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Abstract

Topology is a useful tool of mathematics studying how objects are related

to one another by investigating their qualitative structural properties, such as

connectivity and shape. In this thesis, we applied the method of topological

data analysis (TDA) on sequence data and adopt the theory of persistent

homology for time series, based on topological features computed over the

persistence diagram. Aiming to analyze sequence data from diverse views, we

investigate topological features (in a persistent homology perspective) of both

traditional statistical tools (i.e. time series) and machine learning methods

(i.e. random forest). Combining the advantages of three different ideas, we

finally have a way to solve clustering (unsupervised learning) and predicting

problems (supervised learning) for our two datasets respectively.

There are two main contributions in this thesis. In Chapter 2, we applied

persistent homology on the cross correlation matrices and partial correlation

matrices of time series, and obtain topological features from the persistence di-

agrams and barcodes. With this information, we generated consistent clusters

and loops from our data and this solution for unsupervised learning problems

of unlabeled datasets constitutes my first contribution in this thesis. The sec-

ond contribution lies in considering landscape as an important covariate for

supervised learning problems. In Chapter 3, we applied persistent homology

on polysomnography (PSG) time series and took the integrals of landscapes
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as covariates generated from time series. A random forest model is built with

these covariates to predict Obstructive Apnea-Hypopnea (3% desaturation)

Index of new incoming patient.
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Chapter 1

Introduction of the tools we

used

1.1 Time Series

In this study, we adopt two correlations between time series. We used cross-

correlations with different lags as well as partial-correlations. The pairwise cor-

relations are calculated and made into correlation matrices, then transformed

into dissimilarity matrices, to which persistent homology analysis could be

well applied. Also a moving window-size strategy is used together with partial

correlation analysis to investigate large-scale time series data problems. The

idea for this part is cutting long-scale time series data into overlapping pieces

to extract piecewise information between them. The consistent performance

of each piece under persistent homology confirms that the method works well

for our data sets.

In time series analysis, there are two major parts, namely time domain

analysis and frequency domain analysis. They reveal different aspects of data
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structure, and provide complementary information. Time domain reveals how

the signals change over time. While frequency domain reveals how often signals

lie in the frequency range. Theoretically, signals are composed of many sinu-

soidal signals with different frequencies (Fourier series), but more accurately

it is composed of infinite sinusoidal signals (fundamental and odd harmonics

frequencies). Both time domain and frequency domain analysis are meaning-

ful in our study. Time domain refers to variation of amplitude of signals with

time. For example, in our PSG datasets, one signal called Electro cardiogram

(ECG) maps the heartbeat with time. The recording is done every 30 minutes,

and it is a typical time domain signal. However, frequency domain records the

number of times each event has occurred during total period of observation.

As in ECG, a number of peaks of different types exist. For example, in one

heartbeat, 6 types of peaks or variation in amplitude occurs. In frequency

domain, over the entire time period of recording, the number of times each

peak comes is recorded. By distinguishing different types of peaks, frequency

domain analysis tells us how often each event occurs or how many key points

there are during the entire time interval. Up to now, we mainly focus on time

domain analysis, thus correlations between time series are considered, while

frequency domain would hopefully be investigated later on.

We now consider the situation where we have a number of time series

and wish to explore the relations between them. We first look at the cross-

correlation. Correlation is a linear measure of similarity between two signals.

Cross-correlation could be seen as a generalization of the correlation measure

since it takes into account the lag of one signal relative to the other.

Cross-correlation, also known as lagged correlation, of two time series is the

product-moment correlation as a function of lags, between the series, which is
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particularly important to assess the relationship between two signals in time.

Say we have two time series yt and xt, The cross-covariance function (ccf) at

a particular lag could be defined:

Cx,y(k) =
1

N − 1

N∑
t=1

(xt−k − µx)(yt − µy)

Where µx and µy are the means of each time series and there are N samples

in each time series. The function Cx,y(k) is the cross-covariance function. The

cross-correlation is a normalized version:

rx,y(k) =
Cx,y(k)√

Cx,x(0) ∗ Cy,y(0)

Where we denote Cx,x(0) and Cy,y(0) as the variances of each signal.

We use R to calculate cross-correlations. It tries different lags to calculate

cross correlations between xt and yt, which is helpful for identifying the spe-

cific lags of the x-variable that may be useful to predict yt. Regarded as a

correlation coefficient between two time series, one of which just happens to

be shifted some number of time units, a negative value for k is a correlation

between the x-variable at a time before t and the y-variable at time t while a

positive lag means there is an x-variable at a time after t and the y-variable

at time t . If the largest cross-correlations come at negative lags, we could

suppose x lags y and if they come at positive lags, we could predict x leads

y, By investigating cross-correlations, we could get information about which

variable causes another. Cross-correlations tell us the lead-lag relationship

between time series. While cross-correlation is asymmetric, that is
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rx,y(k) = ry,x(−k)

As a result, the cross correlation matrix for time series is not a symmetric

matrix. It requires some strategy to transform it into a symmetric matrix as

we have done in this study, which would be discussed in detail in chapter 2.

Each nominal price is computed as

In a multivariate time series scenario, partial correlations between time

series are often used. We could hold the other series as constant and investigate

the relationship between two specific series. Thus we could find the unique

relationship between two series while eliminating the effects from the other

series. This is the idea of partial correlation. Basically, the advantage of using

partial correlation is that it allows us to estimate networks for multivariate

time series. Among n time series, we say that series i and j are partially

correlated or partially linked if their partial correlation is not 0. The value of

the partial correlation measures the strength of the link. And all the linked

time series form a network.

Partial Correlation measures linear conditional dependence between series

xt and yt, given on all other series held as constants. We have n time series x1,

x2 ,......, xn , the partial correlation for x1 and x2 describes the behavior of the

two series when x3,......,xn are held fixed. The partial correlation is denoted

by p1,2|3,...,n

p1,2|3,...,n =
R1,2 −R1,3,...,n ∗R2,3,...,n√

(1−R2
1,3,...,n) ∗ (1−R2

2,3,...,n)
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Where R represents correlation coefficient in corresponding regression model.

We calculate all the pairwise partial correlations and obtain partial corre-

lation matrix, which represents the network of the multivariate time series.

There are two equivalent approaches to obtain a partial correlation matrix.

The first approach is by taking the inversion of the covariance matrix. Let X =

(x1, x2, ......, xn) ∈ Rn×p denoting the n× p column-centered data matrix with

rows corresponding to observations and columns corresponding to variables.

The standard unbiased estimate of the p×p covariance matrix S is then given

as

S =
1

n− 1
XTX

If the estimate S is invertible, an unbiased estimate of the partial correlation

between xi and xj is obtained as pi,j = − wi,j√
wi,i∗wj,j

, where we denote the inverse

of estimated covariance matrix W = S−1 = (wi,j).

The other way to calculate partial correlation is by fitting a linear model.

Consider a linear model of correlating measurement at series j to all other

series,

xj =
∑

k 6= j(βjkxk + εk)

, where ε stands for noise

The parameters βjk are estimated by minimizing the sum of squared resid-

uals of
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L(β) =
∑

j = 1p

∥∥∥∥∥xj −∑
k 6=j

(βjkxk)

∥∥∥∥∥
in a least squares regression. If we denote the least squares estimator by βjk,

by which the residuals are given, the partial correlation rij = xj −
∑
k 6=j

(βjkxk)

is then obtained by computing the correlation between the residuals of the

model fit.

This partial correlation measures the mutual information between xi and

xi themselves alone that could not be predicted by the other observations,

telling us how strongly xi and xi are linked or correlated. After calculating

all the partial correlations and finally obtaining the partial correlation matrix,

we can see the whole picture of pairwise links between multivariate time series

and their network would be quite clear.

Several R packages have been developed specially for the partial correlation

like ”corpcor”, ppcor and parcor . In this article, we use R package parcor to

generate the partial correlation matrix between time series. The package parcor

can be used for regularized estimation of partial correlation matrices based on

LASSO.

In p >> n settings, like in our PSG case where n = 28 and p is around

4 millions, we also use moving window or rolling window procedure to obtain

partial correlation matrices of different pieces of time series. This gives us

the ability to solve the problem of long scale time series analysis and look at

the consistency and stability of time series over a long scale time period. The

moving window size method helps us to measure persistence in time series.

When choosing a rolling window size, denoted by w, i.e., the number of

consecutive observation per rolling window, the size of the rolling window will
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depend on the sample size, n, and periodicity of the data. In general, we

can use a short rolling window size for data collected in short intervals, and

a larger size for data collected in longer intervals. Generally, longer rolling

window sizes tend to yield smoother rolling window estimates than shorter

sizes. Additionally, we have to decide a step length s, which is how long

each step moves forwards. The requirement is s
w
> 0.2 , to ensure that each

pair of the slices overlap. Then the entire data set is partitioned into several

overlapping subsamples. The first rolling window contains observations for

period 1 through w, the second rolling window contains observations for period

1 + s through w + s, and so on. Then the model can be estimated using each

of the rolling window subsamples.

There could be variations on the partitions so we could choose different

combinations of w and s to check the performance of their persistent homology

analysis. The setting of a proper value of s (which makes all pieces perform

consistently) might help us to detect periods of time series and make better

clusters and predictions.

1.2 Persistent Homology

Topology is the branch of mathematics that studies how objects relate to

one another for their qualitative structural properties, such as connectivity

and shape. It could be applied to problems of feature detection and shape

recognition in high-dimensional sequence data. Specifically we use a primary

mathematical tool considered as a homology theory for point cloud data sets,

persistent homology, to solve our clustering and prediction problems. The

topological properties we extract from the correlation matrices of time series
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are Betti numbers, i.e., the number of n-dimensional holes in the discretized

data space. The tools we use include persistence landscape, persistence dia-

gram and barcode.

Topology was the branch of mathematics created to study basic properties

such as loops, voids and holes. The basis of our topological analysis lies in the

theory of persistent homology, which allows the constructions of persistence

diagrams. Such diagrams can be viewed as summary statistics, which capture

multi-scale topological features (Fasy et al., 2014).

To start, we could generate p-simplex from point clouds or distance matri-

ces. A p-simplex is the convex hull of p+1 geometrically independent points

V = {v0, v1, ......, vp} inRd, to be specific, a 0-simplex could be deemed as a

dot, a 1-simplex as line segment, a 2-simplex as a solid triangle, a 3-simplex

as a solid pyramid and so on. Given a p-simplex σ = [v0, v1, ......, vp], any

simplex spanned by a subset of V = {v0, v1, ......, vp} is called a face of σ. And

a simplicial complex K in Rd is defined as a collection of simplices such that

the intersection of any two simplices in K is a face of each of them and at

the same time, every face of a simplex in K also belongs to K. Based on a

simplicial complex K, we count its Betti numbers. Betti numbers are well

defined by homology group and topological theorems. Here we only focus on

their intuitive meanings. By definition, Betti numbers of a simplicial complex

count different topological features. β0 counts the number of connected com-

ponents of a complex K; β1 counts the number of loops of a complex K; β2

counts the number of voids of a complex K; and if the topological features

come up to dimension k, βk counts the number of k-dimensional holes of a

complex K. Especially, the value of β0 is equivalent to the number of clusters

in a point cloud. This allows the approach of persistent homology to be used
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for clustering problems. β1 shows the number of loops for a complex K. Fur-

thermore, we can figure out which points or components form the loops and

the components that form the same loop could share some feature in common.

Topological features may help to identify interesting patterns in the data

clustering of time series. To make these topological features clear and straight-

forward, we use persistence diagrams and barcodes to illustrate. A persistence

diagram is one way to represent p-dimensional holes. Each point in the dia-

gram indicates the birth (x axis) and death (y axis) of a p-dimensional hole.

Because we are concentrating on the most persistent features of a data set

and ignore the noise, in persistence diagrams, we look for holes that persist

for a long time, or possibly for the entire filtration. Persistence diagrams al-

low us to study how long those features persist when a filtration parameter

is varying. Points lying on or near the diagonal in a persistence diagram are

associated with short-lived p-dimensional holes that appear and die quickly.

Therefore, they could be considered as noise while points lying far from the

diagonal represent long-lived and important topological features.

The barcode is another way to illustrate life time of p-dimensional holes. A

barcode is a graphical representation of complex K as a collection of horizontal

line segments in a plane. Its x axis corresponds to the filtration parameter

epsilon. Its y axis represents homology group generators. For each dimension

p we have a sequence of horizontal lines with different lengths (the bars). In

barcode, the persistence interval is represented as a horizontal line associated

to the p-dimensional homology generators birth and death filtration stage.

Therefore, short bars in barcode could be considered as topological noise and

long bars represent a class which has longer life. The long bars might be the

persistent topological features we are looking for.
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By persistent homology, we can extract consistent clusters from persistence

diagram and barcode. The main idea is that persistent homology allows for

analysis of the most prominent features of a data set through filtration. The

most persistent features (p-dimensional holes), are indicated by points that lie

far away from the diagonal in the persistence diagram or those that have long

length in the barcode.

In order to build a predictive model, we need to refine numerical features

from a persistence diagram or barcode. This could be done through persis-

tence landscape. Persistence landscape builds landscape-like structures based

on persistence diagrams or barcodes and it contains the information in a persis-

tence diagram or barcode, which could be considered as a functional summary

of p-dimensional topological features. For a p-dimensional persistence barcode

with an interval (a, b), or equivalently, a birth point a and death point b in the

corresponding persistence diagram, we define the piecewise landscape function

L(a,b) : R→ R by

L(a,b)(t)=max{min(t−a,b−t)}

The persistence landscape of {(ai, bi)}ni=1 is the set of functions λk : R→ R

defined by λk is the kth largest value of {L(ai,bi)(t)}ni=1 and k(t) = 0 for all k > n.

The graph of persistence landscape functions would be crossover triangles and

λk traces the kth outermost outline of these overlapping triangles. For each

dimension p, after generating persistence landscape functions, we calculate the

integrals for each λk, and sum up these integrals, that is Lp =
∑n

k=1

∫
λk(t)dt,

where n is the largest order of existing landscape. We compute features based
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on information from the persistence diagram over various dimensions. These

would be the numerical topological features we derive from the persistent ho-

mology and are used as input for prediction.

Persistent homology analysis is well defined and could be applied to point

clouds or distance (dissimilarity) matrices. In our study, we first extract cor-

relation matrices from time series and transform them into distance matrices.

Our work starts from distance matrices that are derived from our time series.

1.3 Random Forest

Random Forest is a well defined machine learning model which could be ap-

plied to high dimensional data for both supervised learning (regression and

classification) and unsupervised learning (clustering). In the second part of

our study, we build a random forest model to do prediction for PSG data

based on the covariates and the persistent homology features we extract from

the data set.

Random forest (RF) is a novel machine learning model developed based on

the idea ofensemble learning. Ensemble learning is a method that generates

many classifiers and aggregates their results. It works well for both classifica-

tion and regression problems. Random Forest takes advantage of two powerful

machine-learning techniques: bagging and random feature selection and at the

same time adds an additional layer of randomness to bagging. In addition to

constructing each tree using a different bootstrap sample of the data, Ran-

dom Forest randomly selects a subset of features to split at each node when

growing a tree, instead of using all features. This strategy works out to per-

form very well compared to many other classifiers like discriminant analysis,
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support vector machines and neural networks. Moreover, Random Forest has

the advantage of being robust against overfitting (Breiman, 2001). Moreover,

when building a Random Forest model, it requires only two parameters: ntree

(the number of trees in the forest) and mtry (the number of features in the

subset to split at each node), and the performance of the model is usually not

so sensitive to their values.

Once the random forest model is trained, we could predict new data by

aggregating the predictions. For classification, take the majority of the ntree

votes and for regression, take the average or weighted average of the ntree

results.

To assess the prediction accuracy of the random forest model, Random

Forest conducts cross-validation in parallel with the training step by using

the out-of-bag (OOB) samples. In the process of training, each tree is grown

using a bootstrap sample with replacement from the training data Some of

the data would be not used while others will be repeated in the sample. The

left out data constitute the out-of-bag sample. As out-of-bag samples are used

in the tree construction, we can safely use them to estimate the prediction

performance. By aggregating the OOB predictions, an estimate of the error

rate of Random Forest could be obtained. Given that enough trees have been

grown, the OOB estimate of error rate is quite accurate and could be used to

assess the performance of RF built on our topological features. The Random

Forest algorithm was implemented by the R package randomForest and we use

this package to establish our Random Forest model.
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Chapter 2

Persistent Homology on time

series of well water level data

2.1 Data description

We focus on environmental time series data. Our data is retrieved from the

website of Alberta government (http://environment.alberta.ca/). There

is a vast collection of information about wells located in different areas of

Alberta. The wells names, latitudes, longitudes, depths, river basins and other

station details are recorded, among which, their water levels (WL, measured

by daily mean water level and unit in meters) are typically time series data.

There are two types of wells, namely active wells and inactive wells, as well

as two types of time series, namely ”All Data” (from the year 1990 to 2016)

and ”Recent 3 Years Data” (from the year 2014 to 2016). Additionally, the

website keeps recording the water levels, keeping them up to date. We consider

46 active wells and use their near real time recent 3 years (up to May 10th,

2016) daily mean water levels as the time series to be analyzed in our study,
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which consequently comes to a 1094 by 46 matrix since we have 1094 days

and 46 well locations in total. The idea is to apply Topological Data Analysis

to time series correlation matrices and extract consistent clusters and loops

for these 46 wells. Meanwhile, we evaluate the time and space relationships

between the wells by investigating their performance of persistent homology

on correlation matrices.

We draw the map illustrating the locations of all the 46 wells and their cor-

responding codes. As some of them have very similar longitudes and latitudes,

they are drawn closely in the map. The map and the table demonstrating the

codes and corresponding information of each well are as below. We also il-

lustrate the ”All Data” and ”Recent 3 Years Data” of well ”Aden˙0100” to

show how the water level in this well fluctuated during the past years. And in

the last figure for this part, we illustrate the recent 3 years statistics for well

”Aden˙0100”, including the Day mean, Historical Day Max, Historical Day

Mean and Historical Day Min.
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Figure 2.1: The locations of 46 wells are illustrated in the top figure and the
bottom figure shows the wells with their codes. Some wells are located very
close and they are separated by different codes
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Figure 2.2: The two types of time series for well ”Aden˙0100” are illustrated.
top is the day means for all years from 1990 to 2015 and middle is the day
means for the recent 3 years from 2014 to 2016. Bottom shows its statistics
for the recent 3 years
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Code Station name River Basin Latitude Longitude Well Depth (m)

1 Aden 0100 Milk River 49.0787 -111.333 180
2 Barons 615E 0117 Oldman River 49.9929 -113.0766 19.81
3 Barrhead 0333 Athabasca River 54.0359 -114.3977 87.17
4 Canmore Tourist Bow River 51.1073 -115.3664 85.3
5 Cavendish 2529E North 0276 Red Deer River 50.7973 -110.4181 94.5
6 Cavendish 2529E Middle 0277 Red Deer River 50.7974 -110.4181 51.80
7 Cavendish 2563E South 0281 Red Deer River 50.7972 -110.4181 21.9
8 Cluny 85-1 0218 Bow River 50.8543 -112.8428 72.50
9 Cluny 85-2 South 0219 Bow River 50.8543 -112.8428 14.30
10 Crossfield East 970 Bow River 51.4164 -114.1143 30.5
11 Crossfield West 969 Bow River 51.4164 -114.1143 57.3
12 Devon #2 North 0159 North Saskatchewan River 53.3881 -113.6911 7.62
13 Duchess 2564E 0289 Red Deer River 50.8662 -111.8694 7.62
14 Elnora #5 0129 Red Deer River 51.9668 -113.5511 13.70
15 Ferintosh Regional Landfill 85-1 0147 Battle River 52.7854 -112.9546 35.1
16 Grimshaw Kerndale 0339 Peace River 56.1891 -117.8211 53.34
17 Kirkpatrick Lake 86-1 West 0228 Sounding Creek 51.9527 -111.4301 84.7
18 Kirkpatrick Lake 86-2 Middle 0229 Sounding Creek 51.9527 -111.4431 33.5
19 Kirkpatrick Lake 86-3 East 0230 Sounding Creek 51.9527 -111.4431 11
20 La Crete 2358E South 0371 Peace River 58.2244 -116.0186 20.7
21 La Crete 2445E North 0370 Peace River 58.2244 -116.0186 83.5
22 Marie Lake Esso Seismic 2360E West 0249 Beaver River 54.6208 -110.4316 118.3
23 Marie Lake Esso Seismic 2361E Middle 0250 Beaver River 54.6209 -110.4314 95.4
24 Marie Lake Esso Seismic 2362E East 0251 Beaver River 54.6209 -110.4312 9.4
25 Metiskow 88-1 0265 Battle River 52.4212 -110.6072 128.90
26 Metiskow 88-2 0266 Battle River 52.4215 -110.6068 37.50
27 Metiskow 88-3 0267 Battle River 52.4215 -110.6068 6.04
28 Milk River 2479E 0260 Milk River 49.1153 -112.0111 25.9
29 Narrow Lake 2229E 0252 Athabasca River 54.6005 -113.6358 26.8
30 Okotoks Land Fill 2378E 0217 Bow River 50.6504 -113.9767 42.7
31 Oldman Dam Site #3 Obs 5 0263 Oldman River 49.5581 -113.8771 18.55
32 Orton 1514E 0111 Oldman River 49.7278 -113.2987 50.3
33 Pakowki 85-1 0104 South Saskatchewan River 49.4722 -110.9686 69.00
34 Pine Coulee 23D 0793 Oldman River 50.136 -113.6976 44.2
35 Sibbald 85-2 0123 Sounding Creek 51.4146 -110.1687 34.5
36 Sundre North Deep 0984 NA 51.9194 -114.5609 52.73
37 Sundre South Shallow 0983 NA 51.9194 -114.5609 28.04
38 Vegreville Enviroment Center 85-2 Middle 0165 North Saskatchewan River 53.5038 -112.1126 21.3
39 Vegreville Environment Center 85-1 East A 0164 North Saskatchewan River 53.5038 -112.1126 39.6
40 Vegreville Environment Center 85-3 West C 0166 North Saskatchewan River 53.5038 -112.1126 82.3
41 Warburg 2177E 0343 North Saskatchewan River 53.1268 -114.3613 243.90
42 Warburg 2178E 0310 North Saskatchewan River 53.1269 -114.3611 158.5
43 Warburg 2179E 0311 North Saskatchewan River 53.1269 -114.361 85.4
44 Warburg 2180E 0312 North Saskatchewan River 53.1269 -114.3613 21.3
45 Warburg 2181E 0313 North Saskatchewan River 53.1268 -114.3613 5.2
46 Warburg 2190E 0314 North Saskatchewan River 53.1269 -114.3613 64.90

Table 2.1: The table shows corresponding codes for 46 wells as well as their
river basins, latitudes, longitudes and well depths.
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2.2 Persistent Homology for cross correlation

matrices

We now consider the time relationship for 46 wells in different locations of

Edmonton. This is meaningful due to the fact that there could be underground

connections among the wells. The change in water level of a certain well could

reasonably result in the increase or decrease of water level in another well

connected to it after a certain period. Theoretically, the cross-correlation

between two time series is a function of lags, that is, the units we shift one

time series left or right (in other words, before or after a certain period) to the

other time series. By comparing the values of cross correlations, we take the

lag corresponding to the largest value as the time period by which one series

would affect (cause or delay) the other.

As the cross correlations between time series are functions of lags, for dif-

ferent lags, the cross correlations could be different. We demonstrate cross

correlations with changing lags for 4 pairs of wells, namely Aden and Baron,

Aden and Warburg, Cluny south and Elnora, Elnora and Duchess in the fol-

lowing figures.
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(a) (b)

(c) (d)

Figure 2.3: (a) shows the cross correlations for Aden and Baronto; (b) shows
the cross correlations for Aden and Warburg; (c) shows the cross correlations
for Cluny South and Elnora; (d) shows the cross correlations for cross corre-
lations for Elnora and Duchess. So (a) to (d) show 4 pairs of wells with lags
changing form -27 to 27 are illustrated respectively. It is obvious that with
lags changing, the cross correlations change.
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In this sense, we have good reason to interpret that the cross correlation

matrices with different lags bear the information of time relationship among

the 46 wells. By applying persistent homology on these matrices, we could ob-

tain the topological features in respect of time relationship and study patterns

of the clusters and high dimension holes.

In order to accomplish this, we proceed in a specific way. Given the

46 well level time series and a fixed lag k, calculate the cross correlation

between each pair of them. This makes a 46 by 46 matrix, and the ele-

ment ri,j represents the cross correlation between well i and well j. Noting

that the sequence is of significance here, because we have pointed out that

the cross correlation function is not symmetric, that is, for a certain lag k,

ri,j(k) 6= ri,j(−k).The original matrices generated by cross correlations are

not symmetric matrices. As persistent homology requires distance matrices

to be applied, we redefine each element in the matrix to make it symmetric,

γi,j = ri,j + rj,i, for i 6= j and γi,i = ri,i, thus making the matrix symmetric.

And each row is then divided by its leading element (that is the element lying

on the diagonal in this row). After this step, we obtain a matrix with its

diagonal being all ones but once again asymmetric. With its upper triangle

containing all the information we extract from pairwise cross correlations, we

keep its upper triangle and make its lower triangle the same as its upper tri-

angle. At this time the matrix is once again symmetric. With these steps,

we obtained a symmetric matrix with its diagonal all ones. This symmetric

matrix subtracted from a same size matrix containing all ones makes a sym-

metric transformed cross correlation matrix with its diagonal all zeroes and

this could be deemed as a distance matrix we need for persistent homology.

This procedure is illustrated below by an example of 3 by 3 cross correlation
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matrix.


r11 r12 r13

r21 r22 r23

r31 r32 r33

→


r11 r12 + r21 r13 + r31

r21 + r21 r22 r23 + r32

r31 + r13 r32 + r23 r33

→


1 r12+r21
r11

r13+r31
r11

r12+r21
r22

1 r23+r32
r22

r13+r31
r33

r23+r32
r33

1

→


1 r12+r21
r11

r13+r31
r11

r12+r21
r11

1 r23+r32
r22

r13+r31
r11

r23+r32
r22

1



We repeat the previous steps for different lags, here we take 55 lags ranging

from -27, -26,-25,,to 25, 26, 27. Thus, we have 55 distance matrices in total.

Persistent homology is ready to be applied on these distance matrices. We

denote them as Sk, k = −27,−26,−25, ......, 25, 26, 27. We prove that Sk =

S−k, which means for the lags with opposite sign and the same magnitudes

the corresponding distance matrices should be identical. For each matrix, we

draw a persistence diagram and barcode, and obtain dimension 0 to dimension

3 persistent homology features (we indeed have higher dimensional features

for cross correlation matrices analysis and here we only consider dimension

0 to 3). In each pair of persistence diagram and barcode, we calculate the

95% confidence band. The points lying beyond the confidence band in the

persistence diagram and the solid bars in the barcode indicate significant holes.

For dimension 0, it indicates consistent clusters and dimension 1, it indicates

consistent loops. For dimension 2 and 3, it points out consistent voids and

holes

We illustrate persistent homology graphs for transformed cross correlation
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matrix when taking lag=27 below and the corresponding confidence bands for

each dimension. Based on these topological features, we could further investi-

gate which wells consist each significant clusters, loops, voids and holes.
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(a) (b)

(c) (d)

Figure 2.4: (a) to (d) show the persistence diagram and barcode for dimension
0, 1, 2, and 3 respectively for lag=27 cross correlation matrix respectively. For
dimension 0, we see there are 4 points lying out of the confidence band and its
corresponding solid bars in the barcode. And in dimension 1 diagram we see
3 points lying beyond the confidence band and corresponding solid bars. This
means with 95% confidence, there are 4 consistent clusters and 3 consistent
loops formed by 46 wells.
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In this way, we first focus on cluster analysis based on the dimension 0 per-

sistence diagrams and barcodes derived from the 55 cross correlation matrices

with lags ranging from -27 to 27. The matrices for lag = k and lag = −k

are identical, that is Sk and S−k are the same. In consequence, the clusters

generated from both barcodes would be identical too. And we summarize the

cluster results for the 55 dimension 0 barcodes in the table below:
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Lag Cluster 1 Cluster 2 Cluster 3

27,21,24,5,4,3,2,1,0 well 17 other wells none
26,16,13 well 25 other wells none
25 well 6 well 17 other wells
23 well 25 other wells none
22,20,18 well 17 well 25 other wells
19,6 well 8 well 17 other wells
17 well 8 well 25 other wells
15,14,8 well 8 other wells none
12 well 6 other wells none
11,10,9 well 7 well 8 other wells
7 well 6 well 8 other wells

Table 2.2: The table shows the three most consistent clusters we derived from
cross correlation matrices with lags ranging form 0 to 27 and which wells form
each cluster.

Form this table, we see that the well No.6, No.8, No.17 and No.25 are most

irregular ones and they are quite often clustered separately. Among them, the

clusters formed by well No.7 against the other wells show up most often, which

means this well might possess some special features compared with the others.

Secondly, we look at β1 for each persistence diagram and barcode to analyze

loops. As we have found out in the previous part, the cluster analysis would

always yield the result that one well forming a certain cluster and the other

wells forming a second cluster. If we figure out which wells compose a loop,

this would give us more information about the wells that have the same feature

in the sense of topological feature.

For each cross correlation matrix, we calculate 95% confidence band on its

persistence diagram and the corresponding loops are indicated by solid bars
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in the barcode. We illustrate this by the Figure 2-5 showing the persistence

diagrams and barcodes for cross correlation matrix with lag=0, 7, 14 and 25

respectively and summarize the consistent loops and also the wells forming

these loops in Table 2-3. As the table shows, for some lags, there is only one

significant loop indicated by 95% confidence band.
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(a) (b)

(c) (d)

Figure 2.5: (a) to (d) show the persistence diagrams and barcodes for dimen-
sion 1 with lag= 0, 7, 14 and 25 respectively.

For lag =0, we see that there are 2 points out of the confidence band

and thus 2 solid bars in the barcode, indicating that there are 2 consistent

loops formed by the wells. And refer to Table 2-3, we know that the first

consistent loop is formed by well 1, 2, 5, 9, 10, 20, 29, 30, 32, 33, 36, 44

and 45. The second consistent loop is formed by well 1, 2, 5, 10, 37 and

45. From Table 2-1, we find the corresponding codes for the wells and know

which wells form the consistent loops immediately. For example, with lag=0,

the second consistent loop is formed by well Aden˙0100, Barons 615E˙0117,

Cavendish 2529E North˙0276, Crossfield East˙970, Sundre South Shallow˙0983
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and Warburg 2181E˙0313. And for lag=7, we see that there are 2 points out

of the confidence band and thus 2 solid bars in the barcode, indicating that

there are 2 consistent loops formed by the wells. And refer to Table 2-3, we

know that the first consistent loop is formed by well 2, 5, 22, 26, 27, 28, 30,

38, 40 and 45. The second consistent loop is formed by well 1, 3, 5, 9, 11,

16, 20, 30, 33, 44 and 45. For the other lags, we adopt the same procedure

and obtain most consistent loops by 95% confidence bands in the persistence

diagrams or equivalently, by the solid bars in the barcodes. We summarize all

the consistent loops indicated by the confidence bands in the following table.
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Lag The wells forming consistent Loop 1 The wells forming consistent Loop 2

27,26,25,24.23 5 7 22 23 26 32 33 38 40 42 2 29 36 39
22 5 11 20 30 40 none
21 1 5 10 11 28 30 34 40 41 2 29 36 39
20 5 6 7 22 23 26 27 32 33 38 40 42 2 5 14 27 30 31 38 40
19 1 2 4 10 13 14 20 29 39 43 46 none
18 1 5 10 22 28 34 none
17 1 3 5 9 16 19 22 28 44 45 1 24 43 45
16 1 3 5 7 17 25 45 1 5 22 28 43 45
15 3 11 17 21 30 33 none
14 2 6 10 14 15 17 19 20 27 34 36 46 1 13 17 24 27 31 35
13 1 5 22 28 34 1 5 11 20 24 30 33
12 1 5 11 13 15 20 24 30 33 34 45 1 5 22 28 34 43 45
11 1 5 22 28 34 41 43 45 none
10 1 5 9 22 28 34 41 43 44 45 9 11 20 24 29 30 33 36 44 45
9 1 5 9 22 28 34 45 none
8 5 11 22 24 28 30 33 41 none
7 2 5 22 26 27 28 30 38 40 45 1 3 5 9 11 16 20 30 33 44 45
6 6 10 13 14 19 20 27 37 1 6 9 19 20 45
5 1 2 5 6 9 10 13 15 20 36 43 44 45 1 2 9 13 24 27 30 33 38 40 42
4 1 5 9 11 24 30 31 33 45 1 2 9 24 27 30 33 38 40 42
3 2 6 10 14 20 22 27 29 30 33 38 40 42 2 6 10 14 20 27 29 38 40
2 2 9 22 24 27 30 33 36 38 40 42 44 45 1 2 5 9 11 14 24 30 31 32 33 38
1 1 2 5 9 14 15 29 30 32 33 36 44 45 1 2 5 9 10 34 37 44 45
0 1 2 5 9 10 20 29 30 32 33 36 44 45 1 2 5 10 37 45

Table 2.3: The table shows the most consistent loops we derived from cross
correlation matrices with lags ranging form 0 to 27 and which wells form each
cluster. The numbers represent the codes of corresponding wells. And for some
lags, there is only one significant loop indicated by 95% confidence band.
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From the summary table, we can see that the loops containing well 5, 7, 22,

23, 26, 32, 33, 38, 40 and 42, and the loop containing well 1, 5, 9, 22, 28, 34,

41, 43, 44 and 45 show up quite often and this indicates that these wells may

consist significant loops. Now we have obtained 55 cross correlation matrices,

and some persistent clusters and loops do show up regularly all through these

55 matrices. It confirms that some properties of the well water levels are

retained by persistent homology features, not only in the cross correlation

matrices throughout different lags.We need to investigate further what features

these wells possess in common.

2.3 Persistent Homology for partial correla-

tion matrix

We investigate the relationship for the 46 wells located in diverse areas of

Alberta by applying persistent homology to the partial correlation matrix.

Besides the association in time, the water levels in different wells are also

affected significantly by their spatial connections. In order to figure out spa-

tial relationship, we use partial correlations between time series and partial

correlation matrix.

Partial correlation is the measure of association between two variables,

while controlling the effect of the additional variables. Partial correlations can

be used in many cases that assess for relationship, as long as we have the need

to decide how two variables are related given the other variables are held as

constants.

By means of partial correlation, we deem the 46 wells as a network. Each
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well is a node of a network and the partial correlation estimates their pairwise

association. Here, each well could be treated as a node in the network. Well

i is presented with a vector xi, (i = 1, 2, 3, ......, 46) of n observed attributes,

xi = [xi1, xi2, ......, xin] and n = 1094 in this case because for each well, we

have obtained 1094 time points for recent 3 years. And the partial correlation

denoted as pij measures the level of association or interaction between two

such nodes i and j.

If we use partial correlation for characterizing pairwise spatial association

between wells, it is required that a technique is used to organize these correla-

tions together while also still being feasible to apply persistent homology to. It

is evident that partial correlation matrices, when estimated with appropriate

regularization, could provide a useful characterization of spatial association or

connectivity (Eugene Duff et al., 2013) between different locations.

Given a set of m random variables, the partial correlation matrix is a sym-

metric matrix in which each off-diagonal element is the correlation coefficient

between a pair of variables after ruling out (conditioning under normality) the

contributions to the pairwise correlation of all other variables included in the

dataset. In our case, the partial correlation between any two wells partials out

the effects of the 44 other wells in our network.

since we have obtained a matrix that contains the spatial information of

the 46 wells, which is a 46 by 46 partial correlation matrix. This is a symmetric

matrix with the diagonal being all ones. We take the absolute value of this

matrix then subtracted by a same size (46 by 46) matrix containing all ones.

Thus we transform the partial correlation matrix into a dissimilarity matrix

and therefore, persistent homology could be applied to this matrix.

Still, we obtain dimension 0, 1, 2 and 3 persistence diagram and barcode
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for this single partial correlation matrix and based on the pattern of bars in

dimension 0 and dimension 1 barcodes, study most persistent clusters and

loops. Ultimately, the goal is to figure out the wells that form the correspond-

ing consistent clusters and loops.

We illustrate persistence diagram and barcode generated by partial corre-

lation matrix for the 46 wells in Figure 2.6 and the 95% confidence bands are

indicated by pink bands respectively. For dimension 0, there are two significant

points beyond the confidence bands showing that two consistent clusters are

retained. In dimension 1 persistence diagram, there are five consistent loops.

And in dimension 2 and 3 persistence diagrams, there are two consistent voids

and two consistent 3-dimension holes formed by the wells. Specifically, we

focus on dimension 1 topological features. We have investigated the loops fur-

ther and figured out which wells form these consistent loops. We illustrate the

results in Figure 2.6 to Figure 2.8. Figure 2.6 show the consistent clusters,

loops, voids and 3-dimension holes indicating by 95% confidence bands and

solid bars. For dimension 1, we figure out the wells that form the consistent

loops and connect them on the map in Figure 2.7, as well as on the Multi-

dimensional Scaling 2-D plots in Figure 2.8. And the wells forming the five

consistent loops in dimension 1, forming the two consistent voids in dimension

2, and forming the two consistent 3-D holes in dimension 3 are summarized

respectively in Table 2.4 to Table 2.6
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(a) (b)

(c) (d)

Figure 2.6: (a) to Bottom (d) show the persistence diagrams (with 95% con-
fidence bands indicating significant features) and barcodes (with solid bars
indicating significant features) for dimension 0, 1, 2 and 3 derived from partial
correlation matrix of 46 wells respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: (a) shows the locations of all the 46 wells in Alberta. (b) to (f)
show the wells forming the five consistent loops and how they are connected
in the map respectively.

34



There are five consistent loops indicating by 95% confidence bands in di-

mension 1 persistence diagram and barcode. After we figured them out and

connected them on the map, we found that some wells lying far away from

each other might form a consistent loop. We need to study further what these

wells have in common and why they are connected and retained in the same

loop by their topological features.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: (a) shows the Multidimensional Scaling 2-D plots of all the 46 wells
in the city of Edmonton. (b) to (f) connect the wells forming corresponding
first, second, third, forth and fifth consistent loops respectively.
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(b) connect well 4, 12, 14, 15, 23, 25, 26, 27 and 30, illustrating these 9

wells forming the first consistent loops and these 9 wells compose the largest

bar in Figure 2.6 (b); (c) connect well 1, 3, 5, 6, 33 and 40, with these 5 wells

forming the second consistent loops and they compose the second largest bar

in Figure 2.6 (b). With the same idea, we connect the wells forming the other

3 consistent loops and these wells compose the other solid bars in Figure 2.6

(b). In total, we have five consistent loops and we figure out which wells form

these loops.
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Loops Wells

1 4 12 14 15 23 25 26 27 30
2 1 3 5 6 33 40
3 4 10 14 15 24 25 27 30 37
4 4 9 24 27 29 33 40 44
5 3 10 14 15 27 36 37 40

Table 2.4: The table shows the five most consistent loops we derived from
partial correlation matrix with dimension 1 persistence diagram and barcode,
as well as the codes of the wells that form these loops.

Voids Wells

1 1 2 4 7 12 13 23 25 26 30 32 33 40 41
2 3 5 10 12 14 15 20 24 26 30 36 37 40 44

Table 2.5: The table shows the two most consistent voids we derived from
partial correlation matrix with dimension 1 persistence diagram and barcode,
as well as the codes of the wells that form these voids.

Holes Wells

1 12 14 15 20 23 25 26 30 40
2 1 2 3 4 5 7 8 11 13 14 25 27 29 32 43 44 46

Table 2.6: The table shows the two most consistent 3-D holes we derived from
partial correlation matrix with dimension 1 persistence diagram and barcode,
as well as the codes of the wells that form these holes.
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At the end of this section, we desire to compare the performance of persis-

tent homology on cross correlation matrices with diverse lags and the single

partial correlation matrix. We hope to know at which lag of cross correlation

matrix, the diagram and barcode are similar to those of the partial correlation

matrix. A quick answer to this can be found by calculating Wasserstein dis-

tance between persistence diagrams for each dimension (dimension 0,1,2 and

3 here). The result is listed in Table 2.7
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lag dim=0 dim=1 dim=2 dim=3

27 13.09035 6.612717 2.743431 0.636713
26 13.04896 6.849057 2.800447 0.63978
25 12.86476 6.480896 2.82712 0.629331
24 13.05016 6.528012 2.862274 0.692991
23 12.68969 6.22202 2.948773 0.647767
22 13.10129 6.269431 2.914874 0.694965
21 13.32851 6.202196 2.964283 0.715616
20 12.98606 6.200113 3.220152 0.707556
19 13.16184 6.084648 3.051039 0.725045
18 13.00858 6.189613 3.089883 0.746044
17 13.26052 6.1835 3.197274 0.753645
16 13.22754 6.106437 3.206043 0.719598
15 13.57113 7.046607 3.145191 0.687796
14 13.63367 6.7975 3.270187 0.719512
13 13.52856 6.260584 3.365226 0.766263
12 13.27963 6.230544 3.096397 0.812083
11 13.57203 5.957931 3.073575 0.808883
10 13.51688 5.905016 2.968953 0.791809
9 13.5742 5.896544 2.979896 0.795903
8 13.5345 6.078822 2.989841 0.782666
7 13.0645 5.805182 2.860508 0.76873
6 13.45359 6.089922 2.783338 0.774376
5 13.37768 5.89724 2.741202 0.784516
4 13.43207 5.782444 2.645278 0.905936
3 13.36513 5.429051 2.616063 0.866756
2 13.39271 5.426729 2.691784 0.835533
1 13.34924 5.271626 2.375027 0.81925
0 13.39258 5.044525 2.329506 0.730845

Table 2.7: The table shows the Wasserstein distance between persistence di-
agrams of partial correlation matrix and cross correlation matrices with lags
changing from 0 to 27, for each dimension (dimension 0,1,2 and 3). It compares
how close two persistence diagrams are. The smallest value of Wasserstein dis-
tance means the two diagrams are very similar, thus the topological features
derived from these two diagrams would be similar too. For dimension 0 ,
the partial correlation matrix has the smallest Wasserstein distance with cross
correlation matrix when lag = 23; And for dimension 1, 2 and 3, the cross
correlation matrices with lag = 0, 0 and 25 have the smallest Wasserstein
distance with partial correlation matrix respectively.
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Concluding from the above table, for dimension 0, the cross correlation

matrix with lag = 23 has the smallest Wasserstein distance with partial corre-

lation matrix and for dimension 1, the cross correlation matrix with lag = 0 has

the smallest Wasserstein distance with partial correlation matrix. For dimen-

sion 2, the cross correlation matrix with lag = 0 has the smallest Wasserstein

distance with partial correlation matrix. For dimension 3, the cross correla-

tion matrix with lag = 25 has the smallest Wasserstein distance with partial

correlation matrix.

2.4 Persistent homology for partial correlation

matrices generated by moving window method

In the previous section, we include partial correlation matrices into our work

to study the spatial connection between wells in different locations. Desirably,

it turns out to be one matrix which aggregates the useful information. How-

ever, what if we generate several partial correlation matrices and compare the

results? Moving window analysis of time series enables us to do this.

Originally, moving window analysis of a time series model serves two pur-

poses. Firstly it could assess the models stability over time, or rather, the

stability of parameters in the time series. A common time-series model as-

sumption is that the coefficients are constant with respect to time. Checking

for instability equates to examining whether the coefficients are time-invariant.

Secondly, this method is used to assess the predictive performance of the time

series model, or rather, the forecast accuracy of the model. In other words,

application of moving window method could measure the persistence in a time
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series.

Inspired by this, we tried moving window method in the end of this section

mainly to achieve two goals: 1. For large scale time series, we could cut

the series into overlapping parts and apply persistent homology to each piece,

analyzing whether the results yielded from different pieces are consistent; 2.

Generate several partial correlation matrices from 46 locations and take it as

a series of matrices combining both time and spatial information between the

wells and analyze their persistent homology performance.

Two major steps of moving window method is to decide window size, which

is denoted by w and step length, which is denoted by s.The choice of window

size involves a balance between two opposing factors. A shorter window implies

a smaller data set on which to perform the estimations. A longer window

implies an increase in the chance that the data-generating process has changed

over the time period covered by the window, so that the oldest data are no

longer representative of the system’s current behavior. Most people follow a

rule for choosing window size and step length, in practice: the step length to

window size ratio is larger than 0.2 . If the window size is too large and the

step length is too small, then there would be only a few different points in

each piece, meaning that the partial correlation matrices in successive pieces

would not change much.

Since we have 1094 time points in each of the 46 well water level series,

it is decided that window size should equal 94 and step length should equal

40. In this way, we segment multivariate time series of our well water level

data into 26 overlapping pieces or blocks with equal sizes (w=96). Also, we

calculate the partial correlation matrices for each block, transform them into

dissimilarity matrices using the same procedures in part 2.3 and analyze their
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persistent homology features by persistence diagrams and barcodes.

We obtained 26 partial correlation matrices and their corresponding per-

sistence diagrams and barcodes. With 95% confidence bands on the dimension

1 persistence diagrams, we figure out the significant clusters for each partial

correlation matrix and summarize the results in Table 2.8. The persistence

diagrams and barcodes for the first 4 partial correlation matrices generated by

moving window method are illustrated in Figure 2.9.
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(a) (b)

(c) (d)

Figure 2.9: (a) to (d) show the persistence diagrams (with 95% confidence
bands indicating significant features) and barcodes (with solid bars indicating
significant features) for dimension 1 derived from the first 4 partial correlation
matrices by moving window method.

We have 26 partial correlation matrices in total and for each matrix, we

calculate the 95% confidence band (indicated by pink band in the graph)

of dimension 1 persistence diagram, the points lying beyond the pink band

represent significant loops. For each diagram we figure out the significant

loops and the wells that form these loops. in the summary table below, we

only include the most consistent loop for each diagram.
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Matrix Wells forming the most consistent loop

1,2,3,5 4 12 14 15 23 25 26 27 30
4,6,8,9,10,13, 4 10 14 15 24 25 27 30 37
7,12,13,14,15,18,20 4 9 24 27 29 33 40 44
11,16,19,21,22, 3 4 10 14 15 27 36 37 40
23,24,25,26 4 12 15 23 25 26 27 44

Table 2.8: The table displays the wells that form the most consistent loop for
each of the 26 partial correlation matrices. There are five loops that show
quite often. Well 4, 10, 14, 15, 23, 25, 26 are always connected together to
form a consistent loop. We need further investigate the similarity between
these wells and figure out what they have in common that endow them the
similar topological features.

2.5 Discussion

As a summary of this chapter, we investigate both time and space relation-

ship between 46 wells. For time association, we consider 55 cross correlation

matrices with diverse lags and work out significant clusters and loops for each

lag based on the 95% confidence band. Not surprisingly, several clusters and

loops show up repeatedly through different lags and thus it is reasonable to

investigate them further. Meanwhile, when we take partial correlations for the

46 locations, we obtain one single matrix and this partial correlation matrix

enables us to measure the spatial connection between each two pairs of wells

holding others as constants. From the persistence diagram and barcode and

the 95% confidence band, we also figure out the most consistent clusters, loops,

void, and 3-D holes as well as which well s form these consistent topological

shapes.

Additionally, we use moving window size to get several partial correlation

matrices for overlapping blocks of the time series and also measure the distance

between each persistence diagram derived from cross correlation matrices and
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persistence diagram from partial correlation matrix. It is convincing that time

and spatial connections of 46 wells water level time series data are retained in

their cross correlation matrices and partial correlation matrices, furthermore,

revealed by their persistent homology features in the form of persistence dia-

grams and barcodes. And the significant k-dimensional shapes are indicated

by confidence bands in the corresponding persistence diagrams.
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Chapter 3

Persistent Homology and

Random Forest on time series of

PSG data

3.1 Description of dataset and study goal

In Chapter 2, we combined persistent homology and time series to solve unsu-

pervised learning problems for the well water level data (clustering). In this

chapter, we will investigate clinical time series data, to be specific, polysomnog-

raphy (hereafter PSG) data and apply persistent homology to time series to

settle supervised learning problems (prediction). Our dataset was retrieved

from the website of National Sleep Research Resource (NSRR), which has

an online documentation of rich sleep research data collected in children and

adults across the U.S. The dataset we used was Cleveland Children’s Sleep

and Health Study, one of eight datasets available on this website.

The Cleveland Children’s Sleep and Health Study (CCSHS) is a large
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population-based pediatric cohort on objective sleep studies. A large minority

representation is included in this study. The cohort in this study is a stratified

random sample of full-term (FT) and preterm (PT) children, born during the

period of 1988 to 1993, identified from the birth records of 3 Cleveland area

hospitals. It includes 907 children, studied at ages 8-11 years with in-home

sleep studies, acoustic reflectometry, anthropometry, spirometry, blood pres-

sure (BP), and neuropschology (NP) and behavioral assessments. CCSHS had

three (3) longitudinal visits. The most recent visit, Transdisciplinary Research

on Energetics and Cancer (TREC), took place between 2006 and 2010. The

data we used in this study is from the third or TREC visit because this visit

included full, in-lab polysomnography. In total, it has 517 records. All of

the subjects have their covariates recorded while only 100 of them have in-lab

polysomnography records. We use these 100 records, each with two types of

features, namely 131 covariates (numerical and categorical) and 28 PSG time

series.

Under each participant ID, we have their bmi (Body Mass Index), htcm

(Height), bpdias (Diastolic blood pressure), bphr (Heart Rate), bpsys (Systolic

blood pressure) and other covariates (131 covariates in total). Each covariate

has their details illustrated via summary table as well as by graph (histogram

or barchart) in the website.

Obstructive sleep apnea (OSA) is the most common type of sleep apnea

and is caused by complete or partial obstructions of the upper airway. It

is characterized by repetitive episodes of shallow or paused breathing during

sleep, despite the effort to breathe, and is usually associated with a reduction

in blood oxygen saturation. The earlier OSA is detected, the better the cure

would be and also the cost would be lower, so it is of great significance for us
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to find a way to detect the severity of OSA for children.

The goal of our study is to build a model based on persistent homology and

machine learning methods, to predict the value of variable oahi3 (or OAHI,

ie. Obstructive Apnea-Hypopnea (3% desaturation) Index), which proves to

be a most important factor in detecting the severity of OSA (Susan Redline

et al., 2010). The problem lies in how to incorporate PSG time series data

into the format of machine learning methods and find a way to extract useful

information from participants’ PSG records, transform them into covariates

to be used in prediction. Table 3.1 displays the distribution of OAHI for the

517 participants
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Numbers of participant Interval of OAHI (units by Events per Hour)

506 0 to 8
6 8 to 16
2 16 to 25
2 25 to 45
0 46 to 70
0 71 to 89
1 90 to 99

Table 3.1: The table demonstrates the distribution of OAHI for the 517 par-
ticipants. Most patients have OAHI ranging from 0 to 8 events per hour.6 of
them range from 8 to 16. Only 1 of them has extremely high OAHI compared
with others, with the value lying in the interval 90 to 99.

3.2 PSG time series and sleep study

Sleep specialists tend to look at selected variables for PSG and sleep question-

naires to predict OSA severity. Polysomnography is a test used to diagnose

sleep disorders. It is a multi-parametric test used in the study of sleep and as

a diagnostic tool in sleep medicine. The test result is called a polysomnogram.

Polysomnography records brain waves, the oxygen level in blood, heart rate

and breathing, as well as eye and leg movements during the study.

Polysomnography is often recorded at a sleep disorders unit at a sleep cen-

ter or in a hospital. Polysomnography is a comprehensive recording of the

biophysiological changes that occur during sleep. It is usually performed at

night, and in some special cases, it could also be done during the day time.

The PSG monitors many body functions including brain (Electroencephalog-

raphy or EEG), eye movements (Electrooculography or EOG), muscle activity

or skeletal muscle activation (Electromyography or EMG) and heart rhythm

(Electrocardiography or ECG) during sleep. In the 1970s, the sleep efficiency

and duration, sleep stages, apnea-hypopnea index, oxygen saturation, carbon
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dioxide level, sleep stage changes, spontaneous arousal index breathing func-

tions respiratory airflow and respiratory effort indicators were added to PSG

records together with peripheral pulse oximetry. Basically, Polysomnography

records a lot of time series associated with human sleep and provide rich in-

formation about the quality of sleep. Each channel is a time series. Figure

3.1 shows how typical PSG data looks like. There are several channels in the

PSG and each channel is a time series recorded by the units of 10 seconds.

During the whole sleeping period (9.5 to 10 hours often), there are millions

of time points recorded and for each participant, their PSG data would be

multivariate time series with millions of time points. And this figure is from

the NSRR website.
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Figure 3.1: The figure displays the different channels in PSG.There are several
channels in the PSG and each channel is a time series recorded by the units
of 10 seconds. During the whole sleeping period (9.5 to 10 hours often), there
are millions of time points recorded and for each participant, their PSG data
would be multivariate time series with millions of time points.In reality, sleep
specialists could record different signals based on different types of diseases or
diverse goals.
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Particularly, in our study, each of the 100 participants with their PSG

recorded has 28 signals in their PSG, namely Electroencephalography ( EEG,

which has 4 channels of signals namely C3, C4, A1 and A2), left outer canthus

(LOC), right outer canthus (ROC), electrocardiogram (which has two signals

namely ECG1 and ECG2), LEFT LEG1, LEFT LEG2, RIGHT LEG1, RIGHT

LEG2, electromyogram (which has three signals, namely EMG1, EMG2 and

EMG3), Airflow via thin catheters placed in front of nostrils and mouth (AIR-

FLOW), absence in the effort in the thoratic (THOR EFFORT), absence of

effort in the abdominal (ABDO EFFORT), Snoring (SNORE), sum channels

(SUM), Body position (POSITION), Oxygen saturation (OX STATUS), pulse

oximetry (PULSE), Oxygen level (SpO2), Light, heart rate (HRate), plethy-

mograpgy (Pleth WV), and nasal pressure (NASAL PRES). Each signal is a

time series recorded every 10 seconds during a ten hour sleep period, as per

signal we have millions of time points. We sample 3000 time points from these

millions with an even interval, which means, we sample one time point every

30 seconds. Figure 3.2 illustrates the PSG record of Participant 1 in our study.

This figure is downloaded from the NSRR website.

In our study, each participant has 28 channels in their PSG records. We

can see the 28 time series are of different types. Some have periods and some

are fluctuating dramatically. Meanwhile, POSITION is almost a straight line.

We sample from the 28 time series every 30 seconds and make the time series

into matrix format. This results in a 3000 by 28 matrix for each participant.

53



Figure 3.2: The figure displays the different channels in PSG for Participant
1. 54



3.3 Persistence landscapes

To summarize the information in PSG time series, we apply persistent homol-

ogy to their partial correlation matrix. For each patient, we have 28 signals

(time series), and each measures a certain part or function in brain. To es-

timate the connections between two signals while holding the others as con-

stants, we calculate their pairwise partial correlations and organize them into

a matrix (this work is done by R package ”parcor”). This results in a 28 by 28

symmetric matrix with its diagonal all ones. We then transform it into a dis-

similarity matrix by subtracted this matrix from a 28 by 28 matrix containing

all ones.

Given this dissimilarity matrix, we could obtain its persistence diagram and

barcode by TDA package in R and calculate integrals of its persistence land-

scape function for dimension 0, 1, 2 and 3 respectively. By applying persistent

homology to the PSG time series, we could refine 4 numerical features for each

participant, that is the integrals of its persistence landscape for dimension=0,

1, 2 and 3.

Figure 3.3 displays the persistence diagram and barcode, derived from the

28 by 28 partial correlation matrix of PSG time series, for Participant 1.
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Figure 3.3: The persistence diagram and barcode of 28 signals from PSG of
dimension 0, 1, 2 and 3 for participant 1
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(a) (b)

(c) (d)

Figure 3.4: The figure displays the persistence diagram and barcode, derived
from the 28 by 28 partial correlation matrix of PSG time series, for Participant
1. Top is the persistence diagram and barcode for dimension 0, 1, 2, 3 drawn
together. (a) to (d) are persistence diagrams and barcodes for dimension 0, 1,
2, 3 respectively. From each barcode, we obtain its landscapes and calculate
the integrals. This is the summary of information from the participant’s PSG
and take them as covariates to build a prediction model for their OAHI.
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Persistence landscapes are real-valued functions that further summarize the

information contained in a persistence diagram. The persistence landscape is

a collection of continuous, piecewise linear functions λ : Z+ × R → R that

summarizes a persistence diagram. To define the landscape, consider the set

of functions created by tenting each point p = (x, y) = ( b+d
2
, d−b

2
), representing

a birth-death pair (b, d) in the persistence diagram D as follows:

We obtain an arrangement of piecewise linear curves by overlaying the

graphs of the functions {Λp}p; the persistence landscape of D is a summary of

this arrangement. Formally, the persistence landscape of D is the collection

of functions

λ(k, t) = k max
p

Λp(t), t ∈ [0, T ], k ∈ N

where kmax is the k th largest value in the set. In particular, 1 max is the

usual maximum function

Figure 3.5 demonstrates the landscapes from the corresponding persistence

brcodes. For each barcode, we can define a landscape function and for all the

landscape functions, we take the k th largest value as the k th landscape.Then

calculate the integrals of each landscape function, and sum them up.
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(a) (b)

(c) (d)

Figure 3.5: The figure displays the persistence diagrams and barcodes, derived
from the 28 by 28 partial correlation matrix of PSG time series, for Participant
1 and their corresponding persistence landscapes. (a) is dimension 1 peristence
diagram and barcode, (b) is its corresponding landscapes. (c) is dimension 2
peristence diagram and barcode. (d) is its corresponding landscapes.
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By this procedure, we obtained 4 landscapes (dimension 0, 1, 2 and 3) for

each participant. Altogether we have 400 landscapes and among them the

largest order is 28. Next, for each dimension, we calculate the sum of integrals

of its every single order landscape. For dimension 0 landscapes, calculate:

28∑
k=1

∫ 1

0

λk(t)dt = Li, i = 1, 2, 3, 4

Likewise, for each participant, calculate the integrals of landscapes for di-

mension 0, 1, 2 and 3, denoting them by L1, L2, L3 and L4. Take them as the

new covariates we generate from the view of persistent homology for every one

of the 100 participants.

Since we have 100 participants and their OAHI values lie in different in-

tervals. We look at Participant No.5, whose OAHI value is 0.24, Participant

No.20, whose OAHI value is 3.81 and Participant No.23, whose OAHI value is

14.66. These are three typical participants with different levels of OAHI and

we can investigate the difference of their barcodes and landscapes. Figure 3.6

to Figure 3.11 illustrate the above three participants’ persistence diagram (di-

mension 0,1,2 and 3 together) and barcode, and the corresponding persistence

landscapes.
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Figure 3.6: Participant No.5’s persistence diagram and barcode of dimension
0,1,2 and 3 drawn together
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(a) (b)

(c) (d)

Figure 3.7: The figure displays the persistence diagram and barcode, derived
from the 28 by 28 partial correlation matrix of PSG time series, for Participant
No.5. (a) to (d) are corresponding landscapes for dimension 0, 1, 2, 3 respec-
tively. The landscapes are the summary of information from the participant’s
PSG. we take the integrals and sum the up for each dimension, taking the sum
of dimension 0, 1, 2 and 3 as the covariates to build a prediction model for
their OAHI.
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Figure 3.8: Participant No.20’s persistence diagram and barcode of dimension
0,1,2 and 3 drawn together
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(a) (b)

(c) (d)

Figure 3.9: The figure displays the persistence diagram and barcode, derived
from the 28 by 28 partial correlation matrix of PSG time series, for Participant
No.20. (a) to (d) are corresponding landscapes for dimension 0, 1, 2, 3 respec-
tively. The landscapes are the summary of information from the participant’s
PSG. we take the integrals and sum the up for each dimension, taking the sum
of dimension 0, 1, 2 and 3 as the covariates to build a prediction model for
their OAHI.
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Figure 3.10: Participant No.23’s persistence diagram and barcode of dimension
0,1,2 and 3 drawn together
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(a) (b)

(c) (d)

Figure 3.11: The figure displays the persistence diagram and barcode, derived
from the 28 by 28 partial correlation matrix of PSG time series, for Participant
No.23. (a) to (d) are corresponding landscapes for dimension 0, 1, 2, 3 respec-
tively. The landscapes are the summary of information from the participant’s
PSG. we take the integrals and sum the up for each dimension, taking the sum
of dimension 0, 1, 2 and 3 as the covariates to build a prediction model for
their OAHI.

66



3.4 Random Forest Model for PSG

Random forest is an ensemble learning-based classification and regression tech-

nique. It is one of the commonly used predictive modelling and machine learn-

ing methods. Random forest algorithm can be used for both classification and

regression problems. In the scenario of our study, what we desire is the pre-

diction of OAHI value, which is a supervised learning with labeled instances

because OAHI is a continuous numerical variable. Consequently here we will

use random forest for regression problems.

Random forest could be deemed as an ensemble model of decision trees.

In a normal decision tree, one decision tree is built and in a random forest, a

number of decision trees are built during the process. A vote from each of the

decision trees is considered in deciding the final class of a case or an object

and this is called ensemble process. This is a democratic process. Since many

decision trees are built and used in a process of random forest algorithm, it is

called a forest. It is believed that by averaging across the high variance, low

bias trees, we will end up with a low bias, low variance estimator. In this sense,

random forest will give out a better prediction than any single tree could.

Compared with single decision tree, random forests improve predictive ac-

curacy by generating a large number of bootstrapped trees (based on random

samples of variables), classifying a case using each tree in this new ”forest”,

and deciding a final predicted outcome by combining the results across all of

the trees (for regression, it takes the average of regression results from every

tree and for classification, it adopts the majority vote of trees).

Random forest has many advantages which satisfy the needs in our study.

Firstly, it possesses the strong power of handling large data sets with higher
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dimensionality. Secondly, besides handling thousands of input variables, ran-

dom forest could also identify the variables that contribute most to the model

and this is what we need in this study, since we look forward to identifying

important features in predicting OAHI values among all the 135 covariates.

Furthermore, it has an effective method for estimating missing data and main-

tains accuracy and higher model performance when a large proportion of the

data are missing. There are also disadvantages of random forest that should

be taken into consideration carefully in this study. There are two disadvan-

tages that would affect our model most. Firstly, random forest does not do

as good at classification for regression problems since it does not give precise

continuous nature predictions. This means in the case of regression, it would

never predict beyond the range in the training data. Secondly, Random Forest

may suffer from high chance of over-fitting especially when training data has

a lot of noise.

When evaluating the model learnt from the training datasets, we do not

have to conduct cross validation when using Random Forest, since random

forest involves sampling of the input data with replacement called bootstrap

sampling. Here one third of the data is not used for training and can be used

for testing. These are called the out-of-bag samples. Error estimated on these

out-of-bag samples is known as out-of-bag error. Study of error estimates for

out-of-bag gives evidence to show that the out-of-bag estimate is as accurate

as using a test set of the same size as the training set. Therefore, using the

out-of-bag error estimate removes the need for a set-aside test set and saves

us the work of cross validation.

For building a random forest predictor, we only need to set two parameters:

mtry and ntree. mtry is the number of variables taken at each node to build
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a tree and ntree is the number of trees to be grown in the forest. Once these

two parameters are set, random forest will work in the following manner:

1. Assume the number of cases in the training set is N . Then, a sample of

these N cases is taken at random with replacement. This sample will be the

training set for growing the tree.

2. If there are M input variables, a number mtry < M is specified such

that at each node, mtry variables are selected at random out of the M . The

best split on these mtry is used to split the node. The value of mtry is held

constant while we grow the forest.

3. Each tree is grown to the largest extent possible and there is no pruning.

4. Predict new data by aggregating the predictions of the ntree trees for

our predicting OAHI problem.

Random forest approach could be implement using randomForest package

in R. Moreover, combined with packages rpart, caret and e1071, we are also

able to find optimum value of model parameters mtry and ntree.

3.5 Model building and Evaluation

We use all of the 100 labeled data to train the random forest model. It is a su-

pervised learning process and we set the variable oahi3 (OAHI) as a dependent

variable and all the other covariates together with L1, L2, L3 and L4, which we

obtained from applying persistent homology to partial correlation matrix of

PSG time series, as predictors. In this way, we make use of information both

from covariates and PSG, to estimate the value of OAHI.

In the building of the random forest, we confront the following problems:

1. How to choose the optimum value of parameters in the model; 2. How to
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deal with missing values in the predictors.

In our datasets, there are quite a number of missing values in the predic-

tors. For some participants, even ten out of 135 covariates could be missing.

Random forests don’t handle missing values in predictors automatically; we

have to come up with a way to cope with it appropriately. Basically, if the

predictors have missing values, we have two choices:

1. Use a different tool (method rpart could handle missing values nicely.)

2. Impute the missing values Not surprisingly, the randomForest package

has a function for imputing the missing values, rfImpute. Here, we adopt the

second way mentioned in order to deal with missing values on our datasets.

The function rfImpute imputes missing values in predictor data using prox-

imity from randomForest. It starts by imputing NAs using na.roughfix, then

randomForest is called with the completed data. The proximity matrix from

the randomForest is used to update the imputation of the NAs. For continuous

predictors, the imputed value is the weighted average of the non-missing ob-

servations, where the weights are the proximities. For categorical predictors,

the imputed value is the category with the largest average proximity. This

process is iterated iter times.

When missing values in the predictors are well filled by the random forest,

the model then is learnt from the imputed training dataset. To finally learn

the model, we have to decide the value for parameters mtry and ntree.

Firstly well try to find the optimal numbers of variables to try splitting on

at each node (mtry).

We use tuneRF function to see the optimum value for mtry. The output

shows that when mtry = 16, the model reaches its lowest mean square error

so we choose 96 as the optimum value for parameter mrty. This means, at
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Tree Out-of-bag MSE Out-of-bag %Variance

100 2.127 69.41
300 2.166 70.70
500 2.071 67.60
800 2.024 66.05
1000 2.009 65.55

Table 3.2: As the table shows, with the number of ntree (denoted by Tree in
the table) increasing, the mean square out of bag error decreases, and when
the tree number equals 1000, the Out-of-bag MSE is 2.009. So we take the
parameter ntree = 1000.

each node when building a tree, we randomly choose 16 out of 135 predictors

to split on.

As for ntree, we use package rpart, caret and e1071 and the output is

displayed in Table 3.2.

When we take ntree = 1000, as it gives the smallest MSE for the model,

we have built a model with participants covariates and their PSG records as

features, to predict their OAHI values. In other words, given a new participant,

as long as we have his PSG records and other covariates, we could reasonably

use the trained model to predict his OAHI value.

To evaluate the performance of this model, we first look at the error rate of

the forest with the number of trees, as 1000 decision trees (a forest) have been

built using the random forest algorithm based learning. We can plot the error

rate across decision trees. The figure indicates that after 200 decision trees

there is not a significant reduction in error rate. Also, overall, the error rate

for the model is relatively low (around 2.70). This confirms that the model we

trained is quite effective. The error plots are illustrated in Figure 3.12
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Figure 3.12: Top is the error plot of random forest model with the tree number
ranging from 0 to 1000. Bottom is the error plot of random forest model with
the tree number ranging from 0 to 300. When tree number is relatively small,
the error of the model is large, and if the tree number is larger than 300, the
error would be around 2.50 and not decrease obviously. Overall, after the tree
number come to 300, the error rate for the model is relatively low (below 2.50).
This confirms that the model we trained is quite effective.
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Lastly, we discuss the contribution of covariates generated by applying

persistent homology (L1, L2, L3 and L4) to the model. When building the

model, random forest calculates the variable importance so we can see what

contributed most to estimating OAHI. This evaluates what variables were most

important in generating the forest.

The importance() function gives us a textual representation of how impor-

tant the variables were in building the model, while the varImpPlot() function

gives us a graphical representation of the importance of each predictor.

The variable importance measures is defined as the total decrease in node

impurities from splitting on the variable, averaged over all trees. For clas-

sification, the node impurity is measured by the Gini index. For regression,

it is measured by residual sum of squares. Figure 3.13 is the plot of variable

importance. The y-axis corresponds to different covariates we have in building

the model and their importance to the model are measured by IncNodePurity

(IncNodePurity is the total decrease in node impurities, measured by the Gini

Index from splitting on the variable, averaged over all trees). The large value

of IncNodePurity means this variable contributes more to the model and thus

is more important.
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Figure 3.13: IncNodePurity for the covariates we used in building the model.
IncNodePurity indicates how important the covariate is to the model. The
important covariate would have a large IncNodePurity value. the plot displays
only top 30 most important covariates. We can see L1, L2 and L3 are all among
them. As we have 137 covariates in total, this means the information from PSG
contributes a lot to predicting participant’s OAHI and the way of persistence
landscape retain this important information. Especially, L2 ranks very high
among all the variables. The landscape from dimension 1 persistent diagram
is especially important.
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Covariate IncNodePurity

L1 0.936609718
L2 16.235292518
L3 1.101331238
L4 0.910485854

Table 3.3: This table shows the IncNodePurity for L1, L2, L3 and L4. L1, L2

and L3 all count for the most important variables in the model as is indicated
by the importance plot. Among them, L2 has especially large value, confirming
that it is a very important covariate in the model.

To evaluate the importance of each covariate, we use the measure of Inc-

NodePurity. IncNodePurity relates to the loss function, which by best splits

are chosen. The loss function is MSE for regression and Gini-impurity for

classification. More useful variables achieve higher increases in node purities.

Table 3.3 shows the IncNodePurity for L1, L2, L3 and L4. among them, L2 has

especially large value, confirming that it is a very important covariate in the

model.
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We see from the Variable importance plot, that the most important vari-

ables included rdi3p (Overall Respiratory Disturbance (3% desaturation) In-

dex), ai˙all (Overall arousal index), Oai0p (Obstructive Apnea (all desatura-

tion) Index), bp2time (Time of Morning collection), mripro (Mean total pro-

tein per day) and L˙2. Furthermore, among all the 135 covariates, we pick out

the 30 most important ones, including L˙1, L˙2, and L˙3. Especially, L˙2 (the

calculus of 1st order persistence landscape) is of significantly importance com-

pared with other covariates. This confirms that the polysomnography record

does affect the value of OAHI and the method of obtaining barcode of partial

correlation matrix of the PSG time series and then taking sum of integrals of

dimension 0, 1, 2, 3 landscapes do retain these features. Persistent homology

works well when applied to PSG time series data and their partial correlation

matrices.
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Chapter 4

Future Study

In our study, we made several contributions. Firstly, we realized unsupervised

learning by persistent homology. We applied persistent homology to cross cor-

relation matrices and partial correlation matrices generated from time series.

By the persistence diagrams and barcodes, we extracted the most consistent

clusters and loops for the 46 wells located in different areas in Edmonton.

Secondly, we applied persistent homology to PSG time series and obtained its

partial correlation matrices. Based on the barcodes, we generate their land-

scapes and take integrals of landscapes for dimension 0, 1, 2 and 3. Using these

integrals of landscapes together with other covariates, we built a random forest

to predict participants OAHI based on these topology features extracted from

their PSG records. This work is done by means of persistent homology and

supervised learning method.

The work we will accomplish in the future includes investigating further

into the water level data and predicting the water level in the future by persis-

tent homology and machine learning method. Additionally, as we have several

parameters in chapter 2 and 3, take for example, the window width (w) and
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step length (s), figuring out the optimal sets of these parameters would be

also worth working on. As for the persistent homology of partial correlation

matrices and cross correlation matrices, we need to do bi-filtration in topology

data analysis. Lastly, as for the PSG time series, persistent homology for the

same signals between different participants could also be investigated to obtain

useful information about which signal is of significance to predict OSA and

meanwhile, EEG spectral analysis on the 100 participants PSG EEG signals

would be conducted to further throw light on the prediction problem of OSA.
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