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Abstract

High throughput bio-technologies in chemistry experiments generate a huge amount

of data. These data are awaiting to be analyzed for knowledge discovery.

In this work, we have developed a web-based resource MyCompoundID for com-

pound identification. Our base database contains 8,021 metabolite substrates im-

ported from Human Metabolome Database, and we adopt 76 the most commonly

encountered biotransformations collected from the literature. We first expand the

database to include all the pseudo metabolic products for up to two reactions, which

are filtered by multiple levels of restrictions we specified. Using MyCompoundID for

compound identification, either through mass queries or MS/MS spectrum queries,

can identify many more unknown metabolites than using the existing works.
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Preface

Cheminformatics, a.k.a. chemoinformatics or chemical informatics, is an emerging

field of study where computing techniques are applied for solving a wide range of

problems in chemistry science. This interdisciplinary research pools knowledge and

expertise from computing science, chemistry, biology, medical sciences and beyond.

Typically, for an underlying problem, batches of chemistry experiments are designed

and conducted, through which a significant amount of numerical data are collected;

one then seeks to analyze these data and draw biological and chemical conclusions

based on the analytical results. The large amount of collected data in general cannot

be routinely examined without computer programs. In cheminformatics, computer

scientists design programs that conveniently help chemists to filter, to sort, to search,

and to analyze their raw data, and enable chemists to achieve their research goals

within a reasonable time frame.

Metabolomics is a sub-area of studies in cheminformatics, and it studies the

chemical processes involving metabolites. Among others, identifying the metabo-

lites extracted in a sample is a critical step in metabolomics. Nevertheless, due

to many difficulties, both methods for metabolite identification and construction

of metabolite libraries are under studied; the situation becomes even worse if com-

pared with the current fast developing high throughput bio-technologies in chemistry

experiments, which generates huge amounts of data awaiting to be scientifically ana-

lyzed. In other words, analytical tools are not developed as rapidly as the hardware

technologies, and metabolomics has become an efficiency bottleneck in chemistry,

biological and medical research.

Motivated by the practical needs, in this thesis work we aim to develop a pipeline

of tools for metabolomics research. We first construct a web-based database to or-

ganize and publish both raw data and interpreted data out of high throughput

chemistry experiments, in particular the mass spectral data in our case; due to

the collaborative nature, this web-based database centralizes the research results



produced at multiple labs at different regions of the world. We then design algo-

rithms for data analysis, including single compound identification and whole sample

metabolite profiling; we analyze theoretically the algorithms to suit for the largest

range of chemical experiment instruments and protocols. These algorithms are im-

plemented into web-based services that can be accessed world-wide. With our pipe-

line of tools, it is expected that the raw data generated out of chemical experiments

can be used to the largest extent, and in the most efficient way. Besides using our

tools for their own scientific discovery, users can also contribute to our metabolite

library by confirmation of the predicted compounds being identified in their work,

together with their interpreted mass spectra.

Thesis Layout

We build a pipeline of web-based tools for metabolite identification, with possible

extension to sample metabolite profiling in the near future.

In Chapter 1, we give a brief introduction to some basic concepts and back-

ground knowledge pertaining to our research, and the related work. Our project

description is presented in Chapter 2, where we state our objectives and solutions

to the problems inside the project. The science leading to our web-based metabolite

database, and the detailed construction are presented in Chapter 3. In particular

in Section 3.6, we present how to generate the theoretical MS/MS spectrum for a

metabolite in our library, and the spectrum matching algorithm together with cer-

tain scoring schemes. We then describe in detail the metabolite search engine based

on a compound mass in Chapter 4. Experimental results on metabolite identifica-

tion through mass queries and spectrum queries are presented in Chapter 5, and

discussed. We conclude with a number of other features of our web-based database

and services, and their future extension to sample metabolite profiling.



Chapter 1

Introduction

Metabolomics is a sub-area of studies in cheminformatics, and it studies the chemi-

cal processes involving metabolites. More specifically, metabolomics systematically

studies the unique chemical fingerprints that a cellular process leaves behind, aiming

to profile its small molecule metabolites [7]. These metabolites are considered as the

end products of cellular processes, and the biological fluids from which the metabo-

lites are extracted could reflect the health condition of an individual. In practice,

metabolic profiling has been used to detect the physiological changes caused by toxic

insult of a chemical or mixture of chemicals [23], and to determine the phenotype

changes caused by the genetic manipulation. The latter has a very important ap-

plication in food industry, for example, to determine the phenotypic changes in a

genetically modified plant intended for human consumption, so as to predict the

function of unknown genes by comparison with the metabolic perturbations caused

by deletion or insertion of a known gene [25, 3].

There are two technological platforms used in metabolomics, which are nuclear

magnetic resonance (NMR) spectroscopy [20, 22], and mass spectrometry [8, 17]. Al-

though the unique structural information about the metabolites could be retrieved

by NMR, NMR suffers from limitations in sensitivity and chemical resolution. In

contract, although less-conclusive structural information are provided by mass spec-

trometry, the sensitivity and large dynamic range of mass spectrometry allows for

the detection of many more metabolites in a single experiment [32].

Among others, identifying the metabolites extracted from a sample is a critical

step in metabolomics. Nevertheless, due to many difficulties, both methods for

metabolite identification and construction of metabolite libraries are under studied;

the situation becomes even worse if compared with the current fast developing high

1



throughput technologies in chemistry experiments, which generates huge amounts of

data awaiting to be scientifically analyzed. In other words, analytical tools are not

developed as rapidly as the hardware technologies, and metabolomics has become

an efficiency bottleneck in chemistry, biological and medical research [2].

Metabolite identification can be done by other experiments. As a continuous-

ly improving high throughput biotechnology, mass spectrometry presents unique

advantages in metabolite identification. At the forefront, identifying individual

molecules in the complex mixtures is accurate with high confidence [24]. (In this

work, we use metabolite identification, molecule identification, and compound iden-

tification interchangeably.) For example, by using appropriate standards, a molecule

can be identified based on its mass with great precision by using a combination of

chromatography followed by mass spectrometry. Such a level of precision is even

more significant when one considers the fact that glucose is the same molecule

when measured from a bacterium to a fly to a human [24]. Another advantage of

metabolomics through mass spectrometry is that mass spectral experiments allow

for quantitative interpretation, which is difficult in other technologies such as mRNA

(gene expression) profiling or protein (gene translation) profiling [24]. The measured

metabolite quantities enable the research to adopt further statistical methodologies

and databasing approaches. Last but not least, metabolomics through mass spec-

trometry is believed a more direct measure for a disease state or the action of a drug,

because that disease states result ultimately from a change in the biochemistry of a

system and most drugs act at the level of biochemistry.

1.1 Mass Spectrometry

Mass spectrometry is both the science and art of displaying the spectra of the mass-

es of a sample of material. It is used for determining the elemental composition of

a sample, the masses of particles and of molecules, and for elucidating the chemical

structures of molecules, such as peptides and other chemical compounds. With the

help of charging field and magnetic field, mass spectrometry works by ionizing chem-

ical compounds in the sample to generate charged molecules or molecule fragments

and measuring their mass-to-charge ratios (a.k.a. m/z ) [27]. The mass spectrome-

ter, which is the instrument used in mass spectrometry, typically consists of three

components: ion source, mass analyzer, and detector [6]. Some portion of the sam-

ple are converted into ions by the ionizer. These charged molecules are sorted by the

2



mass analyzer based on their mass-to-charge ratio. Finally the detector measures

the value of an indicator quantity and thus provides data for the mass spectra. After

the mass spectrometry, the molecules with the different mass-to-charge ratios are

recorded and separated.

The mass spectrum is a (relative) intensity vs. mass-to-charge ratio plot repre-

senting the molecules or molecule fragments in the sample in a histogram format [21].

The x-axis of a mass spectrum represents a relationship between the mass of a given

ion and the number of elementary charges that it carries. This is written as the

IUPAC standard m/z to denote the quantity formed by dividing the mass of an

ion by the unified atomic mass unit and by its charge number (positive absolute

value) [21, 29]. The y-axis of a mass spectrum represents signal intensities of the

ions.

In the spectrum, each peak represents the detection of a kind of molecules or a

group of different kinds of molecules. With the information of mass-to-charge ratio

by x-axis and the intensity by y-axis, the molecular weight of molecule(s) could

be determined. After this, the molecules could be fragmented by applying energy

onto them. Another round of mass spectrometry experiment will be run on these

fragments to get another mass spectrum, which is also called MS/MS spectrum.

This MS/MS spectrum reveals the structure information of the molecule. This

process is also called MS/MS spectrometry or tandem mass spectrometry [21].

1.2 Related Work

Metabolomics is a rapidly evolving discipline that is involved in systems biology

studies and disease biomarker discoveries [15, 28]. Prior to our work, several online

chemical molecule databases had been developed to facilitate the metabolomics re-

search. The National Center for Biotechnology Information (NCBI) maintains the

largest database, PubChem [1], of over 100 million chemical molecules, as well as

their substance description, and activities against biological assays. These molecules

are small in that each contains fewer than 1,000 atoms and 1,000 chemical bonds.

The problem with this database in metabolite identification is that the returned

possible metabolites predicted by PubChem is too many. The exact metabolites

could not be identified from that many possible suggestions from PubChem.

Another important database for metabolomics research is Kyoto Encyclopedia of

Genes and Genomes (KEGG), which is a collection of online databases of genomes,

3



enzymatic pathways and biological chemicals. KEGG chemical database [16] con-

tains 16,907 low molecular mass compounds. Both of the above two major libraries

contain chemicals of all sorts, including synthetic compounds, and are widely used

in compound identification processes. This database is smaller than PubChem. In

metabolite identification process, this small database could not be sufficient to pro-

pose enough possible metabolites, which would result in lots of unidentified metabo-

lites in the spectral features.

The Human Metabolome Database (HMDB) [31] is a freely available web-based

database containing up to 40,250 small molecule metabolites found in the human

body, both water-soluble and lipid-soluble, and their detailed information. HMDB

is another useful source for metabolite identification, and in fact it is intended to be

used for more applications in metabolomics, such as clinical chemistry, biomarker

discovery and general education. Compared with PubChem and KEGG, HMDB

has two major advantages in human metabolite identification. The first one is that

HMDB only contains the human metabolites and related other small molecules,

it is a very specific database designed for human metabolite identification. The

other advantage of HMDB is that the HMDB supports MS/MS spectra searching,

although the number of entries in its MS/MS library is small, but it is expanding

over time as more experimental spectra are available. HMDB is the mainly used

human metabolite database for identification up to now.

There are some other databases less commonly used than the ones mentioned

above. One is called METLIN [26], which is a repository of over 75,000 endoge-

nous and exogenous metabolites that includes metabolites from essentially any liv-

ing creature, whether it is bacteria, plants, human/animal, etc.. Just like KEGG,

METLIN contains lots of metabolites from any species, but less human metabolites

than HMDB.

Another minor used database in chemical identification is called MassBank [13].

MassBank is the first public repository of mass spectral data for sharing them a-

mong scientific research community. MassBank data are useful for the chemical

identification and structure elucidation of chemical compounds detected by mass

spectrometry. Although it contains many MS/MS spectra, it is not very good for

human metabolite identification. This reason is similar to the PubChem, which is

that it contains all sorts of chemical molecules, and is not a very specific database

for human metabolites.

4



1.3 The Motivation

The above mentioned databases, PubChem, KEGG and HMDB, all serve as great

references for metabolite identification using the data generated by the high through-

put analytical techniques such as liquid chromatography mass spectrometry (LC-

MS). Metabolomics research has advanced rapidly in the last decade, but the major

analytical challenge remains in metabolite identification of the detected spectral fea-

tures [5, 12]. In fact, only a very small portion of the spectral features observed in

LC-MS can be identified as known compounds [11]. There are two main difficulties,

one is that current reference databases are limited as they contain only a small frac-

tion of potential metabolites and their bio-transformational products, and the other

is that there is no effective and efficient compound identification algorithm to take

full advantages of mass spectral features. To satisfy the practical needs, we aim to

develop a web-based pipeline of tools to facilitate the metabolite identification in

this thesis, allowing the extension to sample metabolite profiling in the near future.

5



Chapter 2

The Problems

The NCBI PubChem is an online metabolite database which contains over 100 mil-

lion (small) chemical molecules. PubChem is considerably larger than the other

two major databases KEGG and HMDB, which contain only tens of thousands

of compounds. However, it is not necessarily true that using PubChem as ref-

erence database one can identify more compounds from the same set of spectral

features. Increasing the size of the reference database has seemingly reached its

limit in compound identification. We strongly believe that efforts should be put

into new approach development to speed up compound identification and to better

use the spectral features.

In this thesis, we aim to build a pipeline of novel web-based tools for compound

identification, with possible extension to sample metabolite profiling in the near

future. Trying to balance the database expanding and efficient compound identifi-

cation, we design algorithms to better interpret collected spectral features and to

mine more hidden but useful information for the identification purposes. We ex-

amine the performance of these algorithms substantially and implement them into

web-based services.

2.1 The Unique Position

The mass or mass list of a compound is collected by mass spectrometry (including

Gas-chromatography mass spectrometry GC-MS and Liquid-chromatography mass

spectrometry LC-MS). The unique advantage of such collected mass data is that

their error range is much smaller than the mass of a proton, and thus can be imme-

diately used in matching against a compound library. On the other hand, multiple

protocols have been developed in tandem mass spectrometry (MS/MS), which en-
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able us to observe the functional groups in a target compound. This motivates

us to develop compound identification algorithms through spectrum matching be-

tween the theoretical (or predicted) spectrum and the experimental (or interpreted)

spectrum.

2.2 The Objectives

The HMDB (Human Metabolome Database) contains about 40 thousand small

molecule metabolites found in the human body. Among them, 8,021 endogenous

metabolites are considered as metabolite substrates; and many other database en-

tries are products of metabolic (or biotransformation) reactions on these substrates.

Indeed, in biological systems, each compound could be involved in some metabolic

reactions to produce different metabolic products. Consequently, it is highly possi-

ble that the samples analyzed in metabolomics research experiments contain both

the substrates and their metabolic products after one or several metabolic reactions.

The compounds that have been identified and documented in the literature

constitute only a small fraction of these metabolite substrates and their plausible

metabolic products; while the majority is to be uncovered. In the evidence-based

metabolome library we have constructed for My Compound Identification (subse-

quently called MyCompoundID), we take a database construction approach different

from the others by collecting only the 8,021 metabolite substrates but also the known

commonly encountered metabolic reactions. We examine carefully for all metabolic

reactions on their applicabilities. Based on these two types of entities, we are able

to generate theoretically all plausible compounds for identification purpose. It is ex-

pected that using MyCompoundID, one can identify significantly more compounds

for the same set of spectral data. Our way of database construction can maintain

the database dynamically, with any level of extendibility. Another advantage is that

our database entries, the metabolic products in particular, are labeled as confirmed

and plausible; the users can choose to search against only the confirmed entries, and

when they identified a plausible compound we can change the label to confirmed.

2.3 Hypothesis

Our hypothesis is as follows:
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By including all of known metabolites as well as the metabolic products of some

commonly encountered metabolic reactions in the library, many unknowns that are

structurally related to the known metabolites can potentially be identified, which could

not be identified by any of the existing databases.

The purpose of this work is to investigate the above hypothesis by implement-

ing algorithms and tools to simulate the metabolic reactions in the metabolism to

generate the possible metabolic products.

2.4 Solutions to the Problems

In this thesis, we have decided to include all known metabolite substrates and their

metabolic products after one or two commonly encountered biotransformation reac-

tions in our web-based database. It is expected that using our database as reference,

many unknown compounds that are structurally related to the known metabolite

substrates can be identified. The ultimate goal of this work is to achieve the level

of compound identification that could not be achieved by any existing databases.

A mass spectral experiment typically generates a set of multiple spectra, each

of which is essentially a list of spectral features — masses and intensities of the

detected compounds (and/or compound fragments). Similar to peptide and protein

identification through mass spectrometry based proteomics, the detected masses

are the only clue to compound identification. Our MyCompoundID is designed

to efficiently and accurately search for metabolite substrates and their metabolic

products that match a query mass.

There are 8,021 metabolite substrates in our web-based database, as well as 76

common biotransformation reactions. Theoretically there could be infinitely many

metabolic products by applying even only these 76 reactions. We take a novel

approach to resolve the potential efficiency and storage issues. On one hand, one or

a series of multiple biotransformations on a metabolite substrate results in a product,

of which the mass change can be calculated exactly and instantly; this implies that

the inverse task of identification is trivial. However, our true identification task is

non-trivial since there could be a large number of series of biotransformations that

lead to the same mass change. It is thus simply infeasible to pre-process to generate

all (infinitely many) metabolic products for identification purpose.

We first note that each biotransformation requires certain specific sub-structure
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in the molecule. Therefore, simply predicting metabolic products by assuming that

every compound is compatible to any metabolic reaction gives rise to a lot of false

positives. The effective way to exclude these false positives, and is implemented into

MyCompoundID database, is to verify that the base compound has the specific sub-

structure. However, as one can imagine, verifying molecular structure is a very time

consuming step. Also, when a biotransformation can happen on a base compound, it

could happen at multiple places giving rise multiple metabolic products, which could

in turn require long processing time and much space for storing. To overcome this

time and space challenge in MyCompoundID, the structure of the base compounds

are verified only when necessary, so are the multiple metabolic products and their

structures. One typical necessary moment for structure verification is invoked when

the compound has its mass matching a query mass submitted by a user. Such an

implementation not only saves storage space, but also saves the pre-processing time;

and in this way, the project development time has been shortened tremendously

whereby the computing resources are used in a more efficient and balanced manner.
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Chapter 3

Compound Database
Construction

Our compound database for identification essentially is built on two parts. The

first part is the compound library, our base database, which consists of 8,021

known human endogenous metabolites taken from HMDB (Human Metabolome

Database) [31]; the second part is the biotransformation library which consists of

76 commonly encountered metabolic reactions extracted from literature.

All chemical compounds are made up of atoms of various types, and every atom

consists of a certain number of protons, which determines the atom type, a certain

number of neutrons and a certain number of electrons. In this work, we adopt

Dalton (Da) as the unit for all molecular masses, and the following constants for

calculating the mass for a compound:

• proton mass = 1.00727638Da,

• neutron mass = 1.0086649156Da, and

• electron mass = 0.0005446623Da.

The mass of every compound is simply calculated as the linear sum of the masses

of all protons, neutrons and electrons therein. In the sequel, we drop the mass unit

Da for simplicity.

3.1 Searching Inputs and Outputs

Our system is aimed to identify metabolites based on the only information of MS

spectra and MS/MS spectra. In the mass spectrum, the masses of the metabolites

are easily calculated based on the mass-to-charge ratio, where the charge on each
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metabolites is known. Thus, a spectrum could be interpreted as a mass list. Our

database takes the mass list as the input, and return different return outputs for

MS search and MS/MS search. In the MS search, each mass peak represents a

metabolites, the output for MS search is a list of possible metabolites for each mass

peak input; while in the MS/MS search, each mass peak represents a fragment of

a metabolites and the whole peak list represents that metabolite, the output for

MS/MS search is a list of possible metabolites for the whole list of mass peaks.

3.2 The Base Database

The first part of the base database consists of 8,021 known human endogenous

metabolites taken from HMDB [31]. For each of them, we have calculated its mass.

These 8,021 masses are plotted in Figure 3.1, where the x-axis is the mass in Da

and the y-axis represents the number of metabolites having the same mass. One

can see that this distribution is rather discrete due to the small numbers of protons,

neutrons and electrons in these metabolites. The maximum mass among them is

3457.700304; the maximum number of compounds sharing the identical mass is 28.

The 76 commonly encountered metabolic reactions we extracted from literature

are shown in Table 3.1, where the exact change in atom composition (or the chemical

formula), the exact mass difference caused, and the common name for each reaction

are listed. Among them, one is paired up with its inverse reaction. We apply these

76 reactions on the 8,021 metabolite substrates in the base database to generate

plausible (or pseudo) metabolic products. Theoretically, this enables us to expand

the compound library indefinitely.

Table 3.1: The 76 commonly encountered metabolic reactions
in literature and used in MyCompoundID. A reaction and its
inverse are paired up for clarity.

# Reaction Mass Difference (Da) Description

1 −H2 −2.015650 dehydrogenation

2 +H2 2.015650 hydrogenation

3 −CH2 −14.015650 demethylation

4 +CH2 14.015650 methylation

5 −NH −15.010899 loss of NH

6 +NH 15.010899 addition of NH

7 −O −15.994915 loss of oxygen

8 +O 15.994915 oxidation
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Table 3.1: (Continued)

# Reaction Mass Difference (Da) Description

9 −NH3 −17.026549 loss of ammonia

10 +NH3 17.026549 addition of ammonia

11 −H2O −18.010565 loss of water

12 +H2O 18.010565 addition of water

13 −CO −27.994915 loss of CO

14 +CO 27.994915 addition of CO

15 −C2H4 −28.031300 loss of C2H4

16 +C2H4 28.031300 addition of C2H4

17 −C2H2O −42.010565 deacetylation

18 +C2H2O 42.010565 acetylation

19 −CO2 −43.989830 loss of CO2

20 +CO2 43.989830 addition of CO2

21 SO3H → SH −47.984745 sulfonic acid to thiol

22 SH → SO3H 47.984745 thiol to sulfonic acid

23 −C2H3NO −57.021464 loss of glycine

24 +C2H3NO 57.021464 glycine conjugation

25 −SO3 −79.956817 loss of sulfate

26 +SO3 79.956817 sulfate conjugation

27 −HPO3 −79.966333 loss of phosphate

28 +HPO3 79.966333 addition of phosphate

29 −C4H3N3 −93.032697 loss of cytosine

30 +C4H3N3 93.032697 addition of cytosine

31 −C4H2N2O −94.016713 loss of uracil

32 +C4H2N2O 94.016713 addition of uracil

33 −C3H5NOS −103.009186 loss of cysteine

34 +C3H5NOS 103.009186 cysteine conjugation

35 −C2H5NO2S −107.004101 loss of taurine

36 +C2H5NO2S 107.004101 taurine conjugation

37 −C5H4N2O −108.032363 loss of thymine

38 +C5H4N2O 108.032363 addition of thymine

39 − (C5H5N5 − H2O) −117.043930 loss of adenine

40 + (C5H5N5 − H2O) 117.043930 addition of adenine

41 −C3H5NO2S −119.004101 loss of S-cysteine

42 +C3H5NO2S 119.004101 S-cysteine conjugation

43 −C5H8O4 −132.042260 loss of D-ribose

44 +C5H8O4 132.042260 addition of D-ribose

45 −C5H3N5 −133.038845 loss of guanine

46 +C5H3N5 133.038845 addition of guanine

47 −C7H13NO2 −143.094629 loss of carnitine

48 +C7H13NO2 143.094629 addition of carnitine

49 −C5H7NO3S −161.014666 loss of N-acetyl-S-cysteine

50 +C5H7NO3S 161.014666 addition of N-acetyl-S-cysteine
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Table 3.1: (Continued)

# Reaction Mass Difference (Da) Description

51 −C6H10O5 −162.052825 loss of hexose

52 +C6H10O5 162.052825 addition of hexose

53 −C6H8O6 −176.032090 loss of glucuronic acid

54 +C6H8O6 176.032090 addition of glucuronic acid

55 −C10H12N2O4 −224.079708 loss of thymidine

56 +C10H12N2O4 224.079708 addition of thymidine

57 −C9H11N3O4 −225.074957 loss of cytidine

58 +C9H11N3O4 225.074957 addition of cytidine

59 −C9H10N2O5 −226.058973 loss of uridine

60 +C9H10N2O5 226.058973 addition of uridine

61 −C16H30O −238.229665 loss of palmitic acid

62 +C16H30O 238.229665 addition of palmitic acid

63 −C6H11O8P −242.019158 loss of glucose-6-phosphate

64 +C6H11O8P 242.019158 addition of glucose-6-phosphate

65 −C10H11N5O3 −249.086190 loss of adenosine

66 +C10H11N5O3 249.086190 addition of adenosine

67 −C10H11N5O4 −265.081105 loss of guanosine

68 +C10H11N5O4 265.081105 addition of guanosine

69 −C10H15N3O5S −289.073244 loss of glutathione

70 +C10H15N3O5S 289.073244 addition of glutathione

71 −C10H15N3O6S −305.068159 loss of S-glutathione

72 +C10H15N3O6S 305.068159 addition of S-glutathione

73 −C12H20O10 −324.105650 loss of di-hexose

74 +C12H20O10 324.105650 addition of di-hexose

75 −C18H30O15 −486.158475 loss of tri-hexose

76 +C18H30O15 486.158475 addition of tri-hexose

Roughly according to the nature of the reaction, the above 76 metabolic reactions

can be grouped into four categories:

• double bond reactions: in each of which a double bond is removed from or

formed in the target compound (for example Reaction #1 and #11);

• chopping reactions: in each of which a group of atoms in the target com-

pound is chopped off (for example Reaction #3);

• adding reactions: in each of which a group of atoms is added onto the target

compound (for example Reaction #4);

• substitution reactions: in each of which a group of atoms in the target
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Figure 3.1: The mass distribution of 8,021 metabolite substrates in the base database
of MyCompoundID. The x-axis is the mass in Da and the y-axis represents the mass
frequency.

compound is substituted with another group of atoms (for example Reactions

#21 and #22).

14



3.3 Database Expanding through Metabolic Reactions

In a mass query, MyCompoundID accepts a mass value, or a list of mass values in

the batch mode, as the input. Such a value can come from the detected spectral

features with a tolerance threshold. MyCompoundID returns those among the 8,021

metabolite substrates in the base database, and/or the metabolic products of the

8,021 metabolite substrates after certain numbers of metabolic reactions, such that

their masses match with the query within the specified tolerance threshold.

3.3.1 The Purposes

Apparently one can generate all metabolic products on the fly for every query, yet

one might also imagine that such on-the-fly generating process is time consuming

and unnecessary and perhaps can be replaced by expanding the base database to

include the metabolic products after a limited number of reactions. Nevertheless,

the ending database should not be too large to be housed in a normal-size hard

drive. In other words, the limited number shall be small.

Mathematically, the 8,021 metabolite substrates in the base database together

with the 76 common metabolic reactions could generate up to 609,596 pseudo (or

plausible) metabolic products as the results of one reaction; and could generate up

to 46,329,296 pseudo metabolic products as the results of two reactions, such as

acetylation followed by dehydrogenation. We have decided in this work to expand

the database by generating all pseudo metabolic products as the results of one or

two reactions. We develop several levels of database filtering algorithms to eliminate

the theoretically impossible products from the nearly 50 million pseudo products.

Our experiments have shown that this scheme of trading time with space works

effectively.

In this section, we present the first level of filtering algorithms to restrict the

compounds to which a specific reaction applies. The next level of more powerful

filtering algorithms based on compound structures are presented in the next section.

The detailed implementation is described in Sections 3.4 and 3.5.

3.3.2 The Strategy

Chemical reactions vary much from one to another, since different combinations of

electron shifting, double bond shifting, ring formation and breaking and so on, can

be involved. Besides known rules, there could be outlying situations where a reaction
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unexpectedly happens, and outlying situations a reaction could theoretically happen

but never actually happens. As such, it is very challenging to implement a small set

of rules to cover all reactions. On the other hand, describing too many rules into

the filtering algorithms leads to a long verifying time.

In this work, we decide to implement a small set of the most common rules

on the 76 metabolic reactions. Consequently, we expand the compound library by

building up a superset of the metabolic products, which unavoidably contains false

positive predictions. Nevertheless, our common rules ensure that (hopefully) no ac-

tual metabolic products escape from the library. Later on, on top of this superset,

more restricted rules are invoked during the query processes, whereby impossible

products are removed. Our strategy basically does a sufficient product generation

during the database construction, and distributes the impossible product elimina-

tion to the query processes. Over time, the pseudo metabolic products survived in

MyCompoundID can be deemed more and more reliable.

3.3.3 Restriction on Atoms

All compounds in this work are made up of a combination of atoms C, H, N, O,

S and P, i.e. CaHbNcOdSePf containing a carbon atoms, b hydrogen atoms, etc.

Each of the 76 metabolic reactions specifies the net change in the number of atoms

of each type, and thus spells exactly the atom combination in the ending product.

Trivially, a compound containing x atoms of one type cannot lose more than x

such atoms through reactions. This is exactly the following Restriction 1, which is

implemented as a filtering step in our database expanding.

Restriction 1 (Restriction on Atoms) A compound cannot lose more atoms of

a specific type than it has.

Recall that theoretically there could be up to 609,596 pseudo metabolic products

as the results of one reaction and there could be up to 46,329,296 pseudo metabolic

products as the results of two reactions. The above seemingly trivial Restriction 1

reduces the numbers to 413,907 and 12,536,913, respectively. Considering the fact

that Restriction 1 does nothing to “adding” reactions, the reduction from 609,596

pseudo one-reaction products to 413,907 eliminates 64.2% “chopping” reactions.

Indeed, we examined the base database and found out that only 380 (out of 8,021)
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substrates contain atom S, and only these substrates can participate the 9 reactions

involving an S (Reactions #21, #22, #25, #33, #35, #41, #49, #69, #71).

3.3.4 Restriction on Bonds

All atoms in a compound are connected via chemical bonds. For ease of presentation

we define a chopping metabolic reaction to be one that breaks a single chemical bond

in a compound to produce a pair of fragments. Subsequently, the compound loses one

fragment, which is said chopped off from the target compound. Clearly, the group of

chopped atoms specified by a chopping reaction are not randomly distributed in the

target compound, but need to be connected and they as a group must be connected

to the rest via a single chemical bond.

The above background knowledge is described as the second restriction — Re-

striction on Bonds —- stated as follows:

Restriction 2 (Restriction on Bonds) A compound can only lose a terminal

group of connected atoms by breaking exactly a single chemical bond.

Implementing Restriction 2 as a filtering step and applying it further reduces

the number of false positives by chopping reactions and substitution reactions. For

instance, the total number of one-reaction pseudo metabolic products is reduced to

346,784, or a 61.5% reduction. Applying this filtering step, essentially every chemical

bond in the target compound needs to be checked, and thus is time consuming. We

did not run it on two-reaction pseudo metabolic products.

3.3.5 Restrictions on Structures

Chemical reactions are essentially molecular structure changes. Every metabolic

reaction in our 76 ones has its unique characteristics on where it can happen. This

requires the target compound to have the substructure specified by the reaction.

In this sense, the above Restrictions on Atoms and Restrictions on Bonds are only

coarse implementations, yet they are common to all reactions and they can filter

efficiently.

These coarse implementations could pass some false positive one-reaction metabol-

ic products, which give rise to a huge number of false positive two-reaction metabolic

products and even more afterwards. In other words, eliminating a false positive one-

reaction metabolic product can have a big impact. We therefore carefully examine
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each of the 76 metabolic reactions and characterize its applicable substructures.

The observations are implemented into a series of reaction rules, to be detailed in

Section 3.5. In general, a chopping metabolic reaction or a substitution metabol-

ic reaction looks for a very specific group of atoms which are connected in a very

specific way in the target compound; the group of atoms in an adding metabolic

reaction looks for a specific local structure in the target compound. Otherwise, such

a reaction does not apply. Overall, the set of reaction specific rules are based on

compound structures, and they form the following Restriction 3:

Restriction 3 (Restriction on Structures) Every metabolic reaction requires a

very specific local structure in the target compound.

To apply Restriction on Structures as a filtering step, we verify the two-dimensional

structures of all 8,021 metabolite substrates in the base database. While leaving the

details of the verification to the next section, as a result we further reduce the to-

tal number of one-reaction metabolic products to 206,811. Again, such a structure

verification process is time consuming, and we did not apply them on two-reaction

products. Nevertheless, the verification process is invoked on the search results re-

turned for a user query. In other words, two-reaction metabolic products are verified

by Restriction on Structures when they become potential identified compounds.

3.3.6 Summary

The following Table 3.2 summarizes the numbers of compounds during the process

of expanding MyCompoundID library. The ending library before any query pro-

cess contains 8,021 metabolite substrates, 206,811 one-reaction metabolic products,

and 12,536,913 two-reaction metabolic products, or 12,751,745 compounds in total

readily for search.

Table 3.2: Summary of the MyCompoundID compound library. Each entry repre-
sents the number of compounds.

Restrictions Two-reaction products One-reaction products Substrates

– 46,329,296 609,596 8,021
Atoms 12,536,913 413,907
Bonds – 346,784
Structures – 206,811
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Table 3.3: Summary of search time in MyCompoundID using 1,000 masses. The
search was repeated on the set of metabolic products for 0, 1, and 2 reactions
respectively. The collected time in the second and last columns are on the base
database and the expanded database, respectively. All time are in CPU seconds.

Base Database Expanded Database

Disk space 866KB 480MB
0 reaction 3.4s 3.4s
1 reaction 17.6s 6.8s
2 reactions 589.2s 79.5s

In MyCompoundID, users have options to perform a single mass search or a batch

search for multiple masses. Users can also specify whether they only want to search

against metabolite substrates, or one-reaction pseudo products, or two reaction

pseudo products. The reference search library thus contains 8,021, or 206,811, or

12,536,913 compounds, respectively. Table 3.3 summarizes the search time in all

three cases. A total of 1,000 (randomly generated) masses were used. The time

in the middle column were collected when the base database (around 866KB disk

space) is not expanded beforehand, but pseudo metabolic products were generated

during the queries; the time in the last column were collected on expanded databases

(around 480MB disk space). The results show that space trades very well with search

time.

Figure 3.2 plots the logarithm (base 10) of the numbers of pseudo metabolic

products up to two reactions. As expected, the number of metabolic products

increases exponentially in the number of the reactions. We distinguish the two

cases on whether the three filtering steps are applied. Clearly seen from the plot

that the filtering steps are effective and they successfully remove a big portion of

false positives.

Figure 3.3 plots the average search CPU time for processing one mass query,

where the difference is shown between using only the base database of 8,021 metabo-

lite substrates and using the expanded database of 12,751,745 compounds up to 2

reactions. Again as expected, the difference between the search CPU time increases

dramatically along with the number of reactions, demonstrating a successful trading

space for time.
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3.4 Pseudo Metabolic Product Filtering Algorithms

In this section, we present the detailed algorithmic processes to implement the rules

for filtering impossible metabolic products, as summarized in Restrictions 1–3 in

Section 3.3.

3.4.1 Restriction on Atoms

Restriction 1 on Atoms tells that a compound cannot lose in a reaction more atoms

of one type than it has. This rule is efficient to check, and thus is applied on both

metabolite substrates and one-reaction metabolic products.

For each one of such compounds, we retrieve its chemical formula, which tells

exactly the numbers of atoms of all six types in the compound. We then proceed to

determine whether a reaction is applicable to the compound as follow:

i) if the reaction is an “adding” reaction, then it is applicable and the product

is generated by returning its chemical formula;

ii) if the reaction is a “chopping” reaction, then it is applicable only if the com-

pound contains an equal or greater number of atoms of each type;

iii) if the reaction is a “substitution” reaction, such as Sulfonic acid to Thiol (#21

in Table 3.1) or Adenine to water (#39 in Table 3.1), then it is treated the same

as “chopping” the first group off the compound. In other words, a substitution

reaction is considered as a chopping reaction followed by an adding reaction.

The above has been implemented as Algorithm 1, where only the 8,021 metabo-

lite substrates are processed. It can be directly migrated to process all one-reaction

products.

As mentioned in Section 3.3.3, Algorithm 1 reduces the pseudo one-reaction

products from 609,596 to 413,907, and reduces the pseudo two-reaction products

from 46,329,296 to 12,536,913, respectively.

3.4.2 Restriction on Bonds

Restriction 2 specifies a more restricted rule for chopping reactions where only a

terminal group of connected atoms can be chopped off through breaking a single

chemical bond. It is expected to enhance the filtering performance, but one should

bear in mind that verifying chemical bonds in the target compound is more time
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Algorithm 1 Filtering algorithm by Restriction on Atoms.

1: applicable[8021][76] := false; mass[8021][76] := −1;
2: for compound c in 8,021 metabolite substrates do
3: for reaction r in 76 reactions do
4: if r.type == adding then
5: applicable[c.index][r.index] := true;
6: else if r.type == chopping or r.type == substitution then
7: o := r.chopOffPart;
8: applicable[c.index][r.index] := true;
9: for atomType at in o.atomTypes do

10: if c.countAtomsOf(at) < o.countAtomsOf(at) then
11: applicable[c.index][r.index] := false;
12: end if
13: end for
14: end if
15: if applicable[c.index][r.index] == true then
16: mass[c.index][r.index] = c.mass + r.massOffset;
17: end if
18: end for
19: end for

consuming than simply checking the number of atoms. This rule is applied on

top of Restriction 1 to further reduce false positive one-reaction pseudo metabolic

products, but not applied for reducing the two-reaction products.

For each one-reaction pseudo metabolic product generated by a compound and

a reaction and passed filtering Algorithm 1, we proceed as follows:

i) if the reaction is an “adding” reaction, then it is still applicable;

ii) if the reaction is a “chopping” reaction, then the compound is examined by

breaking every single chemical bond to generate two fragments and checking

whether any one of the two fragments is identical to the reaction, i.e. the

fragment and the reaction have identical chemical formula; if affirmative, then

the reaction is applicable to the compound;

iii) if the reaction is a “substitution” reaction, then it is treated the same as

“chopping” off the first group off the compound; and again such a reaction is

deemed a chopping followed by an adding.

The above has been implemented as Algorithm 2 to filter only the one-reaction

pseudo metabolic products. Theoretically one can also migrate it to reduce the

two-reaction products, but we did not do so as it can take very long time.
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Algorithm 2 Filtering algorithm by Restriction on Bonds.

1: applicable[8021][76] := false; mass[8021][76] := −1;
2: for compound c in 8,021 metabolite substrates do
3: for reaction r in 76 reactions do
4: if r.type == adding then
5: applicable[c.index][r.index] := true;
6: else if r.type == chopping or r.type == substitution then
7: o := r.chopOffPart;
8: for bond b in c.getSingleBonds do
9: (f1, f2) := c.breakIntoTwoFragmentsAtBond(b);

10: if f1.formula == o.formula or f2.formula == o.formula then
11: applicable[c.index][r.index] := true;
12: break;
13: end if
14: end for
15: end if
16: if applicable[c.index][r.index] == true then
17: mass[c.index][r.index] = c.mass + r.massOffset;
18: end if
19: end for
20: end for

Algorithm 2 reduces the 413,907 pseudo one-reaction products passed by Algo-

rithm 1 down to 346,784.

3.4.3 Restriction on Structures

In Restriction 3 on Structures, the two-dimensional structure of a compound is

fully examined to determine whether a metabolic reaction is applicable to it. Here

the two-dimensional structure refers to the full details for each atom its adjacent

atoms and the chemical bonds connecting them. The structure is converted into

a special weighted graph, in which the vertices represent the atoms and the edges

represent the chemical bonds. Every vertex has its atom type, and every edge weight

represents the order of the chemical bond.

Restriction 3 says that every metabolic reaction requires a specific local structure

in the target compound to be applicable. Seeking such a local structure is a special

case of the general graph isomorphism problem [10].

We first define this special local structure with respect to a metabolic chopping

reaction as following:

Definition 1 (Target Subgraph and Its Remaining Subgraph) In the target
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graph, a target subgraph or target local structure is a subgraph which

i) is isomorphic to the two-dimensional structure of the chopping reaction, and

ii) is connected to the rest of the graph via a single edge.

Deleting the target subgraph from the graph gives rise to the remaining subgraph

associated with the target subgraph.

With respect to a metabolic adding reaction, a target vertex or target local structure

in the target graph is simply a vertex to which the adding reaction can attach the

two-dimensional structure of the reaction chemical group.

Restriction 3 on Structures thus checks for whether or not there are target sub-

graphs or target vertices in the graph, and can be detailed as follows:

i) if the graph contains target subgraphs or target vertices, the reaction is appli-

cable;

ii) if the reaction is an “adding” reaction, the pseudo metabolic products are

generated by attaching the reaction chemical group to one target vertex at a

time;

iii) if the reaction is a “chopping” metabolic reaction, the pseudo metabolic prod-

ucts are generated by deleting a reaction chemical group from the target ver-

tices one at a time;

iv) if the reaction is a “substitution” metabolic reaction, the pseudo metabolic

products are generated by replacing one target subgraph at a time with the

replacement chemical group.

Rules in Restriction 3 are implemented into three different algorithms according

to the type of reaction is involved, to be detailed in the next section of “metabolic

reaction simulation system”. One clearly expects that these new filtering algorithms

are more time consuming than Algorithms 1 and 2, but should be more powerful

in eliminating false positives. This is indeed true. After applying these three new

filtering algorithms, the total number of one-reaction pseudo metabolic products

reduces to 206,811.
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3.5 Metabolic Reaction Simulation System

In this section we describe the metabolic reaction simulation system, which aims to

implement Restriction 3 into three different filtering algorithms for three types of

reactions, respectively. On top of Algorithms 1 and 2, these three new filtering algo-

rithms further reduce the total number of one-reaction pseudo metabolic products

from 346,784 to 206,811. They also generate all possible two-dimensional structures

for each such product, and the total number of structures for these 206,811 metabol-

ic products is 2,135,541, or about 10 structures per product. One obvious reason is

that an adding reaction can be applied to multiple atoms in a metabolite substrate.

Theoretically applying (all) these filtering algorithms on two-reaction pseudo

metabolic products is trivial — one only needs to replace the 8,021 metabolite sub-

strates with the 206,811 one-reaction products (and their 2,135,541 two-dimensional

structures). However, this needs a huge CPU time that one might not be affordable.

3.5.1 The System

The metabolic reaction simulation system consists a set of utilities for simulating the

metabolic reactions. Each metabolic reaction simulation in the system works on the

two-dimensional structures of compounds, to simulate the reaction processes similar

to the reality. This system is designed to generate the pseudo metabolic products

based on Restriction 3 on Structures.

3.5.2 Use of Two-Dimensional Structures

To determine whether a metabolic reaction is applicable to a compound, the two-

dimensional structure of the compound is examined. Essentially every metabolic

reaction requires some local structure features in the target compounds to be appli-

cable. For the simplest case of an adding reaction, where a chemical group is added

to the target compound, the chemical group normally has only one or two specific

atoms each of which is able to form a chemical bond between itself and the target

compound. This requires in turn a few very specific functional groups in target

compound structure. If no match is found, the adding reaction is not applicable to

the target compound.

For example, Reaction #30 in Table 3.1 is “addition of cytosine” (+C4H3N3), in

which the cytosine molecule looks for a carbon atom in the target compound with

a single bond to an oxygen and a single bond to a hydrogen, and this carbon must
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not be in a benzene ring. Using only filtering Algorithms 1 and 2, implementing

Restrictions on Atoms and Bonds, “addition of cytosine” would be applicable to all

compounds, generating a lot of false positives.

The above explains the advantages of using two-dimensional structures in the fil-

tering process. The following presents some insights on the choice of two-dimensional

structure but not three-dimensional structure, the latter clearly contains more struc-

tural information than the former. Consider a chopping reaction. The target

compound is examined by breaking a single chemical bond in its two-dimensional

structure, to generate two (connected) fragments; each fragment together with its

inherited two-dimensional structure is then compared against the chemical group

together with its two-dimensional structure, and “applicable” is called when both

the chemical formula match and the structure match are confirmed. In general,

chemical formula matching can be verified rather easily, but structure matching

is a special case of the graph isomorphism [10] which is deemed a hard computa-

tional problem. At least one factor makes structure matching problem even more

difficult, which is, sometimes, a two-dimensional structure can give rise to multiple

three-dimensional structures. In reality, chemical compounds fold in the three-

dimensional space, some of which are stereoisomers, i.e. isomeric molecules that

have the same chemical formula and sequence of bonded atoms (constitution) but

differ in the three-dimensional orientations of their atoms in space.

Nevertheless, we choose to implement two-dimensional structure match but not

three-dimensional structure match, based on the following a few observations and

the compound identification purposes we set at the very beginning. Firstly, there

are compounds having lots of stereoisomers, and some reactions are applicable to all

possible stereoisomers. For example, Reaction #51 in Table 3.1 is “loss of hexose”

(−C6H10O5). Hexose has many stereoisomers, all of which are acceptable in com-

pound identification. Three-dimensional structure comparison takes CPU time and

disk space, but totally unnecessary in MyCompoundID. Other reactions involving

multiple stereoisomers include Reactions #71, #73, and #75 in Table 3.1. Secondly,

most compounds do not have no stereoisomers, or even some do, only one stereoiso-

mer is biologically active in human metabolism. For example, for carnitine, only

the L-carnitine is biological active [19].

In summary, because of the above reasons, we decided not to consider the

stereoisomers during compound identification. This essentially means that two-
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dimensional structures of compounds and reaction chemical groups are sufficient,

and they make our filtering algorithms more efficient.

3.5.3 SMILES Conversion and CDK Library

The Simplified Molecular-Input Line-Entry System, or SMILES, is a specification

in the form of one-line notation for describing the two-dimensional structure of a

chemical compound using short ASCII strings. In the literature, there are algorithms

developed to ensure that the same SMILES is generated for a compound disregard

the order of atoms in the two-dimensional structure. Indeed, an SMILES string

specifies a compound structure without losing any structural information, and is

known as having the smallest size comparing with all other formats describing the

same two-dimensional structure. SMILES files can be concatenated together in

a text file where each line represents a compound structure. Comparing two two-

dimensional structures becomes comparing two strings in the SMILES format, which

is much easier.

In our work, all the compounds are saved in SMILES format. Thus the disk

space for storing all compounds and their two-dimensional structures is reduced to

the minimum possible, and the total number of disk accesses for a query is also

reduced.

The Chemistry Development Kit library, or CDK, is used in two-dimensional

structure optimization for data structure and IO support. CDK IO library supports

many common chemistry file formats, such as MDLV2000 and SMILES, which are

adopted in our MyCompoundID project. The basic data structures in CDK for two-

dimensional structure optimization include Atom, Bond, and Molecule objects, all

of which are good abstractions for a real chemistry structure. Essentially, a molecule

is a container which consists of bonds and atoms; a bond connects two atoms, and

is marked as ‘SINGLE’ or ‘DOUBLE’ (or others); an atom has a charge, symbol,

and other properties.

We develop our filtering algorithms using CDK library, which is quite conve-

nient now as we adopt the CDK data structures to describe the two-dimensional

structures. In the next five subsections and Section 3.6, we present the new fil-

tering algorithms for adding reactions, chopping reactions, substitution reactions,

double bond reactions, and fragmentation, respectively. All these algorithms are

implemented using CDK library.
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3.5.4 Algorithm for SMILES Generation

A well implemented utility for generating a SMILES string for a given compound

provided by CDK is used in our work. The implementation by CDK is accomplished

by a method called CANGEN, which was proposed by Weininger [30] in 1989. CAN-

GEN is a combination of two separated algorithms, which are CANON and GENES.

CANON is used in first to label a graph, which represents the molecular structure,

with canonical labels, while GENES selects one vertex as the root in the graph and

generates the unique SMILES notation by traversing the graph starting with the

selected root in a specific order based on the canonical labels.

CANON

The CANON algorithm canonically labels a molecular graph by using an unambigu-

ous function. The canonical label of each vertex is initialized with the information of

the its atom information as well as its neighbors’. To avoid the calculation overflow,

the canonical labels are replaced by their ranks after sorting. Generating unique

SMILES notations requires the unambiguous canonical labels, which is achieved by

the extended connectivity and the breaking ties functions described later.

The CANON algorithm is shown in Algorithm 3.

Algorithm 3 CANON Algorithm (Weininger [30])

1: Set atomic vector to initial invariants. Go to step 3.
2: Set vector to product of primes corresponding to neighbors’ ranks.
3: Sort vector, maintaining stability over previous ranks.
4: Rank atomic vector.
5: If not invariant partitioning, go to step 2.
6: On first pass, save partitioning as symmetry classes.
7: If highest rank is smaller than number of nodes, break ties, go to step 2.
8: ... else done.

Four core functions in CANON are described as following:

(a) Initial Graph Invariant Order. Graph theoretical invariants are proper-

ties of graphs that are independent of the way a graph is ordered. Six invariants as

following are considered: (1) number of connections, (2) number of non-hydrogen

bonds, (3) atomic number, (4) sign of charge, (5) absolute charge, and (6) number

of attached hydrogens. The atomic vector is initialized as the linear combination of

these invariants. For example, the invariants of methyl carbon in pentane (CCCCC)

are 1,01,06,0,0,6, respectively, which give the linear description as 10106003, while
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Table 3.4: Canonical labeling procedure
Step canonical labels

1 10106003-20206002-20206002-20206002-10106003
3,4 1-2-2-2-1
2 9-13-18-13-9
3,4 1-2-3-2-1
7 1-4-6-4-2
2 49-173-98-173-2
3,4 1-3-4-3-2
2 25-53-50-58-25
3,4 1-3-5-4-2

the one of methylene carbon is 2026002.

(b) Rank Equivalence. The values in a invariant set are used to order the

vertices in the spanning tree, so the exact values are not necessary but the ranks

of them are important. To avoid the computing overflow, those values are replaced

by small numbers starting with 1 which represent their rankings. Take pentane as

an example, the initial invariants 10106003-20206002-20206002-20206002-10106003

become 1-2-2-2-1.

(c) Extended Connectivity Using an Unambiguous Function. There

are two types of carbons but three symmetry classes in pentane. To differentiate

the symmetry classes, an unambiguous function is used on on each vertex. In this

function, each rank is replaced by its corresponding prime starting with 2 and then

replaced by the product of all its neighbors’ replaced ranks. For example, the

pentane’s ranks are 1-2-2-2-1, whose corresponding primes are 2,3,3,3,2, and after

this function, the ranks in pentane are 9-13-18-13-9.

(d) Breaking Ties. If there is a tie, the algorithm doubles the rank of each

vertex, and reduces the value of the first atom, which is tied and with the lowest

value in rank, by one. The ranks of pentane is changed from 1-2-3-2-1 to 1-4-6-4-2.

Example on Pentane The canonical labels for pentane are generated as the

following procedure with respect to the CANON algorithm in Table 3.4

GENES

GENES is the algorithm which traverses the molecular graph to generate a unique

SMILES notation.

The lowest canonically numbered atom vertex is selected as the initial node,

or as the root of the graph. the algorithm uses DFS to traverse the rooted graph
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with high priority to select the vertex with low canonical number at the fork. The

SMILES notation generation of cyclic and polycyclic structures could be uniquely

calculated by run DFS twice.

3.5.5 Reaction Specifications

Each metabolic reaction needs a clear specification on what the local structure in

target compound is required and when it happens what the resultant local structure

is. We implement all reactions in the Metabolic Reaction Simulation System. In the

following, we define the detailed specification for each type of metabolic reactions.

Chopping Reactions

Each chopping reaction must specify the two-dimensional structure of the chemical

group to be chopped off from the target compounds. It optionally specifies to which

atoms in the target compound the chopped chemical group attaches.

Adding Reactions

Each adding reaction must specify the following three aspects: 1) the two-dimensional

structure of the chemical group to be added to the target compounds, 2) the atom

in the added chemical group which will form a bond to a target vertex in the target

compounds, and 3) the target vertices in the target compounds.

The atom in the chemical group to be added is usually called a reaction site.

Most adding reactions have only one reaction site each, while only a few of them have

two reaction sites each. In the Metabolic Reaction Simulation System, the reaction

sites in an adding reaction are marked using a single electron, which enables us to

access the sites directly. The adding reactions are classified into several subtypes,

depending on their reaction sites.

Substitution Reactions

In the Metabolic Reaction Simulation System, a substitution reaction is specified as

a chopping reaction followed by an adding reaction. These two consecutive reactions

must work on the same target vertex, i.e. one cannot chop a chemical group from

one place in the target compound while adds another chemical group to some other

place. For otherwise, they should be regarded as two separate reactions.
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Bond Order Reactions

Each bond order reaction specifies the chemical bond between a pair of atoms in the

target compound, and transforms the single bond to a double bond, or the other

way around. Such a reaction does not apply alone to any target compound, but is

always binded to one of the above three types of reactions.

3.5.6 The Algorithm for Adding Reactions

Given an adding reaction, which specifies the two-dimensional structure of the chem-

ical group to be added to the target compounds and its reaction site(s), our algorith-

m first retrieves the two-dimensional structure of a target compound. The adding

reaction also specifies the kinds of target vertices in the target compounds. Our

algorithm subsequently identifies all the target vertices in the target compound that

match the specification.

For example, Reaction #24 in Table 3.1 is “glycine conjugation” (+C2H3NO).

Its (only) reaction site is the nitrogen atom and a target vertex must be a carbon

with a double bond to an oxygen in the target compound.

We realize that determining the reaction sites for the chemical group in an adding

reaction is often easy, but could be challenging to specify the target vertices. In

general, the atoms in a target compound have different abilities to form a bond

with another atom, and their neighboring atoms (through a bond) can also change

such ability. The rules of thumb on the target vertices in the target compounds

include:

a) all carbon atoms for adding reactions with a small chemical group;

b) the carbon with a double bond to an oxygen for adding reactions involving an

amine group and/or a hydroxyl group;

c) the oxygen for adding reactions involving sulfate and phosphate;

d) the sulfur for adding reactions involving thiol (-SH);

e) the carbon with a single bond to an oxygen for some adding reactions involving

nitrogen and/or a hydroxyl group;

f) and specially for Reaction #62 in Table 3.1 (“addition of palmitic acid”,

+C16H30O), the target compound has to have an amine group for attacking

the carboxyl group in palmitic acid.
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Algorithm 4 Filtering algorithm by Restriction on Structures: adding reactions.

1: c := input(target compound);
2: r := input(reaction);
3: if r.type == adding then
4: addingType := r.type.addingType;
5: compoundList := markActiveAtom(c, addingType);
6: pseudoProductsList = connect(compoundList, r.molecule);
7: pseudoProductsList = removeMarkers(pseudoProductsList);
8: pseudoProductsList = checkDuplicates(pseudoProductsList);
9: end if

1: FUNCTION markActiveAtom(c, addingType)
2: compoundList := new List;
3: for Atom a in c.atoms do
4: if a.type == addingType.activeAtomType then
5: isTarget := checkNeighbors(a, addingType);
6: if isTarget == true then
7: Compound c′ = markOnAtom(a);
8: compoundList.add(c′);
9: end if

10: end if
11: end for
12: RETURN compoundList;

In the filtering Algorithm 4 we design based on Restriction on Structures for

adding reactions, we call both the atoms at the reaction sites and the target vertices

active atoms. Using the two-dimensional structure, the active atoms in the target

compound are identified by iteratively checking the atom type of all atoms not in

a ring followed by verifying their neighboring atoms as well as the bonds between

them. All the active atoms in the target compound are marked, and each is attached

with the chemical group in the adding reaction, respectively, to generate a temporary

structure saved in a temporary list.

Next, for each temporary structure saved in the temporary list, a single bond

is formed between the two active atoms, one in the reaction group and the other

in the target compound. The corresponding markers are then removed, as well as

extra neighboring hydrogen atoms to the two active atoms. This gives a pseudo

metabolic product associated with its two-dimensional structure. Lastly, duplicate

pseudo products are examined and removed by using a hash table of SMILES strings

of all the pseudo products.

In Algorithm 4, the function checkNeighbors inside function markActiveAtom
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requires the addingType, since in different addingTypes the active atoms are affected

by different neighbors.

3.5.7 The Algorithm for Chopping Reactions

Compared with adding reactions, chopping reactions are much easier to implement.

In general there are much less rules and these rules are mostly reaction independent.

Algorithm 5 Filtering algorithm by Restriction on Structures: chopping reactions.

1: c := input(target compound);
2: r := input(reaction);
3: if r.type == chopping then
4: List productList := new List;
5: List ringBondList := markBondInRings(c);
6: rm := r.molecule;
7: reactionSMILES = getSMILES(rm);
8: for Bond b in c.bonds do
9: if b not in ringBondList then

10: (f1, f2) := breakAtBond(c, b);
11: if hasSameAtomNum(f1, rm) then
12: if f1.getSMILES == reactioinSMILES then
13: productList.add(f2);
14: continue;
15: end if
16: else if hasSameAtomNum(f2, rm) then
17: if f2.getSMILES == reactioinSMILES then
18: productList.add(f1);
19: continue;
20: end if
21: end if
22: end if
23: end for
24: end if

Algorithm 5 is the filtering algorithm based on Restriction on Structures where

the reaction is chopping off a chemical group from the target compounds. Basically,

our algorithm walks through the two dimensional structure of a compound to break

one breakable bond at a time. As a result, two fragments are generated, and for

each of them the SMILES string is generated from the SMILES string for the target

compound, and compared against the SMILES string of the chemical group specified

by the reaction. If a match is found, then the other fragment is returned as the

pseudo metabolic product of this chopping reaction. Note that our algorithm checks

for all breakable bonds and generates a list of such pseudo metabolic products.
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Breakable bonds can be specified by the chopping reaction. When the specification

is absent, the following rules generally apply: 1) all single bonds are breakable;

2) bonds in rings are not breakable; and 3) bonds connecting a hydrogen is not

breakable.

We would like to point out that the most time consuming part in Algorithm 5

is generating the SMILES strings for fragments. In our implementation, for the two

fragments resulting from one bond breaking, their SMILES strings are generated

only if the chemical formula of the group specified by the reaction matches the

formula of one of the fragments. This simple Restriction by Atoms seems to work

very well as a pre-screening process.

3.5.8 The Algorithm for Substitution Reactions

A substitution metabolic reaction is logically a chopping reaction followed by an

adding reaction, under the constraint that the chemical group must be added to the

target compound at the atom from which the other chemical group was chopped off.

There can be two possible ways to implement a substitution metabolic reaction

in the Metabolic Reaction Simulation System, using the modules of adding and

chopping. If we were to implement using the chopping Algorithm 5, then essentially

all breakable bonds in the target compound need to be examined and the two-

dimensional structures of resultant fragments have to be compared with the chopping

group. This is too time consuming for large target compounds. The actual filtering

algorithm we implement is shown in Algorithm 6, which uses the adding Algorithm 4.

Basically, our algorithm runs very the same as Algorithm 4 to search for active atoms

in the target compound, with a modified definition of an active atom being one that

has a single bond connecting to the chopping group. In fact, Algorithm 6 differs from

Algorithm 4 only at the definition of an active atom. Again, determining whether

there is a chopping group connected to the active atom is firstly by Restriction on

Atoms followed by SMILES string matching if needed.

3.5.9 Algorithms for Bond Order Reactions

Double bond utilities are a collection of algorithms implementing 1) adding a double

bond, 2) removing a double bond, and 3) rearranging double bonds.

When a double bond needs to be added to a target compound, we first generate

a list of single bonds which can potentially change to a double bond. In general,
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Algorithm 6 Filtering algorithm by Restriction on Structures: substitution reac-
tions.
1: c := input(target compound);
2: r := input(reaction);
3: if r.type == substitution then
4: addingType := r.type.addingType;
5: compoundList := markActiveAtom(c, addingType);
6: pseudoProductsList = connect(compoundList, r.molecule);
7: pseudoProductsList = removeMarkers(pseudoProductsList);
8: pseudoProductsList = checkDuplicates(pseudoProductsList);
9: end if

1: FUNCTION markActiveAtom(c, addingType)
2: compoundList := new List;
3: for Atom a in c.atoms do
4: if a.type == addingType.activeAtomType then
5: isTarget := checkNeighbors(a, addingType);
6: if isTarget == true then
7: if addingType belongs Substitution then
8: Atom activeAtom := a.connectedActiveAtom;
9: Compound c′ = chopOffTarget(c, a.targetStructure);

10: c′ = markOnAtom(activeAtom);
11: else
12: Compound c′ = markOnAtom(a);
13: end if
14: compoundList.add(c′);
15: end if
16: end if
17: end for
18: RETURN compoundList;
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these single bonds must not be in benzene rings. For every such candidate bond,

its two ending atoms must be bonded with free hydrogens (for “dehydrogenation”

as Reaction #1 in Table 3.1), or one ending atom is bonded with a hydroxyl group

(for “loss of water” as Reaction #11 in Table 3.1). Associated with each bond in

the list, a pseudo product and its SMILES string are generated.

These pseudo products are not final because we might have to do double bond

rearrangement. Theoretically, after a double bond is formed out of a single bond

(as described for example in the above), the resultant structure might not be stable

to exist. Typically, when two carbon atoms are connected via a double bond and

one of them is also connected to an OH group, i.e. a local structure of C=C–OH,

the hydrogen in the OH group will move to the other ending carton atom and the

double bond moves to connect the carbon and the oxygen, i.e. the local structure

changes to CH–C=O. Our algorithm walks through each product in the list to fix

the positions for double bonds, as well as finalize their SMILES strings.

Removing a double bond from a compound, or more precisely transferring the

double bond into a single bond, is easier implement, where the candidates are those

double bonds not residing in benzene rings. For each candidate, the two ending

atoms are now connected by a single bond, and each of them is attached with a free

hydrogen. The corresponding pseudo product is generated, as well as the SMILES

string.
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3.6 Compound Fragmentation and Spectrum Matching

In this section we describe the algorithms for compound fragmentation to generate

a theoretical MS/MS spectrum. As a prototype, we present a spectrum matching

algorithm for di-/tri-peptide identification using their experimental MS/MS spectra

generated through ToF mass spectrometry.

In an MS experiment, the masses of the compounds can be detected accurately.

Compounds of different masses can then be separated and each separated compound

can be fragmented to have the fragment masses detected. This multiple steps of mass

selection, known as tandem mass spectrometry (MS/MS), generate the MS/MS

spectrum for a compound or a set of compounds of identical mass (the latter case

is rare). Since fragmentation is not arbitrary, but through breaking certain (yet not

fully understood) chemical bonds in the compound, the fragments of a compound

make up the fingerprint of that compound. Therefore, MS/MS spectrum match is

able to identify the true compound structure, more powerful and reliable than the

mass match.

3.6.1 The Fragmentation Algorithm

The theoretical MS/MS spectrum is the collection of all possible fragment masses

of a compound. In the rest of this section, we use a fragment and a fragment

mass interchangeably. We have decided to generate all fragments of a compound by

breaking one possible chemical bond in the compound at a time. Consequently, the

two-dimensional structure of the target compound is needed.

The following rules specify which chemical bonds are breakable and/or which

chemical bonds are unbreakable. 1) Every carbon–carbon single bond not in a

ring structure is breakable, and when broken two fragments are generated. 2) Het-

eroatoms (sulfur, oxygen, nitrogen, phosphor and halogen elements) could be easily

protonated. The chemical bond between a heteroatom and a Carbon is breakable,

and when broken two fragments are generated (one hydrogen added onto the het-

eroatom, and one hydrogen added to the carbon). Note that the resultant fragment

containing the heteroatom, or any fragment containing a heteroatom, can be further

fragmented by the same rule.

Our fragmentation algorithm first breaks all carbon–carbon single bonds one by

one, then proceeds to analyze every heteroatom in the molecule, to generate the
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largest set of possible fragments. For a general compound, the number of peaks

in the theoretical MS/MS spectrum can be an order of magnitude more than the

number of peaks in an experimental MS/MS spectrum for the same compound,

which makes the spectrum matching a challenging task. Nevertheless, on a subset

of compounds that are di-/tri-peptides, their numbers of peaks in theoretical M-

S/MS spectra are not too large compared against the ones in experimental spectra.

Basically, due to the very well studies on peptide MS/MS spectra, their fragmenta-

tion patterns are well understood. A peptide is a linear chain of amino acids and

its fragmentation is amino acid based (instead of atom based). Associated with one

amino acid there are only about a dozen fragments, among which several of them can

be frequently observed in typical MS/MS spectra. The theoretical MS/MS spectra

we have generated for these 8,400 peptides have 100% coverage, which is defined

as the ratio between the number of common peaks and the number of peaks in the

experimental spectrum for the target compound.

3.6.2 The Spectrum Matching Algorithm

The MS/MS spectrum matching algorithm we develop in the following is for di-/tri-

peptide identification. It serves as a prototype for general compound identification.

We assemble a database to include the theoretical MS/MS spectra for all 8,400

peptides, where each theoretical spectrum contains all possible fragments of the pep-

tide. To develop a scoring scheme for matching an experimental spectrum against a

theoretical spectrum, we adopt the well known “term frequency – inverse document

frequency” (tf–idf) concept from information retrieval. Basically, every peak (the

mass of a fragment) is regarded as a “term” (or keyword) and a theoretical spec-

trum is taken as a document. Term frequency tf refers to the number of times the

term occurs in a document, while the inverse document frequency idf is a measure

of whether the term is common or rare across all documents. tf–idf is a numerical

statistic which reflects how important a term is to a document in a collection of

corpus. The tf–idf value of a term increases proportionally to the number of times

the term appears in a document, but is offset by the frequency of the term in the

corpus, which helps control the fact that some terms are generally more common

than the others.

Let S be the set of all 8,400 theoretical MS/MS spectra, and P be the set of all

peaks across all spectra in S. For every peak p ∈ P and every spectrum s ∈ S, the
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frequency of term p in document s is tf(p, s), defined as

tf(p, s) =

{
w(p, s), if p ∈ s,
0, if p 6∈ s,

(3.1)

where w(p, s) is the weight of peak p in spectrum s depending on the ion type for

p. Note that in general different types of fragment ions have different probabilities

to be generated. When such probabilities are absent, w(p, s) is set to constant 1.

The inverse document frequency of p in the corpus S, denoted as idf(p, S), is

defined as the log of the inverse ratio of documents containing term p:

idf(p, S) = log
|S|

|{s ∈ S : p ∈ s}|
(3.2)

Theoretically speaking, if the fragment p is an ion type easily formed in a spec-

trum s, then w(p, s) should be high, indicating more likely p is related to s; conse-

quently, if a fragment p is strongly related to a spectrum s, then the tf(p, s) value is

high (equal to w(p, s)); also, if the fragment is only weakly related to the other spec-

tra, then the idf(p, S) value is high (denominator is small). The score of matching

an experimental spectrum s′ and a theoretical spectrum s is tf–idf(s′, s),

tf–idf(s′, s) =
∑
p∈s′

tf(p, s)× idf(p, S). (3.3)

Our preliminary experiments using real MS/MS spectra shows that Equation (3.3)

performs excellently for di-peptide identification. For tri-peptides, Equation (3.3)

does not perform ideally. One of the main observations is that, for each real spectrum

s′, the scores tf–idf(s′, A1A2) and tf–idf(s′, A2A1) are usually close to each other.

For di-peptide identification, the score for the true di-peptide is always higher than

the score for the reverse di-peptide, since all the peaks in the experimental spectrum

contributes to the score. For tri-peptide identification, assuming the true target is

A1A2A3, theoretically only half of the peaks contribute to scoring A1A2 and A2A1,

and thus score tf–idf(s′, A2A1) can be significantly larger than tf–idf(s′, A1A2).

Nevertheless, when this happens, score tf–idf(s′, A2A3) stands out significantly. In

summary, using Equation (3.3) for tri-peptide identification is not ideal, but one

should seeks for a combination of scores tf–idf(s′, A1A2A3), tf–idf(s′, A1A2) and

tf–idf(s′, A2A3).

Since all the peaks in the experimental spectrum s′ contribute to score tf–

idf(s′, s(A1A2A3)), here s(A1A2A3) is the theoretical spectrum for tri-peptide A1A2A3,

if indeed the target is a tri-peptide, then about half of the peaks can be used for

40



identify the prefix di-peptide and about half peaks can be used for identify the suffix

di-peptide. However, usually identification of prefix and suffix di-peptides are not

done both well at the same time, but at least one of them can receive a high score;

note that identifying either the prefix or the suffix implies identifying the whole

tri-peptide. We therefore decide to take a linear combination of tf–idf(s′, A1A2A3)

and max{tf–idf(s′, A1A2), tf–idf(s′, A2A3)}. Since if the target is a di-peptide, we

use about 150% of the peaks in score calculation and therefore finalize the match

score between s′ and s(A1A2A3) as

tf–idf(s′, s(A1A2A3)) = 2
3 ×

∑
p∈s′ tf(p, s(A1A2A3))× idf(p, S)

+ 2
3 ×max

{∑
p∈s′ tf(p, s(A1A2))× idf(p, S2),∑
p∈s′ tf(p, s(A2A3))× idf(p, S2)

} (3.4)

where S2 is the set of all 400 di-peptide theoretical MS/MS spectra.

41



3.7 Data Storage and Database Design

In this work, we use MySQL to store our metabolite compounds and support our

web-based databases.

3.7.1 The Base Database

The molecular weight is the key value for compound identification.

The 8,021 metabolite substrates we extracted from HMDB are stored in two ta-

bles, Table 3.5 (myid mw) and Table 3.6 (myid details). As seen, myid mw contains

only two fields, hmdb id and mw. For each substrate, more detailed information

such as chemical formula and common names are stored in myid details. The two

tables are linked through hmdb id.

Table 3.5: The myid mw table for 8,021 metabolite substrates in MyCompoundID.
Field Type

hmdb id varchar(25)

mw double(12,6)

Table 3.6: The myid details table for 8,021 metabolite substrates in MyCompoun-
dID.

Field Type

hmdb id varchar(25)

formula varchar(255)

common name varchar(255)

3.7.2 The Expanded Database

We create two tables to store the metabolic products resulted from one reaction

and two reactions, respectively. They are named one reaction and two reaction,

respectively. The form of the tables is the same, as shown in Table 3.7, where each

table entry is for one product. In one reaction table, a product has name hmdb id–

react id, which essentially tells that the product is the result of Reaction #id on

substrate hmdb id. In two reaction table, a product has name hmdb id–react id1–

react id2, which essentially tells that the product is the result of Reaction #id1

followed by Reaction #id2 on substrate hmdb id. For example, “HMDB00001–

8” is the one-reaction product of HMDB00001 getting oxidation (Reaction #8 in

42



Table 3.1); “HMDB00002–8–4” is the result of HMDB00002 getting oxidation first

and then followed by methylation (Reaction #4 in Table 3.1). Each table entry has

a field of mw, recording the molecular weight of the product.

Table 3.7: The MySQL tables for one- and two-reaction products in MyCompoun-
dID, called one reaction and two reaction, respectively.

Field Type Null Key Default

hmdb id–react id [–react id] varchar(25) NO PRI

mw double(12,6) YES MUL

verified T tinyint(1) YES 0

verified E tinyint(1) YES 0

show tinyint(1) YES 1

Recall that three restrictions have been used to generate and filter the one- and

two-reaction metabolic products to expand our database, as presented in Sections 3.4

and 3.5. Generally speaking, the pseudo metabolic products generated by applying

Restriction 1 on Atoms and/or Restriction 2 on Bonds form a superset of those

can be generated in reality. However, the pseudo metabolic products generated

by the Metabolic Reaction Simulation System, i.e. by applying Restriction 3 on

Structures, could leave out some real metabolic products. The reason is that the

metabolic reaction rules used in the Metabolic Reaction Simulation System are not

complete and could be too restrict, and thus some metabolic products can exist in

reality but will not be generated by our rules. We therefore have decided to keep the

superset generated by Restrictions 1 and 2; nevertheless we create a field verified T

to record whether the product passes Restriction 3. The product table evolves to

have in total five fields, among which verified E denotes whether the product has

been experimentally validated by users and show indicates whether the entry is going

to be searched against (Table 3.7).

For each pseudo metabolic product generated by applying Algorithms 1 and 2

(the superset), the default value for (verified T, verified E, show) is (0, 0, 1). If it

passes either of Algorithms 4, 5 and 6, verified T changes to 1; if fails, i.e. Restric-

tion 3 on Structures says it is impossible, show changes to 0. Recall that for one-

reaction products, Restriction 3 on Structures is applied, but not for two-reaction

products. Two-reaction products are “verified” by Algorithms 4, 5 and 6 on the fly,

meaning that those returned as hits for a user query are verified in the Metabolic

Reaction Simulation System. This way, all two-reaction products in the superset

can be potentially theoretically verified, and false positives can be marked using the
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show attribute.

3.7.3 Database Indexing

We have three tables storing the metabolite substrates (myid mw), one-reaction

pseudo products (one reaction), and two-reaction pseudo products (two reaction).

For each mass query, compounds that have mass within the tolerance range must all

be returned as output. Since the entries in our tables are not ordered in any specific

way, all of them have to be checked by comparing their masses with the query mass,

which is time consuming as the database grows large (millions of entries). Using

1,000 randomly picked masses, the search CPU time (in seconds) is shown in the

second column of Table 3.8, for 0, 1, or 2 reactions respectively.

Table 3.8: Summary of search time using indexing in MyCompoundID using 1,000
masses. The search was repeated on the set of metabolic products for 0, 1, and 2
reactions respectively. The collected time in the second and last columns are without
indexing and with indexing, respectively. All time are in CPU seconds.

w/o Indexing w/ Indexing

0 reaction 8.7s 3.4s
1 reaction 240.7s 6.8s
2 reactions 8,400s 79.5s

Search engine indexing collects, parses, and stores data to facilitate fast and ac-

curate information retrieval. Indexes are costly in writing new entries into database

and updating indexes. In MyCompoundID, the writing operation is not very com-

mon, which avoids this indexing cost. Since in MyCompoundID, the numerical

values are needed to be indexed, two candidate index types supported by MySQL

are under consideration: BTree and Hash indexes.

B+ tree, which is a variation of BTree [4], is selected by MySQL to index the

data. A B+ tree is an n-ary tree with a variable but often large number of children

per node. A B+ tree consists of a root, internal nodes and leaves [9]. A B+ tree

can be viewed as a B-tree in which each node contains only keys (not pairs), and

to which an additional level is added at the bottom with linked leaves. In Hash

indexing, a hash table [4] is used to implement an associative array, a structure

that can map keys to values. A hash table uses a hash function to compute an

index into an array of buckets or slots, from which the correct value can be found.

The structural differences between these two indexing data structures make them
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Figure 3.4: The average running time for processing 1 mass query and the com-
parison between without and with indexing the expanded database. The average is
taken over 1,000 randomly selected masses.

be efficient in two different types of searching queries. Hash indexing is better in

looking for exactly equal values while the BTree index is better in retrieving a list

of entries in a range defined by a lower bound and upper bound. Thus, BTree is

more suitable for MyCompoundID searching queries.

We later use BTree to index our tables. Using the same 1,000 masses for query,

the search time decreases dramatically, shown in the last column of Table 3.8. The

average search time per mass query is also plotted in Figure 3.4, where one sees an

exponential growth in search time without indexing. Indeed, the average search time

per mass query for 2 reactions on the indexed expanded database (two reaction) is

even less than the average search time per mass query for 2 reactions on the base

database (myid mw). That is, the linearly scanning the expanded database for mass

matches takes a longer time than predicting pseudo metabolic products on the fly.
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Chapter 4

Web Services

Our work on compound identification, My Compound Identification or MyCompoun-

dID, is implemented as web services through (http://www.mycompoundid.org/).

MyCompoundID Version 1.0 was set up for services on February 7, 2013, as a

supplement to “MyCompoundID: Using an evidence-based metabolome library for

metabolite identification” [18] published in Analytical Chemistry, Volume 85, Pages

3401–3408, 2013. Version beta is under development and includes more functionali-

ties such as spectral search. This chapter presents the main features of Version 1.0,

and its framework design.

4.1 Search Parameters

In the Search front page, there are four parameters a user has to specify. They are

“the (exact) number of reactions”, “(search for) neutral or ionized (compounds)”,

“query mass(es)” and “mass tolerance” in either absolute or relative measure. The

default values for three of them are set for the most common scenario, while the

user needs to type in one query mass in single search mode or multiple masses in

batch search mode. We note that in the batch search mode, the search options are

the same for all query masses. Figures 4.1 and 4.2 contain the screen-shots of the

search interfaces for the two modes respectively.

The following gives some detailed information on search parameters. Firstly,

if the user wants to search against only those endogenous metabolites in HMD-

B (i.e. our base database), the “No reaction” should be selected; the other two

values enable the search for metabolic products as results of one or two metabolic

reactions. Secondly, searching for neutral compounds is set as default, but the us-

er has options to search for one of the most common adducts obtained by various
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Figure 4.1: Single search interface in MyCompoundID.

ionization processes, such as sodium and ammonium adducts, or search for all ion

types. Note that each ion type results in different mass shifting on the compound

masses. Lastly, the mass tolerance threshold can be specified in two ways, absolute

or relative. In the absolute measure, the unit is Dalton (Da) and 0.005Da is set as

default; in the relative measure, the unit is part per million (ppm) and 5ppm is the

default. These default values match the typical mass accuracy readily achievable by

high resolution instruments such as an FT (Fourier Transform) or a TOF (Time-of-

Flight) mass spectrometer. The mass calculation precision (evidenced by the mass

distribution over all 8,021 metabolite substrates) suggests that adjusting this mass

tolerance within a certain range has no effect on the search results; however, a too

large mass tolerance assumes poor data quality on one hand, and results in hits that

are difficult to interpret on the other hand.
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Figure 4.2: Batch search interface in MyCompoundID.

4.2 Searching Result Display

After the user submitted the query, the web page is replaced by the result page.

The result page for a single query mass contains two tables (Figure 4.3), the first of

which summarizes the query details and the second lists all the hits.

There are 12 columns in the result table (13 columns in beta version where a

column displaying theoretical spectrum is added). The rows of the table can be

ordered using every column into either ascending or descending order. The second

column “HMDB ID” provides the link for the metabolite substrate to HMDB, which

is the MetaboCard in HMDB containing the detailed information of the metabolite

substrate, including biological relevance, synonyms, chemical structure, physical

properties and, in some cases, experimental NMR spectra and/or MS/MS spectra.

Columns 4–6 list the mass of the hit, the chemical formula, and the two-dimensional

structure. The user can then use the next column “Explore” to view the structure

in ChemDraw plug-in, or download the structure file in MDL format to view it in

any other chemistry molecule structure software.
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Figure 4.3: The screen-shot of the search result page for query mass 131.094, with
options for 1 reaction, neutral compounds, and mass tolerance at 5ppm. The web-
page contains two tables, one summarizes the query and the other lists all the hits.

Column 8 is the reaction applied to the metabolite substrate to generate the

hit, if applicable, and the next column shows the mass offset by this reaction. The

“mass error” column indicates the mass difference between the query and the mass

of the hit. The rows of the table is initially sorted in non-decreasing mass errors,

and thus the top matches are displayed at the front. The next “to del” column

provides a checkbox for the user to remove the particular hit/row from the table if

the hit is believed impossible. In the last column, the user could add the local files

which are related to the hit. When the user clicks the “Save Attachments” button,

these files will be packed into a zipped archive and saved to a local folder specified

by the user.

In the future when search by spectrum is enabled, a few more columns will be

added to show the theoretical spectrum, the interpreted spectra, and the experimen-

tal (the query) spectrum. A sample webpage to display a spectrum is illustrated

in Figure 4.4, where the mass list is in the left hand side and a figure shows the

spectrum.
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Figure 4.4: A sample webpage for display a compound spectrum in MyCompoundID.

When “all ions” option is selected in the single search mode and for the batch

search mode, multiple result pages will be displayed, one for each mass. In this case,

a summary webpage with links to all result pages is returned, see Figure 4.5, where

the numbers of hits are reported respectively.

Figure 4.5: The summary webpage for a query with multiple masses. For each mass,
the number of hits is indicated and the link to detailed result webpage is provided.
This page is for batch search for neutral compounds with masses 145.1103, 170.0790,
and 159.1259.

4.3 Web Server Framework Design

The logical flow of our MyCompoundID web server is relatively simple. Basically, the

front page navigates different pages of search interfaces and documentation pages.

Each search interface takes in search parameters and passes the query to search

modules for data retrieve; then the search results are passed to a page to display to

50



the user. That is, this follows the simple Model-View-Controller framework.

In the back-end, Tomcat is used as the container for the web server, JSP is used

to build the View, Java Servlet is used to build the Controller, and Java is used to

build the Model. We use MySQL for the database system.

The main pages in our web server are described in the following. The top page of

the site map is “index.jsp”, which navigates between Home, FAQ, Contact Us, Single

Search Mode, Batch Search Mode, and Possible Reactions. Under the Home tab,

pages Introduction, Workflow, Tutorial, Example, How to Cite, News and Updates

are defined (see Figure 4.6 for the detailed site map).

Figure 4.6: MyCompoundID site map.

For compound identification, the single search interface passes the query to

“SearchServlet”, and “SearchServlet” uses these parameters to call for “Search.java”.

“Search.java” constructs the MySQL query to search the database(s), retrieves the

data, then returns the search result to “SearchServlet”. “SearchServlet” passes the

result to “SingleSearchResult.jsp” for wrapping into a table to display to the user.
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When “all ions” option is selected in the single search mode and for the batch search

mode, the query is passed to “SearchServletBatch” for parsing into individual mass

queries, following by calling “SearchServlet” once for each individual mass query.

All search results are saved in a temporary folder, and “BatchSearchResult.jsp” is

invoked to generate the summary page and all individual search result pages.

“SpectrumServlet” can generate the theoretical MS/MS spectrum for a com-

pound. This servlet can be invoked by the user inside “SingleSearchResult.jsp”

when the user inquires such a spectrum for each hit compound. The detailed algo-

rithms for generating an MS/MS spectrum are described in Section 3.6.
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Chapter 5

Results and Discussion

For meaningful compound identification, an accurate mass of the compound must

be obtained. This can be typically achieved by mass spectrometry. Clearly, a

mass query returns all compounds that have masses within the tolerance range,

which unavoidably include false positive hits. A more accurate way is to obtain the

fragmentation, or the MS/MS, spectrum for the compound of interest, then this

experimental spectrum can be used in spectrum search that not only satisfies the

mass constraint, but also structure constraints.

In the next section, we present our results on human metabolite identification us-

ing mass queries, followed by spectral interpretation, using our web server MyCom-

poundID. Some advantages of MyCompoundID over existing chemical compound

databases, PubChem and Kegg, are shown in Section 5.2. Section 5.3 presents

results on compound and small peptide identification through spectrum match.

5.1 Identification through Mass Queries

Human urine and plasma were used as samples in this experiment. The sample was

performed by a simple extraction to capture a small fraction of the metabolome.

After a series of chemistry experiments, 347 compounds in urine and 116 compounds

in plasma were extracted, each of which has both the accurate mass measured by

TOF-MS and the MS/MS spectrum collected by QTrap-MS. Using the tolerance

threshold 5ppm, all these masses are searched against HMDB and MyCompoun-

dID. There are 900 metabolites in HMDB having MS/MS spectra information. To

do the experiment on HMDB, all MS/MS spectra are searched against a library of

900 metabolite standards, and the number of metabolites in samples are recorded.

To do the experiment on MyCompoundID, all the mass peaks in the MS spectra
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are searched against the MyCompoundID, and all the MS/MS spectra are manu-

ally interpreted and compared with the theoretical MS/MS spectra generated by

MyCompoundID.

Table 5.1 summaries the search results. Against HMDB, only 8 metabolites were

found in urine and 7 in plasma. Against MyCompoundID, followed by MS/MS

spectral interpretation of individual matches, 14 metabolites in urine and 34 in

plasma were identified when using option of 0 reaction, 41 metabolites in urine and

14 in plasma were identified when using option of exactly 1 reaction, and additionally

3 more metabolites in urine were identified when using option of exactly 2 reactions.

That is, up to 2 reactions, we identified in total 58 metabolites in urine and 48 in

plasma in MyCompoundID. These numbers are also plotted in Figure 5.1 for an

easier view on the performance difference. Clearly, MyCompoundID significantly

increases, over the standard library HMDB, the number of metabolites identifiable

from bio-fluids [5].

Table 5.1: The experimental results on human metabolite identification using 347
compounds in urine and 116 compounds in plasma, searched against HMDB and
MyCompoundID. The compound masses are used as queries and the search results
are interpreted using their MS/MS spectra, respectively.

Number of Compounds Identified
Urine (Total 347) Plasma (Total 116)

MyCompoundID 0 reaction 14 34
MyCompoundID 1 reaction 41 14
MyCompoundID 2 reactions 3 0
MyCompoundID total 58 48
HMDB 8 7

In another separate experiment we want to identify metabolites in a human

urine sample without solvent extraction. Using HMDB, only 23 metabolites were

putatively identified by mass matching followed by MS/MS spectrum matching. The

other accurate masses that do not have MS/MS spectrum matches were searched

in MyCompoundID, and 63 more metabolites were identified with 0 reaction and

87 more metabolites with exactly 1 reaction. These extra metabolites identified

in MyCompoundID were interpreted by their MS/MS spectra, respectively. We

conclude that this second experiment once again demonstrates that MyCompoundID

with the expanded database can be used to identify more putative metabolites from

a bio-fluid.
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Figure 5.1: The comparison on the number of compounds identified through HMDB
and MyCompoundID, using the masses 347 compounds in urine and 116 compounds
in plasma for queries and search results interpreted by the corresponding MS/MS
spectrum.

5.2 MyCompoundID versus PubChem and Kegg

PubChem is the largest compound library which has over 100 million entries. The

Kegg has 16,907 low molecular mass compounds. These two libraries (or databases)

contain all sorts of chemicals including synthetic compounds; while MyCompoun-

dID databases are composed of human endogenous metabolites and their predicted

metabolic products.

In the following comparison experiment, accurate masses of 83 putative one-

reaction metabolic products in MyCompoundID were searched against both Pub-

Chem and Kegg using the same mass tolerance of 5ppm. For each mass, hundreds to

thousands of hits were returned by PubChem, but only 29 out of the 83 masses have

one or more structure or structural isomer matched with the proposed structure;

only 23 out of the 83 masses have correct matches with the structures proposed by

MyCompoundID. This experiment shows the potential advantages of MyCompoun-

dID over ChemPub and Kegg for putative human metabolite identification.
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5.3 Identification through Spectrum Queries

We have created a theoretical MS/MS spectrum for each compound using its two-

dimensional structure to break every breakable bond. The rules defining breakable

bonds are collected from literature. Nevertheless, we realize that at least for some

compounds, a portion of their breakable bonds might not actually break in reality.

This essentially implies that there could be too many false positive fragments in

the theoretical MS/MS spectra we generated. These false positives will reduce the

peak uniqueness and eventually spectrum matching confidence. On the other hand,

one does not want to miss two many true peaks, since otherwise they will lower the

matching scores against true target compounds resulting in identification errors.

In the following experiment, we have compared the generated theoretical M-

S/MS spectra and the experimental MS/MS spectra for a set of eight compounds.

Figure 5.2 shows the experimental MS/MS spectrum of Leucine and the theoret-

ical MS/MS spectrum generated be MyCompoundID. There are 11 peaks in the

experimental spectrum and 13 peaks in the theoretical spectrum, among which, the

experimental spectrum and theoretical spectrum overlap with 3 peaks. These over-

lapped peaks are circled in the figure of each spectrum. As shown in Table 5.2, the

number of peaks in each spectrum is counted, and the number of common peaks

shared by the two spectra for one compound is obtained. The ratio between the

number of common peaks and the number of peaks in the experimental spectrum

is defined as the coverage of the theoretical spectrum, shown in the last column.

Unfortunately, coverages for all eight theoretical MS/MS spectra are low.

Table 5.2: The comparison between the theoretical MS/MS spectra generated by our
fragmentation algorithm and the experimental MS/MS spectra for eight compounds.
The coverages of these theoretical MS/MS spectra are low as shown in the last
column.

Compound Experimental Theoretical Coverage(%)

Leucine 11 13 3 (27%)
Indoleacetic acid 7 9 2 (29%)
3-Methoxybenzenepropanoic acid 9 17 4 (44%)
L-Acetylcarnitine 6 27 4 (67%)
L-Tryptophan 10 14 6 (60%)
Adenosine 20 6 2 (10%)
L-Aspartyl-L-phenylalanine 11 25 6 (55%)
L-Octanoylcarnitine 8 41 7 (88%)

Table 5.3 shows the detailed peak matching or peak hit result of our fragmenta-
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Figure 5.2: The comparison on the peaks in the experimental MS/MS spectrum
(above) and the peaks in the theoretical MS/MS spectrum generated be MyCom-
poundID (below) of Leucine.

tion algorithm for those eight given experimental MS/MS spectra. From the table,

we could see that the numbers of matched peaks between the experimental MS/MS

spectrum and the one of each candidate metabolite are almost the same. This is

very difficult for the simply matching peak counting based algorithms to return the

desired metabolites based on the experimental MS/MS spectrum and the theoretical

MS/MS spectrum MyCompoundID generated.

Interestingly, despite low coverage, these theoretical MS/MS spectra are very

helpful for chemists to verify the identified compounds, or to assist chemists for semi-

automated compound identification. Indeed, all eight compounds were successfully

identified, and the identification process has been speeded up using the theoretical

MS/MS spectra.

In the second experiment, experimental MS/MS spectra for four di-peptides

(LW, WL, YG, GY) and four tri-peptides (GYA, FFF, WGG, YGG) are obtained.
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Table 5.3: The number of peak hits in the theoretical MS/MS spectra generat-
ed by our fragmentation algorithm for the experimental MS/MS spectra for eight
compounds.

Compound Candidate No. Avg. Hit Target Hit

Leucine 6 3 3
Indoleacetic acid 2 1.5 2
3-Methoxybenzenepropanoic acid 1 4 4
L-Acetylcarnitine 1 4 4
L-Tryptophan 1 6 6
Adenosine 3 1.7 2
L-Aspartyl-L-phenylalanine 2 6.5 6
L-Octanoylcarnitine 1 7 7

Each of them is matched against every theoretical spectrum in our database of 8,400

di-/tri-peptides, and Equations (3.3) and (3.4) are used as the scoring function for

matching against di-peptides and tri-peptides, respectively. We collected the ranks

for the true target peptide and its reverse.

In the first setting, all w(p, s) — which is the weight of peak p in spectrum s

depending on the ion type for p — are set to 1. The identification results are listed in

Table 5.4, where ranks in the second column are obtained by using Equation (3.3)

to score all 8,400 peptides, and ranks in the last column are obtained by using

Equation (3.3) to score the 400 di-peptides but using Equation (3.4) to score the

8,000 tri-peptides.

Table 5.4: The small peptide identification results through MS/MS spectrum match,
in which the ion weights are uniformly at 1. A total of eight experimental MS/MS
spectra are tested, using two scoring schemes. Each column shows the rank of the
true target peptide, the rank of the reverse true target peptide, and the percentage
of permuted peptides ranked higher than any other non-permuted peptides.

Ranks and Coverage (%)
Equation (3.3) Equations (3.3)+(3.4)

LW 1/2/100% 1/2/100%
WL 2/1/100% 2/1/100%
YG 1/2/100% 1/2/100%
GY 1/2/100% 1/2/100%
GYA 2/3/100% 1/2/100%
FFF 1/–/100% 1/–/100%
WGG 1/5/67% 1/3/100%
YGG 1/3/100% 1/3/100%

It happens that di-peptide WL could not identified (i.e. ranked to the top). A

closer look into the experimental spectrum reveals that the experimental spectrum
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for WL does not seem sufficient to distinguish WL and LW. For example, the exper-

imental spectrum for WL does not contain “critical” peaks that is in the theoretical

spectrum for WL but not in the theoretical spectrum for LW. In other words, all

the peaks in this experimental spectrum are common to WL and LW. Under the

uniform ion weight factors, the score scheme Equation (3.3) is in favor of di-peptide

LW (over WL).

When using Equation (3.3) to score tri-peptides, six out of eight peptides are

identified (ranked the top). Using Equation (3.4) to score tri-peptides further iden-

tifies tri-peptide GYA; it also lifts the rank of tri-peptide GGW when identifying

WGG.

In the second setting, we want to set the weights of the ion types differently

according to how easy they can be formed. Since almost all y-ions present in our

QToF MS/MS spectra, we end up with lifting only the weight of y-ion to 2 (i.e.

twice the weights of the other types of ions). The experiment is repeated just the

same as in the first setting. The identification results are listed in Table 5.5, where

ranks in the second column are obtained by using Equation (3.3) to score all 8,400

peptides, and ranks in the last column are obtained by using Equation (3.3) to score

the 400 di-peptides but using Equation (3.4) to score the 8,000 tri-peptides. Under

this setting, di-peptide WL can be easily distinguished from LW using both scoring

schemes.

Table 5.5: The small peptide identification results through MS/MS spectrum match,
in which the ion weights are set according to how easy the ion can be formed. A
total of eight experimental MS/MS spectra are tested, using two scoring schemes.
Each column shows the rank of the true target peptide, the rank of the reverse true
target peptide, and the percentage of permuted peptides ranked higher than any
other non-permuted peptides.

Ranks and Coverage (%)
Equation (3.3) Equations (3.3)+(3.4)

LW 1/2/100% 1/2/100%
WL 1/2/100% 1/2/100%
YG 1/2/100% 1/2/100%
GY 1/2/100% 1/2/100%
GYA 2/3/100% 1/2/100%
FFF 1/1/100% 1/1/100%
WGG 1/5/67% 1/3/100%
YGG 1/3/100% 1/3/100%
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5.3.1 Discussion

It appears that identifying di-peptides is much easier than identifying tri-peptides.

One reason is that the numbers of peaks in the experimental MS/MS spectra for

di-/tri-peptides are very close to each other, but the theoretical MS/MS spectra for

tri-peptides contains around 50% more peaks than the counterparts.

Clearly every peak contributes differently to the match scores. We have also

observed larger variations across tri-peptides than across di-peptides. It would be

interesting to learn how to weight the importance of each individual peak, after a

sufficient number of experimental MS/MS spectra have been collected.

The weights for different ion types seem to improve the performance of the

match scoring schemes. But they are tested for only eight instances. Also, these

weights are set roughly to match their probabilities of occurrence. Again it would

be interesting to learn how to weight the ion types, after a sufficient number of

experimental MS/MS spectra have been collected.
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Chapter 6

Conclusions and Future Work

In this work, we present the MyCompoundID as a publicly accessible web server for

metabolite identification. Identifying unknown metabolites in bio-fluids is challeng-

ing but the critical step towards metabolome profiling, which leads to biomarker

discovery for various biological and medical applications.

MyCompoundID is able to use experimental data effectively to identify more

metabolites than existing similar web applications such as HMDB, PubChem, and

KEGG. The main support to achieving this success is the expanded database of

pseudo one- and two-reaction metabolic products, generated from the 8,021 metabo-

lite substrates using the 76 commonly encountered metabolic reactions in human.

While the expanded database contains tens of millions of compounds, our imple-

mentation makes the best efforts on balancing CPU time consumption and the false

positive rate. All two-reaction metabolic products are or will be validated struc-

turally through the user query processes. This way, along the time, our database

is left with more and more reliable pseudo metabolic products, and subsequently

query processes become faster and faster.

The MyCompoundID web server is implemented in the well known MVC model,

which increases the code re-usability and separation of concerns. Such a model also

enables quick updating and modifications.

For compound identification through MS/MS spectrum search, so far our database

contains only the theoretical spectrum for each compound (both substrates and

metabolic products). The experimental spectra collected in various labs are em-

pirical evidences for the compounds identified, and they are very important in un-

derstanding the fragmentation patterns for every specific compound. We will be

implementing a functionality to accept the interpreted MS/MS spectra contributed
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by the users, and to construct a database of interpreted MS/MS spectra, besides the

database of theoretical MS/MS spectra. We anticipate that such interpreted spec-

tra would not only enrich our knowledge on metabolite chemistry, but also improve

compound identification further.

For the di-/tri-peptide identification through MS/MS spectrum match, which

is a prototype for the general compound identification through MS/MS spectrum

match, our spectrum matching algorithm is based on weighted tf-idf. One reason

for the huge success for this simple matching algorithm is that a theoretical MS/MS

spectrum for a di-/tri-peptide contains only dozens of peaks. Nevertheless, the

theoretical MS/MS spectrum for a metabolite can contains hundreds of peaks. Our

preliminary experiment on a few spectra suggests that developing an effective scoring

scheme for spectrum match is challenging; yet we believe with more experimental

spectra collected we might be able to apply advanced machine learning algorithms

in training some scoring schemes of good quality.
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