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Abstract  
 

This thesis investigates the effectiveness of occupational exoskeletons and assistive tools in 

reducing ergonomic risks associated with physically demanding tasks, specifically focusing on the 

comparison of in-lab and in-field assessments and the utilization of advanced musculoskeletal 

modeling techniques. This thesis outlines its comprehensive investigation into the ergonomic risks 

associated with occupational tasks, organized across several chapters.  

The first study explores the biomechanical impact of using a back support exoskeleton and 

assistive tools (Lever and Jake) in the task of manhole cover removal.  The use of various tools 

and occupational exoskeletons was suggested to enhance physical capabilities of workers who 

regularly perform physically demanding tasks involving heavy lifting and awkward postures. Most 

of the studies aiming to explore the effectiveness of these tools and exoskeletons have been 

performed in confined and controlled laboratory spaces, which do not represent the real-world 

work environment. This study aimed to compare the outcome of biomechanical assessment of 

using a back support exoskeleton and assistive tools (Lever and Jake) in the procedure of manhole 

cover removal versus the results found by performing the same task in a laboratory. Ten able-

bodied participants and ten able-bodied utility workers performed the same manhole removal task 

in-lab and in-field, respectively, with the aid of an exoskeleton and Lever and Jake tools. Muscle 

activity and Rapid Entire Body Assessment (REBA) scores were recorded using surface 

electromyography and inertial measurement units (IMUs), respectively, and compared between in-

lab and in-field trials. The field experiments indicated significant differences (p < 0.05) in 

normalized muscle activity across most muscles when compared to lab data. These results revealed 

how muscle activity is affected by the controlled lab setting compared to real-world field 

conditions. However, REBA scores indicate similar ergonomic implications regardless of the 

utilization of exoskeletons or tools. These findings underscore that real-world field assessments 

are crucial for evaluating ergonomic risks and effects of occupational exoskeletons and tools to 

account for environmental factors and workers’ skills in ergonomic evaluations of this nature.  

The second study focuses on assessing lower back muscle and joint reaction forces during a 

common workplace task of lifting a weight using wearable IMUs and camera-based motion capture 

system (MCS). Low back pain is frequently associated with occupational factors, including heavy 
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lifting and poor ergonomics, and can lead to substantial healthcare costs and reduced productivity. 

Assessment tools for human motion and ergonomic risk at the workplace are still limited. 

Therefore, this study aimed to assess lower back muscle and joint reaction forces in laboratory 

conditions using wearable IMU during weight lifting, a frequently high-risk workplace task. Ten 

able-bodied participants were instructed to lift a 28 lbs. box while surface electromyography 

sensors, IMUs, and MCS recorded their muscle activity and body motion. The data recorded by 

IMUs, and MCS was used to measure lower back muscle and joint reaction forces via 

musculoskeletal modeling. Lower back muscle patterns matched well with electromyography 

recordings. The normalized mean differences between muscle forces obtained based on 

measurements of IMUs and cameras were less than 25%, and the statistical parametric mapping 

results indicated no significant difference between the forces obtained by both systems. However, 

abrupt changes in motion, such as lifting initiation, led to significant differences (p<0.05) between 

the muscle forces obtained by these systems. Furthermore, the maximum L5-S1 joint reaction force 

calculated using IMU data was significantly lower (p<0.05) than those obtained by cameras during 

weight lifting and lowering. The study showed that wearable IMUs had a potential for in-field 

assessments of lower back muscle forces, enabling the evaluation of in-field ergonomic risk 

assessment, optimizing posture and workstation, and ultimately reducing the risk of work-related 

musculoskeletal disorders. 

Integrating findings from both studies, this thesis highlights the potential of combining in-field 

and in-lab assessments using musculoskeletal modeling to better understand and mitigate 

ergonomic risks. This thesis introduces a novel approach by leveraging advanced musculoskeletal 

modeling techniques, such as the integration of IMU data and sophisticated statistical parametric 

mapping, to evaluate the potential of wearable sensors in ergonomic risks assessments. These 

advanced modeling techniques allow for a more precise simulation of human musculoskeletal 

dynamics under various real-world conditions, offering insights into muscle and joint forces that 

were previously challenging to obtain. By doing so, this innovative methodology not only 

enhances our understanding of ergonomic risk factors but also holds the potential to significantly 

reduce the prevalence of work-related musculoskeletal disorders. This marks a significant 

advancement in the biomechanics field by providing a comprehensive toolset for assessing and 

optimizing the use of occupational exoskeletons and assistive tools, contributing to safer work 

environments and better health outcomes for workers engaged in physically demanding tasks. 
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Chapter 1 

1. Introduction  

 

1.1 Overview  

This thesis delves into the critical evaluation of ergonomic risks associated with Work-related 

Musculoskeletal Disorders (WMSDs), emphasizing the role of occupational exoskeletons and 

assistive tools in mitigating these risks. WMSDs represent a significant concern within 

occupational health, encompassing a spectrum of conditions that affect muscles, nerves, tendons, 

and the musculoskeletal system, primarily due to or exacerbated by workplace activities and 

ergonomics [1]. WMSDs contribute to substantial medical costs, lost workdays, reduced 

productivity, and disability claims. This underscores the importance of prevention strategies [2]. 

Given the substantial impact of WMSDs on individuals' well-being, workplace productivity, and 

the broader economic landscape, this research aims to systematically assess how innovative 

ergonomic interventions, specifically occupational exoskeletons and assistive tools, can 

effectively reduce the incidence and severity of these disorders. By focusing on the ergonomic 

evaluation of such technologies in both laboratory and real-world settings, this study seeks to 

bridge the gap between theoretical research and practical applications, offering comprehensive 

insights into optimizing workplace ergonomics and enhancing worker safety. 

Ergonomic interventions involving the redesign of workstations, tools, and tasks can be effective 

in reducing the incidence and severity of WMSDs. Although training programs emphasizing 

proper lifting techniques and body mechanics have shown some positive results, their long-term 

effectiveness is debated [3]. Moving forward, an integrated approach encompassing workplace 

wellness, training, and technological solutions like wearables may offer promising avenues for 

addressing WMSDs more holistically [4]. 

WMSDs have traditionally been studied in controlled laboratory settings, offering detailed 

analyses under standardized conditions. In laboratory settings, ergonomic assessments are 

conducted under controlled conditions designed to isolate and precisely measure specific variables 
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related to WMSDs. This methodological approach ensures high degrees of measurement accuracy 

and repeatability, which are fundamental in understanding the biomechanical and physiological 

underpinnings of WMSDs. However, despite these advantages, laboratory-based assessments may 

fall short in capturing the complex nature of the workplace environment. Real-world conditions 

often involve a dynamic interplay of physical, environmental, and psychological factors that can 

significantly influence worker behavior, posture, and muscle activation patterns. For instance, the 

complexity of actual workspaces, varying environmental conditions such as temperature and noise, 

and the psychological stress of real-world tasks can all impact the development and management 

of WMSDs [5].  

These factors are difficult, if not impossible, to replicate fully in a laboratory setting. As a result, 

while laboratory-based studies provide invaluable insights into the mechanisms and potential 

mitigation strategies for WMSDs, they might not offer a complete picture of how these disorders 

manifest and can be effectively addressed in real-world scenarios. Therefore, field assessments 

that incorporate the actual working conditions and environmental contexts in which workers 

operate, is essential to complement laboratory studies [6]. In-field evaluations bring in insights, 

unveiling unique challenges and risk factors that may be overlooked or underestimated in 

controlled settings [7]. Balancing the rigor of in-lab assessments with the realism of in-field 

observations can provide a more comprehensive understanding of WMSDs, which helps in 

designing effective training and assistive tools to address the specificities of workplace 

environments [7]. Figure 1.1 depicts the major differences between a laboratory and field 

assessment of wearable exoskeletons. 
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Figure 1.1. The three stages of industrial exoskeleton development: initial validation, laboratory testing, and field 

evaluation [7]. This figure is reproduced under license agreement from Springer Nature. 

 

To this end, human motion assessment has long been a cornerstone of biomechanical research, and 

the technologies utilized for this purpose have witnessed significant evolution over time. One of 

the primary tools in the in-laboratory setting is the camera-based motion capture system (MCS). 

These systems, often based on optical tracking principles, use either marker-based or markerless 

methodologies. The marker-based approach involves placing reflective markers on specific 

anatomical landmarks of participants, allowing cameras to track their movement and, 

subsequently, recreate precise, high-resolution three-dimensional models of the human body in 

motion [8], [9]. Being set in controlled environments, these systems benefit from consistent 

lighting and minimal external disturbances, ensuring high-fidelity data capture. Furthermore, when 

integrated with force plates, they provide a comprehensive biomechanical analysis encompassing 

both kinematic and kinetic aspects [10]. 

On the other hand, inertial measurement units (IMUs) have revolutionized in-field human motion 

assessments. IMUs, compact sensors comprising accelerometers, gyroscopes, and occasionally 

magnetometers, offer the unparalleled advantage of capturing kinematics in real-world settings 

[11]. Their portability and wearability make them ideally suited for analyzing a vast range of 

activities, from athletic performances to everyday movements, outside the confines of a laboratory. 

This real-world data capture often results in more authentic and varied datasets. However, the 

flexibility of IMUs comes with challenges, such as ensuring absolute positional accuracy and 
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mitigating sensor drift, issues absent in the controlled, static setup of MCS. While MCS is 

considered the gold standard for detailed biomechanical analyses in controlled settings, IMUs have 

bridged the gap, providing an avenue for assessing human motion in genuine, dynamic 

environments [11]. 

Despite the growing interest in and development of occupational exoskeletons and assistive tools 

aimed at reducing ergonomic risks in the workplace, there exists a notable gap in understanding 

their effectiveness in real-world settings as compared to controlled laboratory conditions. Much of 

the existing research emphasizes outcomes from lab-based evaluations, which may not fully 

account for the complexities and variability encountered in actual work environments. This gap 

underscores the need for comprehensive studies that bridge this divide, providing a detailed 

comparison of the effect of these interventions in both settings. Such insights are crucial for 

developing ergonomic solutions that are not only scientifically validated but also practically 

applicable and effective in the diverse conditions of the modern workplace, ensuring that the 

potential benefits of these tools are fully realized in reducing work-related musculoskeletal 

disorders. 

1.2 Objective  

The proposed research aims to integrate the findings and methodologies to develop and validate a 

comprehensive, in-field ergonomic risk assessment framework for occupational settings. The core 

research question driving this thesis is as follows: “How do occupational exoskeletons and 

assistive tools, when assessed in real-world work environments, impact the ergonomic risks 

associated with physically demanding tasks?” This inquiry aims to delve into the practical 

effectiveness of these interventions in reducing the incidence and severity of WMSDs among 

workers engaged in tasks that demand extensive physical effort. By examining the performance 

and impact of occupational exoskeletons and assistive tools within the authentic context of their 

intended use, this research seeks to uncover insights into their role in enhancing workplace 

ergonomics. Furthermore, it endeavors to bridge the gap between laboratory-based findings and 

their applicability in dynamic, real-world settings, thereby contributing to the development of more 

effective strategies for mitigating ergonomic risks in the workplace." 
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Specifically, this research will focus on assessing the effectiveness of occupational exoskeletons 

and other assistive tools in real-world environments, particularly in reducing the prevalence of 

WMSDs, with an emphasis on lower back pain. The research will employ a hybrid approach, 

combining the in-lab precision of biomechanical modeling, involving OpenSim software for 

musculoskeletal modeling, with the real-world relevance of in-field assessments, comparing in-

lab and in-field ergonomic risk evaluations. The objective is to bridge the gap between laboratory-

based ergonomic risk assessments and their real-world applicability, considering the variability of 

muscle activity patterns and ergonomic postures observed in different working environments. 

Key elements of the research will include: 

1. Utilizing IMUs and EMG to capture and analyze ergonomic risks in actual work settings, 

focusing on tasks that are known to cause WMSDs, such as lifting heavy objects. 

2. Through this research, we aim to contribute to the development of more effective 

ergonomic interventions, improve the well-being of workers, and reduce the economic 

burden associated with WMSDs in the workplace. 

3. Applying musculoskeletal modeling techniques to evaluate and predict muscle and joint 

reaction forces, particularly in the lower back, during occupational tasks. 

4. Conducting a comparative analysis of kinetic data obtained using IMUs and MCS for 

ergonomic risk assessment. This element will focus on evaluating the accuracy and 

reliability of IMU-based measurements in capturing lower back muscle and joint forces 

during occupational tasks. The research will specifically examine the disparities in data 

obtained from these two methods, particularly during dynamic tasks such as lifting, to 

determine the extent to which IMU-based assessments can reliably substitute or 

complement MCS data in both laboratory settings. This comparison is crucial for 

establishing robust, non-invasive, and practical methods for ergonomic risk assessments in 

real-world work environments, thereby enhancing the feasibility and effectiveness of 

ergonomic interventions. 

1.3 Structure 

This thesis aims to bridge the gap between laboratory research and real-world application in four 

chapters (Figure 1.2). The initial chapter, Chapter 1, sets the stage for the research by outlining the 
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significance of WMSDs and the potential of occupational exoskeletons and assistive tools in 

mitigating these risks. It presents the core research question, aiming to explore the impact of these 

interventions in real-world environments compared to controlled laboratory settings. This chapter 

lays the foundational understanding necessary for readers to grasp the complexity of ergonomic 

risks and the innovative approaches being investigated to address them. 

The literature review in Chapter 2 offers a comprehensive analysis of previous studies, 

distinguishing between the precision of laboratory assessments and the real-world applicability of 

field assessments. It examines the methodologies used in past research, emphasizing the 

advantages and limitations of each approach. Furthermore, it introduces musculoskeletal modeling 

as a pivotal tool for ergonomic risk evaluation, setting the stage for its application in subsequent 

studies. This chapter critically examines the gap between theoretical knowledge and practical 

implementation, highlighting the need for a more integrative approach that combines the strengths 

of both laboratory and field assessments. 

Chapter 3 details the research design and methodologies employed to investigate the primary 

research question which explores the biomechanical impact of using a back support exoskeleton 

in the task of manhole cover removal. It describes the selection and use of occupational 

exoskeletons and assistive tools, participant recruitment, and the setup for both laboratory and field 

experiments. This chapter also presents the data collection and analysis methods, ensuring the 

reader understands how the research was conducted to maintain scientific rigor and relevance. 

Chapter 4 presents an in-depth analysis and application of musculoskeletal modeling. This chapter 

presents the comparison between in-lab and in-field assessments, focusing on the differences in 

muscle dynamics and joint reaction forces measured through MCS technologies and wearable 

IMUs. By leveraging detailed musculoskeletal models, this chapter evaluates the potential of using 

IMUs under real-world conditions versus controlled environments. The outcomes offer critical 

insights into the practical effectiveness of these interventions in reducing ergonomic risks and 

highlight the potential for musculoskeletal modeling to enhance ergonomic assessment and 

intervention strategies. 

Chapter 5 provides a discussion and conclusion on the research findings, discussing their 

implications for the design, selection, and implementation of ergonomic interventions in the 

workplace. It critically evaluates the research in the context of the existing literature, addressing 

the research question while highlighting limitations and areas for future research. This chapter 
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concludes with recommendations for practitioners and researchers, aiming to contribute to the 

ongoing effort to reduce ergonomic risks associated with physically demanding tasks. 

 

 

 

 

Figure 1.2. Flowchart demonstrating the relation between chapters of this thesis. 
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Chapter 2 

2. Literature Review  

This chapter offers a comprehensive review of the current research in biomechanical assessments, 

reviewing existing literature that explores the various approaches to evaluating ergonomic risks 

both in controlled laboratory settings and in the unpredictable real-world environments. This 

chapter bridges the theoretical foundation of musculoskeletal modeling with practical applications, 

delving into the precision and challenges inherent in laboratory assessments, the adaptability and 

technological constraints faced during field assessments, and the innovative methodologies aimed 

at combining these two worlds. It critically examines the role of advanced tools such as Statistical 

Parametric Mapping (SPM) and musculoskeletal modeling in transcending the traditional 

boundaries of ergonomic risk assessment.  

2.1 Surface electromyography (EMG) measurements for biomechanical analysis 

Surface EMG is a common technique that evaluates muscle function by measuring the electrical 

signals generated by muscles. This technique is non-invasive and measures the sum of the 

potentials generated by motor units, which are the basic functional units of muscle contraction. 

The technique involves placing electrodes on the skin over the muscles of interest. The recording 

process of EMG involves several steps [12]: 

1. Preparation of the Skin: The skin is cleaned and, if necessary, shaved to reduce electrical 

impedance and improve signal quality. 

2. Electrode Placement: Electrodes are placed over the belly of the muscle or along the 

muscle fibers, ensuring consistent placement across sessions or subjects for comparability. 

3. Signal Acquisition: The electrical signals are then captured as the muscle contracts, either 

voluntarily or through stimulation. 

Several considerations must be taken into account to as possible sources of error during surface 

EMG recordings. It is critical to avoid crosstalk from adjacent muscles. Movement artifacts can 
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distort the signal, requiring participants to maintain specific postures or use of stabilization 

techniques during recordings. Skin impedance and sweat can also affect signal quality and are 

typically minimized through proper skin preparation. External electrical noise from other 

equipment can interfere with the signals and needs to be shielded or filtered out [12]. 

Muscle EMG measures the electrical activity of muscles which is related to, but not directly 

proportional to, muscle force. Muscle force refers to the mechanical force generated by the 

contraction of muscle fibers and can be influenced by factors like muscle size, type of muscle 

fibers, and biomechanical aspects of muscle and tendon structures. EMG provides insights into the 

timing and level of muscle activation rather than the force itself [13].  

Estimating muscle force directly from EMG data is challenging due to several factors. First, the 

relationship between EMG signals and muscle force is non-linear. Second, individual variability 

affects the relationship, as differences in muscle size, fiber composition, and neuromuscular 

efficiency lead to unique EMG patterns. Third, muscle fatigue also complicates the interpretation 

as it changes EMG signal characteristics while reducing muscular efficiency. Fourth, crosstalk 

from adjacent muscles can contaminate EMG signals, inaccurately representing the targeted 

muscle's activity. Fifth, the distinction between static and dynamic contractions introduces further 

complexity; dynamic contractions involve changing muscle length and velocity, influencing the 

force output differently compared to static scenarios where the muscle length remains constant. 

Sixth, electrode placement and signal processing must be precise, as errors can lead to significant 

inaccuracies. Lastly, calibration and modeling are required to estimate force from EMG; however, 

these models often require individual calibration and provide only approximations of force, 

suitable for relative comparisons rather than absolute measurements. These complexities highlight 

why EMG is better suited for assessing trends in muscle activation rather than exact force 

measurements [10-13]. 

2.2 Laboratory Assessments in Biomechanics: Precision and Challenges 

The assessment of human motion in biomechanics varies significantly between field and 

laboratory settings. Each environment offers unique advantages and faces distinct challenges, 

especially when analyzing complex movements and predicting the biomechanical impact of 

interventions. Lab settings offer controlled environments that are instrumental for detailed 
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biomechanical analysis but often face challenges in replicating real-world conditions. Labs are 

equipped with high-tech tools that allow for the precise measurement of various biomechanical 

parameters. This controlled setting is ideal for studying specific aspects of human motion and 

understanding the underlying biomechanical principles [14].  

Despite technological advancements, labs struggle to mimic the unpredictability and complexity 

of field conditions. For example, studies focusing on industrial tasks like overhead drilling use 

digital human models to replicate field tasks in a lab setting, highlighting the gap between lab-

based simulations and real-world activities [15]. Labs facilitate comprehensive biomechanical 

analyses, such as the evaluation of joint angles, torques, and muscle activations. These detailed 

assessments are crucial for understanding the intricacies of human movement and for developing 

interventions to improve performance or reduce injury risk [16], [17]. 

2.3 Field Assessments in Biomechanics: Adaptability and Technological Limitations 

On the other hand, field assessments, while adaptable, often struggle with the limitations of 

portable technology and the challenges of dynamic environments. Field assessments 

predominantly rely on wearable sensors to collect data. These devices are less intrusive and more 

practical for real-world settings but may lack the accuracy and comprehensiveness of lab 

equipment. To compensate for technological limitations, field assessments often employ predictive 

models and data analysis techniques [15].  

2.4 Bridging the Gap Between Laboratory and Field Assessments 

Efforts to bridge the gap between field and lab assessments are crucial for a holistic understanding 

of biomechanics. Validating models for specific tasks, such as lifting, ensures their accuracy in 

simulating real-world activities. For example, the development of an OpenSim full-body model 

for lifting tasks provides insights into lumbar loading during lifting, demonstrating the potential 

of these models for practical applications [18], [19]. Studies on overhead industrial tasks illustrate 

the ergonomic challenges workers face. Biomechanical analysis of such tasks informs the design 

of ergonomic solutions and assistance devices to mitigate the risk of WMSDs [20]. 
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2.5 Comparative Analysis of Field and Laboratory Human Motion Assessments 

Diverse perspectives on laboratory versus field assessments in the context of human motion 

analysis can be found in literature. For instance, the use of wearable devices for walking and 

running gait analysis outside of the lab was evaluated by [21]. This study focuses on the application 

of wearable technology for gait analysis outside of the laboratory setting. It highlights the shift 

from traditional lab-based assessments, which typically involve advanced equipment like 3D 

MCS, to field assessments using portable and affordable wearable devices. These devices enable 

the study of gait patterns in natural, real-world settings and are becoming integral in the analysis 

of daily movement patterns across diverse populations. The review underscores the need for more 

extensive studies involving large participant groups in their natural environments and the 

establishment of guidelines for the usability of wearable devices in gait analysis [21]. 

The study performed by Giannini et al. focuses on risk assessment for biomechanical overload in 

manual material handling. The Rapid Entire Body Assessment (REBA) score was employed as a 

key metric in this study. This scoring system is widely used in ergonomic risk assessment for 

identifying and quantifying biomechanical overload risks in manual material handling tasks 

(Figure 2.1). The study introduces a novel system that employs a sensor network consisting of 

IMUs and EMG sensors. This system gathers and processes data from three IMUs and two EMG 

capture devices, providing ergonomic risk scores, including the REBA score. The system's 

capabilities were tested in a challenging outdoor scenario involving the lifting and lowering of 

containers on a cargo ship. Comparisons between this new method and traditional evaluation 

methods demonstrate the system's consistency, time efficiency, and potential for deeper analysis, 

including variations among individuals and a more detailed biomechanical analysis [22]. 
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Figure 2.1. REBA worksheet and risk levels [23]. 

 

 

Table 2.1. Level of MSD risk based on REBA score. 

Score Level of MSD Risk 

1 Negligible risk; no action required  

2-3 Low risk; change may be needed  

4-7 Medium risk; further investigation, change soon  

8-10 High risk; investigate and implement change  

11+ Very high risk; implement change  

Moreover, a study on motion analysis in sports biomechanics deals with the comparison of in-field 

versus laboratory testing, specifically in cricket bowling. It emphasizes the accuracy and reliability 

of opto-reflective systems used in laboratories over video-based systems used in field settings. The 
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paper discusses the technological advances in camera resolution and processing speeds that have 

improved biomechanical data collection and accuracy. However, it notes the challenges in 

implementing complex biomechanical models in field testing, thus favoring laboratory testing for 

certain precise measurements, such as the reconstruction of elbow angle data in cricket bowling 

[24]. 

An overview of wearable and non-wearable systems, highlighting clinical applications was studied 

by [25]. The results provide a comprehensive overview of the various methods used in gait 

analysis, contrasting wearable sensors and non-wearable sensors systems. The paper highlights the 

evolution and current state of gait analysis technologies, offering a detailed insight into both 

traditional and modern approaches to studying human gait. Non-wearable sensors are typically 

used in controlled laboratory environments. These systems, which include cameras, laser sensors, 

and pressure platforms, are designed to measure gait variables as the subject walks on a defined 

walkway. The main advantage of non-wearable sensors is that they allow for a more controlled 

analysis, isolating the study from external factors that could affect measurements. This results in 

high levels of repeatability and reproducibility for the gait parameters studied. The controlled 

setting, however, also means that these systems may not capture the natural gait patterns of 

individuals in their everyday environment [25].  

In contrast, wearable sensors utilize a range of sensors attached to various parts of the body, such 

as the feet, knees, thighs, or waist. These sensors, which include accelerometers, gyroscopes, 

magnetometers, force sensors, goniometers, and electromyography, are designed to capture 

various signals that characterize human gait. Wearable sensors systems have the advantage of 

being able to analyze gait data outside the laboratory, capturing information about human gait 

during a person's everyday activities. This makes them particularly useful for long-term 

monitoring and evaluation in real-world settings. Wearable sensors systems have also been shown 

to provide benefits in fields like wearable gait retraining, extending the reach of laboratory-quality 

analysis to a broader population. However, they also have disadvantages, such as the complexity 

of analyzing IMU signals and the amplification of measurement errors in certain situations [23]. 

Another study focused on a novel approach to assess the risk of falling by measuring gait instability 

using wearable technology. The study consists of two parts: a laboratory-based analysis with MCS 
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and a field assessment using wearable IMUs. In the lab, the gait of subjects was analyzed to 

establish normative thresholds for gait stability. The field assessment tested the accuracy of the 

wearable sensors in real-world conditions. Results showed high consistency between the wearable 

sensors and lab-based MCS, underscoring the potential of wearable technology for real-time 

monitoring of gait instability and fall risk (Figure 2.2). However, challenges in accuracy and 

applicability under different walking conditions were noted. The study highlights the comparison 

between controlled lab conditions and variable field settings in assessing gait stability [26]. 

 

Figure 2.2. Graphical representation of a novel approach to assess the risk of falling by measuring gait instability 

using IMUs [24]. This figure is reproduced under the rights managed by Taylor & Francis. 

Table 2.2 provides a side-by-side comparison of laboratory-based versus field-based human 

motion studies. Laboratory environments allow for a high degree of control and accuracy in 

measurements, though they may not fully reflect real-world scenarios. Field studies, conversely, 

capture the complexity of everyday movements but face challenges related to the control of 

variables and the precision of measurements. The aim is to facilitate an informed decision on which 

method best suits the research objectives, balancing the need for detailed analysis with the realism 

of natural settings. 

Table 2.2. Comparative Overview of Laboratory-Based and Field-Based Human Motion Assessments 

Aspect Laboratory Assessments Field Assessments 

Environment Controlled, consistent conditions Real-world, variable conditions 

Advantages 

High precision and repeatability 

Controlled variables 

Detailed biomechanical analysis possible 

Can assess natural behaviors and 

interactions 

Incorporates real-world variables 
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Limitations 
Hard to replicate complex real-world 

conditions 

Lower precision due to uncontrolled 

variables 

Technological limitations (e.g., sensor 

accuracy) 

Technologies Used Stationary motion capture systems Wearable sensors (e.g., IMUs) 

Data Collection 

Requires specialized equipment and setup 

Data collected in specific tasks or 

simulations 

Data can be collected during actual work 

or daily activities 

 

2.5.1 Statistical Parametric Mapping (SPM) 

Statistical Parametric Mapping (SPM) is a sophisticated analytical method used primarily in brain 

imaging studies, but its applications extend to other areas such as biomechanics. The core principle 

of SPM involves constructing and assessing spatially extended statistical processes to test 

hypotheses about functional imaging data. It has been implemented in a free and open-source 

software package known as SPM, which is designed for analyzing sequences of brain imaging data 

[27]. 

SPM's application is not limited to neuroimaging. For instance, SPM was used to identify 

differences between consensus-based joint motion patterns during gait in children with cerebral 

palsy. This study aimed to provide objective, quantitative data to support the identification of these 

patterns, which were initially defined based on expert opinion. By comparing kinematic 

waveforms of typically developing children with those of children with cerebral palsy, the study 

tested hypotheses about differences in joint motion patterns. This approach allowed for a detailed 

analysis of joint motion patterns, highlighting significant differences and locations within the gait 

cycle that were relevant to the classification of these patterns [28]. 

Another study presented MovementRx, a Python-based, GUI-enabled movement analysis decision 

support system that utilizes SPM. MovementRx is designed for the analysis of joint kinematics 

and kinetics in clinical gait analysis, providing a holistic view of all lower limb joints. It uses color 

maps to simplify the interpretation of complex statistical data, making it accessible to clinicians 

with limited statistical training. This application of SPM in MovementRx demonstrates its 
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versatility beyond traditional neuroimaging, extending to biomechanics and movement analysis 

[29]. 

SPM and traditional statistical tests like the t-test are both used for hypothesis testing, but they 

have key differences. T-test typically used to compare means between two groups at a specific 

point or variable, while SPM analyzes data across an entire continuum, such as time or space. It is 

useful in situations where data are collected over time or space (like brain imaging or 

biomechanical motion analysis). T-test does not inherently account for multiple comparisons; 

separate adjustments (e.g., Bonferroni correction) may be needed when multiple t-tests are 

conducted. SPM integrates corrections for multiple comparisons across the entire dataset, reducing 

the risk of Type I errors (false positives) inherent in multiple testing. Furthermore, t-test results 

typically represent a single value or statistic (like a p-value), but SPM produces a statistical map 

where each point's value indicates the statistical significance, providing a more comprehensive 

view of data variations over time or space [30], [31]. 

SPM involves several advanced mathematical and statistical processes [27], [30-38]: 

1. General Linear Model (GLM): GLM is a statistical linear model that generalizes various 

forms of linear regression models. It is used to describe a relationship between one or more 

independent variables and a dependent variable. In its simplest form, GLM can represent 

linear regression, but it can also be extended to represent ANOVA (for categorical 

outcomes) and ANCOVA (analysis of covariance). GLM is foundational in statistical 

analysis and is widely used in various fields, including biomedical research, for hypothesis 

testing, prediction, and inference [33]. SPM utilizes the GLM to model biomechanical data, 

such as joint angles or muscle activities. The model expresses the observed data as a linear 

combination of explanatory variables plus an error term. 

2. Time-Series Analysis: Biomechanical data are often time-series (e.g., gait cycle data). 

SPM analyzes these data point-by-point across the entire cycle, applying statistical tests at 

each point. 

3. Statistical Tests: Commonly, t-tests or F-tests are applied to assess the significance of 

differences in biomechanical variables at each time point in the cycle. 
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4. Multiple Comparisons Correction: Due to the large number of comparisons across a time 

series, SPM employs methods like Random Field Theory to adjust for multiple 

comparisons, controlling for false positives.  Random Field Theory is a mathematical 

framework used primarily in the field of statistical analysis, especially within the context 

of neuroimaging and biomechanics. It is a key component in SPM. Random Field Theory 

helps to address the multiple comparison problem when making statistical inferences about 

spatial data. When applying statistical tests to a large number of spatially correlated data 

points (like voxels in neuroimaging or data points in biomechanical analysis), the chance 

of false positives increases. Random Field Theory provides a method to control for these 

false positives by considering the smoothness and correlation of the data across space. It 

adjusts the significance levels for spatially correlated tests, ensuring that the results of 

statistical tests are more reliable and accurate. 

5. Statistical Parametric Maps: The results of these tests are assembled into a map, where 

each point's value represents the statistical significance of the observed effect, providing a 

comprehensive view of the biomechanical patterns and differences over time. 

 

2.5.2 Musculoskeletal Modeling 

Musculoskeletal modeling is central to both lab and field assessments, yet its application varies 

greatly due to environmental constraints. Comprehensive musculoskeletal models integrate 

detailed anatomical data, often derived from cadaver studies or MRI scans. This high level of detail 

allows for accurate simulations of human movement, particularly beneficial for understanding 

specific muscle coordination and joint dynamics during activities like walking or running [16], 

[17].  

Advanced tools such as MCS and EMG provide granular data that enhances these models, allowing 

for precise replication of human motion and muscle activity in a controlled environment [16]. The 

dynamic and unpredictable nature of field settings complicates the direct application of detailed 

musculoskeletal models. The primary challenge lies in accurately capturing complex motion with 

portable and less intrusive technology. Wearable technologies, such as IMUs, are employed to 

gather movement data. However, integrating this real-world data with musculoskeletal models to 
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simulate activities accurately remains a significant research area [16], [39]. Figure 2.4 shows a 

full-body musculoskeletal model and muscles designed in OpenSim software [40]. 

 

Figure 2.3. Full-body musculoskeletal model implemented in OpenSim with 22 rigid bodies. Lower body muscles 

were modeled as massless linear actuators (a-d) [40]. This figure is reproduced under IEEE copyright line © 2016. 

2.6 Conclusion 

While current research provides valuable insights into the biomechanical assessments conducted 

in both laboratory and field settings, a comprehensive understanding of how these environments 

influence the effectiveness of occupational exoskeletons and assistive tools in mitigating 

ergonomic risks remains elusive. This thesis, therefore, is positioned to bridge this gap by directly 

comparing the biomechanical impacts of these interventions across controlled and real-world 

conditions. 

In summary, field and lab motion assessments each play a critical role in biomechanics. Laboratory 

assessments provide detailed, controlled analyses of human motion but often fall short in 
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replicating the complexity of real-world environments. Field assessments, conversely, offer 

practicality and applicability but struggle with data accuracy and depth. The ongoing development 

of wearable technology and data analysis methods is key to enhancing field assessment accuracy. 

Integrating detailed lab findings with practical field applications remains a significant challenge, 

with musculoskeletal modeling serving as a pivotal tool in bridging these two domains for a 

comprehensive understanding of human biomechanics. 

These studies collectively illustrate the evolving landscape of human motion analysis. While 

laboratory assessments offer high accuracy and control, particularly necessary in fields like sports 

biomechanics for precise measurements, they may not fully capture natural, real-world human 

movements. Field assessments, facilitated by advancements in wearable technology and computer 

vision, offer a more realistic and accessible approach to studying human movement patterns in 

everyday environments. However, challenges such as data accuracy, the complexity of dynamic 

environments, optimized musculoskeletal models, and the need for more comprehensive and 

standardized methodologies in field assessments remain areas for future research and 

development. 
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Chapter 3  

3. In-lab versus In-field assessment 

A Comparative Study of Biomechanical Assessments in Laboratory and Field 

Settings for Manual Material Handling Tasks Using Extractor Tools and 

Exoskeletons1 

This chapter aims to illuminate the critical differences between laboratory and field assessments 

in ergonomic risk evaluation, thereby questioning and expanding upon traditional methodologies. 

It sets the stage to challenge the assumption that evaluations conducted exclusively in laboratory 

settings can fully encompass the effectiveness of occupational exoskeletons and assistive tools in 

mitigating ergonomic risks. By juxtaposing these two distinct assessment environments, the 

chapter aims to shed light on how each contributes uniquely to our understanding of ergonomic 

interventions' real-world applicability and effectiveness. As we navigate through the comparative 

analyses and discussions, the chapter lays a foundation for questioning and broadening the scope 

of traditional ergonomic evaluation methods. This exploration not only highlights the inherent 

limitations of lab-based assessments but also underscores the importance of incorporating real-

world conditions into the evaluation process.  

3.1 Introduction 

To reduce the prevalence of WMSDs, employers are increasingly investing in equipment, tools, 

and training initiatives designed to minimize the physical strain associated with physically 

demanding tasks, and subsequently improve the well-being of the workers, enhance workplace 

productivity, and reduce the economic burden of injuries [41]. For example, occupational 

exoskeletons are proposed to reduce the risk of fatigue and chronic WMSDs. Exoskeletons are 

wearable devices constructed from lightweight materials that integrate mechanical components to 

                                                      
1 This chapter has been submitted as short communication: M. Shakourisalim, X. Wang, K.B. Martinez, A. Golabchi, 

S. Krell, M. Tavakoli, H. Rouhani, “A Comparative Study of Biomechanical Assessments in Laboratory and Field 

Settings for Manual Material Handling Tasks Using Extractor Tools and Exoskeletons” Submitted, 2024. 
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enhance the physical capabilities of workers, addressing challenges like lifting heavy objects, 

performing repetitive tasks, or enduring extended periods of standing or kneeling [42][43]. 

Numerous studies have focused on ergonomic risk analysis and the effect of physical assistance 

devices, such as occupational exoskeletons. However, these studies are mostly conducted in 

laboratory settings [44], [45], [46]. Laboratory assessments provide controlled environments for 

detailed biomechanical and physiological measurements, isolating the exoskeleton’s effects from 

other variables and allowing for precise and repeatable measurements [45]. However, these 

controlled conditions may not accurately represent the complexities and variability of real-world 

tasks, which can limit the generalizability of findings and impact the validity of assessments [47], 

[48]. In contrast, field evaluations, conducted in actual work environments, allow researchers to 

observe and evaluate workers in their natural settings, which ensures that the assessments are 

contextually relevant and offer crucial insights into the exoskeleton’s real-world performance, 

usability, and user acceptance [49], [50], [51]. However, in-field ergonomic risk assessments are 

also subject to limitations, such as the influence of uncontrolled environmental variables and 

limited measuring equipment [14]. 

The discrepancies identified between laboratory and field assessments pose a significant challenge 

to current methodologies by potentially mischaracterizing the safety and effectiveness of certain 

tasks, postures, and the use of exoskeletons. For example, a task or posture deemed safe in a 

laboratory setting, based on specific biomechanical parameters, might not account for the 

cumulative stress on the body over time or the influence of external conditions, leading to an 

erroneous classification of safety. Similarly, the effect of an exoskeleton designed to reduce 

ergonomic risks may be overestimated in controlled settings, failing to account for practical 

challenges such as user compliance, comfort, and the adaptability of the device to various tasks 

and environments. These oversights can result in the endorsement of practices or tools that may 

not provide the expected protection or could even intensify the risk of injury when implemented 

in the field. 

This study critically examines the discrepancies in biomechanical assessments of manual material 

handling tasks in laboratory versus field settings, focusing on the potential for varied 

interpretations of ergonomic risks and the effectiveness of assistive devices, including 
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exoskeletons. An experimental approach was adopted by evaluating measurements of muscle 

activities and body posture for a manhole cover removal task. This task is a representative high-

demand, frequent manual handling activity commonly performed by utility workers. Experiments 

were conducted both in lab and field environments, utilizing assistive tools and a passive back-

support exoskeleton.   

Our objectives are to compare biomechanical outcomes in laboratory and field conditions, to 

evaluate the effectiveness of back support exoskeletons in mitigating ergonomic risks in varied 

settings, and to contribute to the development of more effective ergonomic assessments and tools 

in real-world work environments. We hypothesize significant variances in biomechanical 

assessments between lab and field environments and expect the exoskeleton's effectiveness in 

reducing ergonomic risks to differ across these settings. The anticipated results are expected to 

deepen our understanding of ergonomic risk factors across different environments. These insights 

are crucial for designing more effective ergonomic tools and practices, especially for manual tasks 

such as manhole cover removal, ultimately contributing to the prevention of work-related 

musculoskeletal disorders. 

 

3.2 Methods 

3.2.1   Study Design and Participants 

For the in-field assessment, ten able-bodied male participants (body mass: 73 ± 18 kg, body height: 

180 ± 5 cm, age: 33 ± 7 years) from the drainage and construction workers volunteered to perform 

the manhole removal task on their jobsite. The in-lab data was recorded from ten able-bodied 

participants (6 males, 4 females, body mass: 63 ± 13 kg, body height: 170 ± 7 cm, age: 26 ± 1 

years) among university students. The in-lab setup was designed to replicate the tasks performed 

by workers on the job site. Participants had no clinical history of lower back pain up to six months 

prior to the study, and written consent was collected from the participants after they were informed 

of the experimental procedures. The study was approved by the research ethics board of the 

University of Alberta, ID: Pro00109264. 
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3.2.2 Experimental Procedure  

Surface electromyography (EMG) data was captured bilaterally from the Brachioradialis, Biceps 

Brachii, Triceps Brachii, middle branch of the Trapezius, Latissimus Dorsi, Thoracolumbar Fascia, 

Rectus Femoris, and Bicep Femoris muscles using 16 Trigno Avanti sensors provided by Delsys 

Inc., USA (Figure 6). In addition to this, a Rapid Entire Body Assessment (REBA) was conducted 

to evaluate ergonomic risks, with body joint angles being measured using 11 IMUs from Xsens 

Technologies, NL. These units were attached to various body parts, including the head, upper trunk 

(over the sternum), upper arms, forearms, lower back, thighs, and shanks (Figure 3.1). 

 

Figure 3.1. Sensor placement of (a) EMG sensors and (b) IMU sensors on the participants. 

 

The activity being assessed involved moving a manhole cover using either a sledgehammer and a 

pick bar tool called the “Jake” tool or an in-house lever-based tool called the “Lever” tool. Each 
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participant engaged in two repetitions of the task, with a resting period of five seconds of standing 

still between each repetition, as illustrated in Figure 3.2. To explore the effectiveness of an 

exoskeleton in minimizing ergonomic risks, the participants repeated the trials while wearing a 

passive back-support exoskeleton, the BackX from SuitX, USA. The BackX exoskeleton is 

designed to support the wearer's lower back by providing assistive torque during activities that 

involve bending and lifting. BackX offers a significant reduction in the load on the lower back, 

with maximum net torques of 24.8 Nm during flexion, thereby enhancing ergonomic safety [52]. 

This exoskeleton had two modes: the standard mode, which activates when the trunk is bent 

between 30° and 45°, and the instant mode, which is always activated. To assess the performance 

of these modes, each task was performed two times with the standard mode and two times with 

the instant mode of the exoskeleton. 

In-field data was collected from utility workers removing manhole covers on the job-site. The in-

lab trial was designed to duplicate the in-field trials by employing a total of 60 lbs. weight plates 

within the laboratory environment, aiming to replicate the 60 lbs. manhole cover used in-field. 

Furthermore, we maintained consistency by utilizing identical Jake and Lever tools for both the 

in-field and in-lab tests, ensuring a seamless comparison between the two scenarios. This approach 

allowed us to assess the performance of the tools and the exoskeleton in a controlled setting, 

mirroring real-world conditions as accurately as possible. However, there were some 

inconsistencies, such as differences in the experience level between workers and student 

participants. In addition, the in-field manhole covers are flushed with the ground, which was not 

possible to exactly replicate in-lab.  
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Figure 3.2. Experimental procedures in-field (a & c), in-lab (b & d) using Jake tool (c & d), and Lever tool (a & b). 

 

3.2.3 Data analysis   

The analysis of muscle activities while removing a manhole cover was conducted using EMG 

sensors. The EMG data was gathered at a rate of 2000 Hz and then subjected to a band-pass filter, 

isolating frequencies in the range of 10 to 500 Hz. Subsequently, the signal was rectified and 

smoothed using a moving average filter with a window size of 500 data points. In order to 

standardize the amplitude of the EMG signal, a Maximum Voluntary Contraction (MVC) 

technique was applied to each of the muscles under observation [53]. MVC is a critical technique 

in biomechanics, denoting the maximum force that a muscle or group of muscles can exert 

voluntarily. It is essential for assessing an individual's capacity for physical tasks and normalizing 
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muscle activity to evaluate muscle function and prevent injuries. One of the ways to measure MVC 

is by having an individual perform a strength exercise while connected to EMG sensors. The 

measurement process includes several maximum effort contractions with rest in between to 

prevent fatigue. The peak value of the filtered and processed EMG recording is MVC [54]. Finally, 

we determined the Root Mean Square (RMS) value for the normalized amplitude of the EMG 

signal across the duration of the activity. 

The data recorded by IMU, underwent a low-pass filtering process using a 2nd order Butterworth 

filter set at a 6 Hz cut-off frequency. This filtered data was then used to ascertain the sensor 

orientations through the application of a sensor fusion algorithm, as described in [55], [56]. In 

addition to this, the orientation of the sensor relative to the body was determined through a 

functional calibration procedure, as outlined in [57]. Following these initial steps, the orientations 

of different body segments were calculated, considering both the adjusted sensor orientations and 

the sensor-to-body orientation. Finally, using the obtained body segment orientations, the angles 

of various joints during the trials were computed and expressed within the Joint Coordinate System 

(JCS), as referenced in [58]. 

The calculated joint angles were used for Rapid Entire Body Assessment (REBA) based on the 

participants’ body posture and joint angles. REBA is an evaluation tool employed to assess the 

risk of WMSDs linked to specific job activities. REBA score is used to assess ergonomic risk 

through the observation of body postures, using the measured joint angle. Each body region is 

scored separately, and these scores are combined in a two-step table, leading to a single REBA 

score [59]. The accuracy of REBA score calculated by IMUs was previously validated for manual 

handling tasks [59], [60]. 

The REBA scores measured using IMU data and the RMS values of normalized EMG amplitudes 

for each task were compared between in-field and in-lab experiments. These comparisons were 

performed with both Lever and Jake tools, with and without the exoskeleton. The data did not 

exhibit a normal distribution, as determined by the Shapiro-Wilk test. Therefore, we chose to 

employ the Wilcoxon rank-sum test with a significance level of 5% to investigate whether there 

were any significant differences in the dependent variables among the paired comparisons [61]. 
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3.3 Results 

The analysis of normalized muscle activity during in-field experiments revealed significant 

differences (p < 0.05) when compared to the in-lab data for most of the muscle groups. 

Specifically, when participants used the Jake and Lever tools with and without the exoskeleton, 

the muscle activity levels were notably different in the field compared to the laboratory settings 

(Figures 3.3 and 3.4). This suggests that the muscle engagement required for the same task can 

vary considerably depending on the environment in which the task is performed. Interestingly, 

despite these differences in muscle activity levels, the REBA scores, which are used to assess 

posture-related ergonomic risk, showed no statistically significant difference between in-field 

workers and their in-lab counterparts. This was consistent across scenarios, whether the workers 

were using the Jake and Lever tools with or without the exoskeleton (Figure 3.5). This aspect of 

the results indicates that while the ergonomic posture risk remained consistent across both 

environments, the actual muscle exertion and patterns of activity differed. 
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Figure 3.3. Comparison between normalized muscle activation amplitudes during in-field and in-lab experiments 

with and without the exoskeleton while using the Jake tool. The results for all participants are presented as boxplots. 

Crosses indicate an outlier. Black asterisks indicate a significant difference with zero with p-values < 0.05. 
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Figure 3.4. Comparison between normalized muscle activation amplitudes during in-field and in-lab experiments 

with and without the exoskeleton while using the Lever tool. The results for all participants are presented as 

boxplots. Crosses indicate an outlier. Black asterisks indicate a significant difference with zero with p-values < 0.05. 
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Figure 3.5. Comparison between REBA scores during in-field and in-lab manhole cover removal experiments using 

different tools and with and without Exoskeleton (in both Standard and Instant modes). The results for all 

participants are presented as boxplots. Red crosses indicate an outlier, and there are no significant differences with 

zero. 

 

Furthermore, we conducted a comparison between the exoskeleton's real-world impact on manhole 

removal, as documented in [62], and our controlled laboratory findings using the Wilcoxon rank-

sum test. Our laboratory experiments revealed that wearing the exoskeleton while using either tool 

for manhole cover removal generally had little to no effect on most muscle activities. However, 

when participants used the Jake tool with the exoskeleton, significant (p < 0.05) changes in muscle 

activity of the right Trapezius, right Latissimus, left Rectus Femoris, and Biceps Femoris were 

observed (Figure 3.6). Similarly, as illustrated in Figure 3.7, when the Lever tool was employed, 

we observed significant differences (p < 0.05) in muscle activity, specifically in the left Triceps, 

right Trapezius, right Thoracolumbar, and left Biceps muscles, when participants wore the 
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exoskeleton compared to when they did not. Based on the in-lab results, the back support 

exoskeleton had little to no effect on participants performing the manhole cover removal task. 

However, the exoskeleton was reported to be useful for the same task performed in the field by 

utility workers [62]. 

 

Figure 3.6. The percentage of normalized muscle activity when a manhole cover was removed using a Jake tool while wearing an 

exoskeleton (instant and standard mode) compared to not wearing an exoskeleton. The results for all participants are presented as 

boxplots. A positive percentage is an increase in muscle activity when the exoskeleton is worn. Red crosses indicate an outlier. 

Black asterisks indicate a significant difference with zero with p-values < 0.05. 
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Figure 3.7. The percentage of normalized muscle activity when a manhole cover was removed using a Lever tool while wearing 

an exoskeleton (instant and standard mode) compared to not wearing an exoskeleton. The results for all participants are presented 

as boxplots. A positive percentage is an increase in muscle activity when the exoskeleton is worn. Red crosses indicate an outlier. 

Black asterisks indicate a significant difference with zero with p-values < 0.05. 

 

3.4 Discussions 

This study aimed to investigate if in-lab experiments with non-workers as participants for 

ergonomic risk assessment in various tasks and using various tools and exoskeletons can be a 

reliable surrogate for in-field experiments with actual workers. The findings highlighted that the 

body postures (assessed by the REBA Score) were comparable between the in-lab experiments 

with non-workers as participants and the in-field experiments with actual experienced workers, 

regardless of the use of exoskeletons or tools. Yet, the muscle activity levels significantly differed 
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between these two conditions, showcasing a variance in muscle engagement patterns when tasks 

were performed with and without the aid of tools and exoskeletons. These differences suggest that 

the controlled laboratory environment with the use of weights instead of the actual manhole and 

non-workers as participants instead of actual workers does not fully capture the complexity of real-

world tasks, leading to potential discrepancies in ergonomic assessment. This raises intriguing 

questions about the interpretation of muscle activity data in isolation and highlights the importance 

of a holistic approach to ergonomic assessment, considering both muscle activity and body posture 

to gain a comprehensive understanding of the impacts on worker health and safety. 

Notably, the observed muscle activities were not higher or lower across all muscle groups in lab 

experiments compared to the real-world experiments. When using tools and exoskeleton in both 

modes, the activity level of some muscles increased in lab compared to the real world and 

decreased for other muscles. This may indicate that actual workers in field employed different 

muscle recruitment strategies and synergies compared to non-workers in the lab, while both 

participant groups had comparable body postures and performed similar tasks. This might partially 

be due to demographic differences (such as body height, body mass, age, and sex) between the 

two participant groups and their different physical fitness and experience level for manual handling 

task execution. This experience might have led to more efficient movement patterns and muscle 

use in the field, which were not replicated in the lab setting.  

Future research should thus aim for a deeper understanding of these patterns and their implications 

for ergonomic interventions. Given that occupational exoskeletons are ultimately intended for use 

in field environments, it becomes evident that a detailed field analysis with actual workers is 

essential and likely to yield more insightful results compared to controlled in-lab studies. In 

addition, due to the observed different outcomes or exoskeletons among users of different 

demographics, it is recommended to consider a diverse population in the design and validation of 

occupational exoskeletons, to ensure that the findings are broadly applicable and inclusive. This 

diversity should encompass not just gender and age but also physical conditioning and professional 

experience, as these factors contribute to the effectiveness of movement patterns and muscle use.    

Besides the differences between the study participants, the differences between experimental 

conditions can contribute to the observed difference in muscle activities.  In a real-world context, 
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numerous uncontrollable variables come into play, such as the varied layers of clothing worn by 

participants, which can affect movement and muscle engagement. Beyond these, environmental 

conditions like weather, temperature, and even the time of day may impact the results, which are 

often unaccounted for in laboratory settings. Moreover, the psychological state of participants, 

influenced by real-world stressors or the artificial environment of a lab, can also alter performance 

and outcomes. These discrepancies highlight the need for future studies to perform comprehensive 

evaluations to understand how each of these factors might influence results differently across 

various measurement conditions.  

In our study, we utilized circular weights with central holes to simulate the lifting of manhole 

covers, different from manhole covers that often have holes at the edge. In addition, the circular 

weight was not flush with the ground, similar to the real-world manhole cover. This design choice 

may affect the torque dynamics experienced during actual lifting operations, potentially 

influencing the ergonomic assessment outcomes. This limitation of our experimental design 

highlights the importance of designing future studies with closer alignment to real-world 

conditions to fully understand the ergonomic implications of lifting tasks in utility work. 

In this study, we focused on a single material handling task: the removal of utility manhole covers. 

This task was selected due to its relevance and high occurrence in manual material handling. 

However, we recognize this as a limitation, as our findings may not fully extend to other types of 

material handling tasks. Future research could benefit from including a diverse range of scenarios, 

allowing for a broader understanding of biomechanical and ergonomic impacts across different 

tasks and enhancing the applicability and generalizability of our findings. In addition, in our study, 

each participant was tested only twice in each scenario. While this was sufficient to gain 

preliminary insights, it may impact the overall data reliability and the generalizability of the 

findings. Future studies should consider increasing the number of repetitions to enhance data 

robustness.  

In summary, our study design introduced multiple variables, such as differing environments, 

experimental setups, and participant demographics, which may influence the research outcomes. 

While this approach provides valuable insights into the real-world application of exoskeletons and 

tools, it complicates the isolation of single variables to understand their specific impacts. For future 
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research, we recommend controlled studies that isolate and examine an individual factor that may 

affect the effectiveness of exoskeletons and tools in real-world settings. Such studies would 

complement our findings by providing a deeper understanding of how each variable contributes to 

the overall effectiveness of tool and exoskeleton interventions in improving worker safety and 

productivity. 

3.5. Conclusion 

This study emphasizes the need to evaluate occupational exoskeletons and assistive tools in real-

world settings, as muscle activity differs significantly between controlled lab environments and 

actual field conditions.  These insights contribute to a more comprehensive understanding of the 

practical implications of various tools and exoskeletons employed for physically demanding tasks, 

such as manhole cover removal and emphasize the importance of considering environmental 

factors in such ergonomic assessments. 
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Chapter 4 

4. In-lab musculoskeletal modeling assessment 

Estimation of lower back muscle force in a lifting task using wearable IMUs2 

In this chapter, we delve into the application of IMUs and musculoskeletal modeling to assess 

muscle and joint forces in real-time, showcasing their potential in the realm of in-field ergonomic 

risk assessment. This examination provides a detailed insight into how leveraging IMUs, coupled 

with musculoskeletal models, can revolutionize the way we understand and evaluate the 

biomechanical impacts of occupational tasks. The findings presented here not only pave the way 

for a deeper understanding of ergonomic risks associated with various work-related activities but 

also offer a substantial contribution to the development of more effective workplace interventions. 

By exploring the capabilities and limitations of these technologies, the chapter highlights their 

significance in designing ergonomic solutions that are both scientifically grounded and practically 

applicable. This discussion extends beyond theoretical implications, aiming to equip practitioners 

and researchers with the knowledge to implement advanced assessment methods that enhance 

worker safety and health.  

      

4.1 Introduction 

Low back pain is a widespread issue, affecting up to 84% of the general population during their 

lifetime [63]. In 2020, there were 619 million reported cases of lower back pain worldwide, and 

with the aging population, this number is expected to reach 843 million by 2050 [64]. Many of 

these cases are attributable to occupational factors like heavy lifting and poor ergonomics, leading 

to a significant economic impact through increased healthcare costs, workday absences, and 

reduced productivity. In Europe, WMSDs, including low back pain, account for half of all work 

absences lasting more than three days and approximately 60% of reported cases of permanent 

                                                      
2 This chapter has been submitted as short communication: M. Shakourisalim, K.B. Martinez, A. Golabchi, M. 

Tavakoli, H. Rouhani, “Estimation of lower back muscle force in a lifting task using wearable IMUs” Submitted, 

2024. 
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incapacity. WMSDs primarily affect the lower back but can also impact upper limbs, particularly 

in professions involving repetitive tasks, heavy lifting, and suboptimal ergonomic conditions. This 

results in added healthcare expenses, workers’ compensation claims, and the need for investments 

in workplace improvements [65]. 

For a comprehensive ergonomic and biomechanical assessment of common tasks performed in a 

workplace, such as lifting a heavy load, measurements of muscle and joint reaction forces, such as 

spinal loads, are required [66]. These measurements were historically invasive, involving surgery 

to implant sensors in the body [16]. Alternatively, researchers developed musculoskeletal models 

that simulated the complex musculoskeletal structure of body parts, such as the spine and vertebral 

joints, to characterize how the body joints experience internal loads during activities like lifting. 

Various musculoskeletal modeling software packages have been developed [39], [17], [67]. that 

can contribute to the assessment of human motion kinematics and kinetics and, thus, ergonomic 

risk assessment. In musculoskeletal modeling packages such as OpenSim, muscle and joint 

reaction forces can be calculated from kinematic data recorded by non-invasive methods such as 

camera-based MCS to evaluate different tasks, such as lifting [16] and overhead industrial tasks 

[68]. While MCS cameras are acknowledged for their accuracy, they are confined to controlled 

laboratory settings and are often impractical for real-world field assessments. Therefore, in out-of-

lab applications of human motion measurement, the preference is to employ wearable sensors, 

such as IMUs [69]. More importantly, it was reported that the outcomes of in-lab ergonomic risk 

assessments and human motion analysis were not always comparable with the field evaluations 

[70]. Thus, there is a need for in-field ergonomic risk assessment based on human motion kinetics 

assessment using musculoskeletal modeling and wearable sensors. 

Previous studies investigated the use of wearable sensors to provide kinematic data and machine 

learning to classify correct and incorrect postures toward enhancing workplace ergonomics and 

injury prevention [71]. Moreover, wearable IMUs were used to detect fatigue-related changes in 

spine motion with the ultimate goal of preventing musculoskeletal injuries in workplaces and 

sports settings [72]. In general, kinematic parameters obtained by wearable IMUs have been 

validated against those obtained by MCS. However, the propagation of error in kinematics 

assessment when using IMUs into error in muscle forces and joint reaction forces estimation has 

not been evaluated for many tasks such as trunk flexion and extension during lifting. Given the 
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impact of inertial and geometrical properties of the body sections, in addition to their kinematics, 

on the muscle forces and joint reaction forces estimation, the relative contribution of the kinematic 

assessment errors to the force estimation error is still unknown.   

This research study is focused on a comparative analysis of lower back muscle and joint (L5-S1) 

forces computed by OpenSim when using kinematic data captured from MCS versus IMUs. 

Furthermore, the results of our musculoskeletal modeling were validated by comparing the muscle 

activations estimated by musculoskeletal modeling with those measured by surface 

electromyography (EMG) to validate the implementation of musculoskeletal modeling. 

4.2 Method 

4.2.1   Study Design and Participants 

Ten participants (five males and five females; age: 26 ± 2 years old, height: 171 ± 10 cm, body 

mass: 66 ± 15 kg) with no clinical history of lower back pain were recruited. The experimental 

procedure was approved by the research ethics board of the University of Alberta, and participants 

provided their written consent after being informed of the testing procedure.  

4.2.2 Experimental Procedure 

Participants were asked to lift a 28 lbs. box from the floor to their pelvis height while standing 

with each foot on a force plate (Figure 4.1 (A)). They were fitted with 40 reflective markers and 

13 IMUs (MTws, Xsens Technologies, NL) to calculate their body joint angles while performing 

the task. Reflective markers were used to capture movements using MCS (Vicon, Oxford Metric, 

UK) as a gold standard. In addition, ground reaction forces were measured by two force plates 

(OR 6-7, AMTI, USA). IMUs were placed on several body segments (left and right upper and 

lower arm, left and right upper and lower leg, left and right foot, head, chest, and pelvis). For 

validation purposes, EMG of lower back muscles was measured using four sensors (Trigno Avanti, 

Delsys, USA) placed bilaterally over the Latissimus dorsi (LD) and Thoracolumbar fascia (TF) 

[53]. The data recorded by cameras, IMU, force plate, and EMG were collected synchronously at 

100 Hz, 40 Hz, 1200 Hz, and 2000 Hz, respectively. Figure 4.1 (C) shows the marker and sensor 

placements on a participant.  
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Figure 4.1. (A) The lifting task was performed by a participant while wearing IMUs and reflective markers. (B) 

Placement of reflective markers, IMUs, and EMG sensors on a participant. (C) Reflective marker positions, 

abbreviation and meaning. 
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4.2.3 Data Processing 

EMG recordings were band-pass filtered (10-500 Hz), rectified, and normalized to the maximum 

voluntary contraction amplitudes. EMG, kinetic, and kinematic data were all low-pass filtered 

using a 2nd order Butterworth filter with a 6 Hz cut-off frequency [53]. Joint angles were found 

using MCS recordings by calculating the local coordinate system of each segment based on the 

ISB recommendations [73], [74], [58]. To find the comparable joint angles using IMUs, a 

functional calibration, according to [57], was performed to align the inertial frames of the IMUs 

with the anatomical frames of the body. To this end, after wearing IMUs, participants were asked 

to stand still for 5 seconds and then perform 10 leg and arm flexions/extensions while locking their 

knee and elbow joints. Then, segment orientations were estimated using the sensor fusion 

algorithm proposed by [55], [56]. The joint angles obtained by both MCS and IMUs were used as 

input to OpenSim software.  

OpenSim is a free and accessible open-source software package, for musculoskeletal modeling 

and simulation. It integrates advanced computational capabilities within its application framework, 

complemented by a user-friendly graphical interface. OpenSim contains a vast collection of 

models previously created by researchers, freely available for public use (Delp et al., 2007). We 

used a recently developed lifting full-body (LFB) musculoskeletal model to estimate muscle forces 

and joint reaction forces. This LFB model was previously validated for similar lifting tasks, and it 

consists of 238 Hill-type musculotendon actuators, 30 segments, and 29 degrees of freedom [16]. 

Furthermore, eight muscle groups (the erector spinae, rectus abdominis, external obliques, internal 

obliques, multifidus, quadratus lumborum, psoas major, and latissimus dorsi (LD)) were defined 

for the trunk, while upper and lower limbs were activated by ideal torque actuators and did not 

have any muscles [16]. 

4.2.4 Simulation Steps 

The steps taken to calculate muscle and joint reaction forces using OpenSim are as follows: 

1. The LFB model was loaded in OpenSim (version 4.4). 

2. The model was scaled for each participant based on their anthropometric and MCS data 

during a static pose. 
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3. The lower back muscle forces were calculated by performing a static optimization (SO) 

method while minimizing the sum of muscle activations squared. The inverse kinematic 

data (joint angles) was given as a motion input to static optimization. Moreover, external 

forces applied to each participant’s body were an additional input to this method. The 

external forces consist of forces applied on each hand and the ground reaction forces. There 

are different ways to calculate the external forces on each hand when a person is lifting a 

box. Here, we used a simple method for dividing the weight of the box and applying the 

corresponding force to each hand according to [75]. 

4. Joint reaction analysis was performed through OpenSim to calculate the L5-S1 reaction 

force using kinematic data and muscle forces (calculated in Step 3) as input. 

5. Steps 3 and 4 were repeated, but this time the kinematic data (joint angles) was measured 

using IMUs calculated from the data obtained by IMUs. 

4.2.5 Muscle and Joint Reaction Force Comparison: Kinematic Data Recorded by MCS vs. IMU  

To compare the lower back muscle forces and L5-S1 joint reaction force using kinematic data 

captured by MCS and IMU, the difference between forces was calculated and averaged over time 

for each participant and normalized to the range of the force obtained using MCS. Furthermore, 

since lifting is a dynamic task and values of the measured muscle and joint reaction force vary 

during a task cycle, statistical parametric mapping (SPM) paired t-test (p < 0.05) was used to 

compare the difference between forces calculated using MCS and IMU data [30], [76]. 

4.2.6 Model Validation: EMG Recordings vs. Muscle Activations Estimated by OpenSim 

To validate the muscle activations obtained by our musculoskeletal modeling, muscle activations 

calculated using the model were compared to those recorded using EMG sensors [16]. Since EMG 

recordings cannot be directly compared to predicted muscle activations from the simulation, the 

onset/offset timing in our experiment and simulation was evaluated to explore whether they are in 

good agreement [77]. We performed a correlation analysis (using xcorr function in MATLAB 

2017a, The MathWorks Inc., USA) to compare the pattern and timing of the muscle activations 

between the activations obtained by the model and the EMG recordings. To assess the EMG 

measurements against the various bundles of muscle in the model, we added up the activation of 

these muscle bundles (longissimus thoracis pars thoracis and longissimus thoracis pars lumborum) 

within the model that corresponded to the region where the electrodes were placed in the 
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experiment. Furthermore, the sum activity of muscle bundles was normalized to the maximum 

muscle activation during the lifting cycle, similar to [16].  

4.3 Results 

4.3.1 Muscle and Joint Reaction Forces 

SPM results suggested no significant differences (p > 0.05) in the measurement of muscle forces 

when using kinematic data measured by MCS compared to IMU for most parts of the task. 

However, when there was a sudden jerk in the motion, such as a sudden change in external forces 

when the box was lifted, a significant difference could occur between muscle forces estimated by 

MCS and IMU (Figure 4.2). Also, the difference between the left and right longissimus thoracis 

muscle forces obtained by MCS and IMU was less than 25% for all participants (Table 4.1). 

SPM results for L5-S1 joint reaction forces suggested significant differences (p < 0.05) between 

MCS and IMU estimations while the person was lifting or lowering the box. However, there was 

no significant difference between the forces when the person was standing upright while holding 

the box (Figure 4.3). Also, the difference between the L5-S1 joint reaction forces obtained by MCS 

and IMU ranged between 8% and 36% for all participants (Table 4.1). 

Table 4.1. Normalized difference between estimated (by OpenSim) muscles and L5-S1 joint reaction forces obtained by motion 

caption system and those obtained by IMU. The results are presented as the MAE of the difference between force time-series 

normalized by the peak force obtained by MCS, expressed in percentage. In addition, the mean value and standard deviation (SD) 

of these MAE values among participants are presented. 
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Figure 4.2. The Statistical Parametric Mapping (SPM) analysis results (t-statistics) were calculated using MCS (black) and 

IMU (red), depicting the mean muscle force and standard error of (A) right Longissimus Thoracis, (B) left Longissimus Thoracis, 

(C) right Iliocostalis Lumborum and (D) left Iliocostalis Lumborum for all the participants. 
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Figure 4.3. The Statistical Parametric Mapping (SPM) analysis results (t-statistics) were calculated using MCS 

(black) and IMU (red), depicting the mean joint reaction force and standard error of the L5-S1 joint for all the 

participants. The X-axis represents the percentage of the lifting task cycle (%). The grey-shaded areas show the 

significantly different parts of waveforms (p < 0.05) between MCS and IMU. 

 

4.3.2 Model Validation 

The model’s estimations were consistent with the recorded EMG recordings from the left and right 

LD and TF during the lifting task (Figure 4.4 (A)). The mean correlation coefficients across all 

participants were between 0.82 and 0.86. Among the four muscles, the EMG recording from the 
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right TF showed the highest correlation with the model’s estimated muscle activation. Figure 4.4 

(B) illustrates the peak correlation values of each measured muscle for all the participants. Since 

the measured EMG signals are an amalgamation of activities from multiple muscles beneath the 

sensor's surface, to enhance the accuracy of the comparison of muscle activities estimated by the 

musculoskeletal model and those measured by the EMG sensors, we aggregated the activities of 

all model muscles located beneath the EMG sensor area. As we are aware of potential inaccuracies 

due to EMG crosstalk in recording muscle activities, our primary objective is to validate the 

model's ability in terms of reflecting similar muscle activation patterns rather than determining the 

exact values of muscle activations. Although there are potential inaccuracies due to EMG 

recordings crosstalk, our primary objective was to validate the model's capability in reflecting 

similar muscle activation patterns rather than determining the exact values of muscle activations.   
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Figure 4.4. (A) Normalized EMG signals (red dashed lines) and model muscle activation estimates (solid black 

lines) for left and right LD and TF for one participant. (B) The peak cross-correlation values of the lower back 

muscle for all the participants. * denotes r-values higher than 0.86. 
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4.4 Discussion 

In this study, we estimated human motion kinetics (muscle and joint reaction forces) using 

musculoskeletal modeling (OpenSim package) based on kinematics data captured by MCS vs. 

IMU and compared them together.  

Muscle forces and L5-S1 joint reaction forces estimated using MCS and IMU recordings in this 

study were consistent with what has been found in the literature for different lifting tasks [66], 

[78], [79]. Also, the model’s predictions of muscle activations aligned well with the measured 

EMG sensors for the lower back muscles in terms of activation patterns and timing. The highest 

external force exerted on the back was when the participant raised and lowered the box, which 

resulted in the model’s output and the EMG recordings exhibiting a similar pattern with two 

distinct peaks. The correlation coefficients and the average time differences between the peak 

muscle activation and the peak EMG magnitude were comparable to the values reported in a 

previous study [16]. These observations indicated the validity of our musculoskeletal modeling.   

Our findings underscore the critical nature of dynamic tasks such as lifting and lowering objects, 

which not only mimic real-world ergonomic settings but also present a higher risk of injury 

compared to static postures. These dynamic movements are not only more representative of typical 

workplace tasks but are also associated with a higher risk of musculoskeletal injuries. The 

increased biomechanical demands during these activities emphasize the importance of focusing 

our modeling efforts on dynamic tasks to better reflect the complexities and risks inherent in real-

world ergonomic settings. 

The outcome of this study demonstrated the extent of accuracy of lower back muscle forces 

estimated using IMU recordings compared to those obtained by the MCS and assessed the effect 

of kinematic error propagation. These findings reinforced the potential of wearable IMUs, 

combined with musculoskeletal modeling tools like OpenSim, for in-field assessments of muscle 

forces, marking a significant step in advancing occupational health and safety practices. However, 

researchers must proceed with caution, as some sudden changes in movement and external forces 

(such as grabbing or releasing an external load) may lead to inaccurate results obtained by IMUs. 

At the same time, spinal joint loads such as L5-S1 estimated using IMUs resulted in significant 

errors compared to MCS results. Therefore, more steps need to be taken to decrease sources of 
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error, mainly reducing the sources of error in body segment orientation measurement using IMU 

measurements. 

In conclusions, it's crucial to delineate the specific conditions under which IMUs yield reliable 

data, alongside scenarios where their accuracy may be compromised. Firstly, the nature of the task 

at hand plays a pivotal role in determining the precision of IMUs. Activities characterized by rapid 

or complex movements present a higher likelihood of error, attributable to sensor drift and the 

inherent challenges in accurately capturing swift kinematic changes. This limitation underscores 

the need for careful consideration of the activity's nature when employing IMUs for ergonomic 

assessment. 

Secondly, environmental conditions significantly influence the performance of IMUs. 

Specifically, magnetic interference from external sources can detrimentally impact the sensors' 

magnetic components within IMUs, resulting in data inaccuracies. This phenomenon highlights 

the importance of evaluating the ambient environment where IMUs are deployed to mitigate 

potential interference and ensure data integrity. 

Thirdly, the accuracy of IMUs heavily depends on their precise alignment and calibration on the 

wearer's body. Misplacement or incorrect orientation can introduce substantial errors, misleading 

the assessment outcomes. Therefore, meticulous attention to the correct placement and calibration 

of IMUs is essential for obtaining dependable data and effectively leveraging these devices in 

ergonomic risk assessment. By addressing these factors (task specificity, environmental 

influences, and device alignment) we can enhance the reliability and applicability of IMUs in real-

world ergonomic evaluations.  

While we used IMU sensors produced by Xsens in this study, other IMUs may have lower 

measurement accuracy and reliability for various body motions compared to MCS cameras. Yet, 

we did not use the sensor fusion algorithm and biomechanical model embedded in this system and 

implemented our custom-made, previously published sensor fusion algorithm on the IMUs’ raw 

data. As such, we expect similar results when other IMUs are used for muscle and joint force 

estimation using musculoskeletal modeling [55, 56]. 
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To enhance accuracy in future investigations, researchers could consider incorporating an EMG-

informed model where muscle activation estimates are derived from the EMG data [78]. 

Additionally, the hand modeling approach used in this study was a simplified model in which the 

lifted object’s mass was directly added to the hands of the lifter in the OpenSim model. This 

simplistic approach did not account for the dynamics of the object being lifted, such as how its 

movement with respect to the hands might affect the lifter's posture or muscle activation. This 

computationally efficient modeling approach thus may not be accurate for all real-world lifting 

scenarios and might result in large residual forces and moments compared to other hand-box 

modelling approaches [75]. 

Yet, in our study, the object’s motion with respect to the hand was negligible, the lifting 

acceleration was not high, and our primary goal was to analyze the overall load effects rather than 

the dynamic interactions between the lifter and the object. Therefore, we expect minor impact of 

this simplified modeling approach on our study results and conclusions. Nevertheless, it may be 

valuable to explore alternative models for hand-mass interaction to assess the importance of 

external force modeling, in future studies [75].  

The outcomes of this study have the potential to assist researchers with in-field ergonomic risk 

assessment and guide them in optimizing workers’ posture and tools for more effective support 

during strenuous tasks while also reducing the risk of WMSDs. 

4.5 Residuals 

The analysis of residual forces and moments reveals insights into the dynamic inconsistencies 

inherent in musculoskeletal modeling. Residuals, representing the discrepancy between modeled 

and actual forces and moments, are pivotal for assessing model fidelity (Hicks et al., 2015). In our 

study, we evaluated the average root mean squared error (RMSE) values of residuals obtained by 

OpenSim for both IMU and MCS. This analysis contributes to a growing body of literature, 

aligning with previously reported values and emphasizing the importance of refining model 

predictions to closely mirror actual physical behavior. 

Comparative analysis with existing studies on similar tasks underscores the relevance of our 

approach. In our study, focused analysis on the lifting task dynamics specifically highlights the 

residual forces in the vertical direction (FY) and the moments about the vertical axis (MZ), 
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reflecting pivotal components of the load handling mechanics. This focus is driven by literature 

that identifies FY and MZ as critical for understanding the effectiveness and safety of lifting 

strategies. The average RMSE values are reported in Table 4.2. When comparing these outcomes 

with similar studies, specifically the RMSE values of 84 N for FY and 32 N.m. for MZ reported 

in related research [75], our results underscore a comparable level of precision in capturing the 

vertical forces and moments about the vertical axis crucial for evaluating the biomechanical 

aspects of lifting tasks. The agreement between our results and those documented in related 

research suggests that the methodologies employed are robust and effective in capturing the 

complexities of lifting box tasks.  

Table 4.2. Average RMSE of residual forces (FY (N)) and moments (MZ (N.m)) across participants during a lifting task cycle, as 

measured by OpenSim for IMU and MCS. 

 

 FY (N) MZ (N.m) 

MCS 34.6 10.1 

IMU 36.6 51.7 
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Chapter 5 

5. Discussions and conclusion 

 

5.1 Discussion 

The research presented in this thesis offers a comprehensive examination of WMSDs, emphasizing 

the need for a holistic approach to ergonomic risk assessment in both laboratory and real-world 

settings. Central to this discussion is the exploration of different technologies used for human 

motion assessment, such as MCS and IMUs, and their application in understanding and mitigating 

WMSDs. The key findings of this study are: 

1. Laboratory vs. Field Assessments: A significant insight from the study is the variation in 

muscle activity patterns between in-lab and in-field conditions, despite similar postural 

ergonomic risks (REBA scores). This finding highlights the complexity of replicating real-

world conditions in a laboratory setting. It underlines the importance of conducting 

ergonomic assessments in actual work environments to obtain more relevant and accurate 

data. 

2. Technological Advancements in Motion Analysis: The evolution of technologies like 

IMUs has made it feasible to assess human motion in real-world settings. However, the 

study revealed limitations, such as inaccuracies in capturing absolute positions and dealing 

with sensor drifts. These technological challenges need to be addressed for more reliable 

in-field assessments. 

3. Role of Exoskeletons and Assistive Tools: The research underscores the potential of 

occupational exoskeletons and assistive tools in reducing the risk of WMSDs. However, it 

also indicates the necessity for these tools to be evaluated in the field, considering the 

different outcomes observed among users with varying demographics and physical 

conditioning. 

4. Musculoskeletal Modeling: The use of musculoskeletal models, particularly in estimating 

lower back muscle forces, has been validated as a useful tool. The study also pointed out 

the discrepancies in muscle and joint reaction forces between the data captured by MCS 
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and IMU, suggesting the need for further refinement in these models, especially for in-field 

applications. 

5.2 Limitations and Future Steps 

The study's participant demographics, primarily university students for in-lab assessments, might 

not accurately represent the physical conditioning and work experience of actual utility workers. 

This demographic variation can lead to differences in task execution and ergonomic risk. 

Technological limitations, particularly concerning the accuracy and reliability of IMUs in field 

assessments, also pose a challenge. 

Future research should focus on enhancing the fidelity of in-field assessments, possibly through 

the development and integration of more advanced wearable sensor technologies. To enhance the 

depth and utility of future research in ergonomic risk assessment, especially considering the 

findings and limitations identified in this study, the following expanded recommendations are 

proposed: 

1. Enhancement of Wearable Sensor Technologies: Future investigations should prioritize the 

advancement and incorporation of cutting-edge wearable sensor technologies to heighten 

the fidelity of in-field assessments. The development of sensors with higher accuracy, 

reduced drift, and enhanced durability will be critical in capturing more reliable data in 

dynamic work environments. This initiative should aim to overcome the limitations 

associated with current IMU technologies, such as issues with sensor drift and the 

challenge of accurately capturing rapid movements in complex work tasks. 

2. Broadening Participant Demographics: There is an imperative need to expand the scope of 

participant demographics in ergonomic research to encompass a broader spectrum of the 

workforce. This expansion would involve recruiting participants from various age groups, 

genders, and occupational backgrounds to ensure the research findings are reflective of and 

applicable to the diverse real-world workforce. Addressing this recommendation will help 

overcome the current study's limitation of potentially narrow demographic representation, 

thereby enhancing the generalizability of research outcomes to a wider array of work 

settings. 
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3. Refining Musculoskeletal Models: Future research should also focus on the refinement of 

musculoskeletal models to enhance their integration with wearable sensor data, aiming for 

increased accuracy in ergonomic risk assessments conducted under field conditions. This 

could involve the incorporation of more sophisticated algorithms for data processing and 

the modeling of complex muscle interactions and joint dynamics. Such advancements 

would directly address the identified gap in the current study regarding the precision of 

musculoskeletal assessments, facilitating more accurate predictions of ergonomic risk. 

4. Long-term Effectiveness and User Acceptance: Investigating the long-term effectiveness 

and user acceptance of occupational exoskeletons and assistive tools across diverse work 

environments should be a central focus of future studies. This research should not only 

assess the biomechanical benefits of these interventions over extended periods but also 

explore workers' perceptions, compliance rates, and the practicality of implementing such 

tools in everyday work routines. Highlighting this aspect responds to the need for a deeper 

understanding of the long-term impact and viability of ergonomic interventions, as 

identified in the limitations of the current study. 

5. Advanced Machine Learning Algorithms for Data Interpretation: Exploring the application 

of advanced machine learning algorithms to improve the interpretation of data collected 

via IMUs, especially in dynamic and unpredictable work environments, should be a pivotal 

area of future research. Machine learning techniques have the potential to uncover complex 

patterns within the sensor data that may not be evident through traditional analysis 

methods. This approach can significantly enhance the accuracy and depth of ergonomic 

risk assessments, addressing the complexities and variabilities of real-world work 

activities. 

By addressing these focused areas, future research can build upon the limitations and findings of 

the current study, driving forward the development of more accurate, generalizable, and practical 

solutions for mitigating ergonomic risks in the workplace. 

5.3 Conclusion 

This thesis has successfully bridged the gap between theoretical research and practical application 

in the realm of ergonomic risk assessment for WMSDs. The comprehensive analysis of both 

laboratory and field assessments, along with the evaluation of modern technologies like IMUs and 
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MCS, provides valuable insights into the complexities of WMSDs in the workplace. The research 

underscores the importance of conducting real-world assessments for more accurate and relevant 

data, considering the inherent limitations of laboratory simulations. 

Integrating the research findings into practical applications within real-world settings amplifies 

their value and impact, particularly in enhancing workplace ergonomics. A vital aspect of this 

application is the involvement of end-users in the selection process of ergonomic tools and 

interventions. By incorporating feedback and preferences from the workers who will directly 

engage with these tools, the selection process becomes inherently more user-centric, ensuring that 

the chosen interventions are not only effective biomechanically but also meet the usability criteria 

essential for daily operation.  

Accompanying the implementation of ergonomic interventions with comprehensive, context-

specific training programs further ensures that workers are well-prepared to utilize these tools 

effectively. Training should extend beyond mere usage instructions to include education on 

maintaining proper posture and adopting techniques that mitigate the risk of musculoskeletal 

disorders. Additionally, the design and deployment of ergonomic solutions must account for the 

complex and variable nature of workplace tasks. Solutions that are flexible and adaptable to a 

range of work environments, tasks, and user needs stand a better chance of being effectively 

integrated into daily work routines.  

Central to our findings is the application of musculoskeletal modeling, a powerful tool that has 

significantly advanced our ability to assess and mitigate ergonomic risks. By accurately simulating 

muscle and joint forces, this modeling approach has unveiled precise biomechanical insights that 

are used for designing targeted interventions. These interventions, aimed at reducing the 

ergonomic risks associated with specific work tasks, are grounded in a detailed understanding of 

the biomechanical loads that workers face. Furthermore, musculoskeletal modeling's predictive 

capability is instrumental in tailoring the development and adjustment of occupational 

exoskeletons and assistive devices, ensuring they meet the specific needs of the workforce. 

This thesis underscores the indispensable role of musculoskeletal modeling in ergonomic risk 

assessment and intervention design. It lays a robust foundation for future research aimed at 

enhancing in-field assessments and developing more effective WMSD prevention strategies across 
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diverse occupational settings. By focusing on the capabilities of musculoskeletal modeling, we 

take a significant stride towards a future where workplace ergonomics are not just understood but 

are dynamically improved, paving the way for safer, healthier work environments for all. 

In conclusion, this research contributes significantly to the understanding of WMSDs and 

ergonomic risk assessment. It lays a foundation for future studies to build upon, particularly in 

enhancing in-field assessments and developing more effective interventions for preventing 

WMSDs in various occupational settings.  
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