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Abstract

In this thesis, two Graphical User Interfaces (GUIs) are designed in MATLAB to perform

causality analysis and alarm management. Finding out the root-cause of a fault scenario

or an abnormality in a large industrial process typically requires one to logically analyze

cause and effect relationships between variables. Causality analysis can play a vital role to

capture process connectivity and topology and to identify relationships among the variables

in a process. The availability of large volumes of industrial process data has now opened

the way to develop data-driven methods for causality detection. In the first tool, different

techniques of data visualization along with three data-driven methods of causality analysis,

namely, cross-correlation, transfer entropy, and Granger causality, have been implemented.

Case studies are provided to illustrate the capture of process connectivity using both transfer

entropy and Granger causality methods.

Recent studies have shown that the number of alarms in process industries is far more

than the approved standards because of a very high number of false and nuisance alarms.

The large number of alarms distracts the operator from safe and regulatory monitoring

of the processes, which leads to plantwide upset and affects overall productivity of the

system. Therefore root cause identification of faults and alarm management have become

very important for process industries. The second tool for alarm management is proposed

where historic alarm data can be used to find out the top bad actors in the system. Also

functions for correlated alarms and similarity between different alarm flood analysis have

been implemented in the GUI for easier root cause identification.
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Chapter 1

Introduction

1.1 Process Industry and Causality Analysis

The economical development of an industrial plant depends on efficient operation of the

whole system. Recent research has led towards regulating more and more process variables.

As a result, a typical industrial process consists of thousands of sensors, actuators, and

control loops with wired or wireless communication networks. The process is itself is highly

interconnected via material flow paths. The complexity of the processes is increasing expo-

nentially along with the advancement of control systems as well as with the ever increasing

number of components of the system. A large industrial process consists of a number of

small units, interconnected together. As a result, faults may start from a small unit, prop-

agate through out the system, and eventually cause catastrophic consequences [1]-[2]. In

order to have increased productivity plus cost benefit and safety of the personnel and plant,

it is very important that fault detection schemes are prompt and efficient to identify faults

and that appropriate corrective action is taken as soon as possible when necessary. This

is very important to prevent plantwise upset and loss and especially to improve safety and

security of the personnel involved in the system. This is an important motivation for captur-

ing process connectivity and process topology to relate to the dynamics between variables

of the system which eventually allows one to find out the root cause of faults in the system.

The historical experience will help the operator to identify the exact location where spe-

cial attention is required and be ready should such a scenario be encountered again. Most

often, direct access or knowledge is not easily available on the dynamics of the physical pro-

cess underlying the system. It is even more complicated to capture the process connectivity
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from the Piping and Instrumentation Diagrams (P&IDs) for a large and complex process,

having a large number of process variables. Moreover, the captured topology from P&IDs

needs to be validated from the process data [1]. Causality analysis shows the information

transfer pathways in the system. Therefore, process connectivity is not equal to causality

[1]. The abundance of the industrial process data paves the way for data-driven methods for

causality analysis as there is plenty of historical data from industrial facilities [3]. Therefore,

causality analysis by data driven methods can play a very important role to identify the

root cause of a fault. There are some existing data-driven methods for causality analysis

with some advantages and disadvantages [3]. In this thesis a tool is designed in MATLAB

for data visualization of the process and to capture the process connectivity to identify the

root cause of faults in the system as well as data propagation paths. The tool provides

options for 3 kinds of data driven methods: 1) correlation analysis, 2) transfer entropy, and

3) Granger causality; which can be readily applied to the available loaded process data.

1.2 Alarm Management

Research over the last few decades has created a new generation of fault detection methods

and they are well applied in industry [4], [5], [6]. Recent introduction of Distributed Control

Systems (DCS) in the process industry has led the way to monitor thousands of process tags

and set alarms for many of the critical tags. A fault is detected in the system when a process

variable goes beyond its normal operating region. As soon as a fault is detected in the system

an alarm is sent to the operator for notification about the abnormal situation. Different

priorities are set for different variables depending on the impact of the variable on the

overall performance of the system. In the ideal case there should be only one alarm for each

fault in the system [7]. However, the practical scenario is completely opposite. Operators

receive far more alarms than they can effectively manage. Out of the total alarms that

an operator receives, many of them are either False or Nuisance alarms. For every single

alarm raised, the operator has to acknowledge, find out the significance of the alarm, and

take appropriate action. Too many alarms distracts the operator from the main focus point,

which may lead to a poor operating condition of the system [8]. The annunciation of a large

sequence of alarms due to a single event is known as an Alarm Flood. Generally speaking,
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an alarm flood is the condition when an operator receives more alarms than he/she can

effectively manage. The quantitative number varies from industry to industry as can be

found in [9]. Therefore, to reduce the total number of alarms as well as to ensure that the

operator is not getting more than necessary alarm per fault, alarm management is very

important. Several steps are required to design and obtain an efficient alarm management

scheme. High density alarm plots can play an important role in visualizing the number of

alarms in the system from historical alarm data [10]. Identification of correlated alarms

and proper analysis can help to identify the root cause of faults in the system [10]. The

chattering index plays an important role and proper rationalization of chattering tags can

reduce the number of alarms in the system significantly [11]. Detection of alarm floods and

identifying similar floods plays a vital role to find out the top bad actors and disturbance

propagation paths [12]. In this thesis a tool is proposed where historical alarm data can be

loaded and the necessary analysis for alarm management can be performed.

1.3 Graphical User Interface (GUI)

A Graphical User Interface (GUI) uses graphics object and interface components to create

a tool that can be used interactively. GUIs can help reduce the necessary effort to do a

repetitive task. From an industrial view point GUIs deliver a great deal of comfort and

ease of use of the tools without compromising the analysis. GUIs support data loading

and analysis by creating a suitable program for the necessary analytical task. GUIs can be

developed using many types of softwares, e.g., MATLAB, Visual Basic, C, C++ and so on.

In this thesis two GUIs are proposed: one for multivariate process data visualization and

causality analysis named MDAtool and another one for industrial alarm management from

alarm data named alarm tool. Both tools are designed using MATLAB. There are certain

advantages of using MATLAB for designing GUIs [13]:

• High level script based development,

• Independent of operating system,

• User interactivity and real time measurements,

• Tremendous computational capability with the power of MATLAB.
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MATLAB GUIs provide the following architectural components, function, and tools:

• Handle graphics objects,

• Figure, axes, and uicontrol,

• Mouse/keyboard input,

• Use of global variables in all functions,

• Standalone executable GUI outside MATLAB.

In this thesis all the above mentioned features are used extensively.

1.4 Literature Review

Causality analysis and alarm management for process industries are relatively new area of

research. The idea of causality analysis was first introduced by Granger in 1969 in the field of

Economics [14]. According to Granger, a variable ‘X’ Granger causes the other variable ‘Y’ if

incorporating the past values of ‘X’ helps better predict the future of ‘Y’ than incorporating

the past values of ‘Y’ alone [14]. Causality analysis using Granger causality has been used

extensively in the field of Economics and Neuroscience. Since Granger causality is based

on cross-spectral methods, it assumes that data is linear which is not the case in reality [3].

Further research on Granger causality has led to the method which can handle non linear

data and it can identify causal structure in the neurons [15]. A tool has been developed in

the Neuroscience area using Granger causality to capture the connectivity in the neurons

[16]. Direct and indirect connectivity of neurons using spectral based methods have also

been investigated [17].

Research on root cause identification of faults for process industries started a long time

ago. Initially signed directed graph based methods were used to identify the direction of fault

propagation [18], [1]. Spectral based methods have not been used to capture the connectivity

of process industries. Research on model free method to capture the connectivity other than

spectral based methods has paved the way for a new method known as transfer entropy.

Transfer entropy is a model free method [19] and it has been proven to be very effective in

capturing connectivity from process data [20], [21]. This method is also used for capturing
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the connectivity of neurons [22]. Calculation of transfer entropy is based on probability

density functions and hence the computational burden increases along with the size of data

[1]. So far, to the best of the author’s knowledge no tool has been developed for process

industries to capture the process connectivity and identify the root cause of faults.

The Abnormal Situation Management (ASM) Consortium [23] reports that, once every

three years petrochemical plants on average suffer from a major accident. The ISA 18.2

standard says that, there should be no more than 10 alarms over a 10 minutes time slot

[24]. But according to [9], currently process industries have a much higher number of alarms

than they can effectively manage. Extensive research is in progress to efficiently manage

the alarm system of process industry. [7] and [8] discuss different performance measures of

the alarm system, e.g., false alarm rate, missed alarm rate, detection delay and deadband.

A very effective and efficient method on industrial alarm data representation is used in

[10] using the high density alarm plot. Jaccard similarity coefficient is also used in [10]

to identify the correlated alarms. A chattering index to identify the nuisance alarms in

the system based on run length distribution is proposed in [11]. Plant wide upsets and

alarm floods are discussed in [12]. Alarm burst plots are used to show the instants of alarm

floods in the system. Also two methods are proposed in [12] to show similar alarm flood

sequences. But so far no tool has been developed for the analysis of historical alarm data to

prevent future upset in the plant. Efficient design of alarm management depends on proper

identification of bad actors in the system. This thesis proposes a new tool designed to use

historical alarm data to detect the top bad actors in the system and show correlated alarms

in the system as well as the similar flood sequences.

1.5 Scope and Organization

1.5.1 Scope

Causality analysis and alarm management for process industries are very new areas of

research. So far no tool has developed either for causality analysis to show process topology

based on historical process data or for alarm management to identify and reduce the number

of nuisance and false alarms.

This thesis proposes a new tool for industries to visualize multivariate process data and

5



perform causality analysis. Several methods for causality analysis are incorporated together

to get a better understanding on the underlying process topology and process connectivity

based on historic process data. The core goal is to identify root cause of faults in the system.

This thesis also combines methodology to identify correlated alarms on the system,

detect the top bad actors, and show similar flood events in the system. Combining these

two tools will help the researcher and/or practitioner to sort the most important tags of

the system that require utmost attention. Combining process knowledge and results of

alarm data analysis can also be useful in identifying the root cause of faults in the system.

Once the important tags are identified, later when alarm flood occurs on the system the

operators can focus on those tags so that plantwise upsets do not occur and productivity is

not hampered.

1.5.2 Organization

This thesis first describes the data based methods of causality analysis. Different aspects

of such different methods are discussed in Chapter 2. The tool for causality analysis is

presented in Chapter 3. The tool for alarm management or alarm analysis is described in

Chapter 4. Chapter 5 shows industrial case studies to justify the importance of the tools

followed by concluding remarks and future scopes in Chapter 6.
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Chapter 2

Causality Analysis based on
Process Data

Causality analysis from historical process data is discussed in this chapter. Correlation

analysis can find out the correlated tags in the system but it suffers from the problem that

data has to be linear for successful analysis [1]. Transfer entropy, a model free method can

handle non linear data and can be very effective for causality analysis [19]. Cross spectral

based methods such as Granger causality have been very effective for causality analysis in

the field of Neuroscience [15]. For causality analysis all these methods are implemented in

the tool with numerous functionality. The cross correlation method is described in Chapter

3. In this chapter the theoretical aspects of transfer entropy and Granger causality method

are discussed in more detail.

2.1 Transfer Entropy

For two process variables with sampling interval of τ , xi = [xi, xi−τ , · · · , xi−(k−1)τ ] and

yi = [yi, yi−τ , · · · , yi−(l−1)τ ], transfer entropy from y to x is defined as follows [25]:

t(x|y) =
∑

xi+h,xi,yi

p(xi+h,xi,yi) · log
p(xi+h|xi,yi)
p(xi+h|xi)

, (2.1)

where p denotes the probability density function (PDF) and h is the prediction horizon.

Non parametric methods, e.g., kernel method can be used to estimate the PDF [26]. The

Gaussian kernel function is used to estimate the PDF [1] which is defined as follows:

K(v) =
1√
2π
e−

1
2
v2 . (2.2)
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Therefore, a univariate PDF can be estimated by,

p̂(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
, (2.3)

where N is the number of samples, h is the bandwidth chosen to minimize the error of

estimated PDF. h is calculated by h = c · σ ·N−
1
5 where c = (4/3)1/5 ≈ 1.06 according to

“normal reference rule-of-thumb” approach [27]. For a q-dimensional multivariate case the

estimated PDF is given by [1]:

p̂(x1, x2, · · · , xq) =
1

Nh1 · · ·hq

N∑
i=1

K

(
x1 − xi1
h1

)
· · ·K

(
xq − xiq
hq

)
, (2.4)

where hs = c · σ (xis)
N
i=1 ·N−1/(4+q) for s = 1, · · · , q.

Transfer entropy represents the measure of information transfer from y to x by measuring

the reduction of uncertainty while assuming predictability [19]. It is defined as the difference

between the information about a future observation of x obtained from the simultaneous

observation of past values of both x and y, and the information about the future of x

obtained from the past of x alone. In [1] it is shown that the parameter values can be

chosen as: τ = h ≤ 4, k = 0, and l = 1. In the tool τ = h = 2 is used.

Using the above definitions, direction and amount of information transfer from x to y

is as follows:

t(x→ y) = t(y|x)− t(x|y). (2.5)

If t(x→ y) is negative then information is transferred from y to x.

The advantage of using transfer entropy is that it is a model free method and can

be applied to non linear data. It has already been proved to be very effective in capturing

process topology and process connectivity. But it suffers from a large computational burden

due to the calculation of the PDFs. In this thesis while implementing transfer entropy for

process data, a pairwise analysis is performed. The results of transfer entropy method are

shown in Chapter 3 while discussing the tool as well as in the case studies.

2.2 Granger Causality

The concept of Granger causality was first introduced by C.W.J. Granger in 1969 [14].

According to Granger, x2 causes x1 if the inclusion of past observations of x2 reduces the
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prediction error of x1 in a linear regression model of x1 and x2, as compared to a model

which includes only previous observations of x1. Two covariance stationary time series

signals x1(t) and x2(t) of length T can be described by an autoregressive (AR) model as

follows:

x1(t) =

p∑
j=1

A11,jx1(t− j) +

p∑
j=1

A12,jx2(t− j) + ξ1(t) (2.6)

x2(t) =

p∑
j=1

A21,jx1(t− j) +

p∑
j=1

A22,jx2(t− j) + ξ2(t), (2.7)

where p is the amount of lag considered and p < T , A’s are the coefficients, and ξ’s represent

the prediction error. If the inclusion of x2 reduces ξ1 then x2 Granger causes x1 and vice

versa. The magnitude of interaction is measured as follows:

F2→1 = ln
varξ1R(12)

var(ξ1U )
, (2.8)

where ξ1R(12) is obtained by omitting A12,j (for all j) and ξ1U is obtained from the complete

model. It is assumed that data can be represented by an AR model. The A parameters

are calculated using least square method. One important parameter while estimating the

AR model is the model order p. A small p can lead to poor estimation while a large p can

lead to the problem of model estimation [15]. Two criteria are used to determine the model

order namely, Akaike Information criterion (AIC) [28] and Bayesian Information criterion

(BIC) [29]. For n variables model orders, AIC and BIC are given as follows:

AIC(p) = ln(det(Σ)) +
2pn2

T
, (2.9)

BIC(p) = ln(det(Σ)) +
ln(T )pn2

T
, (2.10)

where Σ represents the noise covariance matrix. A time domain Granger causality is sig-

nificant if Aij ’s are jointly significant or large relative to 0. This is done using an F-test on

the null hypothesis that Aij ’s are 0 [14]. The tests are corrected using Bonferroni correction

where a threshold of α/n(n − 1) is used. The value of α is taken from the user in tool.

A lower value of α yields better results. However, the computational time increases with

decreasing value of α. Typically α is chosen as 0.01 or 0.005.
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In the tool frequency domain Granger causality is also implemented. The Fourier trans-

form of 2.6 and 2.7 is as follows:(
A11(f) A12(f)
A21(f) A22(f)

)(
X1(f)
X2(f)

)
=

(
E1(f)
E2(f)

)
, (2.11)

where components ofA areAlm(f) = δlm−
∑p

j=1Alm(j)e(−i2πfj) and δlm =

{
0, when l = m
1, when l 6= m

.

From 2.11 it can be shown that,(
X1(f)
X2(f)

)
=

(
H11(f) H12(f)
H21(f) H22(f)

)(
E1(f)
E2(f)

)
, (2.12)

where

(
H11(f) H12(f)
H21(f) H22(f)

)
=

(
A11(f) A12(f)
A21(f) A22(f)

)−1
is called the transfer matrix. The spec-

tral matrix is given as follows [15]:

S(f) = 〈X(f)X∗(f)〉 = 〈H(f)ΣH∗(f)〉 , (2.13)

where ∗ represents the complex conjugate transpose. If Sii(f) is the power spectrum variable

i at frequency f then spectral Granger causality from j to i is given as following:

Ij→i(f) = − ln

1−

(
Σjj −

(
Σ2
ij/Σii

))
|Hij(f)|2

Sii(f)

 . (2.14)

While calculating frequency domain Granger causality, two parameters are taken from the

user for the calculation of Fourier coefficients: sampling frequency and maximum frequency

to analyze.

Both time domain and frequency domain Granger causality methods are implemented

in the tool. Usage of this method is shown in Chapter 3 and in Chapter 5 via application

on case studies. This method has been proved to be very effective in capturing process

connectivity and process topology. Since this method is based on AR models, for highly

nonlinear data sometimes it cannot identify the causal direction and in addition to this the

estimated model order may be much higher than the original system.

2.3 Summary

In this chapter theoretical aspects of transfer entropy method and Granger causality method

are discussed. Both these methods can be very effective to find the causal pathways and to
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identify the root cause of faults from the obtained process connectivity. Both the methods

have certain advantages and disadvantages. However, it is not very easy to say which method

is better. The obtained process connectivity from both methods needs to be validated from

the Piping and Instrumentation Diagrams (P&IDs) [1], [16].
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Chapter 3

Graphical User Interface (GUI) for
Causality Analysis

This chapter discusses the Multivariate Data Analysis Tool (MDAtool) designed for data

visualization and causality analysis. The MDAtool is designed in MATLAB. It can be run

from MATLAB or run as a standalone application outside MATLAB. The tool is designed

using MATLAB 7.9.0 (R2009b) and it is compatible with version 7 and later. The MDAtool

runs on all operating systems. If the user wants to run the tool from MATLAB, the user

has to make sure that the folder named “MDAtool” is located in the current directory of

MATLAB. To avoid the hassle of changing the current directory every time the user runs

MATLAB, one can save the path of the tool as follows: File -> Set Path -> Add Folder ->

Select ‘‘MDAtool’’ -> Ok -> Save -> Close. Once the directory is able to locate the file,

the tool will start by entering MDAtool in the command window of MATLAB. If the user de-

cides to run the tool outside MATLAB, one can simply run the application “MDAtool.exe”.

But it is mandatory that MATLAB has to be installed in the system.

The main interface of the MDAtool is shown in Figure 3.1. The user can get the

necessary information about running the tool just by clicking on the “Info” button located

in the toolbar as shown in the red box of Figure 3.1. A sample file can be observed by

clicking on the “Show Sample Data” button as shown in the green box of Figure 3.1. This

sample file provides information about the format of the data saved in MS Excel. Necessary

information about the data saved in other formats are provided in section 3.1. It is worth

mentioning that all the plots come with a user friendly feature that whenever the user clicks

on any plot, it would pop up and open in a new figure window. Moreover the tool provides
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Figure 3.1: Outline of the MDAtool GUI

standard supports for the figures, e.g., Zoom-in, Zoom-out, Pan, Rotate 3D, Data cursor,

and Colorbar.

Left Pump Right PumpReservoir
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Tank
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Tank

Lower
Right
Tank

LT

LT

LT
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Figure 3.2: Experimental setup of the 4 - tank system

Features of the MDAtool are described based on the data obtained from the experiments

performed on a 4 - tank system. The schematic of the 4-tank system is shown in Figure 3.2

where the arrows represent the direction of water flow. The left pump supplies water to the

lower left tank and the upper right tank. On the other hand the right pump delivers water
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Figure 3.3: Dialogue box for selecting files to load process data

to the lower right tank and the upper left tank. In this experiment the goal is to control

the levels of the lower two tanks using the right pump only. The flow from both pumps

and levels of all the four tanks are the variables of interest and they are recorded for 1 hour

at a sampling rate of 1 second. The data obtained from the experiment is loaded in the

tool. The detailed functionalities of all the functions implemented in the tool are described

below.

3.1 Data Loading

Process data saved in .xls, .xlsx, .mat, and .txt format can be loaded in the tool by clicking

on the “Load Data” button or selecting File -> Load Data or pressing Ctrl + L. This will

bring up the File Selector as shown in Figure 3.3 which is a standard operating system file

selector dialogue box. The file the user wants to load can be located in any directory of the

computer and browsed from the dialogue box. The tool does not require that the file must

be saved in the current directory. Necessary file formats can be chosen from Files of Type

located at the bottom the dialogue box.

If the process data is saved in either .xls or .txt format then the tag names must be

in the first row and corresponding data needs to be arranged columnwise. The date/time

information is optional but if it is there then the tool requires that they are placed in the

first column. Even if the date/time is not there, the {1,1} position must not be empty.

14



Figure 3.4: Dialog box appearing after loading the data when the file contains some empty
spaces which might produce wrong results and the actions performed by the corresponding
buttons

If the user wants to load .mat data then the process data must be arranged columnwise

as done for .xls files. The tag names and date/time information are not needed. The tool

uses the tag names given in the loaded process data. But the user must know the variable

name which was used to save the .mat file. When the tool asks for it the user has to provide

the name of the variable.

Sometimes it happens that there are some empty spaces in the process data which are

read as “NaN” (Not a Number) in MATLAB and they might produce wrong results. In order

to avoid this problem while loading data, the toolbox checks for such empty spaces and a

message box as shown in Figure 3.4 pops up if there are any empty spaces in the data.

If the user selects “Proceed Anyway” then the data would be kept as it is and if the user

selects “Correct it” then the corresponding samples of all the variables would be removed.

3.2 Data Preprocessing

By clicking on the “Preprocess Data” button in the main interface the user has the option

to remove outliers from the data, detrend and zero-mean centre the data, filter the data, and

normalize the data. The user can select more than one option at a time. Figure 3.5 shows

the corresponding dialogue box for data preprocessing. It is worth mentioning that when

one option is selected, it is applied to all the tags present in the data. The functionalities

of each function is described below:
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Figure 3.5: Data preprocessing interface of the MDAtool which comes with the options for
outlier removal, detrending, demeaning, filtering, and/or normalizing the data

3.2.1 Remove Outliers

An outlier is an observation in a series of data which is numerically at a far distance from

the rest of the data [30]. According to Grubbs, “An outlying observation, or outlier, is one

that appears to deviate markedly from other members of the sample in which it occurs” [31].

Outliers can be present in the data because of some unwanted disturbances, noise or any

other factor and most importantly it is not a part of the normal data. It has also been

observed that sometimes because of the presence of outlier in the data, some misleading

results are obtained. Therefore, the option for outlier removal is kept in the tool and if the

user needs to remove the outliers, that can be done simply by checking on this function. In

this tool, Grubbs’ Test [31] for detecting the outliers is performed and they are replaced by

the mean value of the normal part of the data. For a variable xi; i = 1, 2, · · · , N ; where N

is the number of samples, the Grubbs’ Test statistic is defined as follows:

G =
max | xi − x̄ |

s
, (3.1)

where, x̄ and s represent the mean and standard deviation of x. For the test of detecting

outliers, the hypothesis of no outliers is rejected if

G >
(N − 1)√

N

√
1

N − 2 + (tα/(2N),N−2)2
, (3.2)

where (tα/(2N),N−2)
2 denotes the critical value of the t-distribution with (N − 2) degrees of

freedom and a significance level of α/(2N).
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3.2.2 Detrend and Demean Data

This optional function provides the option to the user to remove any linear trend present

in the data (detrend) and remove the mean value of the data (demean) so that the user has

a dataset which has zero mean and no linear trend. It has been observed that presence of

any trend in the data might produce wrong results and that data scaling is very important

especially for methods which require that the data can be modeled by linear processes e.g.

Granger causality [17].

3.2.3 Filter Data

In the tool an option is provided for filtering the data using a moving average filter which is

a low pass filter or a finite impulse response filter. While filtering the data the user needs to

set the window length which is required for the filtering operation. Filtering the data will

remove the high frequency components present in the data or in other words it will remove

a portion of the high frequency noise from the data.

3.2.4 Normalize Data

Some causality detection methods, e.g., Granger causality [16], require that data should be

normalized. This function normalizes all the variables present in the loaded file between 0

and 1. It may be mentioned that even if the user does not normalize the data using this

feature, before performing Granger causality analysis default data normalization is carried

out so that accurate results are obtained. For a tag x, the normalized version xnormalized is

as follows:

xnormalized =
x−min(x)

| max(x)−min(x) |
. (3.3)

3.3 Time Trend

The MDAtool comes with several options for data visualization and among them the first

one is time trend. When the user clicks the “Time Trend” button, then a dialogue box

“Time Options” pops up and provides the user all the tag names as can be seen in Figure

3.6. From there, one can select as many tags as possible and plot them by clicking on “Plot

Selected” or all the tags by clicking on “Plot All” to be plotted. While plotting the tags,
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Figure 3.6: Dialogue box that appears upon clicking on “ Time Trend” where the user can
choose to plot any number of interested tags or all of them present in the data

Figure 3.7: Time trend of 3 selected tags from Figure 3.6

the real values of the selected tag(s) are shown in terms of the number of samples. Figure

3.7 shows the time trends of 3 selected tags namely Right Pump Flow, Upper Left Level,

and Lower Right Level. Legends are used for the purpose of better visualization. It may be

mentioned that the toolbox can handle effectively at most 50 tags at a time. If the loaded

process data contains more than 50 tags then all the tag names would not be displayed.

But it is still possible to see the time trend of all the tags by clicking on “Plot All”.
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Figure 3.8: Frequency response of 3 selected tags

3.4 Frequency Response

The next available option for data visualization with the MDAtool is in frequency domain

to show the user the frequency response of the tags of interest(s). When the “Frequency

Response (fft)” button is clicked a dialogue box named “Freq Options”, similar to the

“Time Options” appears where all the tag names are provided. The user has the liberty to

plot frequency response of the tag(s) of interest by clicking on “Plot Selected” after checking

on the tag names. The user can also select “Plot All” to see the frequency response of all the

tags. The frequency response of the corresponding tag is calculated by performing Fourier

Transform according to

X(f) =

n∑
k=1

x(k)ω
(k−1)(f−1)
N , (3.4)

where x(t) is a time-domain signal, X(f) is its corresponding frequency-domain signal, N

is the total number of samples, and ωN = e−2πi/N is an N th root of unity. Figure 3.8 shows

the frequency response of 3 selected tags.
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Figure 3.9: Power Spectral Density (PSD) of a selected tag, Right Pump Flow

3.5 Power Spectral Density

Another data visualization option in the frequency domain is provided with the button

named “Power Spectral Density (PSD)”. Same as the previous data visualization op-

tions, the user can choose to plot the PSD of all the tags or a chosen number of tag(s). The

PSD of a tag xk; k = 1, 2, · · · , N ; where N is the number of samples, at any frequency ω is

calculated as follows:

S(ejω) =
1

N
|
N∑
k=1

x(k)e(−jωk)|2. (3.5)

The PSD provides the information on how much power in dB a selected tag has in the

normalized frequency. The options are similar to the options shown in Section 3.3. Figure

3.9 shows the PSD of the selected tag “Right Pump Flow”. If the user selects multiple tags

or all the tags then the corresponding PSD of individual tags overlap with each other and it

is not easy to infer information from there. Therefore, it is recommended to plot the PSD

of individual tags to avoid confusion and better understanding of the results.
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Figure 3.10: Spectrogram of a selected tag, Right Pump Flow

3.6 Spectrogram

The last option for data visualization in the frequency domain is the spectrogram. When

the user clicks on the “Spectrogram” button, the tool shows the variation in the spectral

components of a tag with respect to time as calculated using the following:

X(m,ω) =

∞∑
k=−∞

x(k)w(k −m)e−jωk, (3.6)

where w represents the window size. The user has the option to plot the spectrogram of

all the tags or tags of interest similar to 3.3. Figure 3.10 shows the spectrogram of the tag

“Right Pump Flow”. If the user selects multiple tags or all the tags then the corresponding

spectrogram of individual tags overlap with each other and it is next to impossible to get

the results from there. Therefore, it is recommended to plot the spectrogram of individual

tags to avoid confusion and better understanding of the results.

3.7 High Density Plot

High density plots are used to show the behavior of the tags present in the process data at

a glance. These plots are highly useful to show a huge amount of data in a small area and
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Figure 3.11: High density time trends

contain a good amount information about the overall system or the tags in the process data.

From this plot the user can have an idea about the trend of the variables present in the file

and how they are changing. Moreover a rough idea of the similarities and dissimilarities of

one variable with other(s) can be obtained from the high density plot. Each row in the high

density plot represents a tag and the results are normalized before plotting. Three types of

high density plots are implemented in the MDAtool. Out of these three kinds, one is in the

time domain and the other two are in the frequency domain. They are discussed below:

3.7.1 High Density Time Trend

When the user clicks on the “Time Trend” button in high density plot screen, then the

time trend of all normalized tags is plotted. Individual tags are normalized using the formula

given in 3.3. So the normalized values range from -1 to +1. All the normalized tags are

placed along the rows and then they are plotted so that there is no overlap with each other.

The user gets a complete idea of the behavior of all the tags for the whole duration as well

as a rough knowledge of relationship regarding the causal relationships among the tags.

Figure 3.11 shows the high density time trend of all the tags of interest for the experiment

performed on the 4-tank system. Now the variation in the tank levels with pump flows are

22



Figure 3.12: High density frequency response

much more evident than it was in Figure 3.7. This is due to fact that in “Time Trend” the

original values are used to plot the time response where the units may be different and one

tag may have a higher range or value compared to another and vice versa. On the other

hand for “High Density Time Trend” normalized values are used and the values of all the

tags have the same range which provides a better visualization.

3.7.2 High Density Frequency Trend

“Frequency Trend” under high density plots shows the normalized frequency response of

all the tags. This function first performs the FFT using the similar formulation as in Section

3.4 and then normalizes the Fourier coefficients using the maximum coefficient. Therefore

they are ranged between 0 and 1. The plotting principle is same as subsection 3.7.1. Figure

3.12 shows the high density frequency response of all the tags.

3.7.3 High Density Spectral Plot

The last option under high density plot is “Spectral Plot (PSD)” which shows the

normalized PSD calculated in Section 3.5. The plotting principal is same as subsection

3.7.1. Figure 3.13 shows the high density spectral plot of all the tags.
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Figure 3.13: High density spectral plot

3.8 Correlation Color Map

Cross-correlation finds the similarity or dissimilarity between two time-series signals. In this

tool, the “Correlation Colormap” button provides the user two options to graphically

display the correlation among all the variables present in the input file in terms of a colormap

and colorbar: 1) Considering no lag, and 2) Considering lag. It is important to note over

here that while calculating the correlation coefficient pairwise calculation is performed.

3.8.1 Considering No Lag

“Considering No Lag” calculates the cross-correlation coefficients between two time series

signals considering the fact that there is no time delay between them. For two time series

signals x and y, the cross-correlation coefficient is defined as follows:

ρx,y =
cov(x, y)

σxσy
=
E[x− µx]E[y − µy]

σxσy
, (3.7)

where µx, µy are the means and σx, σy are the standard deviations of x and y respectively.

Figure 3.14 shows the cross-correlation among the variables considering no time lag between

them. Evidently the colormap is symmetric due to the fact that ρx,y = ρy,x. Along the

diagonal the correlation coefficient is always going to be one since it is the correlation of
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Figure 3.14: Correlation colormap among the variables considering no lag

a variable with itself. Moreover, while plotting the colormap discrete colors are used to

distinguish the level of correlation. It is evident from Figure 3.14 that Lower Right and

Upper Left Levels are highly correlated with each other. Moreover, they are also correlated

with Lower Left Level to a lesser extent.

3.8.2 Considering Lag

On the other hand, “Considering Lag” assumes that there is a lag between two time-series

signals. While performing correlation analysis it is very important to consider the effect

of lag between two time series signals. It is because of the fact that the affected variable

can be far away from the affecting variable or there might be some intermediate variables

present in between them. Most often there is always some time lag between two variables

in real process data. To eliminate the effect of time delay different time lags are assumed

and maximum correlation coefficient is computed and it is known as the real coefficient [1],

[2], [20].

If x and y are two process variables with mean µx, µy and standard deviation σx, σy,
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then with a lag of k on y the correlation coefficient is defined as follows:

φxy(k) =
E[(xi − µx)(yi+k − µy)]

σxσy
, k = −n+ 1, · · · , n− 1. (3.8)

The expectation can be estimated as follows:

φ̂xy(k) =

{
1

n−k
∑n−k

i=1 (xi − µx)(yi+k − µy)/σxσy, if k ≥ 0,
1

n−k
∑n

i=1−k(xi − µx)(yi+k − µy)/σxσy, if k < 0.
(3.9)

The correlation coefficient is obtained by considering a fixed time lag for one variable com-

pared with the other one. Therefore it may be considered that the absolute maximum value

is the real correlation coefficient and the corresponding lag is the time difference between

the two variables. If φmax = maxk
{
φxy(k), 0

}
≥ 0, φmin = mink

{
φxy(k), 0

}
≤ 0, and kmax

and kmin are the corresponding arguments then the estimated time delay from x to y is as

follows:

λ =

{
kmax, if φmax ≥ −φmin,
kmin, if φmax < −φmin.

(3.10)

Therefore the actual correlation is ρ = φxy(λ). The sign of ρ indicates whether the corre-

Figure 3.15: Lag adjusted correlation colormap between the variables

lation is positive or negative. If the sign of λ is negative then the delay is from y to x. It

is important to note over here that this directionality does not necessarily mean causality

since there might be other causes which led to this correlation [1].
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Figure 3.16: Options provided for parallel coordinate plot (PCP)

Figure 3.15 shows the correlation colormap among the variable after taking the effect

of lag into consideration. As can be seen in Figure 3.15 compared to Figure 3.14 that

Lower Right Level, Upper Left Level, Lower Left Level, and Right Pump Flow are highly

correlated with each other. From the experimental setup it is also known that the 4-tank

system is a highly correlated system and according to the control view point the results of

lag adjusted correlation analysis is more accurate than that of considering no lag. In the

real process industries it is impossible to have two tags with no time delay between them

as it takes a certain amount of time for information transfer.

It is noteworthy to mention that since cross-correlation is a statistical measure, it is

prone to noise, disturbance, and data length. Moreover, non-linear causal relationships do

not necessarily show up using this method [1].

3.9 Parallel Coordinate Plot

The parallel coordinate plot (PCP) is a graphical method of plotting multivariate data

obtained without any calculation and is being used extensively for causality analysis [32],

[33], [34]. In the parallel coordinate plot the variables are placed horizontally and the values

of the variables are placed vertically in the corresponding axis. The GUI tool comes with

several options of visualizing the PCP of a multivariate process data, as shown in Figure

3.16. They are discussed in details below.
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3.9.1 Linear Parallel Coordinate Plot

The linear parallel coordinate plot plots the multivariate process data in the linear plane.

The plots are explained below.

(a) (b)

Figure 3.17: Simple linear PCP: (a) using real values, (b) using normalized values

Figure 3.17(a) shows a simple PCP of the experiment performed on the 4-tank system

which can be obtained by clicking on “Plot using real values”. While plotting the simple

PCP original values of the variables are used. Since the flow rates are much higher than

the tank levels, it is not very easy to infer much information for the tank levels from there.

That is why another option named “Plot using normalized values” is implemented in the

tool so that the user can have a better understanding of the dataset. Figure 3.17(b) shows

the PCP plotted using the normalized values of all the variables. Since the data is now

normalized all the variables now have the same scale and provides a better understanding.

On the other hand, if a dataset is formed using a large of number of samples for all the

variables, it is very hard to identify the impact of one variable on other since only one color

is used for Figure 3.17. To have much more information from the PCP, another option

Figure 3.18: Dialogue box where the user can choose a variable and its normal operating
region
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Figure 3.19: PCP with diferent colors showing the normal data, abnormal low data, and
abnormal high data based on the Right Pump Flow

“Plot using different colors” is provided. For PCP with different colors one dialogue box

is provided as shown in Figure 3.18 where the user has to select the variable and see the

impact of that variable on others by defining its normal region. The normal data is defined

by the user as mean ± c × standarddeviation of the selected tag and the value of c must

be provided. In Figure 3.19 the chosen variable is “Right pump flow” and c is taken as 2.

Abnormal high values shown in red represent the values higher than the defined normal

range whereas Abnormal low values shown in green represent the opposite. As can be seen

the user can now have an idea of the effects of higher values or lower values of the selected

tag on the other tags, e.g., the higher values of flow rates increases the tank levels as can

be seen from Figure 3.19. It should be mentioned that the user has the freedom to choose

any tag of the input file and can choose the normal range of data based on the process

knowledge and original values of the variables are used.

So far the user did not get any option to place two tags of interest side-by-side. When

the user clocks on “More Options” Figure 3.20 appears. Now any tag(s) can be chosen from

the drop down menu to place them side-by-side. Along with PCP on the top a scatter plot

on the bottom of the chosen tag(s) are shown from which the user can select a range of
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Figure 3.20: Dialogue box providing option to plot two tags side-by-side in PCP and see
the impact of one variable on the other by selecting a range of data from the scatter plot

data to see the impact of that particular region of data on the other tag(s) and vice versa.

3.9.2 Polar Parallel Coordinate Plot

The last but not the least option for PCP is the polar PCP where data is plotted in polar

domain. The user can infer the timing information from here as well, since the older values

are plotted using the darker color (black) and the newer values are plotted using the lighter

color (white) as can be seen in Figure 3.21. The Polar PCP shows the user a normal range

of data defined as mean ± 2 × σ in the Grey zone in the middle where σ is the standard

deviation. If the data is lies beyond 2σ but below 3σ then it is plotted in the Yellow region.

And if the data goes beyond 3σ then the Red region is used. Also using PCP the user can

see the transition of the data which gives a better understanding of the process. It is worth

mentioning that Polar PCP takes a lot of time to generate. A warning message is given

to user before starting of the application. Upon approval the process starts and can be

interrupted anytime simply by pressing Ctrl+C on the keyboard.

3.10 Transfer Entropy

The theoretical background behind transfer entropy is discussed in Section 2.1. In this

section only the part related with the MDAtool will be discussed. The parameter values

for calculating transfer entropy are chosen as, k = 0, l = 2, h = 1, and τ = 1. Results of

transfer entropy can be obtained simply by clicking on “Transfer Entropy Calculator”.
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Figure 3.21: Polar PCP where darker color represent the initial values and lighter color
represent the final values

Calculation of transfer entropy may take a long period of time to process. That is why a

warning message is given to the user before processing. Upon approval from the user the

process begins and the results are shown in the form of colormap and connectivity diagram.

In the colormap a colorbar is used to show the strength of the connectivity between the two

variables. Directed connections are shown using a Arrowed Green Line to show the direction

of causal flow. Red Lines are used to show the feedback or bidirectional connectivity between

the variables. It is noteworthy to mention that pairwise analysis is performed. Direct or

indirect causality is not considered in this thesis.

The results of transfer entropy method for the experiment on the 4-tank system using a

colormap is shown in Figure 3.22(a) and the corresponding connectivity diagram is shown

in Figure 3.22(b). As can be inferred from Figure 3.22, there is no relationship between the

flow rates of the pump and it is true from the experimental setup. The upper right tank

receives water only from the left pump. The upper right and lower right tank heights change

simultaneously as can be seen in Figure 3.11 and this is the reason for the bidirectional

connection between them. There must be a bidirectional connectivity between the lower

right level and the right pump flow because of the control strategy of the system and it is
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(a) (b)

Figure 3.22: Results of transfer entropy method in the form of: (a) colormap, (b) connec-
tivity diagram

obtained from the results of transfer entropy. On the other hand, the right pump controls the

lower left level through upper left level and it is also confirmed from the results of transfer

entropy. There is a bidirectional connectivity path between the lower levels because they

change simultaneously. Very small amount of flow from the left pump goes to the lower left

tank. Moreover, the lower left tank is controlled by the right pump. Therefore, the causal

path from the left pump to the lower left level is missing. It is worth mentioning that, the

thickness of the connectivity paths are proportional to the measure of interactions.

3.11 Granger Causality

Theoretical aspects of Granger causality have already been discussed in Section 2.2. When

the user clicks on “Granger Causality Calculator” a dialogue box as shown in Figure

3.23 appears and the user has to provide the parameter values. The user has the liberty to

choose either time domain Granger causality or frequency domain Granger causality or both.

For time domain Granger causality calculation only the probability threshold is required.

On the other hand for the calculation in frequency domain both the sampling frequency

and maximum frequency to be analyzed must be given by the user. A connectivity diagram

appears after the calculation of time domain Granger Causality as shown in Figure 3.24(a)
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Figure 3.23: Dialogue box asking the user to give the parameter values to calculate Granger
causality

and the results of frequency domain Granger causality are shown in 3.24(b). Both these

figures have the same interpretation and the only difference being the domain in which this

analysis is performed.

The probability threshold is set as 0.01, sampling frequency is set to 1, and 100 Hz is

chosen as the maximum frequency to be analyzed. From the connectivity diagram of Figure

3.24(a) it is evident that flow of left pump has a causal direction to the upper right level

which is true. Right pump affects the lower right level and upper left level which is also true

from the experimental setup. Though there is no physical connection between the lower

levels, the possible reason for the connection between them might be the fact that they

change simultaneously. Obviously the flow from the right pump is connected to the lower

left level via the upper left level.

3.12 Summary

In this chapter the tool for causality analysis and visualization of multivariate process data

MDAtool is discussed. Users are referred to this chapter for detailed understanding and

usage of the tool. This tool provides the freedom of using different kinds of data and also

gives different data preprocessing options before doing any analysis. The tool provides

a number of options for data visualization in both time domain and frequency domain.

Different kinds of causality analysis can be done by the tool simply by loading the data.

It is noteworthy to mention that, both transfer entropy and Granger causality are data

33



(a)

(b)

Figure 3.24: Results of Granger causality method for the 4-tank system setup in: (a) time
domain analysis, (b)frequency domain analysis
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based methods. The results obtained from causality analysis must be validated with the

process or Piping & Instrumentation Diagrams (P&IDs) of the system before reaching any

conclusion [1].
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Chapter 4

Alarm Management

This chapter describes a tool designed for alarm management with a view to identifying the

top bad actors in the system so that the user of the tool gets a detailed idea on which tags

need more attention. The algorithms implemented in the tool are formulated by Sandeep R.

Kondaveeti, PhD Candidate, Department of Chemical and Materials Engineering, Univer-

sity of Alberta. The tool is developed using the algorithms with permission from Sandeep.

The tool is named as alarm tool. The outline of the tool is shown in Figure 4.1. The user

can get the necessary information about running the tool just by clicking on the “Info”

button located in the toolbar. The alarm tool is designed in MATLAB. It can be run from

MATLAB or run as a standalone application outside MATLAB. The tool is designed using

MATLAB 7.9.0 (R2009b) and it is compatible with version 7 and later.

The alarm tool runs on all operating systems. If the user wants to run the tool from

MATLAB, the user has to make sure that the folder named “alarm tool” is located in the

current directory of MATLAB. To avoid the hassle of changing the current directory every

time the user runs MATLAB, one can save the path of the tool as follows: File -> Set

Path -> Add Folder -> Select ‘‘alarm tool’’ -> Ok -> Save -> Close. In either of the

way, the tool will start by entering alarm tool in the command window of MATLAB. If

the user decides to run the tool outside MATLAB, he/she can simply run the application

“alarm tool.exe”. But it is mandatory that MATLAB has to be installed in the system.

It is worth mentioning that all the plots come with a user friendly feature that whenever

the user clicks on any plot, it would pop up and open in a new figure window. Moreover the

tool provides standard supports for the figures, e.g., Zoom-in, Zoom-out, Pan, Rotate 3D,
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Figure 4.1: Outline of the alarm tool

Data cursor, and Colorbar. Also when the tool starts, it shows the total number of alarms

for individual tags present in the alarm data at the lower left corner of the tool. The user

has to scroll up and down to see all the tags if there are a lot of tags involved.

This tool is described with computer generated alarm data of 20 tags. This tool only

deals with alarm data where the necessary information is: time of alarm rise, tag name, tag

identifier (id) of alarm rise, alarm message, return to normal (RTN) time, and RTN id. The

detailed functionalities of all the functions implemented in the tool are described below.

4.1 High Density Alarm Plot

The High Density Alarm Plot (HDAP) is very useful for the purpose of visualization of

large amount of alarm data in the system. The user of the tool can simply click on the

radiobutton HDAP to get the HDAP of the loaded alarm data. Visual identification of

system instability is the main advantage of using HDAP. Also it is possible to get the infor-

mation on chattering tags and redundant alarms [10]. Each row of the HDAP corresponds
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Figure 4.2: HDAP of 20 tags with number of alarms ranging from 537 to 9196 for individual
tags

to a unique tag and it helps the user to find out for which tags alarms were raised during

the whole period. As a result the user can look back and identify what was the reason for

the plant instability and what could have been done to reduce the total number of alarms.

While creating the HDAP by default a bin size of 10 minutes is used for all the tags, i.e.,

number of alarms in a 10 minutes time slot is recorded for all the tags. The user can choose

any bin size from the default size of 10 to plot the HDAP. Initially all the tags present in the

alarm data are used to plot the HDAP. Also the HDAP is designed in such a way that the

tags are sorted according to the number of alarms. User of tool has the option to change

the number of tags to be displayed. Under any condition the top bad actors are shown

in the HDAP. Color coding is used to plot the HDAP to easily understand the number of

alarms at a certain time. This figure is called high density alarm plot due to the reason

that it contains the alarm information of all the tags irrespective of duration of data.
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Figure 4.3: Alarm similarity color map shown in the tool

4.2 Alarm Similarity Color Map

Alarm Similarity Color Map (ASCM) shows the correlated alarms in terms of a colormap.

Generally alarms are represented in the form of binary data, i.e., when there is an alarm it

is represented as “1” and “0” is used to represent that there is no alarm. While calculating

ASCM tag ids are combined with tag names to provide better understanding of the system,

e.g., which tag id of one tag is triggered related to the id of another tag. In the very

beginning all the tags are enriched with extra 1’s. This is done to take into account the

possible time lag between tags. Whenever there is an alarm five 1’s are added on both sides,

totalling eleven 1’s corresponding to one alarm [10]. To quantify similar alarms, the Jaccard

similarity coefficient is used [35]. For two alarm sequences of length N , X = (x1, x2, · · · , xN )

and Y = (y1, y2, · · · , yN ) the Jaccard similarity coefficient is defined as:

Sjac(X,Y ) = max
l∈L

(
a(l)

a(l) + b(l) + c(l)
) (4.1)

where a(l) is the number of matches (xi = 1, yi = 1)∀i

b(l) is the number of mismatches (xi = 1, yi = 0)∀i

c(l) is the number of mismatches (xi = 0, yi = 1)∀i
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l is the time lag between the sequences and L = {−240, · · · , 0, · · · , 240}.

Sjac(X,Y ) lies between 0 and 1 [35]; and the higher the value, the more the two tags

are correlated. After pairwise calculation of the similarity coefficient the tags are arranged

and clustered together for the purpose of better visualization. Like HDAP, ASCM is also

color coded to show the value of the coefficient.

When the user clicks on the radiobutton Color Map, ASCM for the loaded data is

calculated and results are shown in the tool in terms of colormap and colorbar, as can be

seen in Figure 4.3. The darker the color, the higher the correlation index. Every tag is highly

correlated with itself and that is why along the diagonal it is always 1. As mentioned earlier

tag id along with tag names are also considered for the calculation of ASCM and it is evident

in Figure 4.3. It can be inferred from Figure 4.3 that Tag 4.LOLO and Tag 4.OFFNORM

are highly correlated with each other. Also Tag 14.LOLO and Tag 10.NROC are correlated

with each other. Moreover these 4 tags are correlated with Tag 10.HIHI since they form

a large cluster in the ASCM. The user of the tool has the option to change the number of

tags at the bottom on which analysis needs to be performed. In that case the top tags are

considered for analysis and the number is given by the user.

4.3 Run Length and Run Length Distribution

As mentioned earlier alarm data can be represented by binary data in the form of 1’s

and 0’s. In the context of alarm data Run is defined as the sequence of a 1 followed by

uninterrupted 0’s before another 1 comes. The length of the sequence is defined as the Run

Length [11]. Therefore run length can be viewed as the time difference in seconds between

two consecutive alarms of the same tag. Operator action is ignored over here. 3 kinds of

run lengths are implemented in the tool: On to On, On to Off, and Off to On. On to

On considers the time difference of two consecutive alarm rise times. Time taken to clear

the alarm or time difference between alarm rise time and return to normal time (RTN) is

considered as On to Off. Finally the time taken for the tag to raise another alarm after

clearing the previous one is considered as the Off to On. An example is used to illustrate

the above mentioned definitions.
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Table 4.1: Run Length for tag Tag 1

Sl. No. Alarm Rise Time RTN Time Time Dif-
ference
(Run
Length, r)
On to On

Time Dif-
ference
(Run
Length, r)
On to Off

Time Dif-
ference
(Run
Length, r)
Off to On

1 07/06/2012 8:40:00 07/06/2012 8:40:05 - 5 -

2 07/06/2012 8:40:10 07/06/2012 8:40:17 10 7 5

3 07/06/2012 8:40:25 07/06/2012 8:40:28 15 3 8

4 07/06/2012 8:40:35 07/06/2012 8:40:45 10 10 7

5 07/06/2012 8:40:50 07/06/2012 8:40:55 15 5 5

Example: For the example, Tag 1 is considered and its alarm rise time return to normal

time (RTN) are shown in Table 4.1. The corresponding Run Lengths are given in columns

2, 3, and 4. For this tag the 2nd alarm was raised within 10 seconds after the 1st alarm

was raised. It takes from 3 seconds to 10 seconds for the operator to clear the alarm. And

after clearing alarm, an alarm is raised within 5 seconds. This is a typical example of the

industries today where the operators have to remain busy in responding to alarms of more

than thousands of tags a day.

Once the run lengths are calculated, Run Length Distribution (RLD) is plotted. RLD

is the sum and group of the various run lengths namely, the histogram. Figure 4.4 shows

the RLD of the example shown above. Therefore if RLD is right skewed then it can be

understood that alarms for one tag is appearing after a certain amount of time. On the

other hand if the RLD is left skewed then the operator is not having sufficient time to take

action which leads to chattering alarms and consequently an alarm flood.

In the tool when the user clicks on Run Length then the RLD of type On to On of top

4 bad actors are plotted as shown in Figure 4.5. The user can select any tag from the drop

down menu in any of the figures. Moreover the user has the option to choose from different

kinds of RLDs. The RLDs which are left skewed require more attention for rationalization

and to reduce the number of alarms in the system.
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(a) (b)

(c)

Figure 4.4: Run Length Distribution of Tag 1: a) On to On, b) On to Off, c) Off to On

4.4 Chattering Index

Figure 4.6(a) shows the RLD of a non-chattering tag where the RLD is not left-skewed,

meaning that the operator gets alarm for after a certain amount of time and has sufficient

time to respond. On the other hand, Figure 4.6(b) shows the RLD of a chattering tag

where the RLD is highly left-skewed, meaning that the alarm for that tag is repeating

within a very short span of time. The Chattering Index is calculated based on RLD first by

calculating the Probability Density Function (PDF). PDF is obtained by normalizing RLD

with a factor of
∑

r∈NACr which is 1 less than the total number of alarms. The PDF Pr

for any run length r is calculated as follows [11]:

Pr =
ACr∑
r∈NACr

,∀r ∈ N, (4.2)

where ACr represents the alarm count for any run length r. A weighting function, inversely

proportional to the run length is used to define the Chattering Index to penalize the short
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Figure 4.5: Run Length Distribution in the tool with options to select any tag and from
different kinds of RLDs

run lengths more than the longer ones. The chattering index, Ψ, is defined as follows:

Ψ =
∑
r∈N

Pr
1

r
. (4.3)

Ψ lies between 0 and 1. The higher the value, the more the chattering referring to the

moment that the tag needs more attention to reduce the number of alarms [11].

When the user clicks on the radiobutton Chattering Index the tool calculates the

index for all the tags from the RLDs. Then the indices are sorted to show the user the

most chattering tags as shown in Figure 4.7. The user has the option to select the number

of tags he/she is interested in at the bottom of the tool. There is an option to truncate the

chattering index which is also provided in the tool. If the user selects to truncate then for

calculation of the chattering index, run lengths beyond 600 seconds are ignored for all the

tags. This is also known as modified chattering index [11].

4.5 Alarm Burst Plot

Alarm burst plot shows the number of alarms per 10 minutes time slot in the system for the

whole duration of the alarm data. Using the burst plot, one can easily show the instants
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(a) (b)

Figure 4.6: Run Length Distributions for: a) Non-chattering tag, b) Chattering tag

of alarm floods in the system. Alarm flood is defined according to International Society of

Automation (ISA) 18.2 as [24]:

“A condition during which the alarm rate is greater than the operator can

effectively manage (e.g., more than 10 alarms per 10 minutes).”

According to the above definition, when the number of alarms in the system crosses 10

alarms per 10 minutes, it is considered as the beginning of an alarm flood. When the

number of alarms goes below 5 alarms per 10 minutes, it is considered as the end of the

alarm flood. Also, the chattering alarms as discussed in Section 4.4 are removed while

considering alarm floods. If there are a number of alarms for one tag within a short period

time, then they are considered as one single alarm for that duration to remove the effect

of chattering alarm in detecting alarm floods in the system. The idea of alarm burst plot

to represent alarm floods was introduced in [36]. The removal of chattering alarms reduces

the total number of alarm count in the system and eases the further alarm analysis [12].

Bad alarm setting to response these phenomenon is the reason for chattering alarms.

In the “alarm tool”, when the user clicks on Alarm Burst Plot of the main interface,

weekly alarm burst plots are shown in the tool. Figure 4.8 shows the alarm burst plot of

a real industrial alarm data where the dotted lines represent the chattering alarms. As dis-

cussed, while considering the detection of alarm floods, the chattering alarms are removed.

The instants of alarm floods are shown using the vertical green line. The user of the tool

can obtain a detailed timing information on the beginning of alarm floods and can look
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Figure 4.7: Sorted chattering index of the tags

further to identify the cause of the flood to take preventive measures.

4.6 Alarm Flood Similarity Analysis

Once alarm floods are identified, it is the right time to do flood similarity analysis. Typically,

an alarm flood consists of a number of alarms. By doing the flood similarity analysis, one

can see similar alarm sequences in alarm floods. After proper analysis the user can identify

the fault propagation pathway as well as the root cause of fault. When the user clicks on

the radiobutton Alarm Flood Analysis, the tool displays similar alarm floods in terms of

a colormap and colorbar. For the similar flood analysis, Dynamic Time Warpring (DTW)

is used. DTW is a nonlinear time alignment method used in aligning time dependent

sequences [35], [12], [37].

Figure 4.9 shows similar flood analysis of a real industrial alarm data. Similar flood

sequences are clustered together for better visualization. As can be seen in Figure 4.9 that

flood sequences 9, 21 and 52 are similar. The tags present in the flood sequences are given

in Table 4.2. The real tag names are masked because of confidentiality. It is evident from

Table 4.2 that flood sequences 9 and 21 are identical. Sequence 52 follows them with a
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Figure 4.8: Alarm burst plot of real industrial data showing the instants of alarm flood
after removal of chattering alarms

Table 4.2: Similar flood sequences of real industrial data
Sequence 9 Sequence 21 Sequence 52

TAG 1.HI TAG 1.HI TAG 4.LO

TAG 1.HIHI TAG 1.HIHI TAG 1.HI

TAG 1.HIHIHI TAG 1.HIHIHI TAG 1.HIHI

TAG 2.HI TAG 2.HI TAG 1.HIHIHI

TAG 2.HIHI TAG 2.HIHI TAG 4.LO

TAG 2.HIHIHI TAG 2.HIHIHI TAG 2.HI

TAG 3.HI TAG 3.HI TAG 2.HIHIHI

TAG 3.HIHI TAG 3.HIHI TAG 2.HIHIHI

TAG 3.HIHIHI TAG 3.HIHIHI TAG 4.LO

- - TAG 3.HI

- - TAG 3.HIHI

- - TAG 3.HIHIHI

different tag in between.

Therefore, from the results of similar flood analysis, the user of the tool gets a detailed

idea of the floods and also gets information on similar flood sequences. The advantage is

that once the user knows the similar patterns from the historic data, it becomes a lot easier
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Figure 4.9: Similar flood analysis of real industrial alarm data

to detect the root cause of faults and preventive measures can be taken instantly to reduce

the number of alarms in the alarm flood.

4.7 Summary

In this chapter, a tool designed for alarm management is described. By using this tool the

user gets a detailed picture of the alarm system performance of the plant. Also he/she

determines the time instants when there are significant numbers of alarms and thus can

investigate further to identify the cause. The user also collects information on the run

lengths of individual tags in the system along with the chattering information. Finally, by

doing flood similarity analysis, the user can identify the similar flood sequences, which helps

in looking for common root causes of similar floods to improve the alarm system.
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Chapter 5

Case Studies

In Chapters 3 and 4, experimental and computer generated data were used to show the

utility of the MDAtool and alarm tool respectively. In this chapter, results of experimental

as well as industrial case studies are presented. MDAtool is used for the analysis of process

data collected from experiments and industrial operations. On the other hand, alarm tool

is used for industrial alarm data analysis. The original tag names of the industrial data are

masked due to confidentiality.

5.1 Experimental Case Study

A number of experiments are performed on a 4-tank system. The purpose is to visualize

the performance of the MDAtool to capture process connectivity and topology. The exper-

imental setup is located at the Computer Process Control Laboratory in the Department

of Chemical and Materials Engineering at the University of Alberta. An Emerson Delta-V

facility is used to control the system as well as to collect the process data. Figure 3.2 shows

the schematic of the system where the lower left and upper right tanks get water from the

left pump, while the lower right and upper left tanks receive water from the right pump.

Moreover, the lower tanks receive downstreams from the upper tanks. The water levels of

all tanks and the water flows from both pumps are considered as the variables of interest in

all the experiments performed with this setup. Their roles of being either the controlled or

manipulated variables changed based on the nature and requirements of the experiments.

It is worth mentioning that, in all the experiments, an enough time is given to the 4-tank

system to reach steady state before data collection. A detailed discussion on the experi-
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Figure 5.1: High Density Time Trend Plot of different signals obtained in Exp # 1

ments and results is given in the next section. While discussing the results, only relevant

variables are considered.

5.1.1 Exp # 1

In Exp # 1, the left pump is turned off and only the right pump is in operation to control

the desired level of the lower right tank. In steady state, the lower right tank has a level

of 5 cm, the lower left tank has 4 cm, and the upper left tank has 19 cm to maintain a

reasonable water level in the lower left tank. The flow rate of the right pump is 22.1 L/min.

The setpoint of the lower right tank level is set by a Random Binary Sequence (RBS) of 5

cm ± 2.5 cm. The control strategy is to maintain the desired level of the lower right tank

using the right pump only. Thus the system is running under closed-loop operation. The

water level on the lower right tank is the controlled variable, and the water flow from the

right pump is the manipulated variable. Figure 5.1 shows the High Density Time Trend Plot

of the experiment. A total of 3400 sample values of all the variables are recorded. Figure

5.2 shows the real values of water levels of the three related tanks during the experiment.

During the experiment, the upper left tank is always given a reasonable amount of water
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Figure 5.2: Water levels in meters of the three related tanks in Exp # 1

flow from the pump so that the lower left tank has a significant amount of water level, as

can be seen in Figure 5.2.

From Figure 5.3 it is evident that the variables in the system are highly correlated with

each other. The correlation coefficients are very high and positive among all the variables.

Figure 5.4(a) shows the colormap of transfer entropies calculated among the variables of

the system. Figure 5.4(b) shows the process connectivity obtained from transfer entropy

and it is developed from the values found in Figure 5.4(a). The green lines with an arrow

represent the direction of causality and the red lines symbolize two-way connectivity or

feedback. Also thickness of the lines shows the strength of the connectivity between the

related variables. For this particular experiment, the parameter values for transfer entropy

method are chosen as k = 0, l = 2, h = 1, and τ = 1. Figure 5.5(a) shows the colormap

of Granger causality among the variables for Exp # 1 with a probability threshold of 0.01.

Figure 5.5(b) shows the connectivity diagram of the system obtained from Granger causality

and it is derived from Figure 5.5(a). Frequency domain Granger causality analysis is also

performed with 150 Hz as the maximum frequency to be analyzed and the results are shown

in Figure 5.6. From Figure 5.6 one can have a picture of which frequencies are propagating

from one variable to the other. It is worth mentioning here that Figure 5.5(b) and Figure

5.6 provide the same result with the only difference being the fact that one is in the time

domain and the other is in the frequency domain.
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Figure 5.3: Correlation colormap (considering lags) of the related variables of Exp # 1
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Figure 5.4: Causality results obtained from transfer entropy for Exp # 1: (a) Colormap of
transfer entropies among the variables, (b) Corresponding connectivity diagram
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Figure 5.5: Causality results obtained from time domain Granger causality for Exp # 1:
(a) Granger causality colormap, (b) Corresponding connectivity diagram
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Figure 5.6: Results of frequency domain Granger causality for Exp # 1

The connectivity diagrams for both transfer entropy (Figure 5.4(b)) and Granger causal-

ity (Figure 5.5(b)) show that, the right pump affects the level of water in the lower right

and upper left tank which is indeed true as can be inferred from Figure 3.2. Because of the

control action, however, there should have been a path from the lower right tank to the flow

of the right pump, which is absent in both methods. The upper left level has a causal effect

on the lower left level, and it is obtained in both cases. In transfer entropy, there is also a

path in the reverse direction, which is not true. There is no direct effect of the pump on the

lower left tank, yet there is an indirect effect through the upper left tank, which is captured

in transfer entropy. Although physically there is no connection between the upper left and

lower right tanks, from both methods it is observed that there is a feedback between them.

The possible reason might be the fact that they receive flow from the same source and their

levels change at the same time. From the above discussion it can be concluded that, both

transfer entropy and Granger causality capture the process connectivity very effectively.

5.1.2 Exp # 2

This experiment is almost the same as Exp # 1 but it is run under open loop, i.e., with the

same initial conditions, the output of the right pump is 20± 2 L/min and the levels of the

lower two tanks and upper left tank are recorded. Figure 5.7(a) shows the high density plot

of the variables in the experiment and Figure 5.7(b) shows the levels of the related tanks

in meters.

Figure 5.8(a) and Figure 5.8(b) show the connectivity diagrams obtained from transfer
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Figure 5.7: (a): High Density Time Trend Plot of different tags obtained in Exp # 2, (b):
Water levels in meter of the three related tanks of Exp # 2
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Figure 5.8: Connectivity diagram obtained for Exp # 2 using: (a) transfer entropy, (b)
Granger causality

entropy and Granger causality methods respectively. Since there is no control action, there

should not be any feedback and Granger causality shows that. The results are same as that

of Exp #1 with only one difference that transfer entropy shows a feedback path between

the levels of lower left and lower right tanks; the reason for this path is that the levels of

the lower two tanks change simultaneously.

5.1.3 Exp # 3

In this experiment, the left pump is turned on with a constant flow of 10 L/min. The system

is run under closed-loop to control the Random Binary Sequence (RBS) level of lower right

tank by the right pump. The water levels of all the tanks and flow of the two pumps are used

to capture the process connectivity. Figure 5.9 shows the connectivity diagrams obtained

from transfer entropy and Granger causality respectively. The level of the upper right tank

is affected by the left pump which is captured in Granger causality. Yet the effect of the

left pump on the lower left tank is not captured in both the methods. The possible reason

might be the fact that, more water is coming from the upper left tank to the lower left

tank than from the left pump. The flow rates of the pumps are independent of each other

and it is captured in both the methods. Although transfer entropy shows a path from the

left pump to the upper left tank, physically there is no connection. The remaining paths

are the same as Exp # 1 as expected. Thus, both transfer entropy and Granger causality

provides satisfactory results to capture the process connectivity.
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Figure 5.9: Connectivity diagram obtained for Exp # 3 using: (a) transfer entropy, (b)
Granger causality

5.1.4 Exp # 4

This experiment is run under closed loop configuration. The control strategy is to control

the desired RBS level of both the lower tanks using both the pumps. Initially both the

pumps are set to provide 10 L/min flow of water. The RBS set point of the lower left tank

is 6.5 cm ± 2.5 cm and it is 11 cm ± 2.5 cm for the lower right tank. The experiment is

designed to run for 56 minutes and 30 seconds. Figure 5.10(a) shows the high density plot

of the data and Figure 5.10(b) shows the actual values of the water levels of all the tanks.

From Figure 5.10 it is evident that, the system is now highly oscillating because of the

control strategy and the system is not getting enough time to settle down during the whole

experiment. The connectivity diagrams obtained from transfer entropy and the one from

Granger causality are shown in Figure 5.11. As can be seen from Figure 5.11(a), transfer

entropy provides very good result. Both pumps affect all the four tanks and it is expected

as levels are maintained from both pumps. But the feedback from both lower levels to both

pumps are missing and they should have been over there as the system is run under closed

loop operation. The pumps affect each other because of the control strategy as the flow

from them are changing to maintain the water level of both the lower tanks. The lower

right level cannot affect the upper right level and it is indeed true. And the presence of

feedback among the other levels is due to the reason that the levels are changing at the

same time. On the other hand Granger causality can detect only one path as can be seen
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Figure 5.10: (a): High Density Time Trend Plot of different tags obtained in Exp # 4, (b):
Water levels in meters of the three related tanks of Exp # 4
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Figure 5.11: Connectivity diagrams obtained for Exp # 4 using: (a) transfer entropy, (b)
Granger causality

in Figure 5.11(b) and it is from the left pump to the upper right levels which is indeed true.

The reason is because the system is oscillating very fast and it is not getting enough time

to settle down. Therefore, the AR model cannot represent the system effectively.

5.2 Industrial Case Study

The industrial case study is performed on an intrastate pipeline system. Weekly alarm

data of one year is collected and 4 weeks data are combined to create monthly data. Top

bad actors are identified and process data of those tags of almost 13 months is collected.

Monthly analysis is performed for causality analysis as well. Analysis results of one month
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Table 5.1: Summary of alarm system of a pipeline industry
Month No.

of
alarms

Alarms
/ hr

HI HIHI HIHIHI LO LOLO LOLOLO No.
of
tags

1 8847 13.14 2553 1698 1394 1665 593 245 297

2 8425 12.54 2405 1598 1278 1581 571 222 266

3 8962 13.33 2612 1735 1428 1516 647 253 258

4 8677 12.91 2649 1380 1008 1740 624 202 319

5 7094 10.55 2187 1114 817 1375 514 164 293

6 3170 4.72 518 179 124 544 240 241 462

7 7117 14.27 1639 925 678 2002 508 358 286

8 7381 8.78 2153 1232 943 1656 481 291 275

9 7089 10.56 1825 1145 880 1834 464 229 275

10 8606 12.8 2668 1422 1132 2025 642 255 254

11 9402 13.99 3149 1553 1158 1869 600 423 272

12 9769 14.54 3553 1732 1337 1702 531 318 245

13 6045 12 2164 1023 816 1118 306 177 221

Total 100584 11.85 30075 12993 12993 20627 6721 3378 -

for both process data and alarm data is discussed below.

5.2.1 Alarm Management

Table 5.1 shows the total number of alarms along with the number of tags in the system for

one year. On a monthly basis, the number of tags ranged from 221 to 462, and the number

of alarms ranged from 3170 to 9769. The number of alarms per hour is from 4.72 to 14.54;

and according to Engineering Equipment and Materials Users Association (EEMUA) [9], it

should be no more than 6 alarms per hour. In this case, study results of one month alarm

data is presented.

Figure 5.12 shows the high density alarm plot of one month alarm data of the system,

where each bin contains the number of alarms in a 10-minute time slot. As can be seen

in Figure 5.12 that Loc3.M4ACC.HI has the highest number of alarms among all the tags

combining the identifiers.

Figure 5.13 shows the run length distributions of the top 4 bad actors of the system.

Figure 5.14 shows the top chattering indices. Even though Loc3.M4ACC.HI has the highest

number of alarms, Loc4.M1GRV.LO has the highest chattering index. Figure 5.15 shows the
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Figure 5.12: High density alarm plot of one month industrial alarm data
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(a) (b)

(c) (d)

Figure 5.13: Run length distributions of top 4 bad actors in the system

Figure 5.14: Chattering indices of the bad actors of the system
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Figure 5.15: Correlation color map of the correlated alarm tags
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Figure 5.16: Alarm burst plot of one week

correlated tags of the system, where it is evident that Loc3.M4ACC.HI, Loc3.M4ACC.HIHI,

and Loc3.M4ACC.HIHIHI are correlated with each other. Also Loc4.M1ACC.HI, Loc4.M1ACC.HIHI,

and Loc4.M1ACC.HIHIHI are correlated with each other. It can also be inferred from

Figure 5.15 that, tags M2FLOW.LOLO, M2FLOW.LO, DISCPR.HI, DISCPR.HIHI, and

GRAVPMP.HI of Loc5 are correlated with each other. By observing the data again, it is

verified that these correlated tags trigger each other a number of times during the period

considered.

After this, alarm flood similarity analysis is performed on the alarm data. While plotting

the burst plots, weekly data is used to show the floods distinctively. Figure 5.16 shows the

burst plot of one week data where dotted lines represent the chattering alarms and green

lines represent the existence of alarm floods in the system. Alarm flood similarity analysis

is performed using the dynamic time warping method. Figure 5.17 shows the similar flood

sequences in terms of a colormap and colorbar.

Table 5.2 shows two similar flood sequences. Though the lengths of the alarm flood

sequences are different, both the sequences contain similar alarms.

All the above mentioned steps are repeated for the rest of the 12 months. All the similar

flood sequences were showed in details to the company for all the 13 months alarm data.

A report is created and presented to the industrial partner. Based on the analysis of alarm

data, process data of important 28 tags are requested. Process data of 25 tags are collected

and causality analysis to find out the direction of propagation of fault is performed using
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Table 5.2: An example of similar alarm flood sequences in the industrial case study
Seq 6 Seq 36

Loc1.SUCPRS.HI Loc3.TOTFLOW.LO

Loc3.M1GRV.LO Loc3.M1GRV.LO

Loc3.M1GRV.LOLO Loc3.TOTFLW.LO

Loc3.M1GRV.LOLOLO Loc1.SUCPRS.HI

Loc3.M1GRV.HIHI Loc3.M1GRV.LOLO

Loc3.M1GRV.HI Loc3.M1GRV.LOLOLO

Loc3.M1ACC.HI Loc3.M1ACC.HI

Loc3.M1ACC.HIHI Loc3.M1ACC.HIHI

Loc3.M1ACC.HIHIHI Loc3.M1ACC.HIHIHI

Loc3.M1ACC.HI Loc3.M1ACC.HI

Loc3.M1ACC.HIHI Loc3.M1ACC.HIHI

Loc3.M1ACC.HIHIHI Loc3.M1ACC.HIHIHI

Loc3.M1GRV.HI Loc3.M1GRV.HI

Loc3.M1GRV.HIHI Loc3.M1GRV.HIHI

Loc3.M1ACC.HI Loc3.M1ACC.HI

Loc3.M1ACC.HIHI Loc3.M1ACC.HIHI

Loc3.M1ACC.HIHIHI Loc3.M1ACC.HIHIHI

Loc3.M1ACC1.HI Loc3.M1ACC1.HI

Loc3.M1ACC1.HIHI Loc3.M1ACC1.HIHI

Loc3.M1ACC1.HIHIHI Loc3.M1ACC1.HIHIHI

Loc1.SUCPRS.HI Loc2.M4ACC.HI

Loc3.TOTFLW.HI Loc2.M4ACC.HIHI

Loc2.M4ACC.HI Loc2.M4ACC.HIHIHI

Loc2.M4ACC.HIHI

Loc2.M4ACC.HIHIHI

Loc3.TOTFLW.LO
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Figure 5.17: Similarity color map of similar floods in one month alarm data

Granger causality.

5.2.2 Causality Analysis

Figure 5.18 shows the captured connectivity of the process, obtained from the process data

of one month using Granger causality. The results of causality analysis are validated using

the P&ID diagrams of the system. Combining the results of both causality analysis and

alarm data analysis, root cause of faults is detected as Loc3.M1GRV and it is validated with

the system engineers.

5.3 Summary

Both transfer entropy and Granger causality methods are very effective to capture the

causality. In terms of computational complexity, calculation of Granger causality is much

faster. Moreover, it has also been observed that by changing the parameter values, the

process connectivity obtained from transfer entropy changes. Thus, choosing the right

parameter for the right process is very important. On the other hand, transfer entropy

outperforms Granger causality clearly in Exp # 3 and Exp # 4. When a system is highly

oscillating, then model based methods cannot capture the desired process topology; but

model free methods can provide very good results for such kind of processes. This is evident
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Figure 5.18: Causality analysis results of one month process data
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from the results of Exp #4. On the other hand, if the data could be better predicted from the

model estimated, then Granger causality outperforms transfer entropy. Therefore, method

of analysis depends on the data set available and quality of the data. Industrial case studies

show the successful usage of the tools for alarm management, root cause identification, and

finding plantwide disturbance propagation pathways.
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Chapter 6

Conclusions

6.1 Contributions

Two graphical tools are designed in this thesis. The first tool, MDAtool uses historic process

data for data visualization and performs causality analysis to capture process connectivity

and topology. This tool incorporates three data driven causality detection methods. The

second tool, namely, alarm tool, shows the alarms in the loaded alarm data. This tool not

only pictures the alarms in the system but also identifies the top bad actors by visualizing

the chattering indices. This tool also exhibits the correlated alarm tags and similar alarm

flood sequences, which ultimately pinpoints the tags which require further attention. Both

tools are successfully used to represent system topology and identification of root causes

of faults in the system. Both experimental and industrial case studies are performed using

the tools. Obtained results are validated using the system P&ID and knowledge of system

engineers. Successful use of the tools decreases the effort required for causality analysis and

alarm management. They also can save a lot of time, for the analysis and visual way of

representing the results provide an easy way to interpret the results.

6.2 Future Scope

Combining the tools in the future can be proved very effective which will handle both

historical alarm data and process data. This will pave the way of using a single graphical

tool for alarm management, as well as detecting the system topology and identifying root

causes of faults. Also further applications of the tools for industrial alarm rationalization

will help the Canadian industry in a significant way. Inclusion of user defined functions
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can pave the way for incorporating new methods of analysis in the tool. Also direct and

indirect causal relationships are not considered in this thesis. The inclusion of methods for

identifying direct and indirect causal pathways can be very effective for root-cause detection

of faults in systems.

67



Bibliography

[1] F. Yang, S. L. Shah, and D. Xiao, “Signed directed graph based modeling and its

validation from process knowledge and process data,” International Journal of Applied

Mathematics and Computer Science, vol. 22, no. 1, pp. 41–53, 2012.

[2] M. Bauer and N. F. Thornhill, “A practical method for identifying the propagation

path of plant-wide disturbances,” Journal of Process Control, vol. 18, no. 7, pp. 707–

719, 2008.

[3] M. Lungarella, K. Ishiguro, Y. Kuniyoshi, and N. Otsu, “Methods for quantifying

the causal structure of bivariate time series,” International Journal of Bifurcation and

Chaos, vol. 17, no. 3, pp. 903–921, 2007.

[4] J. Chen and R. Patton, Robust Model-based Fault Diagnosis for Dynamic Systems.

Kluwer Academic Publishers, 1999.

[5] J. Gertler, Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker,

1998.

[6] R. Isermann, Fault Diagnosis Systems: an Introduction from Fault Detection to Fault

Tolerance. Springer, 2006.

[7] I. Izadi, S. Shah, D. Shook, and T. Chen, “An introduction to alarm analysis and

design,” Proc. 7th IFAC Symposium on Fault Detection, Supervision and Safety of

Technical Processes, pp. 645–650, 2009.

[8] I. Izadi, S. Shah, D. Shook, S. Kondaveeti, and T. Chen, “A framework for optimal

design of alarm systems,” Proc. 7th IFAC Symposium on Fault Detection, Supervision

and Safety of Technical Processes, pp. 651–656, 2009.

68



[9] Engineering Equipment and Materials Users Association (EEMUA), Alarm systems: a

guide to design, management and procurement, 2007.

[10] S. Kondaveeti, I. Izadi, S. Shah, and T. Black, “Graphical representation of industrial

alarm data,” In Proc. of the 11th IFAC/IFIP/IFORS/IEA Symposium on Analysis,

Design and Evaluation of Human-Machine Systems, vol. 11, no. 1, pp. 181–186, 2010.

[11] S. Kondaveeti, I. Izadi, S. Shah, D. Shook, and R. Kadali, “Quantification of alarm

chatter based on run length distributions,” Proc. of the 49th IEEE Conference on

Decision and Control, pp. 6809–6814, 2010.

[12] K. Ahmed, I. Izadi, T. Chen, D. Joe, and T. Burton, “Similarity analysis of industrial

alarm flood data,” revised and under review by IEEE Transactions on Automation

Science and Engineering, 2011.

[13] S. T. Smith, MATLAB: Advanced GUI Development. Dog Ear Publishing, 1st Edition,

2006.

[14] C. Granger, “Investigating causal relations by econometric models and cross-spectral

methods,” Econometrica, vol. 37, no. 3, pp. 424–438, 1969.

[15] A. Seth and G. Edelman, “Distinguishing causal interactions in neural populations,”

Neural Computation, vol. 19, no. 4, pp. 910–933, 2007.

[16] A. Seth, “A Matlab toolbox for Granger causal connectivity analysis,” Journal of

Neuroscience Methods, vol. 186, pp. 262–273, 2010.

[17] S. Gigi and A. Tangirala, “Quantitative analysis of directional strengths in jointly

stationary linear multivariate processes,” Biological Cybernetics, vol. 103, pp. 119–133,

2010.

[18] M. Iri, K. Aoki, E. O’shima, and H. Matsuyama, “An algorithm for diagnosis of system

failures in the chemical process,” Computers and Chemical Engineering, vol. 3, no. 1-4,

pp. 489–493, 1979.

69



[19] R. Vicente, M. Wibral, M. Lindner, and G. Pipa, “Transfer entropy: a model-free mea-

sure of effective connectivity for the neurosciences,” Journal of Computer Neroscience,

vol. 30, no. 1, pp. 45–67, 2011.

[20] M. Bauer, J. W. Cox, M. H. Caveness, J. J. Downs, and N. F. Thornhill, “Finding

the direction of disturbance propagation in a chemical process using transfer entropy,”

IEEE Transaction on Control Systems Technology, vol. 15, no. 1, pp. 12–21, 2007.

[21] M. Bauer, N. F. Thornhill, and A. Meaburn, “Specifying the directionality of fault

propagation paths using transfer entropy,” 7th International Symposium on Dynamics

and Control of Process Systems, no. 62, pp. 1–6, 2004.

[22] M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser, “Transfer

entropy in magnetoencephalographic data: Quantifying information flow in cortical

and cerebellar networks,” Progress in Biophysics and Molecular Biology, vol. 105, no. 1,

pp. 80–97, 2011.

[23] “Abnormal Situations Management Consortium.” http://www.asmconsortium.com.

[24] The International Society of Automation (ISA), ANSI/ISA-18.2-2009, Management of

alarm systems for the process industries, 2009.

[25] T. Schreiber, “Measuring information transfer,” Physical Review Letters, vol. 85, no. 2,

pp. 461–464, 2000.

[26] B. Silverman, Density Estimation for Statistics and Data Analysis. Chapman and Hall,

London; New York, 1986.

[27] Q. Li and J. Racine, Nonparametric Econometrics: Theory and Practice. Princeton

University Press, 2007.

[28] H. Akaike, “A newlook at the statistical model identification,” IEEE Transaction on

Automatic Control, vol. 19, pp. 716–723, 1974.

[29] G. Schwartz, “Estimating the dimension of a model,” Annals of Statistics, vol. 5, no. 2,

pp. 461–464, 1978.

70



[30] V. Barnett and T. Lewis, Outliers in Statistical Data. John Wiley & Sons., 1994.

[31] F. Grubbs, “Procedures for detecting outlying observations in samples,” Technomet-

rics, vol. 11, no. 1, pp. 1–21, 1969.

[32] E. J. Wegman, “Hyperdimensional data analysis using parallel coordinates,” Journal

of the American Statistical Association, vol. 85, no. 411, pp. 664–675, 1990.

[33] A. Inselberg, Parallel Coordinates: Visual Multidimensional Geometry and Its Appli-

cations. Springer, 2009.

[34] R. Brooks, J. Wilson, and R. Thorpe, “Geometry unifies process control, production

control and alarm management,” IEE Computing & Control Engineering, vol. 15, no. 1,

pp. 22–27, 2004.

[35] M. Lesot, M. Rifqi, and H. benhadda, “Similarity measures for binary and numeri-

cal data: a survey,” International Journal of Knowledge Engineering and Soft Data

Paradigms, vol. 1, no. 1, pp. 63–84, 2009.

[36] B. R. Hollifield and E. Habibi, Alarm Management - Seven Effective Methods for Op-

timum Performance. ISA, 2007.

[37] R. Bellman, Dynamic Programming. Dover Publications, 2003.

71


