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Abstract

Positronium consists of an electron and positron in a bound state, a purely lep-

tonic system and therefore an excellent test of QED (quantum electrodynamics). The

ground state is characterized by two different spin configurations: spin-singlet and

spin-triplet states. The difference between the corresponding energy levels is called the

hyperfine splitting. Currently the discrepancy between theory and experiment is 3.9

standard deviations for this quantity. We are computing the ultrasoft contribution to

the positronium hyperfine splitting. It represents the time-delayed exchange of a pho-

ton with energy of the order of the binding energy between the electron and positron.

The full theoretical expression of the ultrasoft contribution was found using pertur-

bation theory, and expansion of the positronium wavefunction at the origin about the

Coulomb approximation. The expression was then evaluated using Mathematica and

asymptotic approximations have been made when an exact numerical value could not

be computed. The final result increases the discrepancy to 4.3 standard deviations.

New experimental results are needed in order to solve the discrepancy.
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1 Introduction

Positronium is a hydrogen-like and lightest known atom consisting of an electron and a
positron, that is, an anti-electron. They form a bound state which survives long enough
for experimentalists to measure the energy levels of such a system. Positronium is a purely
leptonic system and therefore it constitutes a very good test of quantum electrodynamics
(QED). Due to the smallness of the electron mass the strong and weak interaction effects
are negligible and the positronium properties can be calculated perturbatively in QED as an
expansion in the fine structure constant α ≈ 1/137 with very high precision only limited by
the complexity of the calculations.

Positronium comes in two different states defined by the spin configuration of the electron
and positron. In spin-singlet or parapositronium state the total spin S is zero, while in
spin-triplet or orthopositronium state the total spin S = 1. The energy difference EHFS
between the triplet and the singlet configurations known as the hyperfine splitting is of
considerable interest from both theoretical and experimental points of view. The ground
state hyperfine splitting is the most precisely measured quantity in positronium spectroscopy
[1]. At the same time it is known theoretically up to high orders in α. The experimentally
observed quantity is the corresponding transition frequency ν = EHFS/h where h is the
Planck constant. The current status of the theoretical calculation is summarized by the
following expression
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where

ν0 =
7

24π

meα
4c2

h̄
(2)

is the leading order result; me is the electron/positron mass, e is the electron charge, α = e2

h̄c
,

h̄ is the reduced Planck constant and c is the speed of light. The leading order ν0 was cal-
culated in Ref. [2] and is shown in some detail in Section 4 below. The first order correction
was calculated in Ref. [3] and the α6 log(1/α) term in Ref. [4, 5]. The O(α6) term with no
logarithm includes the contribution due to the radiative correction to the Breit potential [6],
the three-, two-, and one-photon annihilation contributions [7], the nonannihilation radiative
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recoil contribution [8], and the pure recoil correction [9,10]. The α7 log2(1/α) has been calcu-
lated in [11]. The last known linear logarithmic third order term has been derived in [1]. The
nonlogarithmic coefficient C remains unknown for positronium. In the much simpler case of
muonium hyperfine splitting this coefficient is known [12,13] , Cµ+e− ≈ 16. The experimental
value of the hyperfine splitting energy is νexp = 203.388 65(67)GHz (3.3 ppm) [15, 16], and
the theoretical one, to date, is νtheo = 203.391 69(41)GHz (2.0 ppm) [1, 17]. These numbers
are illustrated in Fig.1, from Ref. [18]. The theoretical uncertainty value in Fig.1 reflects
the contribution of the unknown coefficient C in Eq.(1) and the corresponding error bars are
naively estimated by taking the muonium result for this coefficient.
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Abstract

The ground state hyperfine splitting of positronium, ∆HFS, is sensitive to high order corrections of QED. A new calculation up
to O(α3 lnα) has revealed a 3.9σ discrepancy between the QED prediction and the experimental results. This discrepancy might
either be due to systematic problems in the previous experiments or to contributions beyond the Standard Model. We propose
an experiment to measure ∆HFS employing new methods designed to remedy the systematic errors which may have affected the
previous experiments. Our experiment will provide an independent check of the discrepancy. The prototype run has been finished
and a result of ∆HFS = 203.380 4±0.008 4 GHz(41 ppm) has been obtained. A measurement with a precision of O(ppm) is expected
within a few years.

Keywords: quantum electrodynamics (QED), positronium, hyperfine splitting (HFS)

1. Introduction

Positronium (Ps), a bound state of an electron and a positron,
is a purely leptonic system which allows for very sensitive
tests of Quantum ElectroDynamics (QED). The precise mea-
surement of the hyperfine splitting between orthopositronium
(o-Ps, 13S 1) and parapositronium (p-Ps, 11S 0) (Ps-HFS) pro-
vides a good test of bound state QED. Ps-HFS is expected to
be relatively large (for example compared to hydrogen HFS)
due to a relatively large spin-spin interaction, and also due to
the contribution from vacuum oscillation (o-Ps→ γ∗ → o-Ps).
The contribution from vacuum oscillation is sensitive to new
physics beyond the Standard Model.

Figure 1 shows the measured and theoretical values of Ps-
HFS. The combined value from the results of the previous 2
experiments is ∆exp

HFS = 203.388 65(67) GHz(3.3 ppm) [1, 2].
Recent developments in NonRelativistic QED (NRQED) have
added O(α3 lnα) corrections to the theoretical prediction which
now stands at ∆th

HFS = 203.391 69(41) GHz(2.0 ppm) [3]. The
discrepancy of 3.04(79) MHz (15 ppm, 3.9σ) between ∆exp

HFS and
∆th

HFS might either be due to the common systematic uncertain-
ties in the previous experiments or to new physics beyond the
Standard Model.

There are two possible common systematic uncertainties
in the previous experiments. One is the unthermalized o-Ps
contribution which results in an underestimation of the mate-
rial effect. This effect has already been shown to be signifi-
cant [4, 5, 6] in the o-Ps lifetime puzzle. The other is the uncer-

∗Corresponding author (TEL:+81-3-3815-8384 / FAX:+81-3-3814-8806)
Email address: ishida@icepp.s.u-tokyo.ac.jp (A. Ishida)

HFS [GHz]
203.385 203.387 203.389 203.391 203.393 203.395

Experimental
average

Theory
(Kniehl et al., 2000)

Mills et al., 1983

Ritter et al., 1984

Figure 1: Measured and theoretical values of Ps-HFS.

tainty in the magnetic field uniformity which was cited as the
most significant systematic error by previous experimenters.

2. Theory of Experiment

2.1. Measurement using Zeeman effect
The energy levels of the ground state of Ps are shown as a

function of static magnetic field in Figure 2. Due to techni-
cal difficulties in directly stimulating ∆HFS, we make an indi-
rect measurement by stimulating the transition ∆mix. This is the
same approach as previous experiments. The relationship be-
tween ∆HFS and ∆mix is approximately given by the Breit-Rabi
equation

∆mix # 1
2
∆HFS

(√
1 + 4x2 − 1

)
, (1)

May 3, 2010

Figure 1: Current experimental and theoretical values of the positronium hyperfine splitting
(HFS).

The above experimental and theoretical values differ by 3.9 standard deviations when the
experimental average is considered. The deviation cannot be explained within the most
popular extensions of the standard model of particle interactions such as supersymmetry
because the corresponding effects are strongly suppressed by the tiny ratio of the electron
mass to the mass of the supersymmetric particles. Thus, if unambiguously established the
discrepancy may be a signal of an exotic “new physics” such as dark or mirror matter, hypo-
thetical super-weakly interacting massless or fractionally charged particles. As a result the
problem currently attracts much attention of the experimental community. New experiments
are planned and have already been started [18–21] with the perspective of considerable re-
duction of the experimental errors. However, it is too early to draw any conclusion about a
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possible contribution of new physics since the discrepancy can be covered by an abnormally
large nonlogarithmic term of order α3 of order ∼ 200. The full calculation of C is one of the
most challenging problems in perturbation theory and is beyond the reach of our current
techniques. However, some typical contributions can be calculated to get an idea about the
scale of the whole correction. A characteristic contribution which usually gives a bulk of the
corrections in the perturbative analysis of the nonrelativistic bound states is the so-called
ultrasoft correction related to the radiation and absorption of the virtual photons with the
energy and momentum of the order of electron binding energy by the positronium state. The
purpose of this work is to compute the ultrasoft contribution to the positronium hyperfine
splitting.

In Section 2, I will begin by presenting the basic features of positronium. Section 3 consists
of an overview of the derivation of the Hamiltonian with emphasis on the spin-spin interac-
tion term relevant to the hyperfine splitting. Then in Section 4 I will present a step-by-step
calculation of the leading order hyperfine structure. Section 5 is a discussion of Green’s func-
tions and perturbation theory and how one can extract information about the wavefunction
correction as well as corrections to the energy levels to the desired order in α. The results,
together with an example of the calculation, are presented in Section 6, and concluding re-
marks in Section 7. The complete expression that has been evaluated can be found in the
Appendix.

2 Positronium - The Basics

Positronium is approximately a Coulomb state, but it differs from hydrogen in that the
assumption of a stationary heavy nucleus does not hold anymore. Instead the two particles,
electron and positron, are now orbiting their common center of mass [22]. The Hamiltonian
and the energy levels differ from those of hydrogen in that the mass of the electron and that
of the positron is replaced by the reduced mass1:

mred =
m1m2

m1 +m2

(3)

and since the positron and electron have the same mass, m1 = m2 = m and Eq.(3) simplifies
to

mred =
m

2
(4)

Therefore the Hamiltonian of positronium

1We will use Gaussian i.e. CGS units in this section.
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H =
p2

2mred

+ V, (5)

with p being momentum and V the potential, in the leading Coulomb approximation
reads

HC =
p2

m
− e2

r
(6)

where e is the electron charge, r is the distance between the electron and positron and the
subscript C stands for Coulomb. The eigenstates of the Coulomb Hamiltonian are given
by

HC ψn(r) = EnC
ψn(r) (7)

and are the same as for hydrogen with m→ mred :

EnC
= −α

2mc2

4n2
(8)

Here the positronium wavefunction ψn(r) = ψn,l,m(r, θ, φ) with n = 0, l = 0 is similar to the
hydrogen wavefunction,

ψn,l,m(r) =

√(
2

na

)3
(n− l − 1)!

2n[(n+ 1)!]3
e−

r
na

(
2r

na

)l [
L2l+1
n−l−1

(
2r

na

)]
Y m
l (θ, φ) (9)

with m→ m/2 yielding

a =
2h̄2

me2
(10)

which is twice the Bohr radius, and Lpq−p(x) the associated Laguerre polynomials. The
spherical harmonics Y m

l (θ, φ) are functions of the Legendre polynomials Pm
l (cos θ).

3 Corrections to the Coulomb Approximation

The Coulomb Hamiltonian is not exact and gets various corrections resulting in corrections
to the positronium spectrum. The Hamiltonian which describes the dynamics of positronium
can be written as

4



H = HC + δH (11)

In this section we consider the relativistic correction originating from the expansion of the
Lorentz invariant fundamental Dirac equation in powers of v/c� 1 where v is the electron
velocity in the positronium bound state. In order to find this δH we begin by considering
the scattering and annihilation amplitudes, which make independent contributions to the
interaction operator. The diagrams bellow illustrate these interactions between the electron
and positron.

Figure 2a: Feynman diagram of electron-positron scattering. The arrows represent the
electron and positron fields, the wavy line represents the photon propagator.

Figure 2b: Feynman diagram of electron-positron annihilation.
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3.1 The Scattering Amplitude

In QED, the relativistic expression for the scattering amplitude of two particles with different
masses m1 and m2 is [23]

Mscat = ±e2
(
u
′
1γ

µu1

)
Dµν(k)

(
u
′
2γ

νu2

)
(12)

where e is the particle charge, k = p
′
1 − p1 = p2 − p

′
2 for particle momenta before (p

′
1 and

p
′
2) and after (p1 and p2). In our case m1 = m2 = m. In order to see the meaning of the

rest of Eq.(12), consider the Schrodinger equation

Hψ = (E −mc2)ψ (13)

with

H =
p2

2m
− p4

8m3c2
, (14)

which includes the next term in the expansion of the relativistic expression for the kinetic
energy. Denote the solution w, the spinor amplitude of the plane wave (2 components). As
v/c→ 0, the equation becomes the nonrelativistic Schrodinger equation with solution w(0),
and in this limit w → w(0). Now consider the Dirac equation for a spin - 1/2 particle:

ih̄
∂

∂t
ψ(r, t) = HDψ(r, t) (15)

and for a free particle,

HD = cα · p + βmc2 =
h̄

i
cα · ∇+ βmc2 (16)

where

β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , α1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (17)

α2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , α3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 (18)
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Denote the solution u, the bispinor amplitude of the free particle (4 components). It can be
expressed in terms of the Schrodinger amplitude w as

u =
√

2m


(

1− p2

8m2c2

)
w

(σ·p
2mc

)
w

 (19)

This is the expression for u in Eq.(12). σ and γ are the Pauli Sigma and Dirac Gamma
matrices, respectively: the Pauli sigma matrices are

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
(20)

and the Dirac gamma matrices are

γ0 = β, γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , (21)

γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 (22)

such that γi = γ0αi, i = 1, 2, 3 and

α =

[
0 σ
σ 0

]
(23)

Dµν is the propagator, and +/− denotes same/opposite charges. Consider same charges for
now. Choose the photon propagator in the Coulomb gauge [24]:

Dik =
4π

k2 − k2
0 − i0

(
δik −

k1k2

k2

)
(24)

Then the scattering amplitude becomes

Mscat = e2
[(
u
′
1γ

0u1

)(
u
′
2γ

0u2

)
D00 +

(
u
′
1γ

iu1

)(
u
′
2γ

ku2

)
Dik

]
(25)
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Note: keep c, use h̄ = 1 and put it back in at the end. We are neglecting all terms in v/c
and so only the first term survives:

Mscat = −2m · 2m
(
w

(0)′∗
1 w

(0)
1

)(
w

(0)′∗
2 w

(0)
2

)
U(k) (26)

where U(k) = 4πε0
k2 is the Fourier transform of the Coulomb potential U(r) = e2

r
and w

(0)
1 ,

w
(0)
2 are the two-component spinor amplitudes of the non-relativistic plane waves defined

above. Using the expression for u in Eq.(19) we get the following results:

u
′
1γ

0u1 = 2mw
′∗
1

(
1− k2

8m2c2
+
iσ · k× p1

4m2c2

)
w1 (27)

and

u
′
1γu1 =

1

c
w
′∗
1 (iσ × p + 2p1 + k)w1 (28)

For u2 terms, 1→ 2 and k→ −k. Now we can write (neglecting k0 in Dik)

Mscat = −4m2
[
w
′∗
1 w

′∗
2 Uscat(p1,p2,k)w1w2

]
(29)

with the particle interaction operator, in the momentum representation, being

Uscat(p1,p2,k) = 4πe2

[
1

k2
− 2

8m2c2
+

(k · p1)(k · p2)

m2k4
− p1 · p2

m2k2
+
iσ1 · k× p1

4m2c2k2
−

− iσ1 · k× p2

2m2c2k2
− iσ2 · k× p2

4m2c2k2
+
iσ2 · k× p1

2m2c2k2

+
(σ1 · k)(σ2 · k)

4m2c2k2
− σ1 · σ2

4m2c2

]
(30)

with σ1 acting on w1 and σ2 on w2. In the coordinate representation (put h̄ in now), this
corresponds to

8



Uscat(p1,p2, r) =
e2

r
− πe2h̄2

m2c2
δ(r)− e2

2m22c2r

[
p1 · p2 +

r · (r · p1)p2

r2

]
− e2h̄2

4m2c2r3
r× p1 · σ1 +

e2h̄2

4m2c2r3
r× p2 · σ2

− e2h̄2

2m2c2r3
(r× p1 · σ2 − r× p2 · σ1)

+
e2h̄2

4m2c2

[
σ1 · σ2

r3
− 3

(σ1 · r)(σ2 · r)

r5
− 8π

3
σ1 · σ2 δ(r)

]
(31)

where r = |r|.

3.2 The Annihilation Amplitude

In Eq.(11) we also need the annihilation term, δHann. The total amplitude M is the sum of
the scattering and annihilation amplitudes:

M = Mscat +Mann

= −e2
[
u(p

′

−)γµu(p−)
]
Dµν(p− − p

′

−)
[
u(−p+)γµu(−p′+)

]
+

+ e2 [u(−p+)γµu(p−)]Dµν(p− + p+)
[
u(p

′

−)γνu(−p′+)
]

(32)

The first term will yield the same operator as found above in Section 3.1, but now with
a minus sign (positron and electron have opposite charges). For the second term use the
photon propagator in the ordinary gauge:

Dµν =
4π

k2
gµν =

4π

k2
0 − k2

gµν (33)

where

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (34)

The Coulomb gauge was used for the first term (scattering) because it simplifies the calcula-
tion. Since the two terms are gauge independent, it does not matter which gauge is chosen

9



for the calculation of each. Here k = p+ + p− with +/− for positron/electron. In the low
velocity limit

k0 =
ω2

c2
≡ (E+ + E−)2

c2
≈ 4m2c2 � (p+ + p−)2 ≡ k2 (35)

so we can write

Dµν ≈
π

m2c2
gµν (36)

Because this already contains a factor of 1/c2, we can take the zero-order approximation in
the amplitudes u(p):

u(p−) =
√

2m

[
w−
0

]
(37)

and

u(−p+) =
√

2m

[
0
w

]
(38)

where w− and w are 3-component spinors [23]. Using the expressions for u in Eq.(37) and
(38) we get the following results:

ū(−p+)γ0u(p−) = u∗(−p+)u(p−) = 0 (39)

and

ū(−p+)γu(p−) = 2m(w∗σw−) (40)

Therefore the second (annihilation) term in M becomes

Mann = −e2 π

m2c2
(2m)2(w∗σw−)(w

′∗
−σw

′
) (41)

Mann = −4m2

{
w
′∗
−w

′∗
+

[
πe2

2m2c2
(3 + σ+ · σ−)

]
w−w+

}
(42)

with σ+ and σ− acting on w+ and w−, respectively. From this we can deduce the second
term of the interaction operator,

Uann =
πh̄2e2

2m2c2
(3 + σ+ · σ−) δ(r) (43)

10



with r = r− − r+.

3.3 The Spin-Spin Interaction Hamiltonian

From Sec. 3.1 and 3.2 we see that

Uscat(p1,p2, r) =
e2

r
+ δHscat (44)

and

Uann = δHann (45)

Finally, putting the two terms together in the interaction operator and working in the center
of mass frame with p− = −p+ ≡ p , p = −ih̄∇, we have the total Hamiltonian for
positronium described by Eq.(11):

H = HC + δH (46)

H = HC +Hscat +Hann (47)

That is,

H = HC +HHFS + ... (48)

where we have separated the term of interest: the spin-spin interaction potential given
by2

HHFS = 6µ2
0

1

r3

{
(S · r)(S · r)

r2
− 1

3
S2

}
+ 4πµ2

0

7

3
S2δ(r) (49)

Here µ0 = eh̄
2m

, the Bohr magneton.

2In ordinary units.
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4 Calculation of the Leading Order Hyperfine Split-

ting

The Hamiltonian in Eq.(49) has two eigenfunctions for n = 1 corresponding to the spin-triplet

3S1 and spin-singlet 1S0 configurations. The hyperfine splitting is the difference between the
corresponding eigenvalues

EHFS = E(3S1)− E(1S0)

= 〈3S1|HHFS|3S1〉 − 〈1S0|HHFS|1S0〉
= 〈3S1|HHFS|3S1〉 (50)

where the second term vanishes because the total spin is zero. HHFS in Eq. (49) gives
the leading order correction to the hyperfine splitting. We are interested in the positronium
state with the quantum numbers n = 1, l = 0. The corresponding wavefunction is angular
independent and can be decomposed into the radial and spin parts:

ψ = ψ1,0,0(r) · ψspin (51)

with

ψ1,0,0(r) =
2√
πa3

e−
r
a (52)

and

ψspin =



[
1
0

]
e−
⊗
[

1
0

]
e+

for ms = 1

1√
2

([
0
1

]
e−
⊗
[

1
0

]
e+

+

[
1
0

]
e−
⊗
[

0
1

]
e+

)
for ms = 0

[
0
1

]
e−
⊗
[

0
1

]
e+

for ms = −1

(53)

where⊗ is the direct product. Because of the spherical symmetry of the coordinate wavefunc-
tion with l = 0, after averaging over the angles we can replace in the matrix element

(S · r)(S · r)

r2
→ 1

3
S2 (54)
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and the first term in Eq.(49) vanishes. The remaining term gives the correction arising from
the hyperfine structure:

EHFS =

〈
ψ

∣∣∣∣4πµ2
0

7

3
S

2
δ(r)

∣∣∣∣ψ〉
=

〈
ψ1,0,0(r) · ψspin

∣∣∣∣4πµ2
0

7

3
S

2
δ(r)

∣∣∣∣ψ1,0,0(r) · ψspin
〉

= 4πµ2
0

7

3

〈
ψspin

∣∣∣S2
∣∣∣ψspin〉 |ψ1,0,0(0)|2 (55)

where in the last step the delta function integrated over ψ1,0,0(r) gives the square of the
wavefunction at the origin. The spin part integrated over ψspin gives

〈
ψspin

∣∣∣S2
∣∣∣ψspin〉 =

〈
ψspin

∣∣(σ+ + σ−)2
∣∣ψspin〉

= S(S + 1) (56)

which equals 2 since S = 1. The wavefunction at the origin is, from Eq.(52),

|ψ1,0,0(0)|2 =
1

2π

(αmc
h̄

)3

(57)

So we get for the leading order hyperfine splitting [24]:

EHFS =
7

12
meα

4c2 (58)

which corresponds to the leading order frequency ν0 in Eq.(1).

5 General Structure of the Ultrasoft Contribution

5.1 Perturbation Theory

From Eq.(55) it can be seen that the hyperfine splitting energy is proportional to the wave-
function amplitude at the origin,

EHFS ∼ |ψ(0)|2 (59)
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Thus, the perturbative corrections to the wavefunction at the origin result in the correction to
the hyperfine splitting. Let us first consider the general structure of the perturbation theory
for the wave function in the presence of a perturbation δH to the Coulomb Hamiltonian HC .
In this case the Coulomb spectrum and wavefunctions get the corrections

En = EnC
+ δE (60)

ψ(r) = ψC(r) + δψ(r) (61)

A powerful technique for computing the corrections is based on the Green’s function method,
indispensable in Perturbation Theory, which allows us to calculate almost anything in physics
that can be expanded in a small parameter. In general,

(H − E)G(r
′
, r;E) = δ(r

′ − r) (62)

The Green’s function that is the solution of Eq.(62) has the spectral representation

G(r
′
, r;E) =

∫∑ ψ∗n(r
′
)ψn(r)

En − E
(63)

The sum in Eq.(63) is taken over all discrete states, while the integral is over the continuum
states. The ψn are the positronium wavefunctions described earlier in Eq.(9), with ener-
gies En corresponding to the nth eigenstate of the system. The general expression for the
expansion of the Green’s function is

G(r
′
, r;E) = GC(r

′
, r;E)−

∫
GC(r

′
, r
′′
;E) δH(r

′′
)GC(r

′′
, r;E) dr′′

+

∫
GC(r

′
, r
′′
;E) δH(r

′′
)GC(r

′′
, r
′′′

;E) δH(r
′′′

)GC(r
′′′
, r;E) dr′′ dr′′′ + ... (64)

Expanding Eq.(63) in δE and δψ(r) we get

G(r
′
, r;E) = GC(r

′
, r;E)+

+

[∫∑ ψ∗nC
(r
′
)δψn(r) + δψ∗n(r

′
)ψnC

(r)

EnC
− E

−
∫∑ ψ∗nC

(r
′
)ψnC

(r)

(EnC
− E)2

δEn

]
+ ... (65)

where the dots represent higher order poles in EnC
− E. The residues of the single and

double poles in Eq.(65) determine the corrections to the wavefunction and energy levels,
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respectively. Thus by matching the single pole residues of Eqs.(64) and (65) for r = r′ = 0
one gets the correction to the square modulus of the wave function at the origin

δ|ψn(0)|2 = ψ∗nC(0)δψnC(0) + δψ∗nC(0)ψnC(0) (66)

and hence to the hyperfine splitting. The expression in Eq.(65) above shows the leading
order terms. The procedure can be repeated to the desired order in α. Since we are look-
ing for the wavefunction correction, we are interested in the second term - the single pole.
In our problem, the double pole giving the corrections to the energy levels has been sub-
tracted.

5.2 The Ultrasoft Contribution

The dynamics of the positronium bound state is governed by several scales [1]: the three-
momentum of nonrelativistic electron |p| ∼ mev and its energy E ∼ mev

2. In the positron-
ium bound state the electron velocity is proportional to the fine structure constant v ∼ α 3.
The three-momentum defines the characteristic size of the bound states - the Bohr radius
a ∼ 1/(αme) while the energy determines the characteristic time scale of bound state os-
cillations t ∼ 1/(α2me). In QED the radiative corrections to the positronium parameters
originate from the emission and absorption of virtual photons. An exchange of a hard photon
with energy and momentum of order me results in an interaction localized in both space and
time in comparison to the characteristic scales of positronium. Thus it can be described
by a δ-function term in the nonrelativistic Hamiltonian (e.g. Eq.(43)). An exchange of a
soft photon with energy and momentum of order αme results in an interaction localized in
time and in general can be described by an instantaneous spatially non-local potential in
the nonrelativistic Hamiltonian (e.g. the third term in Eq.(44)). Finally an exchange of an
ultrasoft photon with energy and momentum of order α2me results in so-called retardation
effects that are considered in this thesis. The concept of separating the contributions of
different momentum regions is known as nonrelativistic effective field theory or potential
nonrelativistic QED (pNRQED) [25,26].

The leading order interaction of the ultrasoft photons with the positronium state is described
by the standard electric dipole term in the Hamiltonian

δHUS = eE · r (67)

where e is the electron/positron charge, E is the electric field and r is distance between the
electron and positron. Now the electric field is, in general,

3Through this section we adopt the system of units with h̄ = c = 1
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E = ∂0A−∇A0 (68)

A0 gives the static potential. Since we are interested in the propagation of dynamical,
physical photons, for convenience we are using the Coulomb Gauge

∇ ·A(r, t) = 0, A0 = 0 (69)

Therefore the expression for the electric field becomes

E = ∂0A (70)

Graphically the ultrasoft exchange is given by the diagram in Fig.3: the positronium state
radiates the ultrasoft photon through the dipole interaction, then propagates in the field of
the ultrasoft photon for some time and finally absorbs it.

Figure 3: Feynman diagram of the ultrasoft exchange. The double line represents the positro-
nium bound state, the wavy line represents the ultrasoft photon, the vertices represent the
dipole interaction

We can now use perturbation theory to compute the corresponding correction to the wave-
function. This can be done by standard generalization of the time independent perturbation
theory of the previous section to the time dependent perturbation. Since we are interested
in virtual corrections in the absence of the external field the linear term in A vanishes. The
quadratic term after vacuum averaging gives the photon propagator

〈T ∂0 Ai(r
′′, t′′) ∂0 Aj(r

′′′, t′′′)〉 = i

∫
d4k

(2π)4

gij − kikj

k2

k2 + iε
k2

0 e
ik0(t′′−t′′′) e−ik(r′′−r′′′) (71)

where T stands for the time ordered product. Since for the ultrasoft photon kr � 1 we
can substitute eikr by 1 to the leading order. After substituting the propagator into Eq.(64)
and integrating over t′′ − t′′′ one gets the final expression for the correction to the Green’s
function at the origin
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δGUS(0, 0;E) = ie2

∫
d3rd3r

′
∫

d4k

(2π)4

[
k2

0rr
′ − (rk)(r

′
k)

k2 + iε
×

×GC(0, r;E)GC(r, r
′
;E − k0)GC(r

′
, 0;E)

]
(72)

Note that the argument of the intermediate Green’s function is shifted from E to E − k0

which is the result of the time dependent exponential factor in Eq.(71) and simply reflects
the energy conservation. With the Green’s function correction at hand it is straightforward
to get the ultrasoft correction to the wavefunction at the origin. Technically it is convenient
to use the following representation for the Coulomb Green’s function where the dependence
on r and r′ is factorized:

GC(r, r′, k) =
∞∑
l=0

(2l + 1)Gl(r, r
′, k)Pl((rr

′)/rr′)

Gl(r, r
′, z) =

mek

2π
(2kr)l(2kr′)le−k(r+r′)

∞∑
m=0

L2l+1
m (2kr)L2l+1

m (2kr′)m!

[m+ l + 1− αm/(4k)](m+ 2l + 1)!
(73)

with me the electron mass, Pl(z) the Legendre polynomial and Lαm(z) the associated La-
guerre polynomial. Since the dipole interaction is proportional to r only the l = 1 P -wave
component of Eq.(73) contributes to the intermediate state Green’s function in Eq.(72).
The integral over k0 in Eq.(73) can be taken by residues. After integrating over r and r′

one finally gets the correction to the wave function in the form of at most three-fold sum
of one-parametric integral resulting from the integration over |k|, which is evaluated in the
next section.

In our analysis we use the expressions for the ultrasoft corrections to the Green’s function
obtained for the quarkonium bound state in quantum chromodynamics in Ref. [27]. The
structure of the Green’s function in QED however is different. In particular the emission of
an ultrasoft gluon changes the quark-antiquark pair state to color-octet which does not have
bound states since the corresponding potential is repulsive. This does not happen in QED
and independent analysis of the corrections is necessary.

5.3 Dimensional Regularization

The above expression for the ultrasoft contribution is formally infinite since the integral over
the three-momentum of the ultrasoft gluon is ultraviolet divergent. This spurious divergence
reflects the breakdown of the nonrelativistic expressions for the vertices and the Green’s
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functions in the region of large |k| where they are not applicable and have to be replaced
by the relativistic expressions. Formally one has to impose a cutoff α2me � Λ � αme on
the virtual momentum to separate the ultrasoft contribution from the soft and hard one,
treat every contribution separately and add them up at the end to the final result where the
dependence on the auxiliary cutoff cancels out.

To deal with the spurious divergences we adopt a modern approach based on dimensional
regularization [28]. It consists of formal analytical continuation of the divergent integrals to a
noninteger number of spatial dimensions D = 3−2ε. Then the divergences show up as poles
in 1/ε in the physical limit D → 3. It has been shown that in the sum of the contributions of
all the momentum regions the poles of different contributions cancel each other out and the
correct total result is recovered for ε = 0 [10, 29, 30]. The use of dimensional regularization
has a significant advantage over an explicit momentum cutoff since it preserves gauge and
Lorentz invariance at the intermediate steps of the calculation.

We consider the ultrasoft contribution separately and subtract the divergent part of the
integral according to the MS prescription [31]. This implies that the contributions from the
soft and hard contribution have to be treated in the same way.

6 Calculation of the Ultrasoft Contribution

6.1 Overview of the Calculation

Figure 4a: Feynman diagram of a type I contribution with two or more Coulomb photons
inside the ultrasoft exchange. The dots stand for an arbitrary number of Coulomb photons.

The leading ultrasoft contribution is of order O(α3). Indeed every dipole interaction is
suppressed by the electron velocity v ∼ α and the remaining power of α comes explicitly
from two electron-photon vertices. Thus the ultrasoft correction to the wave function at the
origin can be parametrized as follows

|ψ(0)|2 = |ψC(0)|2
(

1 +
α3

π
CUS

)
(74)
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Figure 4b: Feynman diagram of a type II contribution with one Coulomb photon inside the
ultrasoft exchange.

Figure 4c: Feynman diagram of a type III contribution with zero Coulomb photons inside
the ultrasoft exchange.

where CUS, determines the ultrasoft contribution to the coefficient C in Eq.(1). It is precisely
this CUS that we are calculating.

We split the correction to the wave function in four parts according to the their ultravi-
olet renormalization properties. Characteristic contributions of each type are graphically
presented on Figs. 4a-4d. In Type II and III the factorized three loop diagram with one
ultrasoft and two Coulomb photons is subtracted and denoted Type IV. The ultrasoft cor-
rection to the wave function then has the following decomposition

CUS = δψI + δψII,a + δψII,b + δψIII,a + δψIII,b + δψIV (75)

The roman numerals correspond to the four different types of contributions. The analytical
results for the different terms of Eq.(75) are of the following general form

δψi =
∑
j

δψij (76)

where δψij are presented in Appendix A and are of the following general form:
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Figure 4d: Feynman diagram of a type IV contribution with factorized three-loop corrections
with one ultrasoft and two Coulomb photons.

δψij =
∞∑
n=0

an (77)

with the an terms given by a single integral of a complicated function which cannot be eval-
uated analytically, resulting from integration over k in Eq.(72) (the indices i and j of these
coefficients are suppressed). See as an example Eq.(100) to (104). The main problem in
getting a reliable numerical result for the ultrasoft correction is that the series in Eq.(76)
is very slowly convergent so one has to take into account a large number of terms. At the
same time large n means the integrand in an becomes rapidly oscillating and the numerical
programs fail to integrate it with sufficient precision. To overcome this difficulty we elab-
orate a technique based on the asymptotic resummation of the series. First we determine
the asymptotic behavior of the series numerically in the region of n < N where N is the
critical order where numerical integration starts to fail. The most general asymptotic of the
coefficients found is

an ∼ [c0 + c1 log(n)]/nb (78)

with b = 2 or 3 and ci being numerical coefficients. The sum is split into the “head” and
“tail” parts according to

∞∑
n=0

an =
N∑
n=0

an +
∞∑

n=N+1

an ≡
∑N

H
+
∑N

T
(79)

Then the head of the series is computed exactly while for the tail of the series we use the
asymptotic expression for the coefficients in Eq.(78). The all-order summation of the tail
can be easily performed by using the following relations
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∞∑
n=1

1

np
= ζ(p), (80)

where ζ(p) is the Riemann zeta-function, ζ(2) = 1.644934... , ζ(3) = 1.202056..., and

∞∑
n=1

log(n)

n2
= −1

6
π2(γ + log 2− 12 logA+ log π)

= 0.937548... (81)

where γ is Euler’s Gamma, γ = 0.577216... ; A is Glaisher’s constant, A = 1.28243... ;
and

∞∑
n=1

log(n)

n3
= −ζ ′(3)

= 0.198126... (82)

Numerical evaluation of the coefficients an and fitting of the asymptotic coefficients ci has
been done with the help of the Mathematica 7.1 program. The results of the analysis are
summarized in Table 1. The final results for the individual terms in Eq.(75) are given in
Table 2. In the next section we present the details of a typical calculation.

δψij c0 c1 b N ce

δψI1 13.15 2.10 3 52 (even) 0.11
δψI2 -4.46 -0.68 3 51(odd) 0.11
δψI3 4.44 0.69 3 51 0.24
δψI4 5.93 0.35 3 121 0.080
δψI5 0.0032 -0.0071 3 41 0.00021
δψII,a -8.02 -8.38 2 60 0.039
δψIII,a 1.46 0.11 3 74 0.094

δψIII,b1 0.23 3.76 2 11 0.094

δψIII,b2 0.69 1.56 2 11 14

Table 1: Asymptotic structure of the corrections
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δψi result uncertainty

δψI 1.358546 0.000001
δψII,a 41.85481 0.00003
δψII,b -7.05 0
δψIII,a -4.4446672 0.0000004
δψIII,b -20.906 0.002
δψIV 8.051 0

Table 2: Numerical result for individual contributions

6.2 Example Calculation

Let us consider the calculation of the integral part of δψII,a, call it δψint. In this case N = 60.
The exact evaluation of the first 59 terms with 100-digit precision took about 4 hours on one
of the cores of an Intel Core2 Duo CPU E6550 (2.33GHz) computer with the result

∑60

H
= −18.8808... (83)

The maximum computing time for such a calculation was around 7 hours. The next step of
our procedure is finding the asymptotic coefficients ci and b of Eq.(78). We found

c0 = −8.01677...

c1 = −8.38457...

b = 2 (84)

The exact result for the coefficients an versus the asymptotic are plotted in Fig.5 which
clearly shows the quality of the fit. It took about 18 hours of computing time to make this
plot, with a maximum of 65 hours for this kind of calculation. The result for the asymptotic
tail of the sum then reads

∑60

T
= −0.851422... (85)

Finally we obtain

δψint =
∑60

H
+
∑60

T

= −19.7322... (86)
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Figure 5: The exact result for the coefficients an (dots) with the asymptotic result, Eq.(78),
as functions of n

Increasing the working precision was another way of getting exact results for heads of these
sums up to the highest n possible. Most of the terms have thus been calculated with a
precision of 100 digits.

6.3 Numerical Error Estimate

Our method is approximate and it is very important to control the numerical uncertainty
of the result. The error comes from the neglected terms in Eq.(78) suppressed by higher
powers of n. Let us estimate the effect of such terms. It is maximal for the lowest n when
the approximation is used i.e. for n = N + 1. We then write

aN+1 = c0
1

(N + 1)b
+ c1

log(N + 1)

(N + 1)b
+ ce

log(N + 1)

(N + 1)b+1
(87)

Then we get

ce = aN+1
(N + 1)b+1

log(N + 1)
− c0

(N + 1)

log(N + 1)
− c1 (N + 1) (88)

Then the uncertainty of the result for δψ is
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∞∑
n=N+1

ce
log(n)

nb+1
(89)

The numerical results for the coefficients ce are given in Table 1. The 1/n3 terms in the
fits already give very small contributions, therefore the corresponding error of order 1/n4

is negligible but was calculated nonetheless. To find the total error, all the errors of the
individual approximations were added in order to avoid underestimating. Two significant
digits have been kept for the final value.

6.4 The Final Result

Adding up all individual contributions, the final result was found to be

CUS = 18.8646± 0.0017 (90)

Therefore we have

νtheonew = νtheo + δνUS (91)

where

δνUS = ν0
α3

π
CUS (92)

And so the order α3 contribution is

α3

π
CUS = 2.33 · 10−6 (93)

which makes

δνUS = 0.000 474 600(42) GHz (94)

This is added to the current theoretical result νtheo. Therefore the new theoretical value for
the positronium hyperfine splitting is

νtheonew = 203.392 17(47)GHz (95)

24



7 Conclusion

In this thesis the O(α3) ultrasoft contribution to the positronium hyperfine splitting has
been evaluated. The calculation required the use of nontrivial resummation techniques to
get a reliable numerical result. Our new theoretical prediction reads

νtheonew = 203.392 17(47)GHz (96)

which should be compared to the previous theoretical result [1, 17]

νtheo = 203.391 69(41)GHz (97)

and the experimentally measured value

νexp = 203.388 65(67)GHz (98)

As we see the ultrasoft contribution increases the difference between theory and experiment
to 4.3 σ. As an estimate of the uncertainty due to yet unknown parts of the third order
correction we use the value of the ultrasoft contribution itself. It can be seen that it is in
very good agreement with the naive estimate based on the result for the muonium hyperfine
splitting.

Our analysis is the first step towards the full calculation of the third order QED corrections
to the positronium hyperfine splitting. However, our result gives a strong indication that
the existing discrepancy between theory and experiment cannot be explained by abnormally
large radiative corrections. Thus the reduction of the experimental error is now crucial to
remove or unambiguously establish the discrepancy and therefore a possible sign of “new
physics”.

New experiments are being designed to improve the measurement accuracy of the hyperfine
splitting energy of positronium. Three papers all published in 2010 came up with various
methods of doing this: using the Zeeman effect and Thermalization effect [18], sub-THz high
power radiation [19], and quantum oscillation where the interference between the energy
eigensates in the quantum system results in oscillations with frequency proportional to the
hyperfine splitting energy [20]. The latest paper [21] points out probable systematic errors
in past experiments and a direct measurement method. No new experimental or theoretical
results have been published since. We are looking forward to the next generation of upcoming
experiments which may shed some light on the positronium hyperfine splitting puzzle.

25



Acknowledgements

I would like to thank my supervisor Dr. Alexander Penin for all the help and
advice provided since the beginning of this project, as well as the University of Alberta
Theoretical Particle Physics group for their help whenever I needed it. I would also
like to thank my parents and my sister who supported me always.

26



A Appendix

Here we present the analytical result for the corrections to the wavefunction before the
numerical integration and summation are performed. They are obtained by inserting the
Coulomb Green’s function Eq.(73) into Eq.(72) and matching the result to the spectral
representation Eq.(63). The result of the spatial integration and renormalization in Eq.(72)
is obtained in [27,32].

A.1 Type I - Two or More Coulomb Photons Inside the Ultrasoft
Exchange

This contribution is obtained by plugging into the Eq.(72) the Green’s function Eq.(73) with
the first two terms of the expansion in α subtracted. We have

δψI = δψI1 + δψI2 + δψI3 + δψI4 + δψI5 (99)

Where:

δψI1 =

∫ 1

ν=0

dν
∞∑
n=0

[
F

(
3, n, 0,

2

ν + 1
,

2ν

ν + 1

)
· (n+ 2− ν) + F

(
4, n, 0,

2

ν + 1
· 2ν

ν + 1

)
· ν

2

4

]
· 1− ν2

6ν
·K1(n, 1, ν) · (n+ 3)(n+ 1)

(n+ 2)2
· 1

1− ν
n+2

(100)

δψI2 =

∫ 1

ν=0

dν
∞∑
n=0

{[
Z2(n, 2) + Z3(n, 2) + (log(ν) + γ) · F

(
3, n, 0,

2

ν + 1
,

2ν

ν + 1

)]
· (n+ 2− ν) +

[
Z2(n, 2) + Z3(n, 2) + (log(ν) + γ) · F

(
3, n, 0,

2

ν + 1
,

2ν

ν + 1

)]
· ν

2 − 1

4

}
· 1− ν2

6ν
·K1(n, 1, ν) · (n+ 3)(n+ 1)

(n+ 2)2
· 1

1− ν
n+2

(101)

δψI3 =

∫ 1

ν=0

dν
∞∑
n=0

[
−1

2
K1(n, 1, ν) · 1

1− ν
n+2

+
1

2
K(n, 1, ν) + 2 ·K2(n, 1, ν)

]

· (1− ν)2 ·K1(n, 1, ν) · (n+ 3)(n+ 1)

6(n+ 2)2
· 1

1− ν
n+2

(102)

27



δψI4 =

∫ 1

ν=0

dν

∞∑
n=0

m−2∑
l=0

[
K1(n, 1, ν) · F

(
4, n, l,

2

ν + 1
,

2ν

ν + 1

)
· (n+ 2− ν)

+K1(n,m, ν) · F
(

5, n, l,
2

ν + 1
,

2ν

ν + 1

)
· ν

2 − 1

4

]
· (1− ν2)(n+ 3)(n+ 1)

6(n+ 2)2

· 1

1 +m · d · ν
n+2

· m2

(l + 1)2
· 1

(l + 1−m)
(103)

δψI5 =

∫ 1

ν=0

dν

∞∑
n=0

∞∑
l=1

[
K1(n, 1, ν) · F

(
4, n, l,

2

ν + 1
,

2ν

ν + 1

)
· (n+ 2− ν)

+K1(n, 1, ν) · F
(

5, n, l,
2

ν + 1
,

2ν

ν + 1

)
· ν

2 − 1

4

]
· (1− ν2)(n+ 3)(n+ 1)

6(n+ 2)2

· 1

1− ν
n+2

· 1

l(l + 1)2
(104)

And:

(a)k = a(a+ 1)...(a+ k − 1) (105)

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
(106)

F (a, b, c, x, y) =
2a(a− 1)!

(ν + 1)a
c+ 1

3!

b+1∑
m=0

c+1∑
n=0

(a)m+n(−b)m(−c)n
(4)m(2)nm!n!xmyn

(107)

X(n, l, x) =
∂l

∂xl
(x− 1)n

xn+4
(108)

K1(n,m, ν) = −
m−1∑
l=0

(m− 1)!

(m− 1− l)! (l + 1)! l!
X

(
n, l,

1 + ν

2

)
·m · νl+1 (109)

K2(n,m, ν) =
1

2

m−1∑
l=0

(m− 1)!

(m− 1− l)! (l + 1)! l!
X

(
n, l,

1 + ν

2

)
·m · νl+1 (110)
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Z1(a, ν) =
(a− 1)! 2a

a(1 + ν)a
2F1

(
a, 1; a+ 1;

1− ν
1 + ν

)
(111)

Z2(n, p) =
1

(n+ 1)(n+ 2)(n+ 3)

n∑
l=0

(−1)l(n+ 3)!

(n− l)! (3 + l)! l!
· Z1(l + 1 + p, ν) (112)

Z3 =
∂

∂r
F

(
p+ 1, n, 0,

2

ν + 1
,

2ν

ν + 1

)
(113)

Z4 =
∂

∂r
F (p+ 1, n, 0, 2, 1) (114)

A.2 Type II - One Coulomb Photon Inside the Ultrasoft Ex-
change

This contribution is obtained by plugging into the Eq.(72) the O(α1) term in the expansion
of the Green’s function Eq.(73). The factorized three loop correction has been subtracted
and included in Type IV. We have

δψII = δψII,a + δψII,b (115)

Where:

δψII,a = −
∫ ∞
ν=0

dν

(m−1∑
n=0

[
I4(n)− I1(n)

2

]
·
[
I4(0)− I1(0)

2

]
· ν

2 + 1

ν6
· log

[
ν2

ν2 + 1

]
· 1

3π
·
(

1

n+ 1

)2

· 1

n

−
∞∑
n=1

[
I4(n)− I1(n)

2

]
·
[
I4(0)− I1(0)

2

]
· ν

2 + 1

ν6
· log

[
ν2

ν2 + 1

]
· 4

3π
·
(

1

n+ 1

)2

· 1

n

)

+

∫ ∞
ν=0

dν

[
I4(0)− I1(0)

2

]2

·
(
ν2 + 1

ν6

)
· 1

3π

−
∫ ∞
ν=0

dν

[
I4(0)− I1(0)

2

]2

· ν
2 + 1

ν6
· log

[
ν2

ν2 + 1

]
· 1

3π
(116)
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δψII,b =
∞∑
n=1

(∫ 1/2

x=0

dx

∫ ∞
ν=0

dν 4 ·
[
I5(n)− I2(n)

2

]
·
[
I6(0)− I3(0)

2

]
· 1

ν5x3(1− x)3

·
[
x2 + (1− x)2

x(1− x)
· log

(
1

1− 2x

)
− 2

]
·
{

log

[
x2ν2

x2ν2 + 1

]
· x

2ν2 + 1

x2

− log

[
(1− x)2ν2

(1− x)2ν2 + 1

]
· (1− x)2ν2 + 1

(1− x)2

}
· (1− x)2x2

(1− x)2 − x2

+

∫ 1

x=1/2

dx

∫ ∞
ν=0

dν 4 ·
[
I5(n)− I2(n)

2

]
·
[
I6(0)− I3(0)

2

]
· 1

ν5x3(1− x)3

·
[
x2 + (1− x)2

x(1− x)
· log

(
1

2x− 1

)
− 2

]
·
{

log

[
x2ν2

x2ν2 + 1

]
· x

2ν2 + 1

x2

− log

[
(1− x)2ν2

(1− x)2ν2 + 1

]
· (1− x)2ν2 + 1

(1− x)2

}
· (1− x)2x2

(1− x)2 − x2

)
· 1

12π2n

(
1

n+ 1

)2

+

(∫ 1/2

x=0

dx

∫ ∞
ν=0

dν

[
I5(0)− I2(0)

2

]
·
[
I4(0)− I6(0)

2

]
· 1

ν5x3(1− x)3
·
[
x2 + (1− x)2

x(1− x)
· log

(
1

1− 2x

)
− 2

]
·
[
−x

2ν2 + 1

x2
+

(1− x)2ν2 + 1

(1− x)2

]
· (1− x)2x2

(1− x)2 − x2

+

∫ 1

x=1/2

dx

∫ ∞
ν=0

dν

[
I5(0)− I2(0)

2

]
·
[
I4(0)− I6(0)

2

]
· 1

ν5x3(1− x)3

·
[
x2 + (1− x)2

x(1− x)
· log

(
1

2x− 1

)
− 2

]
·
[
−x

2ν2 + 1

x2
+

(1− x)2ν2 + 1

(1− x)2

]
· (1− x)2x2

(1− x)2 − x2

)
· 1

3π2
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+

(∫ 1/2

x=0

dx

∫ ∞
ν=0

dν

[
I5(0)− I2(0)

2

]
·
[
I6(0)− I3(0)

2

]
· 1

ν5x3(1− x)3
·
[
x2 + (1− x)2

x(1− x)
· log

(
1

1− 2x

)
− 2

]
·
{

log

[
x2ν2

x2ν2 + 1

]
· x

2ν2 + 1

x2

− log

[
(1− x)2ν2

(1− x)2ν2 + 1

]
· (1− x)2ν2 + 1

(1− x)2

}
· (1− x)2x2

(1− x)2 − x2

+

∫ 1

x=1/2

dx

∫ ∞
ν=0

dν

[
I5(0)− I2(0)

2

]
·
[
I6(0)− I3(0)

2

]
· 1

ν5x3(1− x)3
·
[
x2 + (1− x)2

x(1− x)
· log

(
1

2x− 1

)
− 2

]
·
{

log

[
x2ν2

x2ν2 + 1

]
· x

2ν2 + 1

x2
− log

[
(1− x)2ν2

(1− x)2ν2 + 1

]
· (1− x)2ν2 + 1

(1− x)2

}
· (1− x)2x2

(1− x)2 − x2

)
· 1

3π2
(117)

And:

I1(n) =
n∑
l=0

(−1)l(n+ 1)! (l + 0)!

(n− l)! (l + 1)! l!
· (2ν)1+l

(1 + ν2)
1
2

+ l
2

· 4ν2 sin

[
−(1 + l) arctan

(
1

ν

)]
+

n∑
l=0

(−1)l(n+ 1)! (l + 1)!

(n− l)! (l + 1)! l!
· (2ν)2+l

(1 + ν2)
2
2

+ l
2

· 2ν cos

[
−(2 + l) arctan

(
1

ν

)]
(118)

I2(n) =
n∑
l=0

(−1)l(n+ 1)! (l + 0)!

(n− l)! (l + 1)! l!
· (2xν)1+l

(1 + x2ν2)
1
2

+ l
2

· 4x2ν2 sin

[
−(1 + l) arctan

(
1

xν

)]
+

n∑
l=0

(−1)l(n+ 1)! (l + 1)!

(n− l)! (l + 1)! l!
· (2xν)2+l

(1 + x2ν2)
2
2

+ l
2

· 2xν cos

[
−(2 + l) arctan

(
1

xν

)]
(119)
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I3(n) =
n∑
l=0

(−1)l(n+ 1)! (l + 0)!

(n− l)! (l + 1)! l!
· [2(1− x)ν]1+l

[1 + (1− x)2ν2]
1
2

+ l
2

· 4(1− x)2ν2

· sin
[
−(1 + l) arctan

(
1

(1− x)ν

)]
+

n∑
l=0

(−1)l(n+ 1)! (l + 1)!

(n− l)! (l + 1)! l!
· [2(1− x)ν]2+l

[1 + (1− x)2ν2]
2
2

+ l
2

· 2(1− x)ν

· cos

[
−(2 + l) arctan

(
1

(1− x)ν

)]
(120)

I4(n) =
n∑
l=0

(−1)l+1(n+ 1)! (l + 0)!

(n− l − 1)! (l + 2)! l!
· (2ν)1+l

(1 + ν2)
1
2

+ l
2

· 4ν2 sin

[
−(1 + l) arctan

(
1

ν

)]

+
n−1∑
l=0

(−1)l+1(n+ 1)! (l + 1)!

(n− l − 1)! (l + 2)! l!
· (2ν)2+l

(1 + ν2)
2
2

+ l
2

· 2ν cos

[
−(2 + l) arctan

(
1

ν

)]
(121)

I5(n) =
n∑
l=0

(−1)l+1(n+ 1)! (l + 0)!

(n− l − 1)! (l + 2)! l!
· (2xν)1+l

(1 + x2ν2)
1
2

+ l
2

· 4x2ν2 sin

[
−(1 + l) arctan

(
1

xν

)]
+

n∑
l=0

(−1)l+1(n+ 1)! (l + 1)!

(n− l − 1)! (l + 2)! l!
· (2xν)2+l

(1 + x2ν2)
2
2

+ l
2

· 2xν cos

[
−(2 + l) arctan

(
1

xν

)]
(122)

I6(n) =
n∑
l=0

(−1)l+1(n+ 1)! (l + 0)!

(n− l − 1)! (l + 2)! l!
· [2(1− x)ν]1+l

[1 + (1− x)2ν2]
1
2

+ l
2

· 4(1− x)2ν2

· sin
[
−(1 + l) arctan

(
1

(1− x)ν

)]
+

n∑
l=0

(−1)l+1(n+ 1)! (l + 1)!

(n− l − 1)! (l + 2)! l!
· [2(1− x)ν]2+l

[1 + (1− x)2ν2]
2
2

+ l
2

· 2(1− x)ν

· cos

[
−(2 + l) arctan

(
1

(1− x)ν

)]
(123)
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A.3 Type III - Zero Coulomb Photons Inside the Ultrasoft Ex-
change

This contribution is obtained by plugging into the Eq.(72) the O(α0) term in the expansion
of the Green’s function Eq.(73). The factorized three loop correction has been subtracted
and included in Type IV. We have

δψIII = δψIII,a + δψIII,b (124)

and

δψIII,b = δψIII,b1 + δψIII,b2 + δψIII,b3 (125)

Where:

δψIII,a = −4 ·
∞∑
n=0

∫ ∞
ν=0

dν

[
I4(n)− I1(n)

2

]
·
{

(−2) ·
[
I4(0)− I1(0)

2

]
· ν

2 + 1

ν6
+

16

ν3

}
· log

[
ν2

ν2 + 1

]
· 1

16π
·
(

1

n+ 1

)2

−
∫ ∞
ν=0

dν

[
−I7(m)

4ν2
− 1

]
· 1

1 + ν2
·
[
1 +

1 + ν2

ν
· arccsc(

√
1 + ν2)

]
· 16

π

−
∫ ∞
ν=0

dν

[
I10− I8

2

]
·
[
I4(0)− I1(0)

2

]
· ν

2 + 1

ν4
· log

[
ν2

ν2 + 1

]
· 1

2π

+

∫ 1

x=0

dx

∫ ∞
ν=0

dν · ν · x
−1/2

1 + ν2
· (ν2 + 1− x)−1/2 · log

[
4(ν2 + 1− x)

ν2

]
· 8

π
(126)
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δψIII,b1 =
∞∑
n=0

∫ 1/2

x=0

dx

∫ ∞
ν=0

dν

[
I5(n)− I2(n)

2

]
·
[
I6(0)− I3(0)

2

]
· 1

ν5x3(1− x)3
·
[
x2 + (1− x)2

x(1− x)
· log

(
1

1− 2x

)
− 2

]
·
{

log

[
x2ν2

x2ν2 + 1

]
· x

2ν2 + 1

x2

− log

[
(1− x)2ν2

(1− x)2ν2 + 1

]
· (1− x)2ν2 + 1

(1− x)2

}
· (1− x)2x2

(1− x)2 − x2

· 1

3π2
· 1

(n+ 1)2
(127)

δψIII,b2 =
∞∑
n=0

∫ 1

x=1/2

dx

∫ ∞
ν=0

dν

[
I5(n)− I2(n)

2

]
·
[
I6(0)− I3(0)

2

]
· 1

ν5x3(1− x)3
·
[
x2 + (1− x)2

x(1− x)
· log

(
1

2x− 1

)
− 2

]
·
{

log

[
x2ν2

x2ν2 + 1

]
· x

2ν2 + 1

x2

− log

[
(1− x)2ν2

(1− x)2ν2 + 1

]
· (1− x)2ν2 + 1

(1− x)2

}
· (1− x)2x2

(1− x)2 − x2

· 1

3π2
· 1

(n+ 1)2
(128)

δψIII,b3 = −
(∫ 1/2

x=0

dx

∫ ∞
ν=0

dν

[
I11− I9

2

]{
(−2)

[
I6(0)− I3(0)

2

]
+ 16

(1− x)3ν3

1 + ν2(1− x)2

}
· 1

ν5x3(1− x)3
·
[
x2 + (1− x)2

x(1− x)
· log

(
1

1− 2x

)
− 2

]
·
{

log

[
x2ν2

x2ν2 + 1

]
· x

2ν2 + 1

x2
− log

[
(1− x)2ν2

(1− x)2ν2 + 1

]
· (1− x)2ν2 + 1

(1− x)2

}
· (1− x)2x2

(1− x)2 − x2
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−
∫ 1

x=1/2

dx

∫ ∞
ν=0

dν

[
I11− I9

2

]{
(−2)

[
I6(0)− I3(0)

2

]
+ 16

(1− x)3ν3

1 + ν2(1− x)2

}
· 1

ν5x3(1− x)3
·
[
x2 + (1− x)2

x(1− x)
· log

(
1

2x− 1

)
− 2

]
·
{

log

[
x2ν2

x2ν2 + 1

]
· x

2ν2 + 1

x2
− log

[
(1− x)2ν2

(1− x)2ν2 + 1

]
· (1− x)2ν2 + 1

(1− x)2

}
· (1− x)2x2

(1− x)2 − x2

)
· 1

6π2

− 35

9
− 62 log 2

9
− 8 log2 2

3
(129)

And:

I1(n) =
n∑
l=0

(−1)l(n+ 1)! (l + 0)!

(n− l)! (l + 1)! l!
· (2ν)l+1

(1 + ν2)
1
2

+ l
2

· 4ν2 sin

[
−(l + 1) arctan

(
1

ν

)]
+

n∑
l=0

(−1)l(n+ 1)! (l + 1)!

(n− l)! (l + 1)! l!
· (2ν)l+2

(1 + ν2)
2
2

+ l
2

· 2ν cos

[
−(l + 2) arctan

(
1

ν

)]
(130)

I2(n) =
n∑
l=0

(−1)l(n+ 1)! (l + 0)!

(n− l)! (l + 1)! l!
· (2xν)l+1

(1 + x2ν2)
1
2

+ l
2

· 4x2ν2 sin

[
−(l + 1) arctan

(
1

xν

)]
+

n∑
l=0

(−1)l(n+ 1)! (l + 1)!

(n− l)! (l + 1)! l!
· (2xν)l+2

(1 + x2ν2)
2
2

+ l
2

· 2xν cos

[
−(l + 2) arctan

(
1

xν

)]
(131)

35



I3(n) =
n∑
l=0

(−1)l(n+ 1)! (l + 0)!

(n− l)! (l + 1)! l!
· [2(1− x)ν]l+1

[1 + (1− x)2ν2]
1
2

+ l
2

· 4(1− x)2ν2

· sin
[
−(l + 1) arctan

(
1

(1− x)ν

)]
+

n∑
l=0

(−1)l(n+ 1)! (l + 1)!

(n− l)! (l + 1)! l!
· [2(1− x)ν]l+2

[1 + (1− x)2ν2]
2
2

+ l
2

· 2(1− x)ν

· cos

[
−(l + 2) arctan

(
1

(1− x)ν

)]
(132)

I4(n) =
n∑
l=0

(−1)l+1(n+ 1)! (l + 0)!

(n− l − 1)! (l + 2)! l!
· (2ν)l+1

(1 + ν2)
1
2

+ l
2

· 4ν2 sin

[
−(l + 1) arctan

(
1

ν

)]

+
n−1∑
l=0

(−1)l+1(n+ 1)! (l + 1)!

(n− l − 1)! (l + 2)! l!
· (2ν)l+2

(1 + ν2)
2
2

+ l
2

· 2ν cos

[
−(l + 2) arctan

(
1

ν

)]
(133)

I5(n) =
n∑
n=0

(−1)l+1(n+ 1)! (l + 0)!

(n− l − 1)! (l + 2)! l!
· (2xν)l+1

(1 + x2ν2)
1
2

+ l
2

· 4x2ν2 sin

[
−(l + 1) arctan

(
1

xν

)]
+

n∑
l=0

(−1)l+1(n+ 1)! (l + 1)!

(n− l − 1)! (l + 2)! l!
· (2xν)l+2

(1 + x2ν2)
2
2

+ l
2

· 2xν cos

[
−(l + 2) arctan

(
1

xν

)]
(134)

I6(n) =
n∑
l=0

(−1)l+1(n+ 1)! (l + 0)!

(n− l − 1)! (l + 2)! l!
· [2(1− x)ν]l+1

[1 + (1− x)2ν2]
1
2

+ l
2

· 4(1− x)2ν2

· sin
[
−(l + 1) arctan

(
1

(1− x)ν

)]
+

n∑
l=0

(−1)l+1(n+ 1)! (l + 1)!

(n− l − 1)! (l + 2)! l!
· [2(1− x)ν]l+2

[1 + (1− x)2ν2]
2
2

+ l
2

· 2(1− x)ν

· cos

[
−(l + 2) arctan

(
1

x(1−)ν

)]
(135)
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I7(n) =
n∑
l=0

(−1)l(n+ 1)! (l + 0)!

(n− l)! (l + 1)! l!
· (2ν)l+1

(1 + ν2)
1
2

+ l
2

· 2ν sin

[
−(l + 1) arctan

(
1

ν

)]
(136)

I8 =
(2ν)2ν

ν2 + 1
− (2ν)2 arctan

(
1

ν

)
(137)

I9 =
(2xν)2xν

x2ν2 + 1
− (2xν)2 arctan

(
1

xν

)
(138)

I10 = −(2ν) ·
[
−1 + ν arctan

(
1

ν

)]
(139)

I11 = −(2νx) ·
[
−1 + νx arctan

(
1

xν

)]
(140)

A.4 Type IV - Factorized Three-Loop Corrections With One Ul-
trasoft and Two Coulomb Photons

These corrections include the subtracted terms from Type II and III which are of the form
ψC(0)× (three loop subdiagram). We have

δψIV =
436

27
− 3π2

8
− 55 log(2)

9
− log(2)2/3 (141)
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