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Abstract

Fick’s law and the Fokker-Planck law of diffusion are applied to manifest the cogni-

tive dispersal of individuals in two reaction-diffusion SEIR epidemic models, where the

disease transmission is illustrated by nonlocal infection mechanisms in heterogeneous

environments. Building upon the well-posedness of solutions, threshold dynamics are

discussed in terms of the basic reproduction numbers for the two cognitive epidemic

models. The numerical investigation reveals that the Fokker-Planck law can better

describe the diffusion of individuals by taking different dispersal strategies of exposed

individuals in our cognitive epidemic models, and provides some insights on spatial

segregation and nonpharmaceutical interventions: (i) Spatial segregation occurs in the

random diffusion model when the nonlocal infection radius is small, while it appears

in the symmetric diffusion model when the radius is large; (ii) Nonpharmaceutical

interventions on restricting the dispersal of exposed and infected individuals do not

contribute to reducing the infection proportion, but rather eliminate the disease in a

region, which expands as the nonlocal infection radius increases. We additionally find
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that the final infection size in the random diffusion model is significantly smaller than

that in the symmetric diffusion model and decreases as the nonlocal infection radius

increases.

Keywords: SEIR epidemic model; nonlocal infection; cognitive diffusion; spatial segregation;

nonpharmaceutical interventions
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1 Introduction

1.1 Laws of diffusion

The movement of a physical quantity or biological organism in space is frequently modeled

by diffusion equations. The homogeneous diffusion with a constant coefficient is commonly

employed to illustrate the Brownian motion of microscopic particles characterized by irregu-

lar and non-directional movement. It has been applied to describe the dispersal or migration

of population in spatial ecology by assuming the diffusivity is spatially homogeneous (Con-

trell and Cosner, 2003; Okubo and Levin, 2001; Skellam, 1951). The diffusion equation with

such homogeneous diffusion is read as

∂tu(x, t) = d∆u(x, t), (1.1)

where u(x, t) is the concentration of particles, or the density of individuals at position x and

time t. The positive constant d is the spatially homogeneous coefficient of diffusion, and ∆

is the Laplace operator.

However, spatial heterogeneity is ubiquitous in nature, accordingly, diffusivity tends to

vary spatially. There are two laws to model diffusion in heterogeneous media: Fick’s law

(Fick, 1855) and the Fokker-Planck law, also known as Chapman’s law (Chapman, 1928) of

diffusion. In correspondence with these two different laws, one finds two possible diffusion

equations which are expressed as

∂tu(x, t) = ∇ · (d(x)∇u(x, t)), (1.2)

and

∂tu(x, t) = ∆(d(x)u(x, t)), (1.3)
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respectively. Here, the positive smooth function d(x) is the spatially varying coefficient of

diffusion. ∇· and ∇ are the divergence and gradient operators, respectively.

These two laws of diffusion can be obtained from the dispersal of individuals among

discrete patches (Okubo and Levin, 2001; Wang et al., 2022). For Fick’s law, it is assumed

that the dispersal rates between two patches are equal. For the Fokker-Planck law, it is

assumed that the dispersal rates from one patch to the two adjacent patches are equal.

From the perspective of the patch model, the diffusion following Fick’s law is usually called

symmetric diffusion (Kim et al., 2019) while that following the Fokker-Planck law is known

as random diffusion (Wang et al., 2022). From another viewpoint, both laws of diffusion can

be seen as special cases of the more general Fokker-Planck equation (Bengfort et al., 2016).

Fick’s law assumes that the velocity of each step of movement depends on the conditions at

the end point of that step, while the Fokker-Planck law assumes that the velocity depends

on the conditions at the starting point of each step. In (Andreucci et al., 2019), Andreucci

et al. considered the diffusion laws by a density field u(x, t) in terms of the flux vectorial

field J(x, t), in the diffusion equation of the form

∂tu(x, t) = −∇ · J(x, t),

where J(x, t) = −d(x)∇u(x, t) for Fick’s law and J(x, t) = −∇(d(x)u(x, t)) for the Fokker-

Planck law.

We view the two laws of diffusion from a mathematical perspective. Given a bounded

domain Ω ⊂ Rn (n ≥ 1) and an unknown function u : Ω̄ → R, consider the second-order

uniform elliptic operator L having the divergence form

Lu :=
n∑

i,j=1

(aij(x)uxi
)xj

+
n∑

i=1

bi(x)uxi
+ c(x)u

for given coefficient functions aij, bi, c (i, j = 1, ..., n), where (aij)n×n is positive definite and

symmetric. In addition, there exist positive constants θ and Θ such that

θ|y|2 ≤
n∑

i,j=1

aij(x)yiyj ≤ Θ|y|2

for x ∈ Ω and y = (y1, y2, ..., yn) ∈ Rn, which is known as uniform elliptic condition.

The three types of diffusion mentioned above satisfy the uniform elliptic operator in the

divergence form:
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• Homogeneous diffusion term d∆u, where aij(x) = dδij and bi = c ≡ 0, here δij is the

Kronecker symbol;

• Symmetric diffusion term ∇ · (d(x)∇u), where aij(x) = d(x) and bi = c ≡ 0;

• Random diffusion term ∆(d(x)u), where aij(x) = d(x), bi(x) = dxi
(x) and c(x) =

∆d(x).

Note that the random diffusion is the divergence of the gradient of d(x)u, i.e.,

∆(d(x)u) = ∇ · ∇(d(x)u) = ∇ · (d(x)∇u) +∇ · (u∇d(x)).

As a consequence, the difference between the two types of diffusion is the advection term

∇ · (u∇d(x)). More precisely,

∇ · (d(x)∇u) = ∇d(x) · ∇u+∆d(x)u.

The last term in the above equation is the growth adaptation term and ∆d(x) is the curvature

of the diffusivity (Bengfort et al., 2016). If u represents the density of the population, then

the curvature ∆d(x) represents the growth rate of the population. When ∆d(x) > 0, there

is extra net growth of the population. When ∆d(x) < 0, there is additional net decay of the

population. When ∆d(x) = 0, the only distinction between Fick’s law and the Fokker-Planck

law is the term ∇d(x) · ∇u. It is obvious that if d(x) ≡ d = constant, then the symmetric

and random diffusion becomes the homogeneous diffusion.

Consider two types of homogeneous boundary conditions ∇u·n = 0 and ∇(d(x)u)·n = 0.

Here, n is the unit outer normal vector at the boundary. The first one is known as the

Neumann boundary condition. Note that

∇(d(x)u) · n = d(x)∇u · n+∇d(x) · nu,

which is a combination of the Neumann and Dirichlet boundary conditions. If the diffusion

equations (1.1) or (1.2) are associated with the homogeneous Neumann boundary condition,

the total population number of (1.1) or (1.2) is conserved. This is also true for (1.3) if it

takes the second boundary condition. Hence, these two types of boundary conditions are

zero-flux boundary conditions.
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In applied sciences, various situations involve the assumption of two distinct laws of

diffusion. In (Schnitzer, 1993), Schnitzer mentioned that different diffusion laws may be

followed in different cases. The author gave two systems and remarked that one system

follows Fick’s law and the other one follows the Fokker-Planck law. In (Bringuier, 2011),

three experimental examples of diffusion in heterogeneous media are examined to verify

the law of diffusion, and the observed law can be of Fick, Fokker-Planck, or hybrid type.

The question of whether diffusion in heterogeneous media should follow either Fick’s law

or the Fokker-Planck law has long been debated in the literature. The theory of diffusion

and dispersion is not well understood yet and the choice of the diffusion law is nontrivial

(Andreucci et al., 2019).

1.2 Model formulation

The practical importance of understanding the transmission mechanism of infectious disease

is steadily increasing. Epidemic models are effective tools for exploring the evolutionary

dynamics of epidemics to provide strategies for disease regulation. It should be mentioned

that in 1927, Kermack and McKendrick proposed a simple deterministic susceptible-infected-

recovered (SIR) epidemic model in (Kermack and McKendrik, 1927) with the bilinear in-

cidence mechanism to represent the direct disease transmission between susceptibles and

infectives. The Kermack-McKendrick model indeed plays a pivotal role in subsequent devel-

opments in the study of the dynamics of infectious diseases. Typically, epidemic models are

characterized by nonlinearity to describe the transmission of infectious diseases. In (Kendall,

1965), Kendall generalized the classical Kermack-McKendrick model to a space-dependent

integro-differential equation, which is written as

∂S(x, t)

∂t
= −βS(x, t)

∫ ∞

−∞
K(x− y)I(y, t)dy, t > 0,

∂I(x, t)

∂t
= βS(x, t)

∫ ∞

−∞
K(x− y)I(y, t)dy − γI(x, t), t > 0,

∂R(x, t)

∂t
= γI(x, t), t > 0.

Here, S(x, t) and I(x, t) are the density of susceptibles and infectives at position x and

time t, respectively. β and γ are positive constants, accounting for the infection rate and

recovery rate, respectively. The nonlinear interaction term of infectives with susceptibles in
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an unbounded space is given by S(x, t)
∫∞
−∞K(x − y)I(y, t)dy, where the kernel K(x − y)

measures the contributions of infected individuals at position y to the infection of susceptible

individuals at position x.

Inspired by this infection mechanism, we consider the nonlocal infection mechanism on

a bounded domain Ω ⊂ Rn (n ≥ 1) with smooth boundary ∂Ω. Define K : L1(Ω) → L1(Ω):

K(I)(x) :=

∫
Ω

K(x− y)I(y)dy,

where K : Ω → R+ is a smooth nonnegative function with compact support, and not

identically zero. We also assume ∫
Ω

K(x)dx = 1

as used in Kendall (1965). This nonlinear interaction between susceptibles and infectives

explains that some infectious diseases can spread over long distances via droplet and airborne

transmission. For example, an infected individual with influenza can infect others in the same

room or even in the same neighbourhood without close contact between the infected patient

and susceptibles. This gives rise to the nonlocal infection mechanism in a bounded domain

S(x)
∫
Ω
K(x−y)I(y)dy between susceptibles at position x and infectives at position y around

x. In fact, such an infection mechanism allows both local and nonlocal interactions between

susceptibles and infectives (Capasso, 1978). Usually, the kernel K(x − y) depending on x

and y is selected in such a way

K(x− y) = 0, if y ̸∈ B(x, a), ∀x, y ∈ Ω,

where B(x, a) is an open ball with the center x and radius a in Ω, and local and nonlocal

infection can be distinguished according to a in following senses:

• If a is small enough compared with geometrical size |Ω| of the habitat Ω, i.e., a≪ |Ω|,

such infection is local.

• If a is of the same order as |Ω|, such infection is nonlocal.

In fact, for the first case, K(x − y) → δ0(x) as a → 0+ for x, y ∈ Ω, where δ0 is the Dirac

function at point 0. The infection kernel K(x) can be regarded as a standard mollifier, which

can be found in Appendix C of Evans (2022).
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In the theory of epidemiology, it has been recognized that environmental heterogeneity

and individual mobility are significant factors that should be included in the spread of

infectious diseases. Allen et al. (2008) investigated a reaction-diffusion susceptible-infected-

susceptible (SIS) epidemic model where susceptible and infected individuals enter the system

at constant diffusion rates. The impact of spatial heterogeneity and individual movement

on the persistence and extinction of disease is studied. Li et al. (2017, 2018) found that the

birth-death rate can influence the dynamics of epidemics subtly. The effects of advection and

cross-diffusion in epidemic models have been considered (Cui and Lou, 2016; Cui et al., 2017,

2021; Li et al., 2020). Reaction-diffusion epidemic models in time-periodic environments have

also been studied extensively (Liang et al., 2019; Liu and Lou, 2022; Liu et al., 2019; Peng

and Zhao, 2012). For instance, Liu et al. (2019) considered the effects of seasonality and

nonlocal infection in a reaction-diffusion SIR epidemic model.

However, the models in the above-mentioned literature did not include the compart-

ment of exposed (latently infected) individuals and ignored the influence of their movement.

For some infectious diseases, infected individuals can experience incubation before show-

ing symptoms, such as HIV/AIDS, rabies, and malaria. Song et al. (2019) formulated a

reaction-diffusion epidemic model in a heterogeneous environment with constant diffusion

rates, and extensively discussed the asymptotic properties of the basic reproduction number.

It is commonly believed that exposed individuals, even if they show no symptoms, can infect

susceptible individuals and spread the disease geographically. Motivated by this, we estab-

lish the following susceptible-exposed-infected-recovered (SEIR) epidemic model frame with

two nonlocal infection processes S(x, t)
∫
Ω
K(x−y)E(y, t)dy and S(x, t)

∫
Ω
K(x−y)I(y, t)dy

in a heterogeneous environment:

∂tS −Diffusion of S = Λ(x)− β1(x)S

∫
Ω

K(x− y)E(y, t)dy

− β2(x)S

∫
Ω

K(x− y)I(y, t)dy − µ(x)S, x ∈ Ω, t > 0,

∂tE −Diffusion of E = β1(x)S

∫
Ω

K(x− y)E(y, t)dy

+ β2(x)S

∫
Ω

K(x− y)I(y, t)dy − (σ(x) + µ(x))E, x ∈ Ω, t > 0,

∂tI −Diffusion of I = σ(x)E − (γ(x) + µ(x) + α(x))I, x ∈ Ω, t > 0,

∂tR−Diffusion of R = γ(x)I − µ(x)R, x ∈ Ω, t > 0,

(1.4)
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where Λ is the recruitment rate of susceptibles; β1 and β2 measure the infection rate of

susceptibles infected by the exposed and the infectives, respectively; µ and α are the nat-

ural death rate and the disease-induced rate of the population, respectively. The exposed

individuals become infected with a rate σ, and γ means the recovery rate of infectives.

Cognitive movement is of vital importance in studying the spatial spread of an infectious

disease. Animals or humans have the perception or knowledge to move or disperse, which can

be modeled mechanistically based on assumptions (Wang and Salmaniw, 2023). Symmetric

and random diffusions in a heterogeneous environment provide two fundamental movement

mechanisms of humans or animals by constructing the dispersal function d(x) in (1.2) and

(1.3). Recovered individuals move without direction, thus we take homogeneous diffusion

with a positive constant diffusion rate dR in the R equation. However, it is not reasonable

to treat the diffusion rates for S, E, and I as constants. Susceptibles escape from sites or

regions with high transmission rates, such as indoor playgrounds and supermarkets. In these

areas, the diffusion rate of susceptibles is high, therefore it can be regarded as an increasing

function of transmission rates, i.e.,

the diffusion rate of S = f(x) := f

(
2∑

i=1

aiβi(x)

)
,

where ai is the coefficient for the linear combination of βi for i = 1, 2. Infected individuals

stay in areas where the recovery rate is high, such as hospitals or regions with sufficient

medical resources. In these areas, the diffusion rate of the infected is low, hence it can be

seen as a decreasing function of the recovery rate, i.e.,

the diffusion rate of I = h(x) := h(γ−1(x)).

For the exposed group, there are two cases for its diffusion rate. In one situation, they know

they have contacted directly or indirectly with some infectives, and they may have been

infected. On this condition, they behave the same as infectives, so the diffusion rate can

be chosen as a function of the inverse of the recovery rate. In the other situation, they are

not aware of infection without any symptoms, thus they behave like susceptibles, in which

scenario the diffusion rate can be chosen as a function of transmission rates. Hence,

the diffusion rate of E = g(x) := g

(
2∑

i=1

biβi(x)

)
or g(γ−1(x)),
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where bi is the coefficient for the linear combination of βi for i = 1, 2. It is obvious that g is

an increasing function with respect to βi or γ
−1.

Having constructed the diffusion rates for different individuals with human cognition

and perception, we now apply Fick’s law and the Fokker-Planck law of diffusion in the SEIR

epidemic models. When we take symmetric diffusion following Fick’s law, system (1.4) is

expressed as

∂tS −∇ · (f(x)∇S) = Λ(x)− β1(x)S

∫
Ω

K(x− y)E(y, t)dy

− β2(x)S

∫
Ω

K(x− y)I(y, t)dy − µ(x)S, x ∈ Ω, t > 0,

∂tE −∇ · (g(x)∇E) = β1(x)S

∫
Ω

K(x− y)E(y, t)dy

+ β2(x)S

∫
Ω

K(x− y)I(y, t)dy − (σ(x) + µ(x))E, x ∈ Ω, t > 0,

∂tI −∇ · (h(x)∇I) = σ(x)E − (γ(x) + µ(x) + α(x))I, x ∈ Ω, t > 0,

∂tR− dR∆R = γ(x)I − µ(x)R, x ∈ Ω, t > 0,

∇S · n = ∇E · n = ∇I · n = ∇R · n = 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), E(x, 0) = E0(x), I(x, 0) = I0(x), R(x, 0) = R0(x), x ∈ Ω.

(1.5)

Here, we utilize the homogeneous Neumann boundary condition. On the other hand, when

we take random diffusion following the Fokker-Planck law, then system (1.4) becomes

∂tS −∆(f(x)S) = Λ(x)− β1(x)S

∫
Ω

K(x− y)E(y, t)dy

− β2(x)S

∫
Ω

K(x− y)I(y, t)dy − µ(x)S, x ∈ Ω, t > 0,

∂tE −∆(g(x)E) = β1(x)S

∫
Ω

K(x− y)E(y, t)dy

+ β2(x)S

∫
Ω

K(x− y)I(y, t)dy − (σ(x) + µ(x))E, x ∈ Ω, t > 0,

∂tI −∆(h(x)I) = σ(x)E − (γ(x) + µ(x) + α(x))I, x ∈ Ω, t > 0,

∂tR− dR∆R = γ(x)I − µ(x)R, x ∈ Ω, t > 0,

∇(f(x)S) · n = ∇(g(x)E) · n = ∇(h(x)I) · n = ∇R · n = 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), E(x, 0) = E0(x), I(x, 0) = I0(x), R(x, 0) = R0(x), x ∈ Ω.

(1.6)

Both in systems (1.5) and (1.6), homogeneous boundary conditions are used to represent
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zero flux across the boundary. Furthermore, we make the following assumptions for the

parameters and initial data:

(H1) The rates Λ, µ, σ, γ, α, and βi(i = 1, 2) are spatially heterogeneous, positive and

Hölder continuous functions on Ω̄.

(H2) The diffusion rates f, g, h ∈ C2(Ω̄). There exist two positive constants m0 and M0

such that

m0 ≤ f(x), g(x), h(x) ≤M0, ∀x ∈ Ω̄.

(H3) The initial data S0(x), E0(x), I0(x), and R0(x) are nonnegative and continuous

functions, and the total numbers of the exposed and the infected are strictly positive, i.e.,∫
Ω

[E0(x) + I0(x)]dx > 0.

(H2) is assumed to satisfy the uniform elliptic condition. We call systems (1.5) and

(1.6) cognitive epidemic models as these models include the perception of humans in the

dispersal. By taking the cognitive dispersal rates into account, susceptible individuals have

the perception to avoid being infected by infective individuals, and infected individuals have

the awareness to seek medical resources. It seems that symmetric diffusion and random

diffusion incorporate chemotaxis or advection effects in describing the directed movements

of individuals in epidemic modeling.

Based on the two cognitive epidemic models, it is natural to consider the joint effects

of cognitive dispersal and nonlocal infection on spatial segregation. Spatial segregation is

a spontaneous phenomenon, where two similar species separate from each other in their

habitat (Schelling, 1969), holding significance in disease regulation. On the other hand,

nonpharmaceutical interventions, especially restriction of individual movement, have been

significant in controlling infectious diseases. It is imperative to compare the effectiveness of

spatial segregation and nonpharmaceutical interventions in reducing infection fraction and

eliminating the disease.

1.3 Outline of contents

Throughout the paper, let F∗ = maxx∈Ω̄ F and F∗ = minx∈Ω̄F for positive function F , where

F can be taken as Λ, µ, σ, γ, α and βi(i = 1, 2). If we are concerned with the corresponding
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elliptic problems of models (1.5) and (1.6), we call the nonnegative steady state solution as

the disease-free equilibrium (DFE) if I(x) = 0 for all x ∈ Ω, and the endemic equilibrium

(EE) if I(x) > 0 for some x ∈ Ω.

The paper addresses four main aspects. From a theoretical standpoint, we investigate the

solvability and threshold dynamics of our two cognitive epidemic models (1.5) and (1.6) with

nonlocal infection. As an extension work of Wang et al. (2022), we examine and contrast the

impacts of various diffusion strategies on spatial segregation within SEIR epidemic models.

On the other hand, we are devoted to making clear which law of diffusion is better to describe

the dispersal of individuals in epidemic models. Meanwhile, we conduct a comparative

analysis of the efficacy of spatial segregation and nonpharmaceutical interventions in disease

control.

The rest of the work is organized as follows. In sections 2 and 3, we establish the

wellposedness of solutions and basic reproduction numbers for models (1.5) and (1.6), and

study the threshold dynamics in terms of the basic reproduction numbers. In section 4, global

stability for the DFE and EE is investigated for a homogeneous case with local infection.

Furthermore, we perform sensitivity analysis of the basic reproduction number and the

exposed group in the steady state with respect to the infection rates. We explore the effects

of spatial segregation and nonpharmaceutical inventions by numerical methods in section 5.

We summarize and discuss our findings in the last section.

2 The epidemic model with symmetric diffusion

LetX := C(Ω̄,R4) be a Banach space equipped with the supreme norm ∥·∥. Its positive cone

is denoted by X+ := C(Ω̄,R4
+) with the interior int(X+) ̸= ∅. Hence, (X,X+) is an ordered

Banach space. For each i = 1, 2, 3, 4, let Ti(t) : C(Ω̄,R) → C(Ω̄,R) be the C0 semigroup

generated by the operator Ai subject to homogeneous Neumann boundary condition in

system (1.5), where A1 = ∇· (f∇)−µ, A2 = ∇· (g∇)− (σ+µ), A3 = ∇· (h∇)− (γ+µ+α)

and A4 = dR∆ − µ. Note that T (t) := (T1(t), T2(t), T3(t), T4(t)) is a C0 semigroup on X

with an infinitesimal generator A := (A1, A2, A3, A4). It then follows from Smith (1995)

that Ti(t) is compact and strongly positive for each t > 0 and i = 1, 2, 3, 4. Let −µi < 0

(i = 1, 2, 3, 4) be the principal eigenvalue of Ai subject to homogeneous Neumann boundary
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condition. Thus we have ∥Ti(t)∥ ≤ mie
−µit for each t > 0, where mi (i = 1, 2, 3, 4) are

positive constants.

Define F̄ := (F1, F2, F3, F4) : X+ → X by

F1(ψ)(x) = Λ(x)− β1(x)ψ1(x)

∫
Ω

K(x− y)ψ2(y)dy − β2(x)ψ1(x)

∫
Ω

K(x− y)ψ3(y)dy,

F2(ψ)(x) = β1(x)ψ1(x)

∫
Ω

K(x− y)ψ2(y)dy + β2(x)ψ1(x)

∫
Ω

K(x− y)ψ3(y)dy,

F3(ψ)(x) = σ(x)ψ2(x),

F4(ψ)(x) = γ(x)ψ3(x),

for any ψ = (ψ1, ψ2, ψ3, ψ4) ∈ X+. Given a vector-valued function u := (u1, u2, u3, u4) ∈ X,

then system (1.5) can be rewritten as the following abstract differential equation:
du(t)

dt
= Au(t) + F̄ (u(t)), t > 0,

u(0) = ψ,

or the following integral equation:

u(t) = T (t)ψ +

∫ t

0

T (t− s)F̄ (u(s))ds. (2.1)

2.1 Well-posedness

Before we establish the well-posedness of the solution to model (1.5), we first demonstrate

two preliminary lemmas. According to Lou and Zhao (2011), the following statement is

well-known.

Lemma 2.1. Assume (H1)-(H2) hold. The reaction-diffusion∂tw = ∇ · (f(x)∇w) + Λ(x)− µ(x)w, x ∈ Ω, t > 0,

∇w · n = 0, x ∈ ∂Ω

admits a unique positive steady state w0(x) which is globally asymptotic stable in C(Ω̄,R),

where f(x), Λ(x) and µ(x) are the same as those in the model (1.5). Furthermore, w0 = Λ
µ

if Λ and µ are positive constants.

For any ψ ∈ X+ and δ > 0, it follows that

ψ(x) + δF̄ (ψ)(x)

≥
(
ψ1(1− δβ1(x)

∫
Ω

K(x− y)ψ2(y)dy − δβ2(x)

∫
Ω

K(x− y)ψ3(y)dy), ψ2, ψ3, ψ4

)T

.
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By choosing δ small enough, we have ψ(x) + δF̄ (ψ)(x) ∈ X+. Hence, the following subtan-

gential condition holds

lim
δ→0+

δ−1dist(X+, ψ(x) + δF̄ (ψ)(x)) = 0.

By Corollary 4 in Martin and Smith (1990), we have the following lemma on the existence

and uniqueness of the solution to the model (1.5).

Lemma 2.2. Assume (H1)-(H3) hold. For the initial data (S0, E0, I0, R0) ∈ X+, model

(1.5) admits a unique solution (S,E, I, R) on the maximal interval of existence [0, Tmax),

where Tmax ≤ ∞. Moreover, if Tmax <∞, then

lim sup
t→Tmax

(∥S(·, t)∥+ ∥E(·, t)∥+ ∥I(·, t)∥+ ∥R(·, t)∥) = ∞.

Let Φ(t) : X+ → X+ be the solution semiflow of the model (1.5), i.e.,

Φ(t)ψ = (S(·, t), E(·, t), I(·, t), R(·, t)), ∀ t ≥ 0.

We then give the uniform boundedness of the solution to the model (1.5) based on Lemma

2.2.

Theorem 2.1. Assume (H1)-(H3) hold. For the initial data (S0, E0, I0, R0) ∈ X+, system

(1.5) admits a unique solution (S,E, I, R) on Ω̄ × [0,∞). Moreover, there exists a positive

constant M depending on the initial data such that

∥S(·, t)∥, ∥E(·, t)∥, ∥I(·, t)∥, ∥R(·, t)∥ ≤M, ∀ t ≥ 0,

and there exist positive constants N independent of the initial data such that

lim sup
t→∞

∥S(·, t)∥, lim sup
t→∞

∥E(·, t)∥, lim sup
t→∞

∥I(·, t)∥, lim sup
t→∞

∥R(·, t)∥ ≤ N.

Furthermore, the solution semiflow Φ(t) : X+ → X+ admits a global attractor, which is a

nonempty, compact, and invariant set.

Proof. The existence and uniqueness of the solution on [0, Tmax) can be obtained by Lemma

2.2. It suffices to verify Tmax = ∞.

It follows from the S-equation of (1.5) that

∂tS ≤ ∇ · (f(x)∇S) + Λ∗ − µ∗S, x ∈ Ω, t ∈ [0, Tmax).
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By the standard comparison principle for parabolic equations and Lemma 2.1, one has

S(x, t) ≤ Λ∗

µ∗
=:M1 = N1, x ∈ Ω̄, t ∈ [0, Tmax). (2.2)

Adding the four equations in (1.5) and integrating over Ω by parts yield

∂t

∫
Ω

(S + E + I +R)dx =

∫
Ω

Λdx−
∫
Ω

µ(S + E + I +R)dx−
∫
Ω

αIdx

≤ Λ∗|Ω| − µ∗

∫
Ω

(S + E + I +R)dx, t ∈ [0, Tmax).

By Gronwall’s inequality, we have∫
Ω

(S + E + I +R)dx ≤ e−µ∗t

∫
Ω

(S0 + E0 + I0 +R0)dx

+(1− e−µ∗t)M1|Ω|, t ∈ [0, Tmax). (2.3)

Application of (2.1) to E-equation in (1.5), one has

E(·, t) = T2(t)E0 +

∫ t

0

T2(t− s)

[
β1(·)S(·, s)

∫
Ω

K(· − y)E(y, s)dy

+β2(·)S(·, s)
∫
Ω

K(· − y)I(y, s)dy

]
ds, t ∈ [0, Tmax).

Hence, by ∥T2(t)∥ ≤ m2e
−µ2t and (2.2), we obtain

∥E(·, t)∥ ≤ ∥T2(t)E0∥

+

∫ t

0

∥∥∥∥T2(t− s)

[
β1(·)S(·, s)

∫
Ω

K(· − y)E(y, s)dy

+β2(·)S(·, s)
∫
Ω

K(· − y)I(y, s)dy

]∥∥∥∥ds
≤ m2e

−µ2t∥E0∥+ C1

∫ t

0

e−µ2(t−s)

∫
Ω

(E(y, s) + I(y, s))dyds, t ∈ [0, Tmax),

where C1 = m2 supx,y∈ΩK(x− y)max{β∗
1 , β

∗
2}M1|Ω|. Combining this inequality with (2.3),

it produces

∥E(·, t)∥ ≤ m2e
−µ2t∥E0∥+ C1

∫ t

0

e−µ2(t−s)

[
e−µ∗s

∫
Ω

(S0 + E0 + I0 +R0)dx+M1|Ω|
]
ds

≤ m2e
−µ2t∥E0∥+ C1e

−µ2t

∫ t

0

[
e(µ2−µ∗)s

∫
Ω

(S0 + E0 + I0 +R0)dx+ eµ2sM1|Ω|
]
ds

≤ m2e
−µ2t∥E0∥+

C1e
−µ2t|Ω|

µ2 − µ∗
(1− e−(µ2−µ∗)t)∥S0 + E0 + I0 +R0∥

+(1− e−µ2t)
C1M1|Ω|

µ2

, t ∈ [0, Tmax). (2.4)
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Replacing µ∗ by a smaller positive number such that µ2 − µ∗ > 0, it can be derived that

∥E(·, t)∥ ≤ m2∥E0∥+
C1|Ω|
µ2 − µ∗

∥S0 + E0 + I0 +R0∥+
C1M1|Ω|

µ2

=:M2, t ∈ [0, Tmax). (2.5)

It follows from the I-equation in (1.5) and (2.1) that

I(·, t) = T3(t)I0 +

∫ t

0

T3(t− s)σE(·, s)ds, t ∈ [0, Tmax).

Thus, by virtue of ∥T3(t)∥ ≤ m3e
−µ3t, we can get

∥I(·, t)∥ ≤ ∥T3(t)I0∥+ σ∗
∫ t

0

∥T3(t− s)E(·, s)∥ds

≤ m3e
−µ3t∥I0∥+

m3σ
∗∥E∥
µ3

(1− e−µ3t), t ∈ [0, Tmax). (2.6)

Therefore, according to (2.6), we have

∥I(·, t)∥ ≤ m3∥I0∥+
m3σ

∗

µ3

M2 =:M3, t ∈ [0, Tmax). (2.7)

Similar to (2.7), we can obtain

∥R(·, t)∥ ≤M4, t ∈ [0, Tmax). (2.8)

It should be pointed out that the positive constants M2,M3,M4 depend on the initial

data. In view of (2.2), (2.5), (2.7) and (2.8), we know Tmax = ∞ by Lemma 2.2. That is to say,

the above estimates hold for all t ≥ 0. It can be observed that M = max{M1,M2,M3,M4}.

We now prove the existence of N . It follows from (2.4) that

lim sup
t→∞

∥E(·, t)∥ ≤ C1N1|Ω|
µ2

=: N2. (2.9)

It can be derived from (2.6) that

lim sup
t→∞

∥I(·, t)∥ ≤ m3σ
∗

µ3

N2 =: N3. (2.10)

It can be found that the positive constants N2 and N3 are independent of the initial data.

Similarly, there also exists a positive constant N4 independent of the initial data such that

lim sup
t→∞

∥R(·, t)∥ ≤ N4. (2.11)

Consequently, N = max{N1, N2, N3, N4}. In view of (2.2), (2.9), (2.10) and (2.11),

we know the solution is ultimately bounded, i.e., the solution semiflow Φ(t) is pointwisely

dissipative. On the other hand, it follows from Wu (1996) that Φ(t) is continuous and

compact for t > 0. As a result, Φ(t) admits a global attractor by Hale (1988).
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2.2 Basic reproduction number

According to Lemma 2.1, there exits a unique DFE E0 = (S0, 0, 0, 0) of model (1.5). Lin-

earizing the second and third equations of model (1.5) at E0 gives

∂tξ −∇ · (g∇ξ) = β1S
0

∫
Ω

K(x− y)ξ(y, t)dy

+ β2S
0

∫
Ω

K(x− y)ζ(y, t)dy − (σ + µ)ξ, x ∈ Ω, t > 0,

∂tζ −∇ · (h∇ζ) = σξ − (γ + µ+ α)ζ, x ∈ Ω, t > 0,

∇ξ · n = ∇ζ · n = 0, x ∈ ∂Ω, t > 0.

(2.12)

Setting (ξ, ζ) = eλt(ψE, ψI) in the linearized system (2.12), we obtain the following eigenvalue

problem of model (1.5):

∇ · (g∇ψE) + β1S
0

∫
Ω

K(x− y)ψE(y)dy + β2S
0

∫
Ω

K(x− y)ψI(y)dy

− (σ + µ)ψE = λψE, x ∈ Ω,

∇ · (h∇ψI) + σφE − (γ + µ+ α)ψI = λψI , x ∈ Ω,

∇ψE · n = ∇ψI · n = 0, x ∈ ∂Ω.

(2.13)

It then follows from the Krein-Rutman theorem (Hess, 1991) that the eigenvalue prob-

lem (2.13) admits a unique principal eigenvalue λ0 associated with a positive eigenfunction

(ψ0
E, ψ

0
I ).

We adopt the next-generation operator approach developed in Wang and Zhao (2012)

to derive the basic reproduction of model (1.5) with symmetric diffusion, then L, F (x) and

V (x) in Wang and Zhao (2012) can be respectively defined as L = diag(∇ · (g∇),∇ · (h∇)),

F (x) =

β1S0 ∂
∫
Ω K(x−y)ξdy

∂ξ
|ξ=0 β2S

0 ∂
∫
Ω K(x−y)ζdy

∂ζ
|ζ=0

0 0

 , V (x) =

σ + µ 0

−σ γ + µ+ α

 .

Note that both E and I are infected compartments, and F (x) represents the infection pro-

cess. L − V means the synthetical influences of L and V , where L signifies the mobility

of individuals, and −V measures the mortality and transfer of individuals in infected com-

partments. Let Ψ(t) : C(Ω̄,R2) → C(Ω̄,R2) be the solution semigroup generated by L− V

with zero-flux boundary condition. Suppose the distribution of initial infection described

by ψ̄(x) = (ψE, ψI) and then the distribution of those infective members becomes Ψ(t)ψ̄(x)
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as time evolves. Hence, the distribution of new infection at time t is F (x)Ψ(t)ψ̄(x). The

distribution of total new infections is∫ ∞

0

F (x)Ψ(t)ψ̄(x)dt = F (x)

∫ ∞

0

Ψ(t)ψ̄(x)dt =: L(ψ̄)(x).

Then the basic reproduction number of the model (1.5) can be defined by the spectral radius

of L as

R(1.5)
0 = r(L).

According to Wang and Zhao (2012), we have the following property between the basic

reproduction number of the model (1.5) and the principal eigenvalue of the problem (2.13).

Lemma 2.3. The following assertion of R(1.5)
0 and λ0 is valid:

sign(R(1.5)
0 − 1) = sign(λ0).

2.3 Threshold dynamics

In terms of the basic reproduction number R(1.5)
0 , we establish the threshold dynamics in-

cluding disease extinction and persistence for model (1.5).

Theorem 2.2. Assume (H1)-(H3) hold. The following statements hold:

(i) If R(1.5)
0 < 1, then E0 is globally asymptotically stable;

(ii) If R(1.5)
0 > 1, model (1.5) is uniformly persistent, i.e., there exists a constant η > 0 such

that for any (S0, E0, I0, R0) ∈ X+ with E0 ̸≡ 0 or I0 ̸≡ 0, the solution (S,E, I, R) satisfies

lim inf
t→∞

S(x, t), lim inf
t→∞

E(x, t), lim inf
t→∞

I(x, t), lim inf
t→∞

R(x, t) ≥ η, ∀x ∈ Ω.

Moreover, model (1.5) admits at least one EE.

Proof. We first prove (i). The local asymptotically stability of E0 follows from Theorem 3.1

of Wang and Zhao (2012). We only verify the global attractivity of E0. Fix ϵ1 > 0. There

exists T1 > 0 such that

0 ≤ S(·, t) ≤ S0(·) + ϵ1, ∀ t ≥ T1.
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Let (Ê(x, t), Î(x, t)) be the solution to the following problem

∂tÊ −∇ · (g∇Ê) = β1(S
0 + ϵ1)

∫
Ω

K(x− y)Ê(y, t)dy

+ β2(S
0 + ϵ1)

∫
Ω

K(x− y)Î(y, t)dy − (σ + µ)Ê, x ∈ Ω, t > T1,

∂tÎ −∇ · (h∇Î) = σÊ − (γ + µ+ α)Î , x ∈ Ω, t > T1,

∇Ê · n = ∇Î · n = 0, x ∈ ∂Ω, t > T1.

Suppose there exists a constant c1 > 0 such that c1(ψ̂E, ψ̂I) ≥ (E(x, T1), I(x, T1)) for x ∈

Ω, where (ψ̂E, ψ̂I) is the positive eigenfunction corresponding to the principal eigenvalue

λ0(S0 + ϵ1) of the elliptic eigenvalue problem (2.13) with S0 replaced by S0 + ϵ1. It follows

from Lemma 2.3 that λ0(S0 + ϵ1) < 0 since R(1.5)
0 < 1. Then by the standard comparison

principle for parabolic equations, one has

(E(·, t), I(·, t)) ≤ (Ê(·, t), Î(·, t)) = c1(ψ̂E, ψ̂I)e
λ0(S0+ϵ1)(t−T1), ∀t ≥ T1.

Hence,

lim
t→∞

(E(·, t), I(·, t)) = (0, 0).

Moreover, it follows from the R-equation that limt→∞R(x, t) = 0 for x ∈ Ω. Then by Lemma

2.1, one has limt→∞ S(x, t) = S0(x) for x ∈ Ω. This completes the proof of assertion (i).

We then verify (ii). Denote

U0 := {φ = (φ1, φ2, φ3, φ4) ∈ X+|φ2 ̸= 0 and φ3 ̸= 0},

∂U0 := {φ ∈ X+|φ2 = 0 or φ3 = 0}.

Note that X+ = U0 ∪ ∂U0. Moreover, U0 and ∂U0 are relatively open and closed subsets of

X+, respectively. The solution semiflow Φ(t) of the model (1.5) admits a global attractor

indicated by Theorem 2.1. Set M∂ = {φ ∈ ∂U0 : Φ(t)φ ∈ ∂U0, ∀t > 0}.

Claim 1. Φ(t)U0 ⊂ U0, ∀t > 0.

It follows directly from the strong maximum principle and Hopf boundary lemma for

parabolic equations.

Claim 2.
⋃

φ∈M∂
ω(φ) = {E0}, where ω(φ) is the omega limit set of the forward orbit

γ+(φ) = {Φ(t)φ : t ≥ 0}.

Since φ ∈ M∂, we know φ2 = φ3 = 0, then E(x, t) = I(x, t) = R(x, t) = 0 for all x ∈ Ω̄,

t ≥ 0. As a result, S(·, t) → S0 uniformly as t → ∞, implying the claim holds, i.e., {E0} is
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a compact and isolated invariant set for Φ(t) restricted in M∂.

Claim 3. There exists some positive constant ϵ2 independent of initial data such that

lim sup
t→∞

∥Φ(t)φ− E0∥ > ϵ2.

Argue indirectly. Suppose there exists φ̄ ∈ U0 such that lim supt→∞ ∥Φ(t)φ̄−E0∥ < ϵ2. Then

there exists T2 > 0 such that

S(·, t) > S0(·)− ϵ2, ∀t ≥ T2.

Let (Ě(x, t), Ǐ(x, t)) be the solution to the following parabolic equations:

∂tĚ −∇ · (g∇Ě) = β1(S
0 − ϵ2)

∫
Ω

K(x− y)Ě(y, t)dy

+ β2(S
0 − ϵ2)

∫
Ω

K(x− y)Ǐ(y, t)dy − (σ + µ)Ě, x ∈ Ω, t > T2,

∂tǏ −∇ · (h∇Ǐ) = σĚ − (γ + µ+ α)Ǐ , x ∈ Ω, t > T2,

∇Ě · n = ∇Ǐ · n = 0, x ∈ ∂Ω, t > T2.

Assume there exists a constant c2 > 0 such that c2(ψ̌E, ψ̌I) ≥ (E(x, T2), I(x, T2)) for x ∈

Ω, where (ψ̌E, ψ̌I) is the positive eigenfunction corresponding to the principal eigenvalue

λ0(S0 − ϵ2) of the elliptic eigenvalue problem (2.13) with S0 replaced by S0 − ϵ2. Then

Lemma 2.3 gives λ0(S0 + ϵ0) > 0 since R(1.5)
0 > 1. By the comparison principle, one has

(E(x, t), I(x, t)) ≥ (Ê(x, t), Î(x, t)) = c2(ψ̌E, ψ̌I)e
λ0(S0−ϵ2)(t−T2), ∀t ≥ T2.

Hence,

lim
t→∞

(E(·, t), I(·, t)) = (∞,∞),

a contradiction to Theorem 2.1. This verifies Claim 3.

According to the above claims, the uniform persistence can be derived by Zhao (2017).

It then follows from Magal and Zhao (2005) that there exists at least one positive steady

state.
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3 The epidemic model with random diffusion

Let fS =: S̃, gE =: Ẽ and hI =: Ĩ. We then obtain the following equivalent system of the

system (1.6):

∂tS̃ − f∆S̃ = fΛ(x)− β1(x)S̃

∫
Ω

K(x− y)Ẽ(y, t)g−1dy

− β2(x)S̃

∫
Ω

K(x− y)Ĩ(y, t)h−1dy − µ(x)S̃, x ∈ Ω, t > 0,

∂tẼ − g∆Ẽ = β1(x)gf
−1S̃

∫
Ω

K(x− y)Ẽ(y, t)g−1dy

+ β2(x)gf
−1S̃

∫
Ω

K(x− y)Ĩ(y, t)h−1dy − (σ(x) + µ(x))Ẽ, x ∈ Ω, t > 0,

∂tĨ − h∆Ĩ = σ(x)hg−1Ẽ − (γ(x) + µ(x) + α(x))Ĩ , x ∈ Ω, t > 0,

∂tR− dR∆R = γ(x)h−1Ĩ − µ(x)R, x ∈ Ω, t > 0,

∇S̃ · n = ∇Ẽ · n = ∇Ĩ · n = ∇R · n = 0, x ∈ ∂Ω, t > 0,

S̃(x, 0) = fS0(x), Ẽ(x, 0) = gE0(x), Ĩ(x, 0) = hI0(x), R(x, 0) = R0(x), x ∈ Ω.

(3.1)

For each i = 1, 2, 3, 4, let Ji(t) : C(Ω̄,R) → C(Ω̄,R) be the C0 semigroups generated

by the operator Bi subject to homogeneous Neumann boundary condition in (3.1), where

B1 = f∆ − µ, B2 = g∆ − (σ + µ), B3 = h∆ − (γ + µ + α) and B4 = dR∆ − µ. Note that

B4 = A4 and J4 = T4. Hence, J(t) := (J1(t), J2(t), J3(t), J4(t)) is a C0 semigroup on X with

an infinitesimal generator B := (B1, B2, B3, B4). With reference to Smith (1995), Ji(t) is

compact and strongly positive for each t > 0 and i = 1, 2, 3, 4. Let −νi < 0 (i = 1, 2, 3, 4) be

the principal eigenvalue of Bi subject to homogeneous Neumann boundary condition. Thus

we have ∥Ji(t)∥ ≤ m̃ie
−νit for each t > 0, where m̃i (i = 1, ..., 4) are positive constants. It is

obvious that ν4 = µ4 and m̃4 = m4. Set F̃ = (F̃1, F̃2, F̃3, F̃4) : X+ → X, where

F̃1(ϕ)(x) = fΛ(x)− β1(x)ϕ1(x)

∫
Ω

K(x− y)ϕ2(y)g
−1dy − β2(x)ϕ1(x)

∫
Ω

K(x− y)ψ3(y)h
−1dy,

F̃2(ϕ)(x) = β1(x)gf
−1ϕ1(x)

∫
Ω

K(x− y)ϕ2(y)g
−1dy + β2(x)gf

−1ϕ1(x)

∫
Ω

K(x− y)ϕ3(y)h
−1dy,

F̃3(ϕ)(x) = σ(x)hg−1ϕ2(x),

F̃4(ϕ)(x) = γ(x)h−1ϕ3(x),

for any ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ X+.
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Similar to the system (1.5), given a vector-valued function ω := (ω1, ω2, ω3, ω4) ∈ X,

system (1.6) can be rewritten as the following abstract differential equation:
dω(t)

dt
= Bω(t) + F̃ (ω(t)), t > 0,

ω(0) = ϕ,

or the following integral equation:

ω(t) = J(t)ϕ+

∫ t

0

J(t− s)F̃ (ω(s))ds. (3.2)

3.1 Well-posedness

Let Φ̃(t) : X+ → X+ be the solution semiflow of the model (1.6). Similar to Theorem 2.1,

we then give the well-posedness of the model (1.6).

Theorem 3.1. Assume (H1)-(H3) hold. For the initial data (S0, E0, I0, R0) ∈ X+, model

(1.6) admits a unique solution (S,E, I, R) on Ω̄ × [0,∞). Moreover, there exists a positive

constant M̃ depending on the initial data such that

∥S(·, t)∥, ∥E(·, t)∥, ∥I(·, t)∥, ∥R(·, t)∥ ≤ M̃, ∀ t ≥ 0, (3.3)

and there exists positive constants Ñ independent of the initial data such that

lim sup
t→∞

∥S(·, t)∥, lim sup
t→∞

∥E(·, t)∥, lim sup
t→∞

∥I(·, t)∥, lim sup
t→∞

∥R(·, t)∥ ≤ Ñ . (3.4)

Furthermore, the solution semiflow Φ̃(t) admits a global attractor, which is a nonempty,

compact, and invariant set.

Proof. It follows from the variation of constant formula (3.2) that

S̃(t) ≤ J1(t)(fS0) +

∫ t

0

J1(s)(fΛ(x))ds, t ∈ [0, T̃max),

where [0, T̃max) is the maximal existence interval for the solution to (3.1). Hence, by assump-

tion (H2),

∥S̃(t)∥ ≤ m̃1M0e
−ν1t∥S0∥+

m̃1M0Λ
∗

ν1
(1− e−ν1t) (3.5)

≤ m̃1M0∥S0∥+
m̃1M0Λ

∗

ν1
=: M̃1, t ∈ [0, T̃max).

21



Here, M̃1 depends on the initial data. In order to obtain the L1-estimate of S̃ + Ẽ + Ĩ +R,

we add the four equations in (1.6), and integrate the result by parts over Ω. Then we can

also get (2.3) due to the zero-flux boundary conditions. Moreover,∫
Ω

(S̃ + Ẽ + Ĩ +R)dx ≤ max{M0, 1}
∫
Ω

(S + E + I +R)dx.

Combining this inequality with (2.3), we obtain∫
Ω

(S̃ + Ẽ + Ĩ +R)dx ≤ max{M0, 1}e−µ∗t

∫
Ω

(S0 + E0 + I0 +R0)dx

+(1− e−µ∗t)max{M0, 1}
Λ∗

µ∗
|Ω|, t ∈ [0, T̃max).

Analogous to the proof of Theorem 2.1, we can then get similar estimates as those in the

proof of Theorem 2.1 for the system (3.1). It then follows from Pao (2012) that T̃max = ∞.

This gives the global existence and boundedness of the system (3.1), that is, there exists a

positive constant M ′ depending on the initial data such that

∥S̃(·, t)∥, ∥Ẽ(·, t)∥, ∥Ĩ(·, t)∥, ∥R̃(·, t)∥ ≤M ′, ∀ t ≥ 0.

Since T̃max = ∞, it follows from (3.5) that

lim sup
t→∞

∥S̃(·, t)∥ ≤ m̃1M0Λ
∗

ν1
=: Ñ1

Here, Ñ1 is independent of the initial data. In the same manner, we can get some positive

constants independent of the initial data such that Ẽ, Ĩ and R̃ are also ultimately bounded.

Hence, there exists a positive constant N ′ independent of the initial data such that

lim sup
t→∞

∥S̃(·, t)∥, lim sup
t→∞

∥Ẽ(·, t)∥, lim sup
t→∞

∥Ĩ(·, t)∥, lim sup
t→∞

∥R(·, t)∥ ≤ N ′.

According to S = f−1S̃, E = g−1Ẽ, and I = h−1Ĩ, one has (3.3) and (3.4) also hold according

to assumption (H2). There also exists a global attractor with reference to (Hale, 1988).

3.2 Basic reproduction number

In view of Remark 2.2 in Wang and Zhao (2012), we can also define the basic reproduction

number for model (1.6) using the next-generation operator approach. First, we provide the

following lemma, where the symmetric diffusion in Lemma 2.1 is replaced by the random

diffusion. The proof follows from a similar procedure of Claim 1 in the proof Theorem 2.2

in Freedman and Zhao (1997).
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Lemma 3.1. Assume (H1)-(H2) hold. The reaction-diffusion
∂tv = ∆(f(x)v) + Λ(x)− µ(x)v, x ∈ Ω, t > 0,

∇(fv) · n = 0, x ∈ ∂Ω,

v(x, 0) = ψ, x ∈ Ω.

(3.6)

admits a unique positive steady state v0(x) which is globally asymptotic stable in C(Ω̄,R),

where f(x), Λ(x) and µ(x) are the same as those in the model (1.6).

Proof. By virtue of standard theory for parabolic equations, one has (3.6) admits a unique

solution v(t, ψ) on [0,∞) with ψ ∈ C(Ω̄,R+). Let Q(t) be the solution semiflow of ∆(f ·)−µ

with zero-flux boundary condition, i.e., Q(t)ψ = v(t, ψ).

Let W := f(x)v. Then (3.6) becomes
∂tW = f∆W + fΛ(x)− µ(x)W, x ∈ Ω, t > 0,

∇W · n = 0, x ∈ ∂Ω,

W (x, 0) = fψ, x ∈ Ω.

By standard comparison arguments and assumption (H2), one has

m0Λ∗

µ∗ ≤ W ≤ M0Λ
∗

µ∗
.

Then for any ψ ∈ C(Ω̄,R), the omega limit set ω(ψ) satisfies

ω(ψ) ⊆
{
φ :

m0Λ∗

M0µ∗ ≤ φ ≤ M0Λ
∗

m0µ∗

}
.

Hence, for any φ > ψ, we can infer Q(t)φ≫ Q(t)ψ for all t > 0.

Let h(x, v) := Λ(x) − µ(x)v. It is clear that h(x, v) is strictly subhomogeneous in the

sense that h(x, τv) > τh(x, v) for any τ ∈ (0, 1) and v ≫ 0.

For any ψ ∈ C(Ω̄,R+) and ς ∈ (0, 1), let V (t) = v(t, ςψ)− ςv(t, ψ). It follows from (3.6)

that V (0) = 0 and V (t) satisfies∂tV = ∆(fV ) +H(t, x)V + h(x, ςv(t, ψ))− ςh(x, v(t, ψ)), x ∈ Ω, t > 0,

∇(fV ) · n = 0, x ∈ ∂Ω,

where

H(t, x) =

∫ 1

0

∂h(x, sv(t, ςψ) + (1− s)v(t, ψ))

∂v
ds.
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Let U(t, s), t ≥ s ≥ 0, be the evolution operator of the nonautonomous linear parabolic

system: ∂tV = ∆(fV ) +H(t, x)V, x ∈ Ω, t > 0,

∇(fV ) · n = 0, x ∈ ∂Ω.

It follows from Theorem 7.4.1 in Smith (1995) that U(t, s) is strongly positive by a transfor-

mation, i.e., U(t, s)ϕ≫ 0 for any ϕ > 0. According to the formula of variants of constants,

V (t) =

∫ t

0

U(t, s) [h(·, ςv(s, ψ))− ςh(·, v(s, ψ))] ds, t ≥ 0.

Note that v(s, ϕ) ≫ 0 for s≫ 0 and h(x, v) is strictly subhomogeneous in v, one has

h(·, ςv(s, ψ))− ςh(·, v(s, ψ))ds > 0 in C(Ω̄,R),

As a result, V (t) ≫ 0 for all t > 0, that is, Q(t)(ςψ) > ςQ(t)ψ for ς ∈ (0, 1) and ψ ≫ 0.

Hence, by Zhao (2017), one has Q(t) has a positive equilibrium v∗(x) such that ω(ψ) =

v∗ ∈ C(Ω̄,R) for any ψ ∈ C(Ω̄,R).

It then follows from Lemma 3.1 that there exits a unique DFE Ē0 = (S̄0, 0, 0, 0) for model

(1.6). Linearizing the E- and I-equations in model (1.6) gives

∂tθ −∆(gθ) = β1S̄
0

∫
Ω

K(x− y)θ(y, t)dy

+ β2S̄
0

∫
Ω

K(x− y)ϑ(y, t)dy − (σ + µ)θ, x ∈ Ω, t > 0,

∂tϑ−∆(hϑ) = σθ − (γ + µ+ α)ϑ, x ∈ Ω, t > 0,

∇(gθ) · n = ∇(hϑ) · n = 0, x ∈ ∂Ω, t > 0.

(3.7)

Setting (θ, ϑ) = eλt(ϕE, ϕI), the linearized system (3.7) becomes

∆(gϕE) + β1S̄
0

∫
Ω

K(x− y)ϕE(y)dy + β2S̄
0

∫
Ω

K(x− y)ϕI(y)dy

− (σ + µ)ϕE = λϕE, x ∈ Ω,

∆(hϕI) + σϕE − (γ + µ+ α)ϕI = λϕI , x ∈ Ω,

∇(gϕE) · n = ∇(hϕI) · n = 0, x ∈ ∂Ω.

(3.8)

It then follows from the Krein-Rutman theorem that (3.8) admits a unique principal eigen-

value λ̄0 equipped with a positive eigenfunction (ϕ0
E, ϕ

0
I).
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For the random diffusion model (1.6), L, F (x) in Wang and Zhao (2012) can be respec-

tively defined as L = diag(∆(g·),∆(h·)),

F (x) =

β1S̄0 ∂
∫
Ω K(x−y)θdy

∂θ
|θ=0 β2S̄

0 ∂
∫
Ω K(x−y)ϑdy

∂ϑ
|ϑ=0

0 0

 ,

and V (x) is the same as that in section 2.

Let Ψ̄(t) : C(Ω̄,R2) → C(Ω̄,R2) be the solution semigroup generated by L−V associated

with zero-flux boundary condition, and ϕ̄(x) = (ϕE, ϕI) the distribution of initial infection.

Then the basic reproduction number for model (1.6) is defined by the spectral radius of L̄

as

R(1.6)
0 = r(L̄),

where

L̄(ϕ̄)(x) :=
∫ ∞

0

F (x)Ψ̄(t)ϕ̄(x)dt = F (x)

∫ ∞

0

Ψ̄(t)ϕ̄(x)dt. (3.9)

Lemma 3.2. The following assertion of R(1.6)
0 and λ̄0 is valid:

sign(R(1.6)
0 − 1) = sign(λ̄0).

Proof. Let B0 := L − V . Denote by X1 := C(Ω̄,R2) and X1
+ := C(Ω̄,R2

+). It follows from

the maximum principle that Ψ̄(t) is strongly positive, i.e., Ψ̄(t)X1
+ ⊆ X1

+ for all t ≥ 0.

According to Theorem 3.12 in Thieme (2009), B0 is resolvent-positive, and

(λI −B0)−1ϕ̄ =

∫ ∞

0

e−λtΨ̄(t)ϕ̄dt, ∀λ > λ̄0, ϕ̄ ∈ X1. (3.10)

Note λ̄0 < 0. Let λ = 0 in (3.10), one has

−(B0)−1ϕ̄ =

∫ ∞

0

Ψ̄(t)ϕ̄dt, ∀ϕ̄ ∈ X1.

By (3.9), one has L̄ = −F (B0)−1. Define D := B0 + F , which generates a positive C0

semigroup. By Theorem 3.12 in Thieme (2009), D is resolvent-positive. Then by Theorem

3.5 in Thieme (2009), λ̄0 = s(D) has the same sign as r(L̄)− 1 = R(1.6)
0 − 1, where s(D) is

the spectral bound of D defined by

s(D) = sup{Reλ : λ ∈ σ(D), σ(D) is the spectrum of D}.
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3.3 Threshold dynamics

Similar to Theorem 2.2, we can obtain the following threshold dynamics according to R(1.6)
0 .

Theorem 3.2. Assume (H1)-(H3) hold. The following assertions hold:

(i) If R(1.6)
0 < 1, then Ē0 is globally asymptotically stable;

(ii) If R(1.6)
0 > 1, then model (1.6) is uniformly persistent, i.e., there exists η0 > 0 such that

for any (S0, E0, I0, R0) ∈ X+ with E0 ̸≡ 0 or I0 ̸≡ 0, the solution (S,E, I, R) satisfies

lim inf
t→0

S(x, t), lim inf
t→0

E(x, t), lim inf
t→0

I(x, t), lim inf
t→0

R(x, t) ≥ η0, ∀x ∈ Ω.

Moreover, model (1.6) admits at least one EE.

Proof. The proof for global attractivity of the DFE Ē0 is similar to that of E0 in Theorem

2.2(i) in view of Lemma 3.1. The proof of the uniform persistence for the system (1.6) is

similar to that of the system (1.5) in Theorem 2.2(ii). Hence we omit it here. We only give

the locally asymptotic stability of Ē0 of the system (1.6).

Indeed, let P (t) be the solution semigroup generated by D subject to the zero-flux bound-

ary conditions, and ω(P ) be the exponential growth bound of P (t). Since R(1.6)
0 < 1, one has

s(D) < 0 by the proof of Lemma 3.2. By Theorem 3.14 in Thieme (2009), ω(P ) = s(D) < 0.

Since the R-equation in the model (1.6) can be decoupled by the other three equations, we

have the linearized S-equation of the model (1.6) at the DFE Ē0:
∂tU −∆(fU) = −µU − β1S̄

0

∫
Ω

K(x− y)θ(y, t)dy

− β2S̄
0

∫
Ω

K(x− y)ϑ(y, t)dy, x ∈ Ω, t > 0,

∇(fU) · n = 0, x ∈ ∂Ω, t > 0,

where θ and ϑ are given in (3.7). It is obvious that s(∆(f ·)− µ) < 0 satisfies the condition

(A5) in Wang and Zhao (2012). Let T (t) be the solution semigroup of the first three equations

in the model (1.6). Denote by ω(T ) the exponential growth bound of T (t). Then ω(T ) <

0. It then follows from Theorem 2.1 in Desch and Schappacher (2006) that Ē0 is locally

asymptotically stable.
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4 The local epidemic model in a homogeneous case

Let Ka(x) := 1
ak
K(x

a
) for x ∈ Ω and a > 0. In fact, the function Ka(x) is smooth and

satisfies
∫
Rn Ka(x)dx = 1 with compact support in the open ball B(0, a). The readers can

refer to Appendix C of Evans (2022) for more properties for the function Ka(x). It is clear

that the support size of Ka decreases as a decreases, indicating the effective infection area

decreases. As a→ 0+, Ka converges to the Dirac function δ0. If we consider K(·) in models

(1.5) and (1.6) replaced by Ka, then the nonlocal infection terms become the local infection

terms, i.e.,

β1S

∫
Ω

Ka(x− y)E(y, t)dy + β2S

∫
Ω

Ka(x− y)I(y, t)dy → β1SE + β2SI, as a→ 0+.

This implies the connection between nonlocal infection and local infection.

In this section, we consider systems (1.5) and (1.6) with local infection in a homogeneous

environment, where Λ, µ, σ, γ, α and βi(i = 1, 2) are positive constants. Then f(
∑2

i=1 aiβi),

g(
∑2

i=1 biβi) or g(γ−1), and h(γ−1) are also positive constants. As a result, systems (1.5)

and (1.6) degenerate to

∂tS − f∆S = Λ− β1SE − β2SI − µS, x ∈ Ω, t > 0,

∂tE − g∆E = β1SE + β2SI − (σ + µ)E, x ∈ Ω, t > 0,

∂tI − h∆I = σE − (γ + µ+ α)I, x ∈ Ω, t > 0,

∂tR− dR∆R = γI − µR, x ∈ Ω, t > 0,

∇S · n = ∇E · n = ∇I · n = ∇R · n = 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), E0(x) = E0(x), I(x, 0) = I0(x), R(x, 0) = R0(x), x ∈ Ω.

(4.1)

With a similar procedure in the proof of Theorem 2.1, we also can give the well-posedness

of the model (4.1).

Proposition 4.1. For any initial date (S0, E0, I0, R0) ∈ X+, model (4.1) admits a unique

bounded solution (S,E, I, R) ∈ X+ for all t ≥ 0.

It follows from Theorem 3.4 in Wang and Zhao (2012) that the basic reproduction number

of the model (4.1) can be defined by

R0 =
β1Λ/µ

σ + µ
+

β2σΛ/µ

(σ + µ)(γ + µ+ α)
,
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which is the same as that of the ODE compartment model. The two parts of the basic

reproduction number R0 can be regarded as the influence of the exposed E and the infected

I, respectively.

Proposition 4.2. There exist two equilibria for model (4.1): the DFE Ẽ0 = (Λ
µ
, 0, 0, 0); and

the EE Ẽ1 = (S1, E1, I1, R1) for R0 > 1, where

S1 =
(σ + µ)(γ + µ+ α)

β1(γ + µ+ α) + β2σ
, E1 =

Λ− µS1

σ + µ
, I1 =

σE1

γ + µ+ α
, R1 =

γI1
µ
.

It is easy to check that Λ − µS1 > 0 as R0 > 1. Employing the Lyapunov functional

method, we can give the globally asymptotic stability for the DEF and EE of the model

(4.1) in terms of the R0.

4.1 Global stability

Theorem 4.1. The following assertions are valid.

(i) If R0 < 1, then Ẽ0 is globally asymptotically stable in X+;

(ii) If R0 > 1, then Ẽ1 is globally asymptotically stable in X+.

Proof. Since the R-equation can be decoupled by the first three equations of (4.1), we only

consider the system composed by the first three equations.

We first prove (i). Set S̆ := Λ
µ
. Define W1(t) : C(Ω̄,R+) → R as

W1(t) =

∫
Ω

[
S − S̆ − S̆ ln

S

S̆
+ E +

β2S̆

γ + µ+ α
I

]
dx, ∀t > 0.

It follows from direct calculations that

dW1(t)

dt
= −f

∫
Ω

S̆

S2
|∇S|2dx+

∫
Ω

[(
1− S̆

S

)
(Λ− β1SE − β2SI − µS)

+(β1SE + β2SI − (σ + µ)E) +
β2S̆

γ + µ+ α
(σE − (γ + µ+ α)I)

]
dx

= −f
∫
Ω

S̆

S2
|∇S|2dx+ Λ

∫
Ω

(
2− S̆

S
− S

S̆

)
dx

+

∫
Ω

(
β1S̆ +

β2σS̆

γ + µ+ α
− (σ + µ)

)
dx

≤ 0,
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where we used the fact that Λ = µS̆ in the second equality and R0 < 1 in the last inequality.

It is obvious that dW1(t)
dt

= 0 if and only if (S,E, I) = (S̆, 0, 0). Hence, W1(t) is a Lyapunov

functional. By some standard arguments, it is evident that

(S,E, I) → (S̆, 0, 0) in (L2(Ω))3, as t→ ∞.

From the uniform boundedness in Proposition 4.1, the parabolic Lp-theory, Sobolev embed-

ding theorem, and a standard compactness argument (see, e.g., Theorem A2 in Brown et al.

(1981)) guarantee that there exist positive constants C and T0 such that

∥S(·, t)∥C2(Ω̄) + ∥E(·, t)∥C2(Ω̄) + ∥I(·, t)∥C2(Ω̄) ≤ C, ∀t ≥ T0.

Therefore, the Sobolev embedding theorem allows one to assert

(S,E, I) → (S̆, 0, 0) in (L∞(Ω))3, as t→ ∞.

This implies that the DFE Ẽ0 attracts all solutions of (4.1).

We then prove (ii). R0 > 1 guarantees the existence of EE. DefineW2(t) : C(Ω̄,R+) → R

as

W2(t) =

∫
Ω

[
S − S1 − S1 ln

S

S1

+ E − E1 − E1 ln
E

E1

+
β2S1

γ + µ+ α

(
I − I1 − I1 ln

I

I1

)]
dx, ∀t > 0.

Thus, a straightforward computation shows

dW2(t)

dt
= −f

∫
Ω

S1

S2
|∇S|2dx+

∫
Ω

(
1− S1

S

)
(Λ− β1SE − β2SI − µS)dx

−g
∫
Ω

E1

E2
|∇E|2dx+

∫
Ω

(
1− E1

E

)
(β1SE + β2SI − (σ + µ)E)dx

− β2S1h

γ + µ+ α

∫
Ω

I1
I2

|∇I|2dx+ β2S1

γ + µ+ α

∫
Ω

(
1− I1

I

)
(σE − (γ + µ+ α)I)dx

= −f
∫
Ω

S1

S2
|∇S|2dx− g

∫
Ω

E1

E2
|∇E|2dx− h

∫
Ω

I1
I2

|∇I|2dx

+β1S1E1

∫
Ω

(
2− S1

S
− S

S1

)
dx+ β2S1I1

∫
Ω

(
3− S1

S
− SIE1

S1I1E
− EI1
E1I

)
dx

≤ 0,

where we use the fact

Λ = β1S1E1 + β2S1I1 + µS1, β1S1E1 + β2S1I1 = (σ + µ)E1, σE1 = (γ + µ+ α)I1,
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in the second equality. We can verify dW2(t)
dt

= 0 if and only if (S,E, I) = (S1, E1, I1),

implying that W2(t) is a Lyapunov functional. Then by a similar argument as in the proof

of (i), one has

(S,E, I) → (S1, E1, I1) in (L∞(Ω))3, as t→ ∞.

For R0 > 1, Theorem 4.1(ii) indicates the uniqueness of EE for model (4.1) with local

infection in a spatially homogeneous environment. Compared with Theorems 2.2(ii) and

3.2(ii), the uniform persistence only guarantees the existence of EE for the models in spatially

heterogeneous environments, but the uniqueness is not derived.

4.2 Sensitivity analysis

In this subsection, we explore the sensitivity of R0, E1, and I1 to the infection rate β1 of

exposed individuals and the infection rate β2 of infected individuals. We apply the formula

in Chitnis et al. (2008) to analyze the sensitivity:

Υu
p :=

∂u

∂p
· p
u
. (4.2)

It means the sensitivity of u to parameter p.

We first compare the sensitivity of R0 to the parameters β1 and β2. The sensitivity index

of R0 to β1 and β2 can be directly calculated by (4.2) in the following:

ΥR0
β1

=
β1(γ + µ+ α)

β1(γ + µ+ α) + β2σ

and

ΥR0
β2

=
β2σ

β1(γ + µ+ α) + β2σ
.

It is easy to observe that the sensitivity index of I1 to the parameters β1 and β2 is equal

to the sensitivity index of E1 to the parameters. So it suffices to give the sensitivity of E1

to β1 and β2, which is

ΥE1
β1

=
β1µ(σ + µ)(γ + µ+ α)2

(β1(γ + µ+ α) + β2σ)2(Λ− µS1)

and

ΥE1
β2

=
β2µ(σ + µ)(γ + µ+ α)σ

(β1(γ + µ+ α) + β2σ)2(Λ− µS1)
.
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Fig. 1: Sensitivity analysis of R0 and E1 to β1 and β2.

We take Λ = 150, µ = 0.18, σ = 0.5, α = 0.05, and γ = 0.5 to give illustrations. There is

no doubt that the infection probability by infected individuals is greater than that by exposed

individuals, that is, β2 ≥ β1. Therefore, we choose β1 ∈ [0.01, 0.05] and β2 ∈ [0.05, 0.1].

The sensitivity of R0 and E1 to β1 and β2 is illustrated in Fig. 1(a) and (b), respectively.

It is apparent that ΥR0
βi

> ΥE1
βi
. We then compare ΥR0

β1
with ΥR0

β2
. Letting ΥR0

β1
= ΥR0

β2
, we

can find β2 = γ+µ+α
σ

β1. This is a straight line which is the intersection of the two surfaces

ΥR0
β1

and ΥR0
β2
. The sensitivity of R0 to β2 is higher than that to β1 if β2 >

γ+µ+α
σ

β1, that

is, on the left-hand side of the intersection of the surfaces in Fig. 1(a). On the contrary,

ΥR0
β1
> ΥR0

β2
if β2 <

γ+µ+α
σ

β1, that is, on the right-hand side of the intersection of the surfaces.

It is easy to verify that the intersection line in Fig. 1(b) is also β2 =
γ+µ+α

σ
β1. The sensitivity

of ΥE1
β1

and ΥE1
β2

in Fig. 1(b) can be analyzed in the same way as in Fig. 1(a).

5 Spatial segregation versus nonpharmaceutical inter-

ventions

In this section, we perform a series of numerical examinations with the aim of exploring the

effects of spatial segregation and nonpharmaceutical interventions on the control of infectious

diseases. In order to compare with the dynamics of the symmetric diffusion model (1.5) and

the random diffusion model (1.6), we also consider a homogeneous diffusion model taking
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the form

∂tS − f̄∆S = Λ(x)− β1(x)S

∫
Ω

K(x− y)E(y, t)dy

− β2(x)S

∫
Ω

K(x− y)I(y, t)dy − µ(x)S, x ∈ Ω, t > 0,

∂tE − ḡ∆E = β1(x)S

∫
Ω

K(x− y)E(y, t)dy

+ β2(x)S

∫
Ω

K(x− y)I(y, t)dy − (σ(x) + µ(x))E, x ∈ Ω, t > 0,

∂tI − h̄∆I = σ(x)E − (γ(x) + µ(x) + α(x))I, x ∈ Ω, t > 0,

∂tR− dR∆R = γ(x)I − µ(x)R, x ∈ Ω, t > 0,

∇S · n = ∇E · n = ∇I · n = ∇R · n = 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), E(x, 0) = E0(x), I(x, 0) = I0(x), R(x, 0) = R0(x), x ∈ Ω,

(5.1)

where f̄ , ḡ and h̄ are positive constants.

The directed migration or dispersal of individuals contributes to the spatial pattern

formation of segregation, playing a vital role in population regulation. Furthermore, it is

beneficial for the waning and eventual elimination of the disease. We adopt the segregation

indices χ and κ in Wang et al. (2022) to measure the degree of segregation of two groups u1

and u2 of the population in Ω, where

χ(u1, u2) = max
x∈Ω̄

{u1 − u2} ·min
x∈Ω̄

{u1 − u2},

and

κ(u1, u2) =
∥u1 − u2∥L1(Ω)

∥u1∥L1(Ω) + ∥u2∥L1(Ω)

.

In fact, χ is used to determine whether there is a segregation phenomenon between u1 and

u2, while 0 ≤ κ ≤ 1 can describe the degree of segregation. If χ ≥ 0, then there is no

segregation phenomenon. If χ < 0 and κ is close to 0, then the segregation is weak, and

such phenomenon disappears as κ becomes 0. On the contrary, if χ < 0 and κ is close

to 1, the segregation is considered strong or perfect. We designate susceptible group S

as u1, and infected groups E and I as u2 for the reason that both exposed and infected

individuals are contagious. We employ ρ to represent the weight of I among the infectives

concerning disease transmission. Accordingly, the weight of E is represented by 1− ρ. That

is to say, u2 := (1 − ρ)E + ρI, which suits the above given segregation indices χ and κ.

32



Generally, we have ρ > 1
2
because infected individuals (symptomatic) are normally more

infectious than exposed individuals (asymptomatic). Besides transmission probabilities (or

rates), other factors such as weather conditions, population density, epidemic severity, and

disease-induced fatality can also regulate the value of ρ. In the following simulations, the

weight ρ = 0.8.

To measure the final infection size, namely, the total number of exposed and infected

individuals, we introduce the following infection fraction (I.F.) index:

I.F. =
∥E + I∥L1(Ω)

∥S + E + I +R∥L1(Ω)

,

where S, E, I and R are at the steady state.

We carry out the numerical examples in a one-dimensional interval Ω = (0, 2π). The

infection and recovery rates are taken as

β1(x) = 0.002(cosx+ 1.3), β2(x) = 0.05(cosx+ 1.2), γ(x) = 0.3(sinx+ 1.1), x ∈ (0, 2π).

The diffusion rates of susceptible individuals and infected individuals are taken as

f

(
2∑

i=1

aiβi(x)

)
= 100(β1(x) + β2(x)), h(γ

−1(x)) =
1

γ(x)
, x ∈ (0, 2π).

respectively, where a1 = a2 = 1. Furthermore, the diffusion rate of exposed individuals can

be taken as either g
(∑2

i=1 biβi(x)
)
= f

(∑2
i=1 aiβi(x)

)
or g(γ−1(x)) = h(γ−1(x)), depending

on the perception of exposed individuals. The infection-recovery rates and diffusion rates of

susceptibles and infectives are illustrated in Fig. 2(a) and (b), respectively. It can be seen

from Fig. 2(a) that β1(x) < β2(x) for all x ∈ (0, 2π). In addition, the infection rate is the

lowest at x = π, while the recovery rate is the highest at x = π
2
and the lowest at x = 3π

2
.

Fig. 2(b) shows that susceptible individuals at x = π and infected individuals at x = π
2
have

the lowest diffusion rates because they tend to stay at these sites to avoid infection or to

get medical treatment. On the other hand, infected individuals have a high diffusion rate at

x = 3π
2

because the recovery rate is the lowest here. They will escape from this site to seek

medical resources. The diffusion rate of the recovered dR is 10 in simulations.

For the homogeneous diffusion model (5.1), we take the spatially constant diffusion rates

of susceptible individuals and infected individuals as

f̄ =
1

2π

∫ 2π

0

f

(
2∑

i=1

aiβi(x)

)
dx, h̄ =

1

2π

∫ 2π

0

h(γ−1(x))dx,
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respectively, and the spatially constant diffusion rate ḡ of exposed individuals is equal to f̄

or h̄. It can be calculated that f̄ = 6.26 and h̄ = 7.2376.

We adopt the nonlocal infection kernel in the same format as described in Liu et al.

(2019):

K(x) =


2.2523

a
e

a2

|x|2−a2 , |x| < a,

0, |x| ≥ a,

where a is the nonlocal infection radius. The unit of a can be interpreted as meters, rep-

resenting the maximum distance over which the infection can spread. The infection kernel

K(x) with different infection radii is shown in Fig. 2(c). The infection area increases while

the infection strength decreases with the increase of the infection radius.
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Fig. 2: The infection-recovery rates, diffusion rates, and nonlocal infection radii.

The initial values are taken as S0 = 500 and E0 = I0 = R0 = 100. The other parameter

values are chosen the same as those in Fig. 1.

5.1 Segregation by cognitive diffusion

In this subsection, we consider spatial segregation induced by cognitive diffusion with the

influence of nonlocal infection. Three examples with infection radii a = 0, 1, 3 are performed,

respectively.

Example 1. Segregation with local infection.

Here we provide the distribution of the steady state for the homogeneous diffusion model

(5.1), symmetric diffusion model (1.5) and random diffusion model (1.6) with local infection,

that is, the infection radius a = 0. In addition, we pay attention to the impacts of different

dispersal strategies adopted by exposed individuals. In Fig. 3(a)-(c), the distribution of
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the steady state is shown when the dispersal rate of exposed individuals is equal to that of

susceptible individuals, and in Fig. 3(d)-(f), the distribution of the steady state is shown

when the dispersal rate of exposed individuals is equal to that of infected individuals.

x
0 1 2 3 4 5 6

0

50

100

150

200

250
(a) Homogeneous diffusion (5.1) with ḡ = f̄
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Fig. 3: The distribution of the steady state of epidemic models with homogeneous, symmet-

ric, and random diffusion if the infection is local.

Intuitively, from Fig. 3(a)(b)(d)(e), the symmetric diffusion model and the homogeneous

diffusion model have a similar distribution of the steady state regardless of whether the

movement mechanism of exposed individuals equals to that of susceptible or infected indi-

viduals. However, the distribution of the steady state in the random diffusion model behaves

rather differently from that in the symmetric or homogeneous diffusion models. Moreover,

we can find that the distribution of exposed individuals is similar to that of susceptible indi-

viduals when the diffusion rate of exposed individuals equals that of susceptible individuals

from Fig. 3(c) and similar to that of infected individuals when it equals to that of infected

individuals from Fig. 3(f). In contrast, the symmetric diffusion model and homogeneous dif-

fusion model do not display such characteristics. Additionally, we obtain two distinct cases:

near the position x = 3π
2

with the low recovery rate and the high diffusion rate of infected

individuals, the density of infectives is high in the homogeneous and symmetric diffusion

model, while it is low in the random diffusion model.
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Table 1: Segregation indices and infection fraction for a = 0.

Diffusion of E Epidemic models χ κ I.F.

ḡ = f̄ Homogeneous diffusion (5.1) 4.2595× 104 0.8256 0.5347

g = f Symmetric diffusion (1.5) 4.2640× 104 0.8284 0.5438

g = f Random diffusion (1.6) 5.8516× 103 0.6799 0.4607

ḡ = h̄ Homogeneous diffusion (5.1) 4.2596× 104 0.8257 0.5347

g = h Symmetric diffusion (1.5) 4.2560× 104 0.8253 0.5396

g = h Random diffusion (1.6) −5.1608× 103 0.5096 0.3941

According to Table 1, we can find there is no segregation phenomenon between suscepti-

bles and infectives including the exposed and the infected in the homogeneous and symmetric

diffusion models because of the positive χ, and the infection fraction is very close. For the

random diffusion model, there is a segregation phenomenon when g = h due to the negative

χ. In fact, there is also a segregation phenomenon between S and I in the random diffusion

model when g = f because χ(S, I) = −55.3406 and κ(S, I) = 0.6954. However, there is no

segregation between S and E. Therefore, the segregation when g = f is weaker than that

when g = h. The segregation in the random diffusion model when g = h may contribute to

the smallest infection.

Example 2. Segregation with a = 1.

The distribution of the steady state of the three diffusion models with the nonlocal

infection radius a = 1 is given in Fig. 4. Compared Fig. 4 with Fig. 3, when taking

nonlocal infection into consideration, the total number of susceptibles is increasing while

that of infectives including exposed and infected individuals is decreasing. Similar to Fig.

3, the homogeneous and symmetric diffusion models also have a similar distribution of the

steady state, while the random diffusion model still behaves rather differently. The different

distribution in different diffusion models at x = 3π
2
is also like Fig. 3.
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Fig. 4: The distribution of the steady state of epidemic models with homogeneous, symmet-

ric, and random diffusion when nonlocal infection radius a = 1.

Table 2: Segregation indices and infection fraction for a = 1.

Diffusion of E Epidemic models χ κ I.F.

ḡ = f̄ Homogeneous diffusion (5.1) 1.7941× 104 0.4364 0.4989

g = f Symmetric diffusion (1.5) 1.8131× 104 0.4485 0.5088

g = f Random diffusion (1.6) −2.5755× 104 0.2678 0.3828

ḡ = h̄ Homogeneous diffusion (5.1) 1.7935× 104 0.4362 0.4988

g = h Symmetric diffusion (1.5) 1.6876× 104 0.4371 0.4998

g = h Random diffusion (1.6) −7.0273× 104 0.4171 0.3046

It can be observed from Table 2 that there is no segregation phenomenon in the homoge-

neous and symmetric diffusion models because χ is positive in these two models, and there

is a segregation phenomenon in the random diffusion model for negative χ. Compared the

value of κ in the random diffusion model in Table 2 with that in Table 1, we can find κ gets

smaller when there is a nonlocal infection in the random diffusion model, indicating the seg-

regation is getting weaker. However, although the segregation driven by random diffusion is

poor, the infection fraction decreases. Meanwhile, the infection proportion is still the lowest
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in the random diffusion model with g = h.

Example 3. Segregation with a = 3.

Fig. 5 shows the solution distribution of the three diffusion models with the infection

radius a = 3. The symmetric diffusion model remains a similar distribution of the steady

state to the homogeneous diffusion model. With the infection radius increasing from 1 to

3, the total number of susceptible individuals is increasing abruptly in the random diffusion

model. There is also a slight increase of susceptibles in the homogeneous and symmetric

diffusion models. In addition, susceptible individuals gather at x = π where the infection

rate is the lowest. On the contrary, the total number of infectives is decreasing in the three

diffusion models.
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Fig. 5: The distribution of the steady state of epidemic models with homogeneous, symmet-

ric, and random diffusion when nonlocal infection radius a = 3.

By observing Table 3, a rather different phenomenon occurs with the increase of infection

radius: there is no segregation phenomenon in the random diffusion model while the segrega-

tion appears in the homogeneous and symmetric diffusion models. However, the segregation

is rather weak in the homogeneous and symmetric diffusion models because the value of κ

is close to zero.

38



Table 3: Segregation indices and infection fraction for a = 3.

Diffusion of E Epidemic models χ κ I.F.

ḡ = f̄ Homogeneous diffusion (5.1) −238.6669 0.0743 0.4151

g = f Symmetric diffusion (1.5) −1.6778× 103 0.0868 0.4280

g = f Random diffusion (1.6) 4.9305× 104 0.6609 0.2173

ḡ = h̄ Homogeneous diffusion (5.1) −189.4131 0.0741 0.4181

g = h Symmetric diffusion (1.5) −669.2330 0.0752 0.4166

g = h Random diffusion (1.6) 6.5154× 104 0.7441 0.1568

In view of the above three examples, it seems that the random diffusion model can

characterize individual movement more accurately based on the fact that the distribution

of the exposed group is similar to the susceptible group when g = f and similar to the

infected group when g = h. While the homogeneous and symmetric diffusion models never

display such characteristics. The Fokker-Planck law better captures the cognitive diffusion

of individuals. This may account for why the final infection size of infectives in the random

diffusion model is always smaller than that in the homogeneous and symmetric diffusion

models. Moreover, in the random diffusion model, if exposed individuals take the same

dispersal strategy as infected individuals, the final size is then smaller than that in the

case where exposed individuals take the same dispersal strategy as susceptible individuals.

Another interesting numerical result derived from the above three examples is that the

segregation phenomenon disappears in the random diffusion model while it appears in the

homogeneous or symmetric models, as the nonlocal infection radius increases.

Comparing the distribution of infectives in the symmetric diffusion model and random

diffusion model, different diffusion laws lead to distinguished distributions of infectives. At

x = 3π
2
, the recovery rate is low but the diffusion rate of infectives is high. We can find in

the symmetric diffusion model, the number of infectives around this position is very high,

but in the random diffusion model, the number of infectives is rather low. This gives rise to

two distinct cases, which should be examined further from observed reality.
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5.2 Nonpharmaceutical interventions

In this subsection, we explore the effects of nonpharmaceutical interventions by considering

the asymptotic behaviors of the EE of model (5.1) as ḡ → 0 or ḡ, h̄ → 0. In the literature

(Allen et al., 2008; Cui et al., 2017, 2021; Li et al., 2017, 2018, 2020), some systematic

methods were established to investigate the asymptotic properties of the EE on the basis

of compactness arguments, singular perturbation arguments, elliptic regularity theory, etc.,

for some reaction-diffusion epidemic models with frequency-dependent or bilinear incidence

mechanisms. Whereas, we give the asymptotic results of the EE numerically due to the

difficulties caused by the nonlocal infection. Here, we take h̄ = 10−6 or ḡ = h̄ = 10−6

to represent the movement restriction of infected individuals or both exposed and infected

individuals, respectively.
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Fig. 6: Nonpharmaceutical interventions on restricting the dispersal of infected individuals

or both exposed and infected individuals on the homogeneous diffusion model (5.1) with

different infection radii.

If only the movement of infected individuals is restricted, the distribution of susceptible,

exposed, and infected individuals in the steady state is illustrated in Fig. 6(a)-(c), where the

infection radius is taken as 0, 1, and 3, respectively. If the movement of both exposed and

infected individuals is restricted, the distribution is displayed in Fig. 6(d)-(f), where three

40



infection radii are also taken.

It follows from Fig. 6(a)-(c) that the number of susceptibles is expanding with the increase

of infection radius, by only restricting the movement of infected individuals. Meanwhile,

there is a slight decrease in the total number of exposed and infected groups. By observing

Fig. 6(d)-(f), we find that the infectious disease can be eliminated in a region by restricting

the movement of both exposed and infected individuals. Moreover, the region expands with

the increase of the infection radius. If the diffusivity of both exposed and infected individuals

is limited, though there is a disease-free region, infectives can aggregate at the position where

the recovery rate is the lowest. This aggregation phenomenon may neglect the fact that the

diffusion rates of infectives at this position are high in reality because the infectives will

escape from such areas to get sufficient medical treatment. In addition, such a position

moves to the right gradually with the increase of nonlocal infection radius.

Table 4: Segregation indices and infection fraction for nonpharmaceutical interventions.

Interventions on E and I Infection radius a χ κ I.F.

a = 0 5.7904× 104 0.8681 0.6079

h̄→ 0 a = 1 1.9814× 104 0.5788 0.5853

a = 3 −2.4250× 104 0.2996 0.5226

a = 0 −3.2819× 104 0.9000 0.6567

ḡ, h̄→ 0 a = 1 −1.2652× 105 0.7898 0.6843

a = 3 −2.3472× 105 0.7482 0.6525

It is evident that restricting the movement of infectives does not help decrease the in-

fection proportion by comparing the values of I.F. with those in Tables 1-4. When h̄ → 0,

the value of I.F. decreases with the increase of infection radius. When ḡ, h̄ → 0, there is

segregation in the three cases. It has stronger segregation when a = 0 than a = 1 by com-

paring the values of κ. Consequently, the infection fraction in the model without nonlocal

infection is lower than that in the model with infection radius a = 1. The values of κ are

close when a = 1 and a = 3, but the model with a bigger infection radius has a smaller

infection fraction.
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6 Discussion

In the present work, we applied Fick’s law and the Fokker-Planck law of diffusion to model

population movement in heterogeneous environments. By taking the perception concerning

the dispersal of individuals into consideration, two SEIR epidemic models with cognitive

diffusion were established and studied. Particularly, the diffusive behaviors of exposed indi-

viduals have been examined according to different dispersal strategies. If exposed individuals

have the perception that they may be infected, they adopt the same movement mechanism

as infected individuals. If they are not aware that they have been exposed in some high-risk

regions, their dispersal strategy goes with susceptible individuals. In addition, the two mod-

els include nonlocal infections between susceptibles and infectives, which can describe more

realistic disease transmission.

Theoretically, we obtained the well-posedness of solutions for the two SEIR epidemic

models with symmetric diffusion and random diffusion, which were given in Theorems 2.1

and 3.1, respectively. Then utilizing the next-generation operator approach, the basic re-

production numbers were established to study the threshold dynamics of the disease. It

is found that if the basic reproduction number is less than one, then the disease can be

extinct. The disease will prevail if the basic reproduction number is greater than one. The

threshold dynamics for the two models were established in Theorems 2.2 and 3.2, respec-

tively. Furthermore, a limit case was also considered in a homogeneous environment, in

which the nonlocal infection mechanism degenerates to the local infection mechanism (or

bilinear infection mechanism) by letting the infection radius tend to 0+. Global stability of

the DFE and EE was given in Theorem 4.1 by the Lyapunov functional method, which indi-

cates the uniqueness of the EE. However, in Theorem 2.2(ii) and 3.2(ii), we only recognized

the existence of the EE, failing to derive the uniqueness using the dynamical system theory

approach. It is still a challenge to prove the uniqueness of the EE for our reaction-diffusion

models with environmental heterogeneity. Moreover, we can only grant the implicit defini-

tion of basic reproduction numbers for models (1.5) and (1.6) by the spectral radius of the

next-generation operator in heterogeneous environments. However, the explicit formula of

basic reproduction was established for the locally infective model (4.1) in a homogeneous

environment.
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Wang et al. (2022) has investigated the effects of dispersal rates and favorableness of

the habitat on spatial segregation of susceptible and infected individuals in SIS epidemic

models. In our work, we further explored the effect of nonlocal infection on segregation in

SEIR epidemic models. Additionally, we conducted a comparative analysis of the efficacy

of spatial segregation and nonpharmaceutical interventions on epidemic dynamics. The

numerical findings are summarized below:

• The nonlocal infection has different impacts on spatial segregation in different diffusion

models. The segregation arises in the random diffusion model with a small nonlocal

infection radius and in the symmetric diffusion model with a large radius.

• The final infection size in the random diffusion model is significantly smaller than that

in the symmetric diffusion model. The infection fraction decreases as the nonlocal

infection radius increases in the homogeneous, symmetric, and random diffusion mod-

els. This finding is consistent with the observation in Liu et al. (2019), which can be

attributed to the diminishing infection strength as the infection radius increases.

• In the homogeneous and symmetric diffusion models, we observe a high density of

infected individuals around positions characterized by a low recovery rate and a high

diffusion rate. Conversely, the random diffusion model exhibits a lower density of

infectives in the same region.

• The distribution of the steady state of the model with homogeneous diffusion is always

similar to that with symmetric diffusion, whereas the model with random diffusion

behaves in a contrasting manner. The numerical illustrations in Wang et al. (2022)

also displayed these properties. It suggests that the homogeneous and symmetric

diffusion share more similar underlying mechanisms.

• Nonpharmaceutical interventions on restricting the dispersal of exposed and infected

individuals do not help to reduce the infection proportion but can effectively eliminate

the disease in a region. Additionally, such a disease-free region expands as the nonlocal

infection radius increases.

The numerical examples performed in section 5 provided some insights not only on dis-

ease control but also on epidemic modeling. The applicability of Fick’s law versus the
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Fokker-Planck law in modeling diffusion in heterogeneous environments has been a topic of

controversy in the literature. We obtained two distinct cases by the three numerical exam-

ples in subsection 5.1: in the random diffusion model, the distribution of the steady state

of exposed individuals closely resembles that of susceptible individuals if the dispersal func-

tion of exposed individuals is identical to that of susceptible individuals, while in the case

where the dispersal functions of exposed and infected individuals are identical, both exposed

and infected individuals also exhibit a similar distribution at the steady state. Neverthe-

less, the homogeneous and symmetric diffusion models never manifest this characteristic.

The Fokker-Planck law appears to better capture human diffusion patterns in our epidemic

models from this perspective. Notably, the infective density at a location characterized by

a low recovery rate and high diffusion rate in the symmetric diffusion model contradicts

that observed in the random diffusion model. In the symmetric diffusion model, the infec-

tive density is high at such a site, reflecting the low recovery rate, whereas, in the random

diffusion model, the density is low, corresponding to the high diffusion rate. Deciding the

most appropriate diffusion law becomes challenging when considering these inconsistencies.

It is an intriguing outcome deserving further investigation to shed light on its underlying

mechanisms. In contrasting Fick’s law with the Fokker-Planck type law of diffusion, it is

significant to note that the Fokker-Planck type includes an advection term. Employing data

fitting with real-world data is a viable approach to assess the significance of advection in

a specific infectious disease. This method can aid in selecting a more appropriate diffusion

type.

Plenty of infectious diseases such as influenza, brucellosis, measles, etc., exhibit dis-

cernible seasonal patterns, characterized by high transmission rates during specific seasons

of the year. For instance, the influenza virus tends to be more prevalent during winter or

spring months. Liu et al. (2019) found that the presence of seasonality has complicated

implications on the dynamics of the disease. Therefore, the consideration of the seasonal

variations in epidemic models is essential for ensuring accurate predictions of disease out-

breaks and the formulation of effective disease control strategies. However, the mathematical

complexity increases when incorporating periodic parameters like infection and recovery rates

into these models. Investigating the cognitive diffusion mechanisms in epidemic models that

incorporate seasonality deserves further exploration.
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