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Abstract

- ’ o *
A new sequential ‘tree sea}ching algorithm (PS ) 1s

presented. The. performénce. of the algorithm is COmpared'

theoretically qg welil as experimentally with ofler well
known algoriﬁhms such as Alpda—aeta and-SSSf; Bah%ﬁ«ot

. comparisons 'are number of pottom positions (NBP) evaluated
by each.lgléorithm and the éize'of storage needed by them.
.An. éttempt is also made to de&élop an analyfical»model to

evaluate the performance of some tree searching algorlthms.‘
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1. INTRODUCTION

For more than two decades, the problem of éame tree
searching has drawﬁ the attentidn of many théoreticians as
well as practitioners of game playing programs. A number of
tree searching algorithms have vbeen Nsuggested in the
literature, each having some advantage over others in sqme
respects. But there |is yet‘ to be a uniyersally accept%d
algorithm, better than the others in all respects. For this
reason and because of the 1inherent intricacy of the

problem, game tree'searching is still of interest to many

researqpers.

Some of the existing search algpritbms-are depth-first
and some are best-first in nature. The earliest and still

most widely used Alpha-Beta pruning is depth-first. On the

*
"other hand, 8SsS which has been proved to dominate

Alpha-Beta in terms of the number of bottom position
evaluations on any tree, is best-first in nature. Both the

algorithms have their advantages and disadvantages.

The main purpose of this thesis, 1is to propose a
Phased Search (PS*) algorithm which t:ies'to balance out
the problem of huge storage requirement of SSS*, but
maintains its superiority over Alpha-Beta in terms of the

number of bottom position evaluations for most of the



trees. So, the major  advantage of PS 15 1ts
*
significantly lower storage overhead than that of 88§

: . . . N '_*
for comparable performance. It 1is claimed that the PS

algorithm works particularly efficiently on partially

ordered trees. Since partially ordered trees, réther‘than
random trees, are more realistic approximations of actual
_game trees, the proposed ‘algorithm is expécted to be ‘very
useful in practice. The algorithm has been implemented on

VAX/780 using C. Extensive experimental investigations have

been carried out with ordered as well as random trees and

: . * .
an analysis of the relative effectiveness of PS compared
to some of the existing algorithms has been included. Some

guidelines have been provided for the efficient selection

* v

|

of the number of phases, which is a variable parameter of

v .

the algorithm.

.

ASYmptotic, analysis and empirical'studfes are the two -

common approaches to compare different algorithms. But the

asymptotic analysis does not always reflect the true

behaviour of an algorithm on finite trees which are very

much limited in size. Empirical studies are again
constrained by the requitement of extenéive' computing
resources, since no good models of actual game trees are
available. A thﬁrd’approach is the use of analytic:models

and recurrence relations to compute the number, of terminal
\

-

nodes to be evaluated. A similar model has been presented

1



o * .
" here for both SSS and Alpha-Beta algorithms and the
- ‘ R \ \

number of terminal nodes to be searched has been computed

from the recurrence equations.



2. Game Trees and Characteristics of:

Tree Searching Methodologies
. .

Game trees that are .0f concern here, are two- person.

‘Zero-sum perfect 1nf03;at{on games where both the players

are taken to be competent and have the perfect 1nformatlon

to take the best pos51b1e dec151on for themselves.'Examples

.of such games are Chess, Checkers, Go etc. Such games are

called MINIMAX games, MAX belng player 1 who has to make a
move from the current board p051tlon whlch is represented

by'«the root of the search tree and MIN being the opponent

who is also capable‘ of>~select1ng the .best move for

hY

himself. - - SN

%' By convention, . the root node of a tree is assumed to

be “of . type MAX. MAX nodes are represented by squares and

\

MIN nodes by circles in the figures“throughout this thesis.
MAX and MIN nodes appear at alternate levels of a game tree
\

as isa shown in flgure 2.l. The sole purpose of any tree

search algorlthm is to look ahead a few steps 1nto the game

‘from‘ the current p051t10n and assess those positions and

flnally backup the best possible value to the root node. A
heurlstic evaluation functlon is used for the assessments,
but unfortunately the assessments are not always absolutely

o

correct, 1.e.,»4assessed values may,under or over estimate

‘the strength-of the true game situation. If &t was possible,



MAX node

—t

7 (1 1 (3
1.1 1.2] 1.3 3.1 [3.2] .3
7 8 9 4 5 6 1
Figure 2,1

Uniform minimal game tree of depth=2 and width=3.

\

, ’ , \ MIN node



Y

to make correct assessments all the tlme, there would have

been no need‘td look ahead. = .“‘

/J

~D§ﬁinitign: ;\nQde in the search. tree is said to be a

¥

/non-terminal node if some of its immediate successors are

also included "in the search tree. A :node is called a

terminal node or horizontal node 1f its successors are not

. . . \<.
included 1in the search tree and the node is evaluated by a

- heuristic evaluation function.

r N
A

Throu%?cut this  thesis, terminal as . well as
¥ s
nodes in game trees are represented using the

non-termina

Dewey notation. According to this notation, a node at kth

level in the tree - is represented by nlinz...nk, where
the node nl.nz...ni' is - the nith successor of the

node. l.n2...nl 17 for all i=1,...,k The root whic¢h
is the only node at level zero is represented by 0. Figure
2.T déemonstrates this notation for labeling nodes in a game

~——

tree.

Note that a search tree need not include the whole of

a game tree, and the terminal nodes in a search tree are

‘

not the true end p051tlons in the game. These are pseudo'
end ~ positions where searching is truncated based on some
search crlterlon. Slnce the 81ze of a game tree grows very

N

rapidly with depth at-an exponential rate, 1t is necessary



to terminate the search after a few moves.

For a typical game of chess, at a mastex—level, on an

average 'the length of the game is 84 moves counting both

the playe;s' moves and there are 38 legal mbvés per board
position [Cbar83]. So the number of terminal positions to
be explored in an eXhauétive _seafch is approximately
3881.' But Groot estimated that averﬁge number of good

moves -~ from a p051tlon is 1 76 Thus the number of terminal
'nodés to be evaluated shrinks to 1. 7684 - 4.2 * 1040
(approx. ); but still it is unmanageably large. Hence arises ﬁ
‘the need for truncating" the search after a few steps

o) B |
_gj;n;;;gn A tree is sald to be a .un%ﬁggm T(w,d) of
width w and depth d 1f any non-terminal node in the tree.

has w immediate successors and all the terminal nodes are

‘at  a distance 4 from ,the root node (as shown in figure
‘ . P

Definition: A uniform tree is said to be a random uniform
tree if the terminal nodes are assigned random values from

a uniform distribution. .

Random  and uniform _trees .are commonly' used for
simulation as well as asymptotic studies because they are

‘regular in structure and are simplér to analyze, though



they are not good models 6f actual game trees. This is also
! i . .
because no: well established models of real game trees jre
. . |

available.
N .

N
Ty

2.1 Ordered Trees:

Definition: If in a treeé, the best move from any node is
always the leftmost successor, it is called minimal tree.
Figure 2.1 is an example of a minimal tree.

Deﬁinigigd: Ordered trees of order R are trees where the
best move. at any node is among the first (w/R) of its
sugcessors. The higher the wvalue of R, the stronger the
order is and when R = w, the resultant tree is minimal.’
ngini;ign: Probabilistic ordered trees . with parameter
(p,R) are trees where the best move at a node is amcng the

first (w/R) successors with probability p [Mars82]. -

Uniform random trees.are most wiaely used as the test
-bed for compéring different tree $earch algorithms, in
spiie of' the ‘fact that actual game trees are not random.
Most game playing programs, aftei generating the next move
list; sort ithem in order of merit using some knowlédge of
the strendtﬁé -of those .positions. For most of the céseé

sorting is nearly perfect and it is expected that the best



solutﬁon would bé/famong the first f?w of the successors.
Thus .game trees are not a£ all ;andom and in fact are
usually quite strongly ordered, Moét of tﬁe experiments
reported in léter chapterslhave been done on ordered trees
of different orders and- also on rdpdom trees, so thaﬁ
effects of tree ordering in search algorithms may be

- observed.

2.2 Tree Seqrchinq Algorithms:

£y

In this section, a few tree searching aléérithms will
be disgussed. The simplest algorithm Minimax 'is a
backing-up procedure which returns the>best solution to the
root assuming each player is cépable of selecting the best
move for himself. For a non-terminal node p where pfwis,

an immediate successor of p for all 1 < i < w,
' S,
LY

£(p) = max(®£(p,) ) if p is a MAX node

min( £(p;) ) if p is a MIN node.

For terminal nodés,
£(p) = v(p) where v(p) is the value returned by the

heuristic evaluation function on p.

The minimax procedyre evaluates all the {w ** d).terminal
nodes in tree T(w,d)/. There are many other algorithms which
return the same inimax value to the root node but

‘evaluate fewer n¢des, by ignoring the nodes which are



. guaranteed not to affect the mihimgx value. This is’célled
pruning. The" basic obgective in developing any ‘tree
searchingi algorithm  is to minimize the nuﬁbervof noaes
(tefminal/non—terminal)/'to be scanned, the CPU time to run
the search.routine and the stdrage space needed. Naturally,
there. is a trade-off between time and space; increasing
storage méy subétantially reduce the number of node
evaluations and on the otheru Band, ‘there is alwa?s a
phjsical limit on the épace thap can be afforded.

;The nuﬁber of ‘bottom positions (NBP) scored is a
conventional measu;ement'of the efficiency of an algorithm, .
since the static evaluation at terminal positions is the

most time-consuming part of any search procedure. All the

comparisons reported throughout -the thesis are based on

‘NBP.
An alternative of minimax is the NEGAMAX [Knut75] approach,
where . |

f(p) = max( —f(pi) )y p is a non-terminal node of

type MAX or MIN and pi's-are immediate

successors of p.

v(p), where p is a terminal node.
Usually, terminal nodes in a game tree are of type MAX and
NEGAMAX works perfeétly on such trees. But if terminal

nodes are of type MIN, then f(p) is to be taken as -v(p).



NEGAMAX returns the same minimax value to the root and hag
the adventage that, 1t has to perform the same operatlon
irrespective of the type of the node and hence no need to
mak e seperate cases for MAX and. MIN type nodes. But.

- obviously, in the Negamax approach also all (w ** g)

terminal nodes_have to be scored.

Alpha-Beta rs the first search "algorithm  which
incorporated the oruning capability into tree searg¢hing. A
brief history of the its development has been érven in
[Knut75]. Since its first use in the game playing progranm,
Alpha-Beta has gone through many reflnements and is still
the  most Widely used search procedure ‘in game playing
programs. Alpha-Beta ds invoked with an initial window
(alpha beta) and in order to get the minimax value at the

'

root, the 1n1t1al w1ndow must contain the .solution. To make
sure that ir does, (-inf,inf) may be taken as the ihitial
window,‘but narrower windows would provide better cut-offs.
As the' algorithm proceeds the window is continuously
updated to .offer best out—off.lFor a MAX node, if any of
its successors exceed beta, the rest’of the successors are
pruned and similarly, for a MIN node, ’if any of the
successors falls below alpha, the rest of the successors

are pruned. An outline of the Alpha-Beta algorithm can be

found in [Knut75,Mars82] using the Negamax convention.



Alpha-Beta is an example of the- directional
’ . : * o ] -
algorithms, whereas SSS which jis going to be discussed
. . 1 *" s .
now 1is non-directiopal. Before the SSS 'algorithm..is

discussed, it is necessary to review some basic ideas.. .

Defipition [Stoc79]: A solution tree T is a subtree of a

minimax game tree G with the following properties:

(l)'The root of G is also the root of T.

(2) If a non-terminal node of type MIN is in T, all its
successors are also in T. | | |

~(3) If a non-terminal node‘éf type MAX is in T, exactly one
of its successors is in T.

(4) All terminalAnodes in T are assigned values by the

heuristic evaluation function.

T 2,1 [Stoc79]): Let Tp be a solution tree with p as

the root and f(Tp) be the solution at the root nodé i.e.
: , N _

f(Tp) is the minimum over all terminal node values in

Tp. Let g(p) be the minimax value at the root, then
> £(T.

g(p) 2 ( p)

and there exists a tree TO such that g(p) = £(T0_).

p
. _
888 finds the =solution tree TO0O which has the best
solution over all solution trees. The tree traversal method

always proceeds in best-first order. It maintains an



orderéd list OPEN of tuples representing the value of
soluﬁion trees found so far ‘and * it continues with the
solution tree found to be‘the best so far. When one of the
solution trees 1is searched completely and found to be at
the front of OPEN, the algorithm termidates ‘with the
minimax value. The list consists of tuples (n,s,h) where n
.is a node of G, s, an element of the set (LIVE,SOLVED], 1is
the status of node n and h, a redal number in [-o0,+00], is
the mérit of _the solution free it representé. The tuples
are ordered in decreaéing<order of merit in h and for ties

i.e. trees of equal merit, the leftmost one appears in

*

front of others. Details of SSs along with the next

state operator GAMMA <can be found in [Stoc79] and the

‘correctad versions in (Camp8l] and [Roiz83).

*

Theorem 2.2 [Stoc79]: The SSS algorithm with the next

state operator GAMMA computes the minimax value at the root

of any game tree.

~Alpha-Beta 1in
. LN ‘
the sense that it never evaluates_a&node that Alpha-Beta

. ] .
A N : .
It has been proved that SsS do&inates

* - g
prunes, Thus if I(SSS ) denotes NBP".".,;1

. i ‘e*ﬁ .
I(AB) denotes the NBP scored by Alpha-Bgta then

* §
I(SSS ) < I(AB) for an

It was also shown in [Roiz83] %

R(SSS") = R(AB)



where, R(SSS*) “and R(AB) denote therbranching factor of
SSS* and Alpha-Beta respectively. Also note thqt, by
‘ definition, for any algorithm A | |

R(A) = lim [ I(A) ** (1/d) ]

d-»inf.

So, when dépth of the searched tree d -->inf., there is no
*

benefit of SSS over Alpha-Beta. Since depth of a search

tree, in practice, is very much limited and is ugually of

the order 1like 10, I(A) 1is more important:lthani the

asymptotic value of R(A).

Vérious “experimental resulté [Mars82, . éamp83} show
that I(SSS*) indeed falls well below I(AB)? especially
for fandom trees and even otherwise. Since the heuristic
evaluation function at any terminal node takes a major part
of time in game playing pngrams, SSS* can provide
considerable reductions in search time. But the e lengy
of SSS* is .obtained at the cost of maintaining a list of
considerable size of order O(w ** d/2 ) whereas Alpha-Beta
needs only O(d) storage area which is negligible [Camp81].
Also a considerable amount of time is spent by SSS* in
maintaiping such a huge ordered list. For these reasons, .

*

SSS in spite of its proved dominance over Alpha-Beta is

not customarily used in game playing programs.



*
3. Phased Search (PS ) Algorithm

»

. . ok
In this chapter, a new tree searching algorithm PS is

*
proposed which is an amalgamation of SSS  and Alpha-Beta.

.This algorithm partitions the set of all successors of MAX

nodes and searches one partiﬁion at a time in one phase. So
1t does not generate all solution trees simultaneously, but
instead generates a subset of'them. The algorithm searches
the ith partitjgn only after discarding the (i-1)th
partitioﬁ by proving that it can not really lead to the
final solution or after solving the (i—l)th partition
fully, because it may have the potential soluﬁion. Ps
maintains a window 1like (alpha, beta) to' be used for
pruning. From this brief discussion, one can see that PS
would require much less storage area, since it does not
generate all solution trees at the same time. On the ‘other
hand, it is also clear that in some cases when the solution
does. not lie in the first pértition, PSt may evaluate

some nodes which are pruned by SSS*. The search strategy

within a phase in PS* algorithm is non-directional and is

simiiar to SSS*, but ,partitions are: inpluded in the

search in directional fashion which 1is similar to

Alpha-Beta. ' Further details and comparisons will be

discussed after the algorithm is defined formally.



‘ *
3.1 EQIle~Qﬁfiﬁi£ipn~quES‘-QlQQriﬁhm:

* *
Let PS with k partitions be denoted vy PS (k).

* .
PS maintains two lists, one is similar to the OPEN list

~ L

in 555" and the other is a BACKUP list to keep track of
the partially expanded MAX nodes. OPEN consists of triples
(n,s,h), where n is the node number, s is an element in the
set [LIVE, SOLVED] and h, a real numbe; in [-o00,+00], is
the merit of that state. As in SSS°, the OPEN list is

maintained as an ordered list of triples with

hon—increasing value of h. The BACKUP list consists of

vectors of  the form (n,lsqn,l,h), where n" is the node

number, 1lson is the nodexnumbér of the last son of a MAX
oy .

node included 1in OPEN, and 1 and h are current lower and

“upper bounds of node n. This window is used for shallow as

well as deep cut-offs. Whenever a MAX nodé'included in the

list is solved or prunéd, the corresponding vector is

deleted from BACKUP. For the time being, it is assumed that

partitions are of: equal size, i.e., the width w of the

uniform search tree 1is . a multiple of the number of
partitions. Let P(n) be the Dewey number of the pafent of a
nod€ n, PSIZE be the size of each partition and vin) be'thé
static value at a terminal ﬁode.
* . N :
The PS (2) algorithm is intuit;vély explained below

with the help of an eXample. A sub-tree of a tree T(4,3)
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R ok
ched by PS (2) is shown in figure 3.0. Note that the

essors -of MAX nodes are divided in two partit.ions as

shown  in the figure by ver%&cal broken lineé. This

‘part
;tree
part

phas

node

the
term
inst

demo

(3)

.has the highest'mebit.

(4)
" (5)

(6)

Otherwise

itioning is doge recursively at‘each;MAX node in Ehe
and the successors of a MAX nodefz% fwo different
1tlons are“aevet incluaed in the OPEN list in the same
e "of the (PS* algoriehﬁ?.Alsb he;e that, at any MIN
yienly .ohe. of its succese&fs is included_at a time in

search tree. Thus, for this example, no more than four
oA . ' B . '\

inal nodes§w}ll ever be present“in the OPEN list at any
' !

ant. EXecutieﬁ of the PS (2) algorlthm has been fully .

: /
nstrated in Appendlx—A w1th a: 51m11ar example.' e
Description. of the a jorithm: |

Get the value o% k and W. Set .PSIZE = w/k.

1

Place the initial state (n=root, 5= LIVE h=+00) in OPEN

- and (n=:00p, lson=0, 1l=-00, h=+oo) in BACKUP.

‘Rgmove the first state ffﬁ-(n,s,h) from OPEN which also.

v

[
.

If n=root aqd‘séSOLVED, termfnate’the algorithm with h
as the minimax value.. |

jéxpand“ the state f gsing the'state.space
operaﬁor GAMMA.defined in Tabie 3.1.

Go to step (3)..

/



- . . /
o - o -
/

The stafe'space operatpr GAMMA is/fully‘described in-Table‘
3;1 with its actioné - at varfgus conditions of the input
state. In each iteratidn, the first state vector is removed
from OPEN and GAMMA modifies both OPENyand BACKUP lists as
neéessary, - depending on Ehé status and type of the current
" node. For_‘hon—terminal LIVE nodes, GAMMA either adds its
first partition of successors or'only the first suceeSsor
for node type-MAX or MIN as described gndef cases (1) and-
(2) in Tablé 3.1. For a LIVE terminal node n, v(n),&s the
vaILe returned. by the heuristic evaluation functlon and
GAMMA' eiﬁher inserts n on . OPEN with SOLVED status, or
prunes tpe remaijning nodés in tHe current partition having
the ‘Same predécegsor as n, depending on the Value.v(n)
cdmpa;eq‘to the bounds 1 and h as described in steps 3(a) -
3(c). ‘Fgrv‘a SOLVED MAX type node ‘n, GAMMA purgeé_the
successors of n from both OPEN and BACKUP and either adds
the next successor of parent(n) to OPEN or prunes them
according to  the input cénditions giéen in cases 4 and 5.
Similarly, for :$OLVED MIN nodes GAMMA either adds the next
partition  to Oégﬁ;or prunes the res£ of the partitions as

described in case 6 in Table 3.1. ' Y
- 5BY :
@Y.
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Table 3.1

' ' Lk
STATE SPACE OPERATOR (GAMMA) FOR Pﬁi:

‘

Let n (=i.m) be the m-th successor of its parent node 1

(i = P(n

)), where n is not a root node.

Case of Condition of the Action of” GAMMA
GAMMA input state(n,s,h) .
1. s = LIVE, Add states: (n.j,s,h) for all
‘type(n) = MAX, j =1,..,PSIZE in front of
A n is non-terminal. OPEN in increasing order
) of j. ' _
Add (n,PSIZE,1,h) in BACKUP
for PSIZE < w, where 1 is the
lower bound of n ard h is the
upper bound. Note that,
1l = -inf. if n = root..
= 1 'of P(i) stored in
BACKUP., AN
2. s = LIVE, Place (n.l,s,h) 1in front of
type(n) = MIN, the OPEN list.
n is non-terminal. ' .
3. n = LIVE, n is a Set score = min(v(n),h).
terminal node. :
3a. (type(n) = MIN) . Place (n,SOLVED, score) in
‘or OPEN in front of all states
score > 1 of P(1i) of lesser merit.
v(n) is the value returned by
static evaluation function.
© Ties are resolved in favor_of'
nodes of lesser lexicographic
value.
3b. Type(n) = MAX, Place’ (i,SOLVED,1 of P(i))

score £ 1 of P(i)
and r is da mult-

.iple of PSIZE,
where i=p(i).r

N\

in OPEN maintaining the order
of the list.

contd.
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Table 3.1 (contd.)

Case of Condition of the Action of GAMMA

GAMMA input state(n,s,h)
3c. . Type(n) = MAX, Place (i,SOLVED,min[v(n),h])
‘ score < 1 of P(i) in OPEN maintaining the
and r is not a order of the list.

multiple of PSIZE . ,
where i=P(i).r -
\

4, s = SOLVED, Purge all states correspond-

' ‘ type(n) = MAX, ing to the successors of i
m # width from BACKUP.

da. h > 1 of P(i) Place (i.m+1,LIVE,h) in front

' ' of OPEN. :

4b. h <1 of P(i) , - Place (i,SOLVED,h) in front
. : of OPEN;

5. s = SOLVED, Purge all successors of i

_ type(n) '= MAX, from BACKUP.
m=width. - Place (i ,SOLVED;h) 1in front

of OPEN, .
6. s = SOLVED, Update 1(i) = max(1(i),h).
‘ type(n) =.MIN,
6a. If 1(i) > h(i) Purge all successors of - i

‘ from BACKUP and OPEN. Place
‘ ‘ ~ (1,SOLVED,h(i)) in front of
L OPEN.

6b. If 1(i) < h{(i) If there are some incompletely
’ : - searched MAX successors

(immediate or. non-immediate)
of node i present in BACKUP
then add the next partition
of the first such node found
in BACKUP to the front of
OPEN;
Else add the next partition
of successors of i1 to the
front of OPEN,



*
3.3 Proof of correctness of PS algorithm:

. ' *
Before discussing PS any -further, it is necessary

~to prove its correctness, i.e. to show that the algorithm
really returns the minimax value. Some of the results

mentioned in the previous chapter will. be used for the

proof.

*
Theorem 3,1: PS (k) algorithm with its .state operator

GAMMA computes the minimax value of the root for all trees,

for any k which'is = factor of W.

*
Proogf: To prove the correctness of PS (k), it is

necessary to show:

* i ‘ . . . . - - . 0
(1) PS does not terminate with inferior solutlon’(l.e.,

. .
PS .is admissible).

(2). Algorithmfalways terminates after a finite number of
steps.
Let g(root) be the minimax value of the tree being searched

. ‘ *
and £(T ) be the value returned by PS (k) for the

root

solution tree T.

g(root) > £(T_ )

root

'

for any solution tree T and there exists a solution tree TO
such that,

g(root) = f£(T0 ) [Theorem 2.1 & Theorem 2.2].

root
- *
To show (1), suppose that PS (k), for some k >'1,

terminates with a solution tree T1 which is inferior to TO,



i.e., f(T1 ) < £(TO ).

root root

This can not happen ‘because there would be a yectof
(n,s,ho) for the s@lution tree TO0 such that,
ho 2 f£(TO0

) 2 £(T1 )

_ root rbot
“and TO0 would be solved before Tl, if TO is in the same
partition with Tl or if it {is in one of the previous
paftitions; Otherwise, 1if Tl is fully solved and TO.is in
one .of the right partitions, the correéponding state
(n,s,ho) would appear in fro;t of OPEN before root node
can be declared | SOLVED, and when‘ it appears, the

corresponding solution tree would be evaluated fully, since

23

it can not be pruned. The BACKUP list is maiﬁtained to keep

track of the partially expanded nodes and it provides the
protection  against terminating the algorithm with an

inferior solution.

Part_ (2) 1is true, since there are oﬁly finite number
of solution trees and any subtree once solved or discarded
would never be searched again. So the algorithm is bound to
terminate. |
An example is given in Appendix-A showing the detailed
steps of PS*(Z) algorithm on a game tree of depth=3 and

" width=4.



3.4 Comparisons of PS* with other algorithms

under different cases:

: ‘ . .
Let R be the order of the tree being searched and PS (k)

denotes the Phased Search élgorithm with Kk number of

phases.

(1)

For minimal trees,

: * ) * ’
I(SSS ) = I(PS (k)) = I(Alpha-Beta) for any k.
. *
So PS also performs minimum tree search for
optimally ordered (best-move-first) trees as both

' *
Alpha-Beta and SSS do. This is due to the fact that
it gets the best solution in the first phase itself for

any k.

I(PS*(k)) < I(SSS*); if order of a tree (R) > k,

i.e., if the. number of moves having the best solution'
(w/R) < PSIZE (=w/k) . Although there may not be many
cases where strict inequality holds, PS*(k) is

at least és good as SSS* as long as R > k. Figure 3.1

is an example, where I(PS*(k)) < I(SSS*).:The tree is

of dep£h=5 and width=4.  Only that part of the tree.
which 1is enough to demonstrate this has>beén shown in
the figure. Assuﬁe that node 2.1 is solved with value
64, so node 2.2 has upper bdund 64.'Conseqﬁently,

2.2.1.1.1 and 2.2.1.1.2 are solved with values 18 and



[}
[l

f

21 respectively. Then 2.2.2.1, 2.2.2.2, 2.2.2.3 and
2.2.2.4 are 1included in OPEN and solved with values
2 64. Hence node 2.272 is solved and'nodes crossed in
the figure are rot scored by ps’ (2) but are scored by‘

*
SSS .

If k- > R,- for some trees we may have I(PS*) greater
than or equal to I(SSS*). I1f selection of the
parameter k 1is no£ good or the tree is random, then
Psf(k) probably will evaluate some extra nodes, as
shown in figqure 3.2. PS*(Z) would evaluate the nodes

ﬁ
*
underlined in the example, but SSS will not.

I(PS*(k)) < I(Alpha-Beta) for trees of order R > k.

Also, when R < k in most of the cases and on random
trees, PS*(k) is better than Alphé—Beta as we will see
from the simulation results in the next chapter. In the

o X , ' .
example of figure - 3.2, PS%(2) ignores the nodes in

boxes which are scored by Alpha-Beta.

. * |
There are trees for which/ I(PS (k)) > I(Alpha-Beta)

~as seen from the example in figure 3.3 for trees which

. *
are unfavorably biased against PS . Alpha-Beta

*
ignores the nodes 1in circles, but PS (2) evaluates

- them. Such ,game trees rarely occur 'in practice

[Mars82].
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P
/N -
/I\
2.2.1.1
2.2.1.1.1

18 21 >6\\?< 70 70 70 70

* *
Figure 3.1 : "Tree T(4,3) on which PS (2) is better than SSS
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3.5 @ggg,ﬁggmmmgngénalym:

Lgmmg_QLL: Maximum size of OPEN for PS* with k
partitions is of the order O((w/k) ** (&d/2)) and this is
less than the space requirement of SSS*, which 1s of
order O(w ** (d/2));
Proof; At eéch MAX node only w/k o0f its successcrs are
included 1in OPEN in a phase and MAX nodes appear onﬁy at
alternate levels of the tree. Hence the above expression.

*
Thus space requirement of PS 1is never greater than that

*
of SSS .

Lemma_3,2: Another 1list BACKUP 1is also needed to éto:c
partially " expanded MAX nodes which is of @ize of the order
O((w/k) ** (d4/2)).
Proof: Maximum number of non-terminal MAX nodes at level i
to be kept in the BACKUP list is ((w/k) ** (i/2)). Hence
for trees of depth d, BACKUP size would be

= SUM ((w/k) ** (i/2)) , !

i=0,d-1,2

O((w/k) ** |(d/2)1 )

where [x| denotes the smallest integer > x and

SUM denotes the summation of the given quantity with i
varying from 0 to d-1 with an increment of 2.

Corollary: Let §S(A) denote the space needed by an



algorithm A, then
* *
S(PS (k)) < S(SSS ) for any k > 1

and for any depth and width of the search tree.

*
Corollary: If phe number of phases in PS 1is k, then

* *
PS (k) is equivalent to SSS for k=1 and

+

*
PS (k) 1s equivalent to Alpha-Beta for k=w.

From the example in Appendix=-A,sone can see the difference
* *
in the size of OPEN in PS (2) and SSS even for a small

tree of width=4 and depth=3. \

3.6 Selection of the number of partitions(k):

From the previous discussions, it 1is clear that
selection of the number k of partitions' is very important
for the algorithm to achieve its maximum benefit. Different
ordering schemes of game trees have alreédy been discussed
'and ordered trees are much better approximations of game
trees than are random trees. 1If from some [previous
knowledge, we know that a tree is of order R, we can choose
k = R:. Then I(PS*(k)) would be the same as I(SSS*), but
the storage requirement of PS*(k) would be 1/(k ** (4/2))

*
of that of Sss .

We can see that, there is a trade off between space



and® NBP. If k=w, minimum space will be required, but NBP
will 1increase and be the same as in Alpha-Beta. On the

other hand, if K=1, NBP would be low Sut space needed would
be as high as in SSS*. So PS* can be made very

effective using the ordering of game trees, since it has
the flexibility of choosing the parameter k on the basis of
tree ordering and the space available on the machine, ‘the

*
program is run. Thus PS may be thought of as a continuum

Q *
between SSS and Alpha-Beta.

\ *
For example, for a tree of depth=4 and width=32 SSS
. o *
needs 1024 storage areas whereas PS (4) would require
* . .
only 6449 = 73, PS (8) would need 16+5 = 217 Also,

maintaining an brdered lis®P\of size 64 or 16 would be much

faster than a list of 1024 elements.

§ *
It is to be noted that, although PS maintains two
*
ordered lists OPEN and BACKUP unlike SSS (which has only
one ordered list OPEN), the total size of the two lists in

*
PS l1s . much 1less. than that of the single list OPEN of

* ' *
SSS . Hence, the time spent by PS _in maintaining these
. - *
two lists is less than than that Hy $6S to maintain the

single list OPEN.
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3.7 ‘Other hybrid algorithms:

Difﬁefentf hybfid. algorithms wusing Alpha-Beta and
588" have  been _reported. in [Camp81] like
Alpha-Beta/SSS  (ABS), sss”/Alpha-Beta kSAB) and Staged
SSS*- (SS) efz. Experimental resuitsﬁwere also reported
vfrom_ which it is observed,that'for random trees SS and ABS

'a{e3 supefior to Alpha4Béta. But for oraered trees they do

.not have any advantage qver Alpha—Beta/and in some cases

£

may be  even worse.bSS'and SAB do not achieve minimum NBP

for all minimal trees. All these hybrid algorithms indeed

X . * '
reduce the storage .requirement of SSS , but it is not at
. - . /

all. clear which are better chgices of the staging

32

parameter. .Also it is not-cléar which characteristics of

the tree:should influence the selection of the parameter.

N



4. Experimental Results and Performance Comparisons:

The séarch algorithms PS*(k), SSS* and Alpha-Beta have
been implementéd 'énd compared empirically. Uniform.trees‘
with ‘différept combinations of depth; width and  tree
ordering have ‘been conside;éd in the experimenté, some of
Whiéh are reportea here.

Expériméntal results on uniform trees T(8,4), T(l6,4),
T(24,4), T(32,47:. and T(8,6) with experiments carried out
on .minimal( randdm4 and ordered versidns of each of these
trees are giVen in‘this chapter. For treeswof wiath - g8, 16

and 24,' orders 2 and 4 have been considered and for tfees

of widtha= 32; orders 2, 4 and 8 are considered.

For each type, 100 different trees are generated usin$
a ﬁmbdified version of the program reported in [Camp8l} and:

-

the average NBP's have been reported in‘the tables. Maximum
: : _ e : ‘ @

amount of space needed by each algorithm are also given for
e . coN S

trees of fixed depth and- width. Some of the results given
in tables (4.1) thfough (4.55 are also shown'graphically in

figurgs (4.1) through (4.4).

Following observations are made on the ekperimental results

~obtained.




(1)

¢ i

’ ) ’ . *
It is observed that for most of -the trees SSS

. * * .
(which is same -as PSS (1)), .., PS (1), ...,

*

for all 1 and j» 1 <.j, evaluate terminal nodes in

increasing number, although there are some trees like

‘the ones given in figures 3.1 and 3.3 for which this is

not true. -Also in Table 4.5 1t 1s observed that the
above relation marginally fails to hold.

* ’ B
For random trees, SSS 1is always better than other

algorithms.

Figures in tables (4.1) through (4.5) demonstrate that
on random trees,lthe NBP for PS*(2) 1s chsidérably
less than for Alpha-Beta, but'more than for SSS*. For
trees of order = 2 and higher} PS*(2)'and sss” have
the same performance. But it is obvious from figgré’4ld
that the space requiremeht of PS*(2) is much less

) *
than that of SSS .

For best ordered‘tfees, each of the algorithms

evaluates minimum NBP. Table 4.3 shows the results on
ordered trees and proballsﬁically ogdered 'trées of
depth=4 and width=24 and ofder=2 and 4. In the second
bage, NBPs are only marginally greater ﬁhaniﬁthé

corresponding 'NBPs in the first case, as they should

) *
PS (j), ..., Alpha-Beta (which is same as PS (w)), &

3¢



be; '
“.”‘: "
. A, .
(5) Figure 4.4 show the drastic reduction in the amount of
* * )
storage required by SSS and PS (k). Reduction in

the size of storage is more prominent for higher k.

35



Search | ord=1 ord=2 ord=4 ord=8 size
algorithm (random) ' (minimal)

-

*

SS5S 439 287 190 127 64
ps*(2) 571 286 190 . 127 21
pS” (4) 634 375 190 127 7
Alpha-Beta 689 415 248 127 4

Table 4.1: NBP on trees with depth = 4 and width = 8.

Search ~ ord=l  ord=2 . ord=4 ord=16 size
algorithm (rrandom) ' (minimal)

sss” 2250 1637 1146 511 256
ps” (2) 2829 1637 1146 511 73
ps” (4) 3363 2114 1146 511 .21
PS (8) 3743 2388 1496 511 7
Alpha-Beta 3952 2981 1664 511 4

Table 4.2: NBP on trees with depth = 4 and width = 16.
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prob=1.00 prob=0.90
Search ord=l ord=2 ord=4 ord=2 ord=4. size
algorithm (random)
sss” 5805 4423 3206 4702 3513 576
*
PS (2) 7345 4423 3203 4956 3690 157
* s
PS (4) 8650 5718 3201 6460 3940 43
PS” (6) 9207 6222 3950 7126 4649 21
* : :
PS (8) 9753 6652 4300 7517 4938 13
Alpha-Beta 10602 7437 5031 8364 - 5660 4
-Table 4.3: NBP on trees with depth = 4 and width = 24.
For minimal trees NBP = 1151 for each algorithm.
Search ord=1 ord=2 ord=4 ord=8 ord=32 size
algorithm - (random) (minimal)
* . ‘
SSS 10816 8493 6424 4633 2045 1024
X o
PS (2) 13989 8478 6422 4632 2045 _ 273
* .
PS (4) 16464 11089 6420 4632 2045 73
* .
PS (8) 18512 12782 8313 4631 2045 21
* _
PS (16) 20145 . 13966 9330 6209 2045 7
Alpha-Beta 20836 14665 10046 6974 2045 4
Table 4.4: NBP on Trees with depth = 4 and width = 32

e
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‘Search ord=1 ord=2 ord=4 ord=8 size

algorithm (random) (minimal)

sss” 6044 3475 1932 1023 512
K3

PS (2) 9984 3437 1921 1023 . 85
* ' . .

PS” (4) 11283 5213, 1915 1023 15

Alpha-Beta 11565 5555 2659 1023 6

Table 4.5: NBP on trees with depth = 6 and width = 8
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5. Analytical Models

Most of the search algorithms unlike minimax, do not follow
a fixed and identical set ot rules for similar type ot
nodes throughout the search procedure and 1in general, it 1is
difficult to develop analytical models for such search
algorithms. These search algorithms at a later time use the
Knowledge gained at earlier parts ot the search to prune
some subtrées. Also the search and pruning mechanisr
depends a lot on the distrlbutlon of terminal node values.
So analysis of such a search algorithm becomes complicated.
However, asymptotic studies are also complicated and all
the studies done so far are only on unitorm distribution ot

terminal node values.

A model of game trees is presented 1in this chapter and
recurrence equations to compute the number of terminal
. * .

nodes to be evaluated are given for both SSS and

Alpha-Beta.

Assumptions: Let thg search tree be a uniform tree of depth
d (=2*h) and width w. It is assumed that on an average
(k+1l)th successor offers the best solution ét any node.
searched in the game tree and k may vary trom 0 to (w=1).,.

(k+1) 1s called the average pbranching factor (ARF).
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*
5.1 pPerformance Apalysis of SSS :
* $
SSS has already been discussed in detail in
‘previous chapters and elsewhere [Stoc79, Camp8l, Roiz83].
Before proceeding with the formulation, some .of the

N :
properties of SSS would be noted here.
Observations;

(1) For a MAX node whenever one of its immediate sSuccessors
appears with SOLVED status in the front of the list,
the MAX parent is declared to be SOLVED.

(2) For a MAX hode all its immediate successors are
included‘in OPEN simﬁltaneously.

(3) To attain the SOLVED status for a MIN node all its
immediate successors must be solved.

(4) Successors of a MIN node are evaluated ‘sequentially
from left to right i.e. iti. MAX child would be searched
only after (i-1)th MAX child of the MIN node 1is

evaluated.

Any node which appears in the front of the OPEN list with

SOLVED status during the search, all whose immediate
successors are included in OPEN and for which the best
solution is obtained after probing (k+l) sucéessors on an

average,,ls said to be fully searched and is represented by



type TF. Remaining nodes 1n the tree are .either minimally
searched (TM) or pa;tlally searched (TP). TM type MIN nodes
are those for which only the 1€;tmost quLLGSSOr
evaluated and TM the MAX nodes are those for whyth
successors are again of type TM. Partially 3earched MIN
nodes are those for which some of the MAX successors are
included 1in OPEN when the root of the subtree 1s declared:
SOLVED. Noge, that a MAX node can not be ot TPltype, since
according to ‘oﬁservation (25 at a MAX node all 1ts

successors are included in OPEN simultaneously. Above model

1s diagramatically shown in figure 5.1.

Notations:

NF& = Number of terminal nodes scored for a TF type
node as the root of a subtree of height 1 to be

-

- searched. "
* [

NP, = 'Number of terminal nodes scored for a TP type
node as the root of a sugtree of height 1 to be
searched. |

~NM_ = Number OF terminal nodes scored for a TM type

node as$ the root of a subtree of height 1 to be

searched.

Under the assumption that ABF = k+l, for MAX nodes (i.e.

nodes at even depth )~k successors are partially evaluated

2 |
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vtwhen_ Ehé (E%l)th‘ Succéssdrv.;s'SOLVED and appears fn the
front of OPEN, ‘ordihg-”ﬁo assumption (1) MAX node 1is
'declared SOLVED 1n this situation.‘It 1s also realistic to
assume that the rest (w-k-1) nodés at that point are

‘evaluated with minimal eftort when the MAX node fs deblared
. c . o , %‘ ;
SOLVED. So, if the root of a subtree 'is MAX (i.e. height of

the subtree 1is even) and average bfanching factor 1is
(k+1) , o
NF, = NF ‘4 (w-k-1) * NM

*
- + k * NP

21-1 2i-1

21-1 (H)

When the root of a subtree is MIN (i.e. height is odd ) v

‘éccording to observation (4) all the k successors must be

]

SOLVED before sofving the (k+l)th successor. Before the MIN
node may be declared SOLVED, %%F remaining (w-k-1)
successors need to be searched with minimum search effort,

because the best solution is already attained. Hence, o

+ (w-k=1) * NM,. v con (2)

S .
NF (k+1) * NF 2in

21-1 21-2

By the definition of TP type nodes and due to observation

\

©(4), all the (k+l) the successors must be solved while the
rest of the suscessors are pruned. So,

b a ) -

Again, by the descriptioﬁ of minimally searched nodes. (TM)
= * - ’ ) | . ' ..' v .
My =W T NMa R

NMZi—l - NMzi—z . . . e o o (5)
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where,

NFO = NM, = l‘;

B

NF = k+1 A NM, = 1 ;
& E&p' 3

It
kS
2
g

1

wi

Equation (1) may be simplified as follows:

1=

NF,, = (k+1) * NF, . + (w-k-1) * NM,.
+ k.*-%k+i) ¥ NP, o o+ (w-k-l) * NM,. o
= (k+l)21* YB_]FZi*Z' + 2 * (w-k-1) * NMz'l_2 ‘
= (k4112 * Prre1)? * NF, ., |
+ 2 % (w-k-1) * NM, . _,] é‘y2.* (w=k=1) * " *NM, L,
, B TR Ny g + 2 % (wek=1) * [ (x+1)° * Nm,,
ks : oW R NMy, ]
.« . -
o i-1
21 '

(k+1) + 2 % (w-k-1) * [ SUM (k+1)%3 % i=371

=0 . (6)

Putting k=0 in equation (6), it reduces to
i-1

ﬁF 1-7-1

» * - ‘ * ‘
21 1 f 2 ' (w=1) * SUM w

3=0
= 2*wl - l

Note that, this is same as the number of nodes searched by

* -
S5S and also by Alpha-Beta on a minimal tree.

Similarly, when k+l = w, equation (6) reduces to



21
Nin = W

which 1s the same as the size of a full tree.

Thus the set of recurrence relations derived here satisfies
-the number " of terminal node evaluation on both best and
worst ordered game trees. Also the branching factor

[NF 1/21

2! ..
(k+1) [approx.]

as it should be.

5.2 Performance Analysis of Alpha-Beta:

The Alpha-Beta search“procedure 1s less symmetric than

*

49

SSS  and the tree searched by.this method becomes more

complicaﬁed to analyze. A model representing the tree
searched by Alpha-Beta is shown in figure 5.2 which is a
modification of the model proposed in [Relntlj. An attempt
is made here to represent the'number of terminal nodes
scored in the tree searched .by ‘Alpha-Beta in terms of
recursive eqﬁgtions under the same assumptions as SSS*.
!
~In the present modél, there are séven types of nodes

each of which basically  belongs to one of the three

} a2 -

fully searched (TF), partially searched
y _

catego:ie‘,n@ﬁﬁé ¥
B
(TP) and mihimaily searched (TM) as described 1in the

. * . N
prev;ous section for S8SSS . 1In caselof Alpha-Beta, this



Fl

M7

F3

Figure 5.2 :

Alpha-Beta Search Model.
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4further distinction is made because- the windows associated
with the nodes are different. Due to the very nature of the
Alpha—Beta pruning_algorithm;‘seaéch pattern depends on the
window and seven node types have been used’for convenience
and.simﬁlicity.
, .
Séveﬁ node £ypeé are defined in this model, four of
which are fully searched nbdes (F1, F2, F3, F4), two are
partially - searched (P5 and P6) and one is minimally
searched (M7). Let Nld, ey N7d be the average number
6f nodes to be scored to solve a subtree of depth d with a
rodt node of type F1, ..., F4, PS, P6 and M7 respectively.
An explanation followed by the corresponding }ecurrence

equation for each type of node is given below. '

F1 type of node is searched fully with a window
(-inf.,+inf.). A} the nodes on the left-most path from the
root are of  type Fl. At an Fl type node, all the w

successors have to be evaluated, first successor being of

51

type Fl again. Since (k+l) is the avérage branching factor )

(ABF), k of the succeséors are of type P5, each of which
needs partial " evaluation and the remaining (w—k—i)
successors are minimally searched (M7) for which the
left-most move 1is always the best and leads to immediate

pruning. So, the recurrence equation for Nl is,

Nl. = N1 + k * NS + (w-k-1) *.N7

d d-1 d-1 d-1 -~ ee. (1)



S
i
)

/

P5 type ot nodeé are partially searched nodes, invéked with
window (-inf.,beta). Left-most ~successor ot a P5 node 1s
always to be searched fully (F2 type node), next (k-1) are
partially searched (P6 type nodes) and finally the (k+l)th
node is; the pruning node which is of type F3. Hence) the
recurrence equation for N5 is,

N5, = N2, . + (k=1) * N6 + N3 (2)

d d-1
At M7 type of nodes, the first successor itself being the
pruning node 1s of type F3. Wiﬁdow for searching M7 node is

(-inf.,beta) and the recurrence equation is,

F2 type nodes, as discussed already, need full expansion. k
-of the sgcceésors Are partially searched (P5 type nodes),
(k+1)th successor 1s fully searched (F4 type node) and the
remaining (w-k-1) successors are minimally searched (M7
type nodes). (alpha,inf.) is the windowoassociated with an

F2 type node and the corresponding recurrence equation 1is,

(4)

,A = * N . *
N2 k * N5 *NAg ) (wekeD) N7

da d-1 d
At F3 type nodes, all the successors are of type P6. Window
for F3 type node 1is (alpha,beta) iand the ‘recurrence
equation is,

: : A
=w * N ‘
N34 = w N6 4_; ‘ %... (5)



P6 nodes are partially searched with window (alpha,beta), k
successors are of type P6 aéain and on an average (k+l)th
successor 1s the pruning node which 1s-of type F3. The

LY
recurrence relation for N6 1is,

/(6)

F4 type nodes are also fully searched nodes with

= *
N6d k N6d—l + N3

(-inf.,beta) as the searchfhg\window. One of the shccessors

™~

1s Qf type F2 and remaining (w-1) are of type P6. Hence

= " . *
N4d de—l +- (w l)- N6d—l _ e (?)
where, .
Nld = N2d = N4d = NSd = N6d = N7d =1 ford =0
NS, = N6, = k+l and N7, =1 tor d = 1

d d d

Notice that, 1in case of SSS* only three types of nodes

were defined, but same type nodes have different ;earch
Characteristics depending on whether they are MAX or M;N
nodes. So five recurrences were given for three node types

with odd or even depth as the subscript. In the mod

Alpha-Beta also there are three basic types of podes, but

nodes of the same type behave differéntly if<{i;7 socliated
windows are different. Since this can not bedad ply/modeled
in terms of different,subscr}pts, 1t was chosen to define

53

different types of nodes for convience'of repres ntagﬁon.‘

\\_///



Also, 1t 1s to be noted that, for optimal trees there are
only Fl type fully searched nodes, P5 type partially
searched nodes and M7 type minimally searched nodes. Thus,
effectively there are only three types of nodes in case of

- optimal trees as was described in [Knut75].

In the present model, when k+l = 1 it can be shown that
Alpha-Beta scores only minimum number of terminal nodes for

best ordered trees.

Similarly, when k+l W

N;d

The derivations for above cases are given in Appendix-B.

w ** g

5.3 Results derived from recurrence eguations:

+

Using the two sets of recurrences developed for sss”
and .Alpha-Beta, estimated values of the number of terminal
‘nodes to be evaluated by each method were calculated for
various combinations of.depﬁh, width and average branching
factor (ABF). The ratio I(Alpha-Beta) / I(SSS*) was then
calculated 1in order to comparfe the relative performance of
SSS* over Alpha—Beta in terms of NBP. Some graphs have

been plotted to show the trend of values of the ratio with

varying ABF. The graph for trees of depth 6 with different

Ut

I~
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A

“widths and ABF are shown in figure 5.3 and tor trees of

width 8 with different depths and ABF are shown 1n figure

Following are the observations made from the numeric
values calculated from the recurrence equations which are

~also pictorially displayed in the graphs.

(1)  For %ixed depth and width, benefit‘of SSS* over

b Alpha—Beta increases very sharply with increasing ABF

épto a certain valﬁe and the peak 1s reached nearly at

4 A@F = sqgrt(width). After that poinﬁ, the values of the
ratio start declining gradually and reaches 1 for AEF
; W since both SSS* and Alpha-Beta are eduivalent to
ekhaustive search 1in such cases. Also note that, for
AQF = 1 the ratio is equal to 1 (as it should be)

. *
since both SSS and Alpha-Beta procedures evaluate

minimum number of terminal nodes on best-ordered trees.

: ' *
(2) For fixed depth, benefit of SSS increases with width

and this 1s most prominent at ‘ABF = sqrt{width) as may

)

* be observed from figure 5.3.

i
*

j(3) ‘For ’fixed width, benefit of SSS increases with



depth for each average branching factor. Again the’
benefit 1s maximum at ABF = sqrt(width) as shown 1in

figure 5.4.

Average ratios have been calculated over ABF = 1,...,w
for different width and depth trees and are given 1in
table 5.1. It may be observed that for fixed depth,

*
benefit of SSS over Alpha-Beta 1increases with

width.



a7

WIDTH
Depth 4 8 16 24 32
2 1.000 1.000 1.000 1.000 1.000
4 1.060 1.128 1.190 1.221 1.241
6 1.174 1.346 1.483 1.543 1.577
8 | 1.342 1.671 - - -
10 1.581 2.149 - - -
12 1.923 - - - -
14 ° 2.416 - - . )

Table 5.1: Average values of ( I (Alpha-Bet
over ABF = 1,...,width.

*
a) / 1(sss ) )
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6. Conclusion ‘\r

e
w

Sha,.

)
?;&

The' new algOrlthm PS dlsonssed in thlS thegls has the
performance characteristics very 'similar to those ot SSS
and Alpha-Beta. Moreover, it may be viewed as-a continuum
between the two aboJe-mentioned“algorithms and‘it attempts.

to make use of the best characterls@lcs of the two.

v # - -

Alpha-Beta -searches a gamev'tree “much taster than
* - . B B - -
SSS, but SSS , making more use Of,the knowledge gained-*
at earlier steps, prunes better than Alpha—Beta~and as a

. . * ‘ .
result saves 1in processing time. SSS achieves this
‘ better pruning at the expense of large amount of
bookkeeping which needs more 4torage and considerable

amount - of "time 1in the retrieval' process. The proposed
: . % DA
- i

. _ . _
algorithm PS + does some. bookkéeping and. in most cases

provides better pruning capabi itylthan’Alpha—Beta;'Alsof
it concentrates only on a subSet of the solution trees,in

»

each phase and consequently it needs smaller storage and

* .
‘less execution time ,than SSS , by virtue of the phased

. * * v
search. Thus PS is comparable to SSS in 1ts

)

performance and at the same tlme it has 51gn1f1cantly lower

storage overhead than SSS .

Also, because of the built<in flexibility provided by

“phaSing and the freedom of choosing the jpartition siée
. ¥ ) } - . 5 ’ .



. . * )
parameter. (PSIZ%), PS is expected to be useful 1n
* o ' -
practice. PS.  becomes more efticient if the parameter
. selection®is done carefully using the a priori.knowledge of

!

tree ordering.

Experimental results reported in this thesis are based
on simulated game trees, but the algorithm remains tp*be'
tested with ’an_ actual game lplaying piOgram, Also the
successors. of a MAX node in the PS*(k) algbrithh are
diQided into pa:tigio@é of eéual sizes (= width/k).
Experiments ~with inequal size partitloning may constitute
future work to study the.effecﬁ‘of,partit;on‘size on the
éfficiency of the. algoritﬁm. Another di;ection ot the
future 'work can bé towards parallel‘implementatiogﬁafthe
: proposed Phased’ éea;ch algérithm; It appears that PS*,
due to the inherent,partitioning;scheme embedded into the
algorithm, can be easiiy tailored for parallel searching of

»

game trees.
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Appendix-A

Detgiled steps are given here to show how the algorithms
SSS and PS (2) work. Both the algorithms were run on

the same tree of depth=3 and width=4 (figure A.l). Minimax
value of the tree is 64 and both the algorithms evaluate 19
terminal nodes in ordeg to return the minimax value to the
root. In <case of PS , bofh OPEN and BACKUP lists are
'shown and in case of SSS., only OPEN is shown. The
specific case of the state operator GAMMA, used; for the
operation on OPEN each time the lists are updated by GAMMA,
is also shown as the first component of each instance.

. : *
Following 1is the run-time 1listing of OPEN when SSS
algorithm 1is initiated with 999 as the upper bound on the
minimax value of the tree. The sign (...) represents the
end portion of the list which remains the same as in the
preyious iteration. The state space operator GAMMA for
SSS as given in [Camp83] is shown in Table A.l for ready
reference. '

1. (0,L,999)

2. (1,L,999) (2,L,999) (3,L.999) (4,L,999)

1. (1.1,L,999)  (2,L,999) . .

3. (1.1.1,5,999) (1.1.2,L,999) (1.1.3,5,999) (1.1.4,L,999)
(2,L,999) ... | "

3. (1.1.2,L,999) (1.1.3,L,999) (1.1.4,L,999) (2,L,999)

© (3,L,999) .y  (4,L,999)  (1.1.1,S,64)

3. (1.1.3,L,999) (1.1.4,L,999) (2,L,999)° - (3,L,999)
(4,L,999) (1,1.1,5,64) -(1.1.2,S,36)

3. (1.1.4,L,999) (2,L,999) " (3,L,999) . (4,L,999)

. (1.1.1,S,64) (1.1.3,5,44) (1.1.2,S,36) '

2. (2,L,999) (3,L,999) (4,L,999) (1.1.1,5,64)
(1.1.3,s,44) (1.1.2,5,36) (1.1.4,5,34)

1. (2.1,L,999)  (3,L,999) .

3. (2.1.1,1,999) (2.1.2,L,999) (2.1.3,L,999) (2.1.4,L,999)
(31Lr999) T e se : ) ’ .

3. (2.1.2,L,999) (2.1.3,L,999) (2.1.4,L,999) (3,L,999)
(4,L,999) (1.1.1,S,64) (1.1.3,S,44) . (2.1.1,S,42)
(1.1.2,8,36) .. ' '

Ry _ 64



Table A.1l

‘ | 4 .
STATE SPACE QPERATOR (GAMMA) FOR SSS :

"Case of Conditions of the Action of GAMMA
1 s=LIVE n=first(n)
n is non-terminal while n#NIL do
type(first(n))=0R stack (n,s,h) on OPEN
' n=next (n)
2 s=LIVE Stack (first(n),s,h) on
n is non-terminal OPEN list.
type(first(n))=AND
3 s=LIVE Insert (n,SOLVED,

n is terminal min(h,value(n})
on OPEN list behind all
states of greater or.

‘ equal merit.
Stack (first(n),s,h) on
OPEN list.
4 s=SOLVED,n#root, Stack (next{(n),LIVE,h) on
: type(n)=AND OPEN list.
next(n)#NIL
5. s=SOLVED,n#root, Stack (parenf(n),s,h) on
‘ type(n)=AND OPEN list, :
next(ri)=NIL :
6. s=SOLVED Stack (m=parent(n),s,h) on
ngroot list. Then purge OPEN of
type(n)=0R all states (k,s,h) where

m is an ancestor of k.
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k4;1.4;L,399)
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In the following,
shown whenever
which "was

upper

llo" and IIB"
respectively.
entries in BACKUP
successors already

they

are

run-time listings of OPEJ and BACKUP are
modified
initiated with -99 and 999 as initial lower

by PS (2) algorithm

and

HY

bounds on the minimax. Note that lines starting with -

represents

the

considered,

OPEN
Entries in OPEN are the triples as above and
contain node identification,
lower and upper bounds on

and BACKUP 1lists

number of

the value of the node being considered.

1

O:
B:

O:

O

WO

_WO. O

(0,L,999)
(0101_99,999)

(1,L,999)
(0,2,-99,999)
(1.1,L,999)

(1.1.1,L,999)
(0,2,-99,999)

(1.1.2,L,999)
(2,L,999)
(2.1,L,999)

(2.1.1,L,999)
(0,2,-99,999)

(2.1.2,L,999)

(1.1.1,S,64)

: (1.1.3,L,999)

N

: (0,2,-99,999)

(1.1.4,L,999)
(1.1.3,S,44)

(1.1,S5,64) .
(0,2,-99,999)

(1.2,L,64)

(1.2.1,L,64)
(0,2,-99,999)

(1.2.1,S,64)

4

(1.2,S5,64)

it
i

(2,L,999)

(24
999)

(1.
(1.1.1;8,64) (1.

(1.1.1,5,64)

L,999)

1.1,5,64)

1.2,5,36)

(1.1.2,5,36)

(2.1.2,L,999) (1.1.1,S,64) (1.1.2,S,36)
(1.1,2,-99,999) (2.1,2,-99,999)
(1.1.1,S,64) (2.1.1,5,42) (1.1.2,5,36)
(2.1.1,S,42) (2.1.2,5,37) (1.1.2,S,36)
(1.1.4,L,999) (2.1.1,S,42) (2.1.2,S,37)
(1.1,4,64,999)(2.1,2,-99,999)
(1.1.3,S,44) (2.1.1,S5,42) (2.1.2,S,37)
(2.1.1,8,42) (2.1.2,S5,37) (1.1.4,S,34)
(2.1.1,S,42) (2.1.2,S,37)
(2.1,2,-99,999)
(2.1.1,S5,42) (2.1.2,S,37)
(1.2.2,L,64) (2.1.1,S,42) (2.1.2,S,37)
(1.2,2,-99,64)(2.1,2,-99,999) :
(.2.2,L,64) (2.1.1,S,42) (2.1.2,S,37)
1.2,5,37) |

(2.1.1,5,42) (2.

B!



-w O

o O

o O O O O

(0,2,-99,999)
(1.3,L,64)

(1.3.1,L,64)
(0,2,-99,999)

(1.3.1,5,64)

(1.3,5,64)
(0,2,-99,999)

(1.4,L,64)

(1.4.1,L,64)
(0,2,~99,999)

(1.4.1,5,64)

(1.4,5,64)
(0I2,_99’999)

(1,5,64)

(2.1.3,L,999)
(0,2,64,999)

(2.1.4,L,999)
(2.1.3,5,41)
(2.1,5,64)

(2,5,64)
(0,2,64,999)

(3,L,999)
(0,4,64,999)

(3.1,L,999)

(3.1.1,L,999)
(0,4,64,999)

(3.1.2,L,999)
(4,L,999)
(4.1,L,999)

(4.1.1,L,999)
(0,4,64,999)

(2.1,2,-99,999)

(2.1.1,8,42) (2.
(1.3.2,L,64) (2
(1.3,2,-99,64) (2
(1.3.2,L,64) (2
(2.1.1,5,42) (2
(2.1,2,-99,999)

(2.1.1,5,42) (2
(1.4.2,5,64) (2
(1.4,2,-99,64) (2

(2.1.4,5,26)

(4,L,999)
(4,L,999)
(3.1.2,L,999) ¢
(3.1,2,64,999)
(4,L,999) (

(3.1.1,5,41) (
(3.1.1,S,41) (

(4.1.2,L,999) ¢
(3.1,2,64,999) ¢

.1
.1

.1.1,5,42)

.1.1,5,42)
.1,2,-99,999)

.1.1,5,42)

1.2,8,37)

.1,5,42
r

,S, 2.1.2,8,37)
721"99 ) :

)
999

(2.1,

.1.2,5,37)

.1.2,5,37)

(2.1.2,8,37)

(2.1.2,58,37)

.1.2,8,37) = *

.1.2,5,37)

¢
+L,999)
3.1.1,S,41)
3.1.2,S5,10)
3.1.2,S8,10)
1.1,5,41) © (3.1.2,s8,10)
1,2,64,999)



3 0: (4.1.2,999)
6 0: (3.1.1,5,41)
3 0: (3.1.3,L,999)

B: (0,4,64,999)

3 0: (3.1.4,1,999)
6 0: (3.1.4,5,26)
4 0: (3.1,5,64)
6 0 (3,5,64)
B: (0,4,64,999)
3 0:(4.1.3,L,999)
B: (0,4,64,999)
3 0: (4.1.4,L,999)
6 0: (4.1.4,5,7)
4 0: (4.1,5,64)
6 0: (4,S,64)

B: (0,4,64,999)

(0,5,64)

(3.1.1,5,41)
(3.1.2,S,10)

( .

3.1.4,L,999)
(3.1,

4
4,64,999)
(3.1.3,5,20)
(3.1.3,S,20).

(4.1.1,5,9)

(4.1.3,S,1)

(3.1.2,5,10)
(4.1.1,5,9)
(4.1.1,5,9)
(4.1,2,64,999)
(4.1.1,5,9)
(4.1.1,5,9)
(4.1.2,S,6)

(4.1.2,5,6)

(4

(4.

(4.1,

(4.

{4,

.1

1

1.

1.

.1,8,9)

.2,5,6)

2,5,6)

2,8,6)

2,5,6)

* ~
So, PS (2) also terminates returning the value 64 to the
root after scoring 19 terminal nodes.

Notice

the djfference, in the size of the lists
maintained by SSS and PS (2). Even for a small‘tree
like above, differences in the size of 1ligts are
sigpificant and that 1s the key advantage of PS over

.S8S
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Lt was claimed in

equations given for Alpha-Beta, satlsﬁ é@ the mlnlmal and

1

:E’—'

» !
exhaustive search criterion for best ;worst order cases
4
k e

;,respectlvely Proofs are OUtllned in;

Best case analysis:

In cases of best-ordered tr . verage brahdhlng

?Set of recurrence

E

factor (ABF) .= 1 'i.e. k = 0. Usigg

«/’/equat;one andquradV= 2 * h,

N7 i By K S ’
° s N TN
= w? *Ne W
- 2h-4 .
h
= W .
Similarly, | » L @' Gy
" h-l1. "
N72h—1 = w
Nly = Nld_l + (w - 1) * N7d—l
= -— * *
Nly + (w 1) [N7d_l + N7d—2 + ... + N7.]
=1+ (w=-1) * [2 % wh Lyo« w2 el + 2 % wOJ
=1+ 2+ (WP -1
- o wd/2 1.

which is same as minimal tree search for best-ordered game

trees.



Worst-case'analysis:
In the worst case, ABF = w i.e. K =‘wQl 1.

From the set of recurrence equations,

- - * i *
N6g = (w = 1) % N6y 4w % NG, c
. _ .d 7
==> N6d = W,
Also, i )
= — *
Nlg = Nl o+ (w- 1) *oNs
— — *
=Nlg, o+ (W 1) *[NSg ) o+ NS, ]
— — *
= NI+ (W= 1) * NS, | + NS, 4 ...+ NS
=14 (w-1 * (w9 -1) / (w=1)] . (%
a ‘ , .
= W o .

The step (*) may be verified. using the original recurrence

equations and the following derivggtonés.

N5i _ é&}_lb + (W QPQ) * N6, o+ ‘w *'N6i_2
= N2 -1t N6l - N6i—1

M6 = (w-1) N6, o+ w*r N6,
=W * (N6, + N6, 7) NGl_i.



