
Machine learning for medical applications with limited
data: Incorporating domain expertise and addressing

domain-shift

by

Roberto Ivan Vega Romero

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Statistical Machine Learning

Department of Computing Science

University of Alberta

© Roberto Ivan Vega Romero, 2022

Abstract

Machine learning has the potential to help medical experts to deliver better

healthcare. There are, however, important technical challenges that need to

be solved before we can develop reliable models for clinical practice, including:

(1) Limited number of labeled instances, (2) Uncertainty of the labels used

during training, and (3) Differences between the distributions that generated

the training and test data. This dissertation focuses on strategies for effectively

applying machine learning under these circumstances.

For learning models from a limited number of labeled instances, we pro-

pose incorporating domain expert knowledge during the training process. This

domain expertise can be encoded in the form of probabilistic labels, which

provide more information per instance than the commonly used categorical

labels, or by using machine learning to extend the medical models currently

used by human experts. We demonstrate the effectiveness of the probabilistic

labels in three medical image classification tasks: for diagnosing hip dysplasia,

fatty liver, and glaucoma. We observed gains up to 22% in terms of classi-

fication accuracy when compared with the use of categorical labels. We also

show how to use machine learning to extend an SIR (Susceptible-Infected-

Removed) epidemiological model for predicting the evolution in the number of

people infected with COVID-19, achieving state-of-the-art results in terms of

mean absolute percentage error (MAPE) in data from the United States and

Canada.

For addressing the uncertainty around the labels, we use probabilistic

ii

graphical models. Instead of providing a point-estimate, probabilistic models

predict an entire probability distribution, which accounts for the uncertainty

in the data. Probabilistic models are a key component of the probabilistic

labels mentioned above, and they also allow the incorporation of human de-

cision making for tracking the number of new infections when using machine

learning with the SIR model.

Finally, a consequence of training machine learning models with a limited

number of labeled instances is that the training set might not be an accurate

reflection of the data used during inference – in particular, the test set might

not follow the same probability distribution that generated the training data.

This means that a predictor learned from one dataset might do poorly when

applied to a second dataset. This problem is known as batch effects or dataset

shift, while approaches to correct for the discrepancies in these probability

distributions fall under the umbrella term domain adaptation. Depending on

the assumptions on what causes the discrepancy, these problems might be

studied under specific names, such as covariate-shift, class-imbalance, etc.

Here, we first propose an algorithm for domain-shift adaptation when the

discrepancy between distributions is caused by linear transformations, and

then empirically show that style transfer can alleviate domain-shift caused by

changes in texture. We provide empirical results for the task of segmentation

of the hip in ultrasound images, with gains of up to 20% in terms of Dice score

when applying style transfer for unsupervised domain adaptation.

Although all the applications in this dissertation are related to the medical

domain, we expect that the techniques shown here are applicable when: (1)

expert knowledge can be encoded as probabilities, (2) there exist a parametric

model currently used by domain experts for analyzing a phenomenon, and/or

(3) the discrepancy between the source and target domains is caused by affine

transformations or differences in texture.

iii

Preface

Some chapters of this thesis have been published in conferences or journals.

Chapter 2 was published as Vega, Roberto, et al. “Sample efficient learn-

ing of image-based diagnostic classifiers via probabilistic labels.” International

Conference on Artificial Intelligence and Statistics. PMLR, 2021. The ma-

chine learning components were done by myself, Pouneh Gorji and Rusell

Greiner. Zichen Zhang, Xuebin Qin, Abhilash Rakkunedeth, Jeevesh Kapur

and Jacob Jaremko performed the data collection and manual data labeling.

Chapter 3 was published as Vega, Roberto, Leonardo Flores, and Russell

Greiner. “SIMLR: Machine Learning inside the SIR model for COVID-19

Forecasting.” Forecasting 4.1 (2022): 72-94. I developed and implemented

the machine learning algorithms, while Leonardo Flores and Russell Greiner

played the role of supervisors.

The first part of chapter 4 was published as Vega, Roberto, and Russ

Greiner. “Finding effective ways to (machine) learn fmri-based classifiers from

multi-site data.” Understanding and Interpreting Machine Learning in Medical

Image Computing Applications. Springer, Cham, 2018. 32-39. The second

part is published as Vega, Roberto, and Russell Greiner. “Domain-shift adap-

tation via linear transformations.” arXiv preprint arXiv:2201.05282 (2022).

In both cases I developed and implemented the machine learning algorithms,

while Russell Greiner played the role of supervisor.

iv

To AnaLi

For being always there

v

Acknowledgements

The completion of my Ph.D. is the result of the hard work of many individuals.

Some of them contributed in the academic setting, some of them contributed

by providing resources, and some others contributed in a personal level.

Firstly, I want to thank AnaLi, my wife, for being with me during all

these years. I would not have accomplished half of the things that I have

done without you. You are my inspiration, my guide, and the love of my life.

Spending my life with you is the best reward that I can ever have. I love you.

Secondly, but not less importantly, I want to thank Russ Greiner, my

supervisor during both my masters and my Ph.D. I have learned a lot from

you, not only as an academic and researcher, but as a person. I aspire to be

like you one day.

I want to thank all the people who were part of my committee: Dr. Alona

Fyshe, Dr. Nilanjan Ray, Dr. Dale Schuurmans, Dr. Pierre Boulanger, Dr.

Ross Mitchell and Dr. Mahmoud El-Sakka, for taking the time to read my

research and provide feedback.

I started my journey as a researcher many years ago, before coming to

Canada, and I have been inspired by very smart people whose passion and

love for research left a mark in me. Among these people are Leonardo Flores,

Dr. Alejandro Garćıa, Dra. Rita Fuentes, Dr. Mauricio Antelis, and Dr.

Gildardo Sánchez. Gildardo opened the doors of research to me, first as a

professor in the Robotics course, and then as a mentor, when he took me as a

research assistant. Thanks for giving me to opportunity to learn from you.

I have met many amazing people during my PhD journey, and I am greatful

to all the member of the Russ Greiner’s lab. I enjoyed a lot all the interac-

tions and exchange of ideas that we had! I had the fortune to meet people at

vi

the university who I consider now as friends: Neil Borle, Jacqueline Harris,

Negar Hassanpour, Amira Aissiou, Fei Wang, Sunil Kalmady, Fatima Dav-

elouis, Bernal Manzanilla, Carolina Quiroz, Farzane Aminmansour, Nouha

Dziri, Omar Rivasplata, and Pouneh Gorji. Thanks for making this an incred-

ible journey!

I also want to thank all the people at Medo.AI (now Exo) for allowing me

to be part of some amazing projects in the intersection of machine learning and

medical imaging during my PhD. I want to specially thank Dornoosh Zonoobi

and Masood Dehghan for their trust, mentorship, flexibility and for being

amazing friends. Important components of my research arose from discussions

with them.

I also want to thank the different agencies that supported my during all

these years: CONACYT, who gave me an amazing scholarship during the first

four years of my program. The Alberta Machine Intelligence Institute (AMII)

for providing funding opportunities as a Research Assistant. The Google Cloud

Platform, for providing research credits and access to infrastructure that al-

lowed us to accelerate our research. The Computing Science department, who

gave me the opportunity to be a Teaching Assistant during the first years of

my program.

Finally, I want to thank my parents Roberto Vega and Altagracia Romero,

my brother Alejandro Vega, and my family in-law (especially Ana Gonzalez)

for always being there to support me. You were always part of this journey

and I’m proud to be part of this family. I love you.

vii

Table of Contents

1 Introduction 1
1.1 Contributions . 5

2 Probabilistic Labels 7
2.1 Introduction . 7
2.2 Foundations and related work 9

2.2.1 Soft Labels . 9
2.2.2 Calibration . 11

2.3 Probabilistic labels . 12
2.3.1 Example: Hip dysplasia 15

2.4 Experiments and results . 17
2.4.1 Experiment 1: Simulated Data 17
2.4.2 Experiment 2: Hip Dysplasia 19
2.4.3 Experiment 3: Fatty Liver 20
2.4.4 Experiment 4: Glaucoma 21

2.5 Discussion . 22

3 Combining Machine Learning and Epidemiological Models 25
3.1 Introduction . 25

3.1.1 Basic SIR Model . 27
3.1.2 Related Work . 28

3.2 Materials and Methods . 29
3.2.1 SIR with Time-Varying Parameters 33
3.2.2 Estimating SIR parameters 35
3.2.3 Estimating changes in policies 36
3.2.4 Evaluation . 39

3.3 Results . 41
3.3.1 Data Preprocessing . 41
3.3.2 MAPE and MAE . 42

3.4 Discussion . 42

4 Batch effects 52
4.1 Introduction . 52

4.1.1 Related work . 54
4.1.2 A simple example . 55
4.1.3 Objectives of batch effects correction 56

4.2 Supervised domain adaptation under affine transformations . . 57
4.2.1 Machine learning and functional connectivity graphs . 57
4.2.2 Batch effects correction techniques 59
4.2.3 Solving linear transformations 60
4.2.4 Experiments and Results 62

4.3 Unsupervised domain adaptation under affine transformations 64
4.3.1 Domain-shift adaptation via linear transformations . . 65

viii

4.3.2 Experiments and Results 72
4.3.3 Discussion . 75

5 Style Transfer for Unsupervised Domain Adaptation in Ultra-
sound Image Segmentation 77
5.1 Introduction . 77
5.2 Foundations and Related Work 78
5.3 Style transfer for domain adaptation 82
5.4 Experiments and Results . 82
5.5 Discussion . 84

6 Conclusions 86

References 89

Appendix A Code Availability 100
A.1 SIMLR Code . 100
A.2 Unsupervised domain adaptation code 100

Appendix B Additional SIMLR tables 102

Appendix C Mathematical details 108
C.1 Z-score normalization . 108
C.2 Whitening . 108
C.3 Proof of Equation 4.5 . 110
C.4 Proof of Equation 4.9 . 110
C.5 Proof of Equation 4.14 . 110

ix

List of Tables

2.1 Accuracy (threshold of 0.5 in the predictions) and area under
the ROC curve (AUC) for performance (higher is better); and
HL-Statistic and the expected calibration error (ECE) for cali-
bration (lower is better) . 20

3.1 MAPE of the 6 biggest provinces in Canada and United States
as a country, 1- to 4-week in advance. The number in paren-
thesis is the standard deviation. 44

3.2 MAE of the 6 biggest provinces in Canada and United States as
a country, 1- to 4-week in advance. The number in parenthesis
is the standard deviation. For the case of the US the number
of cases was divided by 100. 45

3.3 Pearson correlation coefficient between the ground truth and
the predictions of the 6 biggest provinces in Canada and United
States as a country 1- to 4-week in advance. 46

4.1 Average accuracy after correcting batch effects. The number in
entry (i, j) is the accuracy, over instances from the target site
i, of the classifier learned by adding all of site j to the training
subset of site i. The colored cells indicate results whose dif-
ference improves (green) or decrease (red) relative to the single
site classification. 63

5.1 Mean dice score for the segmentation of the acetabulum (AC)
and femoral head (FH). Columns identify the training set, while
rows identify the test set. The numbers in parenthesis are the
standard deviation. 84

B.1 Comparison of MAPE between different models across all the
states in the US 1 week in advance. The number in parenthesis
represents the standard deviation of the MAPE. 102

B.2 Comparison of MAPE between different models across all the
states in the US 2 weeks in advance. The number in parenthesis
represents the standard deviation of the MAPE. 103

B.3 Comparison of MAPE between different models across all the
states in the US 3 weeks in advance. The number in parenthesis
represents the standard deviation of the MAPE. 104

B.4 Comparison of MAPE between different models across all the
states in the US 4 weeks in advance. The number in parenthesis
represents the standard deviation of the MAPE. 106

x

List of Figures

1.1 Machine learning approach for classification problems 2

2.1 (Left) Typical 2D ultrasound image of the hip. (Right) The
structures of interest: the acetabulum, the ilium and the femoral
head, as well as the angle between the acetabulum and ilium
(α), and the information for computing the coverage: c = d2

d1+d2
15

2.2 Gaussian distributions learned for images classified as normal
or dysplastic, based on the angle (α) and coverage (c) 16

2.3 Accuracy as a function of the number of training instances (left).
Calibration as a function of the class imbalance (right). 18

2.4 Decision boundaries learnt with categorical labels and soft la-
bels in the training set (left), and how well they generalize to
the test set (right). 19

2.5 Typical images used for the diagnosis of glaucoma (left) and
fatty liver (right). 21

2.6 Predicted values vs probabilities of a model trained with cate-
gorical labels (left) and probabilistic labels (right) for the hip
dysplasia experiment. 23

3.1 (a) General behaviour of the SIR model. (b) The number of
infections predicted by the SIR model with fixed parameters,
fitted to the US data for 1 week prediction. (c) Similar to (b),
but with time-varying parameters. 28

3.2 Intuition behind SIMLR. The policies currently in place de-
termine the value of the parameters needed to infer the next
values, using an SIR model. Those predictions are then used to
estimate how the policies might change in the future. 31

3.3 Modeling SIMLR as a PGM for forecasting new cases of COVID-
19. The blue nodes are estimated at each time point, while the
green ones are either based on past information, or where esti-
mated in a previous iteration. 32

3.4 Conditional probability tables used by SIMLR. The names of
the variables refer to the nodes that appear on Figure 2 on the
main text . 37

3.5 Dataset used to create the NN-CPD for the variable Ut and
its visualization. Values closer to 1 (yellow) increase p(Ut =
1 | Ct, Vt). Values closer to 0 (green) increase p(Ut = 0 | Ct, Vt).
Values closer to −1 (blue) increase p(Ut = −1 | Ct, Vt) 39

3.6 Comparison of SIMLR, SIR model with time-varying parame-
ters, and SLOW. Table 2 in supplementary material contains
the numerical information. 43

xi

3.7 Comparison of SIMLR, SIR model with time-varying parame-
ters, and SLOW in terms of MAE. To make the numbers com-
parable, the figures each show the US MAE values divided by
100. 43

3.8 (a) 1-week forecasts SIMLR, tf-v-SIR, and SLOW, for Alberta,
Canada. (b) 2-week forecasts, of the same models, for US data.
(c) Comparison of SIMLR versus models submitted to the CDC
(on US data). 47

4.1 (a) Domain-shift for domains A and B. Y represents the label,
Z represent a latent common feature space. XA and XB are the
observations for the two different domains. Here, gθ : Z → X
and fλ : X → Z. (b) Plate model for representing more than 2
domains. 53

4.2 (a) The training and test set follow different probability dis-
tributions (b) After correcting for domain-shift, the original
decision boundary now applies for both domains. 54

4.3 Left: Histogram of the instances weighted in the scale in kg.
Right: Histogram of the instances weighted in the scale in lb. . 56

4.4 (a) The training set is from a source domain, while the test set
is from a target domain (b) The training set contains labeled
data from the source and target domain. The test set contains
data from the target domain. 57

4.5 Evaluating a classifier in single site (a) and multi-site (b) scenarios. 59
4.6 Examples of linear transformation where the methods fail. (a)

Including site as covariate, (b) z-score normalization, (c) whiten-
ing. 61

4.7 Anti-alignment example. In the unsupervised case it is impos-
sible to distinguish between the scenarios of the left (correct
alignment) and right (anti-alignment) graphs. 65

4.8 Results of using Algorithm 2 (a) without correcting for the ro-
tation, (b) after correcting for the rotation. 72

4.9 MMD of the simulated data for (a) rotation matrices and (b)
reflection matrices. 73

4.10 Results of (a) unsupervised and (b) semi-supervised domain-
shift adaptation in binary digit classification. 74

4.11 Results of (a) unsupervised and (b) semi-supervised domain-
shift adaptation in binary digit classification in 13 dimensional
space. 74

5.1 Texture discrimination and content recognition involve different
processes. (a) Example with same content, different texture.
(b) Example with same texture, different content. Note that
half of the paragraph is written in Spanish. 79

5.2 (a) Schematic diagram of the network proposed by Ghiasi et
al. [35]. The loss estimation network is just used during training.
(b) Style transfer between a photograph and a painting. 81

5.3 Images acquired with different scanners and the structures of
interest. (a) Phillips (Linear), (b) Toshiba (Linear), (c) Toshiba
(Conic), (d) Structures of interest. 83

5.4 Visual comparison between the segmentations with models trained
with and without style transfer 84

xii

Chapter 1

Introduction

The combination of medical expertise and machine learning (ML) can lead to

tools for screening, diagnosis, prognosis, and hence better patient outcomes [53,

127, 25, 37]. For example, in areas like medical imaging, machine learning

might reduce the time that radiologists spend manually analyzing images while

keeping the high quality in the image interpretation [97]. Similarly, it can be

combined with epidemiological models to predict the new number of infections

in the short and medium term, allowing decision makers to act accordingly.

In a nutshell, machine learning algorithms seek relevant patterns in the

data, and then use these patterns to make accurate predictions. For the case

of supervised machine learning, its objective is to learn a model that maps

an input, x, to the appropriate output y, where x ∈ Rp is a p-dimensional

vector containing the values of a set of features (here, perhaps a description

of a patient), and y is its corresponding label (perhaps a bit indicating if a

person has or does not have a disease). Usually, y ∈ R for regression problems

(e.g., a patient’s weight), while y ∈ {1, ..., K} for classification problems (e.g.,

has a disease or not).

The model that maps inputs to outputs is typically a parameteric function

y = fθ(x), whose parameters, θ, are unknown to the learner. The general

strategy is to apply a learning algorithm, L(·), to a labeled training set with

n instances D = {(x1, y1), (x2, y2), . . . (xn, yn)}, where D ∼ Ptrain(x, y). The

output of the learning algorithm are parameters, θ∗, that (we hope) minimize

an expected cost between the true labels and predictions, c(y, fθ(x)). After

1

Figure 1.1: Machine learning approach for classification problems

training, it is then possible to make predictions on new instances (xnew, ynew) ∼

Pnew(x, y) where ynew = fθ∗(xnew) [87], as illustrated in Figure 1.1.

The framework described so far makes 3 implicit assumptions; if violated,

the traditional training of machine learning models might not be enough to

achieve the desired performance.:

1. That the labels y1, . . . yn correctly identify the instances described by

x1, . . . , xn, respectively. The algorithm learns from the pairs {(xi, yi)}i
in the dataset D, so if some of the labels are noisy, then the learning

algorithm might learn ‘wrong concepts’. In the task of medical diagnosis

from an image, for example, we usually face uncertainty in the labels

used as ground truth, since different medical experts often give different

labels to the same image.

2. That we already know a useful representation, x, of the data, or that

the instances in the dataset D suffice to allow an algorithm to learn

such representation. This is hardly ever the case. Take the case of the

automatic analysis of medical images as an example. These images are

usually high-dimensional vectors (in the range of 104 to 106 pixels), while

the size of the labeled dataset is just in the range of 102 to 104 images.

3. That the joint probability distribution of the new instances, Pnew(x, y),

where we will use the learned predictor, is the same as the probability

distribution of our training set D ∼ Ptrain(x, y). This assumption is

often violated when we train a model using data from one source (e.g.,

2

scanner from manufacturer A), and then apply the model to data from a

different one (e.g., scanner from manufacturer B). This problem, known

as batch effects or dataset shift [108, 93, 73], is caused by technical noise

that might confound the real biological signal.

Additionally, when using a model to make critical decisions, which is the

case in most medical tasks, there are factors to consider that go beyond the

accuracy of the predictions. In some cases it might be important for the

models to provide not only the predicted class, but also the confidence in

its predictions. In other instances, it might need to provide decision-makers

additional information to justify a recommendation [104].

Many parametric machine learning models typically either learn concepts

from scratch (random initialization of weights), or are initialized with previ-

ously trained models [131, 24]. In either case, those weights are completely

data driven; however, there is vast information in the medical literature that

gives insight about the relevant characteristics of the data that might be useful

for an accurate diagnosis. It is therefore important to find learning methodolo-

gies that produce accurate and calibrated models, and that are sample efficient,

allow the incorporation of prior knowledge, and generalize across datasets.

The research presented in this document addresses the aforementioned

challenges. For learning with a limited number of instances in the presence of

uncertainty, we propose to use a combination of probabilistic graphical mod-

els, deep learning architectures, and human domain expert knowledge. We

will also explore techniques that can often decrease the discrepancy between

the probability distributions of the training and test datasets.

Chapter 2, based on Sample Efficient Learning of Image-Based Diagnostic

Classifiers Using Probabilistic Labels [120], presents probabilistic labels, an

approach that replaces categorical labels by probabilities. To compute those

probabilities we encode domain specific knowledge in the form of probabilistic

graphical models. There “probabilistic labels” give a learner more information

per training instance, allowing it to learn useful concepts with fewer instances.

In our experiments, this approach led to gains of up to 22% in the accuracy of

3

models, as compared with the use of categorical labels, in three classification

tasks: diagnosing hip dysplasia, fatty liver, and glaucoma.

Additionally, probabilistic labels improve the calibration of the learned

models, which give a straightforward interpretation of the output as the prob-

ability of diagnosis. Although it is tempting (and common) to view the output

of a neural network with sigmoid or soft-max activation function as such a

probability [39], the typical training of deep neural networks leads to mod-

els that do not produce calibrated probabilities [45], which argues that they

should not be interpreted as probabilities.

Chapter 3, based on SIMLR: Machine Learning inside the SIR model for

COVID-19 Forecasting [121], describes SIMLR, which uses machine learning

techniques to extend an epidemiological SIR model, for forecasting the number

of people newly infected with COVID-19, 1 to 4 weeks in advance. SIMLR is

a probabilistic graphical model that tracks changes in the government policies

over time, and uses them to forecast the evolution of the pandemic. The use

of epidemiological models for this task is particularly important because the

available data is scarce [105], while the use of probabilistic models naturally

handles the uncertainty in the reported numbers of infections over time [9, 60].

We applied SIMLR to data from Canada and the United States, and show that

its mean average percentage error is as good as state-of-the-art forecasting

models, with the added advantage of being an interpretable model.

Chapter 4, based on both Finding Effective Ways to (Machine) Learn

fMRI-Based Classifiers from Multi-site Data [118] and Domain-shift adapta-

tion via linear transformations [119], gives a general description of batch effects

by casting it as an instance of domain-shift. Given data from a source domain

(S), and a target domain (T), domain-shift occurs when PS(X, Y) ̸= PT (X, Y).

Specifically, we focus on the case where PS(Y) = PT (Y), PS(X) ̸= PT (X),

and PS(Y | X) ̸= PT (Y | X). However, there is a function f(·, ·), with

parameters λS and λT , such that PS(f(X, λS)) = PT (f(X, λT)) and

PS(Y | f(X, λS)) = PT (Y | f(X, λT)).

The first part of Chapter 4 presents a method for combining datasets from

different sources (i.e., , drawn from different Pi(X, Y) distributions), when the

4

datasets from all the sources are fully labeled. We show that this method can

correct for batch effects caused by arbitrary affine transformations. We test

the performance of this method in the task of diagnosis of schizophrenia based

on functional magnetic resonance imaging (fMRI).

The second part of the chapter proposes an unsupervised approach to

project the source and target domains into a lower-dimensional, common space,

by (1) projecting the domains into the eigenvectors of the empirical covariance

matrices of each domain, then (2) finding an orthogonal matrix that minimizes

the maximum mean discrepancy between the projections of both domains. For

arbitrary affine transformations, there is an inherent unidentifiability problem

when performing unsupervised domain adaptation, which can be alleviated in

the semi-supervised case. We show the effectiveness of our approach in first

simulated data and then in a set of binary digit classification tasks (0 vs 1, 0,

vs 2, ... 8 vs 9), obtaining improvements up to 48% accuracy when correcting

for the domain shift in the data.

Chapter 5, based on Style Transfer for Unsupervised Domain Adaptation

in Ultrasound Image Segmentation, discusses the application of style-transfer

for correcting batch effects in ultrasound images. By assuming that a given

imaging device generates images that are elements of a Julesz ensemble, we

propose an unsupervised domain adaptation method that transfers the tex-

ture from the images of the target distribution to the images of the training

distribution. We observed gains of up to 20%, in terms of Dice score, in the

segmentation of ultrasound images of the hip. We expect this approach to

be successful in cases where the discrepancy between the source and target

domains is caused by differences in texture.

1.1 Contributions

This dissertation ...

• ... empirically shows, on three real-life datasets, (1) the effectiveness

and advantages of using probabilistic labels over categorical labels, and

(2) how to obtain these probabilities using medical expert knowledge.

5

Models trained with probabilistic labels were more accurate, and better

calibrated.

• ... develops SIMLR, an interpretable model that uses machine learning

to extend an SIR (Susceptible-Infected-Removed) epidemiological model

for predicting the number of newly infected people, 1- to 4- weeks in

advance. SIMLR achieves state-of-the-art results in data from the US

and Canada.

• ... casts batch effects as an instance of domain-shift, and develops an

unsupervised domain-shift adaptation algorithm for correcting discrep-

ancies caused by arbitrary affine transformations. This approach led to

improvements up to 48% accuracy in simulated data and in binary digit

classification tasks.

• ... empirically explores applying style-transfer algorithms for unsuper-

vised domain-shift adaptation. This approach achieved gains of up to

20%, in terms of Dice score, in the segmentation of ultrasound images

of the hip when training a model with images acquired with one type of

probe, and evaluating its performance on images from a different type.

6

Chapter 2

Probabilistic Labels

2.1 Introduction

Deep learning has proven useful in solving problems that involve structured

inputs, such as images, voice, and video [39]. Those inputs tend to be high-

dimensional, so machine learning models use many parameters (in the order of

104 − 107) to provide accurate predictions. Fitting such large models usually

requires datasets whose number of instances are at least in the same range as

the number of parameters, complicating its use in many fields.

As explained in Chapter 1, it is important to find learning methodolo-

gies that are sample efficient, allow the incorporation of prior knowledge, and

produce accurate and calibrated models. We argue that traditional learning

paradigms in deep learning do not meet these characteristics, so we propose

using probabilistic labels as an alternative way of achieving those objectives.

The basic idea is: instead of using categorical labels as the target during the

training procedure, use dense vectors whose k -th entry represents the proba-

bility of belonging to the k -th class. We anticipate that encoding the targets

as real numbers, instead of just categorical labels, might compensate for the

small number of training instances by providing more information per instance

in the form of those probabilistic labels.

A key contribution of our approach is a mechanism to compute the prob-

abilistic labels when we only have access to the categorical ones. We propose

encoding the medical knowledge as probabilities. First, during the training

phase, we extract from every image a set of features considered in the medical

7

literature as relevant for making a diagnosis. Then, we build a probabilistic

model over these features and the categorical labels. Next, for every training

instance, we compute the probability of each class given the features. Finally,

we use these probabilities as targets of a convolutional neural network whose

inputs are the raw images. This approach is similar to model distillation [54],

but instead of distilling a complex model, we “distill the medical knowledge”.

To help motivate this work, below we discuss three natural questions: why

use deep learning if the relevant features are known?, what if the probabilistic

labels are misleading?, and is the extraction of the features worth the effort?

Even when medical experts can identify the relevant markers in the im-

age, they still have to compute the features manually. Since these features

are mostly visual, or require special software to perform measurements, it is

unclear how to automate this process during inference. By combining deep

learning with probabilistic labels, the network learns a good representation of

the data using a limited amount of training instances. This representation

removes the need of any manual computation of features during the infer-

ence process. In other words, a deep learning model can provide a prediction

directly from the image, without the need of any human intervention.

We also incorporated a regularization parameter, λ, that controls the influ-

ence of the probabilistic labels during training. These labels help the algorithm

to learn the model parameters accurately with fewer training instances, assum-

ing the labels are a good approximation of the real probabilities. Even with

misleading probabilistic labels, our approach can recover the true probabilities

from the categorical labels, given a large enough dataset.

Our experiments suggest that the effort of providing the extra features

during training is justified. We used first a simple toy dataset that exemplifies

the advantages of training with probabilistic labels. Then, we used 3 real-world

imaging datasets for the diagnosis of (respectively) hip dysplasia, glaucoma,

and fatty liver. Using probabilistic labels not only improved the classification

accuracy up to 22%, relative to using categorical labels, but it also produced

models that are calibrated – i.e., the output of the model can be interpreted

as probabilities [45, 57].

8

Section 2.2 describes relevant literature for the problem of calibration and

sample efficient learning. Section 2.3 describes probabilistic labels and justifies

their use to train deep learning models. Section 2.4 compares the performance

of models trained using probabilistic labels versus other training approaches.

Finally, Section 2.5 highlights the important elements of this approach, em-

phasizing where it is expected to excel.

2.2 Foundations and related work

2.2.1 Soft Labels

Traditionally, the label (y) of each instance is encoded as a one-hot vector –

e.g., the encoding hi = [0, 1, 0] indicates that xi belongs to the second class,

yi = 2, since the 1 is located at the 2nd entry. We call this a categorical

label. Note that categorical labels allocate all the probability mass to a single

class, encouraging big differences between the largest logit and all others in

networks that use the soft-max activation function in the output layer [111].

This is undesirable in applications like medical imaging, where many cases are

“bordeline”, in that it is not clear to which class they belong. Creating an

artificial gap between logits might then cause overfitting and reduce the ability

of the network to adapt [111].

By contrast, soft labels encode the label of each instance as a vector of

real values, whose k-th entry represents p(Y = k | X = x) ∈ [0, 1] [33].

For example, the soft-label si = [0.1, 0.7, 0.2] indicates that p(Y = 2 | X =

xi) = 0.7. By using real numbers instead of single bits, soft-labels provide

to the learning algorithm extra information that often reduces the number

of instances required to train a model [54], while improving the performance

during inference [30, 33, 59].

The main challenge in using soft labels is their proper computation. Nguyen

et al. (2011) proposed directly asking domain experts for their best estimates

of p(Y = k | X = x). Models trained with these soft labels learned more

accurate classifiers, using fewer labeled instances, than classifiers trained with

categorical labels [88]. One complication is that human experts struggle to

9

give reliable and consistent estimates of the probabilities. One effective way of

reducing this problem is to group the probabilities into bins [129]. However,

this still relies on human estimates.

A different approach is the use a smoothing parameter that distributes a

fraction of the probability mass, ϵ, over all the possible classes (e.g., if ϵ = 0.1,

then the label [0, 1] becomes [0.1, 0.9]). This solution achieved an increase

of 0.2% in accuracy on the ImageNet dataset [111]. Pereira et al. (2017)

suggested a similar approach: Directly penalize “confident predictions” of a

neural network by adding the negative entropy of the output to the negative

log-likelihood during training [96]. This strategy, whose performance was sim-

ilar to label smoothing, penalizes the allocation of all the probability mass on

a single class at inference time. Note that these approaches apply the same

smoothing to all the labels; however, Norouzi et al. (2016) empirically demon-

strated that not all the classes should receive the same probability mass [92].

In fact, one can argue that arbitrarily penalizing confident predictions is not a

good strategy in the medical domain, since there are cases when we want the

classifier to have high confidence in the predictions.

A third strategy, which is based on work on model compression [6, 12],

is to use model distillation [54, 86]. Here, we first train a complex model

that outputs a vector of real numbers, whose k -th entry is interpreted as the

probability of belonging to the k -th class. Then, train a second, simpler,

model whose target is the output of the first model. This is a very effective

approach, but it requires enough data to train that accurate complex model

first. Unfortunately, for medical tasks, the scarcity of labeled data complicates

using this solution.

The results obtained by the aforementioned approaches strongly argue for

using soft labels in classification tasks, but they highlight two unresolved prob-

lems: (1) It is still not clear how to properly obtain the labels, and (2) these

approaches ignore the original true labels, so unreliable soft-labels will lead

to unreliable results. We propose using probabilistic labels to alleviate those

problems. First, train a simple probabilistic model based on the categorical

labels, whose features are manually extracted by medical experts. The pre-

10

dictions of this model, which encode the expert medical knowledge, can be

treated as reliable and consistent soft labels. Next, “distill” the knowledge of

this probabilistic model and transfer it to a deep neural network. This neural

network will receive as an input a raw image, and uses as targets both, the

soft-labels produced by the probabilistic model, and the original categorical

labels. The influence of each label is determined by a regularization parameter

λ, which can be determined using cross-validation.

2.2.2 Calibration

A probabilistic classifier is considered “calibrated” if the probabilities it returns

are good estimates of the actual likelihood of an event [45, 47, 57]. For exam-

ple, if a calibrated classifier predicts that the probability of having a disease is

30% for 10 individuals, then we would expect 3 of those individuals to actu-

ally have the disease. Calibration is particularly relevant for critical decision-

making tasks. Common metrics to determine if a predictor with parameters θ,

pθ(Y | X), outputs calibrated probabilities is the Hosmer-Lemeshow goodness-

of-fit statistical test [57] and the expected calibration error [45].

Typically, the output of a neural network that uses a sigmoid or soft-

max activation function in its last layer is interpreted as the probability of the

classes given the input [39]. These activation functions indeed output values in

[0, 1] whose values add to 1; however, there is evidence that traditional learning

approaches in modern neural networks lead to poorly calibrated models and

therefore do not represent “real probabilities” [45].

The poor calibration problem becomes evident after analyzing the cross-

entropy cost function, which is commonly used to train classifiers:

c (y, f(x)) = − 1

M

M∑
i=1

K∑
k=1

p(yi = k | xi) log(f(xi, k)) (2.1)

where M is the number of training instances, K is the number of classes, and

f(xi, k) is the predicted probability that xi belongs to the k -th class. Note

that for a fixed x and k, the prediction that minimizes the cost, when using

categorical labels, is:

11

f(x, k) =
1

Mx

Mx∑
i=1

I(yi = k) (2.2)

i.e., the optimal prediction is the proportion of observations labeled with class

Y = y out of the total number of instances, Mx, where X = x . By the law of

large numbers, as M → ∞, f(x, k) → p(Y = k | x); however, when the number

of training instances is small, f(x, k) might not be a good approximation of

p(Y = k | x), meaning the predictions are not calibrated.

A second problem for calibration arises when the inputs are high-dimensional.

In gray-scale medical images, most of the pixels take values in the interval

[0, 255]. Therefore, the sample space is [0, 255]p ×{0, 1, . . . , K}, where p = |x|

is the number of pixels, which is typically around 104. The sample space im-

mediately highlights the difficulties that any learner has to learn p(Y | X): It

needs a very large number of instances to approximate this probability directly

from the images and the categorical labels.

One way of improving the calibration of traditional machine learning mod-

els (linear models, decision trees, etc.) is via Platt scaling or isotonic regres-

sion [89]. Similarly, using a temperature parameter helps the calibration on

modern neural networks [45]. These simple, yet effective, methods improve the

calibration of the predictions. However, none of these methods improve the

accuracy of the models –i.e., they only modify the confidence in the predicted

class for a novel instance. Here, we empirically show that, by using probabilis-

tic labels, it is possible improve both the calibration of the predictions and the

classification performance.

2.3 Probabilistic labels

The high dimensionality of images poses important challenges for learning cal-

ibrated and accurate predictors [27], so dimensionality reduction is a common

step in the machine learning pipeline [46]. Similarly, medical experts do not

analyze the images at the pixel level. Instead, they are trained to identify

relevant features in the images, and then combine those features to produce

the diagnosis.

12

The idea behind probabilistic labels is to first obtain the relevant features,

Z(X), from raw images X. Then, use the categorical labels along with a

probabilistic model to estimate p(Y | Z(X)); see Section 2.3.1. Since those

features are assumed to be a good representation of the image, then it is valid

to assume that p(Y | Z(X)) ≈ p(Y | X). Since |Z(X)| ≪ |X| –i.e., Z(X) has

fewer features than the raw X, we expect the estimation of p(Y | Z(X)) to be

more accurate than the one of p(Y | X), given the same number of training

instances.

The last step is to “distill” the medical expert knowledge encoded in the

probabilistic model. To do this, train a deep learning model using the raw

images X as inputs, and p(Y | Z(X)) as targets. The learning problem is

then to learn function q(x) = p(y | z(x)) ∈ [0, 1]K that maps a medical image,

x, to the probability of being classified as each of the K classes.

To learn such a function we apply a learning algorithm, L(·) to a labeled

training set with n instances D = {[x1, p(y1 | z1)], . . . , [xn, p(yn | zn)]} to get

an estimate of the function, q̂ = L(D). It is then possible to make predictions

on new instances ŷnew = q̂(xnew). Note that once the model has been learned,

the only input is a raw image, and it is no longer necessary to compute the

feature vector z.

Given the success of deep learning models on images, we chose the learn-

ing algorithm L(·) to be a convolutional neural network with fully connected

layers with a softmax activation function in the last layer. The detailed archi-

tecture will be described in the next section. Since this target vector is now

a probability distribution, it makes sense to use a loss function that measures

the distance between the target distribution and the predicted outputs of the

network.

A common measure for distance between probability distributions is the

KL divergence:

DKL(P ||Qθ) = −
∑
y∈Y

p(y |x) log

(
qθ(y | x)

p(y |x)

)
(2.3)

where p(y |x) is the real conditional distribution of the labels given the inputs,

and Qθ(y | x) is the probability distribution predicted by a model parameter-

13

ized by θ, qθ(·). Minimizing the KL divergence between the distributions is

equivalent to minimizing the negative cross entropy:

θ∗ = arg min
θ

−
m∑
i=1

K∑
k=1

p(Y = k|xi) log (qθ(xi, k)) (2.4)

Note that this objective is identical to the one we use for training with

categorical labels; the only difference is that instead of using the indicator

function as target, p(Y = k |x) = I(Y = k|x), we use the probabilistic label

p(Y = k |x) = p(Y = k | z(x)).

The quality of the learned model will depend on the quality of the estima-

tion of the probabilistic label. Suppose that for a fixed x the real probability is

p(y = 1 | x) = 0.75, but we only have access to 5 instances (2 positive, 3 neg-

ative). Using the traditional approach, the model that optimizes Eq. 2.4 will

converge to fθ(x) = 0.4. If our guess of the probabilistic label is ypr = 0.73,

then we can expect a better performance by using the probabilistic label.

Note that although the evidence given by the categorical labels indicates that

fθ(x) = 0.4, our “confidence” in that evidence is small, due to the small num-

ber of instances.

The opposite effect can also happen. When the estimation of the proba-

bilistic label is incorrect, the model will converge to that label regardless of

the evidence given by the categorical labels. Ideally, we should find a balance

between the influence of categorical and probabilistic labels. We propose to

achieve this behavior by training our model in two steps: (1) Let θp be the

parameters of a model qθp(x) trained to optimize Eq. 2.4 using the proba-

bilistic labels p(Y | zi). (2) Use the weights θp as a prior to learn a second

model, with parameters θ, that uses the categorical labels and optimizes the

regularized cross-entropy:

θ∗ = arg min
θ

−
m∑
i=1

K∑
k=1

I(Y = k|xi) log (qθ(xi, k)) + λ||θ − θp||22 (2.5)

Intuitively, this loss function penalizes deviations from the model learned

with probabilistic labels. Note that as the number of instances, m, increases,

the influence of the regularization term decreases. It can be shown that

14

Figure 2.1: (Left) Typical 2D ultrasound image of the hip. (Right) The
structures of interest: the acetabulum, the ilium and the femoral head, as well
as the angle between the acetabulum and ilium (α), and the information for
computing the coverage: c = d2

d1+d2

this regularized loss function is equivalent to setting a Gaussian prior on the

weights [87]. The mean of this Gaussian prior is θp, and the covariance matrix

is 1
2λ
I, where I is the identity matrix. Therefore, a high value of λ means

that the confidence in the probabilistic labels is high. However, as the num-

ber of instances increases, the influence of the prior decreases. In practice,

we can set the value of the regularization parameter λ using cross-validation.

Although we describe this algorithm in two steps, in practice both models are

implemented under a single routine.

2.3.1 Example: Hip dysplasia

Developmental dysplasia of the hip is a deformity of the hip joint at birth that

affects close to 3% of infants [51]. Ultrasound imaging is one way to diagnose

this condition. To do so, the medical expert measures the angle α between the

acetabulum and ilium, and the coverage c (ratio between the two segments d1

and d2); as shown in Figure 2.1 [41, 50, 51].

We can encode this knowledge as a simple probabilistic model where the

random variable Y ∈ {0, 1} encodes healthy people as y = 0 and people with

hip dysplasia as y = 1, and the random variable Z ∈ [0, π]×R is a vector that

contains the pair of computed features: (angle, coverage). The sample space

for this new model is [0, π] × R× {0, 1}, where the last bit is the label. Note

15

Figure 2.2: Gaussian distributions learned for images classified as normal or
dysplastic, based on the angle (α) and coverage (c)

that this is much simpler than the sample space of the entire image.

Although the proper probability distributions for modelling angles and

ratios are the Von-Mises distribution and a ratio distribution, we assume that

a bi-variate Gaussian with full covariance matrix is a good approximation for

P (Z | Y). Figure 2.2 shows a scatter plot of the values for α and c for both,

people with dysplasia and healthy controls.

The computation of the soft labels p(Y |Z = zi) is given by Eq 2.6, where

p(Z | y = i) ∼ N (µi,Σi), and p(Y = i) is the prior probability of having

(or not having) dysplasia. It is straightforward to estimate the parameters

µi, Σi from the data, while the prior probabilities p(Y = i) can be extracted

from medical literature. Note that this prior will play a fundamental role in

determining if the probabilities are calibrated, as its value should reflect the

probability that we expect to observe where the model will be used.

p(Y = 1 | zi) =
p(zi |Y = 1) p(Y = 1)∑

j∈{0,1} p(zi |Y = j) p(Y = j)
(2.6)

The last step consists in training a model using the soft labels obtained

with Eq. 2.6, along with the cost functions described by Eq. 2.4 and Eq. 2.5.

Note that, although we modelled the features as a bi-variate Gaussian, this

16

approach is very general and admits other distributions as well. Probabilistic

graphical models offer a good set of tools for modelling distributions with

a larger number of features, or that require a combination of discrete and

continuous covariates [55, 72, 74].

2.4 Experiments and results

2.4.1 Experiment 1: Simulated Data

We generated 2,000 instances from a mixture of 2 bi-variate Gaussians (1,000

from each Gaussian) and used it as a test set. The parameters of the Gaussians

were: µ1 =

[
5
3

]
, µ2 =

[
4
4

]
, Σ1 =

[
1 0.5

0.5 1

]
, Σ2 =

[
1 0.7

0.7 1

]
. Additionally,

we generated 60 instances for training purposes (30 from each Gaussian). The

machine learning task was to use the training instances to build a classifier

that assigned every instnace to one of the two possible classes: Gaussian 1,

or Gaussian 2. Figure 2.4 (right) shows the test instances generated for the

experiments.

We trained models with different numbers of instances, starting with 2

(one from each Gaussian), and progressively increased the number until we

used the 60 instances. We compared the accuracy of the models learned (re-

spectively) with categorical, correct and incorrect probabilistic labels, as well

the regularized categorical/probabilistic labels. Incorrect probabilistic labels

are soft labels that do not represent true probabilities, but still are in [0,1],

and all the entries add up to 1. We repeated these experiments 100 times,

using logistic regression as the classifier, and show the average performance

in Figure 2.3 (left). The second critical consideration is learning a calibrated

classifier, a task whose complexity increases with unbalanced datasets. In a

second experiment, we kept 10 training instances from Gaussian 1 and progres-

sively changed the number of training instances of the second Gaussian from

1 to 10. Figure 2.3 (right) shows the expected calibration error for different

imbalance ratios.

Three things are important about this figure: (1) The probabilistic labels

lead to more accurate classifiers when the number of instances is small. As

17

Figure 2.3: Accuracy as a function of the number of training instances (left).
Calibration as a function of the class imbalance (right).

this number increases, the model trained with categorical labels can also learn

the real probabilities. (2) Providing incorrect probabilistic labels, and training

the model using exclusively those labels, is worse than providing the categor-

ical labels. However, the regularized categorical/probabilistic labels allow the

model to converge to the real probabilities, even if the probabilistic labels are

misleading. (3) Probabilistic labels improve calibration, relative to categorical

labels, even in the presence of class imbalance.

Figure 2.4 illustrates the change in the decision boundary changes when

using probabilistic labels and a small training set. The boundary decision

learnt by the categorical labels tries to separate the 4 training instances per-

fectly (Figure 2.4, left); however, given the small training dataset the decision

boundary does not generalize well (Figure 2.4, right). Probabilistic labels, on

the hand, provide additional information that inform the learning algorithm

“how close” each training instance is to the decision boundary. The decision

boundary learnt by the probabilistic labels on Figure 2.4 (left) does not per-

fectly classify the training instances; however, it generalizes much better than

the one learnt with categorical labels. This simple experiment illustrates why

we expect the probabilistic labels to generalize better when the number of

training instances is small.

18

Figure 2.4: Decision boundaries learnt with categorical labels and soft labels
in the training set (left), and how well they generalize to the test set (right).

2.4.2 Experiment 2: Hip Dysplasia

The machine learning task is to train a model that, given an ultrasound image

of the hip, identifies if it should be considered as normal or dysplastic. We

used a private dataset collected from a multi-year clinical study of develop-

mental dysplasia of the hip, which contains 685 labeled, conventional, b-mode

ultrasound images of the hip. A clinical expert labeled 342 of the images as

dysplastic, while the remaining were considered normal.

We divided this dataset into a training set (70 % of the individuals =

429 images) and a hold-out set (30% of the individuals = 256 images). The

hold-out set was used exclusively for testing purposes. After computing the

soft labels using the procedure described in Section 2.3.1, we trained a deep

learning model that receives an image as an input and whose output is the

probability of being diagnosed with dysplasia.

The deep neural network consisted of 5 layers (with 32, 64, 128, 256, and

512 3-by-3 convolutional filters). We added 2 fully connected layer with 1000

neurons in each hidden layer, and a single neuron in the output layer. The

network used ReLU units as the activation function in the intermediate layers,

and a sigmoid function in the output layer. The input to the network were

ultrasound images resized to 128 by 128 pixels.

We compared four different training scenarios: with categorical labels,

19

Table 2.1: Accuracy (threshold of 0.5 in the predictions) and area under the
ROC curve (AUC) for performance (higher is better); and HL-Statistic and
the expected calibration error (ECE) for calibration (lower is better)

Model Dysplasia
Labels Cat Soft Prob Reg

Accuracy 74% 68% 80% 83%
AUC 0.82 0.74 0.87 0.87

HL Stat. > 100 59 12.9 9.2
ECE 0.56 0.34 0.41 0.46

Model Fatty liver
Labels Cat Soft Prob Reg

Accuracy 90% 85% 81% 89%
AUC 0.97 0.94 0.94 0.97

HL Stat. > 100 17 8.5 12.9
ECE 0.53 0.41 0.41 0.48

Model Glaucoma
Labels Cat Soft Prob Reg

Accuracy 55% 59% 69% 77%
AUC 0.66 0.65 0.79 0.83

HL Stat. > 100 16.5 12.8 15.3
ECE 0.50 0.32 0.26 0.30

soft labels, probabilistic labels, and regularized categorical/probabilistic la-

bels. For the soft labels experiments, we followed the approach proposed by

Szegedy et al. (2016), setting ϵ = 0.1 [111] We evaluated the performance

exclusively on the hold-out set measuring the classification accuracy, the area

under the ROC curve, the HL-statistic, and the expected calibration error.

Table 2.1 shows the results.

2.4.3 Experiment 3: Fatty Liver

The machine learning task is to produce a model that predicts if an ultrasound

image of the liver (see Figure 2.5, right) should be diagnosed as fatty, or

normal. We used a private dataset that contains 505 images, with labels made

by an expert radiologist. We placed 353 (70%) in the training set, and the

remaining 152 in the hold out set. The percentage of normal cases in both

sets was 62%.

Similarly to the experiment with hip dysplasia, we first trained a probabilis-

20

Figure 2.5: Typical images used for the diagnosis of glaucoma (left) and fatty
liver (right).

tic model to encode the medical knowledge. Hamer et al. (2006) reports that

the diagnosis of fatty liver depends on the difference in echogenicity among the

liver, diaphragm, and the periportal zone [49] – more precisely, an increased

hepatic echogenicity that obscures the periportal and diaphragm echogenicity

suggest a liver is fatty [70].

We manually defined regions of interest over the relevant anatomical parts

in the images, and extracted their mean pixel intensity. The vector Z =

[m1,m2,m3] contains the mean intensity value of the regions of interest ex-

tracted (respectively) from liver, diaphragm and periportal zone. This time,

we modelled P (Y | Z) = σ(ZT θ), where σ(·) is the sigmoid function. We then

use the probabilistic labels P (Y | Z) to train a network with the same archi-

tecture described in Section 2.4.2, and perform the comparison among models

trained with categorical, soft, and probabilistic labels. Table 2.1 shows the

results.

2.4.4 Experiment 4: Glaucoma

Here, we wanted to learn a model that classifiers the fundus image of a retina

(Figure 2.5, left) as healthy, or as suspicious of glaucoma. We used the publicly

available dataset RIM-ONE r3 [28], which contains 85 images classified as

normal, and 74 as suspects of glaucoma. We used 70% of the data for training

21

purposes, while the remaining 30% was used as hold-out set. We kept the same

healthy over glaucoma ratio in both datasets. Besides the diagnosis, which we

used as ground truth, the dataset contains the masks of the disc and the cup

masks of the optic nerve.

MacCormick et al. (2019) identifies the vertical and horizontal cup-to-disc-

ratio as an important feature for the diagnosis of glaucoma [82]. The vector

Z = [r1, r2] ∈ R2 contains these vertical and horizontal ratios. We assumed

that the data comes from a mixture of 2 bi-variate Gaussians (one per each

class) and, after learning the parameters of the probabilistic model, we used

Eq. 2.6 to compute the probabilistic labels.

We used the same network architecture than in previous experiments, and

trained models with the same types of labels: categorical, soft, and probabilis-

tic. Table 2.1 shows the results of the experiments.

2.5 Discussion

Table 2.1 (Dysplasia, Glaucoma) shows that the probabilistic labels, and the

regularized categorical/probabilistic approach greatly increases the accuracy

of the classifiers when compared with the rest of the strategies. They also

improve the calibration of the predicted outputs. It is important to highlight

that all models were trained with the same architecture, and exactly the same

training instances. The only change was the labels used during the training

procedure.

These results suggests that the network indeed benefits from labels that

encode how close a given instance is to the decision boundary. On the other

hand, the simple soft labels (y ∈ {0.1, 0.9}), help to improve the calibration

of the outputs; however, they do not improve the classification accuracy, sug-

gesting that simply penalizing high confidence in the predictions is not enough

to achieve good results.

The liver dataset in Table 2.1 shows an interesting case. The accuracy

achieved by the model trained with categorical labels is clearly superior to

the one that used just probabilistic labels. As mentioned in Section 2.3, when

22

Figure 2.6: Predicted values vs probabilities of a model trained with categorical
labels (left) and probabilistic labels (right) for the hip dysplasia experiment.

the probabilistic labels are misleading, the model will converge to the wrong

probabilities, which in turn increase the error in the predictions. This is not

surprising, since the problem of diagnosis of fatty liver is very subjective in

nature, and it is not clear what are the biomarkers that allow for an accurate

diagnosis [109].

Despite the complexity of obtaining reliable probabilistic labels for the

fatty liver task, the regularized model achieves almost the same performance

as with the categorical labels. This is a strong argument for the computation of

probabilistic labels. The potential gains are important if they are reliable (9%

and 22% in our experiment), while the potential losses are small (1% in our

experiments). Although computing the probabilistic labels require some man-

ual measurements during training, the inference part is completely automated

and does not require any manually extracted features.

Besides accuracy, for sensitive tasks, it is desirable to have models that

not only make accurate predictions, but also that express their confidence on

the predicted label in the form of probabilities. Our experiments indicate that

the traditional training procedures for deep neural nets produce models whose

real-valued output might not correspond to the probability of belonging to a

specific class. Probabilistic labels are an alternative that not only improves

the calibration of the outputs, but also improve the accuracy.

Figure 2.6 provides insight on why the model trained with the probabilistic

23

labels is better calibrated. When using categorical-labels, the deep learning

models are penalized for not outputting 1 for the correct class, and 0 every-

where else. Naturally, their output tends to be closer to those values, so they

tend to assign a “high confidence” to almost all their predictions. This is

problematic for tasks where there is no clear boundary between the classes,

such as medical diagnosis. Probabilistic labels, on the other side, encourage

the model to make predictions in the entire range [0, 1], assigning different

degrees of confidence to the predictions.

The results from the different datasets strongly argue for the incorporation

of probabilistic labels as priors when training classifiers. These labels allow

for a more sample-efficient learning, since models using probabilistic labels

provide equal or better accuracy than the ones trained with the traditional

categorical labels. Additionally the output of models that use probabilistic

labels are better calibrated, providing a straightforward interpretation of the

predictions as probabilities. The potential improvement in performance justi-

fies the extra annotations needed during training when the size of the dataset

is small, and when there is expert knowledge that can be leveraged during

training. We anticipate that this approach will apply to any other tasks that

maps high-dimensional inputs to categorical outputs, and where the features

that determine the class can be encoded into a probabilistic model.

24

Chapter 3

Combining Machine Learning
and Epidemiological Models

3.1 Introduction

In prediction problems like time-series forecasting, probabilistic labels do not

arise as naturally as in the case of image-based medical diagnosis. There are,

however, other ways to incorporate domain specific knowledge. In this chapter,

we combine an SIR epidemiological model with machine learning to predict

the number of new reported infections of COVID-19 1 to 4 weeks in advance.

The dynamics of infectious diseases depends not only on the nature of the

virus, but also on policy decisions taken at government level. Our proposed

model tracks and predicts changes on these policies to improve the accuracy

of the predictions.

Using such prior models – here epidemiological models– is particularly

important when the available data is scarce [105]. At the same time, machine

learning models need to acknowledge that the reported data on COVID-19

is imperfect [9, 60]. Using probabilistic graphical models allows SIMLR to

account for this uncertainty on the data, and the probability tables associated

with this graphical model can be manually modified to adapt SIMLR to the

specific characteristics of a region.

Since its identification in December 2019, COVID-19 has posed critical

challenges for the public health and economies of essentially every country

in the world [22, 26, 77]. Government officials have taken a wide range of

25

measures in an effort to contain this pandemic, including closing schools and

workplaces, setting restrictions on air travel, and establishing stay at home

requirements [48]. Accurately forecasting the number of new infected people

in the short and medium term is critical for the timely decisions about policies

and for the proper allocation of medical resources [5, 76].

There are three basic approaches for predicting the dynamics of an epi-

demic: compartmental models, statistical methods, and ML-based methods [5,

124]. Compartmental models subdivide a population into mutually exclu-

sive categories, with a set of dynamical equations that explain the transitions

among categories [10]. The Susceptible-Infected-Removed (SIR) model [68] is

a common choice for the modelling of infectious diseases. Statistical meth-

ods extract general statistics from the data to fit mathematical models that

explain the evolution of the epidemic [76]. Finally, ML-based methods use

machine learning algorithms to analyze historical data and find patterns that

lead to accurate predictions of the number of new infected people [124, 101].

Arguably, when any approach is used to make high-stake decisions, it is

important that it be not just accurate, but also interpretable: It should give

the decision-maker enough information to justify the recommendation [104].

Here, we propose SIMLR, which is an interpretable probabilistic graphical

model (PGM) that combines compartmental models and ML-based methods.

As its name suggests, it incorporates machine learning (ML) within an SIR

model. This combines the strength of curve fitting models that allow accu-

rate predictions in the short-term, involving many features, with mechanistic

models that allow to extend the range to predictions in the medium and long

terms. [56]

SIMLR uses a mixture of experts approach [61], where the contribution of

each expert to the final forecast depends on the changes in the government

policies implemented at various earlier time points. When there is no recent

change in policies (2 to 4 weeks before the week to be predicted), SIMLR relies

on an SIR model with time-varying parameters that are fitted using machine

learning methods. When a change in policy occurs, SIMLR instead relies on

a simpler model that predicts that the new number of infections will remain

26

constant. Note that forecasting the number of new infections 1 and 2 weeks

in advance (∆I1 and ∆I2) is relatively easy as SIMLR knows, at the time of

the prediction, whether the policy has changed recently. However, for 3- or

4-week forecasts (∆I3 and ∆I4), our model needs to estimate the likelihood

of a future change of policy. SIMLR incorporates prior domain knowledge to

estimate such policy-change probabilities.

This chapter makes three important contributions. (1) It empirically shows

that an SIR model with time-varying parameters can describe the complex

dynamics of COVID-19. (2) It describes an interpretable model that predicts

the new number of infections 1 to 4 weeks in advance, achieving state-of-

the-art results, in terms of mean absolute percentage error (MAPE), on data

from Canada and the United States. (3) It presents a machine learning model

that incorporates the uncertainty of the input data and can be tailored to the

specific situations of a particular region.

The rest of Section 3.1 describes the related work and the basics of the

SIR compartmental model. Section 3.2 then describes in detail our proposed

SIMLR approach. Section 3.3 shows the results of the predicting the number

of new infections in the United States and provinces of Canada.

3.1.1 Basic SIR Model

The Susceptible-Infected-Removed (SIR) compartmental model [68] is a math-

ematical model of infectious disease dynamics that divide the population into

3 disjoint groups [10]. Susceptible (S) refers to the set of people who have never

been infected but can acquire the disease. Infected (I) refers to the set of peo-

ple who have and can transmit the infection. Removed (R) refers to the people

who have either recovered or died from the infection and cannot transmit the

disease anymore. This model is defined by the differential equations:

dS

dt
= −βS(t)I(t)

N
,

dI

dt
=

βS(t)I(t)

N
− γI(t),

dR

dt
= γI(t) (3.1)

SIR assumes an homogeneous and constant population, and it is fully de-

fined by the parameters β (transmission rate) and γ (recovery rate). The

intuition behind this model is that every infected patient gets in contact with

27

Figure 3.1: (a) General behaviour of the SIR model. (b) The number of
infections predicted by the SIR model with fixed parameters, fitted to the
US data for 1 week prediction. (c) Similar to (b), but with time-varying
parameters.

β people. Since only the susceptible people can become infected, the chance

of interacting with a susceptible person is simply the proportion of susceptible

people in the entire population, N = S + I +R. Likewise, at every time point,

γ proportion of the infected people is removed from the system. Figure 3.1(a)

depicts the general behaviour of an SIR model.

3.1.2 Related Work

The main idea behind combining compartmental models with machine learning

is to replace the fixed parameters of the former with time-varying parameters

that can be learned from data [3, 16, 76, 78]. However, most of the approaches

focus on finding the parameters that can explain the past data, and not on

predicting the number of newly infected people. Although those approaches

are useful for obtaining insight into the dynamics of the disease, it does not

mean that those parameters will accurately predict the behaviour in the future.

Particularly relevant to our approach is the work by Arik et al. [5], who

used latent variables and autoencoders to model extra compartments in an ex-

tended Susceptible-Exposed-Infected-Removed (SEIR) model. Those additional

compartments bring further insight into how the disease impacts the popula-

tion [123, 71]; however, our experiments suggest that they are not needed for

an accurate prediction of the number of new infections. One limitation of

their model is a decrease in performance when the trend in the number of new

infections changes. We hypothesize that those changes in trend are related to

28

the government policies that are in place at a specific point in time. SIMLR

is able to capture those changes by tracking the policies implemented at the

government level.

A different line of work replaces epidemiological models with machine learn-

ing methods to directly predict the number of new infections [62, 66, 85, 94].

Importantly, Yeung et al. [130] added non-pharmaceutical interventions (poli-

cies) as features in their models; however, their approach is limited to make

predictions up to 2 weeks in advance, since information about the policies

that will be implemented in the future is not available at inference time. Our

SIMLR approach differs by being interpretable and also by forecasting policy

changes, which allows it to extend the horizon of the ∆I predictions.

There are many models that attempt to predict the evolution of the COVID-

19 epidemic. The Centers for Disease Control and Prevention (CDC) in the

United States allows different research teams across the globe to submit their

forecasts of the number of cases and deaths 1 to 8 weeks in advance. [18]. More

than 100 teams have submitted at least one prediction to this competition. We

compare SIMLR with all of the models that made predictions 1 to 4 weeks in

advance in the same time span as our study.

3.2 Materials and Methods

We view SIMLR as a probabilistic graphical model that uses a mixture of

experts approach to forecast the number of new COVID-19 infections, 1 to 4

weeks in advance. Figure 3.2 shows the intuition behind SIMLR. Changes in

the government policies are likely to modify the trend of the number of new

infections. We assume that stronger policies are likely to decrease the number

of new infections, while the opposite effect is likely to occur when relaxing

the policies. These changes are reflected as a change in the parameters of the

SIR model. Using those parameters, we can then predict the number of new

infections, then use that to compute the likelihood of observing other new

policy changes in the short term.

29

While Figure 3.2 is an schematic diagram used for pedagogical purposes;

Figure 3.3 depicts the formal probabilistic graphical model , as a plate model,

that we use to estimate the parameters of the SIR model, the number of new

infections, and the likelihood of observing changes in policies 1 to 4 weeks in

advance. The blue nodes are estimated at every time point, while the values of

the green nodes are either known as part of the historical data, or inferred in a

previous time point. The random variables are assumed to have the following

distributions:

CTt+1 | {CPt−τ}τ∈{1,2,3} ∼ CatK∈{−1,0,1}(θCT)
βt+1 | {βt−τ}τ∈{0,1,2}, CTt+1 ∼ N (µβ,Σβ)
γt+1 | {γt−τ}τ∈{0,1,2},CTt+1 ∼ N (µγ,Σγ)

SIRt+1 | βt+1, γt+1 ∼ N (µSIR,ΣSIR)
Ut | {SIRt−τ}τ∈{0,1,2} ∼ CatK∈{−1,0,1}(θU)
Ot | Wt ∼ CatK∈{0,1}(θO)

CPt+1 | Ot, Ut ∼ CatK∈{−1,0,1}(θCP)

(3.2)

where t indexes the current week, SIRt = [St, It, Rt], µSIR ∈ R3 is given below

by Equation 3.3, µβ = (α0,CTt+1)+(α1,CTt+1)βt−1+(α2,CTt+1)βt−2+(α3,CTt+1)βt−3

and µγ = (ω0,CTt+1) + (ω1,CTt+1)γt−1 + (ω2,CTt+1)γt−2 + (ω3,CTt+1)γt−3 are linear

combinations of the three previous values of β and γ (respectively). The coeffi-

cients of those linear combinations depend on the value of the random variable

CTt+1. We did not specify a distribution for the node New infectionst+1 be-

cause its value is deterministically computed as St − St+1.

Informally, the assignment CTt = −1 means that we expect a change in

trend from an increasing number of infections to a decreasing one. The oppo-

site happens when CTt = 1, while CTt = 0 means that we expect the popula-

tion to follow the current trend (either increasing or decreasing). We assume

these changes in trend depend on changes in the government policies 2 to 4

weeks prior to the week of our forecast – e.g., we use {CTt−3, CTt−2, CTt−1}

when predicting the number of new infections at t + 1, ∆It+1; and we need

{CTt, CTt+1, CTt+2} when predicting ∆It+4. Note that, at time t, we will not

know CTt+1 nor CTt+2. We chose this interval based on the assumption that

the incubation period of the virus is 2 weeks.

The status of CTt+1 defines the coefficients that relate βt+1 and γt+1 with

their three previous values βt, βt−1, βt−2 and γt, γt−1, γt−2, respectively. Since

30

Figure 3.2: Intuition behind SIMLR. The policies currently in place determine
the value of the parameters needed to infer the next values, using an SIR model.
Those predictions are then used to estimate how the policies might change in
the future.

βt+1 and γt+1 fully parameterize the SIR model in Equation 3.1, we can es-

timate the new number of infected people, ∆It+1, from these parameters (as

well as the SIR values at time t).

The random variables Ut ∈ {−1, 0, 1} and Ot ∈ {0, 1} are auxiliary vari-

ables designed to predict the probability of observing a change in policy at

time t + 1. Intuitively, Ut represents the “urgency” of modifying a policy. As

the number of cases per 100K inhabitants and the rate of change between the

number of cases in two consecutive time points increases, the urgency to set

stricter government policies increases. As the number (and rate of change) of

cases decreases, the urgency to relax the policies increases. Finally, Ot models

the “willingness” to execute a change in government policies. As the number

of time points without a change increases, so does this “willingness”.

31

Figure 3.3: Modeling SIMLR as a PGM for forecasting new cases of COVID-
19. The blue nodes are estimated at each time point, while the green ones are
either based on past information, or where estimated in a previous iteration.

32

3.2.1 SIR with Time-Varying Parameters

We can approximate an SIR model by transforming the differential Equa-

tion 3.1 into the equations of differences:

St = −β
St−1It−1

N
+ St−1

It = β
St−1It−1

N
− γIt−1 + It−1

Rt = γIt−1 + Rt−1

(3.3)

where St, It, Rt are the number of individuals in the groups Susceptible, In-

fected and Removed, respectively, at time t. Similarly St−1, It−1, Rt−1 represent

the number individuals in each group at time t−1. β is the transmission rate,

and γ is the recovery rate.

While the SIR model is non-linear with respect to the states (S, I, R),

it is linear with respect to the parameters β and γ. Therefore, under the

assumption of constant and known population size (i.e., N = St + It +Rt) we

can re-write the set of Equations 3.3 as:[
St

It

]
=

[
−St−1It−1

N
0

St−1It−1

N
−It−1

] [
β
γ

]
+

[
St−1

It−1

]
Rt = N − St − It

(3.4)

Given a sequence of states x1, . . . , xn, where xt = [St It]
T , it is possible

to estimate the optimal parameters of the SIR model as:

(β∗, γ∗) = arg min
β,γ

n∑
i=1

||xi − x̂i||2 + λ1(β − β0)
2 + λ2(γ − γ0)

2 (3.5)

where x̂i is computed using Equation 3.4, and λ1 and λ2 are optional regular-

ization parameters that allow the incorporation of the priors β0 and γ0. For

the case of Gaussian priors – i.e., β ∼ N (β0, σ
2
β) and γ ∼ N (γ0, σ

2
γ) – we use

λ1 = 1
2σ2

β
and λ2 = 1

2σ2
γ

[87]. Intuitively, Equation 3.5 computes the transmis-

sion rate (β∗) and the recovery rate (γ∗) that best explain the number of new

infections, deaths, and recovered people in a fixed time frame. If we know

a standard recovery rate and transmission rate a priori (β0, γ0), it is possible

to incorporate them into the Equation 3.5 as regularization parameters. The

weights λ1 and λ2 control how much to weight those prior parameters. Small

33

weights means we basically use the parameters learned by the data, and large

weights mean more emphasis on the prior information.

In the traditional SIR model, we set λ1 = λ2 = 0 and fit a single β

and γ to the entire time series. However, as shown in Figure 3.1(a), an SIR

model with fixed parameters is unable to accurately model several waves of

infections. As illustration, Figure 3.1(b) shows the predictions produced by

fitting an SIR model with fixed parameters (Equation 3.5) to the US data from

29/March/2020 to 3/May/2021, and then using those parameters to make

predictions one week in advance, over this same interval. That is, using this

learned (β, γ), and the number of people in the S, I, and R compartments on

28/March/2020, we predicted the number of observed cases during the week

of 29/March/2020 to 4/April/2020. We repeated the same procedure for the

entire time series. Note that even though the parameters β and γ were found

using the entire time series – i.e., using information that was not available at

the time of prediction – the resulting model still does a poor job fitting the

reported data.

Figure 3.1(c), on the other hand, was created by allowing β and γ to

change every week. Here, we first found the parameters that fit the data

from 29/March/2020 to 4/April/2020 – call them β1 and γ1 – then used those

parameters along with the SIR state on 28/March/2020 to predict the number

of new infections one week ahead – i.e., , the sampled week of 29/March/2020

to 4/April/2020. By repeating this procedure during the entire time series we

obtained an almost perfect fit to the data. Of course, these are also not “legal”

predictions since they too use information that is not available at prediction

time. – i.e., they used the number of reported infections during this first week

to find the parameters, which were then used to estimate the number of cases

over this time. However, this “cheating” example shows that an SIR model,

with the optimal time-varying parameters, can model the complex dynamics

of COVID-19. Recall from Figure 3.1(b) that this is not the case in the SIR

model with fixed parameters, which cannot even properly fit the training data.

34

3.2.2 Estimating SIR parameters

Naturally, the challenge is “legally” computing the appropriate values of βt+1

and γt+1, for each week, using only the data that is known at time t. Figure 3.3

shows that computing βt+1 and γt+1 depends on the status of the random

variable CTt+1. When CTt+1 = 0 – i.e., there is no change in the current

trend – we assume that:

βt+1 ∼ N (α0 + α1βt + α2βt−1 + α3βt−2, σ2
β)

γt+1 ∼ N (ω0 + ω1γt + ω2γt−1 + ω3γt−2, σ2
γ)

(3.6)

At time t, we can use the historical daily data x1, x2, . . . , xt to find the

weekly parameters β1, β2, . . . , βt/7 and γ1, γ2, . . . , γt/7. Note that there is just

one value for each week, so if there are 140 days, there are 140/7 = 20 weeks.

The first weekly pair (β1, γ1) is found by fitting Equation 3.5 to x1, . . . , x7;

(β2, γ2) to x8, . . . , x14; and so on. Finally, we find the parameters α and ω

in Equation 3.6 by maximizing the likelihood of the computed pairs. After

finding those parameters, it is straightforward to infer (βt+1, γt+1). Note that

this approach is the probabilistic version of linear regression. To estimate the

parameters σ2
β and σ2

γ we can simply estimate the variance of the residuals.

An advantage of also computing these variances is that it is possible to obtain

confidence intervals by sampling from the distribution in Equation 3.6 and

then using those samples along with Equation 3.3 to estimate the distribution

of the new infected people.

We estimated βt+1 and γt+1 as a function of the 3 previous values of those

parameters since this allows them to incorporate the velocity and acceleration

at which the parameters change. We computed the velocity of β as vβ,t =

βt − βt−1 and its acceleration as aβ,t = vβ,t − vβ,t−1. Then, estimating βt =

θ0 +θ1βt−1 +θ2vβ,t−1 +θ3aβ,t−1 is equivalent to the model in Equation 3.6. The

same reasoning applies to the computation of γt. We call this approach the

“trend-following varying-time parameters SIR”, tf-v-SIR.

For the case of CTt = −1 and CTt = 1 (which represents a change in

trend from increasing number of infections to decreasing number of infections

or vice-versa), we set βt+1 and γt+1 to values such that the predicted number

35

of new cases at week t + 1 is identical to the one at week t. We call this the

“Same as the Last Observed Week” (SLOW) model. As shown in Section 3.3,

SLOW is a baseline with very good performance despite its simplicity. Given

that the pandemic is a physical phenomenon that changes relatively slowly

from one week to the next, making a prediction that assumes that the new

number of cases will remain constant is not a bad prediction.

3.2.3 Estimating changes in policies

The random variables CTt+1,CPt+1 and Ot in Figure 3.3 are all discrete nodes

with discrete parents, meaning their probability mass functions are fully de-

fined by conditional probability tables (CPTs). Learning the parameters of

such CPTs from data is challenging due to the scarcity of historical informa-

tion. The random variable CTt+1 depends on the random variable changes in

policy (CP) at times t − 1, t − 2, t − 3; however, there are very few changes

in policy in a given region, meaning it is difficult to accurately estimate those

probabilities from data. For the random variable O, which represents the

“willingness” of the government to implement a change in policy, there is no

observable data at all. We therefore relied on prior expert knowledge to set

the parameters of the conditional probability tables for these random variables.

Figure 3.4 shows the conditional probability tables (CPT) for the random vari-

ables CTt+1, CPt+1, Ot. The intuition used to generate the CPT’s is as follows:

We considered that a change in trend in the current week depends on

changes in policies during the previous three weeks. We chose 3 weeks using

the hypothesis that the incubation period for the virus is 2 weeks. Then

the effects of a policy will be reflected approximately 2 weeks after a change.

We decided to analyze also one week after, and one week before this period,

giving as a result the tracking of CPt−3 to CPt−1. Secondly, we also assume

that whenever we observe a change of policy that will move the trend from

going up to going down, then that event will most likely happen. This is why

most of the probability mass is located in a single column. For example, if

we observe that the policies are relaxed at any point during the weeks t- 3,

t-2, or t-1, then we assume that we will observe a change in trend with 99.9%

36

Figure 3.4: Conditional probability tables used by SIMLR. The names of the
variables refer to the nodes that appear on Figure 2 on the main text

probability.

The rationale for the CPT P (Ot |Wt) is that the government becomes more

open to implement changes after long periods of ‘inactivity’. For example, if

they implement a change in policy this week (Wt = 0), then the probability

of considering a second change of policy during the same week is very small

(0.01 %). We are assuming that, after a change in policy, the government will

wait to see the effect of that change before taking further action. If 4 weeks

have passed since the last change in policy, we estimated the probability of

considering a change in the policy as 50%, while if more than 7 weeks have

passed, then they are fully open to the possibility of implementing a new

change.

P (Ot | Wt) estimates the probability of considering a change in the policy.

The probability of actually implementing a change, P (CPt+1 | Ot, Ut) depends

not only on how willing the government is, but also on how urgent it is to

make a change. In general, if the government is open to implement a change,

and the urgency is “high”, then the probability of changing a policy is high.

We also considered that the government “prefers” to either not make changes

in policy or relax the policies, rather than to implement more strict policies.

37

For modelling the random variable Ut, which represents the “Urgency to

change the trend”, we use an NN-CPD (neural-network conditional proba-

bility distribution), which is a modified version of the multinomial logistic

conditional probability distribution [72].

Definition 1 (NN-CPD). Let Y ∈ {1, . . . ,m} be an m-valued random variable

with k parents X1, . . . , Xk that each take on numerical values. The conditional

probability distribution P (Y |X1, . . . , Xk) is an NN-CPD if there is an function

z = fθ(X1, . . . , Xk) ∈ Rm, represented as a neural network with parameters

θ, such that p(Y = i | x1, . . . , xk) = exp(zi)/
∑

j exp(zj), where zi represents

the i-th entry of z.

Note Ut is a latent variable, so there is no observable data at all. We

again rely on domain knowledge to estimate its probabilities. To compute

P (Ut | SIRt−2, SIRt−1, SIRt), we extract two features: ct = 10E5(St−1−St)/N ,

which represents the number of new reported infections per 100K inhabitants;

and vt = ct − ct−1, which estimates the rate of change of ct. Then define

P (Ut | SIRt−2, SIRt−1, SIRt) = P (Ut | ct, vt).

To learn the parameters θ we created the dataset shown in Figure 3.5. Note

that the targets in such dataset are probabilities. We relied on the probabilistic

labels approach proposed by Vega et al. [120] to use a dataset with few training

instances along with their probabilities to learn the parameters of a neural

network more efficiently. We trained and a simple neural network with a

single hidden layers with 64 units, and 3 output units with softmax activation.

The random variables Ut ∈ {−1, 0, 1} and Ot ∈ {0, 1} are auxiliary vari-

ables designed to predict the probability of observing a change in policy at

time t + 1. Intuitively, Ut represents the “urgency” of modifying a policy. As

the number of cases per 100K inhabitants and the rate of change between the

number of cases in two consecutive time points increases, the urgency to set

stricter government policies increases. As the number (and rate of change)

of cases decreases, the urgency to relax the policies increases. Most of the

parameters in both NN-CPD tables are similar for the US and Canada, the

difference arises from a perceived preference for not setting very strict policies

38

in the US during the first year of the pandemic.

[b]

Figure 3.5: Dataset used to create the NN-CPD for the variable Ut and its
visualization. Values closer to 1 (yellow) increase p(Ut = 1 | Ct, Vt). Values
closer to 0 (green) increase p(Ut = 0 | Ct, Vt). Values closer to −1 (blue)
increase p(Ut = −1 | Ct, Vt)

3.2.4 Evaluation

We evaluated the performance of SIMLR, in terms of the mean absolute per-

centage error (MAPE) and mean absolute error (MAE), for forecasting the

number of new infections 1 to 4 weeks in advance, in data from United States

(as a country and individually for every state) and the 6 biggest provinces of

Canada: Alberta (AB), British Columbia (BC), Manitoba (MN), Ontario (ON),

Quebec (QB), and Saskatchewan (SK). For each of the regions, the predic-

tions are done on a weekly basis, over the 39 weeks from 26/Jul/2020 to

1/May/2021. This time span captures different waves of infections. Equa-

tion 3.7 show the computation of the metrics used for evaluating our approach.

39

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣
MAE =

1

n

n∑
t=1

|yt − ŷt|
(3.7)

At the end of every week, we fitted the SIMLR parameters using the data

that was available until that week. For example, on 25/Jul/2020, we used all

the data available from 1/Jan/2020 to 25/Jul/2020 to fit the parameters of

SIMLR. Then, we made the predictions for the number of new infections during

the weeks: 26/Jul/2020 – 1/Aug/2020 (1 week in advance), 2/Aug/2020 –

8/Aug/2020 (2 weeks in advance), 9/Aug/2020 – 15/Aug/2020 (3 weeks in

advance), and 16/Aug/2020 – 22/Aug/2020 (4 weeks in advance). After this,

we then fitted the parameters with data up to 1/Aug/2020 and repeated the

same process, for 38 more iterations, until we covered the entire range of

predictions.

We compared the performance of SIMLR with the SIR compartmental

model with time-varying parameters learned using Equation 3.6 but no other

random variable (tf-v-SIR), and with the simple model that forecasts that the

number of cases 1 to 4 weeks in advance is the ”Same as the Last Observed

Week” (SLOW). For the United States data, we also compared the perfor-

mance of SIMLR against the publicly available predictions at the COVID-19

Forecast Hub, which are the predictions submitted to the Center for Disease

Control and Prevention (CDC) [19].

For training, we used the publicly available dataset OxCGRT [48], which

contains the policies implemented by different regions, as well as the time pe-

riod over which they were implemented. We limited our analysis to 3 policy de-

cision: Workplace closing, Stay at home requirements, and Cancellation

of public events in the case of Canada. For the case of the United States we

used Restrictions on gatherings, Vaccination policy, and Cancellation

of public events. For information about the new number of reported cases

and deaths, we used the publicly available COVID-19 Data Repository by

the Center for Systems Science and Engineering at Johns Hopkins Univer-

40

sity [22]. The code for reproducing the results presented here are discussed in

Appendix A.

3.3 Results

3.3.1 Data Preprocessing

Before inputting the time-series data to SIMLR, we performed some basic

preprocessing during the training phase, and exclusively on the training data.

We evaluated of our models by comparing its predictions with the results

reported by the different health agencies –i.e. we did not fill in the data on

the test sets:

1. The original data contains the cumulative number of reported infec-

tions/deaths on a daily basis. We trivially transformed this time-series

into the number of new daily infections/deaths.

2. We considered negative values from the new daily infections/deaths time-

series as missing, assuming these negative values arose due to inconsis-

tencies during the data reporting procedure.

3. We “filled-in” the missing values. When the number of new infec-

tions/deaths was missing at day d, we assumed that the entry at d + 1

contained the cases for both d and d+ 1, and divided the number of new

infections/deaths evenly between both days.

4. We eliminated outliers. For each day d, with number of reported new

infections, ∆Id, we computed the mean (µd) and standard deviation (σd

of the set ∆Id−10, . . . ,∆Id−1; we then set ∆Id := min{∆Id, µd + 4σd}.

5. We used the number of new infections and new deaths to produce the

SIR vector SIRt = [St, It, Rt].

In step 5, we assumed that everyone in a given region was susceptible at

the start time – i.e., S0 = N . At each new time point, we transfer the number

of new infections from S to I, and the number of new deaths and recovered

41

from I to R. If the number of new recovered people is not reported, we used

the surveillance definition of recovered used by Canadian health agencies. This

definition is based on the assumption that a recovered person is one who is

not hospitalized and is 14 days past the day when they tested positive [2, 95]:

”Active and recovered status is a surveillance definition to try to

understand the number of active cases in the population. It is not

related to clinical management of cases. It is based on the assump-

tion that a case is recovered 14 days after a particular date...”

3.3.2 MAPE and MAE

Figure 3.6 shows the MAPE of the 1- to 4-week forecasts for the United States

as a country and the 6 biggest provinces of Canada. Note that SIMLR has a

consistently lower MAPE than tf-v-SIR and SLOW. Figure 3.7 shows a simi-

lar result in terms of MAE. Tables 3.1 and 3.2 show the mean and standard

deviations of the metrics corresponding to the Figures 3.6 and 3.7. In addi-

tion Table 3.3 show the correlation coefficient between the time series of the

reported new infections every week and the predictions made by the different

models.

Figure 3.8(c) shows how our proposed SIMLR approach compares with the

18 models that submitted predictions at the country level to the CDC during

the same span of time (results at the state level are included in the appendix).

Note that SIMLR and the model LNQ-ens1 are the best performing models,

with no statistically significant difference (p > 0.05 on a paired t-test) with

respect to MAPE.

3.4 Discussion

Figure 3.8 illustrates the actual predictions of SIMLR one week in advance for

the province of Alberta, Canada; and two weeks in advance for the US as a

country. These two cases exemplify the behaviour of SIMLR. As noted above,

there is a 2- to 4-week lag after a policy changes, before we see the effects.

This means the task of making 1-week forecasts is relatively simple, as the

42

Figure 3.6: Comparison of SIMLR, SIR model with time-varying parameters,
and SLOW. Table 2 in supplementary material contains the numerical infor-
mation.

Figure 3.7: Comparison of SIMLR, SIR model with time-varying parameters,
and SLOW in terms of MAE. To make the numbers comparable, the figures
each show the US MAE values divided by 100.

43

Table 3.1: MAPE of the 6 biggest provinces in Canada and United States as a
country, 1- to 4-week in advance. The number in parenthesis is the standard
deviation.

1 Week 2 Weeks
SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 7 (8) 10 (10) 17 (9) 20 (14) 23 (16) 33 (17)
BC 11 (8) 12 (10) 11 (8) 18 (10) 22 (15) 20 (13)
MN 19 (14) 20 (13) 21 (15) 36 (24) 34 (22) 37 (24)
ON 14 (9) 14 (10) 16 (10) 28 (21) 29 (24) 29 (19)
QB 13 (11) 14 (11) 16 (11) 23 (20) 26 (30) 27 (19)
SK 14 (9) 15 (12) 18 (13) 28 (17) 31 (18) 33 (18)
US 9 (6) 11 (8) 13 (9) 16 (13) 19 (16) 24 (17)

3 Weeks 4 Weeks
SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 34 (21) 33 (22) 48 (26) 46 (35) 47 (33) 63 (35)
BC 22 (14) 23 (16) 25 (18) 25 (20) 27 (21) 31 (20)
MN 49 (31) 48 (34) 50 (27) 60 (38) 63 (42) 62 (33)
ON 42 (37) 44 (40) 42 (30) 55 (51) 59 (58) 53 (40)
QB 32 (28) 34 (36) 37 (27) 38 (41) 51 (64) 45 (35)
SK 32 (23) 42 (32) 43 (22) 38 (24) 60 (50) 49 (26)
US 23 (23) 25 (26) 34 (28) 36 (38) 38 (41) 45 (40)

44

Table 3.2: MAE of the 6 biggest provinces in Canada and United States as a
country, 1- to 4-week in advance. The number in parenthesis is the standard
deviation. For the case of the US the number of cases was divided by 100.

1 Week 2 Weeks
SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 385 (559) 598 (905) 850 (724) 966 (971) 1245 (1430) 1651 (1258)

BC 339 (304) 397 (426) 361 (294) 594 (443) 661 (480) 648 (485)

MN 204 (227) 252 (271) 221 (224) 422 (371) 418 (379) 413 (346)

ON 1471 (1343) 1520 (1662) 1635 (1388) 3124 (2632) 3001 (2847) 3044 (2351)

QB 1229 (1443) 1265 (1354) 1410 (975) 2098 (2264) 2496 (3270) 2446 (1743)

SK 161 (161) 171 (203) 194 (174) 339 (294) 382 (324) 355 (264)

US* 841 (796) 1061 (1149) 1103 (913) 1361 (1398) 1729 (1979) 1933 (1580)

3 Weeks 4 Weeks
SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 1719 (1381) 1601 (1558) 2378 (1649) 2261 (1863) 2385 (2087) 3074 (1858)

BC 731 (566) 777 (672) 853 (716) 835 (709) 883 (703) 1127 (892)

MN 609 (504) 591 (501) 602 (467) 749 (612) 775 (630) 753 (571)

ON 4357 (3672) 4511 (3983) 4266 (3053) 5702 (4427) 5910 (4988) 5447 (3417)

QB 2854 (2527) 3261 (4096) 3288 (2389) 3244 (3131) 4636 (6115) 3947 (2788)

SK 351 (320) 522 (500) 472 (306) 410 (287) 736 (733) 541 (348)

US* 1793 (2012) 2089 (2768) 2538 (2151) 2414 (2755) 2933 (4027) 3157 (2679)

45

Table 3.3: Pearson correlation coefficient between the ground truth and the
predictions of the 6 biggest provinces in Canada and United States as a country
1- to 4-week in advance.

1 Week 2 Weeks
SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 0.99 0.98 0.96 0.94 0.95 0.84
BC 0.97 0.97 0.97 0.90 0.89 0.90
MN 0.96 0.96 0.95 0.85 0.87 0.86
ON 0.96 0.97 0.96 0.83 0.85 0.85
QB 0.97 0.97 0.96 0.93 0.89 0.86
SK 0.97 0.96 0.95 0.89 0.89 0.86
US 0.97 0.97 0.96 0.93 0.93 0.87

3 Weeks 4 Weeks
SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 0.90 0.90 0.68 0.84 0.85 0.50
BC 0.84 0.83 0.83 0.80 0.81 0.75
MN 0.69 0.75 0.73 0.51 0.56 0.57
ON 0.67 0.68 0.71 0.51 0.53 0.58
QB 0.83 0.84 0.74 0.71 0.71 0.61
SK 0.82 0.81 0.78 0.73 0.69 0.71
US 0.88 0.90 0.77 0.80 0.84 0.65

46

relevant policy (at times t− 3 to t− 1) is fully observable. This allows SIMLR

to directly compute CTt+1, which can then choose whether to continue using

the SIR with time-varying parameters if no policy changed at time t−1, t−2,

or t− 3, or using the SLOW predictor if the policy changed.

Figure 3.8: (a) 1-week forecasts SIMLR, tf-v-SIR, and SLOW, for Alberta,
Canada. (b) 2-week forecasts, of the same models, for US data. (c) Compari-
son of SIMLR versus models submitted to the CDC (on US data).

Figure 3.8(a) shows a change in the trend of reported new cases at week

22. However, just by looking at the evolution of number of new infections

before week 22, there is no way to predict this change, which is why tf-v-SIR

predicts that the number of new infections will continue growing. However,

since SIMLR observed a change in the government policies at week 20, it

realized it could no longer rely on its estimation of parameters and so switched

to the SLOW model, which is why it was more accurate here. A similar

47

behaviour occurs in week 34, when the 3rd wave of cases in Alberta started.

Due to a relaxation in the policies on week 31, SIMLR (at week 31) correctly

predicted a change of trend around weeks 33–35.

This behaviour is not exclusive for the data of Alberta and it explains why

the performance of SIMLR is consistently better than the baselines used for

comparison in Figure 3.6 and Figure 3.8(c). A striking result is how hard

it is to beat the simple SLOW model (COVIDhub-baseline). Out of the 19

models considered here, only 5 (including SIMLR) do better than this simple

baseline when predicting 3 to 4 weeks ahead! This brings some insight into the

challenge of making accurate prediction in the medium term – probably due to

the need to predict, then use, policy change information. Tables B.1 - B.4 in

the appendix show a comparison between our proposed SIMLR and tf-v-SIR

against the models submitted to the CDC for all the states in the US. SIMLR

consistently ranks among the best performers, with the advantage of being an

interpretable model.

A deeper analysis of Tables B.1 - B.4 shows that, in some states, the perfor-

mance of SIMLR degrades for longer range predictions. This occurs because

we are monitoring only the same 3 policies for all the states; however, differ-

ent states might have implemented different policies and reacted differently to

them. For example, closing schools might be a relevant policy in a state where

there is an outbreak that involves children, but not as relevant if most of the

cases are in older people.

Tracking irrelevant policies might degrade the performance of SIMLR. If

the status of an irrelevant policy changes, then the dynamics of the disease

will not be affected. The model however, will assume that the change in

the policy will cause a change of trend and it will rely on the SLOW model,

instead of the more accurate tf-v-SIR. Although SIMLR can be adapted to

track different policies, the policies that are relevant for a given state must be

given as an input. So while we think our overall approach applies in general,

our specific model (tracking these specific policies, etc.) might not produce

accurate predictions across all the regions. This is also a strength, in that it

is trivial to adapt our specific model to track the policies of interest within a

48

given region.

Predictions at the country level are more complicated, since most of the

time policies are implemented at the state (or province) level instead of na-

tionally. For making predictions for an entire country, as well as predictions 3

or 4 weeks in advance, SIMLR first predicts, then uses, the likelihood of ob-

serving a change in trend, at every week. In these cases, the random variable

CTt+1 no longer acts like a “switch”, but instead it mixes the predictions of

the tf-v-SIR and SLOW models, according to the probability of observing a

change in the trend.

Figure 3.8(b) shows that whenever there is a stable trend in the number

of new reported infections – which suggests there has been no recent policy

changes – SIMLR relies on the predictions of the tf-v-SIR model; however,

as the number (and rate of change) of new infections increases, so does the

probability of observing a change in the policy. Therefore, SIMLR starts giving

more weight to the predictions of the SLOW model. Note this behaviour in

the same figure during weeks 13 – 20.

One limitation of SIMLR is that it relies on conditional probabilities that

are hard to learn due to lack of data, which forced us to build them based on

domain knowledge. If this prior knowledge is inaccurate, then the predictions

might be also misleading. Also, different regions might have different “thresh-

olds” for taking action. Despite this limitation, SIMLR produced state-of-the-

art results in both forecasting in the US as a country and at the provincial

level in Canada, as well as very competitive results in predictions at the state

level in the US.

Note that modelling SIMLR as a PGM does not imply causality. Although

changes in the observed policy influence changes in the trend of new reported

cases, the opposite is also true in reality. However, using probabilistic graphical

models does makes it interpretable. It also allows us to incorporate domain

knowledge that compensates for the relatively scarce data. SIMLR’s excellent

performance – comparable to state-of-the-art systems in this competitive task

– show that it is possible to design interpretable machine learning models

without sacrificing performance.

49

Forecasting the number of new COVID-19 infections is a very challenging

task. Many factors play a role on how the disease spreads, including the

government policies and the adherence of citizens to such policies. These

elements are difficult to model mathematically; however, the collected data

(number of new infections and deaths, for example) are a reflection of all

those complex interactions.

Machine learning, on the other side, excels at learning patterns directly

from the data. Unfortunately, training many models from scratch can require

a great deal of data, especially to learn complex patterns, such as the evolution

of a pandemic.

We proposed SIMLR, a methodology that uses machine learning (ML)

techniques to learn a model that can set, and adjust, the parameters of math-

ematical model for epidemiology (SIR). SIMLR augments that SIR model by

incorporating expert knowledge in the form of a probabilistic graphical model.

In this way, human experts can incorporate their believes in the likelihood

that a policy will change, and when. By combining both components we sub-

stantially reduce the data that machine learning usually requires to produce

models that can make accurate predictions.

Importantly, besides providing state-of-the-art predictions in terms of MAPE

in the short and medium term, the resulting SIMLR model is interpretable and

probabilistic. The first means that we can justify the predictions given by the

algorithm – e.g., “SIMLR predicts 1,000 cases for the next week due to a

change in the government policies that will decrease the transmission rate”.

The second means we can produce probabilistic values – so instead of predict-

ing a single value, it can predict the entire probability distribution – e.g., the

probability of 100 cases next week, or of 200 cases or of 1000, etc.

This chapter demonstrated that a model that explicitly models and in-

corporates government policy decisions can accurately produce 1- to 4-week

forecasts of the number of COVID-19 infections. This involved showing that

an SIR model with time-varying parameters is enough to describe the com-

plex dynamics of this pandemic, including the different waves of infections.

We expect that this approach will be useful not only for modelling COVID-19,

50

but other infectious diseases as well. We also hope that its interpretability

will leads to its adoption by researchers, and users, in epidemiology and other

non-ML fields.

51

Chapter 4

Batch effects

4.1 Introduction

As explained in Chapter 1, the goal of supervised machine learning is to pro-

duce a model that accurately predicts a value, y, given a vector input, x, corre-

sponding (implicitly) to an unknown function y = h(x) [87]. In the supervised

setting, we learn an approximate ŷ = ĥ(x) ≈ h(x), by applying a learning

algorithm to a (source) training dataset DS = {(x1, y1), (x2, y2), . . . (xn, yn)}.

We can then apply this ĥ to new instances DT = {x1, x2, . . . xm}.

Chapters 2 and 3 explain strategies to incorporate domain-specific informa-

tion during the training process. Still, those strategies assume that the source

(S) and the target (T) domains follow the same probability distribution–i.e.

PS(X, Y) = PT (X, Y). This is a very common assumption in machine learn-

ing, but when the assumption is incorrect, a predictor learned using DS might

not generalize when used on DT [107]. The performance on the target do-

main depends on its performance on the source domain, and on the similarity

between the distributions of the domain and target domains [8].

Especially problematic is the case where there are just a few training in-

stances available (n), each represented by a large number of features (p), which

might range from a few hundreds to millions. In this undesirable situation,

known as “small n, large p” [52], the training sample might not be a good

approximation of the real distribution of the data [4].

A well known model to explain the discrepancy between distributions is

covariate shift, where PS(X) ̸= PT (X), but PS(Y | X) = PT (Y | X) [106].

52

Figure 4.1: (a) Domain-shift for domains A and B. Y represents the label, Z
represent a latent common feature space. XA and XB are the observations for
the two different domains. Here, gθ : Z → X and fλ : X → Z. (b) Plate
model for representing more than 2 domains.

Other assumptions lead to different models [107, 73], which motivate algo-

rithms that decrease the negative impact of the discrepancies under different

circumstances [20, 125].

Here, we focus on the case where PS(X) ̸= PT (X), PS(Y |X) ̸= PT (Y |X),

and PS(Y) = PT (Y). However, we assume the existence of a function f(·),

with parameters λS and λT , such that PS(f(X, λS)) = PT (f(X, λT))

and PS(Y | f(X, λS)) = PT (Y | f(X, λT)). This implies that there

is a common feature space where the source and target domains follow the

same distribution; see Figure 4.1. This model is known as domain-shift [107],

or covariate observation shift [73]. Specifically, Sections 4.2 and 4.3 describe

approaches for correcting for batch effects when the mapping from source

and target domains to a common representation is an affine function (i.e.,

Zi = f(XS,i, λS) and Zj = f(XT,j, λT) have the form f(X,λ) = λX + λ0).

Figure 4.2(a) exemplifies domain shift. Note that the decision boundary

learned from the source domain (shown with solid squares and triangles) has

poor performance on the target domain (shown with dashed squares and tri-

angles). Domain-shift adaptation aims to find a common representation that

minimizes the divergence between the domains. If successful, the decision

function learned during training will have a good performance when doing

53

Figure 4.2: (a) The training and test set follow different probability distri-
butions (b) After correcting for domain-shift, the original decision boundary
now applies for both domains.

inference; see Figure 4.2(b).

4.1.1 Related work

The model presented in Figure 4.1 is closely related to the probabilistic versions

of principal components analysis [114] and canonical correlation analysis [7].

In both cases, Z ∼ N (0, I) and X | Z ∼ N (Wz+µ,Ψ). When the transforma-

tion matrix, W , is diagonal –i.e., a location-scale transformation– it is possible

to perform domain-shift adaptation without the Gaussianity assumption by

minimizing the maximum mean discrepancy between both domains [42, 132].

In our study, we allow W to be an arbitrary matrix without the Gaussianity

assumption. Domain adaptation with arbitrary affine transformation has been

explored in the context of mixing small datasets from different domains to in-

crease the size of the training set. While this is often successful, this approach

still requires a supervised dataset for each of the different sources [118]. Here,

our objective is to learn a predictor in the source domain, and then apply it

to the target domain in the unsupervised and semi-supervised scenarios.

Recent approaches attempt to minimize the divergence between source and

target distributions by using data transformations. CORAL [110] matches the

first two moments of the source and target distributions, while a different line

of work uses variants of autoencoders to find a common mapping between

source and target data [38, 14, 15, 81]. After finding this common feature

space, they learned a predictor using only the source data. Their approach

54

achieved better performance when applied to the target dataset, relative to

not correcting for domain-shift, in natural language processing tasks.

Adversarial domain adaptation learns the mapping to the common space

and the predictor at the same time [29, 80, 134]. It combines a discriminator

(which distinguishes instances from the different domains); a predictor (which

tries to minimize the prediction error on the labeled instances); and a third

function (which maps the instances into a common space). The three func-

tions are optimized together. If successful, the discriminator should be unable

to distinguish the domain on an instance (based on its common space encod-

ing), while the predictor should have good performance under the metric of

interest [115].

Despite the success of neural networks for domain adaptation in natural

language processing and computer vision tasks, it is hard to define what type

of problems can be solved with this approach. For example, they might fail

when PS(Y) ̸= PT (Y) [112]. Even when they successfully learn an invari-

ant representation across domains that preserves the predictive power in the

source domain, this do not guarantee a successful adaptation. It is possible

to have invariant representations and small error in the training set, and still

have a large error in the test set [135]. Therefore, it is important to explic-

itly determine under which conditions we expect an algorithm to work. Our

goal with this chapter is to analyze the problem of domain-shift under affine

transformations, and to propose an approach for domain adaptation for this

scenario.

4.1.2 A simple example

Imagine that we want to build a classifier that can identify the biological sex

of a person Y ∈ {male(M), female(F)}, given their weight, X. Also, imagine

that we use two different scales, one that measures in lb and the other in kg.

Figure 4.3 shows the histogram of the instances measured in each scale. Note

that plb(Y = M) = pkg(Y = M) = 0.5; however plb(X < 70) ̸= pkg(X < 70).

In Figure 4.3 we can observe that, while the 70 kg or less is a frequent weight

for people, we do not expect to see many people with a weight below 70 lb.

55

Figure 4.3: Left: Histogram of the instances weighted in the scale in kg. Right:
Histogram of the instances weighted in the scale in lb.

Finally Plb(Y = M | X = 80) ̸= Pkg(Y = M | X = 80). Note that a classifier

trained on the kg data would predict male in this case, while one trained on

the lb data would predict female.

We can set this problem in the context of the graphical model of Figure 4.1.

Define f(X;λ) = λ0 + λZ. Then, by setting λ
(kg)
0 = λ

(lb)
0 = 0, λ(kg) = 1, and

λ(lb) = 2.2 we can model the distributions of Figure 4.3. In this case, we define

the latent space to be the measurements in kg. Therefore, we can go from the

space in kg to the space in lb by multiplying the weight by 2.2. This solution

is not unique. Note that, using our definition of f(X;λ) we can set the latent

space to be any of the measurements in kg, the measurements in pounds, the

z-score (zero mean and standard deviation of 1), etc.

4.1.3 Objectives of batch effects correction

From the machine learning perspective, we want to correct for batch effects in

order to get either more accurate classifiers by mixing dataset acquired from

different sources, or to create a classifier, trained on a source domain, and

then use that classifier on a target domain. These two cases are depicted in

Figure 4.4.

The different scenarios depend on the labeled data available for training.

In both cases, we have two inter-related objectives: (1) Find a transformation

that maps the data from its original space to the common, latent space. (2) To

find a latent space where we can learn an accurate classifier. In Sections 4.2

and 4.3 we describe different approaches for addressing batch effects for the

56

two scenarios described above.

Figure 4.4: (a) The training set is from a source domain, while the test set
is from a target domain (b) The training set contains labeled data from the
source and target domain. The test set contains data from the target domain.

4.2 Supervised domain adaptation under affine

transformations

In an effort to mitigate the “small n, large p” problem, many researchers

aggregate data obtained from different sources into a single, larger dataset.

Unfortunately, this dataset might be subject to batch effects possibly caused

by hardware differences or imaging protocols [43, 93], and its main consequence

in prediction studies is that researchers have observed a decrease in classifi-

cation accuracy on multi-source studies compared with that obtained using a

source [93, 122, 11].

In this section, we propose an approach to combine datasets from different

sources when the discrepancies in their probability distributions is caused by

affine transformations. We test the performance of our approach in the task

of identifying people with schizophrenia given a functional magnetic resonance

image (fMRI) of the brain.

4.2.1 Machine learning and functional connectivity graphs

The standard approach for applying machine learning to fMRI data begins

by parcellating the (properly preprocessed) brain volumes into m regions of

57

interest. It then forms a symmetric m × m pairwise connectivity matrix,

whose (i, j) entry each correspond to some measure of statistical dependence

between regions i and j, whose upper-triangle is vectorized into a vector of

length p = 1
2
m(m− 1).

The vectors corresponding to each of the n subjects in the training set

are arranged into a matrix X of dimensions n × p. Similarly, a vector Y of

length n, contains the labels of X. Finally, this labeled training data (X, Y)

is given to a learning algorithm, that produces the final classifier. A detailed

description of this procedure can be found elsewhere [102, 122].

A critical aspect in assessing the impact of batch effects in classification

studies, as well as the effectiveness of the techniques applied to removed them,

is the methodology used to measure the performance of the classifiers. Some

studies pool together the data from the different sites and then randomly split

the data into a training and test set, while others use the data from (r−1) sites

for training and the rth site for testing [34, 90, 93, 1]. The first approach might

mask the influence of batch effects because it artificially makes the distribution

of the training set and test set more similar. This is an unrealistic scenario.

In a real application, a clinician cares about the performance of the classifier

on the patients that s/he is evaluating. The second approach is more realistic,

but also more complicated and it will be addressed in Section 4.3.

Therefore, we propose a third evaluation scenario: Fix the test set to be a

specific subset of the data from site A. Then consider two training sets: just

the remaining instances from site-A versus those remaining site-A instances

and also the instances from site B. This approach, illustrated in Figure 4.5,

has the advantage of identifying if there is a benefit of mixing data from

different sites, or if it is better to train one classifier independently for every

site. Note that this methodology requires having a labeled dataset from both

scanning sites.

58

Figure 4.5: Evaluating a classifier in single site (a) and multi-site (b) scenarios.

4.2.2 Batch effects correction techniques

Adding site as covariate

This technique involves augmenting each instance with its site information –

encoded as a 1-hot-encoding. (That is, using r additional bit features, where

the jth feature is 1 if that instance comes from the jth site, and the other

features here are 0.)

When using a linear classifier, this method assumes that the only difference

between sites is in the threshold that we use to classify an instance as belonging

to one class, or another. If we assume that the decision function for one site is

given by wTx = 0, where the x vector represent the features and w is the vector

of the coefficients (or weights) of the features, then the decision function for a

second site is given by wTx + c = 0. This method is effective when the batch

effect is caused by a translation (adding a constant) to each instance of the

dataset, but it will be ineffective otherwise. Figure 4.6(a) shows an illustration

of this case. Note how the learned decision boundary is appropriate for one of

the sites (red), but suboptimal for the other (blue). Note that this technique

forces both decision boundaries to have the same slope, and only the bias

changes.

Z-score normalization

This approach modifies the probability distribution of the features extracted

from both sites, A and B, by making the values of each individual feature,

59

for each site, zero-mean with unit variance – i.e., for each site, for the ith

feature, subject its mean (for that site), and divide by its empirical standard

deviation (for that site). Using this technique, only the marginals are the

same in both sites, but the covariance structure is not. Applying this “Z-

score normalization” to the data from every scanning site independently, will

effectively remove batch effects caused by translation and scaling of features

(see Appendix C.1). However it fails with more complex transformations, such

as rotations or linear transformations in general; see Figure 4.6(b). Note that

this scaling and translation is in the feature space, and so it is different to

the affine transformations that are corrected during the preprocessing stage

(which are applied in the coordinate space).

Whitening

Whitening is a linear transformation that can be viewed as a generalization

of the z-score normalization. Besides making the mean of every feature equal

to zero and its variance equal to one, it also removes the correlation between

features by making the overall covariance matrix the identity matrix. One of

the most common procedures to perform this process is PCA Whitening [69].

This transformation first rotates the data, in each site, by projecting it into its

principal components, and then it scales the rotated data by the square root

of its eigenvalues (which represent the variance of each new variable in the

PCA space). Applying this whitening transformation to every dataset inde-

pendently will remove the batch effects caused by a rotation and translation of

the datasets, since in this cases the principal components of the different sites

will be aligned; see Appendix C.2 for the mathematical derivation. However,

since there is no guarantee that the principal components will be aligned in

general, it might not work with other linear transformations; see Figure 4.6(c).

4.2.3 Solving linear transformations

Note that z-score normalization and whitening solve specific cases of

XB = αXA + β α ∈ Rp×p, β ∈ Rp (4.1)

60

Figure 4.6: Examples of linear transformation where the methods fail. (a)
Including site as covariate, (b) z-score normalization, (c) whitening.

(corresponding to Equation C.2 in Appendix C.2.) Z-score solves batch effects

when the associated matrix α is diagonal, while whitening solves them when

α is orthogonal with determinant 1. Nevertheless, both methods fail to solve

batch effects for a general matrix α. Note also that the previous approaches

did not explicitly compute α and β, but instead, applied a transformation that

removed their effects under the specified circumstances. Of course, if we could

compute α and β, or even a good approximation α̂ and β̂, we could then solve

for any batch effect corresponding to an arbitrary linear transformation.

For any two random vectors XA and XB, such that XB = αXA + β :

µB = E[XB] = E[αXA + β] = αE[XA] + β = αµA + β

ΣB = COV [XB] = COV [αXA + β] = αCOV [XA]αT = αΣAα
T

(4.2)

Although we can obtain empirical estimates of µA, µB, ΣA, ΣB from the

dataset, the problem is in general ill-defined – i.e., there is an infinite number

of solutions. Now note that every site includes (at least) two different subpop-

ulations – e.g., healthy controls versus cases (perhaps people with schizophre-

nia). Each subpopulation has its own mean vector and covariance matrix

(µHC
A , µSCZ

A , µHC
B , µSCZ

B , and ΣHC
A ,ΣSCZ

A ,ΣHC
B ,ΣSCZ

B) . A reasonable assump-

tion is that the batch effects affect both populations in the same way, but

by computing the mean and covariance matrix of every population and site

independently we are effectively increasing the number of equations available.

We can then get an estimate for α and β as follows:

61

α̂, β̂ = arg min
α,β

∑
j∈{HC,SCZ}

√
p||µj

B−(αµj
A+β)||2+||Σj

B−(αΣj
Aα

T)||F (4.3)

where p is the dimensionality of the feature set, and || · ||F is the Frobenius

norm of a matrix. Note that it is possible to combine data from more than

two datasets by finding a linear transformation for every pair of sites.

4.2.4 Experiments and Results

Dataset

We applied the four aforementioned methods to the task of classifying healthy

controls and people with schizophrenia using the data corresponding to the

Auditory Oddball task to the FBIRN phase II dataset, which is a multisite

study developed by the Function Biomedical Informatics Research Network

(FBIRN). Keator et al. provides a complete description of the study [67].

After preprocessing the data, we eliminated the subjects who presented

head movement greater than the size of one voxel at any point in time in any of

the axis, a rotation displacement greater than 0.06 radians, or that did not pass

a visual quality control assessment. The original released data contains scans

extracted from 6 different scanning sites; however, we only used 4 of them.

One of the sites was discarded because it lacked T1-weighted images, which

were required as part of our preprocessing pipeline. The second discarded

site contained only 6 subjects (5 with schizophrenia) after the quality control

assessment, so it was not suitable for our analysis. In summary, we have 21

participants from Site 1, 22 from Site 2, 23 from Site 3 and 23 from Site 4.

In all cases, the proportion of healthy controls vs people with schizophrenia is

∼ 50%.

Empirical evaluation

To obtain the feature vector of every fMRI scan, we used the subset corre-

sponding to the Fronto-Parietal Network for a total of k = 25 out of the 264

regions of interest defined by Power et al. [99]. The time series corresponding

62

Table 4.1: Average accuracy after correcting batch effects. The number in
entry (i, j) is the accuracy, over instances from the target site i, of the classifier
learned by adding all of site j to the training subset of site i. The colored cells
indicate results whose difference improves (green) or decrease (red) relative to
the single site classification.

S 1 S 2 S 3 S 4
S 1 62.8 72.3 65.7 67.3
S 2 67.8 66.4 70.0 59.5
S 3 55.0 60.9 58.3 56.9
S 4 62.3 57.8 76.4 71.4

(a) No correction

S 1 S 2 S 3 S 4
S 1 62.8 70.7 64.7 68
S 2 67.1 66.4 68.1 57.6
S 3 55.7 57.6 58.3 56.9
S 4 67.1 57.6 75.7 71.4

(b) Site as covariate

S 1 S 2 S 3 S 4
S 1 62.8 64.7 57.6 65.7
S 2 68.5 66.4 67.6 62.3
S 3 48.0 54.0 58.3 58.0
S 4 63.5 56.0 74.0 71.4

(c) Z-score normalization

S 1 S 2 S 3 S 4
S 1 62.8 55.7 52.8 49.5
S 2 51.6 66.4 52.1 50.4
S 3 54.2 54.2 58.3 53.8
S 4 50.7 47.3 52.6 71.4

(d) Whitening

S 1 S 2 S 3 S 4
S 1 62.8 65.9 66.4 66.2
S 2 66.6 66.4 67.8 67.8
S 3 49.5 50.2 58.3 51.4
S 4 73.5 72.8 73.5 71.4

(e) Linear transformation

to every region was simply the average time series of all the voxels inside the

region. In order to obtain the functional connectivity matrix, we computed

the Pearson’s correlation between the time series of all
(
k
2

)
pairs of regions.

We produced classifiers using a support vector machine (SVM) with lin-

ear kernel using the SVMLIB library [13]. The parameters of the SVM were

set using cross validation. We applied the batch effect correction techniques

previous to merging the datasets into a single training set, and repeated the

experiment 15 times with different train/test splits. All the parameters re-

quired for the batch effects correction techniques were obtained using only the

training sets. Table 4.1 reports the average accuracy over the 15 rounds.

In each of the sub-tables in Table 4.1, the (i, j) entry represent the average

accuracy when the training set has instances from the ith and j th site, and

the test set has instances only from the ith site. Ideally, all the off-diagonal

63

values should be higher than the diagonal ones; however, this is not the case.

In most of the cases we have mixed and inconsistent results. The only method

that consistently improves the performance of the classifiers is the one that

solves for arbitrary linear transformations (Table 4.1e). Note that site S3 is

an exception, where we do not see any improvement; however, this particular

site has a low performance even in the single site scenario. It is likely that the

signal in this particular site is too low and cannot be properly detected by the

used methods.

These results reinforce the idea that batch effects play predominant role in

classification studies, and motivate the need to develop techniques that address

them in order to be able to effectively combine multi-site datasets. We can

additionally conclude that whitening, z-score normalization and adding the site

as covariate are insufficient to solve batch effects in fMRI data. Our method for

solving linear transformations is the one who consistently improves the results

in a multi-site scenario, indicating that it is a step in the right direction.

4.3 Unsupervised domain adaptation under affine

transformations

The approach described in Section 4.2 is useful for merging dataset when

we have access to a labeled dataset from the target source; however, that is

not always the case. In this section we tackle the scenario where we train a

predictor based on a training set from the source domain, and then use it to

make predictions on a dataset from a target domain.

Under the assumption that the mapping from source and target domains

to a common representation is an affine function, we propose an algorithm for

unsupervised and semi-supervised domain adaptation. We find the parameters

λ and λ0, which project the data into a common space, by computing the first p

eigenvectors of the covariance matrices of the probability distributions of each

domain, and then finding an orthogonal matrix that minimizes the maximum

mean discrepancy between both distributions.

There is an inherent unidentifiability problem with unsupervised domain

64

adaptation. Observe in Figure 4.7 that, in the absence of labeled data from the

source and target domains, it is impossible to distinguish between the different

“distribution alignments” presented there. This problem can be alleviated in

the semi-supervised case, where few labeled instances allow the distinction

between both scenarios.

Figure 4.7: Anti-alignment example. In the unsupervised case it is impossible
to distinguish between the scenarios of the left (correct alignment) and right
(anti-alignment) graphs.

4.3.1 Domain-shift adaptation via linear transformations

Under the assumption that the domain-shift is caused by affine transforma-

tions, the equations on Figure 4.1 become:

xA = θAz + µA

xB = θBz + µB

xA ∈ Rm, xB ∈ Rn, z ∈ Rp

(4.4)

Note that the latent variable, Z, can have a different (lower) dimensionality

than the observations xA and xB, which in turn can have different dimension-

ality between themselves. Importantly, we do not assume that we have paired

data between the source and target domain. In other words, for a given in-

stance, i, we can either observe its representation in the source domain, xi
A,

or the target domain, xi
B, but not both.

If we knew the parameters θA, µA, θB, µB, and assuming they are non-

degenerate, we could do the inverse mapping from the observations xA and

xB to z by solving the following optimization problem:

65

z∗ = arg min
z

||(x− µ) − θz||2

whose solution (see the Appendix C.3) is given by

z = (θT θ)−1θT (x− µ) (4.5)

Once we map the data from the source and target domains to a common

space, we can use the labeled data from the source domain to learn a predictor

that we can apply to data from any of both domains (after the appropriate

projection into the common space).

Estimating the transformation parameters

Without loss of generality, we assume that E[Z] = 0 and Cov[Z] = I. Then,

given a dataset with instances drawn from the source domain XA and a dataset

with instances drawn from the target domain XB:

E[X] = θE[Z] + µ = µ

Cov[X] = θCov[Z]θT = θθT
(4.6)

Note that we can compute the empirical estimates µ̂A, µ̂B, Σ̂A, Σ̂B, given

the datasets XA and XB. The empirical estimators of the mean directly give us

half of the transformation parameters. For the case of the covariance matrix,

we can compute the singular value decomposition:

Σ = USUT

Σ = US
1
2S

1
2UT

Σ = US
1
2QQTS

1
2UT ;where QQT = I

Σ = (US
1
2Q)(US

1
2Q)T

(4.7)

Since Σ is a positive semi-definite matrix, its eigenvalues are non-negative,

which allows us to decompose the diagonal matrix as S = S
1
2S

1
2 . By comparing

Equations 4.6 and 4.7, we can estimate the parameters θ as:

θ = US
1
2Q (4.8)

66

for any orthogonal matrix, Q. After substituting the parameter θ into Equa-

tion 4.5, then applying some algebraic manipulations (see the Appendix C.4)

, we observe that:

z = QTS− 1
2UT (x− µ) (4.9)

A consequence of Equation 4.9 is that matching the empirical mean and

covariance matrices of the source and target domain is not enough to correct for

domain-shift adaptation: The orthogonal matrix Q, which represents rotations

or reflections, might cause misalignment in the data; see Figure 4.8(a).

The matrices (SA, UA) and (SB, UB), for the source and target domains,

respectively, can be computed from the SVD of their empirical covariance

matrices, Σ̂A and Σ̂B. Since the objective of domain adaptation is to align the

distributions, regardless of the “direction” of the alignment, we arbitrarily set

QA = I. Then, we find an orthogonal matrix that minimizes the divergence

between both probability distributions:

Q∗
B = arg min

QB

Div(XA || QT
BXB), s.t. QBQ

T
B = I (4.10)

where Div(·||·) is an empirical measure of the divergence between the two

domains.

Maximum Mean Discrepancy

A common measure of the divergence between two probability distributions is

the Maximum Mean Discrepancy (MMD) [42].

Definition 1 (Maximum Mean Discrepancy). Let p and q be Borel probability

measures defined on a domain X . Given observations X := {x1, . . . , xm} and

Y := {y1, . . . , yn}, drawn independently and identically distributed from p and

q, respectively. Let F be a class of functions f : X → R, the MMD is defined

as:

MMD[F , p, q] := sup
f∈F

(Ex∼p[f(x)] − Ey∼q[f(y)])

67

Informally, the purpose of the MMD is to determine if two probability

distributions, p and q, are different. The associated algorithm involves taking

samples from p and q, then finding a function that take large values on samples

from p and small (or negative) values on samples of q. The MMD is then the

difference between the mean values of the function of the samples.

By defining the class of functions F as the unit ball in a reproducing kernel

Hilbert space, Gretton et al. (2012) proposed (biased) empirical estimator of

the MMD2 as follows:

MMD2
b [F , X, Y] =

1

m2

m∑
i,j=1

k(xi, xj) +
1

n2

n∑
i,j=1

k(yi, yj) −
2

mn

m,n∑
i,j=1

k(xi, yj)

(4.11)

where k(·, ·) is a valid kernel. In our case, we use the Gaussian kernel k(x, y) =

exp
(
−1

2
σ−2||x− y||2

)
.

Equation 4.11 has two nice properties. (1) It computes an estimation of

the MMD with a finite number of instances from each domain. (2) It is a

differentiable function, so it can be optimized with iterative methods, such as

gradient descent.

Optimization with orthogonality constraints

For solving the optimization problem with orthogonality constraints presented

in Equation 4.10, we used the Wen and Yin (2013) algorithm (Algorithm 1),

which is an iterative method based on the Cayley transform. Their algorithm is

similar to gradient descent, but instead of looking for solutions in the Euclidean

space, they look for solutions in the Stiefel manifold, which is the set that

contains all the orthogonal matrices.

Formally, their proposed algorithm solves:

min
X∈Rn×p

F(X), s.t. XTX = I (4.12)

where F : Rn×p → R is a differentiable function. For our purposes, F(QB) =

MMD2(ZA, Q
T
BZ

′
B), where ZA and Z ′

B are the projections of XA and XB,

respectively, using Equation 4.9 with QA = Q′
B = I. QB is an orthogonal

(rotation or reflection) matrix that multiplies Z ′
B.

68

Algorithm 1 Optimization with orthogonality contraints
Input: F , X0

Parameter: Learning rate (τ), Max iterations (M)
Output: arg minX F(X) s.t. XTX = I

1: Given an initial orthogonal matrix X0.
2: Let t = 0
3: while t < M do
4: Compute the Gradient Gt = DF(Xt) =

(
∂F(Xt)
∂Xti,j

)
5: Compute At = GtX

T
t −XtG

T
t

6: Compute Qt =
(
I + τ

2
At

)−1 (
I − τ

2
At

)
7: Compute Xt+1 = QtXt

8: Update t := t + 1
9: end while
10: return XM

Algorithm 1 is guaranteed to converge when the learning rate (τ) meets the

Armijo-Wolfe conditions [91]. However, it is not guaranteed to find the global

minimum of F(X). Similarly to gradient descent approaches, the algorithm

might converge to a local minimum. One heuristic to alleviate this problem

is to perform multiple restart with different seed points; however, this is still

not guaranteed to convergence to the global minimum.

Unsupervised domain adaptation

For finding the parameters θA and θB, we can arbitrarily set QA = I in Equa-

tion 4.8, and then use Algorithm 1, with the Maximum Mean Discrepancy, for

computing QB:

Q∗
B = arg min

QB

MMD2
b(ZA, Q

T
BZ

′
B), s.t. QBQ

T
B = I (4.13)

where Z ′
B is a dataset that contains the transformed instances xB using Q′

B =

I. Finally, we can project the source and target domains to a common repre-

sentation using Equation 4.9.

Note that Algorithm 1 requires the gradient of the MMD2 with respect

to the matrix QT
B. By applying standard matrix calculus we compute (see

Appendix C.5 for details):

69

Algorithm 2 Unsupervised domain adaptation with linear transformations

Input: XA ∈ Ri×m, XB ∈ Rj×n. Every row in these matrices represents an
instance.
Parameter: Variance of Gaussian kernel (σ2)
Output: ZA ∈ Ri×p, ZB ∈ Rj×p. Every row in each matrix represents an
instance in the shared space.

1: Compute µA and ΣA of the dataset XA.
2: Compute µB and ΣB of the dataset XB.
3: UA, SA, VA = SVD(ΣA)
4: UB, SB, VB = SVD(ΣB)

5: θA = UAS
1
2
A {Use only the positive eigenvalues (and their corresponding

eigenvectors)}
6: θ′B = UBS

1
2
B {Use only the positive eigenvalues (and their corresponding

eigenvectors)}
7: ZA = (θTAθA)−1θTA(XA − µA)
8: Z ′

B = (θ′TB θ′B)−1θ′TB (XB − µB)
9: Use Algorithm 1 to find the QT

B ∈ Rp×p that minimizes Equation 4.13.
Compute the MMD using a Gaussian kernel with variance σ2.

10: ZB = Z ′
BQB

11: return ZA, ZB

G(QT
B) =

∂MMD2(ZA, Q
T
BZ

′
B)

∂QT
B

= − 2

mn

n,m∑
i,j

exp

(
− 1

2σ2

||z(i)A −QT
Bz

(j)
B ||2

)(
z
(i)
A z

(j)T
B

σ2

) (4.14)

Algorithm 2 shows the procedure to map the source and target domain into

a common space in an unsupervised way (The code is publicly available; see

Appendix A). For notation, the source domain (resp., target, shared space)

is m-dimensional space, (resp. n-dimensional, p-dimensional; here we assume

that p ≤ min(m,n). For mapping into this lower dimensional space, we project

the data into the first p eigenvectors of the empirical covariance matrice ΣA

(resp. ΣB). The eigenvalues corresponding these eigenvectors are positive,

while the other m− p and n− p eigenvalues will be equal to zero.

After mapping both domains to a common space, we can use the labels

of the source domain to learn a predictor, and then use it to make predic-

tions in the target domain. Section 4.3.2 will show that the Maximum Mean

70

Discrepancy is not convex with respect to the orthogonal matrix QT
B, meaning

Algorithm 1 might converge to a local minimum. Additionally, in the unsuper-

vised case there is an inherent identifiability problem caused by the missing la-

bels [21, 72] – i.e., there are θB and θ′B such that P (f(X, θB)) = P (f(X, θ′B)).

This can create an “anti-alignment” problem; see Figure 4.7.

Note than when the “anti-alignment” occurs, the source and target do-

mains have the same marginal probability PS(Z) = PT (Z), but PS(Y | Z) ̸=

PT (Y | Z). In other words, a classifier learned on the source domain will

have good performance on more data from the same domain; however, it will

have very poor performance on the target domain. Zhao et al. (2019) shows

that aligning the marginal probability of the covariates, then learning a good

predictor on the source domain, is not sufficient for successfully performing

domain adaptation.

Semi-supervised domain adaptation

If we have access to a few labeled instances in the target domain, we might

reduce the chance of converging to an “anti-alignment”. Since the MMD is not

convex with respect to the rotation matrix QT
B, a common strategy is to at-

tempt multiple re-start (with different seed points) of an iterative optimization

algorithm. We then choose the one with the lowest cost. In the unsupervised

case, the MMD itself is the cost function. For the semi-supervised case, we can

first run Algorithm 2 for each seed point, then learn a predictor, using only

the labeled data from the source domain. Then, for every alignment generated

by each of the seed points, evaluate those predictors on the labeled data of the

target domain, and choose the one with the lowest error.

Alternatively, we could incorporate the cross entropy loss of the source

and target domains into Equation 4.13. This approach requires optimizing a

weighted linear combination of three terms in the loss function: the MMD,

the cross-entropy in the source domain, and the cross-entropy in the target

domain. Since this path requires setting these three extra weights, we limited

our experiments to the first approach.

71

Figure 4.8: Results of using Algorithm 2 (a) without correcting for the rotation,
(b) after correcting for the rotation.

4.3.2 Experiments and Results

We first show the performance of our approach to perform domain-shift adap-

tation in a simulated dataset, and then, in a modified version of the MNIST

digit classification task.

Simulated data

For the simulated data we sampled 600 instances to creaet a dataset, Dz ∈

R600×2, from a mixture of bi-variate Gaussians with parameters µ1 =

[
1
1

]
,

µ2 =

[
5
−5

]
, Σ1 =

[
2 0.7

0.7 1

]
, Σ2 =

[
2 1
1 4

]
. These instances correspond to a

common shared space Z. We then created two random transformation matrices

θA, θB ∈ R5×2, and two random translation vectors µA, µB ∈ R5 to create the

observations. Of course, neither the real parameters, nor the instances in the

shared space are visible to our algorithm.

We randomly divided Dz into two disjoint datasets DA (source domain) and

DB (target domain) with 300 instances each. Then, we created the datasets

XA = DAθ
T
A + µA and XB = DBθ

T
B + µB. Our algorithm only sees XA and

XB, which each contain 5-dimensional vectors.

Figure 4.8(b) shows the result of applying Algorithm 2 to the simulated

datasets XA and XB. Figure 4.8(a), on the other hand, shows the effect of

ignoring the effect of the orthogonal matrix QT
B. In this last case we successfully

mapped both datasets into the same lower-dimensional space, and that both

72

Figure 4.9: MMD of the simulated data for (a) rotation matrices and (b)
reflection matrices.

datasets have zero mean and an identity covariance matrix; however, they

are not aligned. By finding the orthogonal matrix that minimizes the MMD

between the source and target datasets we can obtain the correct alignment.

As mentioned in Section 4.3.1, the maximum mean discrepancy is not con-

vex with respect to the orthogonal matrix QT
B. For 2-dimensional spaces, an

orthogonal matrix is either a rotation R =

[
cosα − sinα
sinα cosα

]
or a reflection

S =

[
− cosα − sinα
− sinα cosα

]
[128]. Figure 4.9 shows the MMD between the projec-

tion of XA into ZA and the rotated (or reflected) projection of XB into ZB at

different angles. Note that we have a total of 4 local minima for the simulated

data. The global minimum corresponds to the proper alignment, shown in

Figure 4.8(b). Similar to gradient descent, Algorithm 2 might converge to a

local minimum depending on the seed point.

Binary digit classification

The second experiment is a variation of the digit classification task with the

dataset MNIST (source domain) [75] and USPS (target domain) [58]. We sim-

plified the task from 10-class digit classification to 45 binary digit classification

(0 vs 1, 0 vs 2, ... , 8 vs 9).

We first trained a 10-class convolutional neural network on the training

data of the source domain (60,000 images) to create image embeddings in a

20-dimensional space. The convolutional neural network contained 4 convo-

lutional layers (32, 128, 256 and 512 filters, respectively), each followed by a

73

MaxPooling layer (2 × 2 kernel). Then we added a fully connected layer with

20 hidden neurons, and finally the output layer with 10 output neurons. While

the output layer used a softmax activation function, the other layers used a

rectified linear unit (ReLU) as the activation function; see Appendix A.

Figure 4.10: Results of (a) unsupervised and (b) semi-supervised domain-shift
adaptation in binary digit classification.

Figure 4.11: Results of (a) unsupervised and (b) semi-supervised domain-shift
adaptation in binary digit classification in 13 dimensional space.

We used the output of the fully connected layer with 20 neurons as the

image embeddings for both, the training data of the MNIST (60,000 images)

and the test data USPS datasets (2,007 images). Then, for each of the 45

binary classification tasks, we compared three scenarios: (1) Baseline: learn

the parameters of a logistic regression model using the MNIST dataset, and

then test it on the USPS dataset. (2) Use Algorithm 2 to project the MNIST

and USPS dataset into a common space of dimension 5. Then learn the pa-

rameters of a logistic regression model using only the projected data of the

MNIST, and test it on the projected data of the USPS dataset. We chose

74

a “small” dimensionality of the shared space because computing distances in

high-dimensional spaces is harder because the instances sparsely populate the

input space [27]. (3) Similar to the second scenario, but now assume that 10%

of the data in the USPS dataset is labelled (semi-supervised case).

Figure 4.10(a) shows the classification accuracy of the unsupervised do-

main adaptation approach. The number in parenthesis indicates the improve-

ment (or decrease) in performance relative to the Scenario 1. Similarly, Fig-

ure 4.10(b) shows the classification accuracy of the semi-supervised experi-

ment.

4.3.3 Discussion

As expected, the results in Figure 4.10(a) show that even after the reducing the

discrepancy between the source and target domain, and learning an accurate

classifier on the source domain, this classifier is not guaranteed to general-

ize to the target domain. All the boxes in orange indicate that applying our

algorithm for domain-shift had a lower performance than not doing any trans-

formation at all. Specially interesting are the cases marked in dark orange,

where we observe the effect of the “anti-alignment”. On the other hand, when

the alignment is done properly, there are very significant improvements in the

classification accuracy. Note that for unsupervised domain adaptation there

is no way to distinguish between correct and incorrect alignments.

Figure 4.10(b), on the other hand, shows that we avoid incorrect alignments

in the semi-supervised case. Having access to a small set of labelled data allows

the algorithm to identify when no domain-shift adaptation is needed (because

the classifier already generalizes to the target domain), or detect the “anti-

alignments” and choose the proper alignment instead; see the case of 2 vs 7,

where an improper alignment occurs in the unsupervised case, but the proper

alignment of the semi-supervised case increases the classification accuracy 6%.

In the case of proper alignments of the data the accuracy improved in essen-

tially all the cases up to 48%.

The dimensionality of the shared space plays an important role when per-

forming domain-shift adaptation. While Figures 4.10(a) and 4.10(b) show

75

the performance obtained in a shared space of dimension 5, Figures 4.11(a)

and 4.11(b) show the performance when the dimension of the shared space is

the number of positive eigenvalues in the empirical covariance matrix (13 in

our experiments). The performance of the unsupervised domain adaptation

degrades significantly, while the semi-supervised approach remain roughly the

same. We hypothesize that this decrease in performance is due to the difficulty

of reliably estimating metrics on probability distributions in high dimensional

spaces with a limited number of instances [27].

In summary, we present an algorithm for domain-shift adaptation caused

by arbitrary affine transformations. Our approach first projects the data into

a shared low-dimensional space using the first p eigenvectors of the empirical

covariance matrices of the data. Then, it find an orthogonal matrix that min-

imize the maximum mean discrepancy between the source and target data.

For the unsupervised domain adaptation, there is an unavoidable identifi-

abiliy problem that can be alleviated by having a few labels of the target

domain (semi-supervised domain adaptation). When using the correct othog-

onal matrix, this effectively maps both domains into a shared space where the

P (ZA, Y) = P (ZB, Y). In those cases, we can expect that a predictor learned

using data from the source domain to generalize to data from a target domain.

76

Chapter 5

Style Transfer for Unsupervised
Domain Adaptation in
Ultrasound Image Segmentation

5.1 Introduction

Linear transformation might not be enough to model the discrepancy between

source and target domains for the problem of image segmentation. Semantic

image segmentation is the task of assigning every pixel in an image to one of

K possible classes. For medical images, these classes typically are anatomical

structures of interest such as bones and organs, or anomalies within these

anatomical structures, such as tumors or lesions.

Deep learning approaches, such as U-net [103], fully convolutional net-

works [79], and extensions of these models [84, 136, 100], have shown promis-

ing results for segmentation tasks. However, the generalization capabilities of

deep models is closely tied to the amount and variety of the data used to train

them [39]. Unfortunately, training data is scarce for many medical-related

tasks [17, 44, 120]. This may force researchers to use training instances from

other sources. Unfortunately, these training instances might not be a good

representation of the data that will be present during inference.

Finding transformations that decrease the divergence between the proba-

bility distribution of source and target domains is a common technique in the

field of domain adaptation [8]. Many techniques have been proposed to address

this challenge [20]; however, the lack of labeled data in medical tasks presents

77

a major challenge that limits the application of some of these approaches [44].

Recent advances in the field of style transfer [35] can also be framed in

terms of the graphical model of Figure 4.1. The goal of style transfer is to

synthesize a texture from a source image while preserving the semantic content

of a target image [32]. Here, letting the random variable Z represent that

semantic content, we view g(Z, λ) as the style. The objective of style transfer

is then to create XB given XA, θA and λB. Under the assumption that every

scanner applies a different texture during the process of generating a medical

image, the techniques of style transfer can be applied to reduce batch effects

– here, to be able to use data from one source (using one style) to produce a

model that can help label instances from a target domain (using a different

style).

Two important advantages of style transfer for this purpose are that (1)

they are unsupervised learning methods, and (2) they can be applied between

a pair of images. Therefore, we can apply this approach even to small unlabeled

datasets.

The main contribution of this chapter is to empirically show that this

technology which was originally proposed for artistic purposes [35], is also

useful for unsupervised domain adaptation in medical image segmentation.

After successfully transferring the style (texture) from one domain to another,

we demonstrate that a segmentation network trained using only data from the

source domain, can still accurately segment images from the target domain.

Importantly, there is no need to retrain the style transfer network, making it

very useful for applications with limited target-domain data.

5.2 Foundations and Related Work

Informally, a texture is a set of visual patterns that have some common char-

acteristics [64]. Research on visual perception suggests that texture discrim-

ination and form recognition are two different, separable tasks [65]. In other

words, the texture of an image is essentially independent from its content; see

Figure 5.1.

78

Figure 5.1: Texture discrimination and content recognition involve different
processes. (a) Example with same content, different texture. (b) Example
with same texture, different content. Note that half of the paragraph is written
in Spanish.

A common assumption in texture modelling is that there is a joint proba-

bility distribution over the intensity of the pixels, p(X), for each set of images

that have perceptually similar texture appearance [138]. The objective is then

to estimate p(X) using a model, f(X), learned from a set of observed images

with this texture. Once learned, it is possible to draw samples from f(X) to

generate textures that are visually similar to the one of the training images.

Because of the high dimensionality of real world images it is difficult to

estimate p(X) with a limited number of images; instead f(X) is used only to

reproduce a set of observed statistics [138]. Formally, given a set of K vector-

valued functions S = {ϕα | α ∈ {1, . . . , K}} we learn a model f(X) such that

Ep[ϕα(I)] = Ef [ϕα(I)]. We usually estimate Ep[ϕα(X)] using a set of training

images – i.e., given a training set of images D = {X1, X2, . . . , XM}:

Ep[ϕα(X)] ≈ µα =
1

M

M∑
i=1

ϕα(Xi) (5.1)

Common choices for ϕα are a statistic (e.g., mean or covariance) of the con-

volution of a filter Fα and an image X [98], or the correlations between features

responses in the convolutional layers of classification neural networks [31]. All

the images generated by p(X) are said to have the same texture, which is

formally defined via the Julesz Ensemble, (ΩK,ϵ) [139]:

ΩK,ϵ = {X : L (ϕα(X), µα) ≤ ϵ ∀α ∈ {1, . . . , K}} (5.2)

79

where L is a loss function such as L1 or L2 distance.

Based on these ideas, there are algorithms to mix the content of an image

(below denoted c) with the style (or texture) of a second image (denoted s) [32].

The objective is to find the image x that solves:

x∗ = arg min
x

α
∑
i,j

(Fi,j(x) − Fi,j(c))2 + β
∑
l,i,j

(
Gl

i,j(x) −Gl
i,j(s)

)2
(5.3)

where Fi,j(·) is the feature of the i-th filter at position j in a predefined con-

volutional layer, and Gl
i,j(x) =

∑
k⟨F l

i,k(x), F l
j,k(x)⟩ is the inner product of the

feature maps i and j at layer l, where k indexes the pixel position inside a

feature map. The weights α and β control the trade-off between emulating the

content and the style, respectively.

One drawback is that solving Equation (5.3) is computationally expensive.

In order to accelerate this process, the optimization problem of Equation (5.3)

can be approximated by a generative convolutional neural network [63, 117].

The input to these networks is a random noise image, and the output is an

image with the desired style [40].

Although using convolutional neural networks improved the speed of the

algorithms for style transfer, they required to train a different neural network

for every style. Further research found that by applying conditional instance

normalization, it was possible to share all the convolutional weights in a net-

work to transfer different styles [23, 116]. The key was to tune the parameters

of an affine transformation for each of the 32 styles that they modeled. After

using that transformation to normalize the convolutional neural network it

was possible to use a single neural network to transfer different styles.

Recently Ghiasi et al. [35] showed that a neural network could approxi-

mately learn the normalization parameters to transfer different styles. The

input to this network is an image whose style we want to transfer to a content

image, and the output is the normalization parameters. This allowed them to

train a network that takes two arbitrary images as input (one for content, one

for style), and merge them together in a very efficient way. This network is

publicly available at [113].

80

Figure 5.2: (a) Schematic diagram of the network proposed by Ghiasi et
al. [35]. The loss estimation network is just used during training. (b) Style
transfer between a photograph and a painting.

A key advantage of this network [35], depicted in Figure 5.2 (a), is that it

can transfer the style between two arbitrary images without the need to retrain

the network. This network was originally designed to transfer texture from

painting to photographs, producing visually appealing results; see Figure 5.2

(b). Here, we explore its use for reducing the negative impact of batch effects

for segmentation in medical images. Our metric for success is not the quality

of the image, but rather an increase in the performance of a model (learned

using these transformed images) for the automatic segmentation algorithms.

Specially relevant to our approach is the work of Zhang et al. [133], who

modeled the domain adaptation problem as a noise style transfer task and

applied the perceptual losses proposed by Johnson et al. [63] in an adversarial

way. Similarly, other groups have explored using CycleGAN [137] to reduce

the influence of batch effects [36, 83]. CycleGAN is also an adversarial model

that attempts to perform image-to-image translation, a task that is closely

related to style transfer. Unlike the approach that we propose, the previously

mentioned methods need to be trained per each source-target domain pair.

81

5.3 Style transfer for domain adaptation

Given a labeled dataset, DS = {(X1, Y1), . . . , (Xn, Yn)}, with pairs of images,

Xi, and their corresponding segmentation masks, Yi, acquired from one or more

sources (e.g., imaging devices), we want to learn an accurate predictor Y =

h(X) that will be evaluated on a disjoint target dataset DT = {Xn+1, . . . , Xm}

acquired with a different imaging device.

We propose an approach designed to work when a given imaging device

generates images that are elements of the same Julesz ensemble (i.e., they

have the same texture), and that Julesz ensemble is different for each device

(i.e., images acquired with different scanners have a different texture). The

idea of style transfer is to transform the images of the source scanner so they

have a similar texture as the images of the target scanner. Specifically, before

learning the segmentation function h(·), we transfer the style of the images in

DT to the images in DS to create D′
S = {(X ′

1, Y1), . . . , (X
′
n, Yn)}.

The style-transfered images X ′
i = g(Xi, Xn+k) are created by comput-

ing g(·, ·), which is the pre-trained style-transfer neural network by Ghiasi

et al. [35], to the images Xi ∈ DS and Xn+k ∈ DT , where Xn+k is an image

randomly taken from DT . Note that this procedure is unsupervised, since our

algorithm does not have access to the labels of the target dataset, DT , also we

are assuming that the applied change in texture does not modify the original

segmentation label Y of the images in DS.

Finally, we can learn h(X) by using D′
S along with a machine learning

algorithm. For our experiments, h(X) is learned by training a traditional

U-Net architecture [103].

5.4 Experiments and Results

We evaluated the performance of style transfer for domain adaptation in the

task of segmenting the acetabulum and femoral head in 2D ultrasound im-

ages of the hip. The identification of these anatomical structures is critical

for the identification of problems such as developmental dysplasia of the hip.

82

Figure 5.3: Images acquired with different scanners and the structures of in-
terest. (a) Phillips (Linear), (b) Toshiba (Linear), (c) Toshiba (Conic), (d)
Structures of interest.

The dataset contains 385 images acquired with a Phillips linear probe, 151

with a Toshiba linear probe, and 268 images with a Toshiba conic probe. Fig-

ure 5.3 shows some sample images from the dataset, as well as a diagram of

the anatomical structures of interest. Note that the images from the different

scanners look different, but in all of them the acetabulum and femoral head

are easily recognizable.

We compared the performance of a U-net [103], in terms of Dice score,

under two scenarios: (1) Training the U-net using the untouched data from

one probe, and then test it on untouched data from a different probe; and (2)

Applying style transfer to the training data, so it mimics the texture of the

target dataset, and then test it on the untouched data of the target data. We

repeated this experiment for every pair of probes, using each probe in each

pair once for training and once for testing, for a total of 12 experiments (2

anatomical parts × 6 pairs of probes).

Table 5.1 compares both scenarios in terms of mean dice score, with stan-

dard deviation in parenthesis. In general, the models trained after applying

style transfer perform better than their counterparts trained with the original,

untouched data. In 10 of the 12 experiments the style-transfered data lead to

a classifier up to 20% more accurate for the segmentation of the acetabulum,

and up to 11% better for the femoral head. One of the experiments resulted

in a tie of 90% Dice score, and in only one case did style-transfer decrease

the performance –here by only 3%. Also, the standard deviation of the dice

score tends to be smaller when using the models trained with style transfer.

83

Table 5.1: Mean dice score for the segmentation of the acetabulum (AC) and
femoral head (FH). Columns identify the training set, while rows identify the
test set. The numbers in parenthesis are the standard deviation.

Training Set
Phillips Linear Toshiba Linear Toshiba Conic

Original Transf. Original Transf. Original Transf.

Phil-Lin-AC - - 71 (13) 68 (14) 61 (17) 66 (12)
Phil-Lin-FH - - 68 (19) 82 (11) 77 (20) 79 (15)
Tosh-Lin-AC 62 (15) 73 (9) - - 60 (14) 63 (11)
Tosh-Lin-FH 90 (6) 90 (5) - - 83 (10) 86 (8)
Tosh-Con-AC 44 (13) 64 (11) 55 (18) 60 (13) - -
Tosh-Con-FH 80 (7) 88 (10) 81 (12) 83 (8) - -

Figure 5.4: Visual comparison between the segmentations with models trained
with and without style transfer

In other words, style transfer not only improves the segmentation in terms of

dice score, but it is also more consistent in the predictions.

Figure 5.4 exemplifies the differences in the predictions made by the U-net

trained with data from the Phillips linear probe, but then tested in images

from a Toshiba conic probe. Note that the predictions made by applying style

transfer before training the network greatly improves the produced segmenta-

tion mask not only numerically, but also visually.

5.5 Discussion

The diversity of image acquisition devices creates a challenge for learning mod-

els that can automatically segment medical images. The main challenge is that

84

most machine learning methods assume that the data used during training

follows the same probability distribution as the data used during inference,

which is clearly not the case in this situation. The field of domain-adaptation

explores techniques for decreasing the negative impacts of this discrepancy.

For cases where the differences between images acquired under different

conditions can be modeled as a difference in texture, style-transfer offers a

simple, yet effective solution: use a neural network to make the texture of the

training set similar to the one of the test set. We explored the application of

a pre-trained network, which was originally designed for artistic purposes [35],

to improve the performance of a U-net architecture trained to segment the

acetabulum and femoral head in ultrasound images of the hip. Using style

transfer improved the performance up to 20% in terms of average Dice score

while also reducing its variance. (After publication, we will release both, the

dataset and the code to reproduce our results).

Two final remarks: (1) Since our proposed approach alters the texture of

the images used for training, the task of interest should not rely on texture as

a discriminating factor. This is not a problem for the segmentation of bones in

ultrasound images, but there are other tasks where texture plays an important

role (e.g., tumor segmentation). We recommend using style-transfer for tasks

where the relevant information is on the structure of the image, rather than

in differences in texture. (2) Style-transfer is a computationally inexpensive

operation. As it is also unsupervised, it does not require a labeled dataset from

the target distribution. Importantly, pre-trained networks originally designed

for artwork can be directly applied to new datasets, avoiding the need of

training a style-transfer network, which usually requires a large amount of

data.

85

Chapter 6

Conclusions

The machine learning technology has the potential to improve healthcare, but

before it can produce models that can be used in clinical practice, we often

need to address important challenges, some related to the limited amount

of labeled data available for training, and the uncertainty around the target

labels. This dissertation provides some steps in this direction, by developing

learning methodologies that are sample efficient, allow the incorporation of

prior knowledge, handle uncertainty in the labels, and correct for discrepancies

between source and target domains.

For the case of image classification, we proposed using probabilistic la-

bels when domain-specific information can be encoded as probabilities. These

probabilistic labels provide more information per every training instance than

traditional categorical labels, allowing machine learning to learn more accurate

predictors. We provided empirical studies showing that deep learning archi-

tectures, when trained with probabilistic labels, increased their performance

up to 22%, in terms of accuracy, in three binary classification tasks: diagnosis

of hip dyslpasia, diagnosis of fatty liver, and diagnosis of glaucoma. Besides

their improved accuracy, models trained with probabilistic labels were better

calibrated than their counterparts trained with categorical, or other soft la-

bels. This is important for medical applications, where predictors need to also

report their confidence in their prediction.

For problems like time-series forecasting, we proposed to incorporate do-

main specific knowledge not in the labels, but in the models to be trained.

86

We developed SIMLR, a probabilistic graphical model that achieved state-of-

the-art accuracy in predicting the number of new COVID-19 infections, 1- to

4-weeks in advance. SIMLR uses machine learning to learn the parameters

of a time-varying epidemiological SIR model, which involves the likelihood of

changing government policies in a certain geographical region, encoded using

a probabilistic graphical model. The use of a prior epidemiological model, and

a probabilistic models structure, helped SIMLR to make accurate predictions,

despite using only a very small training dataset, with uncertain data.

Finally, we explored batch effects, which occur when technical noise ob-

scures the real biological signal. For the case of medical images, batch effects

might arise because of differences in the hardware used in imaging devices, or

because of different imaging protocols. Machine learning views this problem

as domain-shift, as the source and domain datasets follow different probability

distributions. Here, however, there are functions that map each domain to

a common space, where the probability distributions are equal. We explored

domain shift adaptation caused by affine transformations in the supervised,

unsupervised, and semi-supervised scenarios.

Although affine transformation might be too simple to explain batch ef-

fects in medical images, they provided important insights into the domain

adaptation problem and allowed us to develop algorithms that improved the

performance of binary classifiers in simulated data, a set of binary digit clas-

sification tasks, and diagnosis of schizophrenia based on fMRI data. Then, to

deal with the domain shift caused by training a segmentation model on ultra-

sound images of the hip acquired with one imaging device, then applying this

model to images acquired from a different device, we proposed an approach

based on style-transfer, which proved able to deal with the domain-shift caused

by differences in texture. This approach improved the Dice score by up to 20%

(relative to not using domain adaptation at all.

Even though all the applications in this dissertation are related to the

medical domain, we expect that the techniques shown here are applicable in

other domains, especially when: (1) few training instances are available and

expert knowledge can be encoded as probabilities, (2) there is a parametric

87

model currently used by domain experts for analyzing a phenomenon, or (3)

the discrepancy between the source and target domains is caused by linear

transformations or differences in texture.

88

References

[1] Alexandre Abraham, Michael P Milham, Adriana Di Martino,
R Cameron Craddock, Dimitris Samaras, Bertrand Thirion, and Gael
Varoquaux. Deriving reproducible biomarkers from multi-site resting-
state data: An autism-based example. NeuroImage, 147:736–745, 2017.

[2] Government Alberta. Covid-19 alberta statistics. https:
//www.alberta.ca/stats/covid-19-alberta-statistics.htm#
data-notes, 2021. Accessed: 2021-06-30.

[3] Cleo Anastassopoulou, Lucia Russo, Athanasios Tsakris, and Constanti-
nos Siettos. Data-based analysis, modelling and forecasting of the covid-
19 outbreak. PloS one, 15(3):e0230405, 2020.

[4] Mohammad R. Arbabshirani, Sergey Plis, Jing Sui, and Vince D. Cal-
houn. Single subject prediction of brain disorders in neuroimaging:
Promises and pitfalls. Neuroimage, 145:137 – 165, 2016. ISSN 10538119.

[5] Sercan Arik, Chun-Liang Li, Jinsung Yoon, Rajarishi Sinha, Arkady
Epshteyn, Long Le, Vikas Menon, Shashank Singh, Leyou Zhang, and
Martin Nikoltchev. Interpretable sequence learning for covid-19 forecast-
ing. NeurIPS, 33, 2020.

[6] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep?
In Advances in neural information processing systems, pages 2654–2662,
2014.

[7] Francis R Bach and Michael I Jordan. A probabilistic interpretation
of canonical correlation analysis. Technical Report 688, Department of
Statistics, University of California . . . , 2005.

[8] Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al.
Analysis of representations for domain adaptation. NeurIPS, 19:137,
2007.

[9] HR Bhapkar, Parikshit N Mahalle, Nilanjan Dey, and KC Santosh. Re-
visited covid-19 mortality and recovery rates: are we missing recovery
time period? Journal of Medical Systems, 44(12):1–5, 2020.

[10] Julie C Blackwood and Lauren M Childs. An introduction to compart-
mental modeling for the budding infectious disease modeler. Letters in
Biomathematics, 5(1):195–221, 2018.

[11] Matthew R G Brown, Gagan S Sidhu, Russell Greiner, Nasimeh Asgar-
ian, Meysam Bastani, Peter H Silverstone, Andrew J Greenshaw, and
Serdar M Dursun. ADHD-200 global competition: diagnosing ADHD

89

https://www.alberta.ca/stats/covid-19-alberta-statistics.htm#data-notes
https://www.alberta.ca/stats/covid-19-alberta-statistics.htm#data-notes
https://www.alberta.ca/stats/covid-19-alberta-statistics.htm#data-notes

using personal characteristic data can outperform resting state fMRI
measurements. Frontiers In Systems Neuroscience, 6:69, 2012. ISSN
1662-5137.

[12] Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model
compression. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 535–541.
ACM, 2006.

[13] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and Tech-
nology, 2:27:1–27:27, 2011.

[14] Minmin Chen, Zhixiang Xu, Kilian Q Weinberger, and Fei Sha.
Marginalized denoising autoencoders for domain adaptation. In Proceed-
ings of the 29th International Coference on International Conference on
Machine Learning, pages 1627–1634, 2012.

[15] Minmin Chen, Kilian Q Weinberger, Zhixiang Xu, and Fei Sha.
Marginalizing stacked linear denoising autoencoders. JMLR, 16(1):3849–
3875, 2015.

[16] Yi-Cheng Chen, Ping-En Lu, Cheng-Shang Chang, and Tzu-Hsuan Liu.
A time-dependent sir model for covid-19 with undetectable infected per-
sons. IEEE Transactions on Network Science and Engineering, 7(4):
3279–3294, 2020.

[17] Veronika Cheplygina, Marleen de Bruijne, and Josien PW Pluim. Not-
so-supervised: a survey of semi-supervised, multi-instance, and transfer
learning in medical image analysis. Medical image analysis, 54:280–296,
2019.

[18] Estee Y Cramer, Yuxin Huang, Yijin Wang, Evan L Ray, Matthew
Cornell, Johannes Bracher, Andrea Brennen, Alvaro J Castro Ri-
vadeneira, Aaron Gerding, Katie House, Dasuni Jayawardena, Abdul H
Kanji, Ayush Khandelwal, Khoa Le, Jarad Niemi, Ariane Stark, Apurv
Shah, Nutcha Wattanachit, Martha W Zorn, Nicholas G Reich, and
US COVID-19 Forecast Hub Consortium. The united states covid-
19 forecast hub dataset. medRxiv, 2021. doi: 10.1101/2021.11.04.
21265886. URL https://www.medrxiv.org/content/10.1101/2021.
11.04.21265886v1.

[19] Estee Y Cramer, Velma K Lopez, Jarad Niemi, Glover E George, Jef-
frey C Cegan, Ian D Dettwiller, William P England, Matthew W Far-
thing, Robert H Hunter, Brandon Lafferty, et al. Evaluation of individ-
ual and ensemble probabilistic forecasts of covid-19 mortality in the us.
medRxiv, 2021.

[20] Gabriela Csurka. Domain adaptation for visual applications: A compre-
hensive survey. arXiv preprint arXiv:1702.05374, 2017.

[21] Shai Ben David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility
theorems for domain adaptation. In AISTATS’10, pages 129–136. JMLR
Workshop and Conference Proceedings, 2010.

[22] Ensheng Dong, Hongru Du, and Lauren Gardner. An interactive web-
based dashboard to track covid-19 in real time. The Lancet infectious
diseases, 20(5):533–534, 2020.

90

https://www.medrxiv.org/content/10.1101/2021.11.04.21265886v1
https://www.medrxiv.org/content/10.1101/2021.11.04.21265886v1

[23] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned
representation for artistic style. arXiv preprint arXiv:1610.07629, 2016.

[24] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-
zagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-
training help deep learning? Journal of Machine Learning Research, 11
(Feb):625–660, 2010.

[25] Bradley J Erickson, Panagiotis Korfiatis, Zeynettin Akkus, and Timo-
thy L Kline. Machine learning for medical imaging. Radiographics, 37
(2):505–515, 2017.

[26] Anthony S Fauci, H Clifford Lane, and Robert R Redfield. Covid-
19—navigating the uncharted, 2020.

[27] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements
of statistical learning, volume 1. Springer series in statistics New York,
2001.

[28] Francisco Fumero, Silvia Alayón, José L Sanchez, Jose Sigut, and
M Gonzalez-Hernandez. Rim-one: An open retinal image database
for optic nerve evaluation. In 2011 24th international symposium on
computer-based medical systems (CBMS), pages 1–6. IEEE, 2011.

[29] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain,
Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lem-
pitsky. Domain-adversarial training of neural networks. JMLR, 17(1):
2096–2030, 2016.

[30] et al. Gao. Deep label distribution learning with label ambiguity. IEEE
Transactions on Image Processing, 26(6):2825–2838, 2017.

[31] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis
using convolutional neural networks. NeurIPS, 28:262–270, 2015.

[32] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style
transfer using convolutional neural networks. In ICCVPR, pages 2414–
2423, 2016.

[33] Xin Geng. Label distribution learning. IEEE Transactions on Knowledge
and Data Engineering, 28(7):1734–1748, 2016.

[34] Mina Gheiratmand, Irina Rish, Guillermo A Cecchi, Matthew R G
Brown, Russell Greiner, Pablo I Polosecki, Pouya Bashivan, Andrew J
Greenshaw, Rajamannar Ramasubbu, and Serdar M Dursun. Learning
stable and predictive network-based patterns of schizophrenia and its
clinical symptoms. NPJ Schizophrenia, 3:22, 2017. ISSN 2334-265X.

[35] Golnaz Ghiasi et al. Exploring the structure of a real-time, arbitrary
neural artistic stylization network. arXiv preprint arXiv:1705.06830,
2017.

[36] Amir Gholami et al. A novel domain adaptation framework for medical
image segmentation. In MICCAI Brainlesion, pages 289–298. Springer,
2018.

91

[37] Maryellen L Giger. Machine learning in medical imaging. Journal of the
American College of Radiology, 15(3):512–520, 2018.

[38] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation
for large-scale sentiment classification: A deep learning approach. In
ICML, 2011.

[39] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[40] Ian Goodfellow et al. Generative adversarial nets. NeurIPS, 27, 2014.

[41] R Graf. Fundamentals of sonographic diagnosis of infant hip dysplasia.
Journal of pediatric orthopedics, 4(6):735–740, 1984.

[42] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard
Schölkopf, and Alexander Smola. A kernel two-sample test. JMLR,
13(1):723–773, 2012.

[43] Douglas N Greve, Gregory G Brown, Bryon A Mueller, Gary Glover, and
Thomas T Liu. A survey of the sources of noise in fMRI. Psychometrika,
78(3):396 – 416, 2013. ISSN 00333123.

[44] Hao Guan and Mingxia Liu. Domain adaptation for medical image anal-
ysis: a survey. arXiv preprint arXiv:2102.09508, 2021.

[45] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibra-
tion of modern neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1321–1330. JMLR.
org, 2017.

[46] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti A Zadeh.
Feature extraction: foundations and applications, volume 207. Springer,
2008.

[47] Humza Haider, Bret Hoehn, Sarah Davis, and Russell Greiner. Effec-
tive ways to build and evaluate individual survival distributions. arXiv
preprint arXiv:1811.11347, 2018.

[48] Thomas Hale, Noam Angrist, Rafael Goldszmidt, Beatriz Kira, Anna
Petherick, Toby Phillips, Samuel Webster, Emily Cameron-Blake, Laura
Hallas, Saptarshi Majumdar, et al. A global panel database of pandemic
policies (oxford covid-19 government response tracker). Nature Human
Behaviour, 5(4):529–538, 2021.

[49] Okka W Hamer, Diego A Aguirre, Giovanna Casola, Joel E Lavine,
Matthias Woenckhaus, and Claude B Sirlin. Fatty liver: imaging pat-
terns and pitfalls. Radiographics, 26(6):1637–1653, 2006.

[50] H Theodore Harcke and B Pruszczynski. Hip ultrasound for developmen-
tal dysplasia: the 50% rule. Pediatric radiology, 47(7):817–821, 2017.

[51] Abhilash R Hareendranathan, Dornoosh Zonoobi, Myles Mabee, Dana
Cobzas, Kumaradevan Punithakumar, Michelle Noga, and Jacob L
Jaremko. Toward automatic diagnosis of hip dysplasia from 2d ul-
trasound. In 2017 IEEE 14th International Symposium on Biomedical
Imaging (ISBI 2017), pages 982–985. IEEE, 2017.

92

[52] Trevor J. Hastie, Robert John Tibshirani, and Jerome H. Friedman. The
elements of statistical learning : data mining, inference, and prediction.
Springer series in statistics. Springer, New York, 2009. ISBN 978-0-387-
84857-0.

[53] William R Hendee, Gary J Becker, James P Borgstede, Jennifer Bosma,
William J Casarella, Beth A Erickson, C Douglas Maynard, James H
Thrall, and Paul E Wallner. Addressing overutilization in medical imag-
ing. Radiology, 257(1):240–245, 2010.

[54] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[55] Søren Højsgaard, David Edwards, and Steffen Lauritzen. Graphical mod-
els with R. Springer Science & Business Media, 2012.

[56] Inga Holmdahl and Caroline Buckee. Wrong but useful—what covid-19
epidemiologic models can and cannot tell us. New England Journal of
Medicine, 383(4):303–305, 2020.

[57] David W Hosmer and Stanley Lemesbow. Goodness of fit tests for the
multiple logistic regression model. Communications in statistics-Theory
and Methods, 9(10):1043–1069, 1980.

[58] Jonathan J. Hull. A database for handwritten text recognition research.
IEEE Transactions on pattern analysis and machine intelligence, 16(5):
550–554, 1994.

[59] Ehsan Imani and Martha White. Improving regression performance with
distributional losses. arXiv preprint arXiv:1806.04613, 2018.

[60] John PA Ioannidis, Sally Cripps, and Martin A Tanner. Forecasting for
covid-19 has failed. International journal of forecasting, 2020.

[61] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E
Hinton. Adaptive mixtures of local experts. Neural computation, 3(1):
79–87, 1991.

[62] Xiaoyong Jin, Yu-Xiang Wang, and Xifeng Yan. Inter-series attention
model for covid-19 forecasting. In SIAM International Conference on
Data Mining (SDM), pages 495–503. SIAM, 2021.

[63] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In European conference on
computer vision, pages 694–711. Springer, 2016.

[64] Bela Julesz. Visual pattern discrimination. IRE transactions on Infor-
mation Theory, 8(2):84–92, 1962.

[65] Bela Julesz et al. Inability of humans to discriminate between visual
textures that agree in second-order statistics. Perception, 2(4):391–405,
1973.

[66] Rahele Kafieh, Roya Arian, Narges Saeedizadeh, Zahra Amini,
Nasim Dadashi Serej, Shervin Minaee, Sunil Kumar Yadav, Atefeh Vaezi,
Nima Rezaei, and Shaghayegh Haghjooy Javanmard. Covid-19 in iran:
forecasting pandemic using deep learning. Computational and Mathe-
matical Methods in Medicine, 2021, 2021.

93

[67] David B. Keator and et al. The function biomedical informatics research
network data repository. NeuroImage, 124, Part B:1074 – 1079, 2016.
ISSN 1053-8119. Sharing the wealth: Brain Imaging Repositories in
2015.

[68] William Ogilvy Kermack and Anderson G McKendrick. A contribution
to the mathematical theory of epidemics. Proceedings of the royal society
of london. Series A, Containing papers of a mathematical and physical
character, 115(772):700–721, 1927.

[69] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening
and decorrelation. The American Statistician, 72(4):309–314, 2018.

[70] Se Hyung Kim, Jeong Min Lee, Jong Hyo Kim, Kwang Gi Kim, Joon Koo
Han, Kyoung Ho Lee, Seong Ho Park, Nam-Joon Yi, Kyung-Suk Suh,
Su Kyung An, et al. Appropriateness of a donor liver with respect
to macrosteatosis: application of artificial neural networks to us im-
ages—initial experience. Radiology, 234(3):793–803, 2005.

[71] Edward S Knock, Lilith K Whittles, John A Lees, Pablo N Perez-
Guzman, Robert Verity, Richard G FitzJohn, Katy AM Gaythorpe, Nat-
suko Imai, Wes Hinsley, Lucy C Okell, et al. Key epidemiological drivers
and impact of interventions in the 2020 sars-cov-2 epidemic in england.
Science Translational Medicine, 2021.

[72] Daphne Koller and Nir Friedman. Probabilistic graphical models: prin-
ciples and techniques. MIT press, 2009.

[73] Meelis Kull and Peter Flach. Patterns of dataset shift. In LMCE at
ECML-PKDD., 2014.

[74] Steffen L Lauritzen. Graphical models, volume 17. Clarendon Press,
1996.

[75] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[76] Zhifang Liao, Peng Lan, Zhining Liao, Yan Zhang, and Shengzong Liu.
Tw-sir: time-window based sir for covid-19 forecasts. Scientific reports,
10(1):1–15, 2020.

[77] HaiYue Liu and Aqsa et al Manzoor. The covid-19 outbreak and affected
countries stock markets response. Int’l J Environmental Research and
Public Health, 17(8):2800, 2020.

[78] Xinzhi Liu and Peter Stechlinski. Infectious disease models with time-
varying parameters and general nonlinear incidence rate. Applied Math-
ematical Modelling, 36(5):1974–1994, 2012.

[79] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. In ICCVPR, pages 3431–
3440, 2015.

[80] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan.
Conditional adversarial domain adaptation. In NeurIPS, pages 1647–
1657, 2018.

94

[81] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard S
Zemel. The variational fair autoencoder. In ICLR, 2016.

[82] Ian JC MacCormick, Bryan M Williams, Yalin Zheng, Kun Li, Baidaa
Al-Bander, Silvester Czanner, Rob Cheeseman, Colin E Willoughby,
Emery N Brown, George L Spaeth, et al. Accurate, fast, data efficient
and interpretable glaucoma diagnosis with automated spatial analysis of
the whole cup to disc profile. PloS one, 14(1):e0209409, 2019.

[83] Ilja Manakov et al. Noise as domain shift: Denoising medical images
by unpaired image translation. In D.A.R.T.M.I.L.L.L.I.D., pages 3–10.
Springer, 2019.

[84] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully
convolutional neural networks for volumetric medical image segmenta-
tion. In 2016 fourth international conference on 3D vision (3DV), pages
565–571. IEEE, 2016.

[85] Ramesh Kumar Mojjada, Arvind Yadav, AV Prabhu, and Yuvaraj
Natarajan. Machine learning models for covid-19 future forecasting.
Materials Today: Proceedings, 2020.

[86] Rafael Müller, Simon Kornblith, and Geoffrey E. Hinton. When does
label smoothing help? CoRR, abs/1906.02629, 2019. URL http://
arxiv.org/abs/1906.02629.

[87] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

[88] Quang Nguyen, Hamed Valizadegan, and Milos Hauskrecht. Learning
classification with auxiliary probabilistic information. In 2011 IEEE 11th
International Conference on Data Mining, pages 477–486. IEEE, 2011.

[89] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabil-
ities with supervised learning. In Proceedings of the 22nd international
conference on Machine learning, pages 625–632. ACM, 2005.

[90] Jared A Nielsen, Brandon A Zielinski, P Thomas Fletcher, Andrew L
Alexander, Nicholas Lange, Erin D Bigler, Janet E Lainhart, and Jef-
frey S Anderson. Multisite functional connectivity mri classification of
autism: Abide results. Frontiers in human neuroscience, 7:599, 2013.

[91] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer
Science & Business Media, 2006.

[92] Mohammad Norouzi, Samy Bengio, Navdeep Jaitly, Mike Schuster,
Yonghui Wu, Dale Schuurmans, et al. Reward augmented maximum
likelihood for neural structured prediction. In Advances In Neural In-
formation Processing Systems, pages 1723–1731, 2016.

[93] Emanuele Olivetti, Susanne Greiner, and Paolo Avesani. ADHD diagno-
sis from multiple data sources with batch effects. Frontiers In Systems
Neuroscience, 6:70, 2012. ISSN 1662-5137.

[94] Nahla F Omran, Sara F Abd-el Ghany, Hager Saleh, Abdelmgeid A
Ali, Abdu Gumaei, and Mabrook Al-Rakhami. Applying deep learning
methods on time-series data for forecasting covid-19 in egypt, kuwait,
and saudi arabia. Complexity, 2021, 2021.

95

http://arxiv.org/abs/1906.02629
http://arxiv.org/abs/1906.02629

[95] Government Ontario. Covid-19 case data:glossary. https://covid-19.
ontario.ca/data/covid-19-case-data-glossary, 2021. Accessed:
2021-06-30.

[96] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and
Geoffrey Hinton. Regularizing neural networks by penalizing confident
output distributions. arXiv preprint arXiv:1701.06548, 2017.

[97] Filippo Pesapane, Marina Codari, and Francesco Sardanelli. Artificial in-
telligence in medical imaging: threat or opportunity? radiologists again
at the forefront of innovation in medicine. European radiology experi-
mental, 2(1):35, 2018.

[98] Javier Portilla and Eero P Simoncelli. A parametric texture model based
on joint statistics of complex wavelet coefficients. IJCV, 40(1):49–70,
2000.

[99] Jonathan D Power, Alexander L Cohen, Steven M Nelson, Gagan S
Wig, Kelly Anne Barnes, Jessica A Church, Alecia C Vogel, Timothy O
Laumann, Fran M Miezin, Bradley L Schlaggar, and Steven E Petersen.
Functional network organization of the human brain. Neuron, 72(4):665
– 678, 2011. ISSN 1097-4199.

[100] Xuebin Qin et al. U2-net: Going deeper with nested u-structure for
salient object detection. Pattern Recognition, 106:107404, 2020.

[101] Pouria Ramazi, Arezoo Haratian, Maryam Meghdadi, Arash Mari
Oriyad, Mark A Lewis, Zeinab Maleki, Roberto Vega, Hao Wang,
David S Wishart, and Russell Greiner. Accurate long-range forecasting
of covid-19 mortality in the usa. Scientific Reports, 11(1):1–11, 2021.

[102] Jonas Richiardi, Sophie Achard, Horst Bunke, and Dimitri Van De Ville.
Machine learning with brain graphs: Predictive modeling approaches
for functional imaging in systems neuroscience. IEEE Signal Processing
Magazine, 30(3):58–70, 2013.

[103] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In MICCAI, pages
234–241. Springer, 2015.

[104] Cynthia Rudin. Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead. Nature
Machine Intelligence, 1(5):206–215, 2019.

[105] KC Santosh. Covid-19 prediction models and unexploited data. Journal
of medical systems, 44(9):1–4, 2020.

[106] Hidetoshi Shimodaira. Improving predictive inference under covariate
shift by weighting the log-likelihood function. Journal of statistical plan-
ning and inference, 90(2):227–244, 2000.

[107] Amos Storkey. When training and test sets are different: characterizing
learning transfer. Dataset shift in machine learning, 30:3–28, 2009.

96

https://covid-19.ontario.ca/data/covid-19-case-data-glossary
https://covid-19.ontario.ca/data/covid-19-case-data-glossary

[108] Amos Storkey et al. When training and test sets are different: Charac-
terizing learning transfer. In Dataset Shift in Machine Learning, pages
3–28. Yale University Press in association with the Museum of London,
2008.

[109] Simon Strauss, Ella Gavish, Paul Gottlieb, and Ludmila Katsnelson. In-
terobserver and Intraobserver Variability in the Sonographic Assessment
of Fatty Liver. American Journal of Roentgenology, 189(6):W320–W323,
December 2007. ISSN 0361-803X, 1546-3141. doi: 10.2214/AJR.07.2123.
URL http://www.ajronline.org/doi/10.2214/AJR.07.2123.

[110] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly
easy domain adaptation. In AAAI, volume 30, 2016.

[111] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[112] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J
Gordon. Domain adaptation with conditional distribution matching and
generalized label shift. NeurIPS, 33, 2020.

[113] Tensorflow. Fast Style Transfer for Arbitrary Styles. https:
//www.tensorflow.org/hub/tutorials/tf2_arbitrary_image_
stylization, 2017. [Online; accessed 6-Feb-2022].

[114] Michael E Tipping and Christopher M Bishop. Probabilistic principal
component analysis. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 61(3):611–622, 1999.

[115] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial
discriminative domain adaptation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7167–7176, 2017.

[116] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved tex-
ture networks: Maximizing quality and diversity in feed-forward styliza-
tion and texture synthesis. In ICCVPR, pages 6924–6932, 2017.

[117] Dmitry Ulyanov et al. Texture networks: Feed-forward synthesis of
textures and stylized images. In ICML, volume 1, page 4, 2016.

[118] Roberto Vega and Russ Greiner. Finding effective ways to (machine)
learn fmri-based classifiers from multi-site data. In U.I.M.L.M.I.C.A.,
pages 32–39. Springer, 2018.

[119] Roberto Vega and Russell Greiner. Domain-shift adaptation via linear
transformations. arXiv preprint arXiv:2201.05282, 2022.

[120] Roberto Vega, Pouneh Gorji, Zichen Zhang, Xuebin Qin, Abhilash
Rakkunedeth, Jeevesh Kapur, Jacob Jaremko, and Russell Greiner. Sam-
ple efficient learning of image-based diagnostic classifiers via probabilistic
labels. In International Conference on Artificial Intelligence and Statis-
tics, pages 739–747. PMLR, 2021.

[121] Roberto Vega, Leonardo Flores, and Russell Greiner. Simlr: Machine
learning inside the sir model for covid-19 forecasting. Forecasting, 4(1):
72–94, 2022.

97

http://www.ajronline.org/doi/10.2214/AJR.07.2123
https://www.tensorflow.org/hub/tutorials/tf2_arbitrary_image_stylization
https://www.tensorflow.org/hub/tutorials/tf2_arbitrary_image_stylization
https://www.tensorflow.org/hub/tutorials/tf2_arbitrary_image_stylization

[122] Roberto I Vega Romero. The challenge of applying machine learning
techniques to diagnose schizophrenia using multi-site fmri data. Master’s
thesis, University of Alberta, 2017.

[123] Patrick GT Walker, Charles Whittaker, Oliver J Watson, Marc Baguelin,
Peter Winskill, Arran Hamlet, Bimandra A Djafaara, Zulma Cucunubá,
Daniela Olivera Mesa, Will Green, et al. The impact of covid-19 and
strategies for mitigation and suppression in low-and middle-income coun-
tries. Science, 369(6502):413–422, 2020.

[124] Gregory L Watson, Di Xiong, Lu Zhang, Joseph A Zoller, John
Shamshoian, Phillip Sundin, Teresa Bufford, Anne W Rimoin, Marc A
Suchard, and Christina M Ramirez. Pandemic velocity: Forecasting
covid-19 in the us with a machine learning & bayesian time series com-
partmental model. PLoS computational biology, 17(3):e1008837, 2021.

[125] Junfeng Wen, Chun-Nam Yu, and Russell Greiner. Robust learning
under uncertain test distributions: Relating covariate shift to model
misspecification. In ICML, pages 631–639. PMLR, 2014.

[126] Zaiwen Wen and Wotao Yin. A feasible method for optimization with
orthogonality constraints. Mathematical Programming, 142(1):397–434,
2013.

[127] Miles N Wernick, Yongyi Yang, Jovan G Brankov, Grigori Yourganov,
and Stephen C Strother. Machine learning in medical imaging. IEEE
signal processing magazine, 27(4):25–38, 2010.

[128] David J Winter. Matrix algebra. Macmillan, 1992.

[129] Yanbing Xue and Milos Hauskrecht. Efficient learning of classification
models from soft-label information by binning and ranking. In The Thir-
tieth International Flairs Conference, 2017.

[130] Arnold YS Yeung, Francois Roewer-Despres, Laura Rosella, and Frank
Rudzicz. Machine learning–based prediction of growth in confirmed
covid-19 infection cases in 114 countries using metrics of nonpharma-
ceutical interventions and cultural dimensions: Model development and
validation. Journal of Medical Internet Research, 23(4):e26628, 2021.

[131] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How trans-
ferable are features in deep neural networks? In Advances in neural
information processing systems, pages 3320–3328, 2014.

[132] Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang.
Domain adaptation under target and conditional shift. In ICML, pages
819–827. PMLR, 2013.

[133] Tianyang Zhang et al. Noise adaptation generative adversarial network
for medical image analysis. IEEE transactions on medical imaging, 39
(4):1149–1159, 2019.

[134] Han Zhao, Shanghang Zhang, Guanhang Wu, José MF Moura, Joao P
Costeira, and Geoffrey J Gordon. Adversarial multiple source domain
adaptation. NeurIPS, 31:8559–8570, 2018.

98

[135] Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon.
On learning invariant representations for domain adaptation. In ICML,
pages 7523–7532. PMLR, 2019.

[136] Zongwei Zhou et al. Unet++: A nested u-net architecture for medical
image segmentation. In Deep learning in medical image analysis and
multimodal learning for clinical decision support, pages 3–11. Springer,
2018.

[137] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks.
In ICCVPR, pages 2223–2232, 2017.

[138] Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy
principle and its application to texture modeling. Neural computation,
9(8):1627–1660, 1997.

[139] Song Chun Zhu, Xiu Wen Liu, and Ying Nian Wu. Exploring texture
ensembles by efficient markov chain monte carlo-toward a” trichromacy”
theory of texture. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(6):554–569, 2000.

99

Appendix A

Code Availability

A.1 SIMLR Code

The code for reproducing the main results of this manuscript are publicly
available at: https://github.com/rvegaml/SIMLR.

There are six jupyter notebooks on that repository. All the experiments
were run using an e2-standard-4 (4 vCPUs, 16 GB memory) computer in the
Google Cloud Platform.

• CDC models.ipynb: It contains the code used to compile the predic-
tions of the models submitted to the CDC. The dataset required to run
this script was not included due to the size, but it is publicly available.

• Comparison CDC.ipynb: It contains the code to create the graphs
that compare SIMLR with the models submitted to the CDC. It uses
the files created by the previous notebook.

• Model Canada Provinces.ipynb: It contains the data to predict the
number of cases 1 to 4 weeks in advance in the 6 biggest provinces in
Canada.

• Model US Country.ipynb: Similar to the previous one, but for the
predictions on US at the country level.

• Model US States.ipynb: Similar to the previous one, but for the pre-
dictions on US at the state level.

• SIR Simulations.ipynb: Code to create the simulated SIR, and to
show how a simple SIR model with time-varying parameters can describe
the complexities of the COVID-19 dynamics.

A.2 Unsupervised domain adaptation code

The provided repository in addition contains the in-house developed python
library MLib. This library contains custom code for inference in probabilistic
graphical models.

The code for reproducing the results presented in this paper is publicly
available at https://github.com/rvegaml/DA_Linear. It contains three main
elements:

100

https://github.com/rvegaml/SIMLR
https://github.com/rvegaml/DA_Linear

• MLib: An in-house developed library that contains the implementation
of Algorithms 1 and 2, and auxiliary functions required to reproduce our
main results.

• Simulations.ipynb: A jupyter notebook with the code to reproduce
the simulated experiments.

• BinaryDigits.ipynb: A jupyter notebook with the code to reproduce
our results with MNIST dataset.

During our experiments, we did not tune any parameter. The CNN was
trained for a maximum of 500 epochs, using a learning rate of 10−5, and the
default parameters of the Adam Optimizer. For the computation of the MMD
we used a Gaussian kernel with σ2 = 2.

101

Appendix B

Additional SIMLR tables

Table B.1: Comparison of MAPE between different models across all the states
in the US 1 week in advance. The number in parenthesis represents the stan-
dard deviation of the MAPE.

1 Week
State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 20(16) 19(16) 20(12) 21(15) 20(12) 1/16
Alaska 16(13) 18(15) 17(15) 18(10) 15(14) 4/15
Arizona 21(18) 25(19) 22(21) 18(16) 18(16) 3/16
Arkansas 20(18) 21(29) 24(29) 19(19) 19(19) 13/16
California 15(11) 20(15) 13(10) 13(10) 13(10) 1/16
Colorado 15(15) 19(11) 16(12) 13(8) 13(8) 2/16

Connecticut 17(12) 19(10) 17(11) 23(17) 17(11) 1/16
Delaware 20(14) 18(14) 19(13) 15(11) 15(11) 4/16

Washington DC 23(15) 19(13) 23(15) 15(10) 15(10) 8/16
Florida 12(11) 13(7) 12(8) 9(7) 9(7) 2/16
Georgia 16(12) 16(13) 16(14) 16(15) 16(15) 3/16
Hawaii 27(22) 23(15) 25(17) 18(13) 18(13) 13/15
Idaho 16(11) 16(10) 14(10) 14(10) 14(10) 2/16
Illinois 13(12) 17(10) 12(9) 12(8) 12(9) 1/17
Indiana 11(10) 17(10) 15(10) 13(11) 13(11) 3/17

Iowa 23(18) 21(15) 22(15) 20(22) 20(14) 5/16
Kansas 16(15) 20(15) 18(12) 21(14) 18(12) 1/16

Kentucky 16(11) 16(8) 15(9) 12(9) 12(9) 2/16
Louisiana 24(17) 23(22) 24(22) 21(19) 21(19) 3/16

Maine 17(15) 19(15) 18(15) 14(11) 14(11) 2/16
Maryland 14(12) 15(12) 13(12) 11(7) 11(7) 2/16

Massachusetts 15(10) 16(11) 13(9) 14(10) 13(9) 1/16
Michigan 15(10) 20(10) 16(11) 19(11) 16(11) 1/16
Minnesota 19(17) 21(16) 20(14) 15(12) 15(12) 4/16
Mississippi 19(16) 17(16) 19(15) 16(12) 16(12) 5/16

102

Missouri 20(14) 19(13) 21(15) 12(38) 11(36) 14/16
Montana 19(17) 21(12) 19(15) 35(104) 18(13) 2/16
Nebraska 20(18) 20(16) 20(15) 18(13) 18(13) 5/16
Nevada 18(17) 20(15) 20(15) 15(11) 15(11) 5/16

New Hampshire 18(14) 18(13) 16(14) 17(11) 16(14) 1/16
New Jersey 11(10) 13(10) 11(9) 14(10) 11(9) 1/16
New Mexico 15(10) 20(12) 15(11) 15(11) 15(11) 2/16
New York 12(9) 14(10) 13(8) 11(9) 11(9) 2/16

North Carolina 12(10) 14(10) 13(9) 12(9) 12(9) 2/16
North Dakota 22(22) 23(24) 23(23) 16(13) 16(13) 8/16

Ohio 12(9) 16(10) 13(10) 11(8) 11(8) 2/16
Oklahoma 22(23) 24(25) 23(24) 15(11) 15(11) 13/16

Oregon 19(13) 18(13) 18(13) 13(10) 13(10) 4/16
Pennsylvania 13(11) 15(12) 15(11) 11(8) 11(8) 3/17
Rhode Island 14(11) 17(11) 13(11) 23(15) 13(11) 1/16

South Carolina 16(13) 16(11) 16(13) 12(8) 12(8) 7/16
South Dakota 18(12) 17(14) 17(11) 15(10) 15(10) 2/16

Tennessee 18(15) 19(15) 22(16) 18(12) 18(13) 12/16
Texas 24(22) 23(28) 25(29) 20(18) 20(21) 7/16
Utah 14(14) 17(11) 16(13) 11(10) 11(10) 7/16

Vermont 25(20) 20(15) 21(14) 21(15) 21(14) 1/16

Table B.2: Comparison of MAPE between different models across all the states
in the US 2 weeks in advance. The number in parenthesis represents the
standard deviation of the MAPE.

2 Weeks
State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 32(27) 32(30) 32(27) 30(19) 30(24) 3/16
Alaska 30(32) 30(25) 27(25) 28(22) 27(24) 2/15
Arizona 41(32) 46(37) 38(36) 32(28) 32(28) 4/16
Arkansas 39(56) 40(61) 45(61) 32(43) 30(28) 14/16
California 22(20) 41(31) 24(21) 25(19) 24(21) 1/16
Colorado 31(28) 30(19) 33(26) 24(19) 24(19) 11/16

Connecticut 27(25) 29(18) 29(26) 33(18) 29(26) 1/16
Delaware 26(19) 26(19) 26(19) 20(16) 20(16) 5/16

Washington DC 34(22) 26(16) 34(23) 23(13) 23(13) 8/16
Florida 20(14) 22(11) 20(13) 14(10) 14(10) 3/16
Georgia 25(18) 31(19) 27(19) 22(20) 22(20) 4/16
Hawaii 41(38) 32(30) 39(36) 29(23) 28(23) 7/15
Idaho 25(24) 27(20) 24(23) 24(16) 24(23) 1/16
Illinois 23(18) 31(19) 27(19) 23(16) 23(16) 3/17

103

Indiana 27(21) 31(23) 31(23) 24(22) 23(16) 13/17
Iowa 36(45) 33(21) 33(26) 34(32) 31(24) 3/16

Kansas 32(28) 35(29) 33(30) 24(17) 24(17) 5/16
Kentucky 26(22) 28(14) 25(22) 19(15) 19(15) 7/16
Louisiana 31(35) 31(39) 31(39) 29(24) 29(24) 3/16

Maine 34(28) 31(27) 34(30) 23(18) 23(18) 6/16
Maryland 24(18) 26(19) 23(18) 22(16) 22(16) 3/16

Massachusetts 26(18) 28(19) 25(19) 24(16) 24(16) 2/16
Michigan 33(22) 35(19) 33(20) 31(16) 27(16) 4/16
Minnesota 40(34) 39(32) 41(35) 28(23) 28(23) 10/16
Mississippi 26(23) 32(25) 31(24) 22(18) 22(18) 11/16
Missouri 32(30) 29(26) 31(27) 18(41) 13(38) 14/16
Montana 34(29) 35(20) 36(28) 30(25) 26(18) 13/16
Nebraska 29(22) 32(20) 30(20) 27(14) 27(14) 3/16
Nevada 31(22) 37(25) 33(26) 23(18) 23(18) 5/16

New Hampshire 29(23) 32(18) 30(24) 28(16) 28(16) 2/16
New Jersey 19(14) 23(13) 19(14) 25(13) 19(14) 1/16
New Mexico 29(23) 36(20) 30(24) 25(21) 25(21) 4/16
New York 24(18) 24(15) 24(18) 21(13) 21(13) 4/16

North Carolina 22(14) 26(18) 25(18) 17(14) 17(14) 6/16
North Dakota 42(39) 41(42) 48(44) 32(24) 31(20) 13/16

Ohio 25(22) 30(19) 29(24) 20(15) 20(15) 10/16
Oklahoma 34(30) 34(32) 37(31) 25(21) 25(21) 13/16

Oregon 29(24) 28(18) 30(24) 18(15) 18(15) 10/16
Pennsylvania 29(19) 27(16) 31(19) 19(14) 19(14) 9/17
Rhode Island 21(17) 29(19) 24(17) 30(19) 24(17) 1/16

South Carolina 27(19) 26(20) 27(21) 18(13) 18(13) 13/16
South Dakota 30(26) 30(28) 32(25) 27(20) 27(20) 4/16

Tennessee 30(24) 29(26) 34(27) 24(19) 24(19) 12/16
Texas 38(49) 35(52) 38(51) 26(26) 25(34) 8/16
Utah 27(29) 30(20) 32(27) 20(19) 20(19) 10/16

Vermont 29(24) 26(22) 28(25) 29(25) 27(23) 3/16

Table B.3: Comparison of MAPE between different models across all the states
in the US 3 weeks in advance. The number in parenthesis represents the
standard deviation of the MAPE.

3 Weeks
State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 40(43) 42(41) 34(36) 34(27) 34(27) 2/16
Alaska 36(41) 37(35) 32(35) 39(36) 32(35) 1/15
Arizona 49(44) 70(59) 59(60) 42(35) 42(35) 6/16

104

Arkansas 49(52) 54(69) 53(70) 40(38) 37(26) 12/16
California 41(49) 67(53) 48(50) 34(29) 34(29) 6/16
Colorado 50(54) 39(26) 39(27) 31(27) 31(27) 5/16

Connecticut 38(42) 39(24) 40(35) 39(21) 39(21) 2/16
Delaware 39(36) 34(28) 39(35) 30(23) 30(23) 5/16

Washington DC 48(44) 32(23) 35(33) 26(20) 26(20) 5/16
Florida 33(26) 34(20) 29(20) 19(14) 19(14) 3/16
Georgia 41(27) 47(26) 39(27) 29(22) 29(22) 5/16
Hawaii 64(79) 41(38) 54(61) 34(28) 34(28) 6/15
Idaho 38(39) 40(31) 35(35) 34(26) 33(25) 4/16
Illinois 38(29) 40(31) 40(28) 33(26) 32(21) 5/17
Indiana 40(33) 44(38) 42(34) 35(33) 32(23) 11/17

Iowa 45(48) 43(34) 42(33) 47(41) 41(38) 2/16
Kansas 47(47) 51(46) 45(43) 31(20) 31(20) 5/16

Kentucky 38(39) 38(25) 31(23) 25(18) 25(18) 5/16
Louisiana 36(41) 48(58) 46(58) 38(28) 38(28) 4/16

Maine 50(39) 43(41) 46(39) 33(27) 33(27) 5/16
Maryland 34(36) 36(33) 37(37) 32(25) 32(25) 5/16

Massachusetts 38(34) 40(28) 38(30) 33(23) 33(23) 2/16
Michigan 49(35) 48(27) 45(24) 43(22) 39(24) 3/16
Minnesota 55(54) 51(51) 51(50) 40(35) 40(37) 6/16
Mississippi 43(38) 47(41) 46(38) 29(23) 29(23) 12/16
Missouri 36(29) 39(39) 39(39) 23(47) 19(43) 12/16
Montana 51(46) 42(32) 40(34) 40(31) 34(21) 7/16
Nebraska 42(33) 44(33) 43(33) 37(26) 37(26) 4/16
Nevada 41(35) 55(42) 47(44) 34(25) 34(25) 6/16

New Hampshire 43(38) 42(24) 38(22) 34(21) 34(21) 3/16
New Jersey 27(24) 31(20) 25(17) 34(16) 25(17) 1/16
New Mexico 46(47) 52(29) 42(32) 33(32) 33(32) 8/16
New York 37(35) 33(18) 30(28) 29(17) 29(17) 2/16

North Carolina 32(21) 36(28) 32(24) 22(15) 22(15) 4/16
North Dakota 61(67) 61(54) 66(67) 50(36) 45(28) 12/16

Ohio 43(42) 41(31) 38(31) 28(19) 28(19) 5/16
Oklahoma 51(50) 46(47) 49(48) 33(22) 33(22) 12/16

Oregon 47(49) 39(23) 35(26) 28(21) 28(21) 2/16
Pennsylvania 46(40) 37(23) 38(23) 27(17) 27(17) 5/17
Rhode Island 27(26) 37(31) 32(28) 39(21) 32(28) 1/16

South Carolina 36(25) 35(28) 33(28) 23(15) 23(15) 3/16
South Dakota 44(41) 47(40) 43(40) 40(29) 40(29) 3/16

Tennessee 34(29) 40(35) 38(37) 31(25) 31(25) 3/16
Texas 52(54) 48(55) 44(55) 31(27) 31(27) 6/16
Utah 42(44) 43(30) 46(33) 32(24) 32(24) 10/16

105

Vermont 44(29) 37(21) 41(28) 39(24) 38(24) 3/16

Table B.4: Comparison of MAPE between different models across all the states
in the US 4 weeks in advance. The number in parenthesis represents the
standard deviation of the MAPE.

4 Weeks
State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 54(48) 56(52) 51(46) 40(27) 40(27) 3/16
Alaska 58(66) 50(36) 47(38) 49(32) 46(36) 2/15
Arizona 70(80) 104(103) 93(102) 65(68) 61(64) 7/16
Arkansas 59(56) 68(86) 66(87) 46(53) 45(49) 8/16
California 64(87) 95(83) 81(84) 50(47) 50(47) 7/16
Colorado 73(90) 52(26) 52(33) 41(36) 39(24) 6/16

Connecticut 60(65) 46(34) 58(49) 44(23) 44(23) 6/16
Delaware 44(47) 39(37) 46(41) 34(34) 34(34) 5/16

Washington DC 65(64) 37(30) 46(48) 35(34) 35(34) 5/16
Florida 47(46) 52(42) 47(45) 27(26) 27(26) 5/16
Georgia 48(40) 64(35) 59(33) 38(32) 38(32) 7/16
Hawaii 102(153) 55(43) 77(98) 45(43) 45(43) 6/15
Idaho 55(53) 54(41) 53(44) 41(40) 41(40) 7/16
Illinois 53(38) 51(43) 54(40) 43(37) 39(27) 5/17
Indiana 56(51) 61(55) 56(54) 45(49) 44(33) 6/17

Iowa 61(72) 55(46) 53(46) 55(56) 50(45) 2/16
Kansas 66(68) 68(69) 59(58) 43(26) 43(26) 5/16

Kentucky 50(49) 47(39) 43(36) 34(23) 34(23) 5/16
Louisiana 48(49) 68(66) 64(67) 44(35) 44(35) 7/16

Maine 69(64) 56(55) 62(59) 43(40) 43(40) 6/16
Maryland 51(71) 45(45) 53(61) 42(43) 42(43) 6/16

Massachusetts 49(52) 50(40) 47(45) 45(38) 45(38) 2/16
Michigan 62(67) 56(36) 51(37) 53(32) 51(44) 2/16
Minnesota 74(87) 65(61) 64(62) 55(51) 47(41) 5/16
Mississippi 52(49) 62(52) 59(51) 38(43) 38(43) 6/16
Missouri 48(45) 54(57) 54(57) 32(47) 28(44) 9/16
Montana 70(72) 53(40) 55(39) 52(48) 42(36) 9/16
Nebraska 53(43) 57(46) 56(45) 47(31) 47(35) 5/16
Nevada 67(54) 77(61) 71(65) 41(43) 41(43) 8/16

New Hampshire 52(50) 50(30) 43(33) 40(25) 40(25) 2/16
New Jersey 45(62) 36(24) 40(54) 43(24) 38(23) 3/16
New Mexico 69(80) 73(39) 65(48) 46(48) 45(29) 7/16
New York 48(43) 41(22) 39(31) 37(25) 33(22) 4/16

North Carolina 41(33) 48(41) 45(36) 29(22) 29(22) 6/16

106

North Dakota 79(112) 83(77) 94(93) 72(63) 60(53) 9/16
Ohio 60(58) 54(44) 52(44) 35(31) 35(31) 6/16

Oklahoma 81(92) 61(67) 70(81) 42(32) 42(40) 9/16
Oregon 63(65) 49(33) 43(35) 39(27) 39(27) 2/16

Pennsylvania 63(54) 47(29) 47(30) 35(27) 35(27) 5/17
Rhode Island 37(39) 46(45) 42(43) 44(27) 42(43) 1/16

South Carolina 45(31) 49(37) 49(36) 28(21) 28(21) 8/16
South Dakota 51(47) 64(46) 62(45) 54(40) 52(30) 9/16

Tennessee 48(48) 58(49) 58(50) 43(31) 43(31) 5/16
Texas 63(62) 59(67) 58(67) 37(34) 37(34) 6/16
Utah 55(70) 56(44) 58(50) 40(36) 40(36) 7/16

Vermont 56(67) 41(26) 49(55) 45(27) 41(26) 4/16

107

Appendix C

Mathematical details

C.1 Z-score normalization

Let XA
i and XB

i represent the values of the ith feature extracted from scanning
sites A and B respectively. Then, we can represent the operations of scaling
and translation as:

XB
i = αiX

A
i + βi, i = 1, 2, . . . ,m (C.1)

where αi and βi are the scaling and translation coefficients of the ith feature.
In order to apply Z-score normalization we need to subtract the mean of every
feature and divide by the standard deviation. Then the z-score normalized
features from scanning sites A and B, X̄A

i , X̄B
i , are:

X̄A
i =

XA
i − E[XA

i]√
V ar(XA

i)

X̄B
i =

XB
i − E[XB

i]√
V ar(XB

i)

=
αiX

A
i + βi − E[αiX

A
i + βi]√

V ar(αiXA
i + βi)

=
αi

(
XA

i − E[XA
i]
)√

α2
iV ar(XA

i)

=
XA

i − E[XA
i]√

V ar(XA
i)

, for αi > 0

= X̄A
i

Therefore, after applying Z-score normalization, we are effectively removing
the effects of translation and scaling.

C.2 Whitening

To see why whitening removes the effects of rotation and scaling, consider the
case where the datasets XB is a rotation and translation of XA. This can be

108

represented in matrix form as:

XB = XAα + 1βT α ∈ Rp×p, β ∈ Rp (C.2)

where α is a rotation matrix – i.e., is an orthogonal matrix with determinant
det(α) = 1. The zero-mean datasets, X̄A, can be obtained as:

X̄A = XA − 1E[XA] (C.3)

E[XA] = [E[X1
A], E[X2

A], . . . , E[Xp
A]]

while for the case of X̄B:

X̄B = XAα + 1βT − 1E[XAα + 1βT]

= XAα + 1βT − 1
(
E[XAα] − E[1βT]

)
= (XA − 1[XA])α

= X̄Aα

(C.4)

The eigenvalues of the covariance matrix ΣA = 1
n−1

X̄T
AX̄A are obtained

by solving the equation det(ΣA − λI) = 0. For the special case when α is a
rotation matrix1, αT = α−1, the eigenvalues of the covariance matrix of X̄B:

0 = det

(
1

n− 1
(X̄Aα)T (X̄Aα) − λI

)
= det

(
1

n− 1
αT X̄T

AX̄Aα− λI

)
= det

(
αTΣAα− λI

)
= det

(
α−1ΣAα− α−1λIα

)
= det

(
α−1(ΣA − λI)α

)
= det(α−1) det(ΣA − λI) det(α)

= det(ΣA − λI) (C.5)

As for the eigenvectors: if v is an eigenvector of ΣA with an associated
eigenvalue λ, then ΣAv = λv. Doing some mathematical manipulations:

αΣAv = αλv

αΣAIv = αλv

αΣAα
−1αv = λαv

ΣB(αv) = λ(αv)

(C.6)

Equations C.5 and C.6 show that, when the transformation matrix α is an
orthogonal matrix with positive determinant, XA and XB will have the same
eigenvalues, and the eigenvectors of XB are just a rotation of the eigenvectors
of XA. Therefore, by projecting the data into those eigenvector, we obtain the
exact same representation, removing the effects of translation and rotation.

1All orthogonal matrices α have a determinant equal to +1, or -1. If it is positive, α is
a rotation matrix. When the determinant is negative, it is a reflection matrix.

109

C.3 Proof of Equation 4.5

z∗ = arg min
z

||(x− µ) − θz||2

= arg min
z

((x− µ) − θz)T ((x− µ) − θz)

= arg min
z

((x− µ)T − zT θT) ((x− µ) − θz)

= arg min
z

(
zT θT θz − 2(x− µ)T θz

)
Taking the derivative with respect to z and making it equal to the zero

vector:

0 =
∂

∂z

(
zT θT θz − 2(x− µ)T θz

)
= 2θT θz − 2θT (x− µ)

→ z = (θT θ)−1θT (x− µ)

Note that the second derivative is always non-negative, so z is a minimum.

C.4 Proof of Equation 4.9

Substituting θ = US
1
2Q in z = (θT θ)−1θT (x − µ), and using that QT = Q−1

for orthogonal matrices, and (AB)−1 = B−1A−1 for invertible matrices A and
B.:

z = (θT θ)−1θT (x− µ)

=
(

(US
1
2Q)T (US

1
2Q)

)−1

(US
1
2Q)T (x− µ)

=
(
QTS

1
2UTUS

1
2Q
)−1

(US
1
2Q)T (x− µ)

=
(
QTS

1
2S

1
2Q
)−1

(US
1
2Q)T (x− µ)

=
(
S

1
2Q
)−1 (

QTS
1
2

)−1

(US
1
2Q)T (x− µ)

= QTS− 1
2S− 1

2QQTS
1
2UT (x− µ)

= QTS−1S
1
2UT (x− µ)

= QTS− 1
2UT (x− µ)

C.5 Proof of Equation 4.14

For the case of the Equation 4.11 using the Gaussian kernel, and since RTR =
I, the gradient of the MMD between X and a linear transformation of Y , RY ,
with respect to R is:

110

∂

∂R
MMD2

b [F , X,RY]

=
1

m2

m∑
i,j=1

∂

∂R
k(xi, xj) −

2

mn

m,n∑
i,j=1

∂

∂R
k(xi, Ryj)+

1

n2

n∑
i,j=1

∂

∂R
k(Ryi, Ryj)

=
1

m2

m∑
i,j=1

∂

∂R
exp

(
− 1

2σ2
||xi − xj||2

)

− 2

mn

m,n∑
i,j=1

∂

∂R
exp

(
− 1

2σ2
||xi −Ryj||2

)

+
1

n2

n∑
i,j=1

∂

∂R
exp

(
− 1

2σ2
||Ryi −Ryj||2

)

= − 2

mn

m,n∑
i,j=1

∂

∂R
exp

(
− 1

2σ2
(xi −Ryj)

T (xi −Ryj)

)

+
1

n2

n∑
i,j=1

∂

∂R
exp

(
− 1

2σ2
(Ryi −Ryj)

T (Ryi −Ryj)

)

= − 2

mn

m,n∑
i,j=1

∂

∂R
exp

(
−
xT
i xi − 2xT

i Ryj + yTj yj

2σ2

)

+
1

n2

n∑
i,j=1

∂

∂R
exp

(
−
yTi yi − 2yTj yi + yTj yj

2σ2

)

= − 2

mn

m,n∑
i,j=1

exp

(
−||xi −Ryj||2

2σ2

)(
xiy

T
j

σ2

)

111

	Introduction
	Contributions

	Probabilistic Labels
	Introduction
	Foundations and related work
	Soft Labels
	Calibration

	Probabilistic labels
	Example: Hip dysplasia

	Experiments and results
	Experiment 1: Simulated Data
	Experiment 2: Hip Dysplasia
	Experiment 3: Fatty Liver
	Experiment 4: Glaucoma

	Discussion

	Combining Machine Learning and Epidemiological Models
	Introduction
	Basic SIR Model
	Related Work

	Materials and Methods
	SIR with Time-Varying Parameters
	Estimating SIR parameters
	Estimating changes in policies
	Evaluation

	Results
	Data Preprocessing
	MAPE and MAE

	Discussion

	Batch effects
	Introduction
	Related work
	A simple example
	Objectives of batch effects correction

	Supervised domain adaptation under affine transformations
	Machine learning and functional connectivity graphs
	Batch effects correction techniques
	Solving linear transformations
	Experiments and Results

	Unsupervised domain adaptation under affine transformations
	Domain-shift adaptation via linear transformations
	Experiments and Results
	Discussion

	Style Transfer for Unsupervised Domain Adaptation in Ultrasound Image Segmentation
	Introduction
	Foundations and Related Work
	Style transfer for domain adaptation
	Experiments and Results
	Discussion

	Conclusions
	References
	Appendix Code Availability
	SIMLR Code
	Unsupervised domain adaptation code

	Appendix Additional SIMLR tables
	Appendix Mathematical details
	Z-score normalization
	Whitening
	Proof of Equation 4.5
	Proof of Equation 4.9
	Proof of Equation 4.14

