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Abstract—This paper proposes an optimized transmission line
modeling (TLM) method for the real-time transient simulation of
systems with multiple nonlinearities. The proposed method allows
the simulation to be carried out with larger time-steps while main-
taining the accuracy. A detailed case study of a nonlinear bridge
circuit is presented to illustrate the advantages of the optimized
TLM method in comparison with other methods. The new formu-
lation is then implemented in real-time for the transient simulation
of the nonlinear bridge. Real-time simulation results are validated
by comparing them with experimental measurements. A second
case study includes a power system with several surge arresters
which is also simulated in real-time by the aid of the optimized
TLM method and verified using offline simulation.

Index Terms—Iterative methods, Newton-Raphson method,
nonlinear circuits, power system transients, real-time systems,
transmission line modeling.

I. INTRODUCTION

E LECTROMAGNETIC transient (EMT) simulation of
power systems including nonlinear elements is important

to assess the impact of such elements on system overvoltages.
Real-time transient simulation is necessary for the design
and testing of protective relays and controllers in power sys-
tems. Representative scenarios of nonlinear behavior in power
systems include magnetic saturation, ferroresonance, surge
arrester transients, power electronic converter switching, and
other nonlinear loads in distribution systems. Almost all of
the available offline nonlinear solution algorithms rely on an
iterative solution approach, which makes these algorithms
computationally expensive compared to the numerical tech-
niques for solving linear systems. For real-time applications,
the iterative procedure must be completed within the specified
time-step of the transient simulation. Often the nonlinearity
is substituted by linear approximations to meet the real-time
computation constraint, although at the cost of reduced ac-
curacy of simulation. Therefore, efficient solution algorithms
with superior convergence and high accuracy for simulating
nonlinear elements in real-time are required.
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The Newton-Raphson (N-R) method is also widely used in
the offline simulation of nonlinear systems due to its quadratic
convergence. Techniques such as the Compensation Method and
the Network Equivalent’s Method [1] are implemented in EMT-
type programs to improve the efficiency of the N-R algorithm by
separating the linear part of the network from the nonlinear part.
In traditional EMT-type programs such as ATP, intentional time-
step delays were introduced to break nonlinear feedback loops
in auxiliary subroutines such as TACS [2]. These delays may
cause instability or deteriorate simulation accuracy depending
on the length of the time-step and characteristics of the non-
linear system. In [3], an N-R formulation is used for the si-
multaneous solution of control system nonlinear equations in
EMT-type programs.

A variety of relaxation techniques [4], [5] can also be applied
to improve the convergence and reduce the number of iterations
of the N-R method. However, one of the main limitations of
these methods for handling multiple nonlinear elements is that
a simultaneous solution of the whole or at least the nonlinear
equations of the system is required at each iteration. Therefore,
at each iteration, a new linear system with an updated Jacobian
matrix must be solved, requiring a large computational effort.
Also the choice of initial conditions has a great impact on the
convergence of the N-R method to the correct solution, and on
the speed of the simulation.

The transmission line modeling (TLM) method was origi-
nally developed by Johns and O’Brien [6] as an alternative tech-
nique for the time domain simulation of lumped networks con-
taining both linear and nonlinear elements. Later on, its appli-
cation was extended to the solution of linear integro-differential
equations [7] and power electronic circuits [8]. More recently,
the TLM technique has been used to solve finite element prob-
lems in [9] and [10]. The main advantage of using the TLM for
the solution of nonlinear networks is that it effectively decouples
the nonlinear elements from each other as well as from the linear
part of the network. The decoupling is achieved by connecting
the nonlinear elements through lossless lines to the network. The
delay time introduced by the lines allows an individual solution
using the scalar N-R method, rather than a simultaneous solution
of the nonlinear equations using the vector N-R method. This is
especially useful in real-time simulation because the solution of
individual nonlinear elements can be obtained much faster than
the simultaneous solution of the whole equation set [11]. The
travel time of the TLM lines does not affect simulation accu-
racy because the nonlinear equations are solved in the middle
of each time-step, and a global simultaneous network solution
with a constant admittance matrix is obtained at each time-step.
Therefore, the TLM approach is conceptually different from the
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methods based on intentional time-step delays between non-
linear elements and other parts of the system. Furthermore, it
is proven that the discrete formulation resulting from the TLM
method is mathematically equivalent to the Trapezoidal scheme
which makes the TLM model unconditionally stable [12].

In this paper, an optimized TLM technique for the real-time
transient simulation of circuits with multiple nonlinearities is
proposed. In this method, the individual nonlinear equations
are solved using a modified scalar N-R iteration based on the
golden section method [13], which minimizes the residual of
the equations within an iteration. It is shown that through the
combination of the TLM method and the modified scalar N-R
method, larger time-steps can be adopted for transient simula-
tion without losing accuracy of the solution. Therefore, the pro-
posed approach allows a true nonlinear solution in real-time,
whereas the existing commercial EMT-type simulators (either
real-time or offline) utilize a non-iterative pseudo-nonlinear so-
lution for the fundamental reason of excessive computational
burden. Offline comparison of the proposed method and three
other nonlinear solution algorithms, in terms of the CPU time
and the accuracy of the simulation, is presented for the case of
a nonlinear bridge circuit. The optimized method is then imple-
mented in real-time and real-time oscilloscope results are veri-
fied against the experimental measurements of the bridge circuit
for two types of loads. A second case study involving the appli-
cation of surge arresters in a power system is also simulated in
real-time.

The paper is organized as follows: Section II gives the back-
ground on the vector N-R method and the TLM modeling for
linear reactive and nonlinear resistive elements. The proposed
optimized TLM method based on the golden section search al-
gorithm is described in Section III. Offline and real-time simula-
tion results and the experimental measurements for a nonlinear
diode bridge are presented in Section IV. Section V presents the
second case study of a transmission system with multiple surge
arresters, followed by the conclusion in Section VI.

II. BACKGROUND

A. Vector N-R Method

The vector N-R solution of a nonlinear circuit involves the
simultaneous solution of all circuit equations in an iterative
manner. In this paper, this method is distinguished from the
scalar N-R method which is applied to individual nonlinear
equations only. In order to apply the vector N-R method, the
nodal equations of a nonlinear circuit should be written in the
form of

(1)

where is the vector of unknown nodal voltages.
Then, the first-order Taylor series of nonlinear functions is

used to obtain the updated solution as follows:

(2)

Fig. 1. (a) Linear element. (b) TLM model. (c) Thévénin equivalent.

where , , , and are the solution and
residual vector in the th and th iteration, respectively.

is the Jacobian matrix of the nonlinear
system in the th iteration.

Therefore, the vector N-R method reduces the nonlinear (1)
to a system of linear equations in each iteration which can be
solved using any linear solution algorithms. The iteration ter-
minates when the magnitude of the incremental vector

becomes zero within a specified tolerance, or a pre-
specified maximum number of iterations is reached. For tran-
sient simulation of a nonlinear circuit, a suitable numerical in-
tegration technique such as the Trapezoidal Rule should be used
to discretize the temporal derivatives prior to applying the vector
N-R method.

B. TLM Method

The TLM technique can be used for replacing linear reactive
elements with their equivalent discrete models in time, as well as
for solving the nonlinear circuit equations within each time-step
of the transient simulation.

1) TLM Models for Linear Reactive Elements: The surge or
characteristic impedance of a lossless transmission line is given
as . Depending on the values of and , the line
can be made predominantly inductive or capacitive.

A linear inductor is modeled as a short-circuited lossless
line with the surge impedance , where is the
one-way travel time of the voltage or current waves on the line.
Similarly, a linear capacitor is modeled as an open-circuited
lossless line with the surge impedance . These
models are obtained from the DC behavior of a line with the
same termination.

TLM models and their Thévénin equivalents for a linear in-
ductor and a linear capacitor are shown in Fig. 1. From the
Thévénin equivalent of an inductor, the voltage across the in-
ductor at the th time-step is given as

(3)
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Fig. 2. (a) Nonlinear element TLM model. (b) Thévénin quivalent.

where is the incident voltage pulse and is the inductor
current, at the th time-step. According to transmission line
theory, the voltage across the inductor is also equal to
the sum of the incident pulse and the reflected pulse ,
i.e.,

(4)

For the short-circuit at the far end, the reflection coefficient is
1. Thus, the reflected pulse will become inverted and act

as the incident pulse for the next time-step, i.e.,

(5)

Based on Fig. 1, similar voltage equations can be developed
for a linear capacitor. However, for a capacitor, the reflection
coefficient is 1, because the far end is open-circuit. Therefore,
the incident pulse for the next time-step is obtained from

(6)

It can be shown that the TLM capacitor model has a small
associated inductance of and that the TLM
inductor model has a small associated capacitance of

. A physical interpretation of these errors can be de-
rived by recognizing that real inductors do have stray capaci-
tances and that real capacitors also have stray inductances. The
parasitic components introduced by the TLM models are sim-
ilar to stray components in real inductors and capacitors.

2) TLM Model for Nonlinear Elements: Fig. 2(a) shows a
nonlinear resistor connected by a lossless line, with the surge
impedance and one-way travel time , to the rest of
the network. Its Thévénin equivalent is also shown in Fig. 2(b),
where the voltage source depends on twice the incident voltage
which is the open circuit voltage at the sending end of the line.
At the th iteration, the network launches a pulse into the
link, which becomes an incident pulse on the nonlinear resistor
at . A reflected pulse produced by the nonlinear element
becomes the next incident pulse on the network at .
Let the nonlinear resistor be defined from a relationship between
its voltage and current, as follows:

(7)

Once again, using transmission line theory and (7), the fol-
lowing equation can be written at the sending end of the link:

(8)

Equation (8) is a single nonlinear equation which can be
solved independently by a scalar N-R method to obtain the new
incident pulse . Similar equations can be developed for
other nonlinear elements in the network.

Although the choice of the surge impedance is arbitrary,
its value influences the speed of convergence. It should be
chosen close to the final value of at convergence in order
to reduce the transient caused by the mismatch of the TLM
line. Of course, since this matched value is not known a priori,
reflections or iterations must continue until convergence to the
final solution.

C. TLM Network Solution

Consider a general electrical circuit to which linear reac-
tive elements and nonlinear elements are connected externally.
Each of these groups of elements are represented using TLM
models, as previously described. The TLM procedure operates
by transmitting pulses along the transmission lines. During the
delay introduced by the lines, the pulses remain constant. There-
fore, the overall model is discrete in time.

At time , the sources will inject pulses out of the ports
of . These pulses will travel along the lines, be reflected and
travel back towards . At time , the pulses will be in-
cident upon and will scatter into all the ports of . These
reflected pulses together with new injections from the sources
are again launched into the lines and the process repeats. To
maintain synchronism, all lines are assumed to have the same
round-trip travel time .

Let the incident and reflected pulses at time be given
as

(9)

(10)

The network solution in terms of the nodal voltages at the
th time-step is obtained by solving

(11)

where and are the nodal admittance matrix and the equiv-
alent nodal source vector of the network at the th time-step,
respectively.

Then, the reflected pulses are calculated from the fact that the
sum of the incident and reflected voltage pulses at a node must
equal the nodal voltage. Thus

(12)

where is the reduced incident matrix.
The reflected pulses now travel back on the lines and the new

incident waves for the next step are obtained from the individual
solutions of (5), (6), and (8) for different elements.

If there are multiple nonlinear elements connected to the
network, the TLM procedure advances to the next time-step
only when the individual solutions for all nonlinear elements
have converged in order to maintain synchronism. For a vector
N-R solution, in (11) must be calculated at every iteration.
However, in the TLM solution, remains constant for all
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iterations since its entries are only dependent on the surge
impedances of the line sections and other linear elements of the
network; hence, a unique inversion of is required only at the
beginning of the simulation.

D. TLM Iterations

In the applications of the TLM technique to solve nonlinear
electromagnetic problems, iterations are usually carried out at
both the local and global levels [9], [10]. The local iteration is
based on the scalar N-R method to obtain the solution of the
individual nonlinear equations. The global iteration consists of
repetitively solving (11) due to the mismatch of surge imped-
ances of the TLM lines. Therefore, two different convergence
criteria should be defined for the local and global levels. Typi-
cally, the local convergence criterion is set to be less strict than
the global one to speed up the solution process [14]. On the
other hand, when applying the TLM method to nonlinear cir-
cuit simulation, it is possible to exclude the global iteration by
using a strict convergence criterion for the decoupled individual
equations [15]. In this way, the global system of (11) is only
solved once in each time-step. Once the convergence is reached
for all individual nonlinear equations, the simulation proceeds
to the next time-step. The optimized TLM algorithm which is
described in the next section is based on a single iteration of
the global equation. Nevertheless, the numerical results of both
single and multiple iterations in the global level are presented
later for the purpose of comparison.

III. OPTIMIZED TLM ALGORITHM

Once the equations of the nonlinear elements are decoupled
from each other and the rest of the network by applying the TLM
method, it is necessary to use a proper nonlinear solution algo-
rithm for the individual equations. Up to now, the scalar N-R al-
gorithm is usually used for the solution of decoupled nonlinear
equations [9], [10], [15]. In this method, the solution of the th
nonlinear equation in the th iteration can be written as

(13)

where is the solution, is the Jacobian, and is the residual
of the th nonlinear equation.

However, if the initial guess is not sufficiently close to the
solution, the Newton iteration may converge at a slow rate, os-
cillate, or even diverge for some nonlinear elements. The slow
convergence rate results in an excessive number of iterations and
CPU time. In circuit simulation, this slow convergence rate usu-
ally happens when the nonlinear characteristic of elements has
a fast and monotonic derivative (e.g., diodes) [16].

To avoid convergence problems and reduce the number of
local iterations, an independent relaxation factor can be applied
to each of the scalar N-R solution of the individual nonlinear
equations. Therefore, in the optimized TLM method, (13) is
modified as follows:

(14)

where is the relaxation factor for the th nonlinear equation
in the th iteration.

The value of the relaxation factor for each element is deter-
mined by performing a one-dimensional optimization along the
Newton update direction of that element. The objective of this
optimization is to find a relaxation factor which minimizes the
absolute value of the residual of the nonlinear equation
in each iteration. While different types of optimization tech-
niques can be used to find the relaxation factor, the golden sec-
tion method [17], which is a kind of linear search method, is su-
perior from the standpoint of the CPU time and the number of
function evaluations. The method works by defining four points

(15)

which satisfy the following conditions:

(16)

and are arbitrary positive numbers defining the
search interval. The above conditions ensure that a minimum of

lies in the interval between and . and are
given as

(17)

where .
Then, the function is evaluated at and . If

, the new search parameters are calculated as follows:

(18)

If , the new search parameters are given as

(19)

Either way, the width of the bracketing interval will diminish
and the location of the minimum of will be better defined.
The searching procedure stops when the size of the bracketing
interval becomes less than a specified tolerance, and then or

is substituted in (14) as . The flowchart of the search
method is shown in Fig. 3. It can be shown that a constant op-
timal reduction factor of in the size of the search interval is
guaranteed by the golden section search method.

The golden section method is already used in the vector N-R
solution of nonlinear equations. In that case, usually a single
relaxation factor is applied to all directions of the incremental
vector to minimize the norm of the residual vector [4]. How-
ever, as will be shown later, the optimized values of the relax-
ation factors for different nonlinear elements may vary from
each other considerably. The decoupling property of the TLM
method provides a convenient way to perform optimization on
individual equations. In this manner, the full power of the golden
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Fig. 3. Flowchart of the golden section search method.

section method can be exploited to reduce the number of itera-
tions. Also the bracketing interval of the golden section search
can be chosen in a way to allow both underrelaxation
and overrelaxation factors in the optimization. This is
simply achieved by defining the value of higher than 1. It
is later shown that the optimized value of for some nonlinear
elements may be located in the overrelaxation region during the
transient simulation while for the other elements underrelax-
ation factors are required.

IV. CASE STUDY I—NONLINEAR BRIDGE

To compare the performance of the above methods, a non-
linear bridge circuit, shown in Fig. 4(a), is used as a case study.
The circuit contains four diodes, which are considered as non-
linear resistors ( , , 3, 5, 6), three linear resistors ( ,

and ), one linear inductor , one independent voltage
source , and a load . The diodes are characterized by
the equation . With such characteristics, the
operation of the bridge is similar to that of a full-wave diode
rectifier. Two kinds of loads , i.e., resistive-inductive

and resistive-inductive-capacitive , are considered
for the simulation, as shown in Fig. 4(b). The numerical values
of the circuit parameters are given in Table III in the Appendix.

Fig. 4. (a) Nonlinear diode bridge. (b) � .

A. Vector N-R Solution

The vector N-R problem is to find such that

(20)

where and .
In the case of the load, the nonlinear nodal equations of

the bridge are obtained by replacing the series elements with
their discrete equivalents using the Trapezoidal method. In this
way, only three independent nodes (2, 3, and 4) remain in the
circuit. Then, KCL is applied to each independent node to obtain

(21)

(22)

(23)

where , , and are constant coefficients. and
are history currents sources.

For the simulation of the load [Fig. 4(b)], discrete
equivalent of the branch is also included in the nodal
equations of and .

The solution of (20) is given as

(24)

READ O
NLY



704 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 26, NO. 2, MAY 2011

where and are the Jacobian matrix and the relaxation factor,
respectively.

The convergence criteria for the vector N-R iteration is de-
fined as

(25)

with and set at . Maximum number of iterations for
the vector N-R solution is limited to 30.

B. TLM Solution With Scalar N-R

For the load, five nodal voltages are considered as the
variables of the circuit. The nodes include four external ones
as shown in Fig. 4 and one internal node (node 5) between the
resistor and inductor of the load. The TLM model for the non-
linear bridge is obtained by first replacing the voltage source
and series resistors by a Norton equivalent. Then ,

( , 3, 5, 6), and the load inductor are substituted by
their individual transmission line sections and subsequently by
their Norton equivalents. The characteristic impedances for the
lines are and for the inductors, and ( , 3, 5,
6) for the diodes. At each time-step the TLM solution executes
(11) and (12), where

(26)

(27)

In addition, within every time-step, the new incident pulses
, ( , 3, 5, 6) are obtained by solving the following

equations of the nonlinear resistors (diodes) independently:

(28)

Three different schemes for the TLM solution are imple-
mented and compared with each other, as follows:

1) TLM solution with multiple global iterations: In this
scheme, the global system of nodal (11) is solved sev-
eral times within each time-step until the convergence is
achieved or the number of iterations reaches its maximum
allowed value. The global convergence criterion is defined
as

(29)

In this scheme, the individual local nonlinear equations are
solved by the scalar N-R method and the convergence crite-
rion for local equations are set to be the same as the global
one (e.g., ).

2) TLM solution with a single global iteration: In this
scheme, the global system of nodal (11) is solved only
once within each time-step. The individual local nonlinear

Fig. 5. Percentage RMS error in � for different nonlinear solution methods
(�� load).

equations are solved by the scalar N-R method and the
convergence criterion for local equations is set to be

(30)

3) Optimized TLM solution with a single global iteration:
In this scheme, the global system of nodal (11) is solved
only once within each time-step. The individual local non-
linear equations are solved by the relaxed N-R method. The
value of the relaxation factor for each nonlinear equation is
obtained by performing a golden section search algorithm,
as already described. The convergence criterion for local
equations are set to be

(31)

The same formulation is also used for the load, except
that in that case, an extra internal node is defined between the
series resistor and capacitor, and the TLM model of the capac-
itor is also included in the circuit equations.

C. Offline Comparison

The offline simulation of the nonlinear bridge by the use of
the vector N-R and the TLM algorithms was carried out for
different time steps. A comparison of the results is then made
based on the criteria of convergence (number of iterations), ac-
curacy (RMS error) and CPU time requirement. All methods
were coded in MATLAB and executed on a Pentium 4 2.8-GHz
processor. Under AC steady-state conditions, Figs. 5 and 6 show
the percentage RMS error in the output voltage
and CPU time, for a simulation of 0.09 s of the load. All
methods start from zero initial conditions with the cosine ex-
citation of the voltage source. The simulation time-step is
varied from 5 to 1000 .

To avoid the convergence problem in the vector N-R method,
a constant underrelaxation factor of 0.1 is applied to the solu-
tion. However, as can be seen in Figs. 5 and 6, the vector N-R
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Fig. 6. CPU execution time for different nonlinear solution methods (�� load).

simulation results show a relatively large and constant steady-
state error (around 100%) in the output voltage and also need
a large CPU time to complete the simulation for all time steps.
This is mainly due to the sensitivity of the vector N-R method
to the initial conditions. For a cosine excitation, the zero ini-
tial condition is far from the solution; therefore the vector N-R
method converges to a wrong solution (or even diverges) in
both transient and steady-state conditions. A large and constant
steady-state error of about 30% is also present in the simulation
result for the TLM with multiple global iterations.

On the other hand, no convergence problem occurs with any
of the two TLM methods with a single global iteration for dif-
ferent time-steps. It is also found that the number of N-R iter-
ations in the optimized method is always less than that of the
other TLM methods. From Figs. 5 and 6, it can be seen that for
small time-steps, the TLM with a single global iteration is su-
perior in terms of the CPU time while its error is slightly higher
than that of the optimized TLM method. Therefore, the time
requirement for performing the golden section search method
exceeds the time-saving from the reduction in the number of it-
erations for small time-steps. However, as the time-step of the
simulation is increased, at a certain point ( in this
case) the TLM method with a single global iteration begins to
take more CPU time than that of the optimized TLM method,
and its error also drastically increases over 10%. This is while
the maximum error of the optimized method is 2% for the
load for all time-steps. The large difference in the error of the
two methods can be seen from Fig. 5. Similar results are also
observed for the bridge with the load. It can be concluded
from the simulation result that the optimized TLM method with
a single global iteration has the best performance in terms of the
accuracy and simulation time among the different nonlinear so-
lution algorithms for both small and large time-steps.

Fig. 7 shows the optimized relaxation factors for (diode
1) and (diode 2) during the first iteration in each time-step
of the transient simulation with the time-step of .
As can be seen, although both relaxation factors follow a sim-
ilar pattern due to the symmetry of the circuit, their instanta-

Fig. 7. Optimized relaxation factors for� and� during the transient sim-
ulation of the �� load.

neous values differ from each other considerably. Therefore, it is
necessary to perform the optimization on each decoupled equa-
tion separately. Also it is obvious that the optimized value of

may be located in underrelaxation or overrelaxation regions
depending on the instant of simulation. The maximum value of
the overrelaxation factor is limited to 3 for the nonlinear bridge
due to the risk of instability with larger relaxation factors.

Simulation results show that the value of optimized relaxation
factor normally becomes very close to 1 after the first or second
iteration due to the proximity to the final solution when no re-
laxation factor is required for the remaining iterations. There-
fore, without losing the generality of the proposed approach, the
golden section method can be applied to only the first two iter-
ations of each nonlinear equation. This simplifying assumption
is not used here to have a general and unconditional comparison
of the proposed method with other nonlinear algorithms.

Based on the simulation results given above, it is concluded
that the optimized TLM method with a single global iteration
provides more flexibility in selecting larger time-steps for the
simulation, and therefore, it is the best option for real-time ap-
plications.

D. Real-Time Simulation

To obtain the time-domain simulation results of the nonlinear
bridge, the optimized TLM method was coded in the C lan-
guage and embedded as a dynamically linked program (S-func-
tion) in the MATLAB/SIMULINK environment. The real-time
simulation of the bridge was carried out on one target node of
a PC-cluster-based real-time simulator [18] using a distributed
real-time software package known as RT-LAB [19]. The target
processor is a 3.0-GHz Intel Xeon. Real-time simulation results
are observed through an oscilloscope connected to the I/O termi-
nals of the target node. To include the voltage source distortion
in the simulation, the supply voltage of the experimental setup
was sampled and used as the input in the real-time simulation.
All the real-time simulations are performed using a time-step of

.
Fig. 8(a) shows the transient responses of the input and

output voltages and the load current as defined in
Fig. 4 for the load. As can be seen, the rectified output
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Fig. 8. (a) Real-time results for � (200 V/div.), � (50 V/div.), and � (0.33 A/div.) for the �� load with a 40 �� time-step of, x-axis: 0.01 s/div. (b) Real-time
results for � (50 V/div.), and � (0.133 A/div.) for the ��� load with a 40 �� time-step, x-axis: 0.004 s/div. (c) Experimental results for the �� load. (d)
Experimental results for the ��� load.

TABLE I
FREQUENCY COMPONENTS OF THE OUTPUT VOLTAGE

AND THE LOAD CURRENT FOR CASE STUDY I

voltage is almost one third of the input voltage due to the large
voltage drop across the supply resistor . Also when the ab-
solute value of the input voltage is small, the load inductor
current closes its path through the upper (lower) diodes of the
bridge. This produces a small negative voltage ( 2.7 V), which
is equal to twice that of a diode voltage drop, across the output
terminals. The large load inductor draws a smooth steady-state
load current with a DC value of 0.46 A and a small ripple of
0.03 A (peak to peak). The real-time simulation time-step can
be increased up to while the error remains less
than 2% owing to the use of the optimized TLM method.

Fig. 8(b) shows the steady-state responses of the output
voltage and the load current for the load. In this
case, the output voltage is almost identical to that of the
load. However, the capacitive branch draws a current which
is nearly proportional to the derivative of the output voltage.
Therefore, the general shape of the load current waveform is
considerably different from that of the load with a DC value
of 0.44 A and a ripple of 0.16 A (peak to peak).

The execution time for the real-time simulation (7.162 ) is
less than 18% of the total step-size (40 ). This means that a

Fig. 9. Transmission system with surge arresters.

large time margin is available to increase the number of non-
linear elements in the system and the number of hardware I/Os.

E. Experimental Results

In order to verify the real-time simulation results, an experi-
mental setup of the nonlinear bridge was implemented. Fig. 8(c)
and (d) shows the time-domain responses of the and
loads, respectively, obtained from the experiment. It can be seen
that the simulation results are in close agreement with the exper-
iment. For the load, the discrepancy between the simulation
and measurement is very small for all parameters. In the case
of load, the predicted value of the minimum load current
(0.373 A) is slightly higher than the measurement (0.320 A).
This is mainly due to the large sensitivity of the capacitor current
to small variations in the output voltage which requires a very
small step size for the simulation. Furthermore, the neglecting of
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Fig. 10. (a) Real-time transient overvoltages across series capacitors. x-axis: 0.02 s/div, y-axis: 200 kV/div. (b) Real-time transient surge arrester currents. x-axis:
0.01 s/div, y-axis: 10 kA/div. (c) Real-time transient overvoltages across the shunt compensators. x-axis: 0.02 s/div, y-axis: 1000 kV/div. (d), (e), (f) Corresponding
offline simulation results.

stray circuit components and the approximate diode model used
in the simulation can contribute to small discrepancies. Apart
from this, the general shape of the simulated load current and
voltage and their numerical values match very closely with the
experiment.

For the purpose of comparison, major frequency components
of the output voltage for the load and the load current

for the load, obtained from the real-time simula-
tion and the experiment, are shown in Table I. As can be seen,
the frequency components of the real-time simulation and ex-
perimental results are very similar to each other. Small discrep-
ancies are observed which are mainly due to the error in the mea-
surement of the circuit parameters used in the simulation. Also
the difference between the sampling rate of the oscilloscope and
the real-time simulation time-step may result in a small devia-
tion of the frequency components in the simulation results from
that of the experimental ones.

V. CASE STUDY II—SURGE ARRESTERS

IN A TRANSMISSION NETWORK

This case study consists of a 735-kV transmission system
feeding a load through a 100-km transmission line. The line is
series compensated at the sending end and shunt compensated at
its receiving end. Both series and shunt compensators are pro-
tected against overvoltage conditions by using surge arresters.
The schematic of the transmission system is shown in Fig. 9.

The physical transmission line in each phase is modeled by
the Bergeron line model. The arresters are highly nonlinear re-
sistors characterized by

(32)

where is the exponent, and are arbitrary reference
values which normalize the equation. In this case study, ,
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TABLE II
FREQUENCY COMPONENTS OF RESULTS FOR CASE STUDY II

(for , , and ), (for , , and ),
(for , , and ), and (for , , and )
are 9, 185 kV, 1081 kV, 15 kA, and 1 kA, respectively. All the
network parameters are listed in Table III in the Appendix. The
system is energized at , followed by a three-phase fault
at the load terminals at . The fault is cleared by
circuit breaker ( to ) opening at .

The three-phase power system includes 19 nodal voltages and
six nonlinear elements (surge arresters to ). The opti-
mized TLM algorithm with a time-step of is used
for real-time simulation of the network.

Fig. 10(a) shows the transient response of voltages across the
surge arresters , , and . When the three-phase fault
is applied at the load terminals, series capacitor voltages in-
crease resulting in the conduction of arresters in parallel with the
capacitors. The arrester conduction limits the maximum over-
voltage across the capacitors to 180 kV (peak) compared to 755
kV (peak) without the arresters. Large nonlinear currents are
drawn by the arresters during the conduction time, reaching a
peak of 12.5 kA in phases A and B, and 13.3 kA in phase
C, as shown in Fig. 10(b). Once the fault is cleared, the capac-
itor voltages slowly damp to a small value because the load is
disconnected from the power system. Voltages across the shunt
surge arresters , , and are depicted in Fig. 10(c).
These voltages are zero during the fault as expected. After the
breaker opening, overvoltages at the shunt compensator termi-
nals are limited by the conduction of these arresters to a max-
imum of 1200 kV in phase B compared to 1930 kV without
the arresters.

All of the above real-time results have been verified using
an offline SimPowerSystems model in Matlab/Simulink. The
time-domain results from the offline model are depicted in
Fig. 10(d)–(f) and are similar to the real-time results. The major
frequency components of , , and obtained from
real-time and offline simulations are given in Table II. The data
window of DFT for each signal is adjusted to capture the whole
period of the transient.

The optimized TLM algorithm allows pre-computation of
network admittance matrix and its inverse, as the nonlinear
surge arresters are replaced by their equivalent transmission line
sections. This results in a considerable time saving compared
to the vector N-R method which requires dynamic inversion of
the Jacobian matrix (19 19) during the course of simulation.
The optimized TLM method ensures that the minimum number
of local iterations are preserved in each time-step with a total

TABLE III
DATA FOR THE CASE STUDIES

computation time of 30 out of . The large idle
time present in each time-step shows the possibility of modeling
even larger systems in real-time with more nonlinear elements.
The SimPowerSystems model was also tested in real-time;
however, a large number of overruns (violation of specified
time-step) were observed during the course of simulation.
This clearly shows the advantage of using the optimized TLM
method for real-time applications.

VI. CONCLUSION

Accurate transient simulation of systems with multiple non-
linearities is challenging in real-time because of the need to
perform a simultaneous iterative N-R solution. This paper pro-
poses a method which effectively breaks the problem into in-
dividual nonlinear elements using transmission line modeling
(TLM). This has the advantage of dealing with the nonlinear-
ities individually using a scalar N-R iterative scheme, thereby
increasing computational efficiency. The TLM algorithm is fur-
ther optimized using the golden section search method. The op-
timized TLM method allows the simulation to be performed
using larger time-steps compared to other nonlinear solution al-
gorithms, while also maintaining the accuracy within reason-
able limits. A detailed case study is carried out on a nonlinear
diode bridge to show the accuracy and efficiency of the algo-
rithm. Real-time simulation results show close agreement with
experimental measurements. A second case study of a transmis-
sion system with multiple surge arresters is also simulated in
real-time using the optimized TLM method.

APPENDIX

Table III lists the date for the case studies.
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