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Abstract 

Monitoring and assessment of control systems have become an integral part of indus­

trial process control applications due to their usefulness in meeting target objectives 

and increasing process productivity. In this work, we propose new approaches to 

controller monitoring by investigating the use of run lengths, Markov chains and ulti­

mately, Bayesian analysis. Bayesian analysis is important for making decisions in the 

presence of uncertainty. Using model predictive controllers as a case study, we have 

addressed the issue of controller constraint tuning via a continuous-valued objective 

function within a Bayesian probabilistic framework. The benefits of this approach 

includes: a more generalized definition of quality variables; the development of a 

mathematically elegant formulation of the problem to address linear and quadratic 

objective functions, thereby obtaining closed form solutions; and maximum-likelihood 

location determination of the quality variables in the decision making process. The 

approaches are illustrated with simulations and pilot-scale experiments. 
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Introduction 

1.1 Motivation 

Process control strategies and applications have become an intricate part of the op­

erations in process and manufacturing industries, with stabilization of the process 

operation, quality and safety considerations, asset management/utilization and in­

creasing production efficiency and profitability as the major objectives (Bauer and 

Craig 2007, Harris and Yu 2003, Jelali 2006). 

In current industrial scenarios, the average process industry could have hundreds 

(sometimes thousands) of controllers, most of them being simple PID controllers. 

For example, Paulonis and Cox made reference to a case of 14,000 PID loops in 

the Eastman Chemical Company (Paulonis and Cox 2003). In practice, however, 

there are usually multivariable controllers, which in most cases are model predictive 

controllers (MPC), that act as supervisory controllers for the PID loops (Qin and 

Badgwell 1997, Harris et al. 1999). This concept of the supervisory behaviour of the 

MPC is illustrated in Figure 1.1 (Qin and Badgwell 1997). In view of the multiple 

interactions between control loops, it is inevitable that the overall performance of 

a process will change whenever a single controller or several loops are tuned. In 

addition to this, poor performance could arise from deterioration of equipment (e.g 

1 



Chapter 1. Introduction 2 

due to fouling), wearing out of actuators, change in production objectives or setpoints, 

etc (Huang and Shah 1999, Harris et al. 1999, Jelali 2006). Such real-life scenarios are 

evidently very complex systems and tools that assist in assessing performance and/or 

monitoring of such systems become of great value. 

PLANT WIDE 
OPTIMIZATION 

LOCAL OPTIMIZER 

t 1 
MODEL 

PREDICTIVE 
CONTROL 

Global steady-state Optimization 
(every day) 

Local steady-state Optimization 
(every hour) 

Dynamic 
Constraint 
Control 
(every minute) 

DCS-PID CONTROLLERS Basic Dynamic Control (every 
second) 

Figure 1.1: Schematic illustrating supervisory status of MPC 

It is widely held that the work by Harris (Harris 1989) has proven to be seminal 

to much of the advances in controller performance assessment (Xu et al. 2007, Jelali 

2006) and subsequently, the assessment of controller performance has grown from the 

use of the minimum variance (MVC) benchmark, which was initially applicable for 

univariate (SISO) systems, to the the development of other benchmarks for multi-

variable (MIMO) systems, such as those based on linear quadratic gaussian(LQG), 

and model predictive control (MPC) algorithms (Huang and Shah 1999, Qin and Yu 

2007, Harris et al. 1999). 

The applications of performance assessment tools have extended from a simple 

single-loop PI controller (Harris 1989) to plant-wide applications such as applications 

to refinery-wide performance assessment (Paulonis and Cox 2003, Thornhill et al. 

1999). The scope of controller performance assessment (CPA) has also extended 

to areas like fault, nonlinearity and oscillation detection (Jelali 2006, Harris et al. 
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1999). There are excellent reviews on controller performance assessment technology 

and applications in the literature (Jelali 2006, Bauer and Craig 2007). 

It has been stated that up to 60% of all industrial controllers have performance-

related problems (Harris et al. 1999). An important cause of poor performance of 

industrial controllers is poor tuning or lack of maintenance. Others include design 

or equipment malfunction, inappropriate control structure, and poor (or the lack of) 

feed-forward compensation (Harris et al. 1999, Jelali 2006). 

The use of statistical analysis in the assessment of control loops cannot be overem­

phasized. MVC as a benchmark for controller performance, which is a foundation for 

much of the performance assessment activity in the literature, is based on a time 

series model (Harris 1989). The use of various other statistical tools is common in 

the literature on controller performance assessment. The review by Jelali (2006) gives 

numerous examples and references. The statistical tools can be parametric or non-

parametric in nature. Certain non-parametric approaches of interest, such as Markov 

chains and run length distributions, have been applied to controller performance as­

sessment in recent literature (Harris and Yu 2003, Lu 2007, Li et al. 2004). 

In the field of controller performance assessment, the work by Xu et al. (2007) 

has provided a framework for performance assessment for MPCs based on constraints 

and variability tuning. This work uses linear matrix inequalities (LMI) to formulate 

and solve the problem. The optimization objective function under consideration is 

the economic objective function of the MPC. The quality variables are the variables 

in the economic objective function with non-zero linear and quadratic coefficients. 

These variables affect the amount of potential benefits or profits that can be obtained 

from the process. The approach has been termed LMIPA (Linear Matrix Inequality 

based Performance Assessment) (Xu et al. 2007). The potential benefits that can 

be extracted from the process is estimated by considering scenarios where the mean 

values of the quality variables under consideration are moved closer to their optimum 

values by tuning the constraints or by variability reduction. A more realistic scenario 

would be considered where the mean value and the variance (i.e. the distribution) of 

the variable are used. 

An extension of the work of Xu et al. (2007) has been proposed by Argawal (2007). 

Reference can also be made to his two papers in IECR, (Agarwal et al. 2007a, Agarwal 

et al. 20076) in which the distributions (based on the means and variances) of the 

quality variables are considered. This extension was considered under a probabilistic 
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framework using Bayesian statistics. The MPC economic objective function (as used 

by Xu et al. (2007)) was discretized into zones of profit and each zone of profit 

has associated probabilities for the quality variables to be above, within or below 

desired product specifications. Associated with the discretization step is some loss 

of information since the objective function is actually continuous-valued in nature. 

Subsequent analysis was shown using the Bayesian network for inferential purposes. 

The Bayesian based analysis was classified as decision making and decision evaluation. 

Decision evaluation means that the expected returns from the process are inferred if 

certain decisions regarding limit changes are made. Decision making means that 

the combination of constraint changes of relevant variables that will be needed to 

achieve a user-specified target value of the expected return is determined, based on 

the maximum a posteriori explanation obtained from the network when the target 

value is supplied as evidence. 

In light of the above, ample room exists for research and investigation in controller 

performance assessment with respect to a new set of non-parametric statistics and the 

consideration of uncertainty in performance assessment using a Bayesian framework. 

This thesis aims to extend the scope of the previous works (Xu et al. 2007, Agarwal 

2007) in this area. This thesis is primarily driven by the need to develop industrially 

applicable algorithms and to address certain open areas in the research on controller 

performance assessment. 

As extensions of previous work in the literature, we propose the use of Markov 

chains and Bayesian networks to analyze run length distributions, for controller per­

formance assessment, in the initial part of this thesis. In the latter part of this thesis, 

in particular, we propose an extension of the LMIPA approach by considering the 

economic objective function of the MPC as a continuous valued function within a 

Bayesian statistics framework (Xu et al. 2007, Agarwal 2007). By using a continu­

ous valued objective function, the associated loss of information due to discretization 

is avoided. The occurrence of statistical dependence between quality variables is 

also a noteworthy consideration which we seek to address in this thesis. We also 

propose a methodology for modeling the dependence of quality variables within a 

Bayesian framework based on the continuous valued function proposed. Although 

one of the major strengths of the Bayesian approach is its applicability to cases of 

non-gaussianity, for the purposes of this thesis, we have assumed Gaussian probabil­

ity distributions due to the fact that generally, a sum of random variables with any 



Chapter 1. Introduction 5 

distribution tends toward a normal (Gaussian) distribution based on the central limit 

theorem; and the normal distribution has certain properties that are attractive and 

mathematically tractable (Bishop and Welch 2003). This Gaussian assumption also 

allows us obtain closed-form solutions. 

The proposed algorithms as discussed in this thesis have been used to develop 

tools (graphical user interfaces) that are used for controller performance assessment. 

These tools were developed using MATLAB (MathWorks 2007 a). This software is 

extensively used in research, industrial and academic circles. MATLAB codes are 

written using functions that are both easy to comprehend and implement. They 

are high level codes and are easy to manipulate. A major advantage of MATLAB 

is that it incorporates numerous toolboxes that can be used for various forms of 

analysis. In this work, the toolboxes we have used include the System Identification, 

control, statistics and optimization toolboxes. Other toolboxes used are the Bayesian 

network toolbox (BNT) (Murphy 2007, Murphy 2004a, Murphy 20046, Murphy 2001), 

SeDuMi (Sturm 1999) and SDPT3 (Toh et al. 1999) toolboxes, and the YALMIP 

(Lofberg 2004) interface. YALMIP is an easy to use interface that utilizes numerous 

optimization toolboxes. 

In the sections that follow, we provide brief introductions to the concepts that are 

used in this thesis, which will form a basis for the subsequent overview of the thesis 

that will be provided. 

1.2 Run-Length distributions 

A run is defined as an uninterrupted sequence of a particular data value or state 

(Balakrishnan and Koutras 2002). The use of the term "run length" is quite common 

in certain areas of image and data processing. Run lengths are used as a means for 

data and image processing and compression, and various applications are available 

in the literature. Since data or image encodings can be broken down into particular 

sequences with inherently repeated patterns, they can be grouped as runs and subse­

quently analyzed. (Fatemi 1992, Chandra and Chakrabarty 2001, Galloway 1974, Tsai 

et al. 1996). Figure 1.2 illustrates the concept of run lengths. From Figure 1.2, the 

run lengths are as follows: 1,3,2,3,4,4,1,2,1,1, • • •, etc. 

Run lengths (more commonly the average run lengths, which is defined as the 

average time taken for a process to fall outside the specified control limits (Wardell 
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et al. 1994)) have also been extensively applied in some areas of statistical process 

control with application to control charts (e.g Shewhart charts, CUSUM charts etc) 

(Robinson and Ho 1978, Brook and Evans 2003, Wardell et al. 1994). The run length 

is said to be one of the most important properties of any statistical process control 

(SPC) chart (Wardell et al. 1994). Run lengths have also been used as a test of 

randomness with applications in production processes via a Runs test. They are also 

useful in detecting non randomness in quantitative measurements over time (i.e. time 

series) (Wackerly et al. 2002). 

The use of run lengths in engineering applications, particularly in controller per­

formance monitoring, has been relatively sparse. Recent work by Li et al. (2004), 

has introduced possibilities for further application of this non-parametric statistic for 

controller performance monitoring applications beyond the previous scope of conven­

tional statistical process control. 

The basic idea of the use of run lengths to indicate an uninterrupted sequence is 

common to all the aforementioned areas of application. The particular method of 

analysis using run lengths is generally adapted to the end-user's personal objective. 

For example, the method of analysis required when using run lengths to determine 

randomness in data is different from the analysis required when control charts are 

considered. In this work we illustrate the application of run length distributions 

for controller performance assessment as introduced by Li et al. (2004) and then we 

introduce two new applications of run lengths to controller performance using Markov 

chains and Bayesian networks. 

Each bar represents a zero crossing 

Figure 1.2: Illustration of run lengths and zero crossings 
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1.3 Markov chains - overview 

A Markov process is a random process for which the current state of the process 

completely determines the state of the process at the next time instant. The Markov 

property implies that the past does not influence the future behaviour /state of the 

process. A Markov chain is a Markov process with a finite or countable number of 

states (Kemeny and Snell 1976). 

Assuming that we have a state space, S, which contains q possible outcomes, 

the ith. element of s is described as s;, % = 1,2,... ,q. Also, let the sequence of n 

observations of the Markov Process be Xt,t = 0,1, 2 , . . . , n. 

The states of a Markov chain can be classified into transient and ergodic sets. A 

transient set is a set which once left, is never again re-entered. For an ergodic set, 

however, once it is entered, it can never be left. An absorbing state is a state which 

is the only element of an ergodic set. For this state, si: the probability, pa must be 1 

and all other probability values in that row of the P matrix are 0. 

If a Markov chain has all non-transient states as absorbing states, it is called an 

absorbing chain (Kemeny and Snell 1976, Lu 2007). An ergodic Markov chain has no 

transient sets, and has a single ergodic set. For a homogeneous Markov chain, the 

presence of only one eigen value of the P matrix with magnitude of unity, is a necessary 

and sufficient condition for a Markov Chain to be ergodic (Seneta 1973, Harris and 

Yu 2003). 

1.4 Bayesian-based performance assessment 

This approach to performance assessment of MPC is based on the LMIPA algorithm 

(Xu et al. 2007). The algorithm optimizes the MPC economic objective function 

which is both deterministic and quadratic in nature. The sign of the linear coefficients 

of the objective function refers to the decision as to whether the variable should be 

minimized or maximized. A positive linear coefficient indicates minimization of the 

variable while a negative linear coefficient indicates maximization of the variable. The 

quadratic coefficients address the question regarding keeping the process at specified 

target values. The magnitude of the quadratic coefficient indicates how desirable it 

is to keep the process at its target values. The constrained optimization problem is 

solved using the method of linear matrix inequalities (LMI) via the Schur complement 
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(Xu et al. 2007). 

The LMIPA approach obtains the optimum mean operating point and since the 

optimization is deterministic, the associated results (the mean operating points and 

the subsequent constraint tunings analysis) are also deterministic. In reality, however, 

industrial process variables operate around a mean operating point and not at a mean 

operating point; therefore there is some degree of uncertainty associated with using 

deterministic results. 

Bayesian analysis has been proposed as a means to accommodate the associated 

uncertainty and the distribution of the data (Agarwal 2007). This is achieved by using 

the probability distributions associated with the constraint change decisions. The 

Bayesian based LMIPA allows the data distribution to be considered in the analysis 

and assessment of the effects of constraint change of the variables of the MPC on the 

expected returns from the process. The improvements that this approach provides 

will be discussed in this thesis. 

1.5 Thesis outline and relationship between thesis 
chapters 

Before going into the details of the contents of this thesis, the intricate relationship 

between the Chapters needs to be explained. Chapters 2 and 3 are based on the 

concept of run lengths (which has been briefly introduced and will subsequently be 

further discussed), and the use of run length distributions as a statistic for controller 

performance monitoring leads us to consider certain parametric and non-parametric 

statistics in its analysis. 

The multi-tank (pilot scale) experimental system which will be used throughout 

the thesis is also introduced and described in Chapter 2. This pilot scale experiment 

forms a link between Chapters 2, 4 and 5 because it is used to illustrate and exper­

imentally validate the various methods proposed in the thesis. Finally, the use of 

Bayesian inference as a means of analysis in the presence of uncertainty also links 

Chapters 3, 4 and 5 of the thesis. It is important to note (as the title of the the­

sis indicates) that Bayesian analysis is the main theme of this thesis; the preceding 

chapters (Chapters 2 and 3) are provided to describe the "journey" that was taken 

to arrive at this desired end. The outline of this thesis is illustrated in Figure 1.3 and 

it shows the overlap between the chapters. 
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Chapter 1: Introduction 

Multi-ran k system 

Bavesian mierence 

Conclusions 

Figure 1.3: Schematic illustrating relationship between chapters of the thesis 

In Chapter 2, we introduce the concept of run lengths and illustrate its use for 

dynamic performance monitoring based on the work of Li et al (2004), and we also 

introduce the use of Markov chains as another means of analyzing controller per­

formance using run lengths. The multi-tank (pilot scale) experiment which will be 

used for illustrations throughout the thesis is also introduced and described in this 

chapter. Chapter 3 then builds on the concept of run lengths and introduces the 

application of Bayesian methods as a means to analyze run length data. Chapter 3 

is the link between the first part of the thesis (Chapter 2) and the rest of the thesis, 

which focuses on Bayesian methods for controller performance monitoring. 

In Chapter 2, we begin by reviewing the use of run length for controller perfor­

mance and we indicate the advantages of using the run lengths approach proposed 

by Li et al (2004). We propose the use of Markov chains for analyzing run lengths 

as a means to contribute to the theoretical background for using run lengths in con-
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troller monitoring, while retaining the intuitive, computationally and conceptually 

simple nature of run lengths, in our analysis and discussion. By means of examples 

we also illustrate the use of this non-parametric statistic in controller performance 

assessment/monitoring. 

In Chapter 3, we will address the possibility of using Bayesian networks to show 

the effect of controller tuning when many possible tuning combinations are available. 

The use of Bayesian statistics deals with the effect of uncertainty as a result of process, 

measurement and other sources. Bayesian analysis uses all the available information 

to make the best possible decision. The Bayesian method proposed serves as a tuning 

library for decision making purposes. User specified run lengths are supplied as 

evidence and the Bayesian tool determines which controller in the library would most 

likely satisfy the specifications provided. Examples are provided to illustrate the 

proposed approach. 

Chapter 4 continues the consideration of Bayesian analysis for controller perfor­

mance assessment and it builds on the previous work addressing MPC constraint 

analysis under a Bayesian statistics framework (Agarwal 2007). The previous work 

considered the controlled variables in the economic objective function as the quality 

variables under consideration. It also used discretization of the profit function into 

different zones of profit in its problem formulation and analysis. The considerations 

were also limited to a linear profit function. In this chapter, we propose an approach 

based on the continuous-valued profit function for the MPC constraint analysis. The 

consideration is extended to include both linear and quadratic forms of the objective 

function. This approach allows us to extend the definition of quality variables to 

include all the variables in the original economic objective function of the MPC con­

troller which have non-zero linear and quadratic coefficients, without being limited to 

just the controlled variables and avoids the associated loss of information due to the 

discretization. Two illustrative examples are discussed using the proposed approach. 

Chapter 5 follows on from Chapter 4 and considers the effect of dependence be­

tween quality variables in the economic objective function of the MPC controller. The 

presence of dependence between quality variables also affects the amount of potential 

benefits that can be achieved because when the quality variables are dependent, the 

mean value of any individual quality variable cannot arbitrarily be moved towards 

its optimum value without considering the other quality variable(s). This issue of de­

pendence is addressed using Factor analysis within a Bayesian statistics framework. 
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Two case studies are also provided. Finally in Chapter 6 we provide our conclusions 

on the analysis carried out. 

In Appendix A, we show by way of illustrative examples, the functionalities of 

the Bayesian Network Toolbox (BNT) as developed by Kevin Murphy (Murphy 2007, 

Murphy 2004a, Murphy 20046, Murphy 2001). The examples are limited to the 

applications used in this thesis. This provides a reference or tutorial for future users. 

This thesis has been presented in a paper-format according to the requirements 

of the Faculty of Graduate Studies and Research (FGSR), University of Alberta. In 

order to connect the materials in different chapters and at the same time ensuring 

completeness and cohesiveness of individual chapters, there is some over lap between 

chapters and there may be some redundancy of material. The aim, however, is to 

make the material easily comprehensible to the reader. 



Performance monitoring of process control 
using run lengths 

2.1 Introduction 

Process and/or controller performance monitoring (or assessment) algorithms have 

received considerable interest in recent times and various algorithms and their ap­

plications to various sectors of petrochemical, chemical process, pulp and paper and 

other industries have been reviewed in recent literature (Jelali 2006, Bauer and Craig 

2007). The tools and algorithms which were reviewed have been developed (largely 

independent of each other) by several individuals, research groups and organizations, 

and they generally have some advantages and disadvantages relative to each other 

(Jelali 2006). It is noteworthy however, that most of the methods use model-based 

and/or use parametric statistic and there is room for approaches that are data-based 

and also use some non-parametric statistics. Such approaches could be very intuitive 

and computationally simple. 

In this work, we investigate the use of methods that may not require process 

knowledge and that can incorporate non-parametric statistics in controller perfor­

mance monitoring. Recent literature has laid the foundation and has indicated new 

possibilities for such approaches (Harris and Yu 2003, Li et al. 2004). In this chapter, 

12 
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we will further explore the applications and definitions of run lengths and run length 

distributions as proposed by Li et al (2004). 

2.1.1 Advantages of using run lengths for controller moni­
toring 

The use of popular approaches like the minimum variance control (MVC) and linear 

quadratic Gaussian (LQG) benchmarks require some process knowledge. The MVC 

approach requires knowledge of the process time delay while the LQG approach re­

quires a process model (apart from the challenges involved if the possibility of online 

applications is considered). In reality, process delays sometimes change during rou­

tine operation in some chemical processes (Owusu and Rhinehart 2004) and the true 

process model is not always known. This indicates the usefulness of an approach that 

does not depend much on process knowledge. It has also been recommended that a 

method based on the distribution of the controller performance index value and not a 

single value should be used for controller monitoring because such distribution-based 

methods are more realistic and representative of controller performance (Li et al. 

2004). 

An approach using the chi-squared goodness-of-fit statistic to compare the dis­

tribution of the run lengths of current operational data to a reference run length 

distribution as a means of assessing the performance of a controller has been pro­

posed. Since the technique is data based and requires only the routine plant data, it 

has advantages over the MVC and LQC approaches as it can be used when there is 

little or no process knowledge. It can also be used online due to its relatively simple 

computational requirements (Li et al. 2004). Since the value of the run length is 

not affected by the magnitude of the error data, it is not affected by the presence of 

outliers. This makes this approach quite robust. This approach is applicable to both 

nonlinear and time-varying processes(Li et al. 2004). 

2.1.2 Contributions 

We propose the use of Markov chains to analyze process controllers based on their run 

length distribution. This approach maintains the intuitive and computationally simple 

analysis of data and run length distributions but also introduces a new perspective 

for the analysis of controller behaviour. 
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A drawback of the proposed approach by Li et al (2004) is that there is no strong 

theoretical/analytical framework behind it. In order to address this issue, the use of 

Markov chains has been proposed to provide a basis for fundamental analysis (Owusu 

and Rhinehart 2004). In this work, we also propose a theoretical framework for the 

use of run lengths in controller performance monitoring/assessment by considering 

the use of Markov chains for the analysis, but from a different perspective from that 

previously proposed by Owusu et al (2004). This approach is based on the work 

by Harris et al (2003) and it provides an intuitive interpretation of run lengths as 

a means of assessing controller performance and at the same time provides similar 

insight into controller performance as the previous approaches (Li et al. 2004, Owusu 

and Rhinehart 2004). 

2.1.3 Run length distributions - history and applications 

A run is defined as an uninterrupted sequence of a particular data value or state 

(Balakrishnan and Koutras 2002). The use of the term "run length" is quite common 

is certain areas of image and data processing. Run lengths are used as a means for 

data and image processing and compression, and various applications are available 

in the literature. Since data or image encodings can be broken down into particular 

sequences with inherently repeated patterns, they can be grouped as runs and subse­

quently analyzed (Fatemi 1992, Chandra and Chakrabarty 2001, Galloway 1974, Tsai 

et al. 1996). 

Run lengths (particularly the average run length, which is defined as the average 

time taken for a process to fall outside the specified control limits (Wardell et al. 

1994)) have also been seen extensively in some areas of statistical process control 

with application to control charts such as the Shewart and CUSUM charts (Robinson 

and Ho 1978, Brook and Evans 2003, Wardell et al. 1994). The run length is said 

to be one of the most important properties of any statistical process control (SPC) 

chart (Wardell et al. 1994). Run lengths have also been used as a test of randomness 

with applications in production processes via a Runs test. They are also useful in 

detecting non randomness in quantitative measurements over time (i.e. time series) 

(Wackerly et al. 2002). 

The use of run lengths in engineering applications, however (particularly in con­

troller performance monitoring) has relatively been sparse. Recent work by (Li et 
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al. 2004) has introduced possibilities for further application of this non-parametric 

statistic for controller performance monitoring applications beyond the previous scope 

of conventional statistical process control. Subsequent works (Owusu and Rhinehart 

2004, Owusu et al. 2005) have built on this and provided some theoretical background 

to the use of run lengths in controller performance via Markov chains. 

The basic idea of the definition of run lengths to indicate an uninterrupted se­

quence is common to all the aforementioned areas of application. The particular 

method of analysis (or interpretation of results) using run lengths is generally adapted 

to the end-user's personal objective. For example, the method of analysis required 

to use run lengths to determine randomness (Wackerly et al. 2002) is different from 

the analysis required when control charts are used to monitor processes (Robinson 

and Ho 1978, Brook and Evans 2003, Wardell et al. 1994). In this work we illustrate 

the application of run length distributions for controller performance assessment as 

introduced by Li et al (2004) and then we will introduce a new application of run 

lengths to controller performance using Markov chains. 

2.2 Performance monitoring using run lengths 

2.2.1 Overview of controller monitoring using run lengths 

For a process that is being controlled, the controller works to keep the process at 

the specified setpoint and therefore, the values of the error signal (the setpoint minus 

controlled variable/output values) would typically be distributed above and below 

the mean value. Using the zero value as a reference, we can count the number of data 

points (above or below the zero line) just before the data changes sign from + to -

(and then goes above or below the zero line, or vice versa) as the run length. Each 

time the data changes sign from + to - or vice versa (from - to +), we have a zero 

crossing. A run length is the number of data samples between zero crossings (Li et 

al. 2004). 

As shown in Chapter 1, Figure 1.2 illustrates the definition of run lengths and zero 

crossings. From Figure 1.2, the run lengths are 1, 3, 2, 3, 4, 4, 1, 2, 1, 1. We consider 

the absolute values of the run lengths and the distribution can then be built by 

summing up and grouping the number of times that run lengths 1, 2, 3 and 4 appear. 

Therefore, run length 1 (RL1) will have a value RL1 = 4, run length 2 (RL2) will 
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have a value RL2 = 2, likewise, RL3 = 2 and RLA = 2. The run length distribution 

is usually represented in the form of histograms as will be shown subsequently. 

In the use of run length distributions for controller monitoring, based on the fact 

that a process variable will typically be distributed above and below a particular 

mean value, the data can be classified according to run-lengths (the length or number 

of runs of a particular data value or state). The use of run length as a control 

performance index is based on the work by Li et al (2004) and this approach involves 

the creation of a reference based on the prior knowledge that a particular process is 

in a condition of good control, and subsequently the current data is checked against 

that reference to determine whether or not there are deviations from the reference 

as an indication of a change in the performance of the controller. The procedure 

developed by Li et al (2004) is both conceptually and computationally simple and 

can be applied to nonlinear and time-varying processes as well as for online controller 

monitoring (Li et al. 2004). 

2.2.2 Multi-tank process: process description and controller 
design 

The Multi-tank System (Inteco 2006) consists of three tanks (upper, middle, and 

lower tanks) arranged above each other, each equipped with drain valves. A pump 

fills the upper tank from a storage tank located at the bottom of the third tank as 

shown in Figure 2.1. Due to the vertical arrangement of the tanks, the liquid outflows 

all tanks due to gravity. The control objective is to maintain desired liquid levels in 

each of the tanks. Level sensors are mounted in the tanks to measure these levels. 

Each tank has a manual and an automatic valve. These valves can be used to stabilize 

the desired levels. The horizontal cross section of the first tank is constant while those 

of the second and third tanks are variable (prismatic and spherical, respectively) as 

shown in Figure 2.1. 

The system can be used as a single input-single output (SISO), single input multi­

ple output (SIMO), multiple input single output (MISO), or a multiple input-multiple 

output (MIMO) system, depending on the choice and/or combination of input and 

output variables chosen. For our purpose in this work, we consider the system as 

a 2 x 2 MIMO system with the first two tank levels as the outputs (or controlled 

variables) and the corresponding automated valves are operated as the inputs (or 
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Figure 2.1: Schematic of multi-tank system configuration 

manipulated variables). The pump flowrate is used as an unmeasured disturbance. 

Real-time experiments are performed using MATLAB and Simulink to develop 

and run various controllers. For the real-time experiments, MATLAB's Real-Time 

Workshop (RTW) and Real-Time Windows Target (RTWT) toolboxes (MathWorks 

2007c) are used for the implementation. This setup can be used to develop and 

validate various level control strategies as well as implement fault detection strategies 

(in the case where the manual valves are used to simulate leaks). 

Mathematical model of the multi-tank system 

Based on first principles, the mathematical model of the multi-tank system as follows 

(Inteco 2006): 

dHx 1 1 

MHi) 
1 

dt 
dH2 = 

dt A2{H2) 
dH2 = 1 
dt ~ A3{H3) 

CtHl A2(H2) 
Oil 

1 

C2H? -
A3{H3) 

C2H? 

C3H«* 

(2.1) 

where: 

Hi refers to the fluid level in tank i, i = 1,2,3 
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Figure 2.2: Schematic diagram showing geometric parameters of the tanks 

Ai(Hi) refers to the cross sectional area of tank i at level H, as follows: 

Ai(Hi) = aw 

A2{H2) = cw + 
H, 

H 
-bw 

2max 
(2.2) 

A3(H3) = wy'tf-iR-Hz)2 

C{ refers to the valve characteristics of tank i 

a.i refers to the flow coefficient of tank i. Generally, we assume â  = 0.5 for laminar 

flow. This assumption {cm = 0.5) will be used throughout this work. Figure 2.2 shows 

the geometric parameters of the tanks. 

The MATLAB MPC toolbox (Bemporad et al. 2007) was used for the controller 

design. The linearized model used is shown in Equation 2.4 and Figure 2.3 shows 

the corresponding block diagram arrangement. The parameters used for the MPC 

simulations are as follows: 

• Control interval : 0.4 

• Prediction horizon: 30 
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Figure 2.3: Block diagram representing MPC control of multi-tank process 

• Control horizon: 3 

• Manipulated variables: Controlled valves (Ci,C2) 

• Measured outputs: Liquid levels: (Hi,H2) 

• Unmeasured disturbance: Pump flowrate (go) 

• Input constraints: Valves 1 and 2: min = 0, max = 1 (values given in percent­

age of valve opening) 

• Output constraints: Heights 1 and 2: min=0.02, max= 0.30 

For the MPC controller design, we specify the state space model of the process 

according to Equation 2.3. 

X = AX + BU 

Y = CX 
(2-3) 

Y represents the outputs which are the tank levels, in this case. The parameters of 
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Equation 2.3 are shown in Equation 2.4: 

A 

X = 

awH, ~ai 

Y 1 Q 1 1 

H2 

-_C2a1_ 
w(c+b-. - ) » 2 

B = 

U = 

aw 

0 

Ci 

9K 

-H™1 

H"1 

n2max 

*22 

w(c.+bjr^—JH[-v H2max ' 1 

"1 
0 
0 

0 0" 
1 0 
0 1 

(2.4) 

C = 

D = 0 

Using the MATLAB "ss" command, the state space model is generated: 

» TankModel = ss(A, B, C, D) 
The pump inflow rate (qQ) is included in the input vector U to make it a measured 

or unmeasured disturbance as required for the MPC controller. Figure 2.4 shows the 

input and output data for the process. There is a 25% increase in pump flowrate (un­

measured disturbance) at 200 seconds (500 samples). At 250 seconds (625 samples), 

we introduce simultaneous step set-point changes of 0.1m to both tanks. Overall, the 

servo and regulatory performance of the controller is satisfactory. 

2.2.3 Controller performance monitoring of multi-tank sys­
tem 

The objective here is to implement a data-based and intuitive controller monitor on 

the multi-tank system, that does not depend on process knowledge and therefore is 

suitable for monitoring time-varying and non-linear processes (Li et al. 2004). From 

the definition of run lengths , we can infer that having large run length values implies 

the possible presence of offsets and therefore, the greater the number of run lengths 

with large values (in the run length distribution), the poorer the controller in the 

steady state performance (Li et al. 2004). The run length distribution under good 
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Figure 2.4: Input and output data, for process under MFC control 

control is not sensitive to changes in magnitude or variance of the errors because we 

only consider the position of the data relative to a zero crossing and not its actual 

magnitude. 

2.2.4 Methodology 

The run length is used as a control performance index. Its distribution at any point 

in time is compared to that of a reference, built from data collected during a period of 

good control, to determine controller performance. The reference distribution is built 

from the process data according to the procedure outlined below (Li et al. 2004): 

• Build the reference run length distribution: Using (setpoint (SP) and 

controlled variable (CV)) data collected during a representative good control 

period, the error signal is obtained and the run length distribution is determined 

as illustrated in Figure 1.2. 

• Divide the range of run lengths of the reference distribution into 
classes : This work uses 5 classes to satisfy the requirements for Chi-square 
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test as shown in Equation 2.5. 

x2 = ^(01_E^ ( 2 5 ) 

Let Oi be the observed number of run length distributions in the ith class. 

The expected number of run lengths in the ith class, E{, is obtained from the 

reference distribution. The number of classes is represented by k. Following the 

procedure outlined by Li et al (2004), we use 5 classes and check the chi-square 

value against a threshold value of 16.17. If the chi-square value obtained is 

greater than 16.17, we have a significant difference. 

• Choose a sampling window length N: A sampling window size is chosen 

for building the current run length distribution. 

• Choose a grace period: This step is optional and allows the monitor to check 

if the change is transient or actually a substantial change. This feature is useful 

for reducing false alarm rates. 

• Build the run length distribution for current data: For monitoring pur­

poses, a window of data is collected and the run length distribution is built as 

described above and checked against the reference. A moving window of data 

is used to check the entire data set against the reference. 

• Compare Distribution with reference: If the current data is significantly 

different by Chi-square test, the Monitor Flags ' 1 ' to indicate the difference 

and flags '0' otherwise. If a grace period is included, a violation counter begins 

to increase until the threshold is exceeded and the monitor flags T when the 

violation counter exceeds the grace period, and '0' otherwise (if the difference 

does not persist beyond the grace period). The procedure for choosing the grace 

period is outlined by Li et al (2004). 

2.2.5 Simulation results 

In all of the results shown in this Section there is no grace period included in the 

algorithm, so the monitor flags whenever there is a significant difference between the 

reference data and the data under observation. This could lead to lots of false alarms 
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Figure 2.5: Results obtained with no process change 

under practical conditions but we have not included the grace period here because 

the aim is to show the activity of the monitor and to illustrate its usefulness. When 

the change in controller performance is transient (e.g small step changes), the grace 

period becomes useful because the rate of false alarms will decrease significantly. 

As shown in Figure 2.5, when there is no disturbance or change to the process, 

the monitor flags '0' throughout the simulation indicating that there is no significant 

change in the current data compared to the reference data. Figure 2.6 indicates 

that the monitor identifies the step change at about 200 seconds (500 samples) and 

indicates the controllers ability to correct the disturbance by flagging "0" after the 

effect of the step change has been overcome. 

Since each tank has a manual and a controlled/automated valve, we can simulate 

a leak by opening the manual valve. As shown in Figure 2.7, after the leak was 

introduced at 300 seconds (750 samples), the process never returned to its original 

state. The monitor clearly indicates this change in the process and flags ' 1 ' from 

300s (750 samples) onwards, as shown in Figure 2.8. In Figure 2.9 we illustrate 

that the approach can also be readily applied to non-linear processes by applying the 

approach to the second tank. The monitor also identifies the change in the controller 



Chapter 2. Performance monitoring of process control using run lengths 24 

ll... 
Reference Run-Length Distribution 

15 
R l , Samplings 

Monitor 

15001-

s 1000 -

•: 500 - JL 

1000 1500 2000 

.'Chi-Square Values 

0- 1000 1500 2000 

Violation Counter 

1000 1000 2000 
Number of Samples, time 

Figure 2.6: Results showing effect of step on level of tank 1 
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Figure 2.7: Tank 1 data showing the effect of a leak 
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Figure 2.8: Results showing the effect of a leak on controller performance 

performance due to the step change and ceases to flag the change when the effect of 

the step change has been overcome. 

2.2.6 System identification and real-time experiments 

The mathematical model shown above was not satisfactory as a model for the MPC 

experiments. A new model was identified using the MATLAB System Identification 

toolbox (Ljung 2007). The input signal was chosen to be a random binary sequence 

(RBS) so that sufficient persistent excitation could be achieved. The process operating 

conditions for the experiments were chosen such that overflow or underflow conditions 

were not encountered, as this will introduce errors in the identified models. The 

experimental conditions during the system identification are similar to those of the 

normal process operation such that a realistic model, which is truly representative of 

the process can be obtained. The upper and lower limits of the input signals based on 

these considerations are then used in the design of the RBS signal. There is a trade-off 

between the input signal-to-noise ratio (SNR) and nonlinearity in the system. Finally, 

the input signal was designed such that it has its energy in the frequency band of this 
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Figure 2.9: Results showing effect of step on level of tank 2 

system. The following operating conditions were chosen: 

Pump inflow: 34%: (7.0353e-5 ra3/s) 

Valve 1: 75% open 

Valve 2: 75% open 

Valve 3: 75% open 

There is a linear relationship for the valves between 50% and fully open (100%) and 

so, 75% opening was chosen as the operating point to give allowance for movement in 

both directions. The experimental setup is operated at its nominal operating point 

and this allows us use a linear model for our analysis. The final model obtained is 

an output error (OE) model which is shown in Equation 2.6 below. This model is 

subsequently used in the design of the MPC. 

-0.04967 
z-0.8904 

0.039942-0.04013 
22- l .7642+0.7789 
0.01392-0.01395 

23-1.89722+0.9023z 

0 
-0.044112+0.04201 
2 2 -1 .84l2+0.847 
0.037822-0.03758 
22-1.7782+0.79 

0 
0 

-0.020952+0.0211 
:2-1.89l2+0.8908 

(2.6) 

the sampling time is 8 seconds. 

The process input and output constraints are set as 0.5 < C, < 1.0, and 0.05 < 

Hi < 0.25, where Q represent the valve opening, Hi represents the level in the tanks, 
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Figure 2.10: Reference run length distribution for Tank 2 

and i — 1,2,3. The input rate weights are given as [0.5,0.5,0.5], and the output 

weights are [1,0.8,0.9]. The control interval is 8 seconds, and the prediction and con­

trol horizons are as 15 and 2, respectively. The MATLAB MPC toolbox (Bemporad 

et al. 2007) was used to design the controller. For the following illustration, a 2 x 2 

system consisting of the first and second tanks is considered and the data for the 

second tank will be used to show that the approach can readily be applied to an ex­

perimental nonlinear process. Figure 2.10 shows the reference run length distribution 

against which the process will subsequently be checked for deviations. Figure 2.11 

shows the results obtained by the monitor when there are no changes to the process 

operation. 

Figure 2.12 shows the input and output data for the second tank and we observe 

that there are step setpoint changes at 3000s and 6000s. The monitor does not flag 

poor performance due to setpoint change because the error signal is based on the 

setpoint value and as shown in Figure 2.12, the setpoint tracking of the controller 

is good. However, towards the end of the experiment, at approximately 8000s, we 

observe that the control valve reaches it's lower limit (and remains there) while trying 

to maintain the tank level at its set point, and consequently, the performance of the 

controller decreases. As shown in Figure 2.13, the monitor flags the poor performance 

towards the end of the experiment, as desired. These illustrations from both simu-
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Figure 2.11: Monitor results for Tank 2 with no process change 
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Figure 2.12: Input and output data for Tank 2 with step inputs 
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Figure 2.13: Controller monitoring for Tank 2 indicating change in controller perfo-
rnance 

lation and experimental studies indicate that the algorithm is effective for controller 

monitoring. 

2.3 Analysis of Run-Length Data using Markov 
Chains 

The work by Li et al (2004) provided a useful framework for using run length dis­

tributions for controller performance assessment but it did not provide a suitable 

theoretical background for the proposed procedure. Owusu et al (2004) proposed 

the use of Markov chains to model the run length distributions, so as to provide a 

tractable theoretical basis for using run lengths for performance monitoring. 

In this work, we explore a different approach of using Markov chains for modeling 

run lengths with the aim being to retain the intuitive interpretation of run lengths 

with respect to controller monitoring as well as working within a framework that has 

a sound theoretical basis. 

In this section, the analysis of run length distributions using Markov chains and the 

interpretations with regards to controller performance are investigated. The output 

data from an MPC controlled process is considered in this section. The error data (set 
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point minus controlled variable) is used to obtain the run length distribution (RLD) 

and this in turn, is used to obtain the transition probability matrix for the run lengths 

(Lu 2007). In this section, we propose an application of Markov chains to controller 

performance monitoring. Some applications of Markov chains to monitor controlled 

processes can be found in recent literature (Harris and Yu 2003, Lu 2007, Owusu and 

Rhinehart 2004, Owusu et al. 2005). 

2.3.1 Markov chains- background 

A Markov process is a random process from which the current state of the process 

completely determines the state of the process at the next time instant. The Markov 

property implies that the past does not influence the future behaviour/state of the 

process. A Markov chain is a Markov process with a finite or countable number of 

states (Kemeny and Snell 1976). 

Assuming that we have a state space, S, which contains q possible outcome, the ith. 

element of S is described as Sj, i = 1, 2 , . . . , q. Also, let the sequence of n observations 

of the Markov Process be Xt, t = 0,1, 2 , . . . , n. The transition probability matrix, P 

contains the probabilities of the process moving from one state to another in one step. 

The Pij element of the P matrix indicates the probability of the process to move from 

state % to state j in one step, p^ > 0 for all i and j and each row of P adds up to 

one. 

The states of a Markov chain can be classified into transient and ergodic sets. A 

transient set is a set which once left, are never again re-entered. For an ergodic set, 

however, once it is entered, it can never be left. An absorbing state is a state which 

is the only element of an ergodic set. For this state, S;, the probability, pa must be 

1 and all other probability values in that row of the P matrix are 0. If a Markov 

chain has all non-transient states as absorbing states, it is called an absorbing chain 

(Kemeny and Snell 1976, Lu 2007). An ergodic Markov chain has no transient sets, 

and has a single ergodic set. For a homogeneous Markov chain, the presence of only 

one eigen value of the P matrix with magnitude of unity, is a necessary and sufficient 

condition for a Markov Chain to be ergodic (Seneta 1973, Harris and Yu 2003). 

• Equilibrium distribution: For a regular transition matrix P, Pn approaches 

a probability matrix A as n tends to infinity. This matrix A, has a unique char­

acteristic in that all the rows are the same probability vector a = a\, a^ ..., an. 
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The matrix A is called the limiting matrix and a is called the equilibrium or 

stationary distribution. 

For a given transition matrix P, the equilibrium distribution is unique as shown 

in Equation 2.7. 

aP = a and a\ + a% + • • • + an = 1 (2-7) 

This equilibrium distribution is not affected by the initial distribution TTQ 

• Mean first passage time: If an ergodic Markov chain is started in state Sj, 

the expected number of steps to reach state Sj for the first time is called the 

mean first passage time from s^ to Sj . It is denoted by m^ . By convention ma 

= 0. If an ergodic Markov chain is started in state Sj, the expected number of 

steps to return to S{ for the first time is the mean recurrence time for s;. It is 

denoted by r .̂ 

• Absorption probabilities: Let b^ be the probability that an absorbing chain 

will be absorbed in the absorbing state Sj if it starts in the transient state s». 

Let B be the matrix with entries 6y. Then B is an t-by-r matrix, and B = NR, 

Where N is the fundamental matrix and R is in the canonical form. 

• Time to absorption: Let U be the expected number of steps before the chain 

is absorbed, given that the chain starts in state Sj, and let t be the column 

vector whose ith. entry is U. Then 

t = Nc (2.8) 

Where c is a column vector all of whose entries are 1. 

• State holding time: This is the average time interval the sequence spends in 

state Si before it transits to another state. 

• Occupational time: This is the number of times that the sequence is found 

in a particular state Sj. 
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At any time, t, the probability of the process being in any of the q states is described 

by the vector irt. irt — Probability(Xt = Si). With the condition that the sum of its 

elements equals one. 

n=i(*t)i = i (2-9) 

7r0 is called the initial distribution. 

For this analysis, the absolute values of the run lengths are considered as the 

individual states. That is, a run length distribution with maximum run length n will 

have n states and the transition probability matrix will be an n by n matrix. The run 

length distribution can be interpreted by considering low run lengths as indicating a 

tendency towards good control and high run length values as indicating a tendency 

towards poor control (or the presence of offsets and sluggish behaviour), therefore 

a run length value 1 can be seen as a tendency towards the best control condition 

and run length value n as the tendency towards worst control condition. With the 

transition probability matrix (P), the mean first passage time matrix and the passage 

details are calculated (similar applications of Markov chains can be found in the work 

by Sien Lu (Lu 2007)). The mean first passage time matrix is denoted as M. Each 

entry m,7- is the mean first passage time from state Si to Sj. The mean passage matrix 

M is given by 

M = (I - Z + EZdg)D (2.10) 

Where I is an identity matrix, Z — (I — (P — A))"1 is called the fundamental matrix 

for a regular Markov chain, Z^g denotes the diagonal elements of the fundamental 

matrix, E is a matrix with all entries 1, D is the diagonal matrix with diagonal 

elements da = 1/ai and A is called the limiting matrix. Each row of A is the same 

probability vector a = a\, a<2,..., an, where a is the limiting vector or equilibrium 

distribution. 

More specific information can be obtained by changing the process from a regular 

Markov process to an absorbing process. This tells us the average number of times 

that the process will be in each of the other states before reaching Sj for the first time. 

To do this, we need to change state Sj to an absorbing state. We can then obtain 

information which would ordinarily not be observed from the regular Markov chain. 

By this transformation, the behaviours of the original process and the newly created 
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absorbing process remain the same as before the absorbing states were reached. The 

two extreme states: state 1 (symbolic of the best control) and state n, (symbolic of 

the poorest control) were made to be absorbing states. To create an absorbing chain 

matrix, the transition probability Matrix, P is rearranged as shown below. 

P = 
S 0' 
R Q 

(2.11) 

Where the sub-matrix S is the transition probability matrix of all absorbing states 

and Q is that of all transient states. The fundamental matrix of an absorbing Markov 

chain is denoted as N and the elements of N, n -̂ , is the number of times that the 

process is in transient state j after it leaves the initial state i and before it reaches 

an absorbing state. N is calculated as: 

N = (I-QY (2.12) 

2.3.2 I l lustrat ive example - simulations 

The above described procedures were applied to simulated data and the results are 

shown and discussed below. 

State 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
0.497 
0.445 
0.409 
0.415 
0.515 
0.429 
0.143 
0.5 
0.5 
0.2 

Table 2.1: Transition probability 
2 

0.26 
0.254 
0.308 
0.295 
0.186 
0.286 
0.5 
0.2 
0 
0 

3 4 
0.122 0.06 
0.136 0.083 
0.157 0.088 
0.1.25 0.08 
0.155 0.082 
0.143 0.057 
0.143 0.071 

0 0.1 
0 0.5 

0.2 0.2 

5 
0.039 
0.045 
0.019 
0.045 
0.052 
0.057 

0 
0.2 
0 

0.2 

6 
0.013 
0.017 
0.013 
0.011 
0.01 

0 
0.071 

0 
0 

0.2 

matrix 
7 

0.006 
0.005 
0.003 
0.01.7 

0 
0 
0 
0 
0 
0 

8 
9E-04 
0.008 

0 
0.011 

0 
0.029 
0.071 

0 
0 
0 

9 
0 

0.002 
0.003 

0 
0 
0 
0 
0 
0 
0 

10 
9E-04 
0.006 

0 
0 
0 
0 
0 
0 
0 
0 

An eigen value analysis of transition matrix P shown in Table 2.1 shows that there 

is only one eigen value with magnitude unity, as shown in Table 2.2, and this implies 

that the transition matrix is ergodic. 

The values of the equilibrium distribution and the run length probabilities are 

basically the same (see Table 2.3). This can be understood because the run length 
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Table 2.2: Eigenvalues of transition matrix 
0.041 

+ .0254i 
0.041 
.02541 

0.026 
-0.050i 

0.026 
O.OSOi 

-0.016 
+0.06i 

-0.016 
-0.06i 

-0.05 0.009 -0.02 

Table 2.3 
Equil Dist 

RL prob 

1 
0.463 

1 

0.463 

Equili 
2 

0.265 
2 

0.265 

)rium c 
3 

0.132 
3 

0.132 

istribution and run It 
4 

0.073 
4 

0.073 

5 
0.04 

5 
0.04 

6 
0.01.4 

6 
0.014 

mgth distribution 
7 

0.006 
7 

0.006 

8 

0.004 
8 

0.004 

9 
8E-04 

9 
8E-04 

10 
0.002 

10 
0.002 

probability is the probability based on the overall distribution of the data (as the 

number of data tends to infinity). This piece of information could prove to be a 

useful link between Markov chains and Run length distributions. The data in the first 

State 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 

2.161 
2.284 
2.369 
2.355 
2.117 
2.307 
2.964 

2.116 
2.178 
2.83 

Table 2.4: Matrix of 
2 

3.741 
3.769 
3.55 
3.601 
4.019 
3.661 
2.848 
4.034 
4.671 
4.714 

3 
7.875 
7.767 
7.597 
7.852 
7.621 
7.73 
7.75 
8.8 

8.863 
7.215 

4 
14.02 
13.68 
13.59 
13.73 
13.72 
14.03 
13.75 
13.49 
8.012 
12.07 

mean 
5 

25.18 
24.99 
25.71 
24.99 
24.91 
24.63 
25.81 
21.09 
26.08 
21.1 

irst passage times 
6 

68.05 
67.75 
68.12 
68.17 
68.33 
69.03 
64.13 
69.06 
69.11 
55.53 

7 

171.3 
171.6 
171.8 
169.5 
172.4 
172.5 
172.6 
172.4 
171.4 
172.5 

8 

241.1 
239.4 
241.3 
238.3 
241.6 
234.6 
223.4 
241.6 
240.7 
240.4 

9 
1207 
1205 
1203 
1207 
1207 
1207 
1207 
1208 
1208 
1207 

10 
481.9 
479.3 
482.2 
482.2 
482.5 
482.3 
481.7 
482.5 
483 

483.2 

column in Table 2.4 gives the average time the process takes to return to the good 

control state s\. For example, if the process starts from sio (poorest control), it would 

take about 2.83 time instants to get to state Si. We also notice that Mij (i < j) 

is much larger than M^. For instance, it will take about 481.9 time instants for the 

process to reach sio from si; however, just 2.83 time instants from sio to S\. This 

trend can also be observed when lower and larger states are considered. This means 

that the process has fewer tendencies to stay at the poorer states and more tendencies 

to stay in the good control state. This confirms our previous observation that the 

process is in a state of satisfactory control. 

From Tables 2.5 and 2.6, we can get more information concerning how much time 
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State 
2 
3 
4 
5 
6 
7 
8 
9 
10 

/able 2.5: Passage details with 
2 3 

1.599 0.315 
0.679 1.348 
0.662 0.313 
0.488 0.312 
0.633 0.323 
1.023 0.407 
0.484 0.157 
0.331 0.157 
0.493 0,459 

4 
0.192 
0.204 
1.193 
0.176 
0.168 
0.236 
0.193 
0.597 
0.348 

5 
0.1 

0.074 
0.102 
1.096 
0.115 
0.094 
0.249 
0.051 
0.277 

state 1 
6 

0.037 
0.033 
0.032 
0.027 
1.019 
0.1 

0.016 
0.016 
0.222 

as an ? 
7 

0.012 
0.011 
0.024 
0.006 
0.007 
1.01 

0.006 
0.012 
0.01 

ibsorbing state 
8 

0.017 
0.009 
0.021 
0.007 
0.036 
0.086 
1.007 
0.011 
0.015 

9 10 
0.003 0.01 
0.005 0.004 
0.002 0.004 
0.002 0.003 
0.002 0.004 
0.003 0.006 
0.001 0.003 
1.001 0.002 
0.002 1.003 

Table 2.6 
State 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
224.3 
222.1 
223.3 
223.4 
223.6 
223.4 
iLi iLi£l , yj 

223.6 
223.8 

: Passage details with state 1( 
2 

128.1 
128.4 
128.2 
128.2 
128.2 
128.2 
128.3 
128.2 
128.2 

3 
63.34 
63.02 
64.41 
63.39 
63.45 
63.41 
63.34 
63.3 

63.36 

4 
34.96 
34.8 

35.01 
36.01 
35.03 
34.99 
34.97 
35.05 
35.48 

5 
19.18 
19.09 
19.17 
19.2 

20.22 
1.9.22 
19.15 
19.37 
19.19 

) as an 
6 

6.799 
6.767 
6.803 
6.803 
6.805 
7.791 
6.854 
6.794 
6.801 

absorbing state 
7 

2.799 
2.783 
2.798 
2.81.2 
2.797 
2.795 
3.791 
2.797 
2.805 

8 
1.991 
1.988 
1.992 
2.004 
1.992 
2.02 

2.064 
2.992 
1.998 

9 
0.399 
0.399 
0.403 
0.399 

0.4 
0.399 
0.399 
0.399 
1.399 

was spent in other states between, for example, moving from state s\ to state s\o 

and vice versa, by considering states 1 and 10 as absorbing states, respectively. For 

instance, while in Table 2.4, the tenth row, first column tells us that it takes 2.83 

time instants for the process to move from state 10 to state 1, Table 2.5 gives us a 

more detailed explanation by showing that the process spends 0.493 time instants in 

state 2, 0.459 time instants in state 3, 0.348 time instants in state 4, and so on. The 

same detailed explanation can be made for the tenth item on the first row of Table 

2.4 by considering the first row of Table 2.6. Similar explanations can also be made 

when other states are considered as absorbing chains. 

Let ti be the expected number of steps before the chain is absorbed, given that 

the chain starts in state s,, and let t be the column vector whose ith entry is £,. The 

vector t can be found using Equation 2.8 (Kemeny and Snell 1976). Comparing t\ and 

£io (see Table 2.7), it is obvious that regardless of what state the process starts from, 
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Table 2,7: Times to absorbtion with states 1 and 10 as absorbing states 
State 

h 
State 

*10 

2 
2.284 

1 
481.9 

3 
2.369 

2 
479.3 

4 
2.355 

3 
482.2 

5 
2.117 

4 
482.2 

6 
2.307 

5 
482.5 

7 
2.964 

6 
482.3 

8 
2.1157 

7 
481.734 

9 
2.1776 

8 
482.513 

10 
2.83 

9 
483 

it has a higher tendency to be absorbed (to end up in state 1 than state 10). The 

same explanation could be extended to say that the process will more likely end up 

in lower states than in higher states, which implies that the process is in a condition 

of good control. 

2.3.3 Illustrative example - experiments 

In this section, we illustrate the proposed approach by analyzing experimental data 

based on the multi-tank system previously discussed. The level in the second tank will 

be considered for this illustration, to show that the approach can readily be applied 

to experimental data from a nonlinear process. 

The controller previously used in section 2.2.6 is also used in this analysis. For 

simplicity, the run lengths have been limited to a maximum of 10, as shown in Figure 

2.14, to contain the size of the matrices that result and for ease of discussion. However, 

for practical purposes, it is not compulsory to impose an upper limit on the maximum 

number of run lengths and the analysis that follows still applies. 

Table 2.8: Transition probability matrix for experimental case 
OLcltJG 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
0,452 
0.578 
0.617 
0.615 
0.674 
0.643 
0.815 
0.813 
0.688 
0.857 

2 
0.193 
0.196 
0.183 
0.246 
0.1.74 
0.119 
0.111 
0.125 
0.250 
0.143 

3 
0.111 
0.087 
0.078 
0.062 
0.065 
0.119 
0.037 
0 
0.063 
0 

4 
0.077 
0.035 
0.017 
0.015 
0.043 
0.048 
0 
0 
0 
0 

5 
0.048 
0.026 
0.026 
0.031 
0.043 
0.024 
0.037 
0 
0 
0 

6 
0.042 
0.035 
0.052 
0.015 
0 
0 
0 
0 
0 
0 

7 
0.033 
0.013 
0.017 
0 
0 
0.024 
0 
0 
0 
0 

8 
0.017 
0.013 
0 
0 
0 
0.024 
0 
0.063 
0 
0 

9 
0.019 
0.013 
0.009 
0 
0 
0 
0 
0 
0 
0 

10 
0.008 
0.004 
0 
0.015 
0 
0 
0 
0 
0 
0 
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700 

1 2 3 4 5 6 7 8 9 10 

Figure 2.1.4: Run length distribution for Markov-based analysis - experimental case 

Table 2.9: Eigenvalues of transition matrix - experimental ease 
1 -0.21. 0.06 0.03+ 

0.03i 
0.03-
0.03i 

-0.05 -0.03 -0.02 0.01-
O.Oli 

0.01-
O.Oli 

The transition probability matrix for the run length distribution used in this 

analysis is shown in Table 2.8. Also, from the eigen values of this transition matrix 

(as shown in Table 2.9) we observe that there is only one eigen value with a magnitude 

equal to unity. This implies that it is ergodic in nature. In Table 2.10, we again show 

that the run length distribution and the equilibrium (or stationary) distribution of 

the Markov chain are essentially the same. 

Considering Table 2.11 at a glance, we observe that the values at lower states are 

Table 2.10: Ec 
Equil Dist 

RL P rob 

[uilibrium and run length distributions for the experimental case 
1 2 3 4 5 6 7 8 9 10 
0.53 0.19 0.10 0.05 0.04 0.03 0.02 0.01 0.01 0.01 
1 2 3 4 5 6 7 8 9 10 
0.53 0.19 0.09 0.05 0.04 0.03 0.02 0.01 0.01 0.01 
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Table 2.11: Matrix of mean first passage times for experimental case 
State 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
1.87 
1.68 
1.62 
1.63 
1.54 
1.57 
1.30 
1.29 
1.52 
1.24 

2 
5.27 
5.26 
5.34 
4.99 
5.35 
5.66 
5.69 
5.64 
4.96 
5.52 

3 
10.26 
10.46 
10.52 
10.71 
10.66 
10.14 
10.92 
11.35 
10.67 
11.29 

4 
17.62 
18.30 
18.58 
18.62 
18.06 
18.04 
18.75 
18.78 
18.85 
18.72 

much smaller than the values at larger states for this controller. This observation 

indicates that the controller tends to "operate" at lower run lengths than at higher 

run lengths. From our previous discussions based on simulations, we can also conclude 

here that the controller performance is satisfactory because there is less probability 

for sluggish behaviour or the occurrence of offsets. 

Tables 2.12 and 2.13 show the details of the passage "times" when the process 

moves from state 1 to state 10 (when state 1 is considered as an absorbing state), 

and when the process moves from state 10 to state 1 (when state 10 is considered as 

an absorbing state), respectively. For example, considering the first column in Table 

2.11, we observe that if the process is in state 10 (poorer control), it will take 1.24 

time instants for it to go to state 1 (better control). Whereas, if the process is in 

state 1, it will take 171.78 time instants for it to go to state 10. This implies that the 

process has greater probability to go to state 1 (and lower states similarly), than to 

state 10 (generally higher states). 

The details of the "journey" from state 1 to 10 (i.e how much "time" the process 

spends in all other states between 1 and 10, when state 1 is an absorbing state) are 

found in the tenth row of Table 2.12. This row sums up to the first item in the tenth 

row of Table 2.11. Likewise, the details of the "time" spent in intermediate states 

between 10 and 1 when state 10 is an absorbing state are found in the first row of 

Table 2.13. The sum of the elements of this row is equal to the tenth item of the 

first row in Table 2.11. This procedure of analyzing the "time" spent in intermediate 

states can be applied to all the states to obtain more information of the behaviour of 

26.31 27.74 43.67 
26.84 27.86 44.41 
26.80 27.35 44.16 
26.69 28.37 44.96 
26.30 28.80 44.94 
26.85 28.81 43.89 
26.41 28.77 44.81 
27.44 28.82 44.83 
27.47 28.74 44.88 
27.38 28.75 44.77 

79.58 74.52 171.78 
79.76 74.80 172.32 
80.75 75.10 173.08 
80.75 75.71 170.38 
80.79 75.71 172.95 
78.95 75.76 173.02 
80.68 75.61 172.93 
75.62 75.62 172.92 
80.69 75.62 173.00 
80.60 75.56 172.86 
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JLa 

r ?at 

Die 2.1.2: Passage detail 
Sta te 
2 
3 
4 
5 
6 
7 
8 
9 
10 

2 
1.322 
0.296 
0.364 
0.277 
0.225 
0.168 
0.176 
0.349 
0.189 

)le 2.13: Passag 
State 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
92.372 
91.766 
92.203 
90.758 
92.177 
92.195 
92.291 
92.291 
92.210 

3 
0.140 
1.129 
0.112 
0.108 
0.161 
0.061 
0.019 
0.106 
0.020 

e details 
2 
32.699 
33.805 
32.935 
32.488 
32.907 
32.861 
32.838 
32.847 
32.990 

s with state 1 as an absorbing state - experimental cas( 
4 
0.054 
0.036 
1.034 
0.059 
0.062 
0.009 
0.007 
0.016 
0.008 

5 
0.044 
0.043 
0.047 
1.058 
0.039 
0.046 
0.006 
0.014 
0.006 

6 7 8 9 10 
0.054 0.021 0.020 0.018 0.007 
0.070 0.025 0.006 0.014 0.002 
0.034 0.008 0.006 0.006 0.017 
0.016 0.006 0.004 0.005 0.002 
1.017 0.030 0.029 0.004 0.002 
0.009 1.003 0.003 0.003 0.001 
0.007 0.003 1.069 0.002 0.001 
0.018 0.007 0.005 1.005 0.002 
0.008 0.003 0.003 0.003 1.001 

^ 

with state 10 as an absorbing state - experimental case 
3 
16.424 
16.456 
17.523 
16.248 
16.497 
16.553 
1.6.471 
16.428 
16.501 

4 
9.287 
9.279 
9.305 

5 6 7 8 9 
6.571 5.998 3.858 2.285 2.285 
6.572 6.013 3.853 2.290 2.289 
6.602 6.057 3.876 2.287 2.295 

10.159 6.504 5.927 3.798 2.251 2.251 
9.326 
9.331 
9.288 
9.286 
9.286 

7.616 6.001 3.855 2.284 2.285 
6.598 7.004 3.880 2.31.0 2.285 
6.611 6.002 4.858 2.286 2.286 
6.571 6.000 3.857 3.352 2.286 
6.573 6.005 3.858 2.286 3.287 

the controller via the run lengths or states. 

Finally, in Table 2.14, we observe that irrespective of what state the process starts 

in, there is a much more higher probability that it will end up in state 1 than in state 

10, in much shorter time. 

2.4 Conclusion 

In the above examples we have illustrated the use of non-parametric statistics in 

controller performance assessment/monitoring. The use of run length distributions 

has been shown as a tool for dynamic performance monitoring. Markov chains have 

been used to model run length distributions with an aim to investigate the intuitive 

interpretation of run lengths within a framework that has good theoretical basis. Two 

illustrative examples have been provided for each of the algorithms discussed. 
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Table 2.14: Time to absorbtion with states 1 and 10 as absorbing states - experimental 
case, . . 

State 

tl 
State 

tio 

2 
1.68 

1 
171.8 

3 
1.62 

2 
172.3 

4 
1.63 

3 
173.1 

5 
1.54 

4 
170.4 

6 7 

1.57 1.30 
5 6 

172.9 173.0 

8 
1.29 

7 
172.9 

9 
1.52 

8 
172.9 

10 
1.24 

9 
173.0 



Bayesian analysis using run length 

distributions 

3.1 Introduction 

The use of the term logic, both in mathematics and in common speech, is based on 

assumed clear notions of truth and falsity. Information that can be categorized as 

either true or false is known as Boolean logic. For example, a statement such as 

"Unless I turn the lights on, the room will be dark", leaves no room for uncertainty. 

In contrast to this, events that are encountered in the activities of daily life present 

41 
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us with many situations in which we come to conclusions based on the accumulation 

of evidence. For example, if you notice a small amount of coffee on the table after 

a meal, there may be no great cause for concern if you remember that you recently 

poured yourself a fresh cup of coffee, and spilled some on the table while doing so. 

In this case, the coffee spill evidence may be unimportant; otherwise (if you were 

absolutely sure you did not spill any coffee), you may need to have your coffee pot 

checked for a crack or a leak, or wait to monitor the situation a bit more (by waiting 

to see if another coffee stain shows up on the table when you place the coffee pot in 

a different place). Situations such as those described above are very common in day 

to day life and the need therefore arises to have a means of dealing with uncertainty 

in situations where Boolean logic fails (MSBN 2007). 

Bayesian probability theory is a branch of mathematical probability theory that 

allows us to model the uncertainties associated with outcomes of interest that we 

find in the world by combining common-sense knowledge and available observational 

evidence (MSBN 2007). 

A belief network is described by: 

• A set of relevant variables 

• A graphical structure connecting the variables, and 

• A set of conditional probability distributions 

3.1.1 Types of variables 

A continuous variable is a variable for which, within the limits of the variable ranges, 

any value is possible. For example, the variable time to solve a puzzle is continuous 

because it could take 3 minutes, 4.24 minutes etc. to complete. 

A discrete variable is a variable which has a limited number of values; each of the 

set of possible values is called a state. It cannot take on all values within the limits 

of the variable. For example, responses to a four-point rating scale can only take on 

the values 1, 2, 3, and 4. The variable cannot have the value 2.3. (MSBN 2007). 
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3 . 1 . 2 R e l a t i o n s h i p s w i t h i n a B a y e s i a n n e t w o r k 

One major importance of a Bayesian model is that it allows the user to include prior 

knowledge in the model (available common sense and real-world knowledge), and 

thereby producing a simpler model. To build on the previous example, the model 

builder's prior knowledge that the time of day (for example) would usually not directly 

influence the occurrence of a coffee stain on a table will eliminate time of day as a 

variable and allows him to focus on more direct factors, such as the presence of other 

people at the table, etc. Essentially, variables which cause changes in the system 

are associated with those that they influence. These influences are represented by 

connecting arcs between nodes. Each arc represents a causal relationship between a 

preceding variable (known as the parent) and the variable whose outcome is influenced 

by it (known as the child). 

A Bayesian belief network is commonly described with the use of a graph, having 

a set of vertices and edges. The vertices, or nodes, represent the variables and the 

edges or arcs, represent the conditional dependencies in the model. The absence of 

an arc between two variables implies that they are conditionally independent; that is, 

under no situations will the probabilities of one of the variables be affected directly 

by (or affect) the state of the other variable. In this work, we use directed acyclic 

graphs (DAG). Simply speaking, a DAG "flows" in a single direction, a —» b implies 

that a affects b but b does not affect a directly. A source in a DAG is a vertex with 

no incoming edges, while a sink is a vertex with no outgoing edges. A finite DAG has 

at least one source and at least one sink (MSBN 2007, Korb and Nicholson 2004). 

A belief network is built as follows: 

• Include all important variables that model the system 

• Connect the variables based on (causal) knowledge of the system 

• Use prior knowledge to specify the conditional distributions 

A simple definition of causal knowledge in this context means linking variables in the 

model in such a way that arcs lead from causes to effects (MSBN 2007, Murphy 2001). 
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3 . 1 . 3 I n f e r e n c e 

Inference, also known as model evaluation, is the process by which probabilities of 

outcomes are updated based on the relationships in the model and the currently 

available evidence. During the use of a Bayesian model, the end user supplies ev­

idence based on recent events or observations and this information is then applied 

to the model via the appropriate variable. Based on a mathematical algorithm, the 

probabilities of all other variables that are connected to the variable representing the 

new evidence are also updated. The new level of belief ( or probabilities) of possible 

outcomes are now included in the model. The beliefs initially supplied to the model 

before any evidence is available about the situation are known as prior probabili­

ties. The beliefs computed after new evidence is supplied to the model are known as 

posterior probabilities. 

In the subsequent use of Bayesian belief networks (or Bayesian Networks), each 

continuous variable is represented by an ellipse while a discrete variable is represented 

by a rectangle. These graphical representations are called nodes. Causal influence is 

indicated by a line (or an arc) linking the influencing node to the influenced node. 

The influence arc has an arrowhead that points to and terminates at the influenced 

variable (MSBN 2007). 

The Bayesian analysis is based on the probability distribution of the data. For this 

work, the data is assumed to be Gaussian. The Bayesian analysis is carried out using 

the Bayesian Network toolbox (BNT) by Kevin Murphy (Murphy 20046, Murphy 

2004 a, Murphy 2001). 

The Gaussian distribution is shown as follows: 

where z is the data, ~z is the mean and a is the standard deviation. If p(z) is plotted 

against z, we obtain the probability density function. The integral ofp(z) in the range 

—oo to z gives the cumulative distribution function. The Cumulative distribution 

function is mathematically be represented as follows: 

«« 2 >=K i + e r / (wf)) (3-2) 
2 fz 

erf(z) = — / exp(-t2)dt (3.3) 
V71" Jo 
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3.2 Analyzing Run length distributions using Bayesian 

networks 

Since the run length distribution shows the behaviour of a particular of a process 

with a particular controller, we can use Bayesian networks to model the relationship 

between different control tunings and their run length distribution, based on the fact 

that the run length distribution of a process will change as the controller changes. 

The run length distribution can be used as a means of intuitively interpreting the 

control performance, as has been discussed previously. For a process with different 

PID control tunings, a Bayesian network can be built with the P, I and D components 

of the controller as the parent nodes and the run length distributions, grouped into 

classes, as the child nodes. This allows us to infer the change in control performance as 

the controller parameters are changed, within a probabilistic framework. Since there 

is always uncertainty associated with a process due to process and measurement noise, 

the usefulness of Bayesian statistics become readily apparent. 

In addition, the Bayesian tool may also serve as a tuning library. The library is 

built initially by simulating different controller tunings, with each tuning having a 

corresponding run length distribution. A user specified run length distribution can 

then be supplied to the library to determine a corresponding controller tuning. The 

tool becomes very useful when the desired distribution is not the same as that in the 

library. In this case, the tool will determine the most probable explanation of that 

tuning, i.e., the most likely tuning (of all the available tunings) that will produce 

such a run length distribution. This is similar to interpolation to the nearest element 

in the library. 

3.2.1 Illustrative example 

Consider a simple closed loop example (Seborg et al. 2003) for which the responses 

to unit step disturbances of a FOPTD (first order plus time delay) process under PI 

control are shown in Figure 3.1. The process model is shown below: 

G(s) = - J — - (3.4) 
w 20s+ 1 v ' 
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200 400 600 

P is 1 Tau is 11 

200 400 600 

P is 1 Tau, is 20 

200 400 600 

Figure 3.1: Unit step responses of a PI controller with different tunings 

The effects of the increase of the controller gain Kc (P component) and the de­

crease of the integral time constant (I component) are shown in Figure 3.1. As the 

value of Kc increases, or 77 decreases, we have more aggressive responses from the 

controller. Generally, conservative controller tunings require small controller gains 

(Kc) and large values of integral time (77) (Seborg et al. 2003). For this example, we 

have three values each for the P and I components. This results in 32 (nine) possi­

ble combinations of controller tunings (or nine controllers) with each set of tunings 

producing a different response to the unit disturbance (see Figure 3.1). In the pres­

ence of process and measurement noise, each controller output will not be exactly the 

same even though the underlying behaviour remains still the same. This presence of 

noise introduces uncertainty into the system and therefore provides an opportunity 

for Bayesian statistics to be applied. Using the run length distribution will accommo­

date the underlying behaviour of the process while the Bayesian network will handle 

the problem of making inference in the presence of uncertainty. 

For a process with different PI control tunings, a Bayesian network can be built 

with the P and I components of the controller as the parent nodes and the run length 

Tau is 5 

,(,1 
/.-Wii, 

' I ' l l 

Tau is 5 

200 400 600 0 
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Table 3.1: Timing values of Proportional and. Integral components of the PI controller 

Proport ional Gain Integral t ime 

State 1 5 

State 2 3 

State 3 1 

distributions, grouped into classes, as the child nodes. The states of the parent nodes 

are the parameters of the P and I components of the controller. These parents are 

discrete while the child nodes are assumed to be continuous and Gaussian in nature. 

In this example, we have three states each for the P and I parent nodes (see Table 

3.1) and the child nodes (the run lengths) are grouped into five classes following the 

procedure previously discussed (Li et al. 2004). However, since we cannot assume 

that the group of 5 classes will be reasonably similar for all the controllers, with­

out providing a standardized reference, we require a benchmark for grouping the run 

lengths into classes. To achieve this, we use the minimum variance control (MVC) 

method to design a controller for the process and obtain its corresponding run length 

distribution, and then we use the class groupings for this MVC controller as a ref­

erence for grouping the run length distributions of the controllers under subsequent 

consideration. This is done for two main reasons: first, we want to group the data 

such that each group has probabilities of occurrence that are as even as possible, so 

that subsequent comparison against a reference class of data, and the use of Chi-

square statistics as a measure of goodness-of-fit is made reasonable (Li et al. 2004). 

Second, we want to provide a framework for reproducibility of the results rather than 

grouping the data arbitrarily, in the event that further investigation is necessary. The 

design of the minimum variance controller will be shown subsequently. 

There is no formal rule for grouping the data into classes. A generally accepted 

rule of thumb is that each class should have at a minimum, one expected run length 

observation and 80% of all the classes should have at least 5 expected run length 

observations (Li et al. 2004). We will use Figure 3.2(b) and Table 3.2 to illustrate 

how the probabilities of the run lengths are grouped into classes. 

Run length 1 (RL1) has a probability of 0.288152 which is greater than 1/5 (i.e., 

5 

11 

20 
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25 30 35 

(a) Run length distribution 

10 15 20 25 30 35 

(b) Run length probabilities 

Figure 3.2: Plots showing run lengths of FOPTD process under minimum variance 

control 
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Table. 3,2: Run length distributions and class groupings 

Run-Length 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10,... 

Probability 

0.2881517 

0.1336493 

0.0938389 

0.0521327 

0.1033175 

0.0758294 

0.0549763 

0.0445498 

0.0303318 

0.0246,... 

Class 

RL 

1 

1 

2 

2,3 

3 

4,5,6 

4 

7,8,9 10, 11,. 

5 

Prob 0.2881517 0.22748815 0.2312796 0.129858 0.123223 
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the even value of probabilities among 5 classes) therefore, RL1 forms class 1. Next, we 

check the value of RL2 against the remaining probability for the (1 — 0.288152)/4 = 

0.1780. RL2 is less than 0.1780 but the sum of the probabilities of RL2 and RL3 are 

greater than 0.1780 therefore, RL2 and RL3 form class 2. Similarly, because RL4 has 

a value less than (1 - 0.228152 - 0.133649 - 0.093839)/3 = 0.1815 but the sum of 

the probabilities of RL4, RL5 and RL6 are greater than 0.1815, RL4, RL5 and RL6 

form class 3. Following the above procedure, we form the 5 classes. Subsequently, 

we group the run lengths for each controller according to the classes in the reference 

distribution as shown above. Class 1 will consist of RL1, class 2 will consist of RL2 

and 3, and so on (see table 3.2). 

3.2.2 Minimum variance controller for FOPTD process 

The use of minimum variance control as a benchmark for controller performance 

assessment can be traced to the work by Harris (1989). In this Section, we show the 

procedure for designing a controller using the MVC control law as outlined in Huang 

and Shah (1999). 

In the following formulations we will omit the back-shift operator q~x and thus we 

will denote a transfer function, for example, T(q~1) as T. Consider a SISO process 

under regulatory control (as shown in Figure 3.3) with d as the time delay, T as the 

plant transfer function which is delay-free, N is the disturbance transfer function, et 

is a white noise sequence with zero mean, and Q is the controller transfer function. 

It can be seen from Figure 3.3 that 

yt = Tut + Nat (3.5) 

N 
Vt = ~—a>t 

l + q~dTQ 

using the Diophantine identity: 

N = h + fiq-1 + ••• + fd-iQ-d+1 + Rq-

(3.6) 

(3.7) 
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where F = f0 + flQ~l + ... + fd^q-d+1 

where /j(for i=l,... ,d-i) are constant coefficients and R is the remaining rational, 

proper transfer function. Equation 3.6 can be written as 

F + q~dR 
Vt — ~—<k 

l + q-dTQ 

R^FT^ (3.8) 
L l + q~~dTQq J 

= Fat + Lat-d 

R-FTQ 
where L — =— 

1 + q~dTQ 

is a proper transfer function. The two terms on the right hand side of Equation 3.8 

are independent since Fat = /o + fiq"1 + ••• + fd-iQ~d+1- Thus, 

Var(yt) = Var(Fat) + Var(Lat-d) 

Therefore 

Var(yt) > Var(Fat) 

The equality holds when L = 0, i.e., 

R - FTQ = 0 

Thus we obtain the minimum variance control law: 

Q - ^ (3-9) 

The term Fat (the process output under minimum variance control) is feedback 

controller-invariant because F is independent of the controller transfer function Q. 

Consequently, if a stable process output yt is modelled by an infinite moving-average 

model, then its first d terms constitute an estimate of the minimum variance term 

Fat (Huang and Shah 1999). 
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Q 

Ut 

* q T 

1 
at 

N 

L + yt 

+ * ^ 

Figure 3.3: Schematic diagram of a SISO process under feedback control 

Considering the process model described in Equation 3.4, we can design the min­

imum variance controller. First of all, we obtain the discrete time equivalent of 

the process (Seborg et al. 2003, Ogunnaike and Ray 1994) using a sampling time of 

St = Is. 

using Equation 3.10, 

G(s) = 
Ke -9s 

TS + l 
_ K(l - A)q-»-i 

G{q } - l - A r 1 

where A = e 
e 

-St 

and N 
St 

(3.10) 

, - 4 s 

G(s) 
20s+ 1 

Giq-1) = T 
0.04877g-5 

- 0.95129-1 

from Equation 3.10, we have the following: 
0.04877 T = 

l -0 .9512 . j - 1 

assuming a disturbance model, N = 1_1_1, d — 5 

(3.H) 

TV = 1 + q'1 + q~2 + q-3 + q~A + ^—, 

http://l-0.9512.j-1
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thus F = 1 + q~l + q~2 + q~3 + q~~4 

and R = ^ 4 T 

1-q l 

Using Equation 3.9, we obtain the MVC controller Q as: 

1 - 0.9512g-i 1 f 3 1 2 ) 

^ 1 + q-1 + q~2 + q~3 + q~4 0.04877(1 - g"1) V ' ' 

Finally, using Equation 3.6, we can verify that the process is under minimum variance 

control with the controller Q. 

yt = (l + q-1 + q~2 + q~3 + q~4)at (3.13) 

Figure 3.2 shows the run length distribution of the FOPTD process under minimum 

variance control. 

3.2.3 Bayesian analysis of run length distributions: results 

With the information provided in Section 3, 3.2 and 3.2.2, we can proceed to build a 

Bayesian network following the outlined procedures and subsequently make inferences 

using the network. With the process model as shown in Equation 3.4, and the PI 

tuning parameters as shown in Table 3.1. The proportional (P) and integral (I) parts 

of the controller are considered to be the parent nodes. Each parent node is discrete 

with three states (see Table 3.1) while the child nodes are assumed to be continuous. 

In the network, we can have five univariate child nodes or one multivariate child node 

with a size equal to five (i.e., a node with five variables). The Bayesian network is 

shown in Figure 3.4. 

In order to build the network, data is generated and the network is trained in order 

to obtain the conditional probability distributions for each node. For each controller 

(or each tuning combination), we generate data by simulating the process 500 times 

with a different noise seed each time. The run length distributions are obtained from 

the simulation data and the distribution obtained for each simulation is then grouped 

into 5 classes as previously discussed. Since each of the parent nodes has three states, 

we have 32 = 9 tuning combinations and therefore we have 9 x 500 = 4500 simulations. 
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(a) Univariate child node 

(b) Multivariate child node 

Figure 3.4: Bayesian network for PI controller showing use of univariate and multi­

variate nodes 

The network is trained with the data and the conditional probability distributions 

are estimated using the expectation maximization algorithm (Murphy 2007, Murphy 

2001). 

Figure 3.5 shows the data plots for the entire experiment. The average values 

of the classes of each simulated controller was used as demonstrated in Figure 3.6. 

Classl to Class5 refers to the run length data in each of the class groupings for the 

4500 simulations, RefCl to RefC5 in the figure refers to the values of Classl to Class5 

when the process was under minimum variance control. As we observed previously in 

Figure 3.1, the performance of the controller is worst when P is in state 1 (Kc = 5) 

and I is in state 1(TJ = 5). As Kc decreases and 77 increases, we observe that the 

performance of the controller improves. We can make inference as to which of the 

nine controllers is most likely to produce run length distributions with class groupings 

similar to those of the minimum variance controller by supplying the class groupings 

of the minimum variance controller to the network as evidence. Based on the supplied 
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1000 1500 2000 2500 3000 3500 4000 4500 

Figure 3.5: Plot showing change in run length classes with, controller tuning 

evidence, we then determine the most probable explanation for the evidence based 

on the combination of the states of the parent nodes. 

• Example 1 

Using the evidence (class groupings data for the MVC controlled process), we 

can obtain as inference from the network. The evidence for the child nodes is 

supplied as shown in Table 3.3: 

Table 3.3: Evidence supplied to network 

P state I state Class 1 Class 2 Class 3 Class 4 Class 5 

0.28815 0.22749 0.23128 0.12986 0.12322 

After the inference, we have the following result (Table 3.4): 

This indicates that the controller with P-node being in state 2 and the I-node 

in state 3 (i.e P = 3 and / = 20, see Table 3.1 for details), will most likely 
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Figure 3.6: Bar plots showing change in run length classes with controller tuning 

produce a run length distribution with class groupings similar to those of the 

process under minimum variance control. 

• Example 2 

With a user specified run length distribution as shown in Table 3.5, we can inves­

tigate the choice of tunings that will most likely satisfy this requirement. From 

Table 3.2, we can interpret the evidence supplied in Table 3.5. The evidence 

supplied implies that we would like a controller that does not have too much 

random behaviour. With the assumption that a very high value of RL1 could 

imply that an actuator could wear out easily (opening and closing continuously) 

we desire a run length distribution which is not too random/erratic, hence the 

value of Class 1 (which is made up of the run length with value of 1 (RL1) only) 

is chosen 0.120. At the same time, we do not desire a controller with much 

offset so we choose a value for class 5 to be 0.125, this is approximately the 
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Table 3.4: Inference based on evidence supplied to network 

P state I state Class 1 Class 2 Class 3 Class 4 Class 5 

2 3 0.28815 0.22749 0.23128 0.12986 0.12322 

same as in the reference class (see Table 3.2). The values of Classes 2, 3 and 4 

are chosen likewise as shown in Table 3.5. We ensure that the probabilities of 

all classes add up to 1. 

Table 3.5: User specified evidence supplied to network 

P state I state Class 1 

0.1.20 

Class 2 

0.229 

Class 3 

0.409 

Class 4 

0.117 

Class 5 

0.125 

This decision made from the library is as shown in Table 3.6. Comparing the 

controller chosen (P in state 1 and I in state 3) with the controllers shown in 

Figure 3.1, we observe a reasonable agreement. The controller chosen (P = 5 

and I — 20) shows some oscillatory behavior when compared to the controller 

chosen in example 1 (P = 3 and I = 20). If the output plot for this controller 

(P = 5,7 = 20) shown in Figure 3.1 was described by run lengths, we would 

observe that the presence of oscillations would imply less run lengths of low 

values but higher run lengths of intermediate values (since the oscillations are 

rather transient). Also, no sustained offsets are present. This result provided 

by the Bayesian tool corresponds to the specifications we outlined in the user 

specified target run length distribution. 

Table 3.6: Inference based on user specified evidence supplied to network 

P state I state Class 1 Class 2 Class 3 Class 4 Class 5 

1 3 0.120 0.229 0.409 0.117 0.125 

In the two examples provided, we have shown that the tuning library based on a 

Bayesian framework can be utilized to determine controller tunings that agree with 

user specified run length objectives. 
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3.3 Conclusion 

In this chapter, we have proposed an approach for using a Bayesian network to de­

scribe the changes in controller tunings when many possible tuning combinations are 

available. The use of Bayesian statistics deals with the effect of uncertainty as a re­

sult of process, measurement and other sources of noise and the Bayesian tool serves 

as a tuning library for decision making purposes. Examples have been provided to 

illustrate the proposed approach. 

Although we have used the run length distribution as the index for our analysis, 

a similar approach could be applied to auto-covariances of processes (and possibly to 

any process that has a repeatable pattern) and similar reference could be made to 

MVC as a benchmark (or any other appropriate algorithm). 



MPC constraint analysis - Bayesian 
approach via a continuous-valued profit 

function 

4.1 Introduction 

The current academic and industrial interest in performance monitoring and assess­

ment of industrial process controllers is motivated by the use of control systems 

to achieve goals related to quality, safety and asset utilization(Huang and Shah 

1999, Bauer and Craig 2007, Jelali 2006, Harris and Yu 2003). As a technology 

for asset-management, performance assessment helps industrial automation systems 

in maintaining high efficiency in production operations. Certain unexpected events 

can lead to disruptions in output and/or quality of processes and eventually, the pro­

cess suffers in terms of loss of quality control of products, reduced machine efficiency 

and ultimately, increased costs. A common example is the malfunctioning of sensors 

and/or actuators in an industrial process. It becomes necessary to quickly detect 

LA version of this chapter has been submitted for publication in Akaride, S and Huang. B., 
MPC constraint analysis - Bayesian approach via a continuous-valued profit function, Industrial & 
Engineering Chemistry Research. 2008 
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and correct such malfunctions and reduce associated variability. Consequently, it 

is beneficial to provide an automated procedure that would enable plant operators 

to effectively monitor and evaluate industrial processes and thereby increase profit 

margins. This is the main objective of controller performance monitoring/assess-

ment(Jelali 2006). A 0.1% improvement in an oilsands extraction/upgrading process, 

for example, could result in savings of millions of dollars per year (given a yearly 

output of about 108 barrels) in a typical oil industry. 

The use of advanced process control (APC) strategies in industries has become 

crucial to achieving economic performance objectives. Among them, model predictive 

control (MPC) stands out as a key strategy for dealing with multivariable systems. 

"MPC refers to a class of algorithms that compute a sequence of manipulated variable 

adjustments in order to optimize the future behaviour of a plant" (Qin and Badgwell 

1997). MPC is a multivariable model-based controller and therefore it inherently 

considers the interaction between the process variables. One major advantage of 

MPC is its ability to handle input and output constraints. Tuning of an MPC is 

highly dependent on process knowledge and the particular control philosophy chosen 

for the process(Qin and Badgwell 1997) . Most approaches to tuning MPCs involve 

one or more of the following: 1) the penalty matrix, 2) the prediction horizon and 

3) the control horizon. All these parameters are important to the performance of 

the MPC, but the constraint limits and the variability of the process variables also 

play critical roles in controller performance. In general, however, there is no specific 

procedure or framework for choosing or tuning MPC constraints. Most approaches 

could be said to be largely subjective(Agarwal et al. 20076, Agarwal et al. 2007a). 

In an MPC controller, the controlled variables (CVs) are often said to indicate 

the desired product qualities which are to be considered for optimization and the 

manipulated variables (MVs) are generally used to control and optimize the process 

within a constraint set. CV and MV constraints are often set conservatively in prac-

tice(Singh and Seto 2002); therefore, the probability that adjusting constraints could 

provide more degrees of freedom for the controller and improving profit margins by 

doing so, typically exists (Agarwal et al. 20076, Agarwal et al. 2007a). 

A method to estimate the effect of the constraints on the performance of an 

MPC will provide more insight and thus reduce conservativeness when setting up the 

constraints during commissioning or otherwise. In trying to achieve optimal MPC 

economic performance, the following questions arise: which constraints should be 
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changed, and if constraint change is indeed possible, what profits can be obtained 

by doing so? These questions are answered by studying the relationship between 

variability and constraints within a Bayesian probabilistic framework. The details 

are described as follows(Agarwal et al. 20076, Agarwal et al. 2007a): 

Decision evaluation: To infer the expected return (or profit) that could be 

obtained, if certain decisions regarding constraint limits change are made. 

Decision making: To obtain the combination of constraint changes of rele­

vant variables, based on the maximum-a-posteriori explanation, that will most likely 

achieve a user-specified target profit. 

This work considers the case where the expected return is obtained from a continuous-

valued function. To make Bayesian inference and for the decision making/evaluation, 

the plant routine operating data, the plant steady state gains, which CVs and MVs 

are possibly allowed to change their limits, and the preference to make such changes, 

are required. 

This chapter builds on the previous work addressing the issue of MPC constraint 

analysis under a Bayesian statistics framework (Agarwal 2007) and as a result, we will 

frequently make reference to it for the sake of consistency and proper comparison. The 

previous work considered the controlled variables in the economic objective function 

as the quality variables under consideration. It also assumed that the profit function 

was discretized into different zones of profit in its problem formulation and analysis. 

The considerations were also limited to a linear profit function. 

The main contributions of this chapter include the use of a continuous-valued 

profit function for the MPC constraint analysis and maximum-likelihood location 

determination of the quality variable(s) in the decision making process. In addition, 

the profit function consideration is extended to include both linear and quadratic 

forms. This approach allows us to extend the definition of quality variables to include 

all the variables in the original economic objective function of the MPC controller, 

without being limited to just the controlled variables. The derivation of the results is 

more mathematically elegant and, as a result, closed forms of solutions are obtained. 

Using only controlled variables (CVs) as the quality variables is restrictive because 

the consideration is limited to only the product qualities being within or outside the 

specification. Other important variables in the MPC economic objective function 

(which could also be quality variables) cannot be considered in the same way as the 

product qualities and their specifications. Using tha continuous-valued function gives 
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us the ability to use all the variables in the economic objective function and this leads 

to a more complete form of solutions as will be shown subsequently. Also, as we will 

see in Chapter 5, using the continuous-valued function allows for a natural extension 

to the consideration of statistical dependence between quality variables. 

The work by Agarwal (2007) was an extension of previous work by Xu et al (2007). 

Xu et al (2007) formulated the LMIPA algorithm and that approach considers only 

the mean operating points of the quality variables. It is however, more realistic to 

consider the distribution (such as the mean and standard deviation or variance in 

the Gaussian distribution case) of the quality variables, rather than just the mean 

operating points. This gives a more practical understanding of the process. Agarwal 

(2007) developed an algorithm for considering the distribution of the quality variables 

and their effect on the potential benefit to be obtained from the process. This pre­

vious work, however, assumed that the continuous-valued function for the expected 

returns could be discretized into zones of profit related to the process being above, 

within, or below the desired product specifications. While this was a commendable 

first step, the resolution from this kind of discretization is rather low, the information 

lost due to the discretization could prove valuable in the analysis, and the dimension 

of the problem can grow quickly, making its application in large-scale process impos­

sible. In this work, we show that the continuous-valued function can be used without 

discretization and thus we avoid loss of information due to poor resolution, and the 

results are compact. Two case studies of MPC applications are provided to illustrate 

the proposed method. The new results are also compared to that obtained from the 

previously proposed discrete method (Agarwal 2007). 

4.2 LMIPA revisited 

Linear matrix inequality based performance assessment (LMIPA) is a tool for MPC 

performance assessment based on the work of (Xu et al. 2007). For a particular 

process, the assessment of yield is calculated for various cases as follows (Agarwal 

2007): 

1. Assessment of ideal yield 

2. Assessment of optimal yield without tuning the controller 

3. Assessment of improved yield by variability reduction 
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4. Assessment of improved yield by relaxing constraints 

5. Constraint tuning for desired yield 

These aspects have extensively been described and discussed by Xu et al (2007) and 

Agarwal (2007). In this work, we will consider the effect of constraint adjustment (or 

tuning) of the MPC on the potential yield of the plant and make some inferences on 

the importance of constraint tuning within a Bayesian statistics framework. Chapter 

3 has given a brief background on Bayesian analysis and networks upon which we will 

build in this chapter. 

For an MPC application with n inputs and m outputs, let K be the steady state 

gain matrix and (yj^; u~^) be the current mean, (or base case) operating points. This 

state of the process based on the current steady state operation, prior to the benefit 

analysis, is called the base case operation. Also let the number of controlled variables 

(CVs) and the number of manipulated variables (MVs) for which constraint limit 

changes are allowed (by relaxation) be a and b respectively. This makes a total of N 

= a + b variables for which we can make limit changes. 

With yes and no as the options for applying the limit change to these N variables, 

there will be 2N combinations for applying the constraint changes. Each combination 

of limits change will have a specific optimal return and the optimum values of the 

mean operating point can be obtained through optimization, which will affect the 

MPC performance. Also, let {Ly^Hyf) be the low and the high limits for y^ and 

(Luj\Huj) be the low and the high limits for Uj , respectively. The optimization is 

carried out for each of the possible combinations, with the real time CV/MV data 

collected. The objective function is the economic objective function of the MPC 

controller and the constraints are the CV and MV constraint limits, while also taking 

into account the variability and the steady state gain relations. The quality variables 

are defined as all the variables (CVs and MVs) in the MPC economic benefit function 

which have non-zero linear and quadratic coefficients. 

The optimization problem can be defined as the linear-quadratic function: 

m a 

J = 5 > K + <%{Vi - mf) + J2(SjUj 4- -fiiuj - v3f) (4.1) 
i=\ .7=1 

where, {y^ uf) and (rji, vf) are the mean operating points and target values for the ith 

CV (yi) and fh MV (UJ), respectively, Q , ^ are the linear and quadratic coefficients 
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for Hi (outputs) and Sj,jj are the linear and quadratic coefficients for Uj (inputs), 

respectively. We also assume that within the constraints of the MVs and CVs, the 

derivative of the objective function is nonzero, i.e. the optimum does not occur inside 

the constraint limits. With (yiQ;Ujo) as the base case mean operating point, (y^Uj) 

as the optimum operating point, when the base case operating points are moved by 

(AyfjAuj), the equality and inequality constraints that need to be satisfied for the 

economic objective function are shown in Equations 4.2 to 4.8 below (Xu et al. 2007): 

n 

AVl = Y^(KiJ x Aui) (4-2) 
i=i 

Vi = Vio + A& (4.3) 

Uj = UJQ + Av,j (4-4) 

Lyi <yi< By, (4.5) 

LUJ < Uj < HUJ (4.6) 

Lyl ~ yhoii x ryi <yi< Hy{ + yhoH x ryi (4.7) 

LUJ - uhoij x rUj < Uj < HUJ + uholj x ruj (4.8) 

where i= 1,2,..., m, and j — 1,2,..., n. We allow up to 5% constraint violation for 

the constrained variables in the desire to maximize the profit potential (Latour et al. 

1986, Martin et al. 1991). A"i?- represents the elements of the gain matrix of the MPC. 

Lyi and Hyi are the low and the high limits for yit respectively. Lui and Hui are 

the low and the high limits for Uj respectively. rVi and ru. are the allowable change 

(percentage of the range) in the constraint limits for the process variables, i.e. 5% 

for process variables with changeable constraints and 0% for others; y^ou , Uhoij are 

half of the constraint limits for yt and Uj respectively. 

Thus, the economic objective function for each constraint tuning can be specified 

as (Xu et al. 2007): 

min J subject to Equations 4.2; 4.3; 4.4; 4.5; 4.6; 4.7; 4.8 (4.9) 

2N optimum operating points are obtained for the constraint change cases. Superim­

posing the 2N optimum operating points with the base case variability and assuming 

the data to be Gaussian distributed, the probability distribution for the data can be 

obtained (Agarwal 2007). 
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The Bayesian network is subsequently created with N parent nodes, q child nodes 

(where q refers to the number of quality variables, i.e. all variables in the economic 

objective function with non-zero linear and quadratic coefficients). For each of the 

cases of limit change considerations, the parent nodes have two states (yes, no) where 

yes implies change the limits and no implies do not change the limits. By changing the 

constraint limits, the quality variables are optimized to operate as close as possible to 

their maximum-return values. At the same time, other non-quality variables are also 

moved due to the interaction between the process variables. Each optimal value taken 

by the quality variable is called its state and a state can take any value within the 

operating range and is continuous. The expected return from the process can therefore 

be calculated using Equation 4.10. At this point, we introduce a new variable z that 

represents all the quality variables (both CVs and MVs). This new variable will be 

useful for the formulations that follow 

E(F)= / p{z1,...,zq)F(zu...,zq)dzh...,dzq (4.10) 
J z\,...,zq 

E(F) is the expected cost, q represents the number of quality variables in the economic 

objective function and F(z\,..., zq) is an economic cost function which is continuous-

valued in nature. The profit is estimated as the difference between the value of the 

base case cost function and the value of the cost function obtained after constraint 

limits have been adjusted. For this reason, the continuous-valued economic objective 

function is referred to as the continuous-valued profit function in this thesis. 

4.3 Continuous-valued profit function 

From the preliminary information on LMIPA previously provided in section 4.2 and 

Equation 4.10, and with F(zi,..., zq) having the following additive form (Agarwal et 

al. 20076): 
g 

F{zu...,zq) = Y;F^ (4 1 1) 

We can re-write Equation 4.10 as: 

E{F)= / p(z1,...,zq)[YlFi(zi)]dz1,...,dzq (4.12) 
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Previously this problem was solved using a discretization of the above function into 

finite zones of profits based on the probabilities of the quality variables (specifically 

the products) to be above, within or below desired specifications (Agarwal 2007). 

However, we propose a solution to this problem by considering the continuous-valued 

function directly and thereby derive a closed form of solutions. The results will be 

shown to apply to both output and input variables in Equation 4.1. 

Proposition 1 

r q q 

E(F)= / p(z1,...,zq)[Y,Fi(zi)]dz1,...,dzq = E[Y,Fi(zi)] (4.13) 
J Z1 Z„ • _ i „ _ 1 Z^1—1Z1 i = \ 1 = 1 

if 

Fi(zi) = otiZi (Linear case), then (4.14) 
i i i 

E(F) = E^Fiizt)] = YJ^iE{zi) = J > ^ (4.15) 
i=l i=l 

if 

Fi(zi) = aiZi + Pf(zi — Hi)2) (Quadratic case), then (4-16) 

E(F) = J2(atzt + ffXo-l + z2~ 22itH + /i,2)) (4-17) 
i = i 

where Zi are the q quality variables, cti and $ are the linear and quadratic coeffi­

cients, aZi are the variances of the quality variables and /^ are the target values. The 

above results (for the linear and quadratic cases) hold whether the quality variables 

are dependent or independent (we will further discuss the formulation for the case 

when the quality variables are dependent in Chapter 5). When the quality variables 

are dependent, the proof is shown below. For simplicity, we use two quality variables, 

and we will consider the quadratic case for generality: 

Proof of Proposition 1 

From Equation 4.12, using q=2 for simplicity 
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E(F)= ! f (p{zx,z2)[Fx(zx) + F2(z2)])dzxdz2 
J z2 J z\ 

= (p{zx, z2)[Fx(zx)} + p(zx, z2)[F2(z2)])dzxdz2 
J 22 J Z\ 

From equation 4.13, for i=l,2, 

Fx(zx) = axzx + p2(zx - ^xf 

F2(z2) = a2z2 + $(z2 - n2)
2 

Therefore 

E(F) = ax / p(zx, z2)zxdzxdz2 +(i{ I I p{zx, z2){z\ + p\ - 2zx^,x)dzxdz2 
J Z2 J Z\ J Z1 J Z\ 

+ a2 / p(zx, z2)z2dzxdz2 + P2 / p{zx,z2){z\ + n\ - 2z2/j,2)dzxdz2 
J Z2 J Z\ J 22 J Z\ 

= ax / \p(zx, z2)dz2]zxdzx + fi\ / / \p(zx, z2)dz2\z\dzx 
J Z\ JZ2 J Z\ J Z2 

+ Pif4 / / \p(zi,z2)dz2]dzx-2pfiix / / [p(zx, z2)dz2}z2dzx 
J Z\ J Z2 J Z\ J Z2 

+ a2 / [p(zx, z2)dzx]z2dz2 + p2 / / [p(zx, z2)dzx\z\dz2 
J 22 JZ\ J Z2 J Z\ 

+ 02t4 / / \p(zi,z2)dz1]dz2-2$fi,2 / / \p{zx,z2)dzx\z\dz2 
J Z2 J Z\ J Z2 J Z\ 

(4.18) 

From the definition of marginal probability 

/ P{zx,z2)dzx =p(z2) and / p(zx, z2)dz2 = p(zx) (4.19) 
J Z\ J Z2 

Therefore Equation 4.18 becomes: 

E{F) = ax / p{zx)zxdzx + 01 i p(zx)z\dzx+fi\n\ I p{zx)dzx -2/^Vi / p{zx)z\dzx 
J Z\ J Z\ J Z\ J Z\ 

+ a2 / p(z2)z2dz2 + P2 p(z2)z
2dz2 + p%fj% / p(z2)dz2 - 2/32fi2 / p{z2)z

2dz2 
J Z2 J Z2 J Z2 J Z2 

= axE(zx) + i5\E{z\) + Pltf - 20\[i2E{zx) 

+ a2E(z2) + i5\E{z\) + (32
2vl - 2$fi2E(z2) 

(4.20) 
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Thus 

E(F) = a{z{ + Pi(aZl + ~z? - 2zT/ii) + a2z^ + (3l{aZ2 + ~z? - 2zfti2) 

and in general form, 
i 

E(F) = Y,(<*iZi + flK +1 - 2^* + £)) 
i=l 

(4.21) 

This proves Equation 4.17. The above formulation can be applied to Equation 4.1 to 

give the general form when the input and output variables are considered separately, 

as follows: 
m n 

E(F) = X)(^+^W+^-2|^+»/?)) + E ( ^ + ^ ( < + ^ - ^ + ^ (4-22) 
i=i j=i 

4.3.1 Bayesian approach for MPC constraint analysis 

For the cases of constraint change only, the covariance remains the same as that of 

the base case operation since the dynamic control is not changed. Optimizing the 

objective function subject to the new constraints provides the optimum operating 

points that are used as the new mean operating points for the benefit analysis. The 

parent nodes are defined as the variables that have the possibility of having their 

limits changed. The prior probability or the a priori for the parent nodes can be user 

defined or obtained from historical data. It indicates the preference to change or not 

to change the limits. For example, if a parent node has a priori of 0.7 for making a 

change to the limits, this means that the constraint limits for this variable has 70% 

tendency to change and 30% not to change. In this work, to define the conditional 

probability table for the parent nodes, we have used equal probability to change or 

not change the constraints when performing the optimization and, as a result, there 

is an equal probability to change or not to change the limits (i.e. 50% to change or 

not to change the limits). In Agarwal et al. (2007)(Agarwal et al. 2007a, Agarwal 

et al. 20076), the selection of equal prior probabilities has been shown to give the 

maximum-likelihood solution. Figure 4.1 show the DAGs (directed acyclic graphs) of 

two Bayesian networks. Figure 4.1(a) shows the structure for two parent nodes and 

two child nodes, while Figure 4.1(b) shows the structure for a network with multiple 

parent and child nodes and how they affect the obtainable profit. Reference can be 
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(a) Two paxents and two child nodes 

; N Parent Nodes 

| Pari | | Par2 | [ Par3 

(b) N parents and Q child nodes 

Figure 4.1: Illustrative Directed Acyclic Graphs (DAG) of Bayesian networks 



Chapter 4- MPC constraint analysis - Bayesian approach via a continuous-valued 
profit function 70 

made to the work by Agarwal et al (2007) (Agarwal et al. 20076) for the procedure 

for building Bayesian networks for this type of analysis. 

The child nodes are defined as the quality variables, i.e, the variables which affect 

the profit function. These are the variables with non-zero linear and/or quadratic 

coefficients in the MPC economic objective function. The conditional probability 

distributions of the child nodes are specified based on the optimum operating points 

obtained from the optimization step and the base-case standard deviations from the 

data. 

The Bayesian analysis is based on the probability distribution of the data. For 

this work, the data is assumed to be Gaussian. The Bayesian analysis for decision 

evaluation is carried out using the Bayesian Network toolbox (BNT) developed by 

Kevin Murphy (Murphy 20046, Murphy 2004a, Murphy 2001) and the decision making 

is directly solved by optimization. 

Decision evaluation 

This refers to inferring the achievable profit, if certain decisions regarding limits 

change are made. For decision evaluation, the decision whether to change or not 

to change the limits is provided. This is equivalent to the evidence for the Bayesian 

network conditional on which, the probabilities of the locations of the quality variables 

are then estimated. Thus the profit can be evaluated based on the relation specified 

in Equation 4.17. 

Decision making 

This refers to obtaining the maximum-a-posteriori explanation that will help to 

achieve a target value of the profit. For decision making purposes the target return 

is provided and the corresponding optimum values for the quality variables affecting 

the profit function are estimated. Based on the optimum values for the quality vari­

ables obtained, the algorithm suggests a combination of variables for which changing 

their constraint limits will most likely achieve the specified profit. It is not necessary 

however that, given a profit value, there is a unique set of quality CVs/MVs location. 

Multiple sets of locations may exist to yield the same desired profit. This is shown 

in Figure 4.2 and will be elaborated shortly. 

Based on the probability distribution assumption for the base case variability, we 
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use an optimization approach to find the locations of the quality variables (i.e their 

values) that will have the maximum probability of occurring while also yielding the 

desired profit. As a result, the maximum-a-posteriori estimate of the states of the 

parent nodes (i.e. change the limits or not) can then be obtained. 

Based on the formulae for the continuous-valued profit function, we proceed to 

show how the decision making can be carried out. First consider the case when the 

quality variables are independent, i.e. 

p(zl,...,zq) = JJpO 
i=l 

Thus: 

n**)=n 
1 = 1 i = l 

1 
-.exp 

{Zi - Zif 

(4.23) 

(4.24) 
.v/2^T"V 2*1 , 

where Gaussian probability distributions of the variables have been assumed for each 

of the q quality variables. z~i is a set of optimal operating points for a specific con­

straint tuning, obtained from the decision evaluation step. 

To obtain the most likely locations of the quality variables that will give the de­

sired return, we maximize the probability density function: 

p = max J T 
1 

V^ .exp 
^ 2 

(Zi - Zj) 

2a? 
(4.25) 

using log-likelihood: 

max 
zi->"- izq 

n* 
i=l 

Zi) = m a x 
Zi)"' ) Zq 

{iog(n 
i = i \f^°\ -.exp 

(Zj - Zjf 

2a? 

thereby obtaining 

max 

max 

II* 
i = i 

max 

q 

I Zi Zi 

mm 

^ V 2 < 7 ? 

(Zi - 'Zi)2 

)} 

) or equivalently 

nin
7 E 

i-\ 
2a? 

subject to the specified profit: 

J2(oiZi + $(a2
Zi + z\ - 2zijjJi + tf)) = RT 

i = i 

(4.26) 

(4.27) 

(4.28) 
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Figure 4.2: Schematic illustrating choice of combination of quality variables to achieve 
a target return 

and also subject to the constraints on the quality variables. 

As illustrated in Figure 4.2, all points falling on the circle in the Z\ and z<i plane 

satisfy the profit constraints. Thus the solution to this problem is non-unique and 

the above optimization is justified. In Figure 4.2 the locations A, B, C and D are 

examples of these points. These locations could all satisfy the specified target return 

as shown in Equation 4.35. The probability associated with all the possible locations 

is determined by the joint distribution of z\ and z2 and the optimization is carried 

out to find the location that has the highest probability of occurring. 

Equation 4.34 is an optimization problem with a quadratic objective function 

and a quadratic equality constraint (Equation 4.35). This optimization problem can 

be solved using YALMIP(Lofberg 2004), an open-source optimization toolbox for 

MATLAB(MathWorks 2007a). YALMIP is an interface for SeDuMi, SDPT3 and 

many other optimization algorithms. It is used for rapid prototyping of optimiza­

tion problems and although it initially focussed on semi-definite optimization prob-
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lems, its scope has been significantly extended to include various other optimization 

problems. Other optimization toolboxes used are the MATLAB optimization tool-

box(MathWorks 20076), SeDuMi toolbox(Sturm 1999) and SDPT3 (Toh et al. 1999), 

which are also useful for semi-definite programming and optimization over symmetric 

cones. 

Equations 4.27 and 4.28 are used 2N times, once for each of the combinations of 

limits change, where N is the number of variables chosen for limits change, and a 

set of optimum values are obtained in each case. This results in 2N sets of optimum 

values. The decision making process is then completed by using Equation 4.29 to 

determine which set of optimum values out of the 2^ cases has the highest probability 

of occurring. 

max {pOi,..., zq)i, ...,p(zu ..., zq)2N} (4.29) 
(zi,. . . ,z,)* 

We will illustrate the above formulations using an example where q = 2 for the 

case when z\ and z2 are independent, i.e. 

p(Zl, z2) = p(Zl)p(z2) (4.30) 

Thus: 

**« • vhexp ( " T ) ' vkexp (J~^f) (431) 

As stated above, to obtain the most likely locations of the quality variables that will 

give the desired return, we maximize the probability density function: 

p = maxp(zi, z2) (4.32) 

Using log-likelihood: 

msxp(z1)p(z2) = max{log(p(z1)p(z2))} (4.33) 

this gives: 

/ (zi-zi)2\ f(z2-z2) , . 
max —y — ——5 ) or equivaiently 
zi,Z2 \ 2(71 J \ 2o~2 

. ,'(Z1-Z[)2\ , f(z2--2? 
mm ( -—„ 0 I + ' 
Zl,Z2 

2a? J \ 2ah 

(4.34) 
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subject to 
2 

Ys&ti + ftK + zi ~ 2z^ + M) = RT (4-35) 

and subject to Equations 4.5 and 4.6. 

The values of z~\ and z2 in Equation 4.34 are obtained from the optimization 

step previously described. In this illustration, since we have 22 = 4 combinations 

of limits change, we will have 4 pairs of mean values (z\ and z2) for each case of 

constraints change. For each pair of means, the optimization described in Equation 

4.34 and its associated constraints will give the corresponding optimum values of z\ 

and z2. Overall, for all the cases considered, four pairs of optimum values for Z\ and 

z2 are obtained (i.e. (z\, z2)i, {z\, z2)2, (zi, z2)3 and(zi, -22)4)- Each of these pairs will 

satisfy Equation 4.34. Finally, using Equation 4.36, the pair of optimum values (i.e. 

{z\, z2)i, (z\, z2)2, (zi, ^2)3 or (zi, ^2)4) that has the maximum probability of occurring 

is chosen, i.e., 

max {p( (2 i , ^ ) i ) ,p ( (2 i , ^ ) 2 ) ,p ( (* i , 22)3),P((*i, 32)4)} (4.36) 

(21,22)* 

where (zi,z2)* is the pair of optimum values of all four cases, with the maximum 

probability of occurrence. This solution is also the maximum a posteriori with the 

specified profit value given as the evidence. 

4.3.2 Illustrative example of a Bayesian network for MPC 
constraint analysis 

The following example illustrates the procedure for building a Bayesian network to 

carry out the procedures for MPC constraint analysis as described previously. We 

consider a 2 input-2 output multivariate system with a steady state gain matrix as 

follows: 

(4.37) 
kxl k12 

k2\ k22 

In the following discussion we will differentiate between the process variable (CV 

or MV) and the logical variable (the decision whether to change limits or not) by 

labeling them as CV or MV (process variables) and CV* or MV* (logical variables), 

respectively. 
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Table 4,1: Linear and quadratic coefficients of variables and. limits change specifica­
tions 

Variable 
CV1 
CV2 
MV1 
MV2 

L Coeff 
0 

aCV2 
aMVl 

0 

Q Coeff 
0 
0 
0 
0 

Limits Change 
Yes 
No 
No 
Yes 

Table 4.2: Specifications of parent and child nodes 
Parent Nodes 

States 
Child Nodes 

States 

cvr 
(Yes, No) 

CV2 
(/i, a'2) 

MVT 
(Yes, No) 

MV1 
(/i, a'2) 

Let CV2 and MV1 be quality variables (i.e variables in the MPC economic ob­

jective functions with non-zero linear and/or quadratic coefficients) while CV1 and 

MV2 are constraint variables, see Table 4.1. 

Since we have specified two variables for limits change, the Bayesian network will 

have two parent nodes (CV1* and MV2*). Also, since we have two variables with 

non-zero linear and quadratic coefficients, we have two child nodes for the network 

(CV2 and MV1). Table 4.2 shows the specifications for the parent and child nodes. 

The conditional probability distributions (CPD) of the nodes are thus defined. The 

parent nodes will have conditional probability tables (CPT) as shown in Table 4.3. 

We assume that the prior probabilities of each of the parent nodes is 0.5, implying 

that there is an equal probability that we will make a change in the limits or leave 

the limits unchanged. 

For this system, we will have 22 = 4 (see Table 4.4) combinations of limits change 

for which we can carry out optimizations to obtain the optimum values of the quality 

variables based on our choice of limits change. The CPD's of the child nodes, being 

Table 4.3: Specifications of parent and child nodes 
Parent Nodes Change Limits Do not Change Limits 

CVl* " OTS " " 05 " 
MVT 0.5 0.5 
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Table 4.4: Diffen 
Parent Nodes 

cvv 
MV2* 

mt cases of limits cli 
Case 1 

No 
No 

Case 2 
Yes 
No 

ange combinations 
Case 3 

No 
Yes 

Case 4 
Yes 
Yes 

CPT CPT 
Change 

0.5 

Don't Change 

0.5 

CPD 
N~(Mcv2,tJCV22) C C V 2 

Change 

0.5 

Don't Change 

0.5 

CPD 
N ~ ( | 1 M V I , C M V I 2 ) 

Figure 4.3: Bayesian network for illustrative example 

continuous, are denned by mean values and variances for each node. The mean values 

of these child nodes are the optimum values obtained from the optimization step and 

the variances or covariances are the base case variances or covariances of the quality 

variables, obtained from data. 

With CV2 and MV1 identified as quality variables and their CPD specified as 

discussed above, with the CPT for CV1* and MV2* as parent nodes given as shown in 

Table 4.3, we have a Bayesian network as shown in Figure 4.3, which can subsequently 

be used for decision making and decision evaluation. 

Decision Evaluation: Here we supply our decision to change or not change lim­

its as evidence to the network. This evidence is used to estimate the probabilities 

of the child nodes to have a particular expected value, based on their probability 

distributions. This estimated mean value is then used to calculate the expected re­

turn, and subsequently, the potential profit that can be obtained from the process. 

The expected return is calculated using Equation 4.15 (for this linear case) as follows: 
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E(F) = aCV2CV2 + aMviMVl (4.38) 

As an illustration, let us assume we make a decision to change the limits of CV1 

and leave MV2 unchanged. For simplicity of notation, P(CV2\CVV = Yes, MV2* = 

No) will be written as P(CV2\CV1*, MV2*). With this information, the probability 

associated with the child node CV2 (for example) is as follows, using Bayes rule (Korb 

and Nicholson 2004, Wikipedia 2007): 

v ' ' ' P{CVl*) x P(MV2*) v ; 

Using likelihood ratios, we have: 

P(CV2\CVV, MVT) = [AiP(CV2) + p(^y^p%V2) + p^cv2)] (440) 

where 

p(cvr\cv2) 
Ai 

HCVl*hCV2) 
_ P{MV2*\CV2) y ' ' 

2~ P(CV1*\-^CV2) 

In the above equations (Equations 4.39, 4.40 and 4.41), P(CV2) is the prior prob­

ability of the occurrence of CV2, also known as the a-priori. P(CV\*\CV2) is the 

likelihood of obtaining evidence CV1* given that the occurrence of CV2 is true, 

P(MV2*\CV2) is the likelihood of obtaining evidence MV2* given that the occur­

rence of CV2 is true and P(CV2\CV1\MV2*) is the posterior probability of CV2 

being true given that the evidence CV1* and MV2* are both obtained. ~^CV2 rep­

resents the case when the hypothesis of obtaining CV2 is not true. 

Decision Making: In this specified value for the expected returns is 

provided to the algorithm. Using Equation 4.34 for the decision making, we have the 

objective function for optimization as: 

CV2,MV1 V 2a2
CV2 ) V 2crMVl J 

subject to 

Levi < CV2 < HCv2 (4.43) 
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Table_4._5^_Linear^arid quadratic optimization coefficients - linear case 

Linear" 
Quadrat ic 

CV Number 
1 2 3 4 5 6 7 8 
0 0.2864 0 0 0 0 0 0.1714 
0 0 0 0 0 0 0 0 

9 10 
0 0 
0 0 

MV Number 
1 2 3 4 
0 0 0 0 
0 0 0 0 

LMVI < MV1 < HMVI (4.44) 

aCV2CV2 + auviMVl = RT (4.45) 

max (p((CV2,MVi)1),p((CV2,MVl)2),p({CV2,MVl)z),p((CV2,MVl)4.)) 
CV2,MV1* 

(4.46) 

where RT is the specified returns, Lcv2 and LMVI
 a r e the lower limits for CV2 

and MV1, Hcv2 and HMvi are the upper limits for CV2 and MV1, respectively. 

These upper and lower limits will change for each of the four cases described above. 

(CV2, MV1)* are the optimum values for CV2 and MV1 thus obtained from the 

optimization. 

4.3.3 Illustration of the Bayesian Method through a Case 
Study of a Binary Distillation Column 

The binary distillation column shown in Figure 4.4 is a system with 10 Controlled 

Variables (outputs, y)and 4 Manipulated Variables (inputs, u). A detailed description 

of this system is available in the literature (Volk et al. 2005, Agarwal 2007). A study 

was carried out by Agarwal et al. (2007) (Agarwal et al. 2007b, Agarwal et al. 2007a) 

for this system based on the control objective described in Volk et al. (2005) (Volk et 

al. 2005). The linear quadratic objective function coefficients required to carry out 

the analysis are provided in Table 4.5. This case study is included here to compare 

the proposed approach with the previous work. 

The objective function can be defined using the information in Table 4.5 and 

substituting into Equation 4.1. e* and 6i are the first ten values of the linear and 

quadratic rows in Table 4.5, respectively. Likewise, 8j and 7? are the last four values 

of the linear and quadratic rows in Table 4.5, respectively. 
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Top Prod 

Figure 4,4: Schematic of simulated binary distillation Column 

4.3.4 Results 

From Equation 4.15, the expected returns are calculated and the results are shown 

to be the same as those of the deterministic LMIPA for the linear case. This is as 

expected since the LMIPA approach is based on the mean operating points only. For 

the quadratic case, we would expect a difference since the formulation (Equation 4.17) 

includes the variance (or covariance) term(s) as well as the mean values. 

Linear objective function 

In the following discussions we will differentiate between the process variable (CV 

or MV) and the logical variable (the decision whether to change limits or not) by 

labeling them as CV or MV (process variables) and CV* or MV* (logical variables), 

respectively. The results for the linear case are presented in Table 4.7 (Table 4.6 

shows the different combinations of limits change). 

The objective function can be defined using the information in Table 4.5 and 

substituting into Equation 4.1. ej and 6>j are the first ten values of the linear and 

quadratic rows in Table 4.5, respectively. Likewise, 8j and 7,- are the last four values 

of the linear and quadratic rows in Table 4.5, respectively. 
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Table 4,6: Different combinations of limits change 
CASE 
CV5* 
CVT 
MV1* 
MV3* 

1 
N 
N 
N 
N 

2 
Y 
N 
N 
N 

3 
N 
Y 
N 
N 

4 
Y 
Y 
N 
N 

5 
N 
N 
Y 
N 

6 
Y 
N 
Y 
N 

7 

N 
Y 
N 
N 

8 
N 
Y 
Y 
N 

9 
Y 
Y 
Y 
N 

10 
N 
N 
N 
Y 

11 
N 
Y 
N 
Y 

1.2 
Y 
Y 
N 
Y 

13 
N 
N 
Y 
Y 

14 
Y 
N 
Y 
Y 

15 
N 
Y 
Y 
Y 

16 
Y 
Y 
Y 
Y 

a. Decision Evaluation: 

To calculate the potential profit that can be obtained from the change of limits. This 

is done as follows: 

Profit = Base case cost - Cost from Limits Change (4.47) 

Base case cost: Cost from operating at current mean values. In this case study, Base 

case cost = -69.6293 

Cost from Limits Change: Cost from operating at optimum values due to limits 

change 

Equation 4.47 is used to obtain Table 4.7. The notation in Table 4.7 is explained 

below: 

• R-LMIPA: Returns based on LMIPA 

• R-case: Returns calculated from the proposed Bayesian-based approach 

From Equations 4.15 and 4.47, the profits are calculated and the results are shown 

to be the same as those of the deterministic LMIPA for the linear case, this is expected. 

For the quadratic case, we would expect a difference since the formulation in Equation 

4.17 includes the variance (or covariance) term(s) as well as the mean values. 

From Table 4.7, comparing case 1 and case 16 (and the cases in between), we 

observe that there is an overall trend between case 1 (where only one variable has 

its constraint limits changed) and case 16 (where all four process variables have their 

constraint limits changed). This trend indicates that the more the number of process 

variables that are chosen for constraint change, the more the profits that can be 

obtained from the process. This observation would intuitively be expected because 

we get more degrees of freedom as more variables are allowed to have their limits 
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Table 4.7: Profits obtained for combinations of limits change 

CASE R-LMIPA R-case 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

1.7513 
2.0257 
1.7513 
2.0303 
1.9212 
2.2025 

1.921.2 

2.2071 
1.7613 

2.0309 
1.7613 
2.0364 
1.9312 

2.2086 
1.9312 
2.2132 

1.7513 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

0257 
7513 
0303 
921.2 

2025 
9212 

2071 
7613 

0309 
7613 
0364 
9312 

2086 
9312 
2132 

changed. Table 4.7 also shows that the profits are the same for the deterministic 

LMIPA and the Bayesian-based LMIPA, for the linear objective function. 

The overall trend in Table 3 shows that the values of the profits for the even-

numbered cases are generally larger than the values of the profit for the odd-numbered 

cases. While this may not always be so, the explanation for this observation is 

due to the fact that some variables contribute more to the total profit when their 

constraints are adjusted, than others; and whenever these variables are included in 

the combination of variables chosen for limits change as yes or no, this affects the 

value of the total profit obtained. For example, by comparing Tables 4.6 and 4.7, 

and comparing the results from cases 2 and 3 (with respect to the combination of 

limits change), we note that changing the limits for only CV5 produces some profit 

and so whenever CV5 is included in the combination as a yes, more profit would be 

expected. Whereas, in Case 3, changing CV9 alone does not produce any extra profit 

(same profit as case 1). In case 5, changing the limits of only MV1 produces some 

profit, but it is not up to the profit produced when the limits of both CV5 and CV9 

are changed. Hence, although changing only CV9 did not produce any profit, we find 
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that changing the limits for both CV5 and CV9 produces more profit than from only 

CV5. Therefore, although we find an overall trend indicating an increase in profits 

as more variables are considered for constraint limits change, the profit obtainable 

from each case depends on the combination of variables chosen and the individual 

contribution of each variable to the total profit. 

Table 4.8: Comparison of decision evaluation results for discrete and continuous 
algorithms 

Case R-LMIPA Discrete Continuous 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

1.7513 
2.0257 

1.7513 
2.0303 
1.921.2 

2.2025 
1.9212 

2.2071 

1.7613 

2.0309 

1.7613 

2.0364 
1.9312 
2.2086 
1.9312 
2.2132 

1.7513 
2.0257 

1.7513 
2.0303 

1.9212 
2.2025 

1.9212 
2.2071 

1.7613 

2.0309 

1.7613 
2.0364 
1.9312 
2.2086 

1.9312 
2.2132 

2.2809 
2.2809 
2.2809 
2.2809 
2.2809 
2.2809 
2.2809 

2.2809 

2.5511 

2.5117 
2.5511 

2.5511 
2.5511 

2.5511 
2.5511 
2.5511 

Comparing this proposed approach using the continuous-valued function with the 

approach proposed by Agarwal et al. (2007)(Agarwal et al. 2007&, Agarwal et al. 

2007a) for the discrete calculation and LMIPA by Xu et al. (2007) (Xu et al. 2007) 

for the deterministic calculation, Table 4.8 shows that the LMIPA and the proposed 

continuous version of the Bayesian approach agree perfectly, whereas the the results 

obtained from using the previous discrete approach (Agarwal et al. 2007 ?>) does not 

clearly differentiate between the cases of limits change due to poor resolution of the 

zones of profits. 
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Decision making 
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• 
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Figure 4.5: Derision making resi 

21 

specified target profit 

b. Decision Making: 

Here, we seek to determine the process variables which should have their constraints 

changed based on a user specified profit. Ecrnatkm 4.27 is used for the optimization 

step to obtain the locations of the quality variables that will give the desired profit 

and then the algorithm determines the most probable combinations of variables for 

which changing their limits will give the desired results. 

It is important to note that the decision -making algorithm involves the determi­

nation of a specific location of the quality variable as evidence and not just the mean 

values as in the case of decision evaluation. Thus, the profit used in decision making 

is a point-wise profit while the profit used in decision evaluation is the averaged one. 

To achieve a profit of 2.21 units, the restilts are shown in Figure 4.5(b), showing 

that we will need to change the limits of CVS, MV1 and MV3. Whereas, changing 

the limits of CV5 and MV1 will allow us to achieve our target value of 2.14 units of 

profit as shown in Figure 4.5(a). 

We illustrate a comparison between the decision making results for the discrete 
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Table 4.9: Decision making: mean values of quality variables (continuous approach) 

Mean Values Operat ing points {decision making) 
~CV2 619986 60.5912 

CVS -500.025 -500.0181 

Table 4.10: Linear and quadratic optimization coefficients - quadratic case 

Linear 
Quadratic 

1 2 
0 0.2364 
0 0.5 

CV Number 
3 4 5 6 7 
0 0 1 1.5 0 
0 0 2 0 0 

8 9 10 
0.1714 0 0 
0.1 0 0 

MV Number 
1 2 3 4 
0 0 0 0 
0 0 0 0 

and continuous algorithms, with the following example. To achieve a target profit 

of 1.75 units, Figure 4.6 shows the results using both approaches. Figure 4.6(b) 

suggests that changing the limits of only CV9 will satisfy our objective while Figure 

4.6(a) suggests that both CV5 and CV9 should have their limits changed. Since, we 

desire to achieve the same target profit, the result from continuous approach is more 

reasonable than the result from the discrete approach (the discrete approach being 

an approximation of the continuous approach). 

For the given target profit value (1.75), the calculated locations for the quality 

variables are shown in Table 4.9. The mean values (as obtained from the base case 

data) are compared with the suggested operating points obtained from the decision 

making analysis. We observe that the operating point of CV2 is lowered, compared 

to its mean value, thereby creating room for potential profit. 

Quadratic objective function 

The linear and quadratic coefficients used for this case study are shown in Table 4.10. 

From Equation 4.17, the expected return is based on the mean operating points and 

the variances of each quality variable. 
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Decision making 

(a) Discrete approach 

Decision making 

(b) (..'.•")• j.i.:;ious approach 

Figure 4.6: Comparison of discrete <-,nd continuous decision making 
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Table 4.11: Decision evaluation: profits for quadratic case 
Case R-LMIPA R-case 
1 
2 
3 
4 

4014.04 
4983.54 
4014.72 

5075.68 

4013.32 
4982.83 

4014.01 
5074.97 

a. Decision Evaluation: 

There is a difference between the results obtained by the deterministic LMIPA and the 

Bayesian-based methods. This difference can be accounted for by the product of the 

quadratic coefficients of the objective function and the variance of the corresponding 

quality variable. As shown in Equation 4.48: 

£(/W) (4.48) 
i = i 

b. Decision Making: 

The results using the Bayesian approach are as follows: To achieve a profit of 4500 

units, the result is shown in Figure 4.7. It indicates that changing the limits of CV5 

will allow us to achieve our desired profit. The suggested locations of the quality 

variables from decision making are shown in Table 4.12 (these values are most likely 

achieved when the limits of CV5 have been changed by 5%). 

Decision making 

Figure 4.7: Decision making results for quadratic case 
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Table_4.12: Decision making results for quadratic case: locations of quality variables 
Quality Variables Base case Mean Operating points (decision making) 

~CV2 67797 61.TT " " ~~ " " ~ 
CVS 86.32 79.93 
CV6 0.157 0.209 
CV8 -500.11 -497.49 

4.4 Experimental validation 

Reference will be made here to the three-tank system previously described in section 

2.2.2 of Chapter 2. To avoid unnecessary repetition, we will not get into a detailed 

discussion of the setup. The model used for the MPC design is show in Equation 4.49. 

In this section, we will only describe the details of the MPC design and illustrate how 

this pilot-scale setup allows us to implement validation experiments. 

-0.04967 0 0 
0 

z-0.8904 
0.03994z-0.04013 -0.04411z+0.04201 
z2-1.764z+0.7789 z2-1.841z+0.847 
0.0139z-0.01395 0.03782z-0.03758 ~0.02095z+0.0211 z3-1.897z2+0.9023z z2-1.778z+0.79 z2-1.891z+0.8908 

The sampling time is 8 seconds. 

4.4.1 Linear objective function 

Given that the control objective in this case is to maintain desired liquid levels in the 

tanks, we can further specify our economic objective function as the maximization of 

the liquid level in the third tank (i.e. max(100CV3) or min(—IOOCV3) this implies that 

CV3 has a linear coefficient value of —100). All other conditions are left unchanged 

unless further specified. 

MPC controller parameters 

The constraints are set as 0.5 < MV{ < 1.0, and 0.05 < CVi < 0.25, where i = 

1,2,3. The input rate weights are given as [0.5,0.5,0.5], and the output weights are 

[1,0.8,0.9]. The control interval is 8 seconds, and the prediction and control horizons 

are specified as 15 and 2, respectively. 
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Table 4.13: Four combinations ofjimits change for linear validation example 
Parent Nodes Case 1 Case 2 Case 3 Case 4 

~CVY " No "" Yes" N o ~ Yes" 
MV3* No No Yes Yes 

By applying the designed MPC controller, and ensuring that all of the con­

trolled variables and manipulated variables are running within their corresponding 

constraints, the real time experimental data is collected and regarded as the base case 

operation in this study. The variables chosen for limits change are CV\ and MV3. 

This implies that we will have four (22 = 4) possible combinations of limits change 

(see Table 4.13). 

a. Decision Evaluation 

Table 4.14: Decision evaluation: profits for pilot-scale experiment - linear case 
Case 
1 
2 
3 
4 

X\."™ JLJ XV JL JL JL i \ 

1.6837 
1.7046 
2.8795 
2.8795 

R-Case 
1.6837 
1.7046 
2.8795 
2.8795 

Using the Bayesian method developed in this work, we obtain the decision eval­

uation shown in Table 4.14. The results are shown to be the same as the LMIPA 

results as previously discussed, for this linear case (R-Case). Also, as we would expect 

intuitively, the results show that with more degrees of freedom due to limits change, 

more profits can potentially be obtained from the process. 

The decision evaluation results obtained and the associated optimum operating 

values for each of the four cases were then used to conduct four validation experiments 

to ascertain the practicability of the suggested constraint tunings and determine if 

the potential profits can be actualized in reality. As shown in Figure 4.8, there is a 

strong agreement between the calculated and experimentally achieved profits. 

b. Decision Making 

When target profits of 1.7 and 2.5 are specified respectively, the algorithm deter­

mines the most probable combination of variables for limits change that will satisfy 
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Decision evaluation results 

Calculated 
Achieved 

Case 2 Case 3 Case 4 

Figure 4.8: Experimental validation of decision evaluation results - linear case 

the target profits. Figure 4.9 shows the results for decision making. We have then 

implemented the suggested operation points and constraint changes in the experi­

ment. Figure 4.10 shows that the decision making results have been experimentally 

evaluated. Note that there are some disagreements since the experimental profits are 

calculated as an averaged value while the decision making gives a point-wise profit. 

In addition, the maximum a posterior decision making only gives the most likely 

constraint tuning among a given set of tunings to achieve the desired profit target. 

4.4.2 Quadratic objective function 

Following the above specifications for the linear case, we can also illustrate the case of 

a quadratic economic objective function by specifying that CV3 has a linear coefficient 

value of —100 and quadratic coefficient value of 50. We also choose MV1 and MV3 

for limits change, indicating four possible cases of potential profits. 

a. Decision Evaluation 

The results for decision evaluation are shown in Table 4.15 to compare the LMIPA 
and Bayesian-based approaches for the quadratic case. As shown in Figure 4.11, 

there is indeed profit to be obtained from constraint relaxation, even though the 

experimentally achieved profit is slightly less than that which was calculated. 

3 

I " 
5 2 

0.5 

0 
Case 1 
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Decision making 

(a) Target profit = 1.7 units 
Decision making 

(b) Target profit units 

'•x'unecl Figure 4.9: Decision making results for ^...vHifv 
experiment-linear case 

target profit for pilot-scale 

Table 4.15: Decision evaluation: profits for pilot-scale experiment - quadratic case 
Case 
1 
2 
3 
4 

R-LMIPA 
23.6001 
23.7438 
34.4680 
34.5975 

R-Case 
23.8619 
24.0056 
34.7297 
34.8592 
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Decision making results 

a Calculated 

a Achieved 

Figure 4.10: Experimental validation of decision making results - linear ease 

I Decision Evaluation results 

I Calculated 
I Achieved 

Case4 

Figure 4.11: Experimental validation of decision evaluation results - quadratic case 

b. Decision Making 

When target profits of 25 and 31 are specified respectively, the algorithm determines 
the most probable combination of variables for limits change that will satisfy the 
target profits. Figure 4.12 shows the decision making results and as shown in Figure 
4.13, this result is reasonable given that the experimental profits are calculated as 
an averaged value while the decision making gives a point-wise profit, as previously 
noted. 
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Decision making 

• 

(a) Target profit »-•• 25 units 
Dscision making 

(b) Target, profit =- 31 units 

Figure 4.12: Decision making results for specified target profit for pilot-scale experi­
ment - quadratic ease 
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Figure 4.13: Experimental validation of decision making results - quadratic case 
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Table 4.16: Comparing features of discrete and continuous _algorithms_ 
Discrete Continuous 

Compared with LMIPA Approximation Mathematically accurate 
Quality Variables Only CVs considered ALL variables in 

for computational economic objective 
si m pile ity f u net ion 

Decision making approach Discrete solution from Direct solution through 
Bayesian software optimization 

4.5 Conclusion 

A method based on the continuous-valued linear and quadratic considerations for 

the profit function has been developed. It provides the constraint analysis for the 

process variables of the MPC controller based on a Bayesian framework, and the 

profit that can be achieved based on limits change (decision evaluation) is calculated. 

For decision making, the profits are specified and corresponding decisions concerning 

variables for limits change are inferred from the optimization. 

We have compared the results obtained using the approach proposed by Agarwal 

et al (2007)(Agarwal et al. 20076, Agarwal et al. 2007a) and the results obtained us­

ing the proposed continuous-valued approach. The comparisons show that with this 

method, we can achieve calculations without loss of information due to discretiza­

tion of profits, as in the case of the discrete algorithm. Table 4.16 summarizes the 

improvements of the continuous algorithm over the discrete version. 

The benefit of using the Bayesian approach, as shown in this paper, includes the 

ability to handle uncertainties by dealing with the probability distributions associated 

with the quality variables. The illustrations provided indicate the usefulness of this 

method for constraint analysis and tuning during process operation and maintenance 

of MPC controllers. It is also applicable for accessing controller performance and 

evaluates the opportunity for improvement and increasing profit margins. Finally, 

the utility of this method has been evaluated using pilot-scale experiments. 
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5.1 Introduction 

Since the advent of modern control algorithms and model-based controllers in the 

mid-seventies, the use of advanced process control (APC) strategies in industries 

has become crucial to the achievement of economic performance objectives. These 

concerns have generated a great deal of interest and research activity both in industry 

and academia. Among the available APC strategies, model predictive control (MPC) 

stands out as a key strategy for dealing with multivariate systems. Model predictive 

control (MPC) is a model-based algorithm which predicts the behaviour of the process 

outputs (controlled variables) based on the control action that minimizes a specified 

cost function (Qin and Badgwell 1997). 

The MPC algorithm seeks to satisfy economic, safety, equipment, product quality 

or human preferences, or even a combination of any of the above criteria (Agarwal 

2007, Backx et al. 2000). In addition to the MPCs objective of optimizing the future 

behaviour of a plant (Qin and Badgwell 1997), there is also the economic objective of 

an MPC controller. In a sense, since MPC is usually used at the supervisory control 

level (see Figure 1.1) (Qin and Badgwell 1997), the economic objective could be said 
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to take priority over servo and regulatory objectives. 

In the previous chapter, we have outlined a framework for estimating the effect 

of changes in constraint limits of process variables on the performance of an MPC 

thereby providing more insight for proper constraint analysis and tuning. In the 

quest to achieve optimal MPC economic performance, the following questions have 

been addressed: which constraints should be changed, and if constraint change is 

possible, what benefits can be obtained by doing so? These questions are answered 

by studying the relationship between variability and constraints within a Bayesian 

probabilistic framework. The analysis has been discussed as decision evaluation and 

decision making processes. Considering the profit as a continuous-valued function, we 

have shown that the analysis can be carried out without resorting to discretization. 

In a the previous analysis, we assumed independence between the quality variables. 

This is a fundamental assumption. In reality, however, it is also possible for the 

quality variables to be dependent. In view of this, a question arises naturally: what 

happens when the quality variables are correlated or statistically dependent? Does 

the analysis break down or can it be extended to deal with this consideration? In 

this chapter, we address this problem using a multivariate projection method called 

factor analysis and we show that with certain modifications, we can still handle the 

MPC constraint issue within a Bayesian statistics framework. 

5.2 Main Contributions 

A fundamental assumption in the previous analysis was that the quality variables 

were independent. This assumption often holds but in reality the quality variables 

could be dependent. This issue is addressed in this chapter. In dealing with this, we 

use factor analysis to model the dependence between quality variables. The algorithm 

will be extended to deal with the cases where there are correlations between quality 

variables in the Bayesian network (controlled and/or manipulated Variables, i.e. all 

variables with non-zero linear and/or quadratic coefficients in the MPC economic 

objective function). 

The decision evaluation results using the modified network (dealing with corre­

lations among quality variables) will be shown to be the same as in the previous 

analysis, when the variables were assumed to be independent. This is so because the 

modified network deals with the correlations between the quality variables but the 
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mean and variance, which are used to calculate the profit, remain the same. 

5.3 Continuous-valued profit function-revisited 

In Chapter 4, sections 4.3 and 4.3.1, we have introduced the mathematical formu­

lations that were proposed for this analysis but the discussion was restricted to the 

case of assumed independence between the quality variables. In section 4.3 we showed 

via Proposition 1 that the decision evaluation formulation holds for both the cases 

when the quality variables are dependent and when they are independent. Therefore, 

in this section, we will focus on the decision making aspect (please refer to section 

4.3.1 of Chapter 4 for more background information). When the quality variables 

are dependent, we consider the joint probability distribution of the variables and the 

following formulation applies. For clarity, we consider a case of two quality variables. 

p(Zl, ...,*,) = -^-rrexp (-\{Z - Z)T^\Z - Z)) (5.1) 

where Z is a vector of quality variables for optimization, Z is the vector of corre­

sponding mean values, and E is the corresponding covariance matrix. 

(Z-Z) = (Z1 
-zi\ 

and E = 

* i 

021 

< 7 1 2 • 

2 
°2 • 
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Vi - ZQJ 
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(5.2) 

where E can be estimated from the base case operation data. The objective function 

for this case can also be formulated as shown previously using log-likelihood: 

max l--(Z- ZfYT\Z - Z) ) or equivalent^ 
Zl,Z2 \ 2 

mm I -(Z - Z)TTTX{Z - Z) 
Zl,Z2 \ 2 

(5.3) 

subject to Equations 4.5, 4.6 and subject to the specified profit: 

i = l 

a,Zi + $(a2 + z] - 2zfM + (4)) = RT (5.4) 
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a and (3 represent each of the linear and quadratic coefficients, respectively, \i rep­

resents the specified target values, q is the number of the quality variables (i.e. all 

the controlled and manipulated variables with non-zero linear and/or quadratic coef­

ficients in the economic objective function). 

5.4 Modeling Dependence between Quality Vari­
ables 

Among many other issues, the effect of dependence between quality variables has led 

to many applications of multivariate projection methods for Statistical Process Con­

trol (SPC). These methods have great advantages when issues such as the dependence 

between quality variables, missing data, measurement errors, etc; arise (MacGregor 

and Kourti 1995, Kourti and MacGregor 1995, Kourti et al. 1996). 

For our purpose, we will consider one of the multivariate projection methods: fac­

tor analysis (FA). When quality variables are dependent (or correlated), the location 

of one quality variable will be affected by those of the other correlated quality vari­

able^) and thus they cannot be arbitrarily shifted to their optimum values to achieve 

the desired objective of increasing the profitability of the plant. This relationship 

must be carefully considered in the algorithm to prevent the possibility of taking ac­

tion based on wrong and/or misleading information. When variables are correlated, 

we use Equation 5.3, subject to Equation 5.4 and also subject to Equation 5.5. 

LZl <zt< HZi (5.5) 

Hz. is a vector of the upper limits for the quality variables, LZi is a vector of the lower 

limits for the quality variables. 

In dealing with this issue of dependence, via the use of factor analysis, the algo­

rithm as described in Chapter 4 will be extended to deal with the cases where there is 

dependence (or correlations) between the quality variables in the Bayesian network. 

5.4.1 Factor analysis 

In this work, we refer to the common approach (orthogonal factor analysis) as Factor 

analysis. The aim of factor analysis (FA) is to obtain a number of underlying processes 
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or factors that represent the correlation between variables in a data set. The results 

of FA form a new set of variables that are mutually independent of each other. 

FA can be used directly to identify groups of inter-related variables, and thereby 

reduce the number of variables in a data set (dimension reduction); or indirectly to 

transform data to identify certain properties of interest which the original data may 

not have. FA can be used for exploratory or confirmatory purposes. Exploratory 

factor analysis seeks to identify underlying factors among variables while confirmatory 

factor analysis is used for hypothesis testing. 

The objective of using FA is to transform the set of variables into a linear com­

bination of the underlying components (factors). These factors are called common 

factors if they are associated with 2 or more of the original variables. They are called 

unique factors if they are associated with an individual variable. The relationship 

between the original variables and the factors is contained in the loadings. These 

loadings are in turn associated with the magnitude of the eigen values associated 

with the individual variables. 

To properly interpret the factors, there is usually a rotation step which positions 

the factors in such a way that only the variables related to such factors will be 

associated with them (various orthogonal and oblique rotations are used in this step). 

In this work, we do not consider rotation of factors since our reason for using FA 

is different from the conventional uses (Wulder 2007, Tabachnick and Fidell 1989, 

Johnson and Wichern 1992, Moore et al. 1993). 

The factor model postulates that X is linearly dependent on a few unobservable 

random variables, fi, f2, • • • , fm, called common factors, and p additional sources of 

variation ex, e2, • • • , ep called errors or specific factors, where the observable random 

vector X ( a p x 1 vector with p components), has mean fi and covariance matrix £ 

(Johnson and Wichern 1992): 

X-fi = Af + e (5.6) 

A is the p x m matrix of factor loadings, / is a m x 1 vector of independent, stan­

dardized common factors, and e is a p x 1 noise vector of independent specific factors. 

Through this factor analysis, a set of correlated variables X can be decomposed into 

a linear combination of a set of mutually uncorrected variables / . Alternatively, the 
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factor analysis model can be specified as 

Cov(X) = AAT + * (5.7) 

where ^ = Cov(e) is a p x p matrix of specific variances. 

In this work we use the BNT toolbox (Murphy 2001, Murphy 2004a, Murphy 

20046) to perform the factor analysis between quality variables and thereby model 

dependence between them. In Figure 5.1(a), we consider factor analysis under a 

graphical model framework. F is the factor node with a prior of N(0,1) and Y\F = 

/ ~ N(/i + A/, \&). Y is the child node under consideration (in the context of this 

illustration, we will consider Y as a multivariate node, Y = [CV2 MV1]T), A is the 

factor loading matrix and ty is the covariance of the noise or specific variances. Also, 

because the noise on both F and Y is diagonal, the components of these vectors are 

uncorrelated, and can then be represented as individual scalar nodes, as we show in 

Figure 5.1(b). Generally, we specify that the size of F (say size of F = k) is less than 

the size of Y (let size of Y = D). Thus, the factor analysis model seeks to explain 

D observations using a k, lower-dimensional subspace (Murphy 2007). Specifying 

the prior probability of the factor node F as N(0, 7") requires centering the data by 

deducting the mean values from the data . This is done for simplification purposes. 

As shown in Figure 5.2, we can use factor analysis to create a new parent node 

/ , which can be a multivariate node, depending on the number of factors to be 

considered. The use of factor analysis enables us to convert a set of correlated variables 

into a set of uncorrelated source variables. The factor loadings are used as weights 

or effects on the child nodes (quality variables). This procedure will subsequently be 

illustrated by an example. 

5.4.2 Illustrative example of a Bayesian network for MPC 
constraint analysis using factor analysis 

The following example illustrates the procedure for building a Bayesian network to 

carry out the procedures for MPC constraint analysis as described previously. We 

consider a 3 input-3 output multivariable system with a steady state gain matrix as 

follows: 
k\\ k\2 &13 

K= k2l k22 fc23 (5.8) 
&31 &32 &33 
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© 

(a) Using multivariate nodes 

(b) Using univariate nodes 

Figure 5.1: Factor analysis as graphical model 
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(a) Independent child nodes (b) Dependent child nodes 

Figure 5.2: Directed Acyclic Graphs with dependence modeled by a factor node 

Table 5.1: Linear and quadratic coefficients of variables and specifications for limits 
change 

Variable 
CV1 
CV2 
CV3 
MV1 
MV2 
MV3 

L Coeff 
0 

aCv2 
0 

&MV1 

0 
0 

Q Coeff 
0 
0 
0 
0 
0 
0 

Limits Change 
No 
No 
Yes 
No 
Yes 
No 

From Table 5.1, the variables in the MPC economic objective functions with non­

zero linear and/or quadratic coefficients are CV2 and MV1; therefore, these are our 

quality variables. All the other variables could be considered as constraint variables 

with possibilities for limits change. For simplicity, we assume that only CV1 and 

MV2 are chosen for limits change. 

In the following discussion we will differentiate between the process variable (CV 

or MV) and the logical variable (the decision whether to change limits or not) by 

labeling them as CV or MV and CV* or MV*, respectively. 

Since we have specified two variables for limits change, the Bayesian network will 

have two parent nodes (CVT and MV2*). Also, since we have two variables with 
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Table 5.2: Specifications for parent and child nodes 
MV2 Parent Nodes 

States 
Child Nodes 

States 

CV3 
"(Yes; No)" 

CV2 
(//,. a ) 

(Yes, No) 
MV1 
G " , cr* 

Table 5.3: Different cases of limits change combinations 
Parent Nodes 

cvv 
MV2* 

Case 1 
No 
No 

Case 2 
Yes 
No 

Case 3 
f~~ No 

Yes 

Case 4 
Yes 
Yes 

non-zero linear and quadratic coefficients, we have two child nodes for the network 

(CV2 and MV1). Table 5.2 shows the specifications for the parent and child nodes. 

The conditional probability distributions (CPD) of the nodes are thus defined. We 

assume that the prior probabilities of each of the parent nodes is 0.5, implying that 

there is an equal probability that we will make a change in the limits or leave the 

limits unchanged. 

For this system, we will have 22 = 4 (see Table 5.3) combinations of limits change 

for which we can carry out optimizations to obtain the optimum values of the quality 

variables based on our choice of limits change. The CPD's of the child nodes, being 

continuous, are defined by mean values and variances for each node. The mean values 

of these child nodes are the optimum values obtained from the optimization step and 

the variances are the base case variances of the quality variables, obtained from data. 

With the CV2 and MV1 identified as quality variables and their CPD specified as 

discussed above, with the CPT for CV1* and MV2* as parent nodes given as 0.5 for 

each of their prior probabilities, we have a Bayesian network as shown in Figure 5.3, 

which can subsequently be used for decision making and decision evaluation. 

Decision Evaluation: Here we supply our decision to change or not change lim­

its as evidence to the network. This evidence is used to estimate the probabilities 

of the child nodes to have a particular mean value, based on its distribution. This 

estimated mean value is then used to calculate the expected cost, and subsequently, 

the potential profit that can be obtained from the process. The expected cost is cal­

culated using Equation 4.14 as follows: 
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CPT CPT 
Change 

0.5 

Don't Change 

0.5 

CPD 
CV2|F=f~N(n + Af,v|/) 

CPD 
N~ (0,1) 

Change 

0.5 

Don't Change 

0.5 

CPD 
MVl|F=f~N(n+Af,V|/) 

Figure 5.3: Bayesian network with factor node for illustrative example 

E(F) = acv2CV2 + aMV1MVl (5.9) 

Decision Making: In this specified value for the profit is provided to the 

algorithm. Using Equation 5.3 we have the objective function for optimization as: 

min \-(Z-ZfYrl{Z-Z) 
CV2,MV1 V 2 

subject to 

Levi < CV2 < H, CV2 

LMVI < MV1 < E2 MV\ 

aCV2CV2 + aMV1MVl = RT 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

where RT is the specified returns, Lcv2 and LMVI
 a r e the lower limits for CV2 

and MV1, HCv2 and HMvi are the upper limits for CV2 and MV1, respectively, E 

is the covariance matrix as shown below, and acv2
 a n d OLMVI

 a r e the linear co­

efficients of the economic objective function. Y - CV2 
MV1 

Y = 
CV2 
MV1 

and 
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y _ aCV2 crCV2MVl 

_0~MV1CV2 aMVl 

The optimum values for CV2 and MV1 thus obtained from optimization are then 

supplied as evidence to the network. The network then determines the most probable 

explanation of this evidence based on the probabilities of the four available combina­

tions of limits change and the associated distributions of CV2 and MV1 previously 

provided to the network. 

5.5 Experimental validation 

The proposed approach was implemented on the pilot scale process described in Chap­

ter 2, section 2.2.2. The MPC design parameters are as previously described in Chap­

ter 4, section 4.4.1. Since we have previously illustrated that the decision evaluation 

results are obtained by the same formulation for both the dependent and indepen­

dent cases(see section 4.3), we will focus on the experimental validation of the decision 

making results. 

5.5.1 Decision making 

As previously explained, this refers to obtaining the maximum a posteriori expla­

nation for decision making that will help to achieve a target value of profit. For 

decision making purposes the target expected return (or profit) is provided and the 

corresponding optimum values for the quality variables affecting the benefit function 

are estimated. 

The quality variables can be checked for significant correlations between them 

as using Matlab (MathWorks 2007a): [R,P] — corrcoef(X) returns P, a matrix of 

p-values for testing the hypothesis of no correlation. Each p-value is the probability 

of getting a correlation as large as the observed value by random chance, when the 

true correlation is zero. 

For this analysis, we consider the case where the liquid levels in all three tanks 

(CV1, CV2, CV3) are the quality variables. Equation 5.14 shows the corresponding 

correlation matrix. Since there is some reasonable correlation between the quality 
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Table 5.4: Decision making - suggested operating points 
Profit = 9.5 

Quality variable 
CV1 
CV2 
CV3 

Dependence 
0.2337 
0.1802 
0.2142 

Independence 
0.2331 
0.1793 
0.2132 

Profit = 11 
Quality variable 

CV1 
CV2 
CV3 

Dependence 
0.2337 
0.1802 
0.2292 

Indept 3nden.ce 
0.2331 
0.1793 
0.2282 

variables, we can use the proposed algorithm to accommodate the dependence. 

1 0.354055 0.109908 
0.354055 1 0.256687 
0.109908 0.256687 1 

(5.14) 

5.5.2 Results 

Linear function 

For the linear case, we specify the linear coefficients to be —100 for all three quality 

variables. The variables considered for constraint limits change are MV2 and MV3. 

Based on this information and following the procedures set forth in Chapter 4, the 

decision evaluation step can be performed. The decision evaluation results remain 

the same even when the variables are correlated. 

To obtain profits of 9.5 and 11 units, respectively, the decision making results 

are shown in Figure 5.4. Figure 5.5 shows that it is indeed possible to obtain more 

benefit, based on the decision making results obtained. It was observed that the same 

decision making results were obtained when independence between quality variables 

was assumed in the algorithm; however when the actual suggested operating points 

are checked, we observe that the two algorithms actually suggest different operating 

points for the quality variables. Both sets of suggested values can be achieved by 

changing the limits of MV2, which in turn allows CV3 to shift towards its optimum 

operating point to achieve the desired profit, as shown in Figure 5.4. 

http://3nden.ce
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Decision making 

(a) Target profit = 9.5 units (b) Target profit = 11 units 

Figure 5.4: Decision making results with dependence modeled-linear case 

| " . 5 

c 

I 10 
S3 Calculated 

|g Achieved 

Figure 5.5: Experimental validation of decision making results-linear case 

Quadratic function 

Similarly, for the quadratic case, we specify the linear and quadratic coefficients to 

be —100 and 50, respectively, for all the quality variables. When target profits are 

specified as 43 and 52 units, respectively, the decision making results are shown in 

Figures 5.6 and 5.7. Figure 5.6 shows the results when the dependence is not modeled 

while Figure 5.7 shows the results with the dependence modeled. Figure 5.8 also shows 

that the decision making results obtained, are indeed feasible. The difference between 

using the algorithm proposed in Chapter 4 and this .algorithm is shown in Figures 

5.6 and 5.7. We observe that when the dependence between the quality variables is 

modeled, the results obtained (as shown in Figures 5.7(a) and 5.7(b)) suggest that 

more variables should have their constraint limits changed, than in the case where 

independence is assumed (see Figures 5.6(a) and 5.6(b)). 

From the experimental results, we also observe that in general, there is better 
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Decision making 

(a) 'Target profit = 43 units (b; "• \\'got profit — 52 units 

Figure 5.6: Decision making results without dependence1 roodeled-quadratic case 

(a) Target profit = 43 units (b': 

Figure 5.7: Decision making resul ts with depende 

profit =; 52 units 

<•< ed-rpiadrat ic case 
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60 -K 

Figure 5.8: Experimental validation of decision mahi/ng results-quadratic case 

agreement with the calculated results when the limits of the two constrained variables 

are changed, rather than when only one process variable has its constraint limits 

changed. 

5.6 Conclusion 

In this chapter, we have shown the importance of, and provided a framework for 

modeling the dependence between quality variables in the Bayesian analysis. The 

importance of determining and modeling the dependence between quality variables for 

Bayesian analysis has been illustrated. This tool assists the user in making decisions 

and provides a new level of understanding of the relationship between the quality 

variables and the variables chosen for limits change. 

The results obtained by using the modified network (dealing with correlations 

among quality variables) are the same as when the quality variables were assumed 

to be independent, when used for decision evaluation. This is because the modified 

network deals with the correlation between the variables but the mean and variance, 

which are used to calculate the profits for the decision evaluation step in both cases, 

remain the same. The importance of the modified algorithm is shown when we con­

sider decision making for a case where there is strong dependence between the quality 

variables, has been illustrated. 



Conclusions 

This thesis has proposed new approaches for controller performance assessment based 

on the use of non-parametric statistics and Bayesian analysis. We have proposed 

some methods based on run lengths and more importantly, based on the previously 

proposed work by Xu et al (2007) and Agarwal (2007), we have developed a Bayesian-

based framework that increases the functionalities of the previous algorithms. 

In Chapter 2 of the thesis we reviewed the use of run length distributions for 

controller performance assessment and proposed new approaches based on the use 

of Markov chains. The proposed methods were discussed with the aid of illustrative 

examples. The use of Markov chains provided an approach that retained the intuitive 

appeal of the use of run lengths while at the same time also providing a theoretical 

background that is amenable to analysis. In Chapter 3, we developed an algorithm 

based on the Bayesian network that provides a new framework that serves as a tuning 

library which is useful for decision making purposes. 

In Chapters 4 and 5 of this thesis, an approach for the constraint analysis and 

tuning of Model Predictive Controllers (MPC) using Bayesian networks (Murphy 

2007, Murphy 2004a, Murphy 20046, Murphy 2001), has been proposed as an exten­

sion of previous work in this area (Agarwal 2007, Xu et al. 2007). We have addressed 

this problem using a continuous valued objective function and have provided a frame-
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work for considering the effect of dependence between quality variables as discussed 

in Chapter 5. 

Using a continuous valued function has allowed us to consider all the variables 

in the objective function as quality variables (without being limited to the situation 

where only the output variables were being used as quality variables), without loss of 

information due to discretization. We have also proposed a methodology that covers 

both linear and quadratic objective functions. Two case studies (a simulated binary 

distillation column and an pilot scale process) have been considered to illustrate the 

proposed approaches. 

The results obtained using the continuous valued function has been shown to 

be the same as those of the LMIPA for the linear case. For the quadratic case, 

the formulation of the objective function takes the variance of the quality variables 

into consideration and the presence of the variances in the formulation constitutes the 

difference between the LMIPA and the Bayesian-based algorithm using the continuous 

valued function. 

In Chapter 5, we have considered the special case where the quality variables 

are dependent and we have illustrated how this affects the decisions that can be 

made from the analysis. The dependence was modeled using factor analysis within a 

Bayesian statistics framework. We have shown that the presence of dependence results 

in more conservative decisions than in the case where there was no dependence. This 

is because the optimum value of each quality variable can not be easily attained when 

it is statistically dependent on the optimal values of other quality variables. 

It is expected that the effect of dependence between quality variables will be even 

more useful when the decisions as to change constraint limits are further investigated. 

In the present work, we have considered the decision to change or not to change the 

limits by 5%. This implies that the parent nodes have only two states {yes or no). 

However, if the limits change were considered up to 5%, then the parent nodes would 

be continuous nodes with a range of 0% to 5% and the effect of dependence should 

be more clearly seen. This work has provided the framework for such possible further 

investigation. 

Finally, in appendix A, we have provided some guidelines on how to use the 

BNT toolbox (Murphy 2007, Murphy 2004a, Murphy 20046, Murphy 2001). We have 

included sample codes that explain how we have used the toolbox in this thesis. The 

chapter is a simple tutorial that complements the tutorial in the BNT toolbox. 
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Exploring the Bayesian Network Toolbox 

A.l Introduction 

This chapter focuses on providing a step-by-step overview of the various possibilities 

that exist using the Bayesian network toolbox (BNT) developed by Murphy (Murphy 

2001, Murphy 2004a, Murphy 20046, Murphy 2007). We will restrict ourselves mainly 

to the applications of the toolbox that have been used in the previous chapters of 

this thesis. A complete tutorial on how to use the BNT toolbox can be found on 

the Murphy's webpage (Murphy 2007). In the following sections, we will illustrate 

the process of building a Bayesian network, defining the nodes and their parameters. 

We will also provide examples of how to use the BNT toolbox for Factor analysis 

(or Principal component analysis). Since there is a scarcity of references on using 

the BNT toolbox, we will draw extensively from the examples provided by Murphy 

(Murphy 2007), but we will adapt them to our specific problems and explain how the 

toolbox could be use for similar problems. The structure of this chapter is more of a 

step by step tutorial on how to use the BNT toolbox, than a well-structured paper 

article. All the commands provided in this section are given as they would be written 
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in the MATLAB environment. 

A.2 Building a Bayesian network 

The instructions for downloading and installing the BNT toolbox are available at 

http://www.cs.ubc.ca/murphyk/Software/BNT/bnt.html (this link can also be ob­

tained by typing "bnt toolbox" in google or any search engine). The tutorial available 

on the website indicated is, in itself, very detailed. What we have set out to do here 

is to illustrate our use of the BNT toolbox in the approach and algorithm discussed 

in this thesis. 

A.2.1 Illustrative example 

In this section, we examine the procedure for building and parameterizing a Bayesian 

network for an MPC process with two variables chosen for limits change and two 

quality variables that affect the potential profit that can be obtained from the process. 

A directed acyclic graph (DAG) for this process is shown in Figure A.l. If the analysis 

was for changing the limits of N variables and there were Q quality variables, we would 

use Figure A.2 for the analysis. 

To build a Bayesian network for the example shown in Figure A.l, we need to 

specify the following commands: 

1 

2 

3 

4 

5 

6 

7 

8 

nNode = 
dag 
for 

end 

nParent + 
= zeros(nNode) 
i = 

f o r 

dag ( 
end 

1:nParent 
j = l:nCh 

i,nParent 

nChi 

r 

r 

ild, 

+ j) 

Id; 

= l; 

Where nParent and nChild are the number of parent and child nodes respectively. 

In the above segment of code, we have used for loops for simplicity but essentially in 

defining the DAG, we need to put a zero where there is no connecting arc between 

http://www.cs.ubc.ca/murphyk/Software/BNT/bnt.html
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CPT CPT 
Change 

0.5 

Don't Change 

0.5 

CPD 
N-fMcvz.Ccvz2) Q C V 2 

Change 

0.5 

Don't Change 

0.5 

MV2 

CPD 
N~((iMVl,OMVl") 

Figure A.l: Bayesian network fcr illustrative example 

nodes and a one where there is a connecting arc between nodes. Specifying the values 

of nParent and nChild differentiates between figures A.l and A.2. 

A.2.2 Parameterizing and creating the Bayesian network 

To parameterize the network, we need to specify the conditional probability distri­

butions of each node. The BNT toolbox can support different types of conditional 

probability distributions such as (Murphy 2007): 

• Tabular (multinomial) 

• Gaussian 

• Softmax (logistic/ sigmoid) 

• Multi-layer perceptron (neural network) 

• Noisy-or 

• Deterministic 
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N Parent Nodes 

Figure A.2: Directed Acyclic- Graphs (DAG) for illustrative example 

In this work, we have used only tabular and gaussian conditional probability distri­

butions for discrete and continuous nodes respectively. As shown in Figure A.l, the 

parent nodes (CV1 and MV2) have two states each (discrete nodes) while the child 

nodes (CV2 and MV1) have continuous distributions (continuous nodes). The con­

ditional probability distributions for the parent and child nodes are specified using 

tabular and Gaussian distributions, respectively, as follows: 

i 

2 ParentNodeSizes = 2*ones(1,nParent); 
3 % this indicates that each parent node has two states 
4 ChildrenNodeSizes = ones(1,nChild); 
5 % this indicate;s that each child node is univariate 
6 NodeSizes = [ParentNodeSizes ChildrenNodeSizes]; 
7 Net=mk_bnet(dag, NodeSizes,'discrete5,[1:ParentNumber]); 
8 % the function mk...bnet builds the Bayesian. Network 
9 % Next, parent nodes are specified as discrete nodes 
10 % and the child nodes are specified as continuous nodes: 
n for i=l:size (dag,1) 
12 i f i < ParentNumber 
is CPT=[0.5 0 . 5 ] ; 
14 Ne t .CPD{i}= tabu la r .CPD (Net, i ,CPT) ; 
is e l s e 
i6 Net.CPD{i}=gaussian_CPD(Net,i,'mean',... 
17 mu(:,i—ParentNumber), * cov! , cov(:,i—ParentNumber)); 
is end 
19 end 
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The above segment of code specifies the conditional probability table (CPT) of the 

parent nodes and the conditional probability distributions (CPD) of the child nodes 

(continuous nodes). The probabilities are specified in the CPT while the distributions 

(means and variances/covariances) are specified in the CPD. "mu" is a vector with as 

many elements as the states of the parent nodes, "cov" is the covariance matrix (or 

the variance vector) with corresponding elements to the mean vector. The Bayesian 

network is now ready to be used for inference and analysis. 

A.2.3 Supplying evidence and inference 

One-dimensional cell arrays are used to specify evidence supplied to the network. 

This allows each cell to accommodate vectors of different lengths, particularly when 

there are multivariate nodes present (Murphy 2007). 

2 % first we specify the inference engine 
3 engine = jtree_inf .engine(bnet); 
4 % then we define the cell array for evidence 
5 evidence = cell(1,nNode); 
6 % We specify evidence stating do not change limits for... 
7 % parent node 1 (CV.1) 
8 evidencef1} = 1; 
9 % We specify evidence stating change limits for parent... 
10 % node 2 (MV2) 
n evidence{2} = 2; 
12 [engine, loglik] = enter.evidence(engine, evidence); 
13 % We can infer the updated CPD based on the evidence ... 
14 % supplied above 
15 for i = l:nChild, 
i6 % mean values for each child node is obtained as follows: 
17 Marg.Dist = marginal-nodes(Engine,nParent+i); 
is mu(i)=Marg_Dist.mu; 
19 % other parameters can. be obtained, likewise 
20 end 
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A.3 Factor analysis using the Bayesian network 

In this section, we will carry out factor analysis using the Bayesian network. We will 

illustrate the procedure using a multivariate child node in this example, this is for 

illustrative purposes to show how multivariate nodes are defined and used. The DAG 

under consideration is shown in Figure A.3. Since each child node has both discrete 

and continuous parents, the CPD of each child node is defined as CV2\X = x ~ 

JV(/i 4- Ax, $) and MV1\X = x ~ N(fj, + Ax, \&) . This has been discussed in 

Chapter 5. 

CPT CPT 

CPD 
CV2|F=f~ N (n + A f, f) 

CPD (^ Factor <¥) 
N~ (0,1) 

Change 

0.5 

Don't Change 

0.5 

CPD 
MV1 "^ MVl|F=f~N(H + Af ,y) 

Figure A.3; DAG with dependence modeled using factor node 

load Data; J + t ^ qu lit 1 
K= 2 ; Iii ii c * t c. _or <- t i i 

M = 2 ; " f i n i' <-fa f tI i i 

D = siz e ( D a t a , 2 ) ; I \ t ct i H 
N = s i z e ( D a t a , 1 ) ; / - i t d i 

n o d e S i z e s = [M M K D ] ; 
% each parent node has M states, K factors are used and. 
% the child node if, multivariate with t v~rb abl.es; 

dag = zeros(length(nodeSizes)); 
% again we build the DA.G we need the Lambda matrix... 
;o as weights for the network 
[LI, Psil, LL1] = ffa(Data,K,max.iter); 

t hi f u 1 J'I i i i t 11 i i 

f 1 i 1 h A i i n l i 1 ) i * x 

http://abl.es
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16 

17 for i=l:length(nodeSizes)—1 
is dag(i,length(nodeSizes))=1; 
19 end 

20 nNode = length(nodeSizes) ; 

21 

22 Net=mk_bnet(dag, nodeSizes,'discrete',[1:nParent]); 

23 

24 for i=l:nParent 
25 C P T = [ 0 . 5 0 . 5 ] ; 
26 Net.CPD{i}=tabular_CPD(Net,i,CPT) ; 
27 end 
28 i=length (nodeSizes) ; 
29 Net.CPD{i-l}=gaussian_CPD(Net,i-1, , zeros(K, 1 ) , . . . 
so ' c o v ' , e y e ( K ) , ' c o \ , ' , o c . w e i g h t ' , 0 , . . . 
3i ' c l a m p ...me a n 1 , 1 , ' , 1 ) ; 
32 Net.CPD{i}=gaussian_CPD(Net, i , 'mean', Meanl, ' c o v ' , . . . 
33 repmat(diag(Psil),[1 1 nParent*M]), 'weights', L l l , . . . 
34 ' cov . type ' , 'd:i.aq', ' cov.pr iorsweiqht ' , 0, ' t i e d . c o v ' , 1); 

In this section, we have provided an overview of the BNT toolbox and we have 

illustrated the procedure for building a Bayesian network for various forms of analysis 

by providing snippets of MATLAB code. Examples have been included to show how 

the network can be used to make inference. We have also illustrated that the network 

can be used for a statistical procedure like factor analysis. 

Other uses and applications of the BNT toolbox have been shown by Murphy 

(Murphy 2001, Murphy 2004a, Murphy 20046, Murphy 2007), but we have restricted 

our examples to the scope of the algorithms included in the previous chapters of this 

thesis. 


