DB IC3 0.753±0.176 35 36 39 39
40 PB′ PC 0.753±0.289 45 26 71 71

Medium Far Samples
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex ′ TO 0.775±0.087 5 361 22 20
2 ZIndex ′ ˆTO 0.771±0.091 6 386 19 17
3 ZIndex ′ IC3 0.768±0.134 2 372 16 13
4 ZIndex ′ ICV2 0.766±0.124 3 370 2 2
5 ZIndex ′ NPL3.0 0.762±0.079 12 349 28 27
6 ZIndex ′ ICV3 0.757±0.12 4 376 21 19
7 ZIndex ′ NP3.0 0.756±0.085 15 354 29 28

...

30 Q 0.69±0.151 58 70 79 72
...

46 PB′ PC 0.623±0.06 112 28 200 157
Far Far Samples

Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex ′ ICV2 0.724±0.066 36 520 4 9
2 ZIndex ′ IC3 0.72±0.062 40 523 11 19
3 ZIndex ′ ICV3 0.717±0.059 47 511 23 25
4 ZIndex ′ IC2 0.715±0.072 35 540 3 6
5 ZIndex ′ TO 0.706±0.064 49 519 16 14
6 ZIndex ′ ˆNPO 0.704±0.076 44 547 1 3
7 ZIndex ′ ˆTO 0.704±0.062 51 522 13 5

...

30 ZIndex ′ IC1 0.655±0.132 43 566 34 40
31 ZIndex ′ ˆNO 0.651±0.106 52 567 22 26
32 Q 0.643±0.033 86 444 50 45

...

117 PB′ PC 0.372±0.126 197 170 159 129

Table 2.3: Difficulty analysis of the results: considering ranking for partitionings near optimal ground-truth,
medium far and very far. Reported result are based on ARI and the Spearman’s correlation.

the external index determines how far a sample is from the optimal result, the samples are divided

into three equal length intervals according to the range of the external index. Table 2.3 reports

the rankings of the top criteria in each of these three settings. We can see that these average re-
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sults support our earlier hypothesis, i.e., when considering partitionings near or medium far from

the true partitioning, PB′ PC is between top criteria, while its performance drops significantly for

samples very far from the ground-truth.

2.4.4 Results on Synthetic Benchmarks Datasets

Similar to the last experiment, Table 2.5 reports the ranking of the top criteria according to their

average performance on synthesized datasets of Table 2.4. Based on which, ZIndex overall outper-

forms other criteria including the modularity Q, this is more significant in ranking finner parti-

tionings, near optimal; while it is less significant in ranking poor partitionings.

Dataset K∗ # K ARI

network1 4 100 5.26±2.45∈[2,12] 0.45±0.18∈[0.13,1]
network2 3 100 4±1.7∈[2,8] 0.47±0.23∈[0.06,1]
network3 2 100 4±1.33∈[2,6] 0.36±0.22∈[0.07,1]
network4 7 100 10.68±3.3∈[4,19] 0.69±0.21∈[0.25,1]
network5 2 100 4.68±1.91∈[2,9] 0.32±0.22∈[-0.01,1]
network6 5 100 5.98±2.63∈[2,14] 0.52±0.21∈[0.12,1]
network7 4 100 6.62±2.72∈[2,12] 0.52±0.22∈[0.11,1]
network8 5 100 5.8±2.45∈[2,12] 0.55±0.22∈[0.15,1]
network9 5 100 6.54±2.08∈[3,11] 0.64±0.2∈[0.25,1]
network10 6 100 8.88±2.74∈[4,15] 0.59±0.19∈[0.21,1]

Table 2.4: Statistics for sample partitionings of each synthetic dataset. The benchmark generation parameters:
100 nodes with average degree 5 and maximum degree 50, where size of each community is between 5 and 50
and mixing parameter is 0.1.

The LFR generator can generate networks with different levels of difficulty for the partitioning

task, by changing how well separated the communities are in the ground-truth. To examine the

effect of this difficulty parameter, we have ranked the criteria for different values of this parameter.

We observed that modularity Q becomes the overall superior criterion for synthetic benchmarks

with higher level of mixed communities (.3 ≤ μ ≤ .5). Table 2.6 reports the overall ranking

of the criteria for a difficult set of datasets that have high mixing parameter. We can see that

although Q is the overall superior criterion, ZIndex still significantly outperforms Q in ranking

finer partitionings. In short, the relative performances of different criteria depends on the difficulty

of the network itself, as well as how far we are sampling from the ground-truth. Altogether,

choosing the right criterion for evaluating different community mining results depends both on

the application, i.e., how well-separated communities might be in the given network, and also

on the algorithm that produces these results, i.e., how fine the results might be. For example,

if the algorithm is producing high quality results close to the optimal, modularity Q might not

distinguish the good and bad partitionings very well. While if we are choosing between mixed

and not well separated clusterings, it is the superior criterion.
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Overall Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex ′ ICV2 0.96±0.029 5 32 3 3
2 ZIndex ′ IC3 0.958±0.028 4 42 2 2
3 ZIndex ′ IC2 0.958±0.033 1 58 1 1
4 ZIndex ′ ˆPC 0.953±0.04 3 78 6 6
5 ZIndex ′ ˆNPC 0.953±0.04 2 79 7 7
6 ZIndex ′ ICV3 0.953±0.027 8 44 4 5
7 ZIndex ′ ˆNPO 0.951±0.041 6 83 9 9
8 ZIndex ′ ˆTO 0.949±0.045 13 60 17 17
9 ZIndex ′ ˆNOV 0.949±0.042 7 90 8 8

...

30 Q 0.893±0.046 33 33 26 22

Near Optimal Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex ′ IC2 0.826±0.227 2 10 4 6
2 CIndex ′ ICV2 0.822±0.132 7 1 11 7
3 ZIndex ′ IC3 0.821±0.232 1 16 5 9
4 CIndex ′ ICV3 0.818±0.237 4 9 3 5
5 ZIndex ′ ICV2 0.816±0.232 3 18 7 10
6 ZIndex ′ Â 0.813±0.225 5 19 2 2
7 CIndex ′ IC3 0.8±0.2 31 2 13 8
8 ZIndex ′ A 0.795±0.177 30 20 6 4

...

207 Q 0.589±0.161 222 198 138 110
Medium Far Results

Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex ′ ICV2 0.741±0.177 4 231 22 22
2 ZIndex ′ IC2 0.738±0.181 1 247 16 20
3 ZIndex ′ IC3 0.728±0.188 5 252 18 21
4 ZIndex ′ ICV3 0.721±0.177 8 258 21 23
5 ZIndex ′ ˆPC 0.719±0.204 3 285 30 35
6 ZIndex ′ ˆNPC 0.719±0.204 2 286 31 36
7 CIndex ′ ICV3 0.713±0.151 28 21 33 27
8 ZIndex ′ ˆNPO 0.709±0.205 7 278 32 38

...

37 Q 0.62±0.139 42 167 56 47
Far Far Results

Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex ′ ICV2 0.834±0.062 9 464 5 3
2 ZIndex ′ IC3 0.832±0.06 7 469 4 2
3 ZIndex ′ TO 0.825±0.098 22 423 29 27
4 ZIndex ′ ICV3 0.823±0.063 12 458 6 6
5 ZIndex ′ ˆTO 0.823±0.096 18 446 27 25
6 ZIndex ′ ˆNPC 0.822±0.083 2 502 11 10
7 ZIndex ′ ˆPC 0.822±0.083 3 501 12 11
8 ZIndex ′ PC 0.817±0.09 11 479 23 19

...

31 Q 0.581±0.155 95 368 69 32

Table 2.5: Overall ranking and difficulty analysis of the synthetic results. Here communities are well-separated
withmixing parameter of .1. Similar to the last experiment, reported result are based onAMI and the Spearman’s
correlation.
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Overall Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 Q 0.854±0.039 11 1 4 2
2 ZIndex ′ M 0.839±0.067 2 5 1 1
3 ZIndex ′ A 0.813±0.071 4 11 3 3
4 ZIndex ′ ˆMM 0.785±0.115 1 63 2 4
5 ZIndex ′ Â 0.767±0.101 3 86 5 5
6 ZIndex ′ ˆPC 0.748±0.19 5 108 7 7
7 ZIndex ′ ˆNPC 0.748±0.19 6 109 8 8
8 ZIndex ′ ˆNPO 0.745±0.191 7 110 9 9
9 ZIndex ′ ˆTO 0.738±0.197 13 88 16 15
10 ZIndex ′ ˆNOV 0.738±0.197 8 134 10 10

Near Optimal Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex ′ M 0.825±0.105 1 1 1 1
2 ZIndex ′ A 0.8±0.184 2 2 2 2
3 ZIndex ′ ˆMM 0.768±0.166 3 4 3 3
4 ZIndex ′ Â 0.76±0.192 4 6 4 4
5 Q 0.72±0.209 34 3 34 34
6 ASWC0 ˆNPL2 0.719±0.248 22 8 5 5
7 SWC0 ˆNPL2 0.718±0.247 23 9 6 6
8 ZIndex ′ ˆNPE2 0.714±0.259 5 21 7 8
9 ASWC0 SP 0.71±0.286 28 5 29 26
10 ZIndex ′ ˆNPL2 0.702±0.261 6 29 13 18

Medium Far Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 Q 0.578±0.124 106 22 3 1
2 CIndex ′ ˆNPC 0.522±0.146 154 12 78 69
3 CIndex ′ ˆPC 0.521±0.146 155 13 79 70
4 CIndex ′ ˆNPO 0.519±0.142 176 5 120 100
5 CIndex ′ ˆNOV 0.501±0.14 209 4 142 135
6 ZIndex ′ M 0.498±0.199 4 364 2 2
7 CIndex ′ IC2 0.492±0.146 227 9 176 173
8 CIndex ′ ICV2 0.483±0.193 149 79 119 115
9 CIndex ′ IC3 0.478±0.191 187 43 148 146
10 CIndex ′ TO 0.478±0.175 179 31 204 203

Far Far Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex ′ ˆPC 0.527±0.169 61 501 5 4
2 ZIndex ′ ˆNPC 0.527±0.169 62 502 6 5
3 Q 0.523±0.192 128 73 93 25
4 ZIndex ′ M 0.522±0.121 77 465 8 2
5 ZIndex ′ ˆNPO 0.518±0.168 63 504 10 6
6 ZIndex ′ ˆNOV 0.515±0.166 60 518 11 7
7 ZIndex ′ ˆTO 0.489±0.171 78 485 15 9
8 ZIndex ′ ˆNPE2 0.481±0.168 79 491 24 14
9 ZIndex ′ ˆMM 0.48±0.15 30 553 2 3
10 ZIndex ′ ˆNO 0.48±0.17 43 552 7 8

Table 2.6: Overall ranking of criteria based on AMI & Spearman’s Correlation on the synthetic benchmarks
with the same parameters as in Table 2.4 but much higher mixing parameter, .4. We can see that in these
settings, modularity Q overall outperforms the ZIndex while the latter is significantly better in differentiating
finer results near optimal.
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2.5 Summary and Future Perspectives

In this chapter, we examined different approaches for evaluating community mining results. Par-

ticularly, we examined different relative measures for clustering validity and adapted these for

community mining evaluation. Our main contribution is the generalization of the well-known

clustering criteria, which are originally proposed for evaluating quality of clusters of data points

represented by attributes. The first reason for this generalization is to adapt these criteria in the

context of interrelated data, where the only commonly used criterion to evaluate the goodness of

detected communities is the modularity Q . Providing a more extensive set of validity criteria en-

ables researchers to better evaluate and compare community mining results in different settings.

In our experiments, several of these adapted criteria exhibit high performances on ranking differ-

ent partitionings of a given dataset, which makes them useful alternatives for the modularity Q .

Particularly, the ZIndex criterion exhibits good performance almost regardless of the choice of the

proximity measure. This makes ZIndex also an attractive objective for finding communities. This

is an interesting direction for the future work.

Our results suggests that the performances of different criteria and their rankings changes in

different settings. Here we examined the effects of how well-separated are the communities in

the ground-truth and also the general distance of a clustering from the ground-truth. We further

observed that the quality of different criteria is also affected by the choice of benchmarks: Syn-

thetic v.s. Real benchmarks. This difference motivates further investigation in order to produce

more realistic synthetic generators, we cover this in Chapter 4. Another direction is to classify the

criteria according to their performance based on different network characteristics; Onnela et al.

[112], Sallaberry et al. [144] provide examples of network characterization. Another factor which

affected the ranking of criteria is the choice of the agreement measure. Although the ranking

based on different agreement indexes correlates, there is also significant disagreement between

these measures. This calls for a closer look into the behaviour and properties of these measures,

which we address in Chapter 3.

Another line of work following this chapter is to provide extensions of the criteria and mea-

sures defined here formore general cases of communitymining: overlapping communities, dynamic

communities and also local communities. For example in the literature on cluster analysis, there are

clustering algorithms and validation indexes specially designed to deal with data involving over-

lapping categories. In particular, fuzzy clustering algorithms produce clustering results in which

data objects may belong to multiple clusters at different degrees [13, 43, 62]. In order to evalu-

ate the results of such algorithms, a number of relative, internal, and external fuzzy clustering

validation indexes have been proposed [20, 21, 30, 43, 60, 62].
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Chapter 3

Comparing Modular Structure of Networks

A measure of distance between two clusterings has important applications, including clustering

validation, ensemble clustering (to aggregate multiple clusterings), and robustness analysis (to

assess changes in clusterings due to fluctuations). Generally, such distance measure provides nav-

igation through the space of possible clusterings. Mostly used in cluster validation, a normal-

ized clustering distance, a.k.a. agreement measure, compares a given clustering result against the

ground-truth clustering. In this chapter, we study different clustering agreement indexes. The

two widely-used clustering agreement measures are Adjusted Rand Index (ARI) and Normalized

Mutual Information (NMI). Here, we present generalized formulations from which these two mea-

sures can be derived. Unlike the original formulation of these measures, our generalizations natu-

rally extend to overlapping and/or structured cases. In other words, the extended measures from

our formulations can incorporate the structure of the data, whilst being applicable to overlapping

clusterings which are common in networks. This is in particular important in comparing modular

structure of networks, i.e., measuring the (dis)agreement of clusterings/communities in networks.

The implications are however broader since our generalizations can be used to derive new in-

dexes, hence introducing a family of clustering agreement indexes, which are not constrained to

overlapping or disjoint cases. This chapter has been published in [123].

3.1 Introduction

A cluster distance, accordance, similarity, or divergence has different applications. Cluster valida-

tion is the most common usage of cluster distance measures. In particular, in external evaluation,

a clustering algorithm is validated on a set of benchmark datasets by comparing the similarity

of its results against the ground-truth clusterings. Another notable application is ensemble, or

consensus clustering, where results of different clustering algorithms on the same dataset are ag-

gregated. A notion of distance between alternative clusterings is used inmodeling and formulating

this aggregation, i.e., to find a clustering that has the minimum average distance to the alternative
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clusterings1. Another closely related application is multi-view clustering [35], where the objective

is to find different clusterings of the same dataset, which are usually in different sub-spaces of

the data, and could represent different views of that dataset. In the same context, one might be

interested to find the sub-spaces that result in different/similar clusterings. The stability and ro-

bustness of clustering algorithms can also be assessed based on the similarity of their results when

introducing noise/variations/sampling, and/or changing the order of the data [7].

Clustering distance measures are well-studied and widely-used in cluster validation, where

they measure the (dis)agreement between clustering results and the ground-truth clustering. The

clustering agreement measures are often classified into three main families of set matching, pair

counting, and information theoretic indexes. The former class of indexes are less favoured as they

suffer from the “problem of matching”2 [96]; whereas the representatives of the latter two classes:

Adjusted Rand Index (ARI) [64] and Normalized Mutual Information (NMI) [157], respectively, are

the most commonly used indexes for comparing disjoint clusterings, a.k.a. partitionings. In this

chapter, we demonstrate the latter two families are measuring the agreements based on the same

principle. In more detail, these measures are all defined based on the contingency table of the two

given clusterings, i.e., their pair-wise cluster overlaps; and they measure the average dispersion

in this table. More specifically, we present a generalized clustering distance defined based on the

contingency table, which has a generative functionφ. We show that, although classified differently,

the representatives of both these families can be generated from the proposed generalized distance,

using specific φ functions. Moreover, unlike the original definitions, this generalized formula does

not require the clusters to be disjoint and nor does it require them to cover all the data-points;

the latter is particularly useful in case there are outliers, or missing cluster labels. The former,

however, does not help extending to overlapping cases. In fact, there is an inherent difficulty in

extending any contingency based formula for overlapping clusters; since the contingency table

can not differentiate between the natural overlaps in the data and the cluster overlaps used for

measuring the (dis)agreement. To tackle this issue, we propose tomeasure the agreements between

two given clusterings directly based on the co-memberships of data-points in their clusters, instead

of the overlaps between their clusters. More specifically, we define the Clustering Co-Membership

Difference Matrix (Δ), based on which the clustering distance could be quantified. In particular, we

present two normalized forms for Δ, denoted by RIδ andARIδ , which are overlapping counterparts

for RI and ARI , and will reduce to the original measures in case of disjoint clusters.

This algebraic overlapping ARI extension, although accurately extends the ARI for overlap-

ping cases, is based on matrix representation of the data, and matrix multiplication, which makes

1 Refer to Aggarwal and Reddy [3], Chapter 23 on clustering validation measures (in particular the section on
external clustering validation measures); and Chapter 22 on cluster ensembles (in particular the section on measuring
similarity between clustering solutions).

2Which is discussed in Section 3.3.2.
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(a) Three clusterings of a dataset with 13 data points. (b) Comparing the pair-wise similarity of clusterings.

Figure 3.1: A clustering agreement measure compares the pair-wise similarity of clusterings; visualized for a
toy example. Based on A, the first pair of clusterings are more similar when compared to the second pair.

this extension computationally expensive and not scalable to most cases. Hence, we further re-

formulate this measure, which evolves into a general clustering agreement formula that naturally

extends to overlapping clusters. The algebraic overlapping ARI can be derived from this new

general formula, called CAI ; whereas unlike the previous measure, CAI is not based on a matrix

representation of the data, and hence is much more efficient and practical. Moreover,CAI is more

generalized and can be used to construct new agreement indexes. For instance, here we introduce

a novel overlapping extension of NMI derived fromCAI , which is more appropriate in comparing

overlapping clusterings when compared to the currently available extensions proposed by Lan-

cichinetti et al. [78] and McDaid et al. [95]. Our formulation reduces to the original formula if

clusterings are disjoint, while it does not restrict any condition on the clusterings, hence works

for disjoint, fuzzy, or crisp overlapping clusters.

This is in particular important since in the last decade the clustering agreement indexes have

been applied extensively in the comparison of community mining algorithms [38, 59, 76]. Clus-

ters in networks, a.k.a. communities, are shown to be highly overlapping [55, 88]. However the

current extensions of the clustering agreement indexes for overlapping cases, which are used in

the evaluation of overlapping community detection methods, are either inaccurate or inefficient.

The two overlapping extensions for NMI proposed by Lancichinetti et al. [78] and McDaid et al.

[95], are both defined based on the best matching between the clusters of the two clusterings, and

hence fail to measure the agreement accurately particularly when the matching is not perfect. For

instance in Figure 3.1, the original ARI and NMI indexes (which are defined only for disjoint cases)

both agree with A, however the set matching measures, including the overlapping NMI extensions

[78, 95], suggest the opposite. This “problem of matching”, coined by Meilă [96], is present in all

matching based agreement indexes. Other recent overlapping indexes that are defined based on

the matching are the Balanced Error Rate with alignment introduced by Yang and Leskovec [167],

as well as the average F1 score, and Recall measures used by Mcauley and Leskovec [93].

Last but not the least, a community mining algorithm clusters nodes in a given network, based

on the “relationships” between them. However all the current clustering agreement measures

only consider memberships of data-points in clusters, and overlook any relations between the

data-points or any attributes associated with them. In this chapter, we also discuss the effect of

neglecting these relations, i.e., links in the networks, and derive extensions of our generalized

formulae which incorporate the structure of the data in measuring clustering agreements.
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3.2 Overview of Clustering Agreement Measures

There are several measures defined to examine the similarity, a.k.a. agreement, between two par-

titionings of the same dataset. More formally, let D denote a dataset of n data items, i.e., D =

{d1,d2,d3 . . .dn }. Consider U and V as two disjoint clusterings, a.k.a. partitionings, of D, that

cluster D into respectively k and r mutually disjoint groups, i.e., U = {U1,U2 . . .Uk }; where D =
∪ki=1Ui and Ui ∩Uj = ∅, ∀i � j; and similarly V = {V1,V2 . . .Vr }; where D = ∪ri=1Vi and Vi ∩Vj =
∅, ∀i � j. Note that there is no constraint on the number of clusters by the two partitioning, i.e., k

and r might be, and are in most cases, different.

3.2.1 Pair Counting Measures

Clustering agreement measures are originally introduced based on counting the pairs of data items

that are in the same/different partition inU andV . In more detail, each pair of data items, (di ,dj ),

is classified into one of four groups based on their co-memberships in U and V ; which results in

the following pair-counts.

Same in V Different in V

Same inU M11 = TP M10 = FP

Different inU M01 = FN M00 = TN

Here,M11/M00 counts the number of pairs that are in the same/different partitions in bothU andV .

M10/M01 sums up those that belong to the same/different partitions inU but are in different/same

partitions according toV . Note thatM11+M00+M10+M01 =
(
n
2

)
. When one of these partitionings,

for instanceV , is the true partitioning, i.e., the ground-truth, these pair-counts are also referred to

as the true/false positive/negative scores3. Counting these pairs requires O (n2) operations, how-

ever, these pair-counts could be derived using the contingency table a.k.a. confusion table [64],

which only looks at the pairwise overlaps of the clusters and hence is more efficient. The follow-

ing k × r matrix represents the contingency table of U and V , where the element at (i, j ) denotes

the size of overlap betweenUi and Vj , i.e., ni j = |Ui ∩Vj |.
V1 V2 . . . Vr marginal sums

U1 n11 n12 . . . n1r n1.

U2 n21 n22 . . . n2r n2.
...

...
...

. . .
...

...

Uk nk1 nk2 . . . nkr nk .

marginal sums n .1 n .2 . . . n .r n

The last row and column are the marginal sums, i.e., ni . =
∑

j ni j , and n .j =
∑

i ni j . And

since clusters are disjoint, we further have ni . = |Ui |, and n .j = |Vj |. The pair counts can then be

3These pair-counts also are denoted by a, b, c , d letters for the notational convenience in some literature, e.g., [64].
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computed using the following formulae.

M10 =

k∑
i=1

(
ni .
2

)
−

k∑
i=1

r∑
j=1

(
ni j
2

)
, M01 =

r∑
j=1

(
n .j

2

)
−

k∑
i=1

r∑
j=1

(
ni j
2

)

M11 =

k∑
i=1

r∑
j=1

(
ni j
2

)
, M00 =

(
n

2

)
+

k∑
i=1

r∑
j=1

(
ni j
2

)
−

k∑
i=1

(
ni .
2

)
−

r∑
j=1

(
n .j

2

)

A variety of clustering agreement measures are defined based on these pair-counts [5, 92]. Al-

batineh et al. [5] provides a complete survey, and here we briefly cover the most common ones.

Considering co-membership of data-points in the same or different clusters as a binary variable,

Jaccard agreement between clusteringU and V is defined as:

J =
TP

(FP + FN +TP )
=

M11

(M01 +M10 +M11)
(3.1)

Rand Index is defined similarly to Jaccard, but it also values pairs that belong to different

clusters in both partitionings, i.e.,

RI =
TP +TN

TP + FP + FN +TN
=

(M11 +M00)

(M11 +M01 +M10 +M00)

= 1 +
1

n2 − n (2
k∑
i=1

r∑
j=1

n2i j − (
k∑
i=1

n2i . +
r∑
j=1

n2.j )) (3.2)

Mirkin Index is a transformation of the Rand Index, defined as n(n − 1) (RI − 1), which is

equivalent to RI when comparing partitionings of the same dataset [164].

F-measure is a weighted mean of the precision, and recall, i.e.,

P =
M11

(M11 +M10)
, R =

M11

(M11 +M01)
, Fβ =

(β2 + 1)PR

β2P + R
(3.3)

where β determines the importance of recall w.r.t. precision. The two common values for β are

2 and 1
2 ; the former weighs recall higher than precision while the latter favours the precision

more. The precision and recall in F-measure are same as the two nonsymmetric Wallace [158]

measures proposed for partition correspondence. While their geometric mean defines the Fowlkes

and Mallows [50] measure, i.e., FM =
√
PR.

A clustering agreement measure is desired to return the same value4, usually zero, for agree-

ment no better than random [64, 157]. Correction for chance is adjusting a measure to have a

4 i.e., a constant baseline, the expected value of agreements between two random clusterings of a same dataset. If
not constant, an example of 0.7 agreement value can be both a strong (when baseline is 0.2) or a weak (when baseline
is 0.6) agreement.
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constant expected value for agreements due to chance. This adjustment is done based on an upper

bound on the measure,Max[M], and its expected value, E[M], using the following formula:

AM =
M − E[M]

Max[M] − E[M]
(3.4)

The Adjusted Rand Index (ARI) is proposed by Hubert and Arabie [64], in order to adjust RI

(Equation 3.2) for chance. ARI assumes that the contingency table is constructed randomly when

the marginals are fixed, i.e., the size of the clusters inU andV are fixed. With this assumption, RI

is a linear transformation of
∑

i, j

(
ni j
2

)
, and E

(∑
i, j

(
ni j
2

))
=
∑

i

(
ni .
2

) ∑
j

(
n .j

2

)
/
(
n
2

)
. Hence, adjusting

RI with upper bound 1 results in the following formula:

ARI =

k∑
i=1

r∑
j=1

(
ni j
2

)
− k∑

i=1

(
ni .
2

) r∑
j=1

(
n .j

2

)
/
(
n
2

)
1
2 [

k∑
i=1

(
ni .
2

)
+

r∑
j=1

(
n .j

2

)
] − k∑

i=1

(
ni .
2

) r∑
j=1

(
n .j

2

)
/
(
n
2

) (3.5)

which returns 0 for agreements no better than random and ranges between [−1, 1]. There is also
an approximate formulation [5, 64] for this expectation defined as E (

∑
i, j n

2
i j ) =

∑
i n

2
i .

∑
j n

2
.j/n

2,

which results in a slightly different formula for the ARI , i.e.,

ARI ′ =

k∑
i=1

r∑
j=1

ni j
2 − k∑

i=1
ni .

2
r∑
j=1

n .j
2/n2

1
2 [

k∑
i=1

ni .2 +
r∑
j=1

n .j
2] − k∑

i=1
ni .2

r∑
j=1

n .j
2/n2

(3.6)

There also exist several other variations of pair counting agreement measures, defined in terms

ofM00,M01,M10,M01, such as Gamma, Hubert, Pearson, etc. However, it has been shown that these

measures become similar or even equivalent after correction for chance [5]. More specifically,

Albatineh et al. [5] show that many of these measures are linear transformations of
∑

i, j n
2
i j , which

are known as the L family, i.e., each measure could be written as α + β
∑

i, j n
2
i j , where α and β

depend on the marginal counts, ni . or n .j , but not on the ni j . For example for the Rand Index we

have: α = 1 − 1
n (n−1) (

∑
i n

2
i . +
∑

j n
2
.j ), and β = 2/n(n − 1). They further prove that the L family

measures become equivalent if their 1−α
β

ratio is the same, since their corrected for chance formula

will all be as: ∑
i, j n

2
i j − E (

∑
i, j n

2
i j )

1−α
β
− E (∑i, j n

2
i j )

It is worth to mention that the pair counting measures are closely related to the statistical inter-

rater agreement indices. The inter-rater agreement indices in statistics are defined to measure the

agreement between different coders, or judges on categorizing the same data. Examples are the
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goodness of fit, chi-square test, the likelihood chi-square, kappa measure of agreement, Fisher’s

exact test, Krippendroff’s alpha; which are used in a different settings based on the number of

coders, number of data-points, number of categories, balance in the categories, etc. [31]. These

statistical tests are also defined based on the contingency table which displays the multivariate

frequency distribution of the (categorical) variables. Warrens [159] shows that the pair counting

clustering agreement measures become equivalent to one of the statistical inter-rater agreement

indices after correction for chance. In particular, the equivalence of Cohen’s kappa, one the most

widely used inter-rater agreement index, and the ARI is proved by Warrens [160]. Cohen’s kappa

is a chance corrected index of association defined for assessing the agreement between two raters,

who categorize data into k categories, which is formulated as:

κ =
[
∑k

i=j ni j −
∑k

i=j Ei j ]

[n −∑k
i=j Ei j ]

, where Ei j =
ni .n .j

n
(3.7)

3.2.2 Information Theoretic Measures

Another commonly used family of clustering agreement measures are the information theoretic

based measures, defined based on mutual information between the two clusterings. These mea-

sures consider the overlaps between clusters in U and V , as a joint distribution of two random

variables, i.e., the cluster memberships in U and V . The entropy of cluster U , H (U ), the joint

entropy ofU and V , H (U ,V ), and their mutual information, I (U ,V ) are then defined as:

H (U ) = −
k∑
i=1

ni .
n

log(
ni .
n
), H (V ) = −

r∑
j=1

n .j

n
log(

n .j

n
)

H (U ,V ) = −
k∑
i=1

r∑
j=1

ni j

n
log(

ni j

n
), I (U ,V ) =

k∑
i=1

r∑
j=1

ni j

n
log(

ni j/n

ni .n .j/n2
)

Particularly, Meilă [96] proposed the Variation of Information (VI), for comparing two dif-

ferent clusterings as:

V I =
k∑
i=1

r∑
j=1

ni j

n
log(

ni .n .j/n
2

n2i j/n
2

) (3.8)

The pair counting measures overviewed above, except Mirkin, have a fixed range of [0, 1]. The

information theoretic measures, however, do not have a fixed range; for instance the mutual in-

formation varies between (0, loдk], and the variation of information between [0, 2 logmax(k, r )]

[164]. We often require to compare and average agreements of different clustering methods over

different datasets, and therefore a normalized index is preferred. Consequently, different normal-

ized forms for the mutual information are defined for comparing clusterings; refer to [157] for a
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survey. The most commonly used normalization forms are:

NMIΣ =
2 I (U ,V )

H (U ) + H (V )
and NMI√ =

I (U ,V )√
H (U )H (V )

(3.9)

As we can see in the experiments in Section 3.6.1, these two variations exhibit the same behaviour

in practice. Correction for chance of the information theoretic measures is discussed by Vinh et al.

[156]. More specifically, they propose Adjusted Mutual Information, using Equation 3.4, as:

AMI =
I (U ,V ) − E[I (U ,V )]

Max[I (U ,V )] − E[I (U ,V )]
(3.10)

where different forms ofAMI are derived using different upper bounds on I asMax[I ], which are:

I (U ,V ) ≤ min(H (U ),H (V )) ≤ √H (U )H (V ) ≤ H (U ) + H (V )

2
≤ max(H (U ),H (V )) ≤ H (U ,V )

In particular, AMI∑, i.e., AMI with upper bound of 1
2 (H (U ) +H (V )), is equivalent to the Adjusted

form for Variation of Information. On the other hand, the expected value, E[I ], is derived assuming

the sizes of the clusters are fixed, i.e., similar to theARI ’s assumption on the hypergeometric model

of randomness, as:

E[I (U ,V )] =
∑
i, j

min (ni .,n .j )∑
m=max(ni .+n .j−n,1)

m

n
log(

nm

ni .n .j
)

ni .!n .j !(n − ni . )!(n − n .j )!

n!m!(ni . −m)!(n .j −m)!(n − ni . − n .j +m)!

This formulation includes big factorials, therefore is computationally complex; which makes AMI

less practical when compared to the ARI .

All the measures discussed above are only valid when clusters are disjoint, and also ignore any

structure in the data. In the following, we first discuss how these measures are related, and then

discuss how to extend them for overlapping and structured cases.

3.3 Generalization of Clustering Agreement Measures

Both families of pair counting and information theoreticmeasures quantify the agreement between

two clusterings based on their contingency table. Here, we generalize them, and show that they

are both measuring the (normalized) sum of the divergences in rows (and columns) of this table;

whereas the perfect agreement occurs if the sum is zero5. Our generalization is symmetric and is

defined based on the relation between the Rand Index (RI ) and the Variation of Information (V I ),

which are respectively a representative for the pair counting and information theoretic families.

5 Which happens when the clusterings are identical, and only the order of the clusters is permuted, i.e., the distri-
bution of overlaps in each row/column of the contingency table has a single spike on the matched cluster and is zero
elsewhere.
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Proposition 3.3.1. VI (RI) of two partitionings is proportional to the conditional entropies (variances)

of memberships in them, i.e.,V I (U ,V ) = H (U |V ) + H (V |U ) and RI (U ,V ) ∝ Var (U |V )+Var (V |U );

see Appendix B.1.1 for proof.

Based on this proposition, we define the generalized distance for clusterings as:

Definition 3.3.1. Generalized Clustering Distance (D)

Dη
φ (U ,V ) = Dη

φ (U | |V ) +Dη
φ (V | |U ), Dη

φ (U | |V ) =
∑
v ∈V

⎡⎢⎢⎢⎢⎣φ (
∑
u ∈U

ηuv ) −
∑
u ∈U

φ (ηuv )
⎤⎥⎥⎥⎥⎦

where ηuv quantifies the similarity between the two clusters ofu ∈ U andv ∈ V , i.e., η : 2V ×2U →
R; and φ : R → R is a non-linear function, such that φ (

∑
x ) �

∑
φ (x ), which is used to quantify

the divergence or dispersion in a set of numbers.

This generalized formula can be extended to define novel clustering distances, using the flex-

ibility that the φ and η functions provide. For example, we introduce an extension of this gen-

eralization for clusterings of nodes in graphs, a.k.a. communities, in the following section. More

specifically, η is any function that transforms the two given clusterings into a contingency table.

The distance between the clusterings is then measured by adding up the dispersion in each row

(and column) of this table. Function φ is used to quantify how disperse are the values in each row

(and column), i.e., to measure the divergence from a spike distribution, observed if the correspond-

ing clusters are perfectly matched.

Corollary 3.3.2. D is bounded if φ is a positive superadditive function, i.e., φ (x ) ≥ 0 ∧ φ (x + y) ≥
φ (x ) + φ (y) =⇒ 0 ≤ Dη

φ (U | |V ) ≤ φ (
∑
v ∈V
∑
u ∈U ηuv ); see proof in Appendix B.1.2.

Using this bound as a normalizing factor, we define:

Definition 3.3.2. Normalized Generalized Clustering Distance (ND)

NDη
φ (U ,V ) =

Dη
φ (U ,V )

NF (U ,V )
, NF (U ,V ) = φ (

∑
v ∈V

∑
u ∈U

ηuv )

Here, we first show that both the Rand Index (RI ) and the (normalized) Variation of Information

(V I ) generate from this normalized distance. Then, we introduce an adjusted form forD, and show

that similarly, the ARI and NMI both derive from the adjusted form. More specifically,

Identity 3.3.3. The Variation of Information (Equation 3.8) derives fromND if we setφ (x ) = x logx ,

and η as the overlap size: ηuv = |u ∩v | (proof in Appendix B.1.3), i.e.,

ND|∩|
x log x (U ,V ) ≡ V I (U ,V )

logn
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Identity 3.3.4. The Rand Index (Equation 3.2) derives from ND if we set φ (x ) =
(
x
2

)
, and η as the

overlap size (proof in Appendix B.1.4), i.e.,

ND|∩|
(x2 )

(U ,V ) ≡ 1 − RI (U ,V ), also ND|∩|
x 2 (U ,V ) ≡ 1 − RI ′(U ,V )

Similar to the Identity 3.3.4, in the rest of this chapter, we consider clustering agreement (I)
and normalized distance (ND) interchangeably, i.e., using I = 1 − ND. We further adjust the

generalized distance to take its maximum, i.e., one, if U and V are independent. Assume PU ,V as

the joint probability distribution with the marginals of PU and PV , as:

PU ,V (u,v ) =
ηuv∑
uv ηuv

, PU (u) =
∑
v

PU ,V (u,v ) =
η .v∑
uv ηuv

, PV (v ) =
ηu .∑
uv ηuv

Then the independence condition forU andV , i.e., PU ,V (u,v ) = PU (u)PV (v ), translates into ηuv =

(ηu .η .v )/
∑
uv ηuv . On the other hand, from Definition 3.3.1, we have:

Dη
φ (U ,V ) =

∑
v ∈V

φ (η .v ) +
∑
u ∈U

φ (ηu . ) − 2
∑
v ∈V

∑
u ∈U

φ (ηuv )

Therefore, we define the adjusted distance as:

Definition 3.3.3. Adjusted Generalized Clustering Distance (AD)

ADη
φ =
Dη

φ (U ,V )

NF (U ,V )
, NF =

∑
v ∈V

φ (η .v ) +
∑
u ∈U

φ (ηu . ) − 2
∑
u ∈U

∑
v ∈V

φ

���

η .vηu .∑
u ∈U

∑
v ∈V

ηuv

���
Identity 3.3.5. The Normalized Mutual Information (Equation 3.9) derives from AD, if we set

φ (x ) = xloдx , and η as the overlap size: ηuv = |u ∩v | (proof in Appendix B.1.5), i.e.,

AD|∩|
xloдx

(U ,V ) ≡ 1 − NMIsum (U ,V )

Identity 3.3.6. The Adjusted Rand Index of Equation 3.5 and Equation 3.6 derive from AD, if we

set φ (x ) = x (x − 1) and φ (x ) = x2 respectively, where η is the overlap size, (proof in Appendix B.1.5),

i.e.,

AD|∩|
x 2 (U ,V ) ≡ 1 −ARI ′(U ,V ), AD|∩|

(x2 )
(U ,V ) � 1 −ARI (U ,V )

This line of generalization is similar to the works in Bergman Divergence and f -divergences.

For example, the mutual information and variance are proved to be special cases of Bergman in-

formation [9]. The (reverse) KL divergence and Pearson χ 2 are shown to be f -divergences when

the generator is x logx and (x − 1)2 respectively [110]. Beside this analogy, our generalized mea-

sure is different from these divergences. One could consider our proposed measure as an (adjusted

normalized) conditional Bergman entropy for clusterings. This relation is however non-trivial and

is out of scope of this thesis.
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Figure 3.2: An example graph clustered in three different ways: by clustering V (i.e. true clustering), and by
U1 and U2 (i.e. two candidate clusterings). Considering only the number of nodes in the overlaps and ignoring
the edges, U1 and U2 have the same contingency table with V , i.e. | ∩ |(U1,V ) = | ∩ |(U2,V ) = {{5, 0}, {1, 3}}.
Therefore, they have the same agreement withV , regardless of the choice of the agreement measure: ARI , NMI ,
etc. However if considering the edges, U1 is more similar to the true clustering V . This could be enforced using
an alternative overlap function that incorporates edges, such as the degree weighted overlap function, by which
we get: Σd (U1,V ) = {{18, 0}, {3, 9}} and Σd (U2,V ) = {{14, 0}, {7, 9}}; or the edge based variation, which gives:
ξ (U1,V ) = {{7, 0}, {0, 3}} and ξ (U2,V ) = {{4, 0}, {0, 3}}.

3.3.1 Extension for Inter-related Data

The common clustering agreement measures introduced in the previous section, only consider

memberships of data-points in clusters, and overlook the attributes of individual data-points or any

relations between them. This neglect is problematic, as also mentioned by a few previous works.

For example, Zhou et al. [173] illustrate the issue of ignoring the distances between data-points,

when comparing clusterings; and propose a measure which incorporates the distances between

the representatives of clusters. This is in particular important when comparing clusterings of nodes

within information networks. An information network encodes relationships between data-points,

and a clustering on such network forms sub-graphs. Using the original clustering agreement mea-

sures, we only consider the nodes in measuring the clustering distance. One should however also

consider edges when comparing two sub-graphs; see Figure 3.2 for a clarifying example. To incor-

porate the structure of the data in our generalized distance (Definition 3.3.1), we simply modify

the overlap function η. The generator overlap function for the original measures (RI ,V I , ARI , and

NMI ) is | ∩ | : ηuv = ∑i ∈u∩v 1; which counts the number of common nodes. Therefore, the first

intuitive modification to incorporate the structure is to consider a degree weighted function as:

Σd : ηuv =
∑

i ∈u∩v
di (3.11)

Using this η, well-connected nodes with higher degree weigh more in the distance. Another possi-

bility is to alter η to directly assess the structural similarity of these sub-graphs by counting their

common edges, as:

ξ : ηuv =
∑

i, j ∈u∩v
Ai j (3.12)

One can consider many other alternatives for measuring the overlaps based on the application

at hand. We revisit and delve deeper in this topic in Section 3.4, after providing an alternative

formulation for the clustering distance or agreement measures.
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(a) Omega example: the extended pair-counts matrices of U1

and U2 with V are respectively { {3, 0, 0}, {1, 1, 1}, {2, 0, 1} }, and
{ {3, 0, 0}, {3, 2, 0}, {0, 2, 0} }. In the latter, the second row corre-
sponds to the pairs of nodes which are together in one cluster in V ;
where 3, 2, and 0 of them are respectively clusters together in 0, 1,
and 2 clusters of U2.

(b) Matching example: using the original formulation we have
NMI (U1, V ) = 0.78 and NMI (U2, V ) = 0.71; whereas the over-
lapping version results in NMI ′(U1, V ) = 0.61 and NMI ′(U2, V )
= 0.62 with Lancichinetti et al. [78] extension and NMI ′′(U1, V )
= 0.53 and NMI ′′(U2, V ) = 0.61 with the extension proposed by
McDaid et al. [95].

Figure 3.3: Example for the limitation of Omega index on the left: the pair-counts table for U1 and U2

with V have the same trace, and thereforeU1 andU2 have the same agreement with V according to the Omega
index; whereasU2 should have been ranked more similar. Example for the problem of matching on the right:
using the set matching based measures, such as the overlapping version of the NMI , clustering U2 is in higher
agreement with V , while the non-overlapping version of NMI suggests the opposite6.

3.3.2 Extension for Overlapping Clusters

There are several non-trivial extensions of the clustering agreement measures for the crisp over-

lapping clusters, i.e., when data-points can fully belongs to multiple clusters. Notably, Collins and

Dent [30] proposed the Omega index as a generalization of the (adjusted) rand index; which ex-

pands the 2×2 pair-counts table {{M00,M10}, {M01,M11}}; toMi j that counts the pairs of data-points

which appeared together in i clusters ofU and j clusters ofV . Similar to the RI , trace of this matrix,

i.e.,
∑

i Mii , gives the agreement index, which is further adjusted for chance using the marginals

of M . The (Adjusted) Omega index reduces to the (A)RI if the clusterings are disjoint. However,

it only considers the pairs that appeared in the exact same number of clusters together, and ig-

nores the partially matched pairs. Figure 3.3a provides an example which illustrates the issue of

this limitation. Another commonly used measure is the overlapping extension of NMI proposed by

Lancichinetti et al. [78]. This extension does not reduce to the original NMI if the clusterings are

disjoint. Moreover, it assumes a matching between clusters inU andV , and only compares the best

matched clusters. Therefore, it suffers from the “problem of matching” [96], which is an inherent

problem for any index defined based on the best matching of clusters; Figure 3.3b gives a visualized

example. Other examples of matching based agreements are the Balanced Error Rate with align-

ment, average F1 score, and Recall measures used in [93, 95, 167]. There is also a line of work on

extending the agreement indexes for fuzzy clusters with soft memberships [8, 18, 20, 66, 122]. The

fuzzy measures are not applicable to cases where a data-point could fully belong to more than one

cluster, i.e., crisp overlappings (e.g., V in Figure 3.4); which are common in clusters in networks,

a.k.a. communities. However, the bonding concept presented by Brouwer [18] is similar to the

main idea behind our extension for overlapping cases, which we introduce in the next section.

6Here we used a disjoint example to be able to compare the results quantitatively with the original NMI ; the same
problem however exists for any matching based measure, regardless of the overlapping or disjoint.
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The extension of the proposed D formula (Definitions 3.3.1, 3.3.2, and 3.3.3) for overlapping

clusters is not straightforward. The (A/N )D formula is indeed bounded for overlapping clusters,

and reduces to the original formulation if we have disjoint covering clusters. However, the cur-

rent formulation is not appropriate for comparing overlapping clusters, since it treats overlaps as

variations and penalizes them. Consider an extreme example when we are comparing two iden-

tical clusterings, and therefore we should have (A/N )D = 0 (i.e., the perfect agreement); this

is true if there is no overlapping nodes, however as the number of overlapping nodes increases,

(A/N )D also increases (i.e., the agreement decreases). This is an inherent problem in any agree-

ment measure formulated only based on the contingency/confusion table, since overlaps in the

data are confused with the overlaps between the matched clusters. We overcome this problem by

proposing an alternative formulation for the clustering agreement measures, presented in the next

section. More generally, the difficulty of computing the agreement of different clusterings, and in

particular their extension for general cases such as overlapping clusters, comes from the fact that

there is no matching between the clusters from the two clusterings. Therefore, one should con-

sider all the permutations (e.g., using the contingency table), or only consider the best matching,

which is cursed with the “problem of matching” as discussed earlier. Alternatively, we propose an

algebraic formulation which takes the permutation out of the equation.

3.4 Algebraic Formulation for Clustering Agreements

We first show that the proposed generalized formulae in Section 3.2 can be reformulated in terms

of matrices. These formulae are defined based on the contingency table of U and V , which we

obtain from the η overlap function. We can denote this contingency table with a k × r matrix,

i.e., Nk×r . Then, we can rewrite D (Definition 3.3.1) and ND (Definition 3.3.2) as follows:

Dφ =
[
1φ (N1

T ) − 1φ (N )1T
]
+
[
φ (1N )1T − 1φ (N )1T

]
, NDφ =

Dφ

φ (1N1T )
(3.13)

where 1 is a vector of ones with appropriate shape so that the matrix-vector product is valid,

i.e., 1N = [n .1,n .2, . . .n .r ], and N1
T = [n1.,n2., . . .nk .]T ; and φ is applied element-wise to the

given matrix. In the same manner, we can reformulate AD (Definition 3.3.3 on page 39) as:

ADφ =
Dφ

1
2 [1φ (N1T ) + φ (1N )1T ] − E , E = 1φ (

(N1
T ) × (1N )

1N1T
)1T (3.14)

Naturally, the identities proved in Section 3.2 still hold; for example, when η gives the overlap

sizes, the normalized Variation of Information derives fromD with φ (x ) = x logx (Identity 3.3.3);

and 1 − NDφ (x )=(x2 )
is equivalent to the rand index (Identity 3.3.4). These formulations based on

the contingencymatrix, as also discussed in Section 3.3.2, are only appropriate for disjoint clusters.

Therefore in the following, we propose another reformulation, which is not defined based on the
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V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b r д
0 1 0 0
1 1 0 0
2 1 0 0
3 1 1 0
4 0 1 0
5 0 1 0
6 0 1 0
7 0 0 1
8 0 0 1
9 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦10×3
U1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b r д
0 1 0 0
1 1 0 0
2 1 0 0
3 .6 .4 0
4 0 1 0
5 0 1 0
6 0 1 0
7 0 0 1
8 0 0 1
9 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦10×3
U2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b r д
0 2 0 0
1 2 0 0
2 1 0 0
3 1 1 0
4 0 2 0
5 0 2 0
6 0 3 0
7 0 0 2
8 0 0 2
9 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦10×3
Figure 3.4: Example of general matrix representation for a clustering: V and U1 are the classic overlapping
clusters with crisp, and soft memberships respectively. Node 3 fully belongs to both blue and red clusters in V ,
whereinU1, it belongs 60% to the blue cluster and 40% to the red cluster. This representation is general in a sense
that it could encode membership of nodes to clusters in any form, with no assumptions on the matrix.

contingency matrix, and is valid for both disjoint and overlapping cases. In more detail, let Un×k
denote a general representation for a clustering of a dataset with n data-points; i.e., uik represents

the memberships of node i in the kth cluster of U . Different constraints on this representation

derive different cases of clustering7; see Figure 3.4 for examples. Then, the contingency matrix of

U and V obtained by η = | ∩ | (e.g., in Identity 3.3.3), which indicates the size of overlaps between

all pairs of clusters in Ud×k and Vd×r , can also be derived from N = (UTV )k×r = (VTU )T
k×r . On

the other hand, there is an analogy between co-membership and overlap, i.e., (UUT )i j denotes in

how many clusters node i and j appeared together, and (UTU )i j denotes how many nodes clusters

i and j have in common. Inspired by this analogy, we propose to measure the distance between

clusterings directly by comparing their co-membership matrices, i.e., (UUT )n×n v .s . (VVT )n×n ,
instead of their contingency/overlap matrix, i.e., (UTV )k×r . More specifically, we consider the

clustering co-membership difference as follows, and then show that both the rand index (RI ) and

the adjusted rand index (ARI ) derive from different normalization of this difference.

Definition 3.4.1. Clustering Co-Membership Difference Matrix is Δ(U ,V ) = (UUT −VVT )n×n .

To calculate the distance between U and V , we need to quantify Δ using a matrix function:

R
n×n → R, e.g., a matrix norm. In particular, the RI and ARI are different normalized form of Δ

when we use the Frobenius matrix norm, i.e.,

Identity 3.4.1. The Rand Index of Equation 3.2 derives from Δ, i.e.,

‖Δ(U ,V )‖2F
m × n(n − 1) ≡ 1 − RI (U ,V ) , also

‖Δ(U ,V )‖2F
m × n2 ≡ 1 − RI ′(U ,V ) (3.15)

where ‖.‖2F sums the squared values of the given matrix, a.k.a. squared Frobenius norm; and m =

[max (max (UUT ),max (VVT ))]2, which is equal to one for disjoint clusters.

7 For crisp clusters (a.k.a. strict membership),uik is restricted to 0, 1 (1 if node i belongs to cluster k and 0 otherwise);
whereas for probabilistic clusters (or soft membership), uik could be any real number in [0, 1]. Fuzzy clusters usually
assume an additional constraint that the total membership of a data-point is equal to one, i.e., ui . =

∑
k uik = 1. Which

should also be true for disjoint clusters, since each data-point can only belong to one cluster.
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The normalization factor for the Rand Index in the Identity 3.4.1, assumes an unlikely worse

case scenario when all pairs are in disagreements. The ARI normalization in Identity 3.4.2, on the

other hand, adopts the expected difference whenUUT and VVT are independent.

Identity 3.4.2. The Adjusted Rand Index of Equation 3.6 (on page 35) derives from Δ, i.e.,

‖Δ(U ,V )‖2F
‖UUT ‖2

F
+ ‖VVT ‖2

F
− 2

n2 |UUT | |VVT | ≡ 1 −ARI ′(U ,V ) (3.16)

where |.| is the sum of all elements in the matrix.

Appendix B.1.6 provides details on the derivation of these normalizing factors and proofs of

these two Identities. TheARI of Equation 3.5 derives from the same formula, if we set the diagonal

elements of the co-membership matrices to zero, i.e., (UUT )′ = UUT − In . Since the original ARI
formula counts only the co-memberships of different nodes, i.e., (i, j ) where i � j; whereas, ARI ′

also considers the co-memberships for each single node with itself in different clusters, which is

more suitable for overlapping cases.

The Δ-based formulations for RI (Identity 3.4.1) and ARI (Identity 3.4.2), denoted respectively

by RIδ and ARIδ hereafter, not only are identical to the original formulations if the clusterings

are disjoint (see Figure 3.5 for an example), but are also valid for overlapping cases (see Figure 3.6

for examples). Unlike the prior contingency based formulations (i.e., Definition 3.3.1, 3.3.2, and

3.3.3), RIδ and ARIδ do not need to consider all permutations of the matched clusters using their

pair-wise overlaps, and hence will not confuse the natural overlaps in the data with the overlaps

of matched clusters used to compute the agreements. For the extreme example discussed earlier

in Section 3.3.2, RIδ and ARIδ always return 1 if the clusterings are identical, regardless of the

amount of the overlapping nodes.

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b r д
0 1 0 0
1 1 0 0
2 1 0 0
3 1 0 0
4 0 1 0
5 0 1 0
6 0 1 0
7 0 0 1
8 0 0 1
9 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b r
0 1 0
1 1 0
2 1 0
3 0 1
4 0 1
5 0 1
6 0 1
7 1 0
8 1 0
9 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ N = UTV =
[ 3 0 3
1 3 0
]

, 1φ (N )1T = 9

N 1
T = [6, 4] , 1φ (N 1

T ) = 21
1N = [4, 3, 3] , φ (1N )1T = 12

⇒ D = 0.667, AD = 0.312

VVT⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

−

UUT⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 1 1 1
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
1 1 1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δ=

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 0 1 1 1
1 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ ‖Δ‖2F = 30

N FRI = 90⇒ D = 0.667

‖VVT ′ ‖2F = |VVT ′ | = 24 , ‖UUT ′ ‖2
F
= |UUT ′ | = 42

N FARI = 43.5⇒ AD = 0.312

Figure 3.5: Example for contingency v.s. co-membership based formulation. The (A)RI is first derived from
the contingency table N , using D formula where φ (x ) = x (x − 1)/2. Then the same results are derived from
the comparison of co-membership matrices UUT and VVT , using the alternative formulation of D, where
A′n×n = A − In .
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V U1 U2

ω Aω RIδ ARIδ RI ′
δ

ARI ′
δ

(V , U1) 0.5 0.22 0.80 0.25 0.90 0.32

(V , U2) 0.5 0.19 0.88 0.49 0.94 0.58

(a) Revisit to Figure 3.3a. Reported in the table are values for
Omega index (ω), and its adjusted version (Aω), followed by our
exact and approximate (marked by ′) δ -based (A)RI , derived from
the clustering co-memberships distance Δ.

V U1 U2

NMI NMI ′ NMI ′′ RIδ ARIδ RI ′
δ

ARI ′
δ

(V , U1) 0.78 0.61 0.53 0.84 0.66 0.85 0.70

(V , U2) 0.71 0.62 0.61 0.78 0.47 0.80 0.57

(b) Revisit to Figure 3.3b. Here our exact and approximate co-
membership based formulations are in agreement with the original
non-overlapping NMI , and give a higher similarity score to U1.
Whereas the two overlapping NMI extensions state the opposite.

Figure 3.6: Revisit to the examples of Figure 3.3. On the left we see that Omega index (ω) is unable to differ-
entiate between U1 and U2, whereas its adjusted version even gives higher score to U1, which is the opposite of
what we expect. The fact thatU2 is more similar toV is captured by our δ -based (A)RI . On the right we see an
example of disagreement between the original NMI and its two set-matching based extensions for overlapping
cases. Here since the problem is disjoint, (A)RIδ gives same results as the original (A)RI .

Figure 3.6 shows the other two test case examples from Section 3.3.2, and compares the results

from RIδ and ARIδ with the other alternative overlapping measures, i.e., theOmeдa index and the

two overlapping versions ofNMI ; where unlike these alternatives, the new δ -based measures rank

the agreements correctly.

It is worth mentioning that, the Omega Index(ω) [30] can also be derived from comparing

the co-membership matrices. In more detail, if we define Ω = [UUT == VVT ], i.e., Ωi j = 1 if

(UUT )i j == (VVT )i j and zero otherwise; and assuming fA (i ) denotes the frequency of value i in

matrix A, then ω and its adjusted version (Aω) can be calculated as:

ω = |Ω | − tr (Ω), Aω =
ω − E[ω]
1 − E[ω] , where E[ω] =

min (r,k )∑
i=0

fUU T (i ) fVVT (i ) (3.17)

Similarly, we can compare the co-membership matrices ofUUT andVVT in other way, e.g., using

matrix divergences [40, 74]; or considering other normalized forms of Δ. In our experiments, we

examine these two variations:

Dnorm =
‖UUT −VVT ‖2F
‖UUT ‖2

F
+ ‖VVT ‖2

F

(3.18)

I√tr =
tr (UUTVVT )√

tr ((UUT )2)tr ((VVT )2)
=
|UUT ◦VVT |
‖UUT ‖2

F
‖VVT ‖2

F

(3.19)

It is also worth pointing out that in some applications, such as ensemble or multi-view clus-

tering, we may not need the normalization and a measure of distance may suffice. In which case

we can directly work with Δ in Definition 3.4.1.
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G :

NT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
1 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b r
0 1 0
1 1 0
2 1 0
3 1 0
4 1 0
5 1 0
6 0 1
7 0 1
8 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
U1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b r
0 0 1
1 1 0
2 1 0
3 1 0
4 1 0
5 1 0
6 0 1
7 0 1
8 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
U2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b r
0 1 0
1 1 0
2 1 0
3 1 0
4 1 0
5 0 1
6 0 1
7 0 1
8 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

NTV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b r
0 2 0
1 2 0
2 2 0
3 2 0
4 2 0
5 2 0
6 2 0
7 2 0
8 2 0
9 1 1
10 1 1
11 0 2
12 1 1
13 0 2
14 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

NTU1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b r
0 1 1
1 2 0
2 2 0
3 2 0
4 1 1
5 2 0
6 2 0
7 2 0
8 2 0
9 0 2
10 1 1
11 0 2
12 1 1
13 0 2
14 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

NTU2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b r
0 2 0
1 2 0
2 2 0
3 2 0
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1
10 0 2
11 0 2
12 0 2
13 0 2
14 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 3.7: Revisiting the example of Figure 3.2. Top) In the original data and considering only nodes, U1 and
U2 have the same agreement with V , since bothU1 andU2 have one node clustered differently than V . Bottom)
Transformed data structure using the corresponding clusterings clearly identifies that U1 is closer to V when
compared to U2, i.e., the difference between U1 and V is less. Note that the transformed data is similar to the
line graph (edges as nodes) of the original data.

We conclude this section by presenting the extension of these algebric reformulations for net-

work clustering. Let N denote the structure of the graphG as an incidence matrix, i.e., Nik =
√
Ai j

if node i is incident with edge k = (i, j ), and zero otherwise. Assuming a clustering as a transfor-

mation which assigns each data-point to one of its k clusters, i.e., U : n �→ k , we can incorporate

the structure by measuring the distance between the transformed data byU and V as:

D⊥ (U ,V |G ) = D (NTU ,NTV ) (3.20)

Figure 3.7 provides an intuitive example for this transformation. This transformation gener-

ates overlaps, hence only the new reformulations, which are valid for overlapping clusters, are

applicable as D; e.g., the ARIδ . One should also note that, this is very similar to counting the

edges using overlap function ξ introduced earlier in Section 3.3.1. Alternatively, we can assume

each edge as a cluster of two nodes, and measure the distance of a clustering from the underlying

structure of the graph. Consequently, the structure dependent distance ofU andV can be defined

as a combination of D (U ,N ), D (V ,N ) and D (U ,V ), for example:

D+ (U ,V |G ) = αD (U ,V ) + (1 − α ) |D (U ,N ) − D (V ,N ) |, α = 0.5 (3.21)

Table 3.1, Table 3.2 and Table 3.3 compare the structure dependent and independent measures

for our earlier test case examples in Figure 3.2, Figure 3.3a, and Figure 3.3b, respectively. The first

two rows of these tables show the structure independent measures, the next four rows are the
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I : RIδ ARIδ RI ′
δ

ARI ′
δ

Inorm I√tr
(V ,U1) 0.778 0.556 0.802 0.604 0.695 0.815
(V ,U2) 0.778 0.556 0.802 0.604 0.695 0.815

C⊥ (V ,U1 |G ) 0.926 0.744 0.928 0.752 0.799 0.923
C⊥ (V ,U2 |G ) 0.857 0.417 0.859 0.435 0.708 0.844
C+ (V ,U1 |G ) 0.889 0.773 0.901 0.797 0.843 0.904
C+ (V ,U2 |G ) 0.833 0.660 0.900 0.776 0.832 0.885

(N ,V ) 0.750 0.500 0.979 0.327 0.512 0.662
(N ,U1) 0.750 0.491 0.979 0.337 0.503 0.668
(N ,U2) 0.639 0.264 0.977 0.275 0.481 0.616

Table 3.1: Results of different agreement measures for the test case of Figure 3.2 (and Figure 3.7). For exam-
ple looking at ARI ′

δ
, from the structure independent version we have ARI ′

δ
(V ,U1) = ARI ′

δ
(V ,U2) = 0.604;

whereas when considering the structure, both C⊥ARI ′δ and C+ARI
′
δ
rank U1 in higher agreement with V com-

pared to U2, i.e., C⊥ARI ′δ (V ,U1 |G ) = 0.752 > C⊥ARI ′δ (V ,U2 |G ) = 0.435 and C+ARI
′
δ
(V ,U1 |G ) = 0.797 >

C+ARI
′
δ
(V ,U2 |G ) = 0.776.

structure based versions, and the last three rows show the agreement of each clustering directly

with the structure. In particular in Table 3.1, we see that unlike the original structure independent

measures which result in the same agreement for U1 and U2, all the structure based extensions

correctly give higher agreement score to U1 compared to U2. We can also see that U1, when com-

pared toU2, has in fact more agreement with the structure of the underlying graph. Table 3.2 and

Table 3.3 extend the results presented in Figure 3.6 for the two overlapping test case examples.

I : RIδ ARIδ RI ′
δ

ARI ′
δ

Inorm I√tr
(V ,U1) 0.800 0.245 0.902 0.318 0.532 0.764
(V ,U2) 0.875 0.490 0.942 0.577 0.663 0.894

C⊥ (V ,U1 |G ) 0.856 0.186 0.868 0.211 0.536 0.860
C⊥ (V ,U2 |G ) 0.913 0.427 0.924 0.483 0.672 0.961
C+ (V ,U1 |G ) 0.775 0.556 0.919 0.617 0.720 0.859
C+ (V ,U2 |G ) 0.863 0.712 0.954 0.765 0.824 0.945

(N ,V ) 0.850 0.333 0.933 0.528 0.682 0.816
(N ,U1) 0.600 0.200 0.870 0.444 0.590 0.771
(N ,U2) 0.700 0.400 0.900 0.576 0.666 0.822

Table 3.2: Results of different agreements for the omega example of Figure 3.3a.

I : RIδ ARIδ RI ′
δ

ARI ′
δ

Inorm I√tr
(V ,U1) 0.836 0.660 0.851 0.703 0.705 0.840
(V ,U2) 0.782 0.471 0.802 0.567 0.626 0.721

C⊥ (V ,U1 |G ) 0.900 0.790 0.906 0.806 0.768 0.902
C⊥ (V ,U2 |G ) 0.857 0.564 0.862 0.607 0.667 0.798
C+ (V ,U1 |G ) 0.855 0.708 0.922 0.793 0.839 0.866
C+ (V ,U2 |G ) 0.818 0.556 0.897 0.716 0.782 0.804

(N ,V ) 0.945 0.865 0.977 0.620 0.615 0.814
(N ,U1) 0.818 0.621 0.970 0.502 0.589 0.707
(N ,U2) 0.800 0.506 0.968 0.485 0.552 0.702

Table 3.3: Results of different agreements for the matching example of Figure 3.3b.
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Here we see that the results of the structure dependent measures are consistent with the struc-

ture independent measures; however, the structure dependent agreements become stronger than

the independent versions in Table 3.3, while getting weaker in Table 3.2. This is due to the fact that

the clusterings in Figure 3.6b better correspond with the structure of the underling graph, when

compared to the clusterings of Figure 3.6a.

To summarize, here we presented an algebraic reformulation for the ARI , denoted by ARIδ ,

based on the difference between the co-membership matrices of the two clusterings. ARIδ is iden-

tical to the original ARI measure if clusters are disjoint; while unlike the original measure, it nat-

urally extends to overlapping cases. We showed that this overlapping extension does not have

the shortcomings of other current alternatives, mainly the overlapping extensions of NMI and

the Omega index. However, one should note that the formulation of ARIδ requires matrix rep-

resentations, hence it is harder to implement and computationally more expensive; particularly

for its structure dependent variation in Equation 3.20, which also requires matrix multiplications.

Fortunately, we can deriveARIδ from an alternative formula which is not based on a matrix repre-

sentation of the data, and hence is more efficient and practical. We present this new formulation

in the next section. The new formulation is more generalized, similar to the generalization pre-

sented earlier in Section 3.3. However unlike the previous generalization which does not extend

to overlapping cases, as discussed in Section 3.3.2, the new generalization accurately measures

agreement of overlapping clusters; hence it can be used to construct new overlapping agreement

indexes. For instance, in the next section we also introduce a novel overlapping extension of NMI

derived from this generalization which, is not directly available from Δ. This extension reduces to

the original NMI if clusterings are disjoint, which is unlike the other common extensions [78, 95].

3.5 Clustering Agreement Index (CAI) for Overlapping Clusters

Consider clustering U which clusters dataset D with n datapoints. For each data point i ∈ D, and
cluster u ∈ U , let u←i denote the membership strength of data-point i in cluster u. The restrictive

assumption on this definition is
∑
u u←i = 1, ∀ i ∈ D, for disjoint and fuzzy cases, whereas in

the former we also have u←i ∈ {0, 1}, and in the latter u←i ∈ [0, 1]. Here, we do not put any

assumption on the form of the clusterings, u←i , and define a general agreement measure for two

given clusterings of a same data-set. More formally, we assume i ∈ u iff u←i > 0 and obtain the

size of each cluster u ∈ U as:

ou =
∑
i ∈u

u←i (3.22)

Similarly, we consider pairwise overlap between each pair of clusters u and v , where i ∈ u ∩ v iff

u←i > 0 ∧v←i > 0, and compute the size of this overlap as:

ouv =
∑

i ∈u∩v
u←i ×v←i (3.23)
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If we consider two clusterings U and V of the (same) dataset D, then {{ouv ∀u ∈ U } ∀v ∈ V }
constitutes the confusion matrix of U and V . In the same manner, we can represent the intrinsic

overlaps of the clustering themselves as {{ouu′ ∀u ∈ U } ∀u ′ ∈ U } and {{ovv ′ ∀v ∈ V } ∀v ′ ∈ V }.
We quantify and sum up these overlaps using a generic function, φ : R≥0 �→ R; and also consider

an expectation form, E, to make the parallel with the previous formulations. More formally:

OUU =
∑
u ∈U

∑
u′∈U

φ (ouu′ ) , OVV =
∑
v ∈V

∑
v ′∈V

φ (ovv ′ )

OUV =
∑
u ∈U

∑
v ∈V

φ (ouv ) , EUV =
∑
u ∈U

∑
v ∈V

φ (
ouov
n

)

Based on these we define the Clustering Agreement Index (CAI) as:

CAI (U ,V ) =
OUV − EUV

1
2 (OUU + OVV ) − EUV

(3.24)

We can derive different agreement measures using different φ (.) functions. In particular, we intro-

duce two agreement indexes derived with φ (x ) = x2 and φ (x ) = x log(x ); which are respectively

called CRI and CMI . More specifically, CRI and CMI are derived/defined as:

CRI (U ,V ) =

∑
u ∈U

∑
v ∈V

o2uv −
∑
u ∈U

∑
v ∈V

( ouov
n

)2

1
2

[ ∑
u ∈U

∑
u′∈U

o2
uu′ +

∑
v ∈V

∑
v ′∈V

o2
vv ′

]
− ∑

u ∈U
∑
v ∈V

( ouov
n

)2
(3.25)

CMI (U ,V ) =

∑
u ∈U

∑
v ∈V

ouv log(ouv ) − ∑
u ∈U

∑
v ∈V

ouov
n

log( ouov
n

)

1
2 [
∑

u,u′∈U
ouu′ log(ouu′ ) +

∑
v,v ′∈V

ovv ′ log(ovv ′ )] − ∑
u ∈U

∑
v ∈V

ouov
n

log( ouov
n

)
(3.26)

The CRI and CMI indexes reduce respectively to the original ARI and NMI indexes when

clusterings are disjoint, however, they are also applicable to the overlapping clusters, i.e.,

Identity 3.5.1. CRI of Equation 3.25 reduces to the ARI of Equation 3.6 for disjoint clusters; refer to

Appendix B.1.7 for the proof.

Identity 3.5.2. CMI of Equation 3.26 reduces to the NMIsum of Equation 3.9 for disjoint clusters;

refer to Appendix B.1.8 for the proof.

Moreover, CRI provides an alternative formulation for the Δ-based formulation of ARI , for

when clusterings are disjoint or overlapping , i.e.,

Identity 3.5.3. CRI of Equation 3.25 is equivalent to theARIδ of Equation 3.16; refer to Appendix B.1.9

for the proof.
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Although equivalent, theCRI formulation is more efficient than theARIδ , and is in fact on par

with the disjoint variation in terms of the efficiency. In more detail, let k and r , denote the number

of clusters in the two given clusterings, wherek ≥ r . Also letm denote the cardinality of the largest

cluster in the two clusterings. The complexity ofARI (Equation 3.6) andNMI (Equation 3.9), which

are only defined for disjoint clusters, isO (krm). Since they are both formulated based on the k × r
confusion matrix, whose entries are the pairwise cluster overlaps measured by set intersection,

i.e., O (m). The CAI (Equation 3.24), is also formulated based on k × r pairwise cluster overlaps,

which are defined in Equation 3.23, and can be computed in O (m). Moreover, CAI also measures

the pairwise cluster overlaps in each of the two clusterings themselves, which costs O (k2m) and

O (r 2m). Hence the total complexity of CAI formula, is O ((kr + k2 + r 2)m), which is in the order

ofO (k2m). This is about the same as the cost for computing agreement of disjoint clusters; and is

much more efficient compared to the Δ-based formulation of ARI (Equation 3.16), which is in the

order of O (n3), where n denotes the number of data points. Therefore CAI is more favourable in

real world applications where n is large.

On the other hand, when compared to the previous generalization in Section 3.3 (D), CAI dis-

tinguishes the overlaps within the data itself, and factors them from the confusion matrix; hence

measures the agreement of the overlapping clusters correctly. For instance, following the dis-

cussion in Section 3.3.2, unlike the indexes derived from D in which the agreement becomes a

function of the overlap within the data even if clusters are identical, CAI always returns 1 for

identical clusterings, i.e., CAI (U ,U ) = 1, since we have,

CAI (U ,U ) =
OUU − EUU

1
2 (OUU + OUU ) − EUU

= 1

We can further show that CAI is symmetric, i.e., CAI (U ,V ) = CAI (V ,U ); since ouv = ovu ,

from which simply follows that OUV = OVU and EUV = EVU .
One of the advantages of CAI is that it does not enforce any assumptions on the form of

memberships of data-points in clusters, which makes it flexible. This flexibility is in particular

important when adopting the clustering agreement indexes to compare communities, i.e., clusters

of nodes/vertexes on networks. Hence we can use the intuitive ways discussed in Section 3.3.1

to incorporate the structure of the data in CAI when measuring the agreement between cluster-

ings of networks; i.e., to simply modify the memberships of nodes in clusters (e.g., weighted by

degree) and/or the overlap of two clusters (e.g., sum of edges instead on nodes), to also consider

the relationships between data points. One should note that these modifications are only possible

with a flexible measure such asCAI which has no restricting assumptions on the marginals of the

contingency table, or the form of data-points’ memberships in clusters.
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3.6 Experimental Comparison of Agreement Indexes

Here, we examine the clustering agreement measures, introduced above, in the context of commu-

nity mining evaluation; which is their most common application. More specifically, we select a set

of common community mining methods, which discover clusters in a given network based on dif-

ferent methodologies. We then rank their performance according to different clustering agreement

measures; which compare the results of these methods with the ground-truth clustering. However,

the purpose here is not to compare the general performance of community mining methods, but

rather to show different comparisons/rankings we obtain using different agreement measures.

In more detail, the selected methods are: Louvain [16], WalkTrap [120], PottsModel [138],

FastModularity [104], and InfoMap [140] for disjoint clusterings of Section 3.6.1 and 3.6.2; and

COPRA [55], MOSES [94], OSLOM [81], and BIGCLAM [167] for overlapping clusterings in Sec-

tion 3.6.3. The authors’ original implementations are used for the methods, with no parameter

tuning (defaults are used); and the reported results are averaged over ten runs.

The datasets are generated using LFR [79] benchmarks, which are commonly used in the eval-

uation and comparison of community mining algorithms. LFR benchmarks generate networks

with built-in (disjoint or overlapping) community structure, with controlled degree of difficulty;

in particular, how mixed/well-separated are the communities, and the fraction of nodes which are

overlapping. Here, the results are reported for the basic LFR parameters, chosen similar to the

experiments by Lancichinetti and Fortunato [76], i.e., networks with 1000 nodes, average degree

of 20, max degree of 50, and power law degree exponent of -2; where the size of communities

follows a power law distribution with exponent of -1, and ranges between 20 to 100 nodes. How-

ever, we observed similar patterns from other parameter settings. We describe these benchmarks

in details in Chapter 4, where we also introduce an alternative generator called FARZ. The goal of

the following experiments is to show how the choice of clustering agreement measure affects the

common evaluation practice in the community detection literature, therefore we stick to the LFR

benchmarks which are the current gold-standard. We leave the comparison of different benchmark

generators to Chapter 4. .

3.6.1 Classic Measures

Figure 3.8 shows the rankings of the selected algorithms with respect to six common agreement

measures. Inmore detail, each subplot provides a comparison of the community detectionmethods

according to the corresponding clustering agreement index. In each subplot, the average agree-

ment of the algorithms’ results with the ground-truth clustering, is plotted as a function of the

hardness of the problem. First, we can see that the rankings are overall consistent, which is ex-

pected since these indices are measuring the agreement with similar principle, as shown with our

generalizations. Second, from the plot for NMI we can observe its bias in favor of the large number

of clusters [156]; i.e., for large mixing parameters, when PottsModel algorithms detects signifi-
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Figure 3.8: The agreement of results from different community detection algorithms with the ground-truth in
unweighted LFR benchmarks, plotted as a function of the mixing parameter for topology μt (which determines
the average fraction of edges that go outside the communities per each node, i.e., how well separated are the
communities). The two first subplots report the number of communities found by each algorithm and the quality
of the result according to the modularity Q . In the last three plots, similar measures are overlaid to highlight
the fact that they are highly similar, e.g., we can see that the plots for ARI and approximate ARI , ARI ′, exactly
overlap.

cantly more communities, NMI∑ and NMI√. rank the PottsModel significantly higher; which is

not true according to all the other measures. The opposite bias is also observed in the plots ofV I ,

where the algorithm that finds significantly less communities is ranked significantly higher, i.e., In-

fomap. Based on these observation, we advise against using these two measures, particularly if the

number of discovered clusters/communities might be very different from the ground-truth. Third,

from the plot for ARI we can see that there is no clear difference between the rankings obtained

by ARI of Equation 3.5 and Equation 3.6, which are plotted as ARIδ and ARI ′
δ
respectively8. The

8The δ subscript indicates that the ARI is computed based on our δ -based formulation, which is equivalent to the
original ARI in this experiment, since communities are covering all nodes and non-overlapping (Identity 3.4.2).
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latter is less commonly used, whilst its extended form presented in Section 3.4 is more appropriate

for overlapping cases; hence ARI ′ is in general more favourable.

3.6.2 Structure Dependent Measures

Figure 3.9 compares the selectedmethods overweighted LFR benchmarks. Thesemethods all result

in clusterings which correspondwell with the underlying structure, therefore the effect of ignoring

the structure in comparing the clusterings is less apparent9.

Figure 3.9: Comparison of the agreement indexes on weighted LFR benchmark, when the mixing parameter
for weights varies and the mixing parameter for topology is fixed to 0.5.

The rankings are overall consistent, however, we can still observe the difference between the

structure dependent and independent agreement measures, which becomes clear only with the

9One could design experiments based on the test cases discussed in Section 3.4, which would result in significant
difference between the structure dependent and independent measures. Here, however, our goal is to show the effect
of different agreement indexes on the comparison of community detection algorithms, where a common practice is to
use one of structure independent indexes.
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presence of weights in this experiment. In more detail, we can see that the Walktrap method is

performing better according to all themeasures, however its superiority is more significant accord-

ing to the structure dependent measures: i.e., ARIξ
x 2 , and ARIΣd

x 2 introduced10in Section 3.3.1,

andC⊥ARI ′ introduced in Section 3.4. On the other hand,C+ARI ′ does not decrease to zero similar

to the other measures; since both the results and the ground-truth are with the same distance from

the structure, i.e., |D (U ,N )−D (V ,N ) | � 0, henceD+ (U ,V |G ) = 1
2D (U ,V ). Being less consistent

with the other measures, the three former structure dependent forms are more favourable.

3.6.3 Overlapping Measures

Figure 3.10 shows the comparison of the selected methods based on the different overlapping

agreement indexes, which are: the overlapping extensions of NMI , i.e., NMI ′ by Lancichinetti

et al. [78] and NMI ′′ by McDaid et al. [95]; the omega index (ω), and its adjusted version (Aω);

and our δ -based formulations for the RI and ARI , i.e., RI ′
δ
, and ARI ′

δ
.

Obtained rankings are generally consistent, similar to the previous experiments. First, we can

see that the unadjusted measures, i.e.,ω and RI ′
δ
, can not properly differentiate between the differ-

ent algorithms. Secondly, we observe the “problem of matching” with the overlapping extensions

of NMI , described earlier in Section 3.3.2. In more detail, MOSES algorithm results in finer grained

and thus more communities, which are more likely to not get matched/compared with the com-

munities in the ground-truth, when applying a set-matching based agreement measure. Therefore

it gets unfairly penalized, and is ranked significantly lower than the OSLOM. Their difference,

however, is less significant according to both adjusted omega, Aω, and our overlapping extension

of ARI , ARI ′
δ
; whereas the quality of the MOSES results are higher than OSLOM according to the

modularity Q of Newman [104]. Lastly, in this setting the difference between Aω and ARI ′
δ
is not

as clear as it could be, since each node can only belong to at most two communities; whereas the

difference becomes clear if a node can belong to many communities, see Section 3.4.

Figure 3.11 compares the CRI (Equation 3.25) and CMI (Equation 3.26) derived from CAI

generalization (Equation 3.24) against other overlapping alternatives. Here, we also observe that

rankings of the algorithms are consistent according to the different agreement measures. Which

is expected, since these indexes are very similar or in case of ARIδ and CRI , identical. We can

however observe the differences between set matching based extensions of NMI , i.e., the first

two subplots in the top row, with the NMI extension presented here, i.e.,CMI in the bottom right

subplot. For example we can see that according to bothCMI andARI , the performances of OSLOM

and MOSES algorithms are close, however the previous overlapping extensions of NMI , i.e., NMI ′

and NMI ′′, rank OSLOM significantly higher. This is probably because OSLOM finds relatively

less communities, and hence its communities are better matched with the ones in the ground-

10ARIx 2 derives from AD of Definition 3.3.3 with φ = x2, and is same as the ARI ′ if η = ∩ (Identity 3.3.6); here,
however, the structure dependent variations of η are used, i.e., η = ξ (edge counting) and η = Σd (degree weighted).
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Figure 3.10: Comparison of agreement indexes on unweighted overlapping LFR benchmark, where the fraction
of overlapping nodes varies, the mixing parameter for topology is fixed to 0.1, and the maximum number of
communities a node can belong to is limited to 2; similar to experiments in [81].

truth, whereas MOSES’s communities are finer grained and not matched with any community in

the ground-truth, when using a set-matching based agreement index. We can observe a similar

pattern in the comparison of BIGCLAM and COPRA; i.e., BIGCLAMfinds too few communities and

its performance plot is consequently shifted much lower by the NMI ′ and NMI ′′, when compared

to CMI and other agreement measures. Therefore, in general CMI seems to be a more accurate

overlapping extension for the NMI when compared to the NMI ′ and NMI ′′.
We further compare the time complexity of these indexes, reported in Figure 3.12, where the

average run time for computing different indexes is plotted as a function of number of the nodes

in the network. We can see that the proposed CMI and CRI overlapping derivations of CAI are

much more efficient compared to the other measures, particularly when compared to the ARIδ .
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Figure 3.11: Comparison of overlapping agreement indexes with the CRI and CMI derivations obtained from
CAI ; on unweighted overlapping LFR benchmark similar to the settings in Figure 3.10.

3.7 Conclusions and Recommendations

In this chapter, we presented a generalized clustering distance, from which we can derive the two

commonly used clustering agreement measures, i.e., NMI and ARI . Not only this generalization

sheds light on the relation between these two measures, but we also recommend using the derived

formulae from this distance over the original formulations; since, first, they are identical when

the original measures are defined; second, they require less assumptions on the clusterings and

hence apply to more general cases, e.g., when there are un-clustered data-points; third, they can

be easily altered, for example to generate specific measures for clusters in networks. The latter

example is in particular important, since all of the current agreement measures overlook the re-

lationships between the datapoints, and hence are not appropriate for comparing clusters over

networks, a.k.a. communities. Using our generalization, we introduced two extensions of theARI ,

which incorporate the structure when comparing communities, i.e., ARIΣd
x 2 (degree weighted
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Figure 3.12: Experimental time comparison of CRI (Equation 3.25) and CMI (Equation 3.26) derived from our
generalization (Equation 3.24), with ARIδ (the Δ-based formulations of Equation 3.16).

overlap function) and ARIξ
x 2 (edge counting overlap function). We recommend using these two

extensions when comparing disjoint communities.

The generalized clustering distance, similar to other contingency basedmeasure, does not read-

ily extend to overlapping cases. Therefore, we presented an algebraic reformulation for the ARI ,

based on the difference of co-membership matrices of the two clusterings, denoted by ARI ′
δ
. We

recommend using ARI ′
δ
, in particular when clusters are overlapping; since, first, it is identical to

the original measure if clusters are disjoint; second, it naturally extends to overlapping cases; third,

it is more valid compared to the current alternative overlapping measures, i.e., it does not have the

shortcomings of the overlapping extensions of NMI or the Omega index. However, one should

note that this formulation requires matrix representations, hence is harder to implement and com-

putationally more expensive. Evenwhen using an efficient implementations using sparse matrices.

To also incorporate the structure within this algebraic reformulation, we proposed C⊥ARI ′, and
C+ARI

′. The former measures the distance between the transformed structure by each clustering;

whereas the latter linearly combines the distances of each clustering to the structure, assuming

the structure itself as another clustering, i.e., when each edge is considered as a single cluster. We

recommend using C⊥ARI ′ when comparing overlapping communities, since it is more consistent

with the other measures. However, this transformation requires matrix multiplications and hence

is computationally expensive; hence it is not as scalable as the other measures.

We further presented a generalization of the clustering agreement indexes, calledCAI , which

naturally extends to cases with overlapping clusters. The extensions derived from theCAI gener-

alization are in particular important in the context of clustering networked data, a.k.a. community

detection, where clusters are known to be highly overlapping. CAI is scalable, and therefore, un-

like the previous measures, is applicable to the typical network datasets. We showed that the ARI
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derivation of the CAI formula, called CRI , is equivalent to the ARIδ . Whereas, the newly pro-

posed formulation is more general and could be used to derive new agreement indexes, such as

the novel overlapping extension of NMI , which is one of the most commonly used measure for

disjoint clusters. Unlike previous overlapping extensions of NMI , the new derivation, calledCMI ,

reduces to the original measure in case of disjoint clusterings. Therefore we recommend using the

the derivation of measures for our newly proposed generalization in all cases of disjoint, fuzzy, or

crisp overlapping clusters, and in particular to incorporate relations into the agreement measure

when working with networked data.
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Chapter 4

Modelling Modular Networks

The analysis presented in the previous chapters depends on the synthetic benchmark generators

to create sample datasets with built-in ground-truth communities. In general, such network gen-

erator models are used extensively in the validation of community detection algorithms, where

results of the algorithms are compared against the known structure in the synthetic networks.

This chapter focuses on network models which synthesize networks with explicit modular struc-

ture. Here, we study the popular network generators, and disscuss how to improve upon the

shortcomings of these models, in order to generate more lifelike networks. We further introduce

a realistic and flexible benchmark generator geared toward validating and comparing community

detection methods. The newly proposed model generates more truthful networks, i.e., the char-

acteristics of the synthesized networks and communities are more similar to what is observed in

real world networks. Moreover, this model incorporates intuitive parameters, which have mean-

ingful interpretation. Tuning these parameters provides means to generate a variety of realistic

networks and presents different settings for comparing community detection algorithms. Parts of

this chapter are published in [82], and the new model is submitted for publication.

4.1 Introduction

Community mining methods are often evaluated and compared based on their performance on

benchmark datasets for which the true communities are known [38, 59, 76]. Since there exist only

few and typically small real world networks with known community structure, these benchmarks

are often synthesized using a network model, which has a built-in modular structure [51, 79].

This kind of evaluation is built upon the assumption that the performance of an algorithm on the

benchmark datasets is a good predictor for its performance when applied to a real world network

with unknownmodular structure. For this assumption to hold, these benchmarks should be similar

to the target real world networks, i.e., comply with their observed characteristics. However, the

current synthetic generators fail to exhibit some of the basic characteristics of real networks such

as assortativity and transitivity [100, 143, 175]. Here, we review these network models focusing on

59



4.2. OVERVIEW OF NETWORK MODELS

the generators with an explicit modular structure, such as GN benchmarks by Girvan and Newman

[51], and LFR benchmarks by Lancichinetti, Fortunato, and Radicchi [79].

It is also worth to mention common alternatives to the synthetic benchmarks, which are real-

world networkswith explicit or predefined nodal attributes that are considered as the ground-truth

communities; examples are: user memberships in a social network, venues in a scholarly collab-

oration network, or product categories in an online co-purchasing network [70, 71, 146, 166]. In

general, there exists an interplay between the attributes of nodes and the structure of the net-

works [33, 75], and in some contexts these attributes act as the primary organizing principle of the

underlying communities [152]. However, this notion of ground-truth communities is weak [67],

and these attributes should be considered correlated with the underlying community structure;

we discuss this further in Chapter 5.

In this chapter, we attempt to provide better benchmarks for the community detection task,

where we first examine the current generators, discuss their shortcomings and limitations, and

propose alterations to improve them. Then, we present a simple alternative benchmark generator,

called FARZ1, which follows the evolution patterns and characteristics of real networks, and hence

is more suitable for validation of community detection algorithms. In FARZ, communities are

defined as the natural structure underlying the networks. This is unlike its common contender,

LFR, where a community structure is overlaid on an existing network by imposing rewirings of

multiple connections. Moreover, FARZ incorporates relevant intuitive parameters which could

be used to generate a wide range of experimental settings, and hence enables a more thorough,

domain dependent, comparison of community detection algorithms.

4.2 Overview of Network Models

There are many generative models proposed for real world networks [22, 52, 101, 109, 154]. Here,

we survey the common models with an emphasis on those that incorporate a modular structure.

4.2.1 Classic Network Models

The classical Erdős and Rényi (ER) model [45] generates random graphs of a given size, where

edges are formed independently and with uniform probability. These graphs comply with the

small-world property observed in real world graphs, i.e., they have a relatively small diameter.

However, they have binomial degree distribution, which converges to a Poisson degree distribu-

tion for large number of nodes. This is unlike real world networks which are known to exhibit

heavy tail degree distributions, a.k.a. scale-free characteristic. Another important disagreement of

the real networks and the networks synthesized by the ER model is that the ER networks fail to

exhibit transitivity [108]. Transitivity is measured by the average clustering coefficients of nodes,

1Following the same naming convention as the previous models, the letters are the first name of the authors involved
in the development of the model; where the ordering is chosen so that the word has a meaning, i.e., based on different
transliterations, FARZ means sorting, division, or assess in Arabic; and assumption, or agile in Persian/Farsi.
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which represents the fraction of connected neighbours per node. The Watts and Strogatz (WS)

model [162] is another notable generator for small world graphs. This model starts with a regular

graph (ring lattice), then rewires links with a probability β . TheWSmodel is therefore able to gen-

erate graphs with high transitivity. The degree distribution of the generated networks, however,

does not follow a power law, and therefore this model is also not scale-free.

The Barabási and Albert (BA) model [10] is one of the most basic models that generates

random scale-free networks. Starting with an initial network, nodes are added at each step, while

the newly added node formsm connections with the existing nodes according to the preferential

attachment a.k.a. accumulative advantage, Yule process, Matthew effect, or rich get richer; which

states that the probability of forming a connection to an existing node is proportional to the current

degree of that node. The networks generated with this model are analytically shown to have a

power law degree distribution, small average path length (small-world), assortative mixing (of

degrees), and transitivity higher than random graphs [6]. Although the generated BA graphs

comply with macroscopic properties observed in real networks, the evolution of networks in this

model is not realistic as discussed by Leskovec et al. [86].

Leskovec et al. [84, 85] propose the Forest Fire (FF) model which has similar desirable proper-

ties, while it is also designed to follow the evolution trends observed empirically in the real social

networks i.e., the networks become denser over time, with the average degree increasing, and the

diameter decreasing. The FF model grows one node at a time, where every new node, first con-

nects to an existing node called ambassador, chosen uniformly at random. Then, the new node

recursively forms a random number of connections with the neighbours of every node it connects

to –outlinks to specific number of inlink and outlink neighbours, drawn from geometric distribu-

tions with means of p/(1−p) and rp/(1− rp) respectively, where p/rp is called forward/backward

burning probability. The rich get richer effect comes naturally as the nodes with more connection

are more likely to get linked to the new node, which provides the heavy-tailed degree distribution.

The densification power law comes from the fact that the newly entered node would probably

have more links to neighbours close to its ambassador. And different parameter values of the

model could generates sparse/dense graphs with shrinking or increasing diameter. The FF model

is introduced as an improvement over another model proposed in the same article, i.e., Commu-

nity Guided Attachment (CGA), which generates networks starting from a backbone tree that

represents the hierarchical community structure. The CGA model can not exhibit the shrinking

diameter and needs an explicit community structure to begin with. The latter, although being

listed as a shortcoming in the original article, is a necessity for community detection benchmarks.

Other notable synthetic generators are the mathematical tractable models, such as the Stochas-

tic Kronecker Graph model [87], and its generalization, the Multifractal Network model [12,

118]. These models generate networks with realistic properties, i.e., , heavy-tailed degree distribu-

tions and high clustering coefficient, that can be mathematically proved. The recursive generation
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process is based on a set of generating parameters, i.e., , hierarchical categories assigned to nodes

that determine their probability of forming an edge. These parameters can be further fitted to a

given real network instance.

4.2.2 Network Models with Explicit Modular Structure

Girvan andNewman (GN)model [51] is the first model presented to generate synthetic networks

with planted modular structure, to be used as community detection benchmarks. It is built upon

the classic Erdős and Rényi (ER) model [45], and incorporates a modular structure by considering

different probabilities for edges formed within and between modules. More precisely, nodes in

the same community link with probability of pin , and nodes from different communities link with

probability of 1 − pin . However, these networks, since generated with the ER model, are not

scale-free. Moreover, the GN model creates networks which are divided into groups of equal sizes

(usually 128 nodes divide into four groups); whereas the sizes of communities in real networks do

not have any reason to be equal in size [108]. In fact the sizes of communities in many real world

networks are shown to follow a power law distribution [29].

The Lancichinetti, Fortunato, and Radicchi (LFR) model [79] amends the GN model by

considering power law distributions for the degrees of nodes and community sizes. In more detail,

it first samples the degree sequence and community sizes from power law distributions. Then,

it randomly assigns each node (sampled degree) to a community, and links the nodes to create a

network. Finally, it rewires the links such that for each node, a fraction (μ) of its links go outside its

community, while the rest (1 − μ) are inside its community. The LFR benchmark is built upon the

Configuration (CF) model [103]; which generates random graphs from a given degree sequence,

by fixing the degree of each node, and connecting the available edge stubs uniformly at random.

The networks generated with CF model are known to exhibit low transitivity. Hence, LFR applies

also a post-processing rewiring step to increase the transitivity. This could have been addressed

by using a more realistic starting model instead, as also suggested in [114]. However, LFR applies

an extensive rewiring process on the initial network to overlay the communities, which changes

the network structure chaotically. Therefore, even starting with a realistic network model, the

properties are not guaranteed to be preserved, and in fact in most cases they are not. LFR is

lately extended for hierarchical and overlapping communities [77], where the generation process

is modified so that it generates the within and between links separately, instead of realizing the

whole network at once. In more detail, after sampling the degree sequence D, the within and

between degree sequences are derived as (1 − μ )D and μD respectively. Then, the CF is used

to generate a subgraph per community from the derived within degree sequence. There is still

however the need for an extensive rewiring step for forming the external edges, since the derived

between degree sequence is first used by the CF model to generate a set of edges; then those edges

that fall within communities are rewired until none of them is a within link. Similar to the original
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model, this generation process also uses CF which is an unrealistic network model. However, since

this generation process is tangled with the degree sequence, it is less trivial how to substitute the

CF model in this modified extension. Furthermore, unlike the original model, it results in all nodes

having the exact same fraction of within/between edges, which is artificial.

The block two-level Erdős-Rényi (BTER)model proposed in [145], directly incorporates com-

munities in the generative model, whereas their networks are scale-free collections of ER sub-

graphs as communities. The BTER starts with a pre-processing where nodes are distributed into

affinity blocks (communities) and each node is assigned a degree and a clustering coefficient (the

latter determines the portion of inter(between) to intra(within) community links), which are input

to the model. Then in the first phase, local links are formed within each block(community) accord-

ing to a constant probability computed for that block, and in the second phase, global (between)

links connect communities together from nodes that have connections less than their assigned

degree. If the input degree distribution follows a power law, the resulted networks are shown

to be scale-free. The degree and clustering coefficient are required by this model; which can be

randomly generated to be matched against and generate sample networks for community mining

benchmarks [72]. The main idea of FARZ, presented in the Section 4.4, is similar to the BTER

model, i.e., community structure is present from the start and affects how edges are formed. How-

ever, FARZ directly extends the network evolution models by incorporating the extra factor of

communities. Moreover, FARZ is defined based on relevant and intuitive parameters that directly

control different growth factors in networks, unlike having distributions of degree and clustering

coefficient as input. This provides flexibility and expressiveness, and makes FARZ a perceptive

and simple alternative benchmark generator for community evaluation.

4.2.3 Attributed Network Models with Explicit Modular Structure

Evidences of homophily in most real networks suggest that connections are formed with a bias in

favor of similar characteristics/attributes of nodes (including their degrees). Some network gener-

ator models assume that links between nodes are formed solely based on their attributes [69, 163];

whereas others augment the classic network generation models by incorporating the effect of

attributes. For example, Social-Attribute Network (SAN) [54] follows an attribute-augmented

preferential attachment (the probability of a node u linking to a node v depends on the degree

of node v as well as the number of attributes u and v have in common) as well as an attribute-

augmented triangle-closing (randomly connecting u with its 2-hop social neighbours, where the

hop could be through attribute nodes). This model however does not provide an explicit commu-

nity structure. In fact, very few generator models allow one to build a network having both an

explicit community structure and attributes associated with the nodes. Dang [37] proposes a sim-

ple generation model in which for each new node, its attributes and community membership are

independently sampled from a multinomial and normal distribution, respectively. Then a speci-
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fied number of edges are formed, where the probability of a node u linking to an existing node v

depends on (the multiplication of) the degree of v , and the attribute similarity of u and v , as well

as the attribute similarity of the classes that u and v belong to. In a similar effort, we proposed a

generator in [82], which augments and combines the BA and BTER models; whereas it follows a

local preferential attachment, which states that a node is more likely to create connections with

nodes that have high degrees which are also close-by. This model also incorporates attributes as-

suming that nodes that belong to the same community should be more similar in terms of their

attributes; also when forming long range edges between communities, it considers the similarity

of nodes in terms of their characteristics(attributes).

On the other hand, there exists a family of generative network models [119, 168], which model

networks with attributes, and consider communities as latent parameters. These models are not

dedicated to synthesizing networks, and the main objective is to discover the parameters of the

model when fitted to a given real network instance, i.e., to learn the latent parameters of the model

for that instance. The discovered latent parameters are used to infer knowledge from the graph,

e.g., to determine its community structure. For example Yang et al. [168] propose a generative

Bayesian model to learn the latent parameters of attribute models and communities assuming that

the graph and the attributes of nodes are observed and independent given community structure.

Although the model they proposed is generative, and could be used to sample networks similar to

the given real world network, when synthesizing benchmarks for their evaluation, they use the FF

model to generate the graph and then randomly generate attributes for the nodes. Similarly, [119]

propose a generative Bayesianmodel for sampling clustered attributed networks, and infer clusters

in such networks based on a variational approximation approach.

This chapter is focused on the basic case of generating realistic modular networks. When the

desired structural properties are reached, then the proposed models could be augmented to also

incorporate the attributes. In the following, we first discuss how to improve the LFR model, which

has been used extensively in the evaluation of community mining algorithms [23, 41, 146]. Then

we present the FARZ model, in Section 4.4, which provides a simple and effective alternative.

4.3 Generalized 3-Pass Model

We generalize and modify the original LFR benchmarks: 1) to start with any network model, so

that it could be plugged in with more realistic network models; and more importantly, 2) to assign

nodes to communities in a more efficient way, so that the resulted assignments require fewer

rewirings, hence keeping the properties of the original network intact. The generalized benchmark

generator has three phases: first, it realizes a network according to a network modelM, which has

a parameter set θG ; second, it creates communities based on a given parameter set, θC , and assigns

the nodes to these communities; and third, it overlays the community structure on the network, to

satisfy the constraints given in θC . In the original LFR, we haveM = CF , with parameters θG =
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Figure 4.1: Benchmarks created by the generalized 3-pass model using different start network models: CF, AB,
and FF. Properties of the synthesized networks are plotted as a function of the mixing parameter μ, in different
subplots. The properties are also reported for the start network (marked byG), i.e., before overlay and rewiring
phases. Results are averaged over 10 simulations, i.e., realizations of the networks.

{N ,kavд,kmax ,γ }, which are respectively: the number of nodes, the average degree, the maximum

degree and the exponent of the power law degree distribution. These parameters are used to

determine and sample a degree sequence, from which the graph is then synthesized using the

Configuration (CF) model. We substitute the CF model with two models which are more realistic,

i.e., the Barabási and Albert (BA) model [10] and the Forest Fire (FF) model [84, 85].

Figure 4.1 experimentally compares the properties of the networks realized by the LFR vari-

ations when using these alternative network models. The properties compared are the average

clustering coefficient of the nodes, the degree correlation coefficient (Pearson correlation for de-

grees of the connecting nodes), and the average shortest path distances between all the pairs of

nodes. The parameters of the models are chosen so that the initial networks have similar degree

distributions. In more detail, for CF, BA, and FF we respectively have: θG = {N : 1000, kavд :

15, kmax : 50, γ : 3}, θG = {N : 1000, m : 2}, and θG = {N : 1000, p : 0.1, rp : 0.0}.
In the top subplot of Figure 4.1, we can see that the clustering coefficient of the CF model is

almost zero for the initial network (marked by G), and the rewiring actually brings some modu-

larity to the network and increases the average clustering coefficient, but only for small mixing

parameters, i.e., when communities are well-separated and many links are rewired to lie inside

communities. However, as μ increases, i.e., when communities get more tangled together, the av-

erage clustering coefficient decreases in the generated network, and reaches zero for large values
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Figure 4.2: Comparing the number of edges rewired using each of the three node assignment variations: LFR
(original), CN (common neighbour), and NE (neighbour expansion). The subplots correspond to the different
initial network models, i.e., CF, AB, and FF.

of μ. This is also true if we start with a network with high clustering coefficient, such as FF , as the

network structure is extensively changed after the rewiring phase to overlay the communities. We

can see similar effects on the two subsequent subplots, where the rewiring changes the average

degree correlation and shortest paths of the original synthesized network. Hence in the next step,

we try to reduce the amount of rewirings necessary to overlay the communities.

In the original rewiring/overlay phase, nodes are assigned to communities uniformly at ran-

dom. Here, we propose two modified variations that result in far less rewirings in the subsequent

overlay procedure. More specifically, we examine two variations: 1) Common neighbour (CN )

assignment, i.e., probability of joining a community is proportional to the neighbours a node has

in that community; 2) Neighbour expansion (NE) assignment, i.e., after assigning a node to a com-

munity chosen uniformly at random, also assign all of its neighbours to that same community,

and continue until the community is full according to its size which is predetermined based on θC .

These procedures are described in details in Appendix C.1.1. Figure 4.2 compares the percentage

of edges rewired using these three node assignment approaches.

Similar to Figure 4.1, the subplots of Figure 4.2 are a function of the mixing parameter μ i.e., the

constraint used in the rewiring/overlay phase. The complete parameters used to overlay commu-

nities are θC = {μ, β : 2, cmin : 20, cmax : 50}. The three latter parameters determine the capacity

of communities; which are respectively: exponent of the power law distribution for community

sizes, the minimum size, and the maximum size for communities. These three parameters describe

a truncated power law distribution from which the community sizes are then sampled. We can

see in Figure 4.2 that the amount of rewirings significantly reduces only when the initial network
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Figure 4.3: The effect of rewiring on the probability density function (pdf) of the clustering coefficient. The blue
pdf shows the distribution of clustering coefficients of all nodes in the initial network. The grey pdfs correspond
to different values of μ. The insets represent the same graph on a log scale y-axis.

model is FF and the assignment approach is NE. In other words, to improve over the original LFR,

we require both a realistic initial model and an efficient node assignment technique.

Figure 4.3 illustrates the effect of changing the mixing parameter μ on the clustering coeffi-

cient of nodes, for the nine variations of LFR derived from our generalization, i.e., when using

different initial network models and different assignment approaches to overlay the communities.

We can see that the distribution of clustering coefficient is preserved the best for the combination

seen in the bottom right subplot, i.e., when the network start model is FF and the assignment ap-

proach is NE; since in this case the network has a better clustering distribution from the start, and

the assignment of nodes preserves those clustered nodes. Hence, this proposed variation gener-

ates networks with more realistic clustering coefficient distribution and is more favourable to the

original LFR.

Figure 4.4 compares the averages of the clustering coefficient, degree correlation and shortest

paths for the networks synthesized using the CN and NE assignment variations; which is on

par with Figure 4.1 that shows the same properties for the random node assignment approach

of the original LFR. We can see that the CN and NE variations better preserve the properties of

the network when compared to the original LFR. For the clustering coefficient in particular, we
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Figure 4.4: Comparing the properties of networks using the two assignment variations, CN on the left and NE
on the right; which compares against the Figure 4.1 that uses the original assignment approach in LFR.

see improvement for larger values of μ in CN ; however, this does not hold as μ decreases and

the rewiring becomes more intrusive. For the NE assignment on the other hand, the clustering

coefficient of the original network is preserved and increases as communities become denser by

decreasing the mixing parameter μ. The difference of these variations is not noteworthy in the

cases of degree correlation and shortest paths.

Although exhibiting more realistic properties, the benchmarks generated by these variations,

similar to the original LFR benchmarks, enforce communities later on the network; which is con-

trary to their definition as the natural structure underlying the networks. A more important issue

with the LFR benchmarks is however their lack of expressiveness and flexibility. For example, it

is not clear how to generate networks with negative degree correlation (dis-assortative networks)

using the LFR, whereas many real world networks are known to be dis-assortative. In fact, al-

though the LFR benchmarks accept many input parameters, these parameters are not relevant in

most cases, and almost all the works that use LFR in their evaluation, rely on the few example

settings first used by the authors when introducing these benchmarks [79].
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4.4 FARZ Benchmark Model

Similar to the most classical network models, FARZ follows a growth pattern, i.e., it gradually

expands the network following different evolution patterns while incorporating an underlying

community structure. The overall FARZ procedure is summarized in Algorithm 1. The input

parameters of n, and k respectively determine the total number of nodes, and the number of com-

munities; whereasm determines the number of edges added at each step, which controls the total

number of edges (nm), overall density of the networks (2m/n), and the average degree (2m).

FARZ expands the network one node at a time. Each node i added to the network is imme-

diately assigned to r communities, where r = 1 in case of non-overlapping communities. The

probabilities of these assignments are proportional to the (current) sizes of the communities. This

would apply a preferential attachment mechanism and ensure the heavy tail distribution for the

community sizes. More formally, the probability of node i joining community u is determined as:

p (u) =
|u | + ϕ∑

v
( |v | + ϕ) (4.1)

whereϕ = 1 ensures that empty communities also have a chance to recruit. It could also be changed

to control the effect of preferential attachment and move toward having equal sized communities;

since as ϕ increases, the distribution for sizes of communities becomes closer to uniform.

1: G ← Graph() { initialize empty graph}

2: C ← {c1 = ∅, c2 = ∅ . . . ck = ∅} { initialize communities}

3: for i ∈ [1 . . .n] do
4: G .add_node (i ) { add node i }

5: assiдn(i,C ) { assign i to communities}

6: connect (i,G,C ) { add an edge from node i}

7: for [2 . . .m] do { addm − 1 edges}
8: j ← select (G .nodes ) { select node j from G}

9: connect (j,G,C ) { add an edge from node j}

10: return G, C
Algorithm 1: FARZ Generator (n, m, k)

After node i joins the selected community or communities, it gets connected to the network

by forming an edge (line 6 of Algorithm 1). This is to ensure that node i connects to at least one

node in the network and there are no singletons in the synthesized network, i.e., unconnected

nodes with the degree of zero. Then,m− 1 nodes, from the existing nodes within the network, are

randomly selected and get a chance to also form connections. These new connections may or may

not involve the newly added node i . This is a better alternative to forming allm edges from the

newly added node, since it does not limit the minimum degree of nodes tom, whereas it actualizes

the preferential attachment effect through rich get richer pattern. In other words, adding constant
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number of edges at each round results in an accumulative advantage for the nodes which are added

earlier to the network, since they get more chances to be selected and form connections, which

naturally enforces the heavy tail degree distribution observed in real networks.

In Algorithm 1, the function assiдn(), in line 5, and select (), in line 8, are straightforward. The

latter selects a node uniformly at random; whereas the former randomly chooses community as-

signments based on the probabilities in Equation 4.1. Algorithm 2 describes the function connect (),

called in line 6 and 9 of Algorithm 1. This function enforces the community structure and controls

the edge formations.

1: if random < β then

2: c ← select ({c, ∀c ∈ C ∧ i ∈ c}) { select a community from memberships of node i}

3: else

4: c ← select ({c, ∀c ∈ C ∧ i � c}) { select a community that doesn’t include node i}

5: j ← choose ({j, ∀j ∈ c ∧ j � i ∧ (i, j ) � G .edдes}) { choose a node from selected community}

6: G .add_edдe (i, j )
Algorithm 2: FARZ Connect (i, G, C)

When forming an edge, a node first selects a community, and then connects to a node within

that community. More specifically, node i forms its connection within the communities that it is

a member of, with probability β , and connects to nodes from other communities with probability

1− β . The control parameter β hence determines the strength of the overall community structure,

and is analogous with the mixing parameter μ in the LFR model.

The function choose (), in line 5 of Algorithm 2, determines the probability of forming an edge

from node i to node j, which can be defined to depend on different driving factors. Here we

consider two factors: the number of their common neighbours (Equation 4.2), and the similarity

of their degrees (Equation 4.3), i.e.,

pi j ∝
n∑

k=1

wikw jk (4.2)

pi j ∝ (di − dj )2 (4.3)

where wi j represents the edge weight between node i to node j, and di =
∑n

k=1wik . Equation 4.2

enforces “triadic closure”, which is known as a natural mechanism for edge formation in real net-

works [14], and results in the high clustering coefficient observed in real networks. Equation 4.3

implements the assortative mixing, i.e., tendency of similar nodes to connect. Here we consider

degree assortativity, measured by degree correlation. However, this can be extended for attributed

networks where homophily is also a factor in the edge formation, e.g., by measuring the cosine

similarity of the attributes associated to the nodes. A function φ (., .) is used to combine the ef-

fect of Equation 4.2 and Equation 4.3, i.e., φ : R × R �→ R. Here, we simply use φ (x ,y) = xαy−γ
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to have both factors in effect; where α and γ respectively control the effect of Equation 4.2 and

Equation 4.3. The overall probabilities are hence computed as:

pi j ∝ (
n∑

k=1

wikw jk )
α ((di − dj )2 + 1)−γ + ϵ (4.4)

where ϵ is a small number that accounts for unlikely edges, and is particularly required at the

initial stages. Different choices of φ result in structurally different networks, however all these

generated networks would have the heavy tail distributions for the degree of the nodes and com-

munity sizes, and a built-in community structure. The control parameter γ indicates whether the

degree correlation should be positive or negative in the generated network, i.e., whether larger

Δdi j decreases or increases pi j , respectively. This makes FARZ able to generate both assortative

and disassortative networks, which is a distinct advantage over the previous models.

Real networks are known to exhibit both negative and positive degree correlation [101]. In

social networks, for instance, a positive degree correlation is often observed, which indicates that

nodes with similar degrees tend to connect to each other; whereas some biological networks are

known to be disassortative, i.e., hubs with high degrees often connect to nodes with small degrees.

For example, Figure 4.5 illustrates properties of four widely studied real networks; where all exhibit

strong negative or positive degree correlation.

4.4.1 Comparing Properties of Networks

Figure 4.6 and 4.7 illustrate the basic properties for synthetic networks sampled from AB, FF, LFR,

and FARZ models; these figures correspond to the properties reported for real networks in Fig-

ure 4.5. In Figure 4.6, we observe zero or small clustering coefficient for networks generated with

the AB, and LFR models; which is due to the fact that these models do not factor in the transitivity.

The FFmodel, however, directly evolves the network by connecting each node to the neighbours of

its connections, i.e., closing triangles, hence it achieves high clustering coefficient. The FF model,

however, does not factor in assortativity, nor do the AB and CF models, and hence these mod-

els generate networks with zero degree correlation. These observations are inconsistent with the

patterns observed for real world networks, as also shown in Figure 4.5. On the other hand, Fig-

ure 4.7 shows that the sample networks generated by FARZ comply well with the properties of

real networks. They have small diameter, heavy tail degree distribution, and high clustering coef-

ficient; moreover, they can exhibit positive or negative degree correlations based on the parameter

γ which directly controls the assortativity.

Figure 4.8 reports the average of properties for the synthesized FARZ networks, which is plot-

ted as a function of β that controls strength of the community structure. Here, we compare the four

parameter settings of Figure 4.7, when β varies, and the results are averaged over 10 realizations of

the networks for each β . We plot the results for β ∈ [0.5, 1], that is where a community structure
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Figure 4.5: Basic properties of four example real world networks with positive and negative degree correlations.
The insets respectively show the average degree, average clustering coefficient, degree correlation (Pearson cor-
relation between the degrees of connected nodes), and the average shortest paths. The corresponding graphs are
also visualized at the top; whereas if coloured, different colours represent the available community labels.
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Figure 4.6: Basic properties of three synthetic networks, with 1000 nodes. The network is generated withm = 4
for ABmodel. Where the FF parameters are {p : 0.4, rp : 0.2}, and for the LFRmodel we used the commonly used
setting of {k : 20, kmax : 50, t1 : 2, t2 : 1, μ : 0.4, cmin : 20, cmax : 100}, and the original implementation
provided by the authors.
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Figure 4.7: Basic Properties of four sample networks generated by FARZ for different combination values of α
and γ . The complete parameters setting is {n:1000, k :4,m:5, β :0.8, ϕ:1, r :1, ϵ : 1e − 07}.

exists within the network, i.e., the chances of edge formation is higher within the communities

that outside of them. We can see in this plot that the FARZ benchmarks are consistent, as opposed

to the LFR (as seen in Figure 4.1), i.e., all the networks synthesized by FARZ exhibit degree correla-
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tion and clustering coefficient, regardless of the strength of the underlying community structure.

Figure 4.8: Basic properties of the synthesized FARZ networks plotted as a function of β , i.e., the probability of
edges to form within the communities. This figure corresponds to Figure 4.1 and 4.4.

4.4.2 Comparing Properties of Communities

All the comparison so far focuses on the general properties of the synthesized networks. We can

further look at the properties in each community, and compare the patterns with what is observed

in the real networks. More specifically, in Figure 4.6 and 4.7, we see that networks generated

with both LFR and FARZ model have heavy tail degree distributions. In Figure 4.9, we compare

the degree distributions inside each community created by these benchmark models. We can see

that in the example real world network, for which the community labels are available (i.e., Polit-

ical_blogosphere in Figure 4.5), the degree distributions per community follows the same heavy

tail distribution as the overall network (Figure 4.9a). The communities generated by FARZ bench-

mark, comply with this pattern and follow a heavy tail degree distribution as well (Figure 4.9b),

i.e., they comply with the observation in the real network example. However, we do not observe

a clear heavy tail trend for the communities generated by the LFR benchmark (Figure 4.9c).

In Figure 4.9, the FARZ network (Figure 4.9b) corresponds to the third column in Figure 4.7,
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(a) Political blogosphere, with 2 communities.

(b) FARZ, with 4 communities.

(c) LFR, with 8 communities.

Figure 4.9: Degree distributions per community for an example real network (top), and two synthetic networks
generated by FARZ (middle) and LFR (bottom). Each subplot reports the degree distribution inside a community.

i.e., when α = 0.5 and γ = −0.5. Other settings in Figure 4.7 exhibit the same heavy tail degree

distribution pattern for inside the communities. The LFR network (Figure 4.9c) has similar param-

eters as the network reported in the third column of Figure 4.6, except the maximum community

size is increased to 500 to get a smaller number of communities, to be able to better plot and com-

pare the results. The plot for the exact network of Figure 4.6, which has 17 communities, shows

similar patterns but requires more space for plotting, and is reported in Appendix C.2.2.

In Figure 4.10, we compare the ratio of within to total connections for the nodes in each com-

munity, i.e., the degrees of the nodes within their community divided by their degree in the whole

network; this corrsponds to 1 − μ in the LFR. Here we can see that for the real world network

example (Figure 4.10a), as well as the networks synthesized with FARZ, this ratio of within to total

edges varies for the nodes inside each community between 0.0 and 1.0. However, this is not the

case in the LFR example. LFR gets this ratio as an input parameter, i.e., mixing parameter μ. In
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(a) Political blogosphere

(b) FARZ

(c) LFR

Figure 4.10: Distributions of within to total edges for the nodes in each community. Plots correspond to the
networks of Figure 4.9.

LFR, all the nodes within a community have the same degree of membership, which is artificial

and unlike the observed pattern in real networks.

4.5 Application and Flexibility

In this section we show the application of FARZ in validating and comparing community mining

algorithms. More specifically, we compare and rank selected community mining algorithms on

the benchmarks generated by FARZ, where we tune its flexible parameters to rank the algorithms

in different and meaningful experimental settings. In more detail, the selected algorithms are:

Louvain [16], WalkTrap [120], FastModularity [104], and InfoMap [140] for disjoint clusterings;

and COPRA [55], MOSES [94], OSLOM [81], and BIGCLAM [167] for overlapping clusterings in

Section 3.6.3. The authors’ original implementations are used for the methods, with no parameter

tuning (defaults are used); and the reported results are averaged over ten runs.

The agreements (higher is better) are measured and reported with both ARI (Adjusted Rand
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(a) assortative benchmarks, γ = 0.5

(b) disassortative benchmarks, γ = −0.8
Figure 4.11: Performance of community mining algorithms on benchmarks with degree assortativity v.s.
degree disassortativity; plotted as a function of the strength of the built-in community structure, i.e., deter-
mined by β . Results are averaged over 10 runs. The parameter settings correspond to the first (4.11a) and last
(4.11b) columns of Figure 4.7.

Index) and NMI (Normalized Mutual Information) indexes; NMI is a widely used agreement index

for comparing clusterings, which is known to be biased with the number of clusters, whereas ARI

is less common, but more appropriate [123]. We described the clustering agreement measures in

depth in Chapter 3.

4.5.1 Effect of the Degree Assortativity

Here, we compare performance of the community detection algorithms on the benchmarks with

degree assortativity, i.e., positive degree correlation (common in social networks); and degree dis-

assortativity, i.e., negative degree correlation (common in biological networks). Figure 4.11 shows

the comparison of the four selected algorithms on the assortative and disassortative FARZ bench-

marks; where overall the selected algorithms perform better on the disassortative benchmarks.

In the case of assortative networks (Figure 4.11a), FastModularity outperforms the other three

methods when communities are not predominant, i.e., for β < 0.9. From β = 0.9, Infomap becomes

the best performingmethod, which is after a sharp transition from its poor performance for the less

predominant communities. In the case of disassortative networks (Figure 4.11b), the performance
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of FastModularity is on a par with Louvain, which are superior to InfoMap until communities are

well separated, i.e., β = 1. These results are interesting since the InfoMap algorithm is known

to be the best performing method from the selected set when evaluated on the LFR benchmarks

[76, 123].

(a) assortative benchmarks, γ = 0.5

(b) disassortative benchmarks, γ = −0.8

(c) number of communities in the results, k ′, v.s. the true number of communities, k in the ground-truth

Figure 4.12: Performance of communitymining algorithms on benchmarks with differentnumber of built-in
communities. Settings correspond to the Figure 4.11, and β is fixed to 0.8.

4.5.2 Effect of the Number of Communities

Here, we compare the algorithms on benchmarks with different numbers of built-in communities,

by changing the parameter k . Figure 4.12 shows the results. We can see that all the algorithm
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have difficulty when the number of communities is small, i.e., k < 10. Unlike other algorithms,

the performance of FastModularity also drops as the number of communities increases. In the

assortative networks in particular, the Louvain method is more consistent to the change of the

number of communities. In Figure 4.12c, we can also observe that all these method fail to detect

the true number of communities in the ground-truth, and the number of detected communities(k ′)
seems to be independent of the true number of communities in the ground-truth(k), particularly

for InfoMap and WalkTrap and when k is large.

4.5.3 Effect of Variation in Community Sizes

Here, we tune the parameter ϕ to change how well-balanced communities are in sizes, i.e., move

the distribution of community sizes from heavy tail to uniform. Figure 4.13 shows the comparison

results. Similar to the effect of number of communities, FastModularity seems to be the least

consistent method when the distribution of community sizes changes. While Louvain seems to be

the superior method particularly in the assortative setting.

(a) assortative benchmarks, γ = 0.5

(b) disassortative benchmarks, γ = −0.8
Figure 4.13: Performance of community mining algorithms as a function of how equal are the sizes of com-
munities. Settings correspond to the Figure 4.11, except k that is increased to 20, to have more community sizes
for the plot.

4.5.4 Effect of the Density of Networks

Here, we tune the parameterm to change howmany connections nodes have on average, i.e., move

from sparse to less sparse networks and examine how the performance of different algorithms
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are affected by changing the density of benchmarks. In the results reported in Figure 4.14 we

(a) assortative benchmarks, γ = 0.5

(b) disassortative benchmarks, γ = −0.8
Figure 4.14: Performance of community mining algorithms on benchmarks with different density. Settings
correspond to the Figure 4.11, and β is fixed to 0.8.

see that overall the algorithms perform better as networks become denser, i.e., when the average

degree of nodes increases, i.e., whenm increases. The performance boost is more significant for

FastModularity, Louvain, and WalkTrap algorithms, and particularly in the assortative setting.

4.5.5 Effect of the Overlap

Figure 4.15 compares the performance of four overlapping community detection methods on the

FARZ benchmarks with overlapping communities. We can see that all methods perform poorly,

except COPRA, which is able to detect communities when the portion of overlapping nodes is

small enough, i.e. q < 0.2. This is also interesting since these methods are shown to perform

reasonably good on the overlapping extensions of LFR.

4.6 Conclusions

In this chapter, we introduced extensions to improve upon the shortcomings of the popular LFR

network generator. We showed how these extensions refine the generated results towards more

lifelike networks. We also introduced an alternative realistic and flexible benchmark generator

for validating and comparing community detection methods, called FARZ. FARZ generates net-

works with built-in community structure, which can be compared, as a ground truth, against the
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Figure 4.15: Performances as a function of the fraction of overlapping nodes, for the setting of α = 0.5,
β = 0.5, γ = 0.8, where the number of communities that each node can belong to is fixed to 3, and the portion
of overlapping nodes (q) is varied from 0.0 (no overlap), to 0.5 (half of the nodes are overlapping).

results of different community mining algorithms. The FARZ benchmark produces truthful net-

works, and the characteristics of the networks and communities synthesized by FARZ are similar to

what is observed in real world networks. FARZ benchmark also incorporates intuitive parameters,

which have meaningful interpretation and are easy to tune to control the experimental settings.

More precisely, FARZ has three input parameters, FARZ (n,m,k ), which respectively determine

the number of nodes, the (half of) average degree, and the number of communities. It also has

four intuitive control parameters, β , α , γ , and ϕ; which respectively control the strength of the

community structure, the clustering coefficient, the degree correlation, and the distribution of the

community sizes. Tuning these parameters provides a means to generate a variety of realistic

networks and presents different settings for comparing community detection algorithms, which

can be used to determine under which settings each algorithm performs the best e.g., assortative

v.s. disassortative networks.
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Chapter 5

Utilizing the Modular Structure of Networks

This chapter studies how the modular structure of networks could be utilized in different contexts.

First, it overviews examples of applications which use module identification, a.k.a. community de-

tection, in networks, including an e-learning setting where modules/communities effectively out-

line the collaboration groups of students, as well as the topics of their discussions, which are used

to better monitor participation of students throughout a course; published in [128, 129, 132]. Sec-

ond, it investigates the correlation between the attributes of the data-points and the relationships

between these data-points, and presents a novel approach to derive alternative modular struc-

tures, whereas each alternative view is better aligned (is in better agreement) with a selected set

of attribute(s); published in [125, 126].

5.1 Introduction and Example Applications

Analyzing the modular structure of networks, a.k.a. community detection, has a wide range of

applications: from visualization and exploratory data mining to building prediction models [47,

121]. This analysis provides novel insights into the mesoscopic characteristics of networks, which

are not available if we look at the network as a whole, i.e., at a macroscopic level; or at the other

extreme, focus on the properties of the individual nodes within the network at a microscopic level

[121]. Consequently, community detection has been applied in networks from a very wide range

of domains, including biology, marketing, epidemiology, sociology, criminology, zoology, etc.

In biology, for example, Guimera and Amaral [56] extract the modules in metabolic networks

of several species from different superkingdoms, using a simulated annealing based modularity

optimization (see Section 2.2.1). They further assign a role to each metabolite based on how it is

connected inside its own module (within-module degree) and also to the other modules (participa-

tion coefficient). They use the discovered modules and roles to build a cartographic representation

of the metabolic network, which enables one to infer relevant biological information. Moreover,

they study the evolutionary loss rate of different roles, and discover that ultra-peripheral metabo-

lites (that have all their connections inside their modules) have the highest loss rate, whereas
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connector hubs (that connect to most of the other modules) are the most conserved across the

species. In a follow up study, Zhao et al. [172] apply the same module identification technique on

the metabolic network of Homo sapiens, and study the relationships between the modules them-

selves. They show that there exist core modules that perform the basic metabolism functions and

behave cohesively in evolution, and periphery modules that only interact with few other mod-

ules and accomplish specialized functions, which also have a higher tendency to be gained/lost

together through the evolution.

5.1.1 Role Mining in Social Networks

In an analogous problem, we have considered community-aware role mining in social networks

[1, 2, 46], i.e., defining and discovering social roles of individuals by taking into account the in-

teractions between them, as well as their affiliations to the modules/communities. For instance in

[2], we define four fundamental roles for an individual within a society: 1) leader (the most central

node within its module), 2) outermost (the members with significantly low activity), 3) mediator

(nodes which bridge multiple modules), and 4) outsider (individuals that are not affiliated to any

one module). Our analysis of Enron email dataset shows how the changes in these structural roles,

in combinationwith the changes in themodular structure of the network, provides additional clues

into the dynamics of the network under study, e.g., how a leader role change triggers modules to

merge or split.

5.1.2 Analyzing Dynamics of Networks

Analyzing the dynamics of modules over time, can be useful in many applications such as targeted

marketing and advertising. We have focused on different aspects of tracking the evolution of mod-

ules/communities in [148, 149]. In [148], we propose an approach to detect evolving communities

over time, whichmines communities incrementally by considering the previously discovered com-

munities at each step. Based on the discovered meta communities which span over time, we then

define and detect the critical events that characterize the evolution of communities, which are

namely survive, dissolve, split, merge, and form. In [149], we further show how these evolution

events of communities can be predicted based on the relevant structural and temporal properties.

Moreover, we show how this analysis enables one to also identify the most prominent features

in community transitions. For example, our analysis of the Enron dataset discovers that the av-

erage clustering coefficient and cohesion of modules/communities are prominent positive factors

on their survival; while leaders discussing a stable topic, and the ratio of nodes leaving a commu-

nity are important negative factors on the survival of that community. We further confirm that

these prominent features depend on the underlying dynamic social network, e.g., the ratio of nodes

leaving a community is not a prominent feature when we apply the model on the DBLP dataset.
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(a) Social network of students interacting in an online
discussion forum. Nodes represent actors or students,
while an edge from a student to the other summarizes
messages sent in that direction and the thickness of
that edge corresponds to the number of messages sent.

(b)Communities detected in the social network of stu-
dents interacted in the online discussion forum. Dif-
ferent colours represent the three different commu-
nities of students that communicated mostly within
themselves throughout the course.

Figure 5.1: Interpreting Students Interaction Network

5.1.3 Educational Case Study

We track the evolution of interaction patterns and roles over time in an educational case study

in [128, 129, 132]. These works focus on providing the course instructors with better means to

assess the participation of students by analyzing the interactions of students in asynchronous

discussion forums of online courses. Here, we give the instructor a quick view of what is discussed

in these forums, what are the main topics discussed, how much each student has participated in

these topics, and how the students collaborated on each discussion/topic. In more detail, from the

discussion forums recorded in an e-learning environment, we extract both the interaction network

of students (where edges correspond to exchange of written messages), and the co-occurrence

network of terms used in their discussions (where terms/nodes are connected if they co-occur in

the same sentence). Then we detect the communities in these two networks1. The discovered

communities respectively correspond to the collaboration groups of students (Figure 5.1), and the

topics of their discussions (Figure 5.3).

Furthermore, we monitor the changes in collaborative groups of students and detect events

and patterns by a dynamic analysis of the communities. Such events can affect participation and

engagement of students in the course, and detecting these events could be used tomake proper rec-

ommendation to modify students behaviours affected by these changes. For instance a community

split is detected in Figure 5.4a, and it can be predicted that the participation level of the detached

students would drop, accordingly, hence they could be recommended and/or invited by one of the

remaining collaboration groups to join and engage in their discussions. As another example, a

1Here, we used the FastModularity approach which is known to performwell in different domains (see Section 2.2.1);
however any other community detection method could be used instead to detect the groupings or communities.
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Figure 5.2: Examining words used by a particular student in a discussion thread in an e-learning course. This
can be used to determine and compare interest of different students as well as their level of participation. Here,
terms used by a selected student are highlighted.

community growth can also be detected proceeding the community split of Figure 5.4a, illustrated

in Figure 5.4b. Where the Red community recruits newmembers while at the same time the Green

community dissolves into Purple. We can also see the effect of the leader move between commu-

nities that clearly has triggered most of these events. In Figure 5.4a, moving Eric from the Cyan

community to Purple community caused the Cyan to split, while in Figure 5.4b, his next move
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Figure 5.3: Hierarchical topic clustering of a discussion thread. In which one can also examine topics that a
particular student was involved with, the content of these topics and the range of participation of the student.

from Purple to Blue, helped the Red community to enlist some of the Purple members. Here, we

used a simple matching between communities of different timestamps to find different instances

of the same community through time, and the community events are detected manualy and in an

exploratory manner. A more sophisticated framework for dynamic analysis of communities and

automatic event detection is later described in [148, 149].

87



5.1. INTRODUCTION AND EXAMPLE APPLICATIONS

(a) One could observe how the Cyan community first looses some of its members and then splits in the next time
stamp.

(b) the Green community follows leader into the Purple community; Purple members leave the community after
the leader moves to the Blue community.

Figure 5.4: Changes in the collaborative groups over time, and the effect of the leader move in these groups.

In the following, we focus on the correlation between the characteristics of individual nodes

and their community affiliations. We propose community guidance by attributes, which finds a

modular structure that aligns well with a given attribute. Using this approach [125], different high

quality community perspectives can be discovered where each best correspond with the selected

set of attributes, and could then be utilized to predict the missing values of those attributes.
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5.2 Modules and Attributes

Many real world applications include information on both attributes of individual nodes as well

as relations between the nodes, while there exists an interplay between these attributes and rela-

tions [33, 75, 89]. More precisely, the relations between nodes motivates them to develop similar

attributes (influence), whereas the similarities between themmotivates them to form relations (se-

lection), a property referred to as homophily. This homophily results in an observed correlation

between themodular structure of networks and attributes of nodes, i.e., self-identified/explicit user

characteristics [152]; which has motivated defining ground-truth communities for real networks

based on these explicit properties of nodes.

In more detail, alternative to generating benchmarks for the community detection task, large

real world benchmarks are often used where the ground-truth communities are defined based on

some explicit properties of the nodes such as user memberships in social network. Notably, Yang

and Leskovec [166] adapt this approach to compare different community detection algorithms

based on their performance on large real world benchmarks; where characteristics such as social

groups are considered “reliable and robust notion of ground-truth communities”. For example, in a

collaboration network of authors obtained from DBLP, venues are considered as the ground-truth

communities, or in the Amazon product co-purchasing network, product categories are considered

as the ground-truth. A similar analysis is performed by Yang et al. [170], including a comparison

between the result on large real social networks and the LFR benchmarks, arguing that the former

is better indicator of the performance of the algorithms. However, this ground-truth data is imper-

fect and incomplete and should be rather considered as metadata or labeled attributes correlated

with the underlying communities, as also mentioned by Lee and Cunningham [83].

In the presence of attributes, a more plausible viewpoint is finding groups of nodes that are

both internally well connected and having homogeneous attributes. This grouping is referred to as

structural attribute clustering by Zhou et al. [174] or cohesive patterns mining by Moser et al. [99].

In [99], for example, a cohesive pattern is defined as a subset of nodes which satisfy both a density

constraint and a subspace cohesion constraint; then the maximal cohesive patterns are discovered

by pruning the search space based on these constraints. Similar to the community mining problem,

several alternative approaches are proposed for integrating attributes and relationships in finding

homogeneous modules in networks, examples are Cruz and Bothorel [34], Günnemann et al. [58],

Hanisch et al. [61], Hu et al. [63], Mislove et al. [98], Yang et al. [169].

Here, we first investigate the correlations between attributes and community structure using

our network specific agreement/external indexes proposed in Chapter 3. Then we present the con-

cept of community guidance by attributes, wherewe adapt our previously proposed TopLeaders[127]

community detectionmethod, to find the right number of communities in the given network, based

on the available attributes information.
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major
62(76) values
9.94% missing

dorm
23(25) values
48.2% missing

gender
2(2) values

5.87% missing

student
or faculty
5(6) values

0.03% missing

year
9(20) values
12% missing

highschool
198(2881) values
13.7% missing

second major
or minor
71(79) values
42.5% missing

(a) Attributes: nodes are colored the same if they have the same value for the corresponding attribute; nodes
with a missing value for the attribute are white. The number of unique attribute values, i.e. different colours,
and the percentage of missing values are also reported. The number outside the parentheses is the number of
main values which have at least five nodes, whereas the total number of unique values is reported inside the
parentheses.

InfoMap
63(94) clusters

Walktrab
19(204) clusters

Louvain
10(19) clusters

FastModularity
9(27) clusters

(b) Communities: nodes are colored the same if they belong to the same community in the results of correspond-
ing community mining algorithms. The number of clusters, i.e. colours, with at least five members is reported,
whereas the total number of clusters in the result is given inside the parentheses.

Figure 5.5: Visualization of correlations between attributes and communities for the American75 dataset from
Facebook 100 dataset[153]. This network has 6386 nodes and 217662 edges (friendships which are unweighted,
undirected). Visualization is done with Gephi, and an automatic layout is used which positions nodes only based
on their connections.

5.2.1 Correlation of Communities and Attributes

Traud et al. [152] show that a set of node attributes can act as the primary organizing principle of

the communities; e.g. House affiliation in their study of Facebook friendship network of five US

universities. In computing the correlation between attributes and relations, Traud et al. [152] use

the basic clustering agreement indices for communities comparison. They observe that the corre-

lation significantly depends on this agreement index and differs significantly even between those

indices that have been known to be linear transformation of each other. Here we perform similar

experiments, but in the context of evaluating community mining algorithms. In more details, we

compare the agreements of the results from four different community mining algorithms, with

each attribute in the dataset; see Figure 5.5 for a visualized example. First, the community mining

algorithms are applied on the dataset, which are InfoMap [140], WalkTrap [120], Louvain [16],

and FastModularity [104]. Then the correlations between the resulted communities from these
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Figure 5.6: The agreement of different community detection algorithms with each attribute, averaged over 100
friendship networks of US colleges in Facebook 100 dataset. Each subplot shows the agreements when measured
using the corresponding index, for instance the first subplot shows the agreements when using Jaccard index.

algorithms and the attributes are measured using clustering agreement indices. More specifically,

we measure the agreement assuming the unique attribute values are grouped together and formed

a clustering. For example, for the attribute ‘year’, all nodes that have the value ‘2008’ are in the

same group or cluster. Figure 5.6 shows the agreements of the community mining algorithms

with each attribute averaged over all the networks in the Facebook 100 dataset[153]; which shows

a snapshot of facebook friendships at 100 US universities. The agreements, between two group-

ings/clusterings of the dataset, are measured with eight different agreement indices: Jaccard Index,

F-measure, Variation of Information(VI), Normalized Mutual Information (NMI), Rand Index (RI),

Adjusted Rand Index (ARI), and two structure based extensions of ARI tailored for comparing net-

work clusters: with overlap function as the sum of weighted degrees (ARIΣd
x 2 ), and the number

of common edges (ARIξ
x 2 ); defined in Chapter 3.

Unlike the previous study, we observe very similar rankings with different agreement indexes.

The most agreements are observed with the attribute ‘year’, followed not so closely by ‘dormitory’.

We can however see that the ranking across different attributes is not the same, whereas Walktrap

is the winner according to the ‘year’, and Infomap performs the best if we consider the agreement

with the ‘dormitory’. Therefore, although we observe a correlation between the attributes and the

communities, it is not wise to compare the general performance of community mining algorithms
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based on their agreements with a selected attribute as the ground-truth. Instead one should treat

attributes as another source of information correlated with the structure of the network. In the

next section, for example, we use the attribute information to fine tune the parameters of a com-

munity mining algorithm, so that it results in a community structure which complies most with

our selected attribute. Before that, we present a discussion on the effect of missing values on the

agreement indices.

5.2.2 Missing Values and Agreement Indices

The definitions of original agreement indices assume the two clusterings are covering the same set

of datapoints. Therefore to use these indices, nodes with missing values should be either removed,

grouped all as a single cluster, or each treated as a singleton cluster. The implementations we use

here are based on our generalized formula proposed in Chapter 3. Unlike the original definitions,

these formulae do not require the assumption that the clusterings cover the whole dataset. Hence

they can be directly applied to the cases where we have un-clustered datapoints, which will be

ignored. For the sake of comparison, in Figure 5.7 three bars are plotted per <attribute, community

mining> pair, corresponding to how the missing values can be handled: (i) when nodes with

missing values are removed from both groupings before computing the agreement, (ii) when all

the nodes with missing attribute value are grouped into a single cluster, and (iii) when computing

the agreements with lifting the covering assumption, using the formulations of Definition 3.3.1.

This comparison is in particular important here, since we have many nodes with missing values

for some of the attributes, such as ‘dormitory’ or ‘second major’; and the way missing values are

handled significantly affects the agreements measured, as seen in the Figure 5.7. In the following

experiments, we use the Definition 3.3.1, which does not treat the unclustered nodes, i.e., missing

values, as disagreement.

5.3 Guiding Community Detection by Attributes

Zhou et al. [174] propose clustering an attribute augmented network. The augmented network

includes attribute nodes for each <attribute, value> and edges are added between original graph

nodes to their corresponding <attribute, value> nodes, this graph representation has also been

used in link recommendation, e.g., see Gong et al. [53]. The authors show that a straightforward

distance function based on a linear combination of the structural and attribute similarities, fails

to outperform a similar method that only considers structural or attribute similarities. In Mislove

et al. [98], communities are found using a link based approach but are initialized using a clustering

based on their attribute similarities. As another example in Cruz and Bothorel [34], communities

found by links are further divided into smaller sub-groups according to the attributes. In more

detail, the overlap of each community is computed with each cluster in the clustering of the same

data according to the attributes(rephrase). Then larger than average overlaps are cut from the

main community to form smaller, more cohesive communities. All these works we have discussed
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Figure 5.7: The effect of missing values: bars with horizontal, diagonal, and solid fill correspond respectively
to removing missing values, adding missing values as a single cluster, or lifting the covering assumption.

so far further motivate combining attribute and link data, rather than validating one based on the

other. Here, we propose the concept of community guidance by attributes, where a given attribute

(based on the application) is used to direct a community mining algorithm. More specifically, we

guide our TopLeaders [124, 127] algorithm to find the right number of communities, based on

the agreements of its result with the given attribute. The concept is however general and can be

applied to fine tune parameters of any community mining algorithm. Which is true for algorithms

which are capable of providing different community structure perspectives, based on different

values for the algorithm parameters.
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Figure 5.8: Agreement of attributes with the results of algorithms plotted as a function of number of commu-
nities.

The number of communities, k for short, is the main parameter for the TopLeaders algorithm,

similar to the k-means algorithm for data clustering. Figure 5.8 illustrates an example on the

Amherst41 dataset, where the agreements of each attribute with the results of Topleaders are

plotted as a function of k . For some of the attributes, such as ‘student/faculty’, we observe a clear

peak around the true number of classes. We also plotted where other algorithms land. However,

there has not been any parameter tuning for those algorithm, and hence they are indicated with

a single point. The vertical lines show the true number of classes for the corresponding attribute,

i.e., the distinct values; except for the attribute ‘highschool’, for which the true k is 1075 and lies

outside of the plot’s scale.

Consequently, between the communities detected by the TopLeaders for different values of k ,

which only uses the links to discover communities, we select the one that has the most agreement

with the given attribute. We used an exhaustive search to find the optimal k for each attribute, in

the range of [2,
√
n], where n is the total number of datapoints. Figure 5.9 shows the agreements

obtained through this approach, compared to the four commonly used community detection algo-

rithms. We can see in Figure 5.9 that the communities found by this approach have comparable,

and in some cases better agreements with the attributes, compared to the methods which do not

consider that extra information. This is more significant according to the structure based agree-

ment measures, especially ARIξ
x 2 , which considers common edges as the cluster overlaps; and

also for less trivial attributes which have a low agreement with the trivial communities, e.g., ‘stu-
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Figure 5.9: TopLeaders performance when the number of communities are chosen according to the agreement
of its results with the given attribute. This result is averaged over a subset of 5 datasets from the 100 Facebook
networks, which are: Amherst41, Bowdoin47, Caltech36, Hamilton46, and Haverford76.

dent/faculty’, ‘second_major’, or ‘highschool’. One should however note that this is not a com-

parison for the performance of these algorithms, since TopLeaders used the agreements with the

attribute to find the k , which is not available to the other methods.

5.4 Conclusions

In this chapter, we discussed utilization of the modular structure of networks in different contexts,

including role mining in social and biological networks, as well as analyzing the dynamics of

networks and tracking their evolution patterns. In particular, we focused on an application focused

case example, which discoversmodules to recover collaboration groups of students in an e-learning

setting, and also to outline the topics of their discussions.

Further, we investigated the evaluation of communities on real-world networkswith attributes,

where there exist a correlation between the characteristics of individual nodes and their connec-

tions. We then proposed the concept of community guidance by attributes, where a community

mining algorithm is guided to find a community structure which corresponds most to a given at-

tribute. This is in particular useful in real world applications, since we often have access to both

link and attribute information, and an idea of how communities will be used. For example, com-

munities in protein-protein interaction networks are shown to be correlated with the functional
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categories of their members, which are used to predict the previously uncharacterized protein

complexes [147]; in such case, one might be interested to select the community structure that

corresponds most with the available functional categories.
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Chapter 6

Conclusion

This thesis studied the modular structure of real-world complex networks. To summarize:

• Chapter 2 introduced network adaptations of thewell-established clustering validity criteria,

that quantify the goodness of a single clustering. The adapted network criteria provide a

more extensive set of validity measures for the evaluation of community mining algorithms,

i.e., algorithms that detect the modular structure of networks.

• Chapter 3 presented generalizations of the well-known clustering agreement measures, that

compare two clusterings of the same network. From these generalizations, extensions are

derived for comparing overlapping and network clusters. These extensions are tailored for

measuring the (dis)agreement of clusterings/communities, that represent the modular struc-

ture in networks.

• Chapter 4 examined the generative network models, generalized a common model used for

synthesizing modular networks, and introduced an intuitive and flexible alternative model

which more closely complies with the characteristics observed for real-world networks. The

proposed alternative generator has a high degree of expressiveness and is particularly useful

for generating benchmark datasets with built-in modular structure, that are used in the

evaluation of community detection algorithms.

• Chapter 5, investigated how the modular structure of networks can be utilized in different

contexts. On one hand, it focused on an e-learning application and illustrated how the net-

work modules/communities can effectively outline the collaboration groups of students, as

well as the topics of their discussions; and how this could be used to monitor participation

trends of students throughout an online course. On the other hand, it showed the interplay

between the attributes of nodes and their memberships in communities, and presented how

this interplay can be leveraged for derivation of alternative modular structures that better

align with a given subset of attribute(s).
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6.1. RECOMMENDATIONS FOR EVALUATION OF COMMUNITIES

6.1 Recommendations for Evaluation of Communities

An important research direction is to evaluate and compare the results of different community

mining algorithms. An intuitive practice is to validate the results partly by a human expert [91].

However, the community mining problem is NP-hard; the human expert validation is limited, and

is based on narrow intuition rather than on an exhaustive examination of the relations in the given

network, specially for large real networks.

There is a congruence relation between defining communities and evaluating community min-

ing results. In fact, thewell-knownmodularity Q byNewman andGirvan [108] which is commonly

applied as an objective function for community detection, was originally proposed for quantifying

the goodness of the community structure, and is still commonly used for evaluating the algorithms

[28, 139]. Considering that the only commonly used criterion is themodularity Q , in Chapter 2, we

presented an extensive set of general objectives for evaluation of network clustering algorithms,

mostly adapted from clustering background such as Variance Ratio Criterion, Silhouette Width

Criterion, Dunn index, etc. One should however note that this type of evaluation is based on an

assumption about what are the good communities, and hence is not appropriate for validating

results of algorithms that are built upon different assumptions. In fact, choosing an evaluation

criterion encompasses the same non-triviality as of the community mining task itself. Our exper-

iments also revealed that the rankings of the adopted criteria depend on the experiment settings,

and there is no winner criteria that could be used in all settings.

A common alternative evaluation practice is validating the algorithms on benchmark datasets

by measuring the agreement between their resulted communities and the ground-truth structure

available in these benchmarks. This agreement is measured using a clustering agreement index,

which measures the similarity between two given clusterings, usually based on the pairwise over-

laps of their clusters. The traditional clustering agreement measures only consider memberships

of data-points in clusters, and overlook any relations between the data-points, which makes them

inefficient in comparing network clusters. Hence we recommend using the structure based mea-

sures introduced in Chapter 3 when comparing community structures of networks.

Since there are few and typically small real world benchmarks with known communities avail-

able, this evaluation is usually performed on synthetic benchmarks. We are assuming that the

performance of an algorithm on the benchmarks datasets, is a predictor of its performance on

real networks. For this assumption to hold, we need realistic benchmark generators, with tunable

parameters for different domains; since it has been shown that the characteristics of clusters in

networks are remarkably similar between networks from the same domain [80, 113]. However,

the current common generators used for synthesizing benchmarks are domain-independent and

also overlook basic characteristics of the real networks, as discussed in Chapter 4. We have seen

in Chapter 2 and Chapter 4, that the ranking of algorithms significantly changes based on the

benchmark datasets used, and hence it is important to compare basic characteristics of bench-
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marks used for the evaluation with the target real-world network, to ensure the applicability of

the community detection method. It is also important to improve the realistic degree of synthetic

benchmark generators. With this regard, we have presented FARZ benchmarks which follow the

characteristics of real networks more closely and hence are more recommended for evaluation of

community mining algorithms.

Alternative to generating benchmarks for the community detection task, large real world

benchmarks are often used where the ground-truth communities are defined based on some ex-

plicit properties of the nodes such as user memberships in social network. In Chapter 5, we discuss

that this ground-truth data is incomplete and should be rather considered as metadata or labeled

attributes correlated with the underlying communities.

6.2 Future Work

In our experiments of Chapter 2, several of the adapted criteria exhibit high performances on

ranking different network clusterings of a given dataset, which makes them useful alternatives

for the modularity Q ; particularly, the Z-Index criterion. Hence, it is interesting to apply the best

performing criteria as objectives for finding communities and develop new community detetion

algorithms. Another line of work following this chapter is to provide extensions of the criteria for

more general cases of communitymining, mainly overlapping communities, dynamic communities

and also local communities.

In Chapter 3, we presented new agreement measures for comparing two clusterings in net-

works, mainly focusing on the cluster validation perspective. Alternative context in which these

measure could be applied can be explored as future research, particularly applying them in ensem-

ble clustering and multi-view clustering.

In Chapter 4, we presented the FARZ model for synthesizing realistic complex networks with

built-in community structure. This model could be extended in several ways, particularly by incor-

porating attributes for nodes, as well as the temporal information required for evaluating dynamic

community detection methods.

In Chapter 5, we proposed a semi-supervised network clustering algorithm, a.k.a. commu-

nity detection method, which utilizes available attribute information to refine candid community

structures. Since the resulted communities are tuned toward the selected attribute(s), a natural

extension of this work is to use this discovered structure to infer the missing attribute values, and

compare the performance of this module-based prediction model with the current methods which

mainly rely on the fine grained structure of the networks. A second extension of this work is us-

ing a more efficient optimization approach for maximizing the agreement of the modular structure

with an attribute based clustering, instead of the exhaustive search used.
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A.1. SAMPLING THE PARTITIONING SPACE

A.1 Sampling the Partitioning Space

We sample the partitioning space by randomizing the true partitioning, p∗
d
, i.e., by randomly merg-

ing and splitting communities and swapping nodes between them. The detailed procedure of sam-

pling is described bellow.

Q ← {p∗
d
}

while |Q | < m/2 do
{generate splitted variations}

for p ∈ Q do

vp ← p
for p1 ∈ vp do

if random < split_chance then
vp.splitRandom(p1)

Q .add (vp)

{generate merged variations}

for p ∈ Q do

vp ← p
for p1,p2 ∈ vp do

if random < merдe_chance then
vp.merдe (p1, P2)

Q .add (vp)
{generate swapped variations}

while |Q | < m/2 do
for p ∈ Q do

vp ← p
for p1 ∈ vp do

for dp ∈ p1 do
if random < swap_chance then
vp.remove (dp)
Prandom .add (dp)

Q .add (vp)
Algorithm 3: Generating random partitionings

Code for this procedure, and all the other experiments reported in this thesis is available from:

• https://github.com/rabbanyk/CommunityEvaluation, and

• https://github.com/rabbanyk/FARZ

113



A.2. EXTENDED RESULTS FOR A SUBSET OF CRITERIA

A.2 Extended Results for a Subset of Criteria

Here, we report the results from [130], which incorporated a subset of criteria and distance com-

binations discussed in Chapter 2.

A.2.1 Results on Real World Datasets

Dataset K∗ # K AMI

karate 2 60 3.57±1.23∈[2,6] 0.46±0.27∈[-0.02,1]
strike 3 60 3.17±1∈[2,5] 0.59±0.27∈[-0.04,1]
polboks 3 60 3.17±1.13∈[2,6] 0.44±0.25∈[0.04,1]
football 11 60 10.17±4.55∈[4,19] 0.68±0.16∈[0.4,1]

Table A.1: Statistics for sample partitionings of each real world dataset. For example, for the Karate Club
dataset which has 2 communities in its ground truth, we have generated 60 different partitionings with average
3.57±1.23 clusters ranging from 2 to 6 and the “goodness” of the samples is on average 0.46±0.27 in terms of
their AMI agreement.

Rank Criterion AMIcorr ARI Jaccard NMI
1 CIndex PCD 0.907±0.058 1 1 1
2 SWC2 NOD 0.857±0.031 4 4 2
3 Q 0.85±0.083 2 2 3
4 CIndex ARD 0.826±0.162 6 15 5
5 CIndex SPD 0.811±0.126 3 10 4
6 ASWC2 NOD 0.809±0.043 5 11 6
7 CIndex NOD 0.794±0.096 12 3 9
8 SWC2 PCD 0.789±0.103 7 7 8
9 SWC4 NOD 0.778±0.075 9 5 7
10 ASWC2 PCD 0.772±0.088 10 9 10
11 SWC2 SPD 0.751±0.121 8 6 11
12 Dunn01 ICD 0.742±0.111 18 24 12
13 ASWC2 SPD 0.733±0.116 11 8 13
14 Dunn00 PCD 0.721±0.1 21 30 14
15 DB ICD 0.712±0.063 24 22 16
16 Dunn00 ICD 0.707±0.133 28 28 15
17 Dunn03 ICD 0.703±0.055 25 23 17
18 SWC4 PCD 0.7±0.072 14 12 21
19 SWC4 SPD 0.681±0.081 15 13 23
20 SWC2 ARD 0.681±0.302 17 26 19

Table A.2: Overall ranking of criteria on the real world datasets, based on the average Spearman’s correlation
of criteria with the AMI external index, AMIcorr . Ranking based on correlation with other external indexes is
also reported.
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Near Optimal Samples
Rank Criterion AMIcorr ARI Jaccard NMI
1 Q 0.736±0.266 5 5 2
2 CIndex PCD 0.72±0.326 1 1 3
3 SWC2 SPD 0.718±0.389 3 3 4
4 CIndex SPD 0.716±0.14 4 4 1
5 SWC2 ICD 0.713±0.396 2 2 5
6 ASWC2 ICD 0.687±0.334 11 10 7
7 Dunn04 ICD 0.669±0.161 15 14 6
8 SWC2 PCD 0.651±0.383 6 6 10
9 ASWC2 SPD 0.65±0.352 12 12 9
10 SWC4 NOD 0.636±0.291 7 8 8

Medium Far Samples
Rank Criterion AMIcorr ARI Jaccard NMI
1 CIndex PCD 0.608±0.202 8 18 1
2 CIndex NOD 0.58±0.053 39 13 2
3 CIndex ARD 0.513±0.313 26 62 5
4 Dunn01 ICD 0.457±0.173 58 83 8
5 SWC2 NOD 0.447±0.19 5 9 3
6 ASWC2 PCD 0.446±0.191 7 3 9
7 SWC2 PCD 0.446±0.19 6 2 10
8 Dunn03 ICD 0.439±0.109 43 37 11
9 Dunn31 SPD 0.437±0.177 56 47 15
10 Dunn01 SPD 0.434±0.205 29 67 7
11 Q 0.409±0.353 4 7 16
12 DB ICD 0.405±0.072 40 38 18
13 Dunn00 ICD 0.404±0.17 127 112 6
14 Dunn41 ICD 0.391±0.216 87 101 19
15 CIndex SPD 0.389±0.268 1 27 4

Far Far Samples
Rank Criterion AMIcorr ARI Jaccard NMI
1 SWC2 NOD 0.634±0.217 3 13 1
2 ASWC2 NOD 0.583±0.191 5 21 2
3 Q 0.498±0.179 4 38 5
4 CIndex PCD 0.493±0.282 2 4 13
5 CIndex SPD 0.437±0.291 1 11 4
6 SWC4 NOD 0.436±0.344 8 2 25
7 SWC2 ARD 0.421±0.43 15 35 20
8 ASWC2 SPD 0.411±0.316 6 1 27
9 ASWC2 ARD 0.405±0.4 19 32 21
10 SWC2 PCD 0.376±0.371 12 17 32

Table A.3: Difficulty analysis of the results: considering ranking for partitionings near optimal ground truth,
medium far and very far. Reported result are based on AMI and the Spearman’s correlation.
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A.2.2 Synthetic Benchmarks Datasets

Dataset K∗ # K AMI

network1 4 60 3.4±1.17∈[2,6] 0.46±0.23∈[0,1]
network2 3 60 3.1±1.27∈[2,7] 0.49±0.22∈[0.13,1]
network3 2 60 3.3±1.13∈[2,6] 0.47±0.23∈[0.11,1]
network4 7 60 5.17±2.49∈[2,12] 0.57±0.2∈[0.18,1]
network5 2 60 3.5±1.36∈[2,8] 0.44±0.22∈[0.11,1]
network6 5 60 5.8±2.55∈[2,12] 0.68±0.2∈[0.27,1]
network7 4 60 5.2±2.65∈[2,12] 0.47±0.19∈[0.13,1]
network8 5 60 5.37±2.04∈[2,10] 0.67±0.21∈[0.32,1]
network9 5 60 5.5±2.05∈[2,10] 0.69±0.19∈[0.37,1]
network10 6 60 5.33±2.51∈[2,11] 0.63±0.19∈[0.24,1]

Table A.4: Statistics for sample partitionings of each synthetic dataset. The benchmark generation parameters:
100 nodes with average degree 5 and maximum degree 50, where size of each community is between 5 and 50
and mixing parameter is 0.1.

Rank Criterion AMIcorr ARI Jaccard NMI
1 PB PCD 0.454±0.15 1 1 1
2 PB NOD 0.448±0.146 2 2 2
3 PB SPD 0.445±0.144 3 3 4
4 PB ARD 0.44±0.149 4 4 5
5 VRC ICD 0.424±0.117 5 5 3
6 Q 0.391±0.381 17 6 12
7 CIndex ARD 0.365±0.173 6 7 6
8 ASWC4 SPD 0.358±0.101 12 12 7
9 DB PCD 0.358±0.108 15 9 10
10 ASWC4 NOD 0.357±0.114 10 10 8
11 ASWC4 ARD 0.356±0.1 13 8 9
12 ASWC2 NOD 0.341±0.128 16 17 11
13 ZIndex SPD 0.31±0.13 7 14 13
14 ZIndex NOD 0.299±0.131 8 16 14
15 ZIndex ARD 0.297±0.134 9 18 15
16 ZIndex PCD 0.292±0.131 14 19 16
17 VRC ED 0.285±0.124 18 15 17
18 PBM ICD 0.278±0.111 19 13 20
19 CIndex ICD 0.275±0.215 11 11 18
20 SWC2 NOD 0.25±0.16 20 23 19

Table A.5: Overall ranking of criteria based on AMI & Spearman’s Correlation on the synthetic benchmarks
with the same parameters as in Table A.4 but much higher mixing parameter, .7. We can see that in these
settings, PB indexes outperform modularity Q.
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Overall Results
Rank Criterion AMIcorr ARI Jaccard NMI
1 Q 0.894±0.018 1 2 1
2 ASWC2 NOD 0.854±0.056 3 4 2
3 SWC2 NOD 0.854±0.051 4 3 3
4 CIndex PCD 0.826±0.07 2 1 4
5 CIndex SPD 0.746±0.137 8 24 5
6 SWC2 PCD 0.743±0.047 5 5 6
7 ASWC2 PCD 0.739±0.048 6 6 7
8 Dunn00 PCD 0.707±0.11 11 26 8
9 SWC4 NOD 0.699±0.131 7 7 9
10 SWC4 ARD 0.689±0.124 9 8 10
11 ASWC2 ARD 0.683±0.108 15 21 11
12 ASWC2 ED 0.665±0.139 10 11 12
13 SWC2 SPD 0.657±0.124 14 16 13
14 ASWC2 SPD 0.651±0.196 16 17 15
15 Dunn03 NOD 0.645±0.156 23 33 14

Near Optimal Results
Rank Criterion AMIcorr ARI Jaccard NMI
1 CIndex PCD 0.729±0.17 1 1 1
2 Q 0.722±0.111 6 5 5
3 SWC2 SPD 0.717±0.185 18 18 2
4 SWC4 NOD 0.709±0.201 5 6 4
5 SWC2 ICD 0.704±0.216 15 15 3
6 SWC4 ARD 0.674±0.183 7 7 6
7 ASWC2 NOD 0.66±0.261 20 19 7
8 SWC2 NOD 0.649±0.264 14 14 9

Medium Far Results
Rank Criterion AMIcorr ARI Jaccard NMI
1 SWC2 NOD 0.455±0.191 5 11 3
2 CIndex PCD 0.453±0.245 1 2 5
3 Q 0.45±0.236 2 9 2
4 ASWC2 NOD 0.435±0.187 4 14 1
5 Dunn00 ARD 0.386±0.243 119 111 7
6 Dunn00 PCD 0.38±0.195 58 91 6
7 CIndex NOD 0.373±0.213 7 1 14
8 Dunn01 NOD 0.358±0.146 108 95 15

Far Far Results
Rank Criterion AMIcorr ARI Jaccard NMI
1 Q 0.63±0.139 1 4 2
2 ASWC2 NOD 0.596±0.164 2 2 3
3 SWC2 NOD 0.57±0.159 3 3 5
4 CIndex SPD 0.565±0.132 4 25 1
5 CIndex PCD 0.446±0.142 5 1 21
6 CIndex ARD 0.433±0.25 10 106 4
7 ASWC4 NOD 0.397±0.119 15 63 11
8 SWC2 PCD 0.356±0.143 6 6 25

Table A.6: Overall ranking and difficulty analysis of the synthetic results. Here communities are well-separated
withmixing parameter of .1. Similar to the last experiment, reported result are based onAMI and the Spearman’s
correlation.
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A.3 Agreement Indexes Experiments

Here we first examine two desired properties for general clustering agreement indexes, and then

we illustrate these properties in two adapted indexes for graphs.

A.3.1 Bias of Unadjusted Indexes

In Figure A.1, we show the bias of the unadjusted indexes, where the average agreement of random

partitionings to a true partitioning is plotted as a function of number of clusters, similar to the ex-

periment performed in [157]. We can see that the average agreement increases for the unadjusted

indexes when the number of clusters increases, while the adjusted rand index, ARI , is unaffected.

Interestingly, we do not observe the same behaviour fromAMI in all the datasets, while it is unaf-

fected in football and GN datasets (where k � N ), it increases with the number of clusters in the

strike and karate dataset (where k � N is not true).

(a) Karate (b) Strike

(c) Football (d) GN

Figure A.1: Necessity of adjustment of external indexes for agreement at chance. Here we generated 100 sample
partitionings for each k, then for each sample, we computed its agreement with the true partitioning for that
dataset. The average and variance of these agreements are plotted as a function of the number of clusters. We
can see that the unadjusted measures of Rand ,V I , Jaccard , Fmeasure andNMI tend to increase/decrease as the
the number of clusters in the random partitionings increases. While the Adjusted Rand Index (ARI ) is unaffected
and always returns zero for agreements at random.
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(a) Karate (b) Strike

(c) Football (d) GN

Figure A.2: Behaviour of different external indexes around the true number of clusters. We can see that the
ARI exhibits a clear knee behaviour, i.e., , its values are relatively lower for partitionings with too many or too
few clusters. While others such as NMI and Rand comply less with this knee shape.

A.3.2 Knee Shape Behaviour

Figure A.2, illustrates the behaviour of these criteria on different fragmentations of the ground-

truth as a function of the number of clusters. The ideal behaviour is that the index should return

relatively low scores for partitionings/fragmentations in which the number of clusters is much

lower or higher than what we have in the ground-truth. In this figure, we can see thatARI exhibits

this knee shape while NMI does not show this clearly. Table A.7, reports the average correlation

of these external indexes over these four datasets. Here we used the similar sampling procedure

described before but we generate merge and split versions separately, so that the obtained samples

are fragmentations of the ground-truth obtained from repeated merging or splitting. Refer to the

Appendix A.1 for the detailed sampling procedure.

There are different ways to compute the correlation between two vectors. The classic options

are Pearson Product Moment coefficient or the Spearman’s Rank correlation coefficient. The re-

ported results in our experiments are based on the Spearman’s Correlation, since we are interested

in the correlation of rankings that an index provides for different partitionings and not the actual

values of that index.
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Index ARI Rand NMI VI Jaccard AMI Fβ=2
ARI 1 0.73±0.18 0.67±0.07 -0.80±0.17 0.85±0.08 0.76±0.15 0.64±0.16
Rand 0.73±0.18 1 0.83±0.12 -0.46±0.42 0.41±0.32 0.71±0.11 0.13±0.46
NMI 0.67±0.07 0.83±0.12 1 -0.43±0.27 0.31±0.17 0.93±0.07 0.04±0.10
VI -0.80±0.17 -0.46±0.42 -0.43±0.27 1 -0.93±0.02 -0.54±0.27 -0.82±0.21
Jaccard 0.85±0.08 0.41±0.32 0.31±0.17 -0.93±0.02 1 0.46±0.28 0.90±0.13
AMI 0.76±0.15 0.71±0.11 0.93±0.07 -0.54±0.27 0.46±0.28 1 0.25±0.13
Fβ=2 0.64±0.16 0.13±0.46 0.04±0.10 -0.82±0.21 0.90±0.13 0.25±0.13 1

Table A.7: Correlation between external indexes averaged for datasets of Figure A.2, computed based on Spear-
man’s Correlation. Here we can see for example thatARI behaves more similar to, has a higher correlation with,
AMI compared to NMI respectively.

A.3.3 Graph Partitioning Agreement Indexes

We define a weighted version of the clustering agreement measures here; where nodes with more

importance affect the agreement measure more. This is prior to generalizations proposed in Chap-

ter 3. Here, we alter these measures to directly assess the structural similarity of these sub-graphs

by focusing on the edges instead of nodes. More specifically, instead of ni j = |Ui ∩Vj |, we first use:
ηi j =

∑
l ∈Ui∩Vj wl , wherewl is the weight of item l . If we assume all items are weighted equally as

1, then ηi j = ni j . Instead, we can consider weight of a node equal to its degree in the graph. Using

this degree weighted index can be more informative for comparing agreements between commu-

nity mining results, since nodes with different degrees have different importance in the network,

and therefore should be weighted differently in the agreement index. Another possibility is to use

the clustering coefficient of a node as its weight, so that nodes that contribute to more triangles

– have more connected neighbours – weight more. Second, we consider the structure in a more

direct way by counting the edges that are common between Ui and Vj . More formally, we define:

ξi j =
∑

k,l ∈Ui∩Vj Akl , which sums all the edges in the overlap of clusterUi andVj . Figure A.3 shows

the constant baseline of these adapted criteria for agreements at random, and also the knee shape

of the adapted measures around the true number of clusters, same as what we have for the original

ARI. Therefore, one can safely apply one of these measures depending on the application at hand.

Table A.8 summarizes the correlation between each pair of the external measures.

Index ARI ξ ηwi=di ηwi=ti ηwi=ci NMI
ARI 1±0 0.571±0.142 0.956±0.031 0.819±0.135 0.838±0.087 0.736±0.096
ξ 0.571±0.142 1±0 0.623±0.133 0.572±0.169 0.45±0.109 0.497±0.2
ηwi=di 0.956±0.031 0.623±0.133 1±0 0.876±0.097 0.777±0.106 0.787±0.094
ηwi=ti 0.819±0.135 0.572±0.169 0.876±0.097 1±0 0.848±0.056 0.759±0.107
ηwi=ci 0.838±0.087 0.45±0.109 0.777±0.106 0.848±0.056 1±0 0.6±0.064
NMI 0.736±0.096 0.497±0.2 0.787±0.094 0.759±0.107 0.6±0.064 1±0

Table A.8: Correlation between adapted external indexes on karate and strike datasets, computed based on
Spearman’s Correlation. Here, ηwi=di , ηwi=ti , and ηwi=ci denote the weightedARI where each node is weighted
respectively by, its degree, the number of triangles it belongs to, or its clustering coefficient. The ξ , on the other
hand, stands for the structural agreement based on number of edges.
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(a) Strike (b) Football

(c) Strike (d) Football

Figure A.3: Adapted agreement measures for graphs. On top we see that the adapted measures, specially the
weighted indexes by degree (di ) and the number of triangles (ti ), are adjusted by chance, which can not be seen
for the structural edge based version (ξ ). The bottom figures illustrate the perseverance of the knee behaviour
in the adapted measures.

A.4 Extended Results for All Combinations

Here, we report extended results for the tables in Chapter 2, i.e., the following tables correspond

to the tables reported in Chapter 2, but are expanded to include more criteria/rows.

A.4.1 Results on Real World Datasets
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Table A.9: Extended results for Table 2.2, which shows the overall ranking of criteria on the real world datasets.

Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ TO 0.925±0.018 9 148 9 7
2 ZIndex’ ˆPC 0.923±0.012 2 197 2 2
3 ZIndex’ ˆNPC 0.923±0.012 3 198 1 1
4 ZIndex’ IC2 0.922±0.024 8 182 5 3
5 ZIndex’ ˆTO 0.922±0.016 10 153 8 8
6 ZIndex’ ˆNPO 0.921±0.014 6 204 3 4
7 ZIndex’ ICV2 0.919±0.04 18 163 12 10
8 ZIndex’ PC 0.918±0.018 4 207 10 11
9 ZIndex’ IC3 0.918±0.039 19 165 15 12
10 ZIndex’ ˆNOV 0.915±0.014 11 213 6 9
11 ZIndex’ IC1 0.912±0.02 5 235 13 20
12 ZIndex’ NPE2.0 0.911±0.03 26 168 21 15
13 ZIndex’ NOV 0.91±0.023 12 225 18 21
14 ZIndex’ ICV1 0.91±0.023 13 226 19 22
15 ZIndex’ ˆNPE2.0 0.91±0.025 23 184 22 19
16 ZIndex’ NPL2.0 0.909±0.02 24 202 14 13
17 ZIndex’ M 0.908±0.028 25 149 26 23
18 ZIndex’ ICV3 0.908±0.057 29 176 28 25
19 ZIndex’ NP2.0 0.907±0.021 20 212 16 14
20 ZIndex’ ˆNPL2.0 0.906±0.022 21 216 17 17
21 ZIndex’ ˆNP2.0 0.906±0.022 22 217 20 18
22 ZIndex’ ˆNO 0.905±0.022 16 253 11 16
23 ZIndex’ NO 0.904±0.034 7 250 23 31
24 ZIndex’ ˆMM 0.903±0.037 17 233 24 30
25 CIndex SP 0.9±0.02 1 251 31 42
26 ZIndex’ ˆNPL3.0 0.899±0.032 30 200 27 24
27 ZIndex’ ˆNP3.0 0.899±0.033 33 196 29 27
28 ZIndex’ ˆNPE3.0 0.899±0.048 31 205 35 33
29 ZIndex ÂR 0.898±0.035 14 264 30 36
30 ZIndex’ NPE3.0 0.897±0.052 35 187 39 34
31 ZIndex’ NPL3.0 0.897±0.038 36 170 32 28
32 ZIndex SP 0.895±0.036 28 215 40 41
33 ZIndex’ NP3.0 0.895±0.039 37 166 34 29
34 ZIndex AR 0.895±0.039 15 255 36 38
35 ZIndex’ A 0.894±0.045 32 158 38 35
36 ZIndex’ MD 0.894±0.048 34 179 33 32
37 ZIndex’ Â 0.891±0.05 27 241 37 37
38 Q 0.878±0.034 45 110 45 44
39 CIndex’ NPE3.0 0.876±0.054 43 9 4 6
40 CIndex’ ICV3 0.869±0.069 44 4 7 5
41 CIndex AR 0.864±0.031 40 268 42 40
42 CIndex ÂR 0.861±0.032 42 266 41 39
43 CIndex’ ˆNPE3.0 0.858±0.07 47 8 25 26
44 ZIndex’ M̂D 0.856±0.101 38 323 43 45
45 SWC0 IC1 0.847±0.09 41 108 46 47
46 SWC0 IC2 0.838±0.092 49 11 50 49
47 SWC0 NO 0.837±0.106 39 146 48 50
48 SWC0 IC3 0.819±0.104 57 7 58 52
49 SWC0 NOV 0.814±0.094 52 26 54 56
50 SWC0 ICV1 0.814±0.094 53 27 55 57
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Table A.10: Extended results for Table 2.3, which gives a difficulty analysis of the results.

Near Optimal Samples
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ ˆNPC 0.851±0.081 1 3 4 5
2 ZIndex’ ˆPC 0.851±0.081 2 4 3 3
3 ZIndex SP 0.847±0.084 18 2 8 8
4 ZIndex’ ˆNPO 0.845±0.088 3 9 6 6
5 DB ICV2 0.845±0.065 30 1 31 30
6 ZIndex’ ˆNPE3.0 0.842±0.082 10 5 2 2
7 ZIndex’ ICV3 0.839±0.084 4 20 20 21
8 ZIndex’ ˆNOV 0.835±0.093 11 14 15 15
9 ZIndex’ ˆTO 0.835±0.09 9 10 7 7
10 ZIndex’ ˆNPE2.0 0.834±0.089 13 8 1 1
11 ZIndex’ TO 0.834±0.089 7 16 11 11
12 ZIndex’ IC2 0.834±0.095 5 23 18 18
13 ZIndex’ NPL2.0 0.834±0.089 15 7 5 4
14 ZIndex’ NPE3.0 0.834±0.089 17 6 9 10
15 ZIndex’ NPE2.0 0.833±0.089 12 11 10 9
16 ZIndex’ ICV2 0.829±0.091 6 24 23 23
17 ZIndex’ IC3 0.829±0.091 8 27 24 22
18 ZIndex’ PC 0.823±0.092 14 28 17 17
19 ZIndex’ ˆNPL3.0 0.818±0.104 24 19 14 14
20 ZIndex’ ˆNP3.0 0.817±0.104 23 18 16 16
21 ZIndex’ NPL3.0 0.817±0.103 25 12 19 19
22 ZIndex’ ˆNP2.0 0.816±0.097 20 22 12 12
23 ZIndex’ IC1 0.815±0.098 16 34 22 24
24 ZIndex’ NP3.0 0.813±0.108 27 15 21 20
25 ZIndex’ NP2.0 0.806±0.102 19 33 26 25
26 ZIndex’ ˆNPL2.0 0.8±0.113 29 32 13 13
27 ZIndex’ NOV 0.798±0.112 21 37 27 27
28 ZIndex’ ICV1 0.798±0.112 22 38 28 28
29 ZIndex’ ˆNO 0.794±0.108 28 39 25 26
30 ZIndex’ NO 0.788±0.118 26 40 29 29
31 CIndex’ ICV3 0.785±0.097 31 25 37 38
32 CIndex’ IC3 0.78±0.098 34 17 42 42
33 CIndex’ ICV2 0.769±0.089 36 30 32 32
34 PB’ ˆPC 0.766±0.273 41 13 54 52
35 DB IC2 0.765±0.136 32 31 44 43
36 ZIndex’ M 0.763±0.139 33 29 30 31
37 Q 0.762±0.166 39 21 41 41
38 DB ICV3 0.757±0.126 37 35 38 36
39 DB IC3 0.753±0.176 35 36 39 39
40 PB’ PC 0.753±0.289 45 26 71 71
41 DB ˆTO 0.735±0.114 43 45 66 61
42 DB ˆNPO 0.721±0.136 38 69 49 48
43 ZIndex’ A 0.718±0.158 42 42 35 34
44 ASWC1’ NPE3.0 0.716±0.114 49 44 68 66
45 CIndex’ NPE3.0 0.71±0.051 52 48 34 35
46 SWC1 ˆNO 0.71±0.112 53 59 48 50
47 DB ˆPC 0.706±0.172 50 78 59 58
48 DB ˆNPC 0.706±0.171 51 79 60 59
49 ZIndex ÂR 0.705±0.264 46 86 43 44
50 ZIndex’ ˆMM 0.704±0.173 44 92 33 33

123



A.4. EXTENDED RESULTS FOR ALL COMBINATIONS

Table A.11: Extended results for Table 2.3, which gives a difficulty analysis of the results.

Medium Far Samples
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ TO 0.775±0.087 5 361 22 20
2 ZIndex’ ˆTO 0.771±0.091 6 386 19 17
3 ZIndex’ IC3 0.768±0.134 2 372 16 13
4 ZIndex’ ICV2 0.766±0.124 3 370 2 2
5 ZIndex’ NPL3.0 0.762±0.079 12 349 28 27
6 ZIndex’ ICV3 0.757±0.12 4 376 21 19
7 ZIndex’ NP3.0 0.756±0.085 15 354 29 28
8 ZIndex’ ˆPC 0.755±0.122 9 417 4 4
9 ZIndex’ ˆNPC 0.755±0.122 11 418 3 3
10 ZIndex’ NPE2.0 0.753±0.107 10 373 14 14
11 ZIndex’ NPE3.0 0.746±0.093 8 369 24 24
12 ZIndex’ ˆNPO 0.744±0.123 14 437 5 5
13 ZIndex’ PC 0.743±0.12 13 421 7 7
14 ZIndex’ ˆNPL3.0 0.742±0.098 16 416 27 26
15 ZIndex’ ˆNPE3.0 0.742±0.102 7 397 15 15
16 ZIndex’ ˆNP3.0 0.741±0.098 17 420 26 25
17 ZIndex’ IC2 0.737±0.145 19 446 1 1
18 ZIndex’ ˆNOV 0.735±0.127 20 452 6 6
19 ZIndex’ ˆNPE2.0 0.733±0.13 18 432 10 10
20 ZIndex’ M 0.728±0.128 30 322 44 41
21 ZIndex’ NPL2.0 0.726±0.116 23 441 20 21
22 ZIndex’ NOV 0.725±0.128 21 450 12 11
23 ZIndex’ ICV1 0.725±0.128 22 451 13 12
24 ZIndex’ ˆNPL2.0 0.718±0.125 25 462 25 23
25 ZIndex’ ˆNP2.0 0.717±0.125 24 463 23 22
26 ZIndex’ NP2.0 0.71±0.128 27 469 31 29
27 ZIndex’ IC1 0.701±0.161 28 486 8 8
28 ZIndex’ NO 0.699±0.158 29 489 17 18
29 ZIndex’ ˆMM 0.694±0.168 31 458 40 32
30 Q 0.69±0.151 58 70 79 72
31 ZIndex’ A 0.69±0.144 34 366 58 54
32 ZIndex’ MD 0.689±0.141 36 319 51 44
33 ZIndex’ ˆNO 0.683±0.183 32 500 9 9
34 ZIndex’ Â 0.681±0.165 33 471 41 38
35 CIndex’ ICV2 0.67±0.357 38 57 30 30
36 ZIndex SP 0.666±0.095 26 472 37 35
37 CIndex’ PC 0.663±0.413 59 38 65 59
38 CIndex’ IC3 0.661±0.389 44 50 54 50
39 CIndex’ IC2 0.657±0.384 61 34 71 70
40 PB’ ˆPC 0.649±0.03 101 4 150 137
41 CIndex’ ˆPC 0.648±0.395 65 54 57 52
42 CIndex’ ˆNPC 0.648±0.395 64 55 56 51
43 CIndex’ ICV3 0.642±0.347 35 173 11 16
44 CIndex’ ˆNPO 0.635±0.39 78 56 63 60
45 CIndex’ ˆNPE3.0 0.626±0.359 37 149 42 45
46 PB’ PC 0.623±0.06 112 28 200 157
47 CIndex’ ˆNOV 0.622±0.397 88 42 75 74
48 CIndex’ NPE3.0 0.614±0.377 39 220 35 34
49 CIndex SP 0.614±0.078 1 517 45 58
50 CIndex’ ˆTO 0.614±0.397 87 58 70 69

124



A.4. EXTENDED RESULTS FOR ALL COMBINATIONS

Table A.12: Extended results for Table 2.3, which gives a difficulty analysis of the results.

Far Far Samples
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ ICV2 0.724±0.066 36 520 4 9
2 ZIndex’ IC3 0.72±0.062 40 523 11 19
3 ZIndex’ ICV3 0.717±0.059 47 511 23 25
4 ZIndex’ IC2 0.715±0.072 35 540 3 6
5 ZIndex’ TO 0.706±0.064 49 519 16 14
6 ZIndex’ ˆNPO 0.704±0.076 44 547 1 3
7 ZIndex’ ˆTO 0.704±0.062 51 522 13 5
8 ZIndex’ NPE2.0 0.701±0.057 55 505 15 7
9 ZIndex’ ˆNPC 0.698±0.083 45 552 6 10
10 ZIndex’ ˆPC 0.697±0.083 46 553 9 11
11 ZIndex’ ˆNPE2.0 0.688±0.047 57 521 24 23
12 ZIndex’ NPL2.0 0.688±0.072 58 529 12 4
13 ZIndex’ ˆNOV 0.684±0.081 48 554 14 15
14 ZIndex’ M 0.684±0.067 71 486 33 24
15 ZIndex’ ˆNPL3.0 0.682±0.081 59 518 17 12
16 ZIndex’ NPL3.0 0.682±0.083 65 496 21 13
17 ZIndex’ ˆNP3.0 0.682±0.077 61 516 19 17
18 ZIndex’ NP2.0 0.68±0.098 53 542 10 8
19 ZIndex’ ˆNPL2.0 0.68±0.075 62 539 20 20
20 ZIndex’ ˆNP2.0 0.68±0.074 56 541 18 18
21 ZIndex’ A 0.678±0.106 72 482 32 21
22 ZIndex’ PC 0.677±0.117 39 557 27 32
23 ZIndex’ NP3.0 0.676±0.085 69 490 25 16
24 ZIndex’ ˆNPE3.0 0.672±0.046 60 524 36 37
25 ZIndex’ NPE3.0 0.667±0.052 63 517 37 35
26 ZIndex’ NOV 0.663±0.13 41 559 28 33
27 ZIndex’ ICV1 0.663±0.13 42 560 29 34
28 ZIndex’ ˆMM 0.66±0.091 67 546 40 39
29 ZIndex’ Â 0.655±0.102 70 533 39 38
30 ZIndex’ IC1 0.655±0.132 43 566 34 40
31 ZIndex’ ˆNO 0.651±0.106 52 567 22 26
32 Q 0.643±0.033 86 444 50 45
33 ZIndex’ NO 0.638±0.158 38 572 38 47
34 ZIndex’ MD 0.63±0.099 78 513 43 41
35 ZIndex SP 0.618±0.101 68 543 61 85
36 ZIndex ÂR 0.6±0.159 66 573 48 67
37 SWC0 IC1 0.598±0.169 80 405 30 30
38 ZIndex AR 0.591±0.171 64 570 56 79
39 SWC0 ˆNO 0.588±0.145 104 424 26 1
40 SWC0 NO 0.584±0.191 77 459 31 44
41 CIndex SP 0.578±0.107 54 571 46 103
42 ZIndex’ M̂D 0.562±0.158 74 575 57 69
43 CIndex’ NPE3.0 0.544±0.161 129 183 7 2
44 SWC0 IC2 0.54±0.186 126 195 60 43
45 ASWC0 IC2 0.529±0.243 110 218 42 31
46 ASWC0 IC1 0.524±0.2 81 451 2 28
47 ASWC0 IC3 0.521±0.254 120 176 54 49
48 ASWC0 NO 0.51±0.212 79 480 5 42
49 CIndex’ ICV3 0.506±0.25 148 130 41 29
50 CIndex’ ˆNPE3.0 0.504±0.177 144 155 35 27

...

117 PB’ PC 0.372±0.126 197 170 159 129
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A.4.2 Synthetic Benchmarks Datasets

Table A.13: Extended results for Table 2.5, where communities are well-separated with μ = 0.1.

Overall Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ ICV2 0.96±0.029 5 32 3 3
2 ZIndex’ IC3 0.958±0.028 4 42 2 2
3 ZIndex’ IC2 0.958±0.033 1 58 1 1
4 ZIndex’ ˆPC 0.953±0.04 3 78 6 6
5 ZIndex’ ˆNPC 0.953±0.04 2 79 7 7
6 ZIndex’ ICV3 0.953±0.027 8 44 4 5
7 ZIndex’ ˆNPO 0.951±0.041 6 83 9 9
8 ZIndex’ ˆTO 0.949±0.045 13 60 17 17
9 ZIndex’ ˆNOV 0.949±0.042 7 90 8 8
10 ZIndex’ TO 0.948±0.046 16 50 21 21
11 ZIndex’ PC 0.947±0.043 10 77 16 15
12 ZIndex’ ˆNPE2.0 0.947±0.042 11 68 13 13
13 ZIndex’ NPE2.0 0.946±0.043 17 51 20 20
14 ZIndex’ NOV 0.941±0.047 14 95 18 18
15 ZIndex’ ICV1 0.941±0.047 15 96 19 19
16 ZIndex’ ˆNO 0.939±0.052 9 125 11 12
17 ZIndex’ ˆNPL2.0 0.938±0.052 19 98 22 23
18 ZIndex’ ˆNP2.0 0.938±0.051 20 92 24 25
19 ZIndex’ NPL2.0 0.938±0.049 21 81 25 26
20 ZIndex’ IC1 0.937±0.05 12 115 14 14
21 ZIndex’ NO 0.933±0.052 18 122 23 24
22 ZIndex’ NP2.0 0.932±0.051 22 94 28 27
23 ZIndex’ ˆNPE3.0 0.913±0.066 27 114 27 28
24 ZIndex’ M 0.913±0.036 23 127 5 4
25 ZIndex’ A 0.911±0.036 26 117 12 11
26 ZIndex’ ˆNPL3.0 0.909±0.064 28 111 33 33
27 ZIndex’ ˆNP3.0 0.907±0.066 29 112 35 35
28 ZIndex’ NPE3.0 0.901±0.081 30 123 29 31
29 ZIndex’ NPL3.0 0.895±0.072 31 121 38 37
30 Q 0.893±0.046 33 33 26 22
31 ZIndex’ NP3.0 0.89±0.076 32 130 39 39
32 ZIndex’ Â 0.89±0.055 25 267 15 16
33 ZIndex’ ˆMM 0.884±0.057 24 280 10 10
34 CIndex’ ICV3 0.876±0.095 34 4 30 29
35 CIndex’ ˆNPE3.0 0.849±0.125 39 7 41 41
36 SWC0 ˆNO 0.841±0.065 36 126 32 32
37 CIndex’ NPE3.0 0.841±0.141 41 14 50 54
38 CIndex’ ICV2 0.838±0.11 45 1 40 38
39 CIndex’ IC3 0.837±0.115 53 2 42 40
40 SWC0 ˆNOV 0.82±0.068 54 23 49 45
41 SWC0 IC1 0.82±0.084 48 93 53 50
42 ZIndex SP 0.818±0.091 35 292 34 36
43 SWC0 ˆPC 0.816±0.071 58 15 55 52
44 SWC0 ˆNPC 0.816±0.071 59 16 56 53
45 SWC0 NO 0.816±0.088 49 109 58 59
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Table A.14: Extended results for Table 2.5, where communities are well-separated with μ = 0.1.

Near Optimal Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ IC2 0.826±0.227 2 10 4 6
2 CIndex’ ICV2 0.822±0.132 7 1 11 7
3 ZIndex’ IC3 0.821±0.232 1 16 5 9
4 CIndex’ ICV3 0.818±0.237 4 9 3 5
5 ZIndex’ ICV2 0.816±0.232 3 18 7 10
6 ZIndex’ Â 0.813±0.225 5 19 2 2
7 CIndex’ IC3 0.8±0.2 31 2 13 8
8 ZIndex’ A 0.795±0.177 30 20 6 4
9 ZIndex’ ˆMM 0.794±0.221 9 33 1 1
10 ZIndex’ ˆNO 0.793±0.218 8 32 14 18
11 ZIndex’ ICV3 0.793±0.25 6 43 12 15
12 ZIndex’ ˆNOV 0.793±0.228 12 28 15 17
13 ZIndex’ ˆPC 0.792±0.227 17 26 18 22
14 ZIndex’ ˆNPC 0.792±0.227 18 27 19 23
15 CIndex’ NP2.0 0.791±0.132 16 8 79 121
16 ZIndex’ ˆNPL2.0 0.79±0.219 26 37 30 38
17 ZIndex’ ˆNPO 0.789±0.228 15 31 21 28
18 ZIndex’ NPE2.0 0.788±0.224 14 34 26 34
19 ZIndex’ ˆNP2.0 0.788±0.217 28 38 33 39
20 ZIndex’ ˆNPE2.0 0.787±0.225 13 39 20 27
21 ZIndex’ NPL2.0 0.786±0.221 32 36 38 46
22 CIndex’ ˆNPE3.0 0.784±0.14 10 21 57 95
23 CIndex’ ˆTO 0.784±0.138 22 4 41 41
24 CIndex’ NPL2.0 0.783±0.13 37 5 70 79
25 CIndex’ ˆNP2.0 0.778±0.129 46 3 55 45
26 ZIndex’ IC1 0.778±0.231 29 46 27 33
27 ASWC1’ ICV2 0.778±0.176 11 41 9 11
28 CIndex’ ˆNPE2.0 0.777±0.158 27 6 39 55
29 ASWC1’ ICV3 0.777±0.155 20 52 25 19
30 ZIndex’ ˆTO 0.776±0.226 34 47 29 40
31 ZIndex’ NP2.0 0.775±0.215 43 56 46 65
32 ZIndex’ TO 0.774±0.228 36 48 31 42
33 ZIndex’ PC 0.771±0.229 38 53 35 49
34 ZIndex’ NOV 0.771±0.228 41 54 36 52
35 ZIndex’ ICV1 0.771±0.228 42 55 37 53
36 CIndex’ NPE2.0 0.771±0.133 25 22 69 111
37 ZIndex’ NO 0.77±0.228 40 57 34 47
38 ZIndex’ M 0.769±0.169 54 25 8 3
39 CIndex’ ˆNPO 0.765±0.126 50 11 56 48
40 CIndex’ TO 0.763±0.158 39 17 83 126
41 CIndex’ IC2 0.76±0.122 61 12 40 14
42 CIndex’ ˆPC 0.759±0.129 55 13 60 43
43 CIndex’ ˆNPC 0.759±0.129 56 14 61 44
44 CIndex’ ˆNPL2.0 0.757±0.138 60 7 53 35
45 CIndex’ ˆNOV 0.754±0.131 58 15 65 50
46 ASWC1’ ˆNPE3.0 0.754±0.153 47 68 43 56
47 ZIndex’ ˆNPE3.0 0.754±0.241 24 77 42 69
48 CIndex’ NPE3.0 0.753±0.148 44 50 85 146
49 ZIndex’ NPE3.0 0.749±0.23 33 93 51 90
50 CIndex’ ˆNPL3.0 0.744±0.14 62 35 123 144

...

206 SWC1’ ˆNO 0.591±0.179 225 194 244 233
207 Q 0.589±0.161 222 198 138 110127
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Table A.15: Extended results for Table 2.5, where communities are well-separated with μ = 0.1.

Medium Far Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ ICV2 0.741±0.177 4 231 22 22
2 ZIndex’ IC2 0.738±0.181 1 247 16 20
3 ZIndex’ IC3 0.728±0.188 5 252 18 21
4 ZIndex’ ICV3 0.721±0.177 8 258 21 23
5 ZIndex’ ˆPC 0.719±0.204 3 285 30 35
6 ZIndex’ ˆNPC 0.719±0.204 2 286 31 36
7 CIndex’ ICV3 0.713±0.151 28 21 33 27
8 ZIndex’ ˆNPO 0.709±0.205 7 278 32 38
9 ZIndex’ ˆTO 0.703±0.216 12 240 42 48
10 ZIndex’ TO 0.702±0.217 14 239 45 53
11 ZIndex’ PC 0.701±0.207 10 270 44 51
12 ZIndex’ ˆNOV 0.698±0.205 9 294 26 29
13 CIndex’ IC3 0.698±0.186 33 2 67 70
14 CIndex’ ICV2 0.696±0.188 31 4 62 63
15 ZIndex’ ˆNPE2.0 0.694±0.214 13 257 39 45
16 ZIndex’ NPE2.0 0.692±0.217 17 243 50 57
17 ZIndex’ NOV 0.678±0.215 15 291 46 55
18 ZIndex’ ICV1 0.678±0.215 16 292 47 56
19 ZIndex’ ˆNO 0.673±0.213 6 310 29 33
20 ZIndex’ ˆNP2.0 0.666±0.207 21 272 58 64
21 ZIndex’ ˆNPL2.0 0.664±0.208 20 280 55 60
22 ZIndex’ IC1 0.663±0.221 11 308 38 43
23 ZIndex’ NPL2.0 0.66±0.205 25 264 64 78
24 CIndex’ IC2 0.658±0.199 49 1 108 105
25 CIndex’ ˆNPE2.0 0.654±0.223 45 5 103 108
26 CIndex’ ˆNPE3.0 0.647±0.218 35 35 79 86
27 ZIndex’ ˆNPE3.0 0.645±0.227 24 289 43 54
28 CIndex’ ˆPC 0.643±0.216 38 13 69 75
29 CIndex’ ˆNPC 0.643±0.216 39 14 70 76
30 CIndex’ NPE3.0 0.643±0.236 40 29 98 109
31 ZIndex’ NO 0.642±0.235 18 311 54 58
32 ZIndex’ NP2.0 0.641±0.193 26 287 75 93
33 CIndex’ NPE2.0 0.64±0.221 37 22 85 91
34 CIndex’ ˆNPO 0.636±0.23 44 11 82 84
35 ZIndex’ NPE3.0 0.635±0.245 27 281 57 65
36 CIndex’ ˆNOV 0.63±0.225 48 6 102 103
37 Q 0.62±0.139 42 167 56 47
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Table A.16: Extended results for Table 2.5, where communities are well-separated with μ = 0.1.

Far Far Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ ICV2 0.834±0.062 9 464 5 3
2 ZIndex’ IC3 0.832±0.06 7 469 4 2
3 ZIndex’ TO 0.825±0.098 22 423 29 27
4 ZIndex’ ICV3 0.823±0.063 12 458 6 6
5 ZIndex’ ˆTO 0.823±0.096 18 446 27 25
6 ZIndex’ ˆNPC 0.822±0.083 2 502 11 10
7 ZIndex’ ˆPC 0.822±0.083 3 501 12 11
8 ZIndex’ PC 0.817±0.09 11 479 23 19
9 ZIndex’ IC2 0.816±0.069 4 497 2 1
10 ZIndex’ ˆNPO 0.813±0.085 6 508 13 12
11 ZIndex’ NPE2.0 0.802±0.086 21 449 22 23
12 ZIndex’ ˆNOV 0.8±0.091 5 519 10 8
13 ZIndex’ ˆNPE2.0 0.796±0.088 16 478 17 15
14 ZIndex’ NOV 0.789±0.096 13 494 20 21
15 ZIndex’ ICV1 0.789±0.096 14 495 21 22
16 ZIndex’ NPL2.0 0.779±0.106 25 471 32 28
17 ZIndex’ NP2.0 0.769±0.112 30 474 51 31
18 ZIndex’ IC1 0.768±0.105 8 530 16 14
19 ZIndex’ NO 0.761±0.106 10 531 19 20
20 ZIndex’ ˆNP2.0 0.761±0.119 19 500 26 26
21 ZIndex’ ˆNO 0.76±0.119 1 546 8 9
22 ZIndex’ ˆNPL2.0 0.758±0.122 17 515 24 24
23 ZIndex’ ˆNPE3.0 0.733±0.109 50 467 31 30
24 ZIndex’ ˆNPL3.0 0.722±0.129 71 429 87 49
25 ZIndex’ ˆNP3.0 0.719±0.129 73 424 88 55
26 ZIndex’ NPE3.0 0.718±0.112 66 448 52 34
27 ZIndex’ NPL3.0 0.7±0.132 88 411 90 70
28 ZIndex’ NP3.0 0.689±0.137 89 410 92 75
29 ZIndex’ A 0.646±0.132 45 525 18 16
30 ZIndex’ M 0.638±0.151 31 537 9 4
31 Q 0.581±0.155 95 368 69 32
32 ZIndex SP 0.58±0.158 72 539 25 29
33 CIndex’ ˆNPE3.0 0.577±0.263 107 57 127 123
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Table A.17: Extended results for Table 2.6, where communities are well-separated with μ = 0.4.

Overall Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 Q 0.854±0.039 11 1 4 2
2 ZIndex’ M 0.839±0.067 2 5 1 1
3 ZIndex’ A 0.813±0.071 4 11 3 3
4 ZIndex’ ˆMM 0.785±0.115 1 63 2 4
5 ZIndex’ Â 0.767±0.101 3 86 5 5
6 ZIndex’ ˆPC 0.748±0.19 5 108 7 7
7 ZIndex’ ˆNPC 0.748±0.19 6 109 8 8
8 ZIndex’ ˆNPO 0.745±0.191 7 110 9 9
9 ZIndex’ ˆTO 0.738±0.197 13 88 16 15
10 ZIndex’ ˆNOV 0.738±0.197 8 134 10 10
11 ZIndex’ ˆNPE2.0 0.738±0.193 14 81 17 17
12 ZIndex’ ˆNPL2.0 0.73±0.179 12 113 18 20
13 ZIndex’ TO 0.724±0.216 18 100 24 23
14 ZIndex’ ˆNP2.0 0.719±0.19 16 135 26 25
15 ASWC0 ˆPC 0.717±0.147 27 71 12 12
16 ASWC0 ˆNPC 0.717±0.147 28 72 11 11
17 ZIndex’ NPE2.0 0.717±0.211 24 107 31 30
18 ASWC0 ˆNPO 0.715±0.146 29 74 15 13
19 SWC0 ˆNPC 0.713±0.143 35 45 19 18
20 SWC0 ˆPC 0.713±0.143 36 46 20 19
21 ZIndex’ MD 0.711±0.154 10 156 6 6
22 SWC0 ˆNPO 0.709±0.145 38 49 25 22
23 ZIndex’ ˆNO 0.709±0.208 9 192 13 16
24 ZIndex’ NPL2.0 0.708±0.2 23 138 34 32
25 ASWC0 ˆNOV 0.705±0.16 26 124 14 14
26 ZIndex’ IC2 0.702±0.213 17 165 23 24
27 SWC0 ˆNOV 0.702±0.158 34 87 22 21
28 ZIndex’ PC 0.702±0.229 19 157 27 27
29 ZIndex’ ICV2 0.7±0.217 25 153 30 31
30 ZIndex’ NOV 0.7±0.231 20 167 28 28
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Table A.18: Extended results for Table 2.6, where communities are well-separated with μ = 0.4.

Near Optimal Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ M 0.825±0.105 1 1 1 1
2 ZIndex’ A 0.8±0.184 2 2 2 2
3 ZIndex’ ˆMM 0.768±0.166 3 4 3 3
4 ZIndex’ Â 0.76±0.192 4 6 4 4
5 Q 0.72±0.209 34 3 34 34
6 ASWC0 ˆNPL2.0 0.719±0.248 22 8 5 5
7 SWC0 ˆNPL2.0 0.718±0.247 23 9 6 6
8 ZIndex’ ˆNPE2.0 0.714±0.259 5 21 7 8
9 ASWC0 SP 0.71±0.286 28 5 29 26
10 ZIndex’ ˆNPL2.0 0.702±0.261 6 29 13 18
11 SWC0 ˆNP2.0 0.702±0.242 26 12 16 12
12 ASWC0 ˆNP2.0 0.702±0.242 27 13 17 13
13 ZIndex’ ˆNP2.0 0.702±0.26 7 27 14 20
14 ZIndex’ IC2 0.7±0.263 8 31 11 11
15 SWC0 Â 0.696±0.187 42 7 23 15
16 ZIndex’ ˆNPO 0.695±0.27 9 39 12 14
17 ZIndex’ ˆTO 0.692±0.266 10 42 21 24
18 ZIndex’ ˆNOV 0.691±0.276 11 45 8 7
19 ZIndex’ ˆPC 0.691±0.283 12 43 10 10
20 ZIndex’ ˆNPC 0.691±0.283 13 44 9 9
21 SWC0 ˆMM 0.69±0.178 45 10 26 19
22 ZIndex’ NPE2.0 0.689±0.272 14 40 25 28
23 ZIndex’ ICV2 0.688±0.265 17 38 22 23
24 ZIndex’ TO 0.685±0.275 16 41 28 29
25 ZIndex’ NPL2.0 0.684±0.266 15 46 24 27
26 ASWC0 ˆTO 0.684±0.222 41 14 44 47
27 SWC0 ˆPC 0.683±0.29 29 33 18 16
28 SWC0 ˆNPC 0.683±0.29 30 34 19 17
29 SWC0 ˆNPO 0.683±0.288 31 32 20 21
30 ZIndex’ NP2.0 0.676±0.275 18 57 30 31
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Table A.19: Extended results for Table 2.6, where communities are well-separated with μ = 0.4.

Medium Far Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 Q 0.578±0.124 106 22 3 1
2 CIndex’ ˆNPC 0.522±0.146 154 12 78 69
3 CIndex’ ˆPC 0.521±0.146 155 13 79 70
4 CIndex’ ˆNPO 0.519±0.142 176 5 120 100
5 CIndex’ ˆNOV 0.501±0.14 209 4 142 135
6 ZIndex’ M 0.498±0.199 4 364 2 2
7 CIndex’ IC2 0.492±0.146 227 9 176 173
8 CIndex’ ICV2 0.483±0.193 149 79 119 115
9 CIndex’ IC3 0.478±0.191 187 43 148 146
10 CIndex’ TO 0.478±0.175 179 31 204 203
11 CIndex’ ˆNO 0.475±0.126 295 3 227 210
12 SWC1 ICV3 0.475±0.162 148 92 32 22
13 SWC1 ˆNPL2.0 0.466±0.092 239 29 132 113
14 SWC1 ˆNP2.0 0.466±0.105 219 39 92 80
15 CIndex’ ˆNPE2.0 0.465±0.152 291 6 308 276
16 CIndex’ ˆTO 0.464±0.177 253 15 254 236
17 ASWC1 ˆNPL2.0 0.461±0.088 242 32 133 112
18 ASWC1 ˆNP2.0 0.458±0.099 224 47 94 81
19 SWC1 IC3 0.457±0.191 118 134 12 8
20 SWC1’ IC3 0.456±0.134 204 60 85 65
21 SWC1’ ICV3 0.454±0.134 214 61 83 63
22 ASWC1’ ˆNPC 0.453±0.12 208 54 71 49
23 SWC1 ˆPC 0.45±0.179 142 106 21 13
24 SWC1 ˆNPC 0.45±0.179 143 107 20 12
25 SWC1 ˆNPO 0.45±0.176 138 109 28 16
26 SWC1 ˆNPE2.0 0.446±0.112 296 23 144 129
27 SWC1’ IC2 0.444±0.148 205 65 128 94
28 CIndex’ NPE2.0 0.444±0.163 215 48 318 288
29 SWC1 ICV2 0.444±0.222 159 114 37 30
30 SWC1’ ˆNPL2.0 0.444±0.134 288 27 159 147
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Table A.20: Extended results for Table 2.6, where communities are well-separated with μ = 0.4.

Far Far Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ ˆPC 0.527±0.169 61 501 5 4
2 ZIndex’ ˆNPC 0.527±0.169 62 502 6 5
3 Q 0.523±0.192 128 73 93 25
4 ZIndex’ M 0.522±0.121 77 465 8 2
5 ZIndex’ ˆNPO 0.518±0.168 63 504 10 6
6 ZIndex’ ˆNOV 0.515±0.166 60 518 11 7
7 ZIndex’ ˆTO 0.489±0.171 78 485 15 9
8 ZIndex’ ˆNPE2.0 0.481±0.168 79 491 24 14
9 ZIndex’ ˆMM 0.48±0.15 30 553 2 3
10 ZIndex’ ˆNO 0.48±0.17 43 552 7 8
11 ZIndex’ PC 0.477±0.157 76 503 26 18
12 ZIndex’ NOV 0.475±0.16 70 511 29 21
13 ZIndex’ ICV1 0.475±0.16 71 512 30 22
14 ZIndex’ TO 0.475±0.176 89 477 21 12
15 ZIndex’ NPE2.0 0.472±0.166 91 475 40 23
16 ZIndex’ IC1 0.472±0.167 59 545 14 13
17 ZIndex’ A 0.456±0.11 92 481 20 11
18 ZIndex’ NO 0.451±0.166 64 547 25 27
19 ZIndex’ NPL2.0 0.451±0.175 81 494 37 28
20 ZIndex’ IC2 0.45±0.179 67 538 19 16
21 ZIndex’ ˆNP2.0 0.449±0.167 75 514 27 20
22 ZIndex’ ˆNPL2.0 0.448±0.163 69 523 23 17
23 ZIndex SP 0.444±0.175 90 496 61 32
24 ZIndex’ ICV2 0.443±0.176 82 507 32 24
25 ZIndex’ MD 0.439±0.146 66 542 1 1
26 ASWC0 ˆPC 0.438±0.17 100 455 57 29
27 ASWC0 ˆNPC 0.438±0.17 101 456 58 30
28 ZIndex’ NP2.0 0.434±0.179 87 500 56 35
29 ASWC0 ˆNPO 0.428±0.171 103 459 69 34
30 SWC0 ˆPC 0.427±0.19 115 420 94 41
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B.1. PROOFS

B.1 Proofs

B.1.1 Proof of Proposition 3.3.1:

From the definition of Variation of information we have:

V I (U ,V ) = H (U ) + H (V ) − 2I (U ,V ) = 2H (U ,V ) − H (U ) − H (V ) = H(V|U) + H(U|V)

On the other hand, from Equation 3.2 we see that RI is proportional to:

RI (U ,V ) ∝ 1

n2 − n (
k∑
i=1

[
r∑
j=1

n2i j − (
r∑
j=1

ni j )
2] +

r∑
j=1

[
k∑
i=1

n2i j − (
k∑
i=1

ni j )
2])

∗∝
k∑
i=1

[Ej (n
2
i j ) − Ej (ni j )2] +

r∑
j=1

[Ei (n
2
i j ) − Ei (ni j )2]

∗∝
k∑
i=1

Var j (ni j ) +
r∑
j=1

Vari (ni j )
∗∗∝ Var(V|U) + Var(U|V)

(∗) Ej /Var j shows the average/variance of values in the jth column of the contingency table.

(∗∗) The RI is in fact proportional to the average variance of rows/columns values in the contin-

gency table, which we denote by conditional variance. For other forms of conditional variance for

categorical data see Light and Margolin [90].

�

B.1.2 Proof of Corollary 3.3.2:

We first show that 0 ≤ Dη
φ (U | |V ) which also results in the lower bound 0 for Dη

φ (U ,V ) since,

Dη
φ (U ,V ) = Dη

φ (U | |V ) +Dη
φ (V | |U ). From the superadditivity of φ we have:

∑
u ∈U

φ (ηuv ) ≤ φ (
∑
u ∈U

ηuv ) =⇒
∑
v ∈V

⎡⎢⎢⎢⎢⎣φ (
∑
u ∈U

ηuv ) −
∑
u ∈U

φ (ηuv )
⎤⎥⎥⎥⎥⎦ ≥ 0 =⇒ Dη

φ (U| |V) ≥ 0

Similarly for the upper bound, from positivity and super-additivity we get respectively:

Dη
φ (U | |V ) =

∑
v ∈V

φ (
∑
u ∈U

ηuv ) −
∑
v ∈V

∑
u ∈U

φ (ηuv ) ≤
∑
v ∈V

φ (
∑
u ∈U

ηuv ) ≤ φ (
∑
v ∈V

∑
u ∈U

ηuv )

�
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B.1.3 Proof of Identity 3.3.3:

The proof is elementary, if we write the definition for φ = x logx , we get:

ND|∩|
x log x (U ,V ) =

∑
v ∈V
∑
u ∈U |u ∩v | [log(∑u ∈U |u ∩v |) − log( |u ∩v |)]

(
∑
v ∈V
∑
u ∈U |u ∩v |) log (∑v ∈V

∑
u ∈U |u ∩v |)

+

∑
u ∈U
∑
v ∈V |u ∩v | [log(∑v ∈V |u ∩v |) − log( |u ∩v |)]

(
∑
u ∈U
∑
v ∈V |u ∩v |) log (∑u ∈U

∑
v ∈V |u ∩v |)

∗
=

∑r
j

∑k
i ni j

[
log(
∑k

i ni j ) + log(
∑r

j ni j ) − 2 log(ni j )
]

(
∑k

i

∑r
j ni j ) log(

∑k
i

∑r
j ni j )

∗∗
=

1

logn

r∑
j

k∑
i

ni j

n
log(

ni .n .j

n2i j
) =

V I (U ,V )

logn

(∗) slight change of notation, i.e., from ∑u ∈U to
∑k

i ,
∑
v ∈V to

∑r
j and |u ∩v | to ni j .

(∗∗) assuming disjoint covering partitionings:
∑k

i

∑r
j ni j = n,

∑k
i ni j = n .j and

∑r
j ni j = ni . .

�

B.1.4 Proof of Identity 3.3.4:

Similar to the previous proof from the definition we derive:

ND|∩|
(x2 )

(U ,V )
∗
=

∑r
j

[
(
∑k

i ni j )
2 −∑k

i n
2
i j

]
+
∑k

i

[
(
∑r

j ni j )
2 −∑r

j n
2
i j

]
(
∑k

i

∑r
j ni j )

2 −∑k
i

∑r
j ni j

∗∗
=

1

n2 − n [
r∑
j

(n .j )
2 +

k∑
i

(ni . )
2 − 2

r∑
j

k∑
i

n2i j ] = 1 − RI (U ,V )

(∗), (∗∗) same as previous proof.

�

B.1.5 Proof of Identity 3.3.5 and 3.3.6:

ADη
φ =

∑
v ∈V φ (η .v ) +

∑
u ∈U φ (ηu . ) − 2∑v ∈V

∑
u ∈U φ (ηuv )∑

v ∈V φ (η .v ) +
∑
u ∈U φ (ηu . ) − 2∑u ∈U

∑
v ∈V φ

(
η .vηu .∑

u∈U
∑
v∈V ηuv

)
⇒ 1 − ADη

φ (U ,V ) =

∑
v ∈V
∑
u ∈U φ (ηuv ) −∑u ∈U

∑
v ∈V φ

(
η .vηu .∑

u∈U
∑
v∈V ηuv

)
1
2 [
∑
v ∈V φ (η .v ) +

∑
u ∈U φ (ηu . )] −∑u ∈U

∑
v ∈V φ

(
η .vηu .∑

u∈U
∑
v∈V ηuv

)
This formula resembles the adjuctment for chance in Equation 3.4, where the measure being ad-

justed is
∑
v ∈V
∑
u ∈U φ (ηuv ), the upper bound used for it is 1

2 [
∑
v ∈V φ (η .v ) +

∑
u ∈U φ (ηu . )], and
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the expectation is defined as:

E[
∑
v ∈V

∑
u ∈U

φ (ηuv )] =
∑
u ∈U

∑
v ∈V

φ

(
η .vηu .∑

u ∈U
∑
v ∈V ηuv

)

Now if we have φ (xy) = φ (x )φ (y), which is true for φ (x ) = x2, we get:

E[
∑
v ∈V

∑
u ∈U

φ (ηuv )] =
∑
u ∈U

∑
v ∈V

φ (η .v )φ (ηu . )

φ (
∑
u ∈U
∑
v ∈V ηuv )

=

∑
v ∈V φ (η .v )

∑
u ∈U φ (ηu . )

φ (
∑
u ∈U
∑
v ∈V ηuv )

Using this expecation, if we substitute φ = x2 we get the ARI ′ of Equation 3.6, and using the

φ =
(
x
2

)
and the later reformulation of E, we get the original ARI of Equation 3.5, as:

1 − AD|∩|
(x2 )

(U ,V ) =

∑
v ∈V

∑
u ∈U

( |u∩v |
2

)
− E ( ∑

v ∈V
∑
u ∈U

( |u∩v |
2

)
)

1
2

[ ∑
v ∈V

( ∑
u∈U
|u∩v |
2

)
+
∑
u ∈U

( ∑
v∈V
|u∩v |
2

)]
− E ( ∑

v ∈V
∑
u ∈U

( |u∩v |
2

)
)

where E (
∑
v ∈V

∑
u ∈U

(|u ∩v |
2

)
) =

∑
v ∈V

( ∑
u∈U
|u∩v |
2

) ∑
u ∈U

( ∑
v∈V
|u∩v |
2

)
(
n
2

)
⇒ 1 − AD|∩|

(x2 )
(U ,V )

∗,∗∗
=

∑r
j

∑k
i

(
ni j
2

)
−∑r

j

(
n .j

2

) ∑k
i

(
ni .
2

)
/
(
n
2

)
1
2

[∑r
j

(
n .j

2

)
+
∑k

i

(
ni .
2

)]
−∑r

j

(
n .j

2

) ∑k
i

(
ni .
2

)
/
(
n
2

) = ARI (U ,V )

(∗), (∗∗) same as proof of identity 1. On the other hand for the NMI , we have:

1 − AD|∩|
x log x (U ,V ) =

∑
v ∈V

∑
u ∈U

nuv lognuv − E ( ∑
v ∈V

∑
u ∈U

nuv lognuv )

1
2

[ ∑
v ∈V

n .v logn .v +
∑
u ∈U

nu . lognu .

]
− E ( ∑

v ∈V
∑
u ∈U

nuv lognuv )

where E (
∑
v ∈V

∑
u ∈U

nuv lognuv ) =
∑
u ∈U

∑
v ∈V

(
η .vηu .∑

u ∈U
∑
v ∈V ηuv

)
log

(
η .vηu .∑

u ∈U
∑
v ∈V ηuv

)
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⇒ 1 − AD|∩|
x log x (U ,V )

∗,∗∗
=

∑r
j

∑k
i ni j logni j −

∑k
i

∑r
j
n .jni .
n

log
n .jni .
n

1
2

[∑r
j n .j logn .j +

∑k
i ni . logni .

]
−∑k

i

∑r
j
n .jni .
n

log
n .jni .
n

=
n
∑r

j

∑k
i
ni j
n

log
ni j
n
+ n logn −∑k

i

∑r
j
n .jni .
n

[log
n .j

n
+ log ni .

n
+ logn]

n
2

[∑r
j
n .j

n
log

n .j

n
+
∑k

i
ni .
n
log ni .

n
+ 2 logn

]
−∑k

i

∑r
j
n .jni .
n

[log
n .j

n
+ log ni .

n
+ logn]

=
−H (U ,V ) + logn −∑k

i
ni .
n

∑r
j
n .j

n
log

n .j

n
+
∑k

i
n .j

n
−∑r

j
ni .
n
log ni .

n
−∑k

i

∑r
j
n .jni .
n2 logn

1
2 [−H (U ) − H (V )] + logn +

∑k
i
ni .
n
H (V ) +

∑k
i
n .j

n
H (U ) − logn

=
−H (U ,V ) + H (V ) + H (U )

− 1
2 [H (U ) + H (V )] + H (V ) + H (U )

=
I (U ,V )

1
2 [H (U ) + H (V )]

= NMIsum (U ,V )

(∗), (∗∗) same as proof of identity 1.

�

B.1.6 Proof of Identity 3.4.1 and 3.4.2:

First we prove that in general cases we have:

‖UUT −VVT ‖2F = ‖UTU ‖2F + ‖VTV ‖2F − 2‖UTV ‖2F

where ‖.‖2F is squared Frob norm. This holds since we have:

‖UUT −VVT ‖2F =
∑
i j

(UUT −VVT )2i j

=
∑
i j

(UUT )2i j +
∑
i j

(VVT )2i j − 2
∑
i j

(UUT )i j (VV
T )i j

= ‖UUT ‖2F + ‖VVT ‖2F − 2|UUT ◦VVT |

Where the ◦ is element-wise matrix product, a.k.a. hadamard product, and |.| is sum of all elements

in the matrix1. The proof is complete with showing:

|UUT ◦VVT | = tr ((UUT )TVVT ) = tr (VTUUTV ) = tr ((UTV )TUTV ) = | |UTV | |2F
| |UUT | |2F = tr ((UUT )TUUT ) = tr (UTUUTU ) = tr ((UTU )TUTU ) = | |UTU | |2F

Now, we can prove the identities for the cases of disjoint hard clusters, using the notation ni j =

(UTV )i j , we have ‖UTV ‖2F =
∑

i j n
2
i j and:

‖UTU ‖2F =
∑
i j

< U.i ,U.j >
2=
∑
i j

(
∑
k

ukiuk j )
2 ∗=
∑
i

(
∑
k

u2ki )
2 ∗∗=
∑
i

(
∑
k

uki )
2 ∗∗∗=
∑
i

n2i .

1This equality is also useful in the implementation to improve the scalability.
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(∗) with assumption that clusters are disjoint, ukiuk j is only non-zero iff i = j

(∗∗) with the assumption that memberships are hard, uki is either 0 or 1, therefore uki = u2ki
(∗ ∗ ∗) marginals of N give cluster sizes inU and V , i.e., ni . =

∑
j ni j =

∑
k uki = |Vi |

Therefore for disjoint hard clusters we get:

‖UUT −VVT ‖2F =
∑
i

n2i . +
∑
j

n2.j − 2
∑
i j

n2i j

TheRI normalization assumes that all pairs are in disagreement, i.e., |1n×n | = n2, sincemax (UUT ) =

1 and,max (VVT ) = 1. TheARI normalization compares Δ to the difference where the two random

variable ofUUT
i j and VV

T
i j are independent, in which case we would have:

E (UUT
i jVV

T
i j ) = E ((UUT )i j )E ((VV

T )i j )

which is calculated by: ∑
i j ((UU

T )i j (VV
T )i j )

n2
=

∑
i j (UU

T )i j

n2

∑
i j (VV

T )i j

n2

Since Δ = | |UUT − VVT | |2F = | |UUT | |2F + | |VVT | |2F − 2Sum(UUT ◦ VVT ), we have ARI = 0 or

normalized distance 1, i.e., agreement no better than chance, when this independence condition

holds, i.e., :

Sum(UUT ◦VVT ) =
|UUT | |VVT |

n2

�

B.1.7 Proof of Identity 3.5.1 :

ARI of Equation 3.6 for two clusterings with k and r disjoint clusters is formulated as:

ARI =

k∑
p=1

r∑
q=1

n2pq − (
k∑

p=1
n2p . ) (

r∑
q=1

n2.q )/n
2

1
2 [

k∑
p=1

n2p . +
r∑

q=1
n2.q] − (

k∑
p=1

n2p . ) (
r∑

q=1
n2.q )/n2

Where npq measures the overlap between the pth cluster in the first clustering and the qth cluster

in the second clustering, which we respectively denote by u and v , for short. Hence we have

npq = |u ∩ v | = ∑i ∈u∩v 1. When clusterings are disjoint, we have u←i = 1 iff i ∈ u and zero

otherwise; therefore we can write: npq =
∑

i ∈u∩v u←i ×v←i = ouv . Therefore for disjoint clusters,
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and when φ (x ) = x2, we have:

k∑
p=1

r∑
q=1

n2pq =
∑
u ∈U

∑
v ∈V

o2uv = OUV

On the other hand,np . =
∑r
q=1 npq , which represent the size of clusterp. In case of disjoint covering

clusters, which is the assumption of the ARI, we can see that np . =
∑

i ∈u u←i = ou . Hence, with

φ (x ) = x2, we also have:

(
k∑

p=1

n2p . ) (
r∑

q=1

n2.q )/n
2 =

k∑
p=1

r∑
q=1

(np .n .q/n)
2 =
∑
u

∑
v

(ouov/n)
2 = EUV

Furthermore, since clusters are disjoint, ouu′ = ou iff u = u ′ and zero otherwise, i.e., disjoint

clusters only have overlap with themselves which is equal to their size, we can further write:

k∑
p=1

n2p . =
∑
u ∈U

o2u =
∑
u ∈U

∑
u′∈U

o2uu′ = OUU

Substituting these terms in the ARI of Equation 3.6 results in the CRI in Equation 3.25, which

concludes the proof.

�

B.1.8 Proof of Identity 3.5.2 :

NMIsum of Equation 3.9 is defined for disjoint clusters as:

NMIsum (U ,V ) =
I (U ,V )

1
2 [H (U ) + H (V )]

=
H (U ,V ) − H (V ) − H (U )

1
2 [H (U ) + H (V )] − H (V ) − H (U )

WhereH (U ) denotes the entropy of clusteringU ; I (U ,V ) denotes the mutual information between

two clusteringU andV , andH (U ,V ) denotes their joint entropy. Where the entropy, mutual infor-

mation, and joint entropy of clusterings are calculated based on their confusion matrix, i.e., their

pairwise cluster overlaps, which is assumed to denote the joint probability distribution of, mem-

berships of data points in, clusteringU and V . More formally we have:

H (U ,V ) = −
k∑
i=1

r∑
j=1

ni j

n
log(

ni j

n
)
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Similar to the ARI, ni j denotes the overlap between the ith cluster in U and the jth cluster in V ,

which we call u and v for short, and then write:

H (U ,V ) = −
∑
u ∈U

∑
v ∈V

ouv
n

log(
ouv
n

) = −1
n

∑
u ∈U

∑
v ∈V

ouv (log(ouv ) − log(n))

= −1
n

∑
u ∈U

∑
v ∈V

ouv log(ouv ) +
log(n)

n

∑
u ∈U

∑
v ∈V

ouv

Since clusters are covering and disjoint we have
∑
u ∈U

∑
v ∈V

ouv = n, hence we get:

H (U ,V ) = −1
n

∑
u ∈U

∑
v ∈V

ouv log(ouv ) + log(n)

Similarly, for disjoint covering clusters we also have
∑
u ∈U ou = n, and we can rewrite H (U ) as:

H (U ) = −
k∑
i=1

ni .
n

log(
ni .
n
) = −

∑
u ∈U

ou
n

log(
ou
n
) = −1

n

∑
u ∈U

ou log(ou ) + log(n)

Since when clusters are disjoint we have ouu′ = ou iff u = u ′ and zero otherwise, H (U ) is further

equivalent to (when 0 log 0 = 0):

H (U ) = −1
n

∑
u ∈U

ou log(ou ) + log(n) = −1
n

∑
u ∈U

∑
u′∈U

ouu′ log(ouu′ ) + log(n)

Therefore we can write:

H (U ) + H (V ) = −1
n
(
∑

u,u′∈U
ouu′ log(ouu′ ) +

∑
v,v ′∈V

ovv ′ log(ovv ′ )) + 2 log(n)

On the other hand, for H (V ) + H (U ) we also have:

H (U ) + H (V ) = −
∑
u ∈U

ou
n

log(
ou
n
) −
∑
v ∈V

ov
n

log(
ov
n
)

We further show(∗) that for disjoint covering clusters, we have:

−
∑
u ∈U

ou
n

log(
ou
n
) −
∑
v ∈V

ov
n

log(
ov
n
) = −1

n

∑
u ∈U

∑
v ∈V

ouov
n

log(
ouov
n

) + log(n)

By substituting these terms in the NMIsum of Equation 3.9, we get the CMI formula in Equa-

tion 3.26 which concludes the proof.

�
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(∗) − 1

n

∑
u ∈U

∑
v ∈V

ouov
n

log(
ouov
n

) + log(n)

= − 1
n

∑
u ∈U

∑
v ∈V

ouov
n

[
log(

ou
n
) + log(

ov
n
) + log(n)

]
+ log(n)

= − 1
n

⎡⎢⎢⎢⎢⎣
∑
u ∈U

∑
v ∈V

ouov
n

log(
ou
n
) +
∑
u ∈U

∑
v ∈V

ouov
n

log(
ov
n
) +
∑
u ∈U

∑
v ∈V

ouov
n

log(n)
⎤⎥⎥⎥⎥⎦ + log(n)

= − 1
n

⎡⎢⎢⎢⎢⎣(
∑
v ∈V

ov )
∑
u ∈U

ou
n

log(
ou
n
) + (
∑
u ∈U

ou )
∑
v ∈V

ov
n

log(
ov
n
) +

log(n)

n

∑
u ∈U

∑
v ∈V

ouov

⎤⎥⎥⎥⎥⎦ + log(n)
= − 1

n

⎡⎢⎢⎢⎢⎣n
∑
u ∈U

ou
n

log(
ou
n
) + n

∑
v ∈V

ov
n

log(
ov
n
) +

log(n)

n
(
∑
u ∈U

ou ) (
∑
v ∈V

ov )
⎤⎥⎥⎥⎥⎦ + log(n)

= −
∑
u ∈U

ou
n

log(
ou
n
) −
∑
v ∈V

ov
n

log(
ov
n
) − log(n) + log(n)

B.1.9 Proof of Identity 3.5.3 :

First, since we have (UUT )i j = Ui .U
T
.j = Ui .Uj . =

∑k
p=1UipUjp , we can write:

‖UUT ‖2F =
n∑
i=1

n∑
j=1

(
(UUT )i j

)2
=

k∑
p=1

k∑
p′=1

n∑
i=1

n∑
j=1

UipUjpUip′Ujp′

The expression UipUjpUip′Ujp′ is zero if either i or j does not belong to cluster p or p ′, i.e., one of
the terms becomes zero, hence we further have:

‖UUT ‖2F =
k∑

p=1

k∑
p′=1

∑
i, j ∈p∩p′

UipUjpUip′Ujp′ =
k∑

p=1

k∑
p′=1


��
∑

i ∈p∩p′
UipUip′

��
2

For clarity, we use p to denote both the index of the cluster and the cluster itself, i.e., we simply

write p ∩ p ′ instead ofU.p ∩U.p′ . Now, we can rewrite the above formula with our notations as:

‖UUT ‖2F =
∑
u ∈U

∑
u′∈U


�
∑

i ∈u∩u′
u←i × u ′←i

�
2

=
∑
u ∈U

∑
u′∈U

o2uu′
∗
= OUU
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whereas
∗
= is true when φ (x ) = x2. Similarly, we can show that:

‖UUT −VVT ‖2F =
n∑
i=1

n∑
j=1

(
(UUT )i j − (VVT )i j

)2

=

n∑
i=1

n∑
j=1

[(
(UUT )i j

)2
+
(
(VVT )i j

)2 − 2 ((UUT )i j (VV
T )i j
)]

∗
= OUU + OVV − 2

n∑
i=1

n∑
j=1


��(
k∑

p=1

UipUjp ) (
r∑

q=1

ViqVjq )
��

where
n∑
i=1

n∑
j=1


��(
k∑

p=1

UipUjp ) (
r∑

q=1

ViqVjq )
�� =

k∑
p=1

r∑
q=1

∑
i, j ∈p∩q

UipUjpViqVjq

=

k∑
p=1

r∑
q=1


��
∑
i ∈p∩q

UipViq
��
2

=

k∑
p=1

r∑
q=1

o2pq
∗
= OUV

On the other hand we have

|UUT | |VVT | = 
��
n∑
i=1

n∑
j=1

(UUT )i j
��

��

n∑
i=1

n∑
j=1

(VVT )i j
��

=
(
k∑
p=1

n∑
i=1

n∑
j=1

UipUjp

) (
r∑
q=1

n∑
i=1

n∑
j=1

ViqVjq

)
=

(
k∑
p=1

∑
i, j∈p

UipUjp

) (
r∑
q=1

∑
i, j∈q

ViqVjq

)

=
k∑
p=1

( ∑
i∈p

Uip

)2 r∑
q=1

( ∑
i∈q

Viq

)2
=

k∑
p=1

(
op
)2 r∑

q=1

(
oq
)2
=

k∑
p=1

r∑
q=1

(
opoq
)2
= n2EUV

Therefore we can re-formulate Equation 3.16 as:

1 − ‖UUT −VVT ‖2F
‖UUT ‖2

F
+ ‖VVT ‖2

F
− 2

n2 |UUT | |VVT |
∗
= 1 − Ouu + Ovv − 2OuvOuu + Ovv − 2EUV

�
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B.2. INCIDENCE MATRIX OF GRAPH

A =

[ 0 4 9 1
4 0 1 0
9 1 0 16
1 0 16 0

]
A =

[ 0 0 9 0
4 0 0 0
0 1 0 16
1 0 0 0

]

N =

[ 2 3 0 1 0
2 0 1 0 0
0 3 1 0 4
0 0 0 1 4

]
, NNT =

[ 14 4 9 1
4 5 1 0
9 1 26 16
1 0 16 17

]
, M =

[ 3 −2 0 0 −1
0 2 −1 0 0−3 0 1 4 0
0 0 0 −4 1

]
, Mabs (MT ) =

[ 4 −4 9 −1
4 3 −1 0−9 1 8 16
1 0 −16 15

]

Figure B.1: Example for incident matrix of a weighted and or directed graph. For undirected weighted graph
we use unsigned incident matrix N with square roots of weights in the actual graph. For a directed graph, and
in case the clustering differentiates between the two directions, we can use the oriented incidence matrix M ,
where A −AT + Do − Di = M × abs (MT ).

B.2 Incidence Matrix of Graph

Here, we elaborate on the unsigned incidence matrix used to represent the structure of a network.

This structure is usually represented with an adjacency matrix, An×n , where ai j represents the
association between node i and j, e.g., the existence of an edge. An alternative representation

is the incidence matrix Nn×m , where each column corresponds to an edge and marks the nodes

that it connects. This representation is very similar to the clustering representation used in the

Chapter 3. Therefore we use the incidence matrix to compare a clustering with the structure of

the graph. In more detail, we define incidence matrix of a given GraphG (V = [v1,v2, . . . ,vn],E =

[e1, e2, . . . , em]), as a n ×m matrix N , where Nik = 1 if node vi is incident with edge ek = (vi ,vj ),

and zero otherwise. The incidence matrix N and the adjacency matrix A are related by:

D +A = NNT (B.1)

Where D is the diagonal matrix of the node degrees. This definition extends for a weighted net-

work, G (V ,E,W = [w1,w2, . . .wm]), by defining Nik =
√
wk ; for which Equation B.1 still holds,

i.e.,

D +A = NNT , Dii =
∑
j

Ai j , Ai j = wk , ∀ek = (vi ,vj )

The extension for directed networks is not trivial and depends on the application. Here we

present a discussion on possible extensions. The first choice is simply assuming the undirected

version of the graph. For a directed network, we can consider two separate n × m matrices of

in-incidence and out-incidence, Bi and Bo , which respectively mark all sink nodes and source

nodes in their corresponding column. Then for adjacency, in-degree, and out-degree matrices we

respectively have: A = BoB
T
i , Di = BiB

T
i and Do = BoB

T
o . If we consider undirected version of this

graph, then the oriented incidence matrix derives as M = Bo − Bi , where the unsigned incidence
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matrix is N = Bo + Bi . We further have D = 1
2 (MMT + NNT ) = Di + Do , and :

A +AT + D = NNT

This extension ignores the directions, which is also the case with the current definition of a net-

work clustering. Since the co-membership matrix calculated in the clustering distances is sym-

metric by definition, hence can not differentiate between pairs of nodes –the directions.

Alternatively, we can modify clustering of a network to mark each member as a source or

destination with positive or negative signs, similar to the oriented incident matrix. With this

modification the co-membership matrix for a clustering U should be calculated as U × abs (UT ),

where abs (U ) denotes element-wise absolute value. Such co-membership could be compared with

the oriented incident matrix, to compare the agreement of the directed structure with the directed

clustering; see Figure B.1. One may also note that Equation B.1 resembles the definition of the

Laplacian matrix L = D −A, which is also defined based on an oriented incidence matrix, i.e., L =

MMT . The Laplacian matrix is well-established in graph theory. Here we have N = abs (M ), which

can be extended similar to the generalization proposed for the Laplacian form of directed graphs

[11, 27].
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Appendix of Chapter 4
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C.1 Algorithms

C.1.1 Generalized 3-Pass Benchmark

Algorithm 4 summarizes the assignment of nodes to communities, which has two main phases,

1) Determine the community sizes: By sampling from the community size distribution. Sample

communities until the sum of all community sizes equals the total number of nodes.

2) Assign nodes to the communities: First select a randomnode in the network and add it, if its degree

is less than the size of the community. Any vertex that is too big for the current community gets

put aside. At the end of the community assignment, any nodes that left over are randomly added

to a community that is big enough to contain their degree. If that community is already full, then

it ejects a smaller-degree node and adds in the left over node. The ejected node then gets added

into the leftover node queue. The process continues until there is no left over nodes.

1: {s1, s2 . . . sm } based on θC and G { determine capacity of communities}

2: {c1 = ∅, c2 = ∅ . . . cm = ∅} { initialize the communities}

3: H ← ∅ { initialize the homeless queue}

4: for v ∈ G do { assign nodes to communities}

5: randomly choose ci from C where si > |ci |
6: if si ≥ (1 − μ ) ×G .deдree (v ) then ci .add (v )
7: else H .add (v )

8: while H is not empty do { assign homeless nodes }

9: randomly choose v from H
10: i ← rand (1,m) { pick a community at random}

11: if si ≥ (1 − μ ) ×G .deдree (v ) then { if internal degree is smaller than the community size}

12: ci .add (v )
13: H .remove (v )
14: if |ci | > si then { kick out a random node}

15: randomly choose u from ci
16: ci .remove (u)
17: H .add (u)

Algorithm 4: Assign(G, θC )

1) For the CN assignment, line 5 of the Algorithm 4 is changed so that the community ci is

chosen fromC , for nodev , with probabilities proportional to the current neighbours ofv in ci ; see

Algorithm 5 for the details.

2) For NE assignment, we change line 6-7 of the Algorithm 4, so that after community ci is cho-

sen for nodev , we expand from nodev using a BFS(Breadth-first search), to also add its neighbours

to ci , until ci is full or the expansion is ended; see Algorithm 6 for details.

Note that this way of assigning nodes to communities results in far fewer re-wirings because

all of the internal edges are already there. Fewer re-wirings yields more realistic network structure.
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4: . . .

5: P ← 1 ∀ci ∈ C
5: for i ∈ G .neiдh(v ) do
5: pci ← pci + 1

5: P ← P/sum(P )
5: randomly choose ci from C where si > |ci |, and probabilities are proportional to P
6: . . .

Algorithm 5: CN Assign

5: . . .

6: M ← [0] ×G .n
7: Q ← v
7: Mv ← 1
7: while len(Q ) > 0 and ci < si do
7: v ← Q .pop
7: ci .add (v )
7: if si ≥ (1 − μ ) ×G .deдree (v ) then
7: Q .add (v )
7: for u ∈ G .neiдh(v ) do
7: if Mu == 0 then
7: Q .add (u)
7: Mu ← 1

8: . . .
Algorithm 6: NE Assign

Algorithm 7 summarizes overlay of communities on the network through rewirings. This

procedure is not described in details in the authors’ original paper [79], and the available code for

it reflects the modified LFR version[78]; hence the procedure presented here, is our best guess of

the original method.

1) Determine rewirings: Each vertex should have μ% edges leading out of the community (be-

tween), and (1 − μ )% edges leading to other nodes in the community (within). So we start by

computing how many edges need to rewired for each vertex. For example, Vertex v might need

2 external edges swapped to internal edges; thus has a desired internal change of δw = +2, and a

desired external change of δb = −2.
2) Rewire edges within communities: After computing all the desired changes, iterate through

all of the vertices. For each vertex, while it requires more internal edges (i.e. internal change > 0

), we loop through all other vertices that require more internal edges. If there is another vertex in

the same community and it requires more internal edges, then we pair them up and add an edge

between them (i.e. internal change decreases by one for both). Moreover, we remove the excess

internal edges, with a similar process; see line 14-21 of procedure 7 for more details.

3) Rewire edges between communities: The same process occurs for external change. In this case
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we look for other vertices that need an external edge and are out not in the current community of

the target vertex. We add an external edge between these two vertices.

C.1.2 LFR Derivation From 3-Pass Framework

Here we describe LFR in terms of this generalization. The network model used in the LFR bench-

mark is the CF model, described in details in the related work section. More specifically, for the

LFR, θG = {N ,kavд,kmax ,γ }, which are respectively: number of nodes in the graph, average

G.degree, maximum G.degree and exponent of power law G.degree distribution. These param-

eters are basically used to determine the G.degree sequence of G; from which the graph is then

synthesized using the CF model.

On the other hand, the parameters for communities are θC = {μ, β, cmin , cmax }, which are re-

spectively: mixing parameter, exponent of power law distribution for community sizes, minimum

size and maximum size for communities. The latter three are used to determine the capacity of

communities; whereas the mixing parameter μ controls the difficulty of problem, which is used in

the rewiring phase.

Key issues of LFR benchmarks are discussed in the chapter. From a technical point of view, the

implementation of these benchmarks is heuristic and complex, which rules out modifications as

well as analytical analysis. When in fact this sampling process of structured networks, does not

need to be complicated. An example of unnecessary effort in the original LFR implementation is

many rewirings in order to strictly stick to the exact degree distribution of the nodes, when this

degree distribution is itself generated/sampled randomly in the first place. In our implementation

of the LFR, we relaxed these restrictions to reach a simpler approach, which is as effective as the

original one if not better, since it reduces the amount of rewirings.

C.1.3 FARZ Model

The procedures for FARZ generator is described in the Chapter 4. The assign algorithm is left out

due to its triviality which is described here.
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1: μ ← θC

2: for v ∈ G do { determine rewirings per node}

3: δb [v]← �μ × deд(v ) − deдb (v, c )�
4: δw [v]← −δb [v] { desired within changes}

5: for c ∈ C do { rewire edges within communities}

6: I ← {v | v ∈ c ∧ δw [v] > 0} { add internal edges}

7: while |I | ≥ 2 do
8: randomly choose v � u from I
9: add edдe (u,v ) to G
10: δw [v]← δw [v] − 1
11: δw [u]← δw [u] − 1
12: if δw [v] = 0 then I .remove (v )

13: if δw [u] = 0 then I .remove (u)

14: for {v | v ∈ c ∧ δw [v] < 0} do { remove excess edges}

15: I ← {u | edдe (u,v ) ∈ G ∧ u ∈ c ∧ δw [u] < 0}
16: while |I | ≥ 1 ∧ δw [v] < 0 do
17: randomly choose u from I
18: remove edдe (u,v ) from G
19: δw [v]← δw [v] + 1
20: δw [u]← δw [u] + 1
21: I .remove (u)

22: for c ∈ C do { rewire edges between communities }

23: I ← {v | v ∈ c ∧ δb [v] > 0} { add between edges}

24: O ← {v | v � c ∧ δb [v] > 0}
25: while |I | ≥ 1 ∧ |O | ≥ 1 do
26: randomly choose v from I
27: randomly choose u from O
28: add edдe (u,v ) to G
29: δb [v]← δb [v] − 1
30: δb [u]← δb [u] − 1
31: if δb [v] = 0 then I .remove (v )

32: if δb [u] = 0 then O .remove (u)

33: for {v | v ∈ c ∧ δb [v] < 0} do { remove excess edges}

34: O ← {u | edдe (u,v ) ∈ G ∧ u � c ∧ δb [u] < 0}
35: while |O | ≥ 1 ∧ δb [v] < 0 do
36: randomly choose u from O
37: remove edдe (u,v ) from G
38: δb [v]← δb [v] + 1
39: δb [u]← δb [u] + 1
40: O .remove (u)

Algorithm 7: Overlay(G, C , θC )
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1: for [1 . . . r ] do
2: cid ← select ({1 . . .k },pu = |u |+ϕ∑

v
( |v |+ϕ ) )

3: if i � C[cid] then C[cid]← i

Algorithm 8: FARZ Assign (i, C)

C.2 Extended Results

Here we report extended results for the experiments reported in the Chapter 4, i.e. distribution

plots for all the properties of networks generated by the generalized 3-pass benchmark, and rank-

ings of algorithms in a wider set of settings for the FARZ.

C.2.1 Generalized 3-Pass Benchmark

Complete plots for the properties of the synthesized networks from the different variations derived

from our generalized 3-pass model, described in the Chapter 4. The probability density estimation

for parameters, as they change by μ. In each plot, rows are different models: CF(top), BA(middle),

FF(last). Initial network is marked by blue. This corresponds to Figure 4.3 in the Chapter 4.

Figure C.1: Original LFR Assignment

C.2.2 FARZ Extended Results
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Figure C.2: CN Assignment

Figure C.3: NE Assignment
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Figure C.4: Degree distributions per community for synthetic networks generated by FARZ for 4 different
settings of Figure 4.6. The first plot reports the degree distribution for the overall network, and the subsequent
subplots show the degree distribution per community.

(a) α = 0.2, γ = −0.8, m = 5, k = 4 (b) α = 0.5, γ = −0.5, m = 5, k = 4

(c) α = 0.5, γ = 0.5, m = 5, k = 4 (d) α = 0.8, γ = −0.2, m = 5, k = 4

Figure C.5: Degree distributions per community for the synthetic network generated by LFR of Figure 4.6.
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Figure C.6: Comparing performance of community mining algorithms on benchmarks with positive and
negative degree correlation, all the four settings. Also reporting the number of clusters found by each method.

(a) α = 0.5, γ = 0.5, m = 5, k = 4

(b) α = 0.8, γ = 0.2, m = 5, k = 4

(c) α = 0.2, γ = −0.8, m = 5, k = 4

(d) α = 0.5, γ = −0.5, m = 5, k = 4

Figure C.7: Same algorithms compared on LFR, setting is the 1000B used in [76], i.e. -N 1000 -k 20 -maxk 50
-t1 2 -t2 1 -minc 20 -maxc 100.
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Figure C.8: Comparing performance of community mining algorithms similar to Figure C.6 but on denser
benchmarks (m = 6) with more communities (k = 20). In this setting Louvain clearly performs the best in
particular in networks with positive degree correlation. The drop in β = 1 is due to the communities not linked
together which makes the network disconnected and causes problem for the WalkTrap algorithm. The other
random walk based method, InfoMap, also seems to have difficulty when communities are well separated, i.e.
when β ∈ [.85, .95] and γ > 0.

(a) α = 0.5, γ = 0.5, m = 7, k = 20

(b) α = 0.8, γ = 0.2, m = 7, k = 20

(c) α = 0.2, γ = −0.8, m = 7, k = 20

(d) α = 0.5, γ = −0.5, m = 7, k = 20
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Figure C.9: Performance of community mining algorithms on benchmarks with different number of built-in
communities, for all the four settings. Also reporting the number of clusters found by each method.

(a) α = 0.5, γ = 0.5, m = 5, k = 4

(b) α = 0.8, γ = 0.2, m = 5, k = 4

(c) α = 0.2, γ = −0.8, m = 5, k = 4

(d) α = 0.5, γ = −0.5, m = 5, k = 4
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Figure C.10: Example of actual graphs generated by FARZ, used in the previous plots, α = 0.5, γ = 0.5, m =
5, k = 4. Plots visualized with Gephi toolbox using ForceAtlas2 layout, where node sizes corresponds to the
degree of the nodes, and the colours of nodes to their assigned communities.

(a) β = 1 (b) β = 0.95

(c) β = 0.9

(d) β = 0.85 (e) β = 0.8 (f) β = 0.75

(g) β = 0.7 (h) β = 0.65 (i) β = 0.6

(j) β = 0.55 (k) β = 0.5
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Figure C.11: Example of actual graphs generated by FARZ, used in the previous plots, α = 0.5, γ = 0.5, m =
7, k = 20.

(a) β = 1 (b) β = 0.95 (c) β = 0.9

(d) β = 0.85 (e) β = 0.8 (f) β = 0.75

(g) β = 0.7 (h) β = 0.65 (i) β = 0.6

(j) β = 0.55 (k) β = 0.5
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Figure C.12: Comparing performance of community mining algorithms on benchmarks with overlapping
communities, plotted as a function of the number of communities each node can belong to. All methods
perform poorly, for when nodes are all overlapping.

(a) α = 0.5, γ = 0.5, β = 0.8

(b) α = 0.5, γ = 0.5, β = 0.9

(c) α = 0.2, γ = −0.8, β = 0.8

(d) α = 0.2, γ = −0.8, β = 0.9
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