I * l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent pon the
quality of the original thesis submitted for microtilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-339 (r.88/04)c

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

St _manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & l'aide d'un ruban usé ou si luniversité nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est
soumise & la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

fe}

Canada

UNIVERSITY OF ALBERTA

The Use of Adaptive Logic Networks

as Fast Predictors of Motion

by
Allen George Supynuk ¢ r ‘\‘ :

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the Degree of Master of Science
in

Computing Science
Department of Computing Science

Edmonton, Alberta

Fall 1991

g+B

Bibliothéque nationale

National Library
du Canada

of Canada
Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, toan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains cwnership of the copyright
in his/her thesis. Neither the thesis nor
cubstantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISSN ©-315-69966-3

gl

Canada

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Allen George Supynuk

TITLE OF THESIS: The Use of Adaptive Logic Networks as Fast Predictors of

Motion
DEGREE: Master of Science
YEAR THIS DEGREE GRANTED: 1991

Permission is hereby granted to the University of Alberta Library to reproduce

single copies of this thesis and to lend or sell such copies for private, scholarly

or scientific research purposes only.

The author reserves other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced

in any material form whatever without the author’s prior written

permission.

18516 - 68 Avenue
Edmonton, Alberta, Canada

T5T 2M7

.........................

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned cerlify that they kave read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled “The Use of
Adaptive Logic Networks as Fast Predictors of Motion” submitted by Allen
George Supynuk in partial fulfillment of the requirements for the degree of

Master of Science.

Dr. W.W. Armstrong (Supgrvisor)

............................

Dedication

I would like to dedicate this thesis to four groups of people:

To my supervisor, Dr. Bill Armstrong, for his enthusiasm, his unflagging
support, and his wonderful adaptive logic networks; and to Andrew Dwelly,

for his easy to understand and modify code implementing said networks.
To my best friend and loving wife: Wendy McDonald, for everything.

To my two buddies: Gregory and Brian Supynuk, for examples of how carbon-

based content-addressable adaptive logic systems learn.

To two of my best friends: William and Marion Supynuk, for all their
encouragement, support, love, and for constructing the carbon-based content-

addressable adaptive logic system that wrote this thesis.

iv

Abstract

The equations of motion are relatively straight-forward and simple, albeit
computationally complex. While relatively efficient closed-form solutions
exist, they still compute on the order of real time on current systems.
Adaptive logic networks have the potential to approximate the quantities
describing motion (after training on representative sample data) on current
hardware in an efficient, naturally parallel way. They have the added benefit
of executing in a few tens of propagation delays (which in state-of-the-art
silicon is currently 10-9 seconds), doing the entire computation in about the
time of an add or multiply on special purpose hardware. This thesis explores
the application of ALNSs to the problem of predicting the results of a closed
form solution to the laws of motion. It also contains a detailed exploration of

the problem of input/output coding for ALNS.

Results indicate that ALNs are a potentially viable method for predicting the

results of a closed form solution to the laws of motion.

Two useful new methods of input/output coding for ALNs are presented,

along with a fast method of decoding a useful class of coding schemes.

Table of Contents

Dedication iv
ADSETACE..ccrvseemsmearuerensenssssssesssesssasssaseassessanes “V
Table 0f CONEENES ..cccriviisisesssssarensessssssssssneasasasssssassssnsasusasssnsesesess NN '
1 Introduction.... cresssnensrensasnanas 1
2 Robot Control 1
2.1 History of Robot Programming Languages.........ccoeueesuessireeeseseess 1

22 Imbedded Robot Programming Languages.......ccoeueereeciensensernaeeee 2

2.3 Tabular LEarMing.....coccoeremssseesemseisserssmssssessessssissassmsissescasinsss s sssin s 2

24 A Modern Robot Programming Language.........ccuuueesesusesrcususnsenees: 3

R 1) T 3

2.6 Trainable Adaptive CONtrOllers.....coccrsimiinmmimssenssrssnnsmsensnssennsese 4

2.7 Increasing CONTOller ACCUTACY...wwuuoeeessrimimmissmsssssenisecsssssmsssmmssnsscseeese 6

28 Connectionist CONEIOMET ..ot 6

29 Adaptive Logic CONLIONET wiirivisiriimssssssscesi s 8

3 Equations of Motion Simulator .9
31 The MOEl..iiceeeneiniressissesessssissisissssss s s e 9

3.2 Quantities USed.....ouweersrnmismmmssissrsisiinsisissess s 10

33 The EQuations of MOOM w..oiiviiirmrinisimmmississsesemmssssanssssnssseeee 11

4 Adaptive Logic Networks (ALNSs) 14
41 ALNSs vs Neural NetWorKsS....covccimnimminiesnsciiinnninnsneseeienes 16

4.1.1 ALNSs vs Linear Threshold Networks.......ccocccvenecerccuncnnnnn: 17

4.1.2 ALNSs vs Sigma-Pi NetWOTKScoovmmimcsimisimismissssnissnicnninees 18

42 Why and, right, left, OF7 i 19

43 Parsimonious or Lazy Evaluation of ALNS ..ococciviiimmisiisinsennene: 20

4.4 HOW ALNS LEaIN...ccocciiiiiinrennicstininsniminssssssssssissisinissssssassssssssses 21

vi

Coding. . reeesensesssasaesaseTHSReROLRERSR IR ORSR IS SL OSSR RS PO OO RS S SRRCRSESS SHR Sa SRV 0B RRS 26
51 Description Of PrODIOMc.ccmmimiiserermssisimisssnisssine s 26
5.2 RadixX-2 COAES...coivumirrirrriiniririisinsssesetsssiissi st s 26
5.3 Gray COeS...urrrmssenremmsssssmsssssssissssssssssessis s s 27
54 One Bit per Feature Codes.......oumieimmis s 29
55 Thermometer COdeSuimimeeimiiimisi e 29
56 Combinatorial Walks.......coeevieirimimnmniiiiiis e 30
57 Random Walks.. .o e 32
58 Constrained RandOM Walks......coocrmrmmmimsrensseicssssssssssesssiss:33
59 Sphere Packing ...coooimmiismimmissecemsssimmsiis st 33
5.10 GOlay COAES .vvuurrressamermessssssinsssassssossissersssss s s 36
5.10.1 Some Properties of Golay COdeS......coovrevureumiimsiiniiinsiininens 36
5.10.2 Decoding Golay COdes.......cocuiumimmmmmmmsesseissimssmsnismsssissenseens 37
5.11 Golay WWALK oo oveaseeeseeoseemesssssssssssnss s s ssas s s sssssssss s esnsns i3
512 Helical WalKS....c.oivueericneieiinisirsnrsisses sttt s 40
513 Combinatorial Hypercompression. ... 45
514 Using Golay Codes to Optimize Decoding.........cooouvvuiisrmnnscenisenens 46
515 Hardware for Decoding Walks........oociniimnininne: 47
The ALN predictor rtosemssseseneressenerssaessattsesssRsasES RS Tt st SRS s e RS e se R R 0O 49
6.1 Variables Learned ... 50
62 Quantizing the Variables ... 51
63 Other ALN Parameters.....coooereneesmisimrsisisssessessisisiss e 51
64 Analyzing the ReSUIS.....coviviiiieisiiissins s 52
6.4.1 What Can We Reasonably EXpect?oocevciiininine, 52
6.42 A View of the Raw Data ... 53
65 Statistical Methods Used ..o 54
6.5.1 MEAN cueuiirieiiereerreeessecseriesresaarese s st 54
6.5.2 Standard Deviationccoveimeminminniii 54
6.5.3 Standard Error of the Mean ... 55
6.5.4 5% TIIIM cviivrrreirecentiieestersse e s s s 55
6.5.5 MEAIAN c.oovevrirerrrereneereererereriimsestirsssrsssrsss et 55
6.5.6 Interquartile Range (IQR)......ccccovviccmsuisimmmimimmmnsnisenissncens 55
6.5.7 Maximum EITOT ... 56
6.6 RESUILS .coieinieereirererreeiieireies s st s s e 57
6.7 CONCIUSIONS. ..cvvevireieereiririirrisr sttt ssr s s b 58

7 Modifications to Software. 59
v B 012 E:0 (U P N R B R BN 59

7.1.1 Statistics Gathering........covviriiiiiniininis e 59

7.1.2 Journaling of Values.......ciminne. 60

2 S | 2O O SO POT PP SRS S OSSO 60

7.2.1 Multiple COdOMAINS......coiiriimiiriintiiinnsirserssessi e 60

7.2.2 Save and ReStOTe........ccoviiimiiieeimnaineniecsissinisssnssessssaes 60

7.3 ALTOC eveerieieeeerrestetriaes e s st et sh b bR s sR eSS h s SRS s TSR SR eSS 61

7.3.1 Fast-TreES ...cccceeereiciinirrnrireninniniesesssssisierssnstsssmrsnsssssssssnsnsssasass 61

7.3.2 Golay WalKS....comvrverrenrciininniiinsnisnsssssssenssiisssnssisnsnsisesees 64

T4 IS ceeeeceererireerenesiseraesenssesiissr e is st ane s se st asanassn s sasbas s nsnsesisnsnsns 65

2 G 7o) [SO OO OO R U RO PR U P PSPPI PRIS 65

742 SETIAR cveeeeireeri ettt et e s s 65

743 TGNt e 65

7.4.4 mMake.WOTTNLIf cuooiiriieriieiiiir sttt snens 66

745 SQUASN ..o 66

746 MUINAISt..cviierieerierirreeienie sttt ens 66

8 Conclusions ...68
9 Bibliography........ccoeese.. .69
Appendices sensesessessonsessasensase vesessnsesssststesssenersrasererasassnesasstsasneeserees 73
I Complete Training Results 74

I COde LiSHNGS.ccurerersierensenssssassssssnssassesessesssssssssassssanssssassesssanssassessssssssanssssassssssnes 76

1 Introduction

This thesis encompasses many disciplines. Besides being implemented in C,
Yacc, Awk, C-shell scripts, IRIS Graphics, and a small custom designed
language named LF [Dwel90]) on a Sun SPARCStation I and a Silicon
Graphics Personal Iris (as well as maintaining the ability to run on a Myrias
SPS-2 parallel computer), it touches on coding theory, statistics, animation,
quaternion curves, content addressable parallel processing, programming
languages, neural networks, adaptive logic networks, and the equations of

motion.

The next chapter provides an introduction to Robot Control, including a
historical perspective, leading up to adaptive logic networks. Subsequent
chapters introduce: the equations of motion simulator (chapter 3); adaptive
logic networks (chapter 4); and the coding of input and output (chapter 5).
Chapter 5 also includes some original work on coding real intervals. With the
background taken care of, Chapter 6 describes the setup of the adaptive logic
network predictor, along with the results. Chapter 7 outlines the software
modifications made, including some interesting and necessary performance
enhancements. Chapter 8 contains some final conclusions and suggestions for

further research.

72 Robot Control

2.1 History of Robot Programming
Languages

For a historical overview of the state of the art in robot programming
languages prior to 1985, see chapter eight of the edited volume by Lee,
Gonzalez, and Fu [Loza83, Shims84,Tayl82, Taka8l, Muijt82, Lieb77, Gesc83,
Gruvs4] as well as the work of Nakano et al [Naka85] and Mitsuishi et al
[Mits85). For a detailed description of one of the languages described therein

(AL), see Goldman'’s book [Gold85].

The languages of that time range from robot oriented /robot level ianguages
(where each motor and joint action are controlled) like AML [Tayl82],
AUTOPASS [Lieb77], PAL [Taka81], TL-10 [Naka85], VAL-II [Shim84}, and
WAVE [Loza83] to object oriented/object level languages like AL [MujT82,
Gold85], COL [Mits85], MINI [Loza83], and RSS [Gesc83]. All incorporate: some
form of “guiding” - a human operator manually guides the robot through
some motion, which the robot then repeats under program control; some
form of concurrency - the ability to describe two or more actions that must
happen at the same time; some way of integrating sensory information; and

some way of describing the world in terms of Cartesian coordinates and Euler

angles. In style they range from assembler (AUTOPASS, WAVE) through
BASIC (TL-10), Algol (AL, AML, PAL, VAL-II), and Pascal (RSS, COL) to Lisp
(MIND).

2.2 Imbedded Robot Programming
Languages

An interesting approach, pioneered by MINI, is to imbed the robot
programming language into an existing language. Blume et al [Blum87}
describe a language imbedded into both Pascal and C and mentions that a
further Ada imbedding has been implemented. This saves the language
designer from having to re-implement features that are common to

mainstream programming languages.

2.3 Tabular Learning

A more modern approach, described by Raibert [Raib86], uses tables of
precomputed data to control a running robot. Memory efficiency is gained
through the use of multivariate polynomial approximations to large tables at
a cost of a 3 to 10 fold increase in processing time. The resulting controller was

successfully used to maintain balance ana regulate forward running speed for

a one-legged hopping robot.

2.4 A Modern Robot Programming
Language

In his landmark text, Donner [Donn87] gives a list of five features he believes
are necessary for a good robot programming language (summarized from
page 64):

e some form of real-time guarantees on the time it takes for a (small)
command to be performed

e the ability to control the order of events; some way of saying “wait until
this event happens”

¢ lexically scoped concurrency

e true process abstraction; the ability to invoke a process without knowing
how it is implemented

e the ability for one process to preempt another; some way for one process to
say “stop what you are doing for now (or forever)” to another process

[Donn87] goes on to describe his language OWL which meets each of these

needs to the extent necessary for him to control a six-legged, 1800 pound,

9 foot walking robot. The walking process was loosely based on studies of the

gaits of cockroaches (which exhibit fairly independent control of each leg). It

1
was able to walk 6 meters in 85 seconds (about i km/h), and could walk over

varied terrain and on five legs (at about half speed).

2.5 Expert systems

Another modern variant, based around an expert system, is described by
Andersson [Ande88]. This controller takes in sensor data, makes an
intelligent guess at a strategy for coping with the data, and modifies previous

plans based both on the new data and on physical constraints. Plans are

4
encapsulated and tuned over time. The system plays a moderately respectable

game of ping-pong with a standard ping-pong ball on a 2m by 0.5m table.

A similar controller for a four-legged articulated expert system simulacrum
(simulated robot) is described by Mohamed and Armstrong [Moha88]. It
includes both a Learning Apprentice System (LAS) version, in which the
simulacrum is trained by an external (usually human) trainer, and an
Autonomous Intelligent System (AIS) version, which substitutes an
evaluation subsystem for the external trainer. While no results are given (the
article describes work in progress) the authors propose a “Turing Test” for an

AIS, namely that it train as well its LAS version.

2.6 Trainable Adaptive Controllers

Guez and Selinsky [Guez88] describe a Trainable Adaptive Controller (TAC)
for a two dimensional “broom balancer” using a feedforward linear threshold
network trained using Back-Propagation (for a description of linear threshold
networks see section 4.1.1 - ALNs vs Linear Threshold Networks). They used
four input elements (one each for cart position, cart velocity, angular position
of pole, angular velocity of pole), 16 elements in the first hidden layer, 4
elements in the second, and one output element feeding into a sigmoidal

activation function.

[Z=0

Broom Balancer

Three learning strategies were tried. The first used a linear control law to
determine which way to drive and at what speed to both balance the pole and
to keep it centered around the origin (Z = 0). After 20,000 iterations of Back
Propagation the average mean square error was less than 0.0005. The second
used a non-linear control law to determine correct output and was
successfully learned after 80,000 iterations, although the TAC still took longer
to stabilize the pole than the teacher. The last strategy was based on data
gathered from humans doing the balancing, and was learnad in 40,000
iterations. Since the humans were unable to keep the cart both balanced and

centered around the origin, neither was the resulting TAC.

An interesting further experiment used filtered human data - data with the

human reaction time filtered out. The resulting TAC was much smoother in

stabilizing the system.

2.7

Increasing Controller Accuracy

An innovative approach to using neural networks in a robot controller is

described by Kozakiewicz et al [Koza90]. Here tne neural network (and a set of

Jeast squares polynomials) was trained to correct the forward kinematic

model of the arm; that is, it corrected differences between the theoretical

model of the arm used by the controller and the real arm. They used a three-

layer linear threshold network (with 6 input, 20 hidden, and 3 output

elements) trained using back-propagation for 2500 cycles (for a description of

linear threshold networks see section 4.1.1 - ALNs vs Linear Threshold

Networks). The following table [Koza90, p 218] compares the original

positioning error with the error after both least squares polynomial (LSQR)

and neural network (NN) calibration:

before after LSQR after NN
quantity calibration (um) calibration (um) calibration (um)
average error 434 34 71
maximum error 654 127 302
delta of error 115 31 50
range of error 89 to 779 -59 to 127 -79 to -221

Positioning error of a SCARA robot due to static deflection

That is, the authors were able to achieve results within a rough factor of two

of least squares polynomial correction using linear threshold networks,

where days of careful programming are replaced by hours of training.

2.8

Connectionist Controller

In what appears to me to be a landmark work, Mel describes his biologically

motivated controller for a robot arm [Mel9C}. The arm is capable of solving

“difficult, visually-guided reaching problems in the presence of obstacles.”

The only teacher-based training is in the initial setup, wherein the arm is
guided to a (small) representative sample of its possible configurations to
learn the correspondence between the arm position and what the camera sees.
Four Sigma-Pi (connectionist) networks were used during training,
developing five million weights on the forward kinematics alone. A similar
model was developed for the inverse differential kinematics (that is, the
inverse kinematics were learned only for small movements backwards). The
Sigma-Pi networks were then reduced to k-d trees. k-d trees are binary trees
that decompose a multi-dimensional space into hyper-rectangular regions.
An approximation to the mapped function (Sigma-Pi network in this case)
over this region is stored at the leaf. In this case the approximating functions
were all constants, making the approximation run in O(n log n). The

reduction to k-d trees took 16 hours on a Sun 3-160, resulting in a speedup by

a factor of 50 to 100.
o i
g i i H 2
i B 64 X 641 Do
3 g it grid $x
S -
oo
O o © §
oNeol oo om
o O o X
oo O S
Hand-Velocity 5

Architecture of the Connectionist Controller
(Numbers indicate number of (conceptual) Sigma-Pi neurons)

2.9 Adaptive Logic Controller

Mohamed describes work-in-progress on an adaptive logic network for
controlling the motion of a four-legged articulated simulacrum [Moha90].
The network is fed an indication of the desired direction (from an expert
system) and the position and velocity of the leg joints. While some

experiments have been performed, no results were given.

3 Equations of Motion Simulator

This chapter is a summary of a paper by Armstrong and Green [Arms85]. It
describes the computational complexity of, and variables used by, the
Equations of Motion simulator used to produce both the training and testing
data for the adaptive logic networks used in this thesis. Besides the
application described by Armstrong et al and used here, it has been
successfully used in a simulation of a dancing human being [Lake90]. For an

alternate model based on mass-spring systems see the paper by Miller [Mi1188].

Note that as far as the adaptive logic networks are concerned, Dynatree (the
equations of motion simulator) is a 'black box' that produces data for training

and testing. Dynatree was given to me by Armstrong.

3.1 The Model

The model represents objects as a tree structure (that is, no loops) of flexibly
linked objects. The point where an object joins its parent is called its hinge.
Orthonormal moving three dimensional frames are attached to each object at
its hinge. There is also a fixed, non-rotating inertial frame. The model
calculates position, velocity, acceleration, mass, force, angular velocity,

angular acceleration, moment of inertia, and torque based on external forces

and torques.

10
frame r

/ r

Inertial Frame

The inertial frame and some selected variables

3.2 Quantities Used

The model uses the following quantities. Lower-case letters denote scalars and
vectors; uppercase denote matrices. Superscripts denote the link number.
Each link other than the root (link 1) has one proximal hinge connecting it to
its parent. The middle column gives the variable name used in the C

implementation:

Scalars

mt m the mass of link r

Quantities in the inertial frame

aG aG the acceleration of gravity

p" PH the position vector of the hinge of link r which joins it
to its parent (the proximal hinge of r)

24 vH the velocity of the proximal hinge of link r

fE FE an external force acting on link r at the proximal hinge

Sk GE an external torque acting on link r

11

Quantities in the frame of link r

ar aH the acceleration of the proximal hinge of link r
o omega the angular velocity of link r
(4 omegadot the change in angular velocity of link r. (This would be

the angular acceleration if it were represented in the
inertial frame. When translated to the frame of link 7 it
becomes a more complicated phenomena.)

cr c the vector from the Eroximal hinge of link 7 to the
center of mass of link r

fr fH the force which link 7 exerts on its parent at the proximal
hinge

g’ gH the torque which link 7 exerts on its parent at the
proximal hinge

) J the moment of inertia matrix of link r about its proximal
hinge

Quantities in the frame of the parent of link r
Ir 1 the vector from the proximal hinge of the parent of link

r to the proximal hinge of link r (a constant vector in
this frame)

Rotation Matrices

R ROT converts vector representations in the frame of link r to
their representations in the frame of the parent link

R'T ROTT the inverse (= transpose) of R"

Rj RI converts vector representations in the frame of link r to

their representations in the inertial frame

R§T RITT the inverse (= transpose) of Rf

3.3 The Equations of Motion

In the following equations, S, denotes the set of all links having link 7 as a

parent.

12
Equation (1) relates the rate of change of angular momentum of link r to the

applied torques:

Jrar=g§-mrc xa” + YIsx RS f5 (1)

seS,

ITJI K

acceleration of center of mass forces from sons translated

around the hinge of link r to frame of link r
where
gf=-Fx(Jray)-g+ Y Rs g5 + RyT gL+ m" c"x RjTag (2)
seS,

l 1

external torque translated
from Inertial frame

\
force of gravity on center of

angular
momentum

appears to rotate “equal and opposite” \ Mass trans ated to link r

in this frame torque to that exerted rques from sons
on parent translated to link r

Equation (3) relates the force f" acting on the parent of link r at the proximal

hinge of link 7 to the applied forces:

fr=fg-mrar+mrc xa + S Rsfe (3)
seSr
! 11 \ | 1
from from angular forces from sons
acceleration acceleration translated to framer
of framu of frame
where

f§=-mr o x (& xc")+R{T(fp +mlag) (4)

| 1 1

T

centripetal force external force and gravity
translated to frame r

13

Equation (5) relates the acceleration at the proximal hinge of a son link s of

link 7 to the linear and angular accelerations at the proximal hinge of link r:

RS as=ai +ar-Fxa (5)
linear acceleration angular acceleration
of hinge of son
where
ai = x (@' x[5) (6)

centripetal acceleration
of son

The model goes on to express the motion (positions, velocities, accelerations,
and orientations of the links) given the torques at the hinges and the external

forces and torques in a computationally efficient manner.

For a description of which variables were selected for learning by the ALN

predictor and why, see section 6.1 - Variables Learned.

4 Adaptive Logic Networks (ALNs)

Adaptive logic networks are (conceptually) binary trees. Each interior node
calculates one of four binary functions: and, right, left, and or. The input to
the tree (a sequence of 0's and 1's) is fed in through the leaves. Negation

(logical not of an input) can happen only at a leaf. Each tree calculates one bit

of the result.

a|bJaandb |arightb| aleftb | aorb
010 0 0 0 0
011 0 1 0 1
110 0 0 1 1
111 1 1 1 1

Table of functions at nodes of adaptive logic networks

For example, the following adaptive logic network calculates the function on

the right:

or

and and

a b a b

An adaptive logic network and the function it implements
(e denotes negation)

14

To see how a “forest” of these trees can be used to calculate results that are

15

more than one bit, consider training a neural network to learn the 9 x 9 times

table:

Now, to multiply 2 times 4 to get 8, we input our code for 2 and our code for 4

and then train the network until it responds with the code for 8. We then

train on other inputs (like 3 times 3 to get 9), while checking that 2 times 4

still gives us 8.

First we find a special way of representing 1 thru 9 with a group of (in this

example) eight 0's and 1's:

DO UGTd WN -

01011001
01011010
10011010
10101010
10110010
10111110
10001110
11001010
11001001

i\

Code for 2 Code for 4

|
5 1 01 1 0 1 0|1 0

A R
_ N

z y -

:
AN

1 1 0 0 1 0 1 O

Code for 8

A forest of ARLO trees calculating an multi-bit output

4.1 ALNs vs Neural Networks

This section explores the relationship between adaptive logic networks and
the most popular mainstream neural networks: linear threshold networks.
Since sigma-pi networks were mentioned in section 2.8 - Connectionist

Controller, a relationship between them and adaptive logic networks is also

drawn. For an introduction to the field of neurocomputing see Hecht-

17

Nielsen’s excellent book [Hech90]. For a more informal yet comprehensive of

the state of the art in neurocomputing see Shriver’s video notes [Shri89] and

the associated video tape.
4.1.1 ALNs vs Linear Threshold Networks

Each node of a traditional neural networks typically calculates a function of

the form:

where w; ‘0 <i < n) are weights and x; (1 i< n) are the inputs (possibly an
output from another node), wy is a bias (constant after training), and xg is a
constant 1. The output is a 1 if this relation is true (ie. if the sum is 2 0),

otherwise the output is 0. (For more information see Hecht-Nielsen’s book

[Hech90].)
To get an adaptive logic network from this model set wg to -2, and restrict wj
and x; (1 <i < n) to the set (1,2}. This gives us:

-2.1 + wi.X1 + Wo.Xg 20 & wy.Xxy + WaXg >2

If we set wq and wp to 1 our output will be 1 if and only if both x7 and x9 are 1,
which is equivalent to and. Setting wy and wy to 2 give us ox, wy = 1land wy =

2 gives us right, and wy = 2 and wp =1 gives us left.

18

output on output on output on output on equivalent
w1 Wy x1=0,x0=0 x1=0,xp=1 x1=1,x3= x1=1,x9=1 function
1 1 0 0 0 1 and
1 2 0 1 0 1 right
2 1 0 0 1 1 left
2 2 0 1 1 1 or

Table of outputs of the function wy.x7 + Wy-X) 22

That is, adaptive logic networks are a special case of linear threshold

networks.
4.1.2 ALNSs vs Sigma-Pi Networks

The output y of a sigma-pi network is the sumr of independent multiplicative

clusters of input weights:
y= ZV] . Cj >t
j

where

n

Cj = Hwi - Xy
i=1
where wj, 1 €i<nare weights on the input, xj, 1 <i < n are the input, and the
vjare the weights on the cluster as a whole. (For more information see Mel’s

book [Mel90, pp 42-3].) A feature (selected by one or more of the cj’s) is
recognized if y>t.

(Note that the sigma-pi model is suspect. Since the weights wj can be factored

out of the cj’s, there is no association of weights with inputs.)

19
To get an adaptive logic network from this model restrict v; and x; (and by

implication, ¢) to the set {0,1}, set w;=1 and use t=0 as the output threshold.

The product (Pi) now becomes a multi-way and, and the sum (Sigma) is now
equivalent to a multi-way or. The network in effect uses the ands to recognize
single features and ors to say that one of the features was seen. This kind of
behavior of sigma-pi networks was what was desired in at least one major

application [Mel90, p 43] (which also set all the wj to 1). That is, adaptive logic

networks are a special case of sigma-pi networks.

4.2 Why and, right, left, or?

There are 16 possible binary functions of two variables. Of these, 12 functions
have the property that changing one input has a 50% chance of changing the
output; two of the functions (labelled 0 and 1) ignore their inputs and never
change output; two more, xor and its complement (labelled a# b and a =b),
always change output. However, the 12 functions can be handled by and (&),
right, left, and or (1) if we allow the inputs to be negated. It is a simple
exercise, left to the reader, to show that any tree made up of these 12 functions
can be transformed to an equivalent tree having only the functions and, or,
right, or left on the interior nodes and negations appearing only on the
leaves; from here on, we will only talk about such trees, and will refer to
them as ARLO (and, right, left, or) trees. Alternatively, these four functions
are precisely the set of all nonconstant increasing Boolean functions of two
variables [Arms79). (By “increasing” we mean that if a zero input is changed

to a 1, the value output never changes from 1 to 0.)

20

and| _|left|_ righq a#b| or |___|a=k| _ 11
alol o |asblasb] a {a&b] b Ja*blalb albla®b] b Jajb] a Jalb -a—lg 1
ojog o 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0fj1y 2 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1]jo0}f O 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1j1] 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

The 16 possible binary functions of two variables

This 50% rule is very important to the learning of the network. We want to
have a retwork which, when presented with an input that is close to one it
has seen before, calculates an answer that is close to the previous answer.
With ARLO trees the chance that changing a single bit of input will affect the

output are 1 in 2d_ where d is the number of nodes between the input and the

root of the ARLO tree.

4.3 Parsimonious or Lazy Evaluation of ALNs

The 50% rule has another important advantage: we almost never have to
calculate the entire tree! Once we know one input to a node we have a 50%
chance of knowing what the output is. (For and and or this is called McCarthy
or lazy evaluation in the programming languages literature. Since “lazy” has
negative connotations, and since “parsimony” has already been used in
neural network literature [Meis90], we use the term Parsimony or
Parsimonious Evaluation.) Not evaluating the input to a single interior node
can save we from calculating as much as half the nodes in the tree! (Consider
the root node. If it is an and node and the left input is already known to be 0,

then there is no need to evaluate any node in the right half of the tree.)

To calculate the relative savings over the whole tree, consider the function
ni(d), the number of inputs a node that is d levels from being a leaf has to

evaluate in order to know its result. Clearly,

21

1, d=0
ni(d) = {
ni(d-1) + 0.5 * ni(d-1), d>0

That is, we need to calculate ni(d-1) nodes to knov; one input, and then have
a 50% chance of needing to calculate another ni(d-1) nodes to know the other

input. Expanding a few terms of this recurrence relation quickly leads to the

closed form solution:

i@ = 3

A tree of height d has 2911 nodes (including the leaves), so the average

relative savings are:
d

3
ni(d) _ (5) _ 3% _1.3d
2d+1_1 2d+1_1 - 22d+1 2 ()

This results in an exponential speedup in the evaluation of an ARLO tree; the
larger the tree, the smaller the fraction of the tree that is likely to need to be

evaluated.

4.4 How ALNs Learn

This section outlines the method which adaptive logic networks use to learn
functions. For a more complete description see the papers by Bochman and

Armstrong [Boch74), and Armstrong [Arms79, Arms30a, Arms90b].

Each ALN is a binary tree, initially set up with random functions at each of
the interior nodes, and with the k binary inputs to the tree randomly

distributed and randomly complemented onto the leaves of the tree. (Note

22
that the number of leaves should be at least twice k so that each input and its
complement can appear on a leaf, and preferably should be several times k so

that useful pairings occur close together on the tree.) For example:

and

1L
x0 x1 x1 x0 x0 x0 x1 x1

or

An ALN with 8 leaves, two inputs (x0 and x1), and one output

Now suppose that an input is presented to the tree for training, so we know
what the expected output is. First we check to see if the answer is correct. If it
is, the current behavior is reinforced. If not, the behavior is discouraged. To
adjust behavior we recursively traverse the tree looking for nodes that might
be responsible for the output. (In the example above, if we input X0=0, X1=1,
and expect a 1 we instead get a 0. We then recurse through the tree looking for
nodes which, if their output were changed, would cause the result of the tree
to change.) Note that If we determine a node is not responsible, then none of

its children are responsible either. Hence, training is parsimonious.

Since all four functions (and, or, left, right) produce the same valuc when
their input is (0,0) or (1,1), the trick lies in adjusting responsible nodes whose
inputs are either (0,1) or (1,0). For this purpose, two counters implemented in
each node keep track of the number of times a (0,1) or a (1,0) was encountered
by a node deemed responsible. If the desired output is 1 the relevant counter

is incremented; if 0, decremented. The counters are bounded; trying to

23

increment or decrement past their limit has no effect. In effect, each counter
tries to keep track if it is expected to produce a 1 or a zero for the case it is
tracking, If it is told more often to produce a 1 for this case than a 0, the
counter will increase over time; if it is told it should mostly be producing 0's
for this case, the counter will decrease. The following table itemizes the
possible ranges of values for these counters, the corresponding response of

the nude to the four possible input pairs, and shows how the counters induce

a function on the node:

(0,1) (1,0) output output output output induced
counter counter on (0,0) on (0,1) on (1,0) on (1,1) {function
<0 <0 0 0 0 1 and
<0 20 0 0 1 1 left
>0 <0 0 1 0 1 right
20 20 0 1 1 1 or

The relation between relative values in counters and induced functions

The problem occurs, of course, in the assigning of responsibility to a node. If
the wrong node is deemed responsible learning will be either hindered or
blocked. Early work used what is now called true responsibility; a node was
deemed responsible if changing its output would change the output of the
tree:

1) For an and node, if one child produces a 1, then the other child is truly
responsible; if they both produce a 1, they are both truly responsible

2) For an or node, if one child produces a 0, then the other child is truly
responsible; if they both produce a 0, they are both truly responsible

3) For a left node, the child on the left is truly responsible

4) For a right node, the child on the right is truly responsible

24
This resulted in very opportunistic learning that would fail to learn things
like exclusive or (where two nodes have to cooperate in order for the

function to be learned):

and

--"ﬁ~;,

or | or

x0 x1 x0 x1

ARLO tree implementing exclusive or

Current work also uses another form of responsibility called heuristic or error

responsibility . A simple form of heuristic responsibility is [Arms90b, p 5:
1) the root is always heuristically responsible

2) if a node is heuristically responsible and one of its input signals is not
equal to the desired network output then that input signal is called an

error

3) the child on the opposite side to the error is heuristically responsible

The motivation behind heuristic responsibility is that an erroneous input
signal (error) means that the tree on the other side needs to try harder to
compensate. Remember, the error may be coming directly from one of the

inputs to the tree, in which case it would be impossible to correct.

With a more sophisticated form of responsibility, incorporating both error
and heuristic responsibility, Lin [Arms99a, pp 19-20] was able to train an
adaptive logic network to learn a multiplexor with 8 control leads and 264
input leads to 99.9% accuracy, using 3 trees and a majori.y vote. Lin’s
algorithm implementing adaptive logic networks allowed the trees to grow in
size when the algorithm deemed it necessary. The network was only given

6000 of the 2264 possible inputs to train on. The network was not told which 8

25

of the 264 input leads were the control leads. (The values on the control leads

form a binary number in {0,...,255} that is used to select which of the other

leads input is passed through as the output. This is extremely impressive.)

-

A 6-multiplexor. Depending on the values on the two
control leads, one of the other four inputs is passed through.

5 Coding

5.1 Description of Problem

Each tree in an Adaptive Logic Network can learn one bit of a function. How
car: we use a collection or “forest” of trees to learn more complicated
functions? How can we best code our input to these forests to maximize their
ability to recognize features? This chapter explores several alternative
methods of coding and discusses their advantages and disadvantages. Along

the way we develop a set of heuristics for recognizing good and bad codes.

5.2 Radix-2 Codes

The traditional radix-2 binary codes used by nearly every computer today are

highly unsuitable for adaptive logic networks. When moving from a number
of the form 2¥1-1 to 2% Kk+1 bits change (for example, moving from 7,,t0 8,

is changing 0111, to 1000,, ie. 4 bits change). So adjacent features can have

codes that are arbitrarily far apart.

26

27
The number of bits that change between one number and another is known

as the Hamming distance, which we write | 1. This leads us to our first

heuristic:

code rule 1: The Hamming distance between close features should be as

small as possible.

5.3 Gray Codes

Gray codes are a cyclical reflected binary code. Cyclical binary codes have the
property that only one bit changes when moving from one codeword to the
next, so by code rule 1 Gray codes seem ideal. Gray codes are also reflected
codes: the n-bit Gray code is formed from the n-1 bit Gray code and a reflection

(with 1’s and 0’s reversed) of the n-1 bit Gray code. For example:

ofofolo 1 bit
010]0 \
0|0 J .
ol T 1 0 3 bit
o1 1 1
o1 0 1
oL1._ 0 0 .
T 1.0 0 §— 4 bit
1 1 0 1
1 1 1 1
1 1 1 0O
1 01 O
1 0 1 1
1 0 0 1
1 0 0 O

The 4 bit Gray code with mirrors

28
The first problem we notice is that the last code (1000) is only 1 bit away from

the first code (0000). This leads us to our second rule:

code rule 2: The Hamming distance between distant features should be as far

apart as possible.

As we will see later, this rule is probably the most problematical, since it has a

strong effect on how many code words we can fit into a given number of bits.

Both radix-2 and Gray codes pose another problem - the amount of
information coded in each bit is not equal. The least significant bit in both
codes toggles between every code word, while the most significant bit only
changes once. Misinterpreting the least significant bit even slightly means
missing out on fine details; it is often the sole indicator that we have moved
from one feature to another. Misinterpreting the most significant bit even
slightly means losing gross details; it is the sole indicator of which half of the

range of data the feature is in. This leads to the following rule:

code rule 3: Each bit in the codeword should contain about the same amount
of information; that is, each bit in the codeword should change
about the same number of times as you move from one

codeword to the next.

In the Gray code above the least significant bit changed 15 times, whereas the

most significant bit changed only once.

29
5.4 One Bit per Feature Codes

In this form of coding, each feature is assigned to a particular bit. n features

are coded in n bits. To code the numbers 0 through 4 we would use the codes

00001, 00010, 00100, 01000, 10000.

While the amount of information per bit is uniform, satisfying code rule 3,
the distance between the first two codewords is the same as the distance

between any two codewords, violating code rule 2.

5.5 Thermometer Codes

Thermometer codes each feature is again linked with a particular bit, but the
code words are formed by or-ing the new bit into the previous codeword. To
code the numbers 0 through 4 we could use: 0000, 0001, 0011, 0111, 1111.

Thermometer codes are unary (base-1) numbers.

Thermometer codes satisfy code rules 1 to 3; adjacent codewords are
hamming distance 1 apart, inputs that are n apart have codewords that are n

apart, and each bit flips the same number of times (once) as we go through the

codewords.

30
The problem with thermometer codes lies in their inefficiency. In an industry
where we are used to packing 2" codes into n bits, it appears extremely
inefficient to pack only n + 1 codes into n bits. This leads us to our next code

rule:

code rule 4: An efficient code should pack considerably more than n+1
features into n bits. Otherwise thermometcr codes should be

used.

We now focus in on codes that have higher densities of packing than

thermometer codes.

5.6 Combinatorial Walks

This is a moderately clever code based on combinations of k bits out of n. The

first (18) codewords (one codeword) is n 0's. The next G) codewords are all the

combination of n-1 0’s and one 1, on to the last codeword which is all 1’s.
Furthermore the codewords are ordered such that the Hamming distance
between successive codewords is two, except when we are switching k (the

number of 1’s) in which case the Hamming distance is one. For example:

000
001
010
100
110
101
011
111

A 3-bit combinatorial walk

31

Pseudo code for combinatorial walk:

Start with 0.0 /* n 0’'s */
/* k is the number of 1’s in the code to be generated */

for k from 1 to n
/* Add a 1 to the inside edge of the right- or left- */
/* justified group of 1's from the previous iteration */

if k is odd
form k 1’s by toggling the (n-k)th bit
permute (n bits, k 1’s, right_to_left)

else
form k 1’s by toggling the (k-1)th bit
permute (n bits, k 1's, left to_right)
endif
endfor

Function permute is a little more complicated, but is similar to the Towers of
Hanoi problem. To move k 1's left-to-right while hitting every permutation:
1) recursively move (k-1) 1's left-to-right as far as they will go.

2) slide the k’th 1 right one bit using two flips (one to turn it off, the other to
turn the new bit on). If done, stop.

3) recursively slide the (k-1) 1’s right-to-left until they are immediately to the
right of the k’th 1.

4) slide the whole group of (k-1) I’s one bit to the right using two flips (turn
off the leftmost bit, then turn on the 0 immediately on the right).

5) gotostepl.

The basis step requires sliding a single bit either left or right, which can be
done in two flips. Right-to-left moves are done in an analogous fashion. See
the code listings for a program that generates this walk for any given n

(combinatorialWalk.c).

Combinatorial walks fail due to code rule 2. Codes that are a long way away
map onto codewords that are very close. (Note that codes 001 and 011 are at

Hamming distance one, yet they are the second and second last codewords.) In

32

particular, the first code for k=i and k=i+2 are hamming distance 1 apart, but
n 3y
are C) + (i +1)steps apart.

Note that no code that packs 2" features into n bits is likely to do well on code

rules 1 and 2. Every tirme a new step is taken, there are up to G) unchosen
steps that are Hamming distance 1 away, up to G) unchosen steps that are

Hamming distance 2 away, etc.

At this point we stop searching for completely dense codes and focus instead

on codes that pack more than n+1 features into n bits, but less than 2".

5.7 Random walks

Random walks start from a given point on an n-dimensjonal hypercube (and
flip a small number p of bits at random. They then pick another p bits at
random and flip those. Each step is of Hamming distance p. Two points that
are several steps apart should differ in at least half their bits, since this should
be like choosing two points at random in the hypercube. So close codes
should differ by small multiples of p, and farther codes should differ by

n
around 5

Points are decoded by finding the closest (in Hamming distance) step on the
walk and returning the step number. A faster method of decoding, perhaps
using adaptive logic networks, would speed things up on sequential

machines. It is relatively st-aightforward to build special purpose hardware

using associative memory that would decode in a small fixed number of

33

cycles. See section 5.15 - Hardware for Decoding Walks, later in this chapter.

This does suggest, however, ire following code rule:

code rule 5: A good code should have a computationally efficient method for

decoding.

The naive random walk described here is not suitable. While distant steps
n

should be Hamming distance 7 apart, there is no guarantee. In fact, the path

could even intersect itself, leading to ambiguous codes. This leads us to our

last code rule:

code rule 6: A good code should guarantee a minimum Hamming distance

between distant features.

5.8 Constrained Random walks

Several refinements to Random walks immediately present themselves.
Checking to make sure that the path does not intersect itself is an obvious
improvement. Keeping track of recently flipped bits also helps to keep the
path locally nice, by ensuring that it steers away from neighborhoods it has

recently visited.

5.9 Sphere Packing

Sphere packing is used in the construction of error-correcting codes. Here
each codeword (at the center of a sphere of radius r) is guaranteed to differ by
at least 2.r+1 bits from any other codeword; each codeword is at Hamming

distance 2:r+1 or greater from every other codeword. To get an idea of why

34
sphere packing is difficult, consider what these “spheres” look like. A
Hamming sphere of radius r imbedded in a hypercube of dimension n can be
thought of as a tree whose root node has n- branches, and nodes at level i
from the root have n-i branches. For example:

~

¢ O O O O O ¢ O O O O Q)

A Hamming sphere of radius 2 on a 4 dimensional hypercube

If this Hamming sphere was imbedded in a 5 dimensional hypercube then the

root would have 5 subtrees each with 4 branches.

Note that higher dimensional hypercubes are also rot smooth objects, but
look more like spherical “porcupines” [Hech90, pp 42-3]. The following
diagram is adapted from Hecht-Nielsen’s book [Hech90, p 43]:

35

corners of unit cube.
Each edge of length

D (o)

n-dimensional
4 diameter 0.5 sphere inscribed
inside unit cube
(faces of cube
are tangential)

N-dimensional hypercube

Hamming codes are Hamming spheres of radius 1 that completely fill a
hypercube of any dimension n. Codes that completely fill a hypercube with

uniform size spheres are called perfect codes.

There is only one known perfect binary code with r>1: the Golay code. These
will be discussed in the next section. See MacWilliams and Sloane [MacW77]
and Berlekamp [Berl68] for a more complete description of error-correcting

codes.

Why are we interested in error correcting codes and sphere packing? We
would like to have codes that are forgiving; that is, if some small number of
trees in our forest give the wrong answer, we would like the coding to correct

the answer, or at least ensure that our answer is close.

Note that we do not need perfect codes. For our application, it is not necessary
to have every possible codeword be valid. Also note that we are more

interested in finding paths through a hypercube rather than an unordered

36
collection of discrete points (which is what sphere packing gives us). We want
to say “this codeword is close to the code for a 1; that codeword is close to the
code for a 10; this codeword is a long way from any of our cbdes and is suspect
(or alternatively, we may decide not to care where it maps).” For this reason,
traditional sphere packing and error correcting codes provide us more with

useful ideas and paradigms than with useful results.

5.10 Golay Codes

Golay codes [MACW?77 pp 64-69] are the only known perfect codes with sphere
radius other than 1. The only binary code is one with n=23 and sphere radius
3. Using Golay codes we can correct up to 3 bits of error in a 23 bit codeword.
Because the Golay codes are perfect, every 23 bit codeword is within hamming
distance 3 of exactly one sphere center. There are 4096 2'%) sphere centers,

totally covering the hypercube of dimension 23.

In other terms, Golay codes take boolean vectors of length 12 and code them
as boolean vectors of length 23. Up to three elements of the output vector can
be flipped and still have the vector correctly decoded back to the original
boolean vector. If more than 3 elements are flipped then the result will

decode incorrectly.

In the following section @ is used to denote binary addition (addition

modulo 2, or exclusive-or).

5.10.1 Some Properties of Golay Codes

A generating matrix Gyy4 for the Golay-24 code (the 23 element code with

parity) is [MacW77, p 516}:

—
—
-t
—
—

[e)
—

[y
—
—
—
b
-
—
bt bt d pd et ekt b ot b

To get a Golay-23 code we can delete any column in the above matrix

[MacW?77, 493].

Note that Goy is of the form [1 | A]. Gpy is self-dual, ie. GGT =0. Hence,

1® AAT = 0. Therefore AT = A-1. Also, if we define H as

1]
H= I
Then GH=HTGT=IA®AI=ASA=0.

5.10.2 Decoding Golay Codes

37

With this machinery in hand, suppose we encode an input boolean vector of

length twelve, u by:
x =uG
now,
xH = (uG)H = uw(GH) =0

Then suppose x gets garbled while being transmitted, and is received as y.

Define the error vector e as,

e=xPy & y=xDe

38

Now,
yH=(x®e)H = (uG®e)H =uGH @ eH = eH

yH is called the syndrome of y. Since H is a linear matrix, this means there is a

one-to-one correspondence between syndromes and correctable errors. Since

G4 has distance 3, we can correct up to 3 errors. Since G4 has parity, we can

detect 4 bit errors (and, if we knew where the fourth error was, correct it too).

We use G and its inverse H to code and decode 23 bit numbers as follows

1) At the start of the program define an array SC of size 212 (=4096), and set
each element of SC to 0.

2) For all error vectors e such that | el H <3, set SC[eH] =e.

3) For all errors vectors e such that | el H= 4 and (e ® 1) = 1 (ie. one of the
errors is in the parity bit), set SCleH] =e.

4 4 4 3
(We have just set (21)+ (22)+ (23)+ G,) = 4095 unique elements in SC;
SC[0] is the only element of SC that is still 0.)

4) To code u we return the leftmost 23 bits of uG.

5) When (the 23 bit quantity) y is received (with up to 3 errors), we shift it left
by one bit {possibly introducing a fourth error in the rightmost (parity) bit)
to form y’, calculate its syndrome (y'H), and look up its correction in SC.
The leftmost 12 bits (information bits) of the corrected y’ are returned. If
we use the convention that x « n means shift x left n bits, and x » n means
shift x right n bits we have:

((y«1) ® SCl(y « DH]) » 12

39
5.11 Golay Walk

The Golay walk was a failed attempt to get a good random walk. The idea was
to use the Hamming spheres imbedded in the 23 dimensional hypercube as

steps on the path. The walk was constructed as follows:

s = set of “Golay spheres”
r = random selection from S
n=20

walk[n] = r

remove r from S
While S is non-empty
a = any member of S adjacent to r

walk{++n] = a
delete all members of S adjacent to r (including a)
r = a

endWhile

This creates a “tube” of spheres, such that there is at least one sphere between
any two non-adjacent spheres on the path. Several variations on selecting a
were tried, with the most successful being the member of S adjacent to r with
the most number of adjacent spheres still in S. This resulted in a path of 30

spheres, each at distance 7 or 8 from each other. The path started at 0 and

ended at Ox7fffff.

When the tube was constructed, a thermometer code was used between steps

on the sphere, giving a final path length of 214.

It was expected that this path would be faster to decode. With Golay codes it is
possibie to calculate the center of the sphere containing a given code (this is
precisely how Golay codes are used for error correction). It was hoped that this
could be used to quickly locate one or more spheres on the the path that
would contain the closest point on the path. Unfortunately, points were
found such that the closest point on the path was not in a sphere adjacent to

the sphere containing the points. See section 5.14 - Using Golay Codes to

40
Optimize Decoding for more details. Also, it was eventually discovered that
the path actually came within Hamming distance 7 of self-intersecting at
several points, the closest being at Hamming distance 3 (see the program
mindist.c, which calculates the closest non-local Hamming distance between
points on the Golay walk). For these reasons, I no longer consider the Golay
walk to be of interest, although the current software still uses the Golay walk,
and consideration of them did lead to Helical Walks, which appear very

useful.

5.12 Helical Walks

Helical walks were developed after discovering the shortcomings of the Golay
walk. They are called “helical” walks because they maintain a minimum
distance between non-local points on the walk as they wind their way, a bit at
a time, through the hypercube. A count is kept of how many times each bit
has been flipped during the course of the walk so far, and less frequently used
bits are searched more often. The resulting walks are very balanced and have

some nice provable features.

There are two parameters to the helical walks, n and m, where n is the
dimension of the hypercube in which the walk takes place, and 2:m+1 is the
minimum distance allowed between “non-local” points on the walk (points

that are farther than 2-m+1 steps away).
Definition A helical walk H is an ordered sequence of points <hg, hy, ..., hpy>

such that

=1i-jl, li-jl<2m

. ciic
'hlehJ'H{zz-mn, li-j1>2msl T OSMER

41

Like any other walks, a point p in the hypercube is decoded by finding a point
h; on the walk H such that | p - h Il stp- hj |y Vhe H. The point is

decoded as i. Note that in general the point is not unique, as the following
theorem attests.

Theorem A point p within m of a point h; on the path will decode to a point

hj (i possibly equals j) such that | hj -hj |, <£2m. That is, it will decode to a

point that is local to h;.

Proof Suppose not. Then

| hj-hi IH>2-m

but

| p-h IHSm(given)

and

lp-hj lys!p-h | <m

(h)- has to be the same distance or closer than h; to p, else we would decode to

h;.) By the triangle inequality, this is a contradiction.

What happens if we flip more than 1 bit between steps on the walk? For
helical walks as described above there is nothing that can be proven.
However, for an improved form of helical walks we can prove something

useful.

Definition A helical parade is an ordered sequence of points <cg, €1, -+ Cn>

such that

42

=0, i=j
¢ @ |H{= 2m+1, li-jl=1 VvO0<£ijsn
22m+1, li-jl=22

So far this is not much different than a helical walk taking 2:m+1 steps at at

time. However, we would like to be able to say that no point ¢j comes within
Hamming distance 2:m+1 of any path connecting two adjacent points, say cj

and c;, 1, that sticks to the bits in ¢; ® ¢j.1- So, for the case i < j-1, we add the

further restriction:

| (ciGBc:j) and (¢ ®cjyq) | 22m+]

A helical parade between two points can be visualized as:

Two steps on a helical parade. No other parade step is allowed to come
within 2-m of any dot shown. Two possible helical paths are shown.

To derive a helical walk from a helical parade, we connect the centers by
changing the 2-m+1 bits where they differ one bit at a time. A thermometer
code on these bits would be just fine. (To connect 000 with 111 we could go

000,001,011,111 or 000,010,110,111.)

Theorem Let H be a helical walk derived from a helical parade, and for some

k, 1 <k £2:m+1, let Ry = <hg, hy, ho.i, > (Ry is every k’th step in H.) Now

44
let p be a point within m of a point h; € H. Then p will decode to hj e Ry

such that | h; - hj I sm. (That is, p will decode to a point local to h;.)

Proof

lp-h IHSm(given)

and

(o -+ Ry oo hj m) areall within m of h; (since His a helical walk)

now, one of {i-m, ..., i, ..., i+m)} is evenly divisible by k, since k £ 2:m+1 (call it

j), and hence h; e Ry and | hj-hy l,, S m. Therefore,
I p- hj ! H <£2m

However, by construction, all non-local points are > 2:m from h;. Note that

hj may not be the point we decode to; we have just shown that at least one

local point is within Hamming distance 2:m and no non-iocal point is

within 2-m.

Note that these strides through a helical walk constructed from a helical
parade give us exactly the kind of error correction we want. If we stride at k =
2.m+1 steps, then any answer which comes within m of a point on the

strided walk will decode to that point.

(Note: The helical walks were discovered too late into this thesis to be

incorporated; the Golay walk was used instead.)

45
5.13 Combinatorial Hypercompression

Combinatorial hypercompression is a code developed by Hecht-Nielsen
[Hech90, pp 210-214] where each feature is coded by setting k bits out of n to 1

(and the remaining n-k bits to 0). This allows the coding of G:) features into n

bits. For n = 1000 and k = 50 this allows 2282 features to be coded. A codeword x

is decoded by having n linear threshold units of the form:
n
Zi:zwij'xj=wi'x (1Si$n)
j=1

where w; are unit length weight vectors. In the case where k=1 we would pick
(by means of a competitive process) the unit i with z; equal to the maximum

of all the z;. For k>1 the k largest units win the competition, and the feature is

decoded accordingly.

The set of conditions for which the n values of w; can be found is, in general,

unknown. However, in the case where the x codewords are uniformly

distributed over the entire n dimensional unit hypersphere sphere the w; can
be chosen to be the n orthonormal basis vectors (unit vectors on the axes of

the hyperspace).

Note that combinatorial hypercompression is a tool for packing more features
into n bits; it is not a tool for coding real intervals. It is included here as an

interesting example of feature packing for linear threshold networks.

46
5.14 Using Golay Codes to Optimize
Decoding

The 23 bit Golay codes uniformly partition the space of 23 dimensional bit
vectors. We can use the Golay codes as sphere centers to decode efficiently all
points within r of our walk:

1) (Offline) For each sphere center, record which points on the walk come
within Hamming distance d=r+3, where r is the desired radius around the
walk (the spheres induced by the Golay codes are of radius 3). Points
outside this radius may not decode properly (see below).

2) To decode a point, calculate its sphere center then check only those points
recorded in step 1.

Note that a sphere at distance r+3 from a point on the walk will have at least

one interior point at distance r from the walk. Since the spheres are non-

overlapping and exactly fill the space, every point in the space is in some

sphere.

For the Golay walk described in section 5.11 - Golay Walk we get:

r=2 | r=3|r=4]|7r

d=5 | d=6|d=7]d=8
Maximum number of points recorded for any sphere 12 [27| 39 | 52
Minimum number of points recorded for any sphere 0 0 0 3
Average number of points recorded per sphere? 2 4 1111} 25
Number of spheres not within d of any point on walk | 2593|589 10 § O

That is, if we construct the tables above for r=3 (d=6), then at the cost of one

Golay decode we only need to check an average of 4 points on the walk to find

1 Not counting spheres with no points recorded.

47

the closest point on the walk. Our walk has 214 steps, so we are doing about

4
2% (573 of the work (on the average).

Note that we decode correctly only for points within r of the walk. To see why

points farther than r from the walk decode incorrectly, consider:

walk

Golay Sphere

INlustration of a shortcoming in the optimized decoder. The point on the left
is removed from consideration, even though it is the closest point.

Note that this method works for any walk over {0,1}23 with a minimum
distance greater than 2-r between non-local points on the walk. Since r=3 for
the Golay walk used in this thesis, this method of fast decoding was not used.

See the file fastdecode.c for programming details.

5.15 Hardware for Decoding Walks

Note that most of the walks used so far have been on the order of a few

hundred steps long. Walks of 210 (1024) steps will suffice for many

48
applications for some time, easily fitting into the 216 processing units

available today.

Circuits to decode such small walks in time proportional to the width of the
code independent of the number of steps should easily fit onto Programmable
Gate arrays or similar technology. Foster describes a content-addressable
parallel processor (CAPP) along with algorithms for finding the Hamming
distance and minimum in time proportional to the width of the codewords,

independent of the number of steps on the walk [Fost76,97,212].

6 The ALN predictor

The goal of this thesis was to use adaptive logic networks to predict the results
of the model used in chapter 3 Equations of Motion Simulator. An existing
program, Dynatree, was used that implemented this system for a three-
segment “worm” rolling around in a circular walled arena [Arms85]. Since
the environment was concave, the only points that need to be considered are

the two end points and the two joints of the worm:

The worm in its lair

As Chapter 3 attests, the model has many variables. Which of these should be
chosen for the predictor? The following section outlines the choices made

and the motivation behind them.

49

50
6.1 Variables Learned

The brute force approach of learning all 18 variables, most of which are
vectors and matrices, was quickly rejected. A biologically motivated decision
was made not to include any variable that described the inherent properties of
the worm itself. For example, the mass of each segment (m") was not
included since you and I do not use the weight of our arm when deciding
how to move it. Instead, we just move our arm around until we learn that
“pushing that hard makes it go that fast.” Similarly the acceleration of gravity
(ag), the position vector of the links (p7), the position of the center of mass
relative to the hinge (c"), the forces (f") between the links, the relative position

of the links (I"), and the moment of inertia matrix (Jr'were not included. Nor

were most of the rotation matrices (R'T, R, and R'f) used.

The variables chosen were the velocity (v7), acceleration (a"), angular velocity

(o), angular acceleration (&") and torques (g") at each hinge (the constraining

force (f) does not play a major role in the dynamics), the external forces (fp)
and torques (g}), and the angle at each of the two joints in terms of roll and
pitch (derived from (R")).t For consistency, and in keeping with an
unsubstantiated expectation of the biological model, all variables were

translated into the frame of the link.

Of these 8 variables, 6 are three dimensional vectors for each of the 3 links,

the roll and pitch are 2 numbers for each of 2 links, and the torque is a three

1 R. Lake argued persuasively that quaternions [Shoe85] should be used instead of roll and
pitch, indeed that all the rotation matrices be recast as (the wonderful! mathematical objects)
quaternions. While he convinced me that this is desirable, it is still on my list of “things to do
later.”

51
dimensional vector at each of the two interior hinges. That is, a total of 64

numbers that are both fed into and predicted by our ALN.

6.2 Quantizing the Variables

To determine the range of values each variable took on during the course of
execution, the simulator was changed to determine the minimum,
maximum, mean, and standard deviation. All available configuration files

for Dynatree were then run, giving the following results:

Quantity Variable name min max
a’ aH -500 500
f& FERf -3000 4000
gk GEHR' -3000 3000
g" gH -150 150
(R") roll&pitch -1.57 1.57
oF omega -35 35
QW omegadot -1500 2000
v’ vHR? -18 11

Since the Golay walk was used, all variables were quantized to 214 levels

using 23 bits.

6.3 Other ALN Parameters

Having 64 variables each quantized into 23 bits, gives 64-23 = 1472 input bits.

Since both the input bit and its complement must be fed in, this requires a

t the R at the end of these variables names indicates they have been translated into the frame
of the link.

52
tree with at least 1472:2=2944 leaves. Since it is highly desirable to have room
for at least two copies of the input, and since tree sizes that are powers of two
are marginally more efficient, the initial size of each tree was set to 8192

leaves (therefore having 8191 internal nodes).

The trees were trained on 1000 input vectors for a maximum of 10 epochs
(presentations of the training set). The training data was derived by
instrumenting the original dynamics program and having it write out the
values of all 64 variables after each time slice. A separate program (stride) was
then run to pick out every nth line and its successor from this file, appand the
successor on the end of the nth line, and write it out. Hence the trees were
trained with uniform samples of what the variables looked like before and

after a time slice in the original program.

The trees were then tested on 9000 samples from the same data. One in nine

tests was seen during training.

6.4 Analyzing the Results

6.4.1 What Can We Reasonably Expect?

Perfect prediction is an unrealistic goal for an ALN. The ALN sees and
predicts quantized numbers. Suppose an output value v is quantized to level
i in the test set, which causes the ALN to predict quantization level i in the
output. Then during testing, a value v'is seen, where v’ is just enough
different from v to cause it to quantize to i+1. In this case, it is within reason
for the ALN to predict any of quantization levels i-1, i, or i+1 as the result. So

even “perfect” learning could cause the network to be off bv one quantization

53

level. If we allow the ALN to be off by one quantization level during training,

a similar argument leads us to conclude that errors of 3 quantization levels

are reasonable.

Training Testing
i+1 —?—
S
i-1 ——— —_—
i-2 —e—

@ original value @ quantized value & predicted value

How “learn within one quantization level” turns into errors of three
quantization levels. Note the original value on the right is slightly displaced
from the one on the left

So, if the mean and the standard deviation suggest that 95% of the time we

are within 3 quantization levels, we have an ALN that is very near optimal.
6.4.2 A View of the Raw Data

The complete ALN takes two to three days to train on a lightly loaded Sun
SPARCStation I. The test results were the output of 1f after piping them
through histogram, The result is a histogram of errors that says, for each

variable learned, “the ALN had m errors of magnitude n.”

The results were characterized by having a small number of outliers - values
a long way from the mean. While few in number, each has an enormous

effect on the mean. For example, the results for the third variable (a’(1][z])

look like this:

54

6300 at correct quantization level 1
1854 out by 1 quantization level
343 out by 2 quantization levels
185 out by 3 quantization levels
109 out by 4 quantization levels
48 out by 5 quantization levels
31 out by 6 quantization levels
12 out by 7 quantization levels
21 out by 8 quantization levels
21 out by 9 quantization levels

out by 10 quantization levels
out by 11 quantization levels
out by 12 quantization levels
out by 13 quantization levels
out by 14 quantization levels
out by 15 quantization levels
out by 16 quantization levels
out by 17 quantization levels
out by 18 quantization levels
out by 19 quantization levels

Ao WNhOYWd JooPP

The remaining 18 values were spread between errors of quantization levels
from 20 through 151. Removing the last 18 values cause the mean to drop

from .6953 to .5795 and the standard deviation to drop from 3.4881 to 1.5434.

6.5 Statistical Methods Used

This section provides a brief description of each of the statistical methods
used to analyze the test results from the ALN predictor. The descriptions are

drawn from Harnett [Harn75] and Gellert et all [Gell75].
6.5.1 Mean

The mean of a collection of numbers is the average value, in our case the

average number of quar'ization units of the error. Its formula is:

op

1
B=L " X

1

i
6.5.2 Standard Deviation

Standard deviation is a measure of the variability of the data. For data with a

normal distribution (we have a Poisson distribution, since we do not record

55

the sign of the errors; this does not in and of itself affect the standard
deviation) the rule of thumb is 68% of all data is within one standard

deviation, 95% within two. Its formula is:

n
1
8= =" Zl(xi- 2
i=

6.5.3 Standard Error of the Mean

This is a measure of the expected error when using the mean to make
conclusions about the general population from the sample. Its formula is:
d
8y ==
Vn

6.5.4 5% Trim

This numbe: i 1 of the data not including the most extreme 5% of
the sampi~ I ... i, useful measure to us, since it tells us what would

happen if thie “ouusers” (the er: s that are a long way from the median) were

removed.

6.5.5 Median

This is the value in the middle, x,,.
2

6.5.6 Interquartile Range (IQR)

The IQR is X3.5, - X,,. Since it contains the middle 50% of the values, and one
1 4

standard deviation covers approximately 68% of the values, multiplying the

68
IQR by 55 gives us a rough approximation of the standard deviation. For our

56
purposes, using the IQR to estimate the standard deviation gives us a good
indication of what the standard deviation would look like without the

outliers.

6.57 Maximum Error

This is the maximum error value recorded, xp. (The minimum error in

every case was 0).

57

6.6 Results
At the end of training, each variable was learned to the following accuracy:
ouantity | Mean | Std Dev| Std Err | 5% Trim Median| IQR Max
ar
best| .6953| 3.4881 0368 3332 .0000| 1.0000] 151.0000
worst| 2.8976| 9.3316 0984 1.3563] 1.0000| 2.0000| 168.0000
fe
best] .7422(2.8522 .0301 4389 .0000| 1.0000} 161.0000
worst| 4.0970] 15.2223 .1605 1.4733| 1.0000| 2.0000| 181.0000
8k
best| .7540| 2.7485 0290 4857] .0000{ 1.0000| 156.0000
worst] 2.5918| 9.2039 0970 1.1065| 1.0000| 2.0000} 150.0000
gr
best] 1.1401 9347 .0099 1.0737| 1.0000{ 1.0000(10.0000
worst| 1.5663] 1.6206 0171 1.3957| 1.0000| 2.0000} 21.0000
R
best] .5246| 3.2197 .0339 .3900 .0000} 1.0000| 212.0000
worst| 1.1103] 8.1942 0864 .6654| 1.0000] 1.0000] 213.0000
oF
best] 1.0896(1.6230 0171 9591 1.0000| 2.0000] 95.0000
worst| 2.5804| 11.8330 1247 9584| 1.0000{ 1.0000] 190.0000
g
best] .9749| 3.2439 0342 6127\ .0000| 1.0000| 162.0000
worst| 3.6872| 10.5746 1115 1.9826| 1.0000{ 2.0000| 190.0000
v’
best] .8927| 1.5956 0168 .7425{ 1.0000| 1.0000{ 78.0000
worst| 2.4616| 9.6765 .1020 1.0393| 1.0000| 2.0000| 166.0000

(Notes: fy, g%, and v" were translated to the frame of the link before training, g"

is 0 for the first link (and hence was not included), and R” was transformed

into the roll and pitch (in radians) betweer: links. For the complete table, see

Appendix I - Complete Training Results. SPSSX was used to do the analysis.)

58
6.7 Conclusions

These results clearly show the viability of the ALN predictor, albeit with some
caveats. The “best” mean and standard deviation for each variable are all
reasonable approximations. The exciting numbers come from the 5% Trim
and the IQR. These indicate in every case, that if the problem of the outliers
can be solved, the ALN prediction would be very close to the best that can be

expected.

How can these outliers be eliminated or reduced? Training three or five trees
and doing a majority vote has improved performance of ALNs in similar
circumstances [Arms90b), although the increased memory requirements (3 to
5 times) is a definite drawback. Early tests indicate no improvement with
majority vote. A better walk for quantizing, like the helical walks of chapter 5,
may help reduce the number of spurious errors. Finally, the simple expedient
of not allowing any variable to change value by more than 10% should both
limit the range of the errors seen, and reduce the time taken to dequantize

(we only need to check 20% of the steps on the path).

7 Modifications to Software

This thesis involved a lot of programming. The following briefly outlines the

major areas of development.

7.1 Dynamics

7.1.1 Statistics Gathering

In order to effectively quantize the variables used by the ALN predi »Or, the
minimum, maximum, mean, and standard deviation of each of the variables
needed to be accumulated. The file stats.c contains a moderately clever
implementation of mean and standard deviation that allows incremental
updates of the values to date. That is, it calculates the 7 .ean and standard
deviation of n numbers from the mean and standard deviation of the first n-1
numbers and the nth number. For an excellent reference work cin much of

the field of mathematics including statistics, see Gellert et al [Gell75].

Note that just finding the minimum and maxiinum is not good enough.
From the mean and standard deviation we can tell when we should be
focussing more on the typical values than on the entire range. The software is
set up so that values outside the minimum and maximum used for

quantizing are mapped onto the closest endpoint.

59

60

7.1.2 Journaling of Values

After the effective range of values was discovered, the raw data needed to be
written out for training. This was a straightforward insertion of print

statements into main.c.

7.2 If

7.2.1 Multiple Codomains

The biggest deficiency, from the perspective of this thesis, with the language If
[L+vel80], was that it only supported ¢ e codomain. So the YACC grammar for

If 'n synan.y was modified to add the following statements:

codomain dimension = {integer}
The associated code was also added to If.c.
7.2.2 Save and Restore

The grammar for 1f was modified to allow training of a previously created
tree to be specified instead of specifying the function and the ..ee. The
program definition was changed from:

program : function_spec tree_spec
| tree_spec function_spec
;
to
program : function_spec tree_spec
| tree spec function_spec
| train_spec
14

61

and the following definitions were added at the bottom:

train_spec : TRAIN train_statements
{ train_flag = TRUE; }

train_statements : train_statement
| train_ statements train_statement
;
train_statement : min_correct
| max_epochs
| train_table_size
| train_table
| test_table_size
| test_table

All the referred symbols to were already defined. This also requirea changes

to lf.c.

7.3 Atree

7.3.1 Fast-Trees

In sectio: 6.3 - Other ALN Parameters, we mentioned that we have 64 - 23
trees, each initially with 8192 leaves (and 8191 interior nodes). Each internal
node takes 8 bytes of storage; each leaf node takes 4 bytes. Since the rumber of
internal nodes in a binary tree is 1 less than the number of leaves, the total
memory requirements for the trees are: 64 - 23 - 8192- 12 = 144,703,488 =

138M, which is clearly unmanageable.

However, this is before compression; each tree has a lot of left and right nodes
which are not necessary after training. The uriused subtree in each case may
also be deleted. Typical compressions run between 5-30% of the original size,

taking us down to the range 6.90 to 41.4M.

62
Further reduction of memory requirements is still possible, since vse do not
need to store the interior nodes of an and-or tree. To see this, consider a leaf
of the tree: it must be evaluated if and only if all the ands on its path to the
root have 1's preceeding, and all the ors have 0's preceding, otherwise the

leaf’s input will not affect the output of the tree.

Conceptually, for each leaf we store:

bit_index complement_flag branch_if_0 branch_if_1

We look up the input bit using the index, complement it if complement_flag tells us

to, then follow one branch or the other depending on the result.

Alternatively, a fast tree can be viewed as a binary decision tree based on the possible

values of the input.

For example,

and
or or
X0 X1 X0 X1
becomes:
Leaf No. Bit_index = Complement B. aich_if 0 Branch_if_1
0: 0 0 1 2
1: 1 1 4 2
2: 0 1 4 3
3: 1 0 4 4

The output of the tree is the last bit value we looked at. Note that branches to

leaf 4 stop the calculation.

63

To convert a tree to a fast_tree we can use a global array ft indexed from 0 to
the number of leaves (nleaves) - 1, a global variable leafnum to keep track of

our location in ft, and a post order recursive traversal function ftc:

frc(node, next if 0, next_if 1)
atree *node;
int next if 0, next_if 1;
{
switch(node -> tag) {

leaf:
ft [leafnum] .branch_if 0 = next_if 0;
ft [leafnum] .branch_if 1 = next_if 1;
ft [leafnum] .bit_index = node -> bit_index;
ft[leafnum] .complement = node -> complement;
leafnum--;
break;

and:
ftc(node -> right, next_if 0, next if 1);
ftc(node -> left, next_if_0, leafnum+l);
break;

or:
ftc(node -+ richt, next_if_ 0, next if 1)7
ftc(node -> left, leafnum+l, next_if 1);
break;

}
To start things off:

leafnum = nleaves - 1;
ftc(root, nleaves, nleaves)Y

Note that one of the two branches will always be to the next leaf. (If this were
not true, then one of the leaves could be cut from the tree with no effect.) So
to get rid of the branch_if_0 field we set the complement flag so that we go to
the next leaf if the (possibly complemented) input bit is a 0, and follow the
branch_if_1 pointer if it is 1. A second flag field (complement_out) is used to
keep track of whether or not the output of the tree needs to be complemented.
This flag only needs to be checked if this is the last leaf processed. The case for

a leaf in the above code becomes:

64

leaf:
if(next_if 0 == leafnum + 1) {
ft [leafnum} .branch_if 1 = next_if 1;
ftfleafnum] .bit_index = node -> bit_index;
ft [leafnum] .comp_input = node -> complement;
ft{leafnum] .comp_output = 0;
} else {

assert (next_1if 1 == leafnum + 1);

ft [leafnum] .brench if 1 = next_if 1;

ft [leafnum] .bit_index = node -> bit_index;

ft [leafnum] .comp_input = ! (node -> complement) ;
ft [leafnum].comp_output = 17

}
leafnum--;
break;

Since our trees have at most 213 (8192) leaves, and our input vector is 6423
bits long which is less than 26.25, with our two complement bits we need
13+6+5+2 = 26 bits which easily fits into a four byte integer. The total tree size

was 4.2M after compression anil conversion to the above tabular form.

This tabular form is called fast_tree, because it allows us to evaluate the tree
in about 30% of the time of the original form (accordiiig to R. Mandershied; 1
did not verify this). Code for converting regular trees (atrees) to and from

fast_trees, and for saving and restoring fast_trees was written and added to

atree.c.
7.3.2 Golay Walks

A fair bit of time was spent familiarizing myself with Golay codes, and
developing the code that produced the Golay walk. See golay.c, and mindist.c

for representative samples.

The resulting walk was incorporated into atree_rand_walk in atree.c, being
automatically selected if the width of the walk was 23 and the number of steps

times the stride equaled 214 (the number of steps on the Golay walk). Note

65

that a fixed walk is necessary; the ALNs are trained relative to a given walk. If
we save the ALN, we must either save the walk, or, as in our case, be able to

reproduce it. My personal feeling is that good walks should be developed off-

line and used when appropriate.

7.4 Utilities

7.4.1 fold

fold takes two adjacent journal output lines from the dynamics and appends
one onto the end of the other. So lines & and 2 get appended, then line 2 and 3
get appended, etc. This makes each line output contain the value of all 64

variables before and after each time step (for a total of 128 values per line).

74.2 stride

stride goes through the massive data files produced by fold and extracts every

n’th line, where n is a parameter. It can also be told to stop after m lines of

output, where m is a second, optional parameter.

743 right

right was used originally to delete all but the 4 rightmost columns of numbers
in the output produced by 1f, which was producing 130+ nuibers per line (all
input 64 variables, their quantization step, the actual and expected output and
associated quantization steps). This broke both awk and nawk which were

used by histogram to get the values reported in section 6.4 - Results.

66
I decided it was more efficient to just modify If to not write out the input
variables. I also discovered a UNIX utility, cut, that can perform similar

duties.
7.4.4 make.worm.lf

This shell script builds a file called worm.1f, that contains the input for If. It
sticks the quantization information and the trec description at the top of the
file, uses stride to produce the training data, sticks some 1f lines in to mark the
start of the test data, and finally uses stride to produce the test data. It can be

quickly configured by changing some shell variables at the start of the file.

7.4.5 squash

This utility takes an ALN that has been saved by atree, compresses it and

converts it to a fast_tree, and then writes it out.
7.4.6 mindist

This utility performs an exhaustive search to find the closest the Golay walk
comes to intersecting itself. (The answer, alas, is 3.) A more careful walk
between the sphere centers could probably increase this distance. (I used a
thermometer code to connect the sphere centers found by the algorithm in
section 5.11 - Golay Walk. While the sphere centers are at least Hamming
distance 7 apart, a random walk between the centers can, and did, veer
towards another point on the walk.) One way to impz«ve the walk would be
to choose different connecting walks between the two pairs of Golay spheres

involved, then iterating until the minimum distance is at a desirable level.

How the Golay walk can come so close to intersecting
through poor choice of connecting steps

67

8 Conclusions

In this thesis, adaptive logic networks were shown to be capable of reasonable
predictions of motion using a moderate (5 megabytes) amount of memory.
Since the original tree size was 8192 leaves on a balanced tree, if implemented
in hardware, each tree would take a maximum of 13 propagation delays to
compute. In section 5.15 - Hardware for Decoding Walks, a circuit was
referenced that can decode a result in twice as many cycles as the width of the
codewords. Since our codewords are 23 bits long, the resulting system could
take on the order of 13+23-2 = 59 times the speed of an and or or gate’s

propagation delay.

Along the way we discovered two useful walks for use in coding (section 5.12
- Helical Walks), a fast method for decoding a class of useful walks over {0,1)23
(section 5.14 - Using Golay Codes to Optimize Decoding), and a
computationally and memory efficient method of reprosenting ALNs on

sequential machines (section 7.3.1 - Fast-Trees).

Given more opportunity to work on this program, I would like to finish
installing the ALN predictor into the dynamics program, switch to helical
walks for the coding, and recast the dynamics routines using quaternions

instead of rotation rmatrices.

68

9 Bibliography

[Ande88]

[Arms79]

[Arms85]

[Arms90a]

[Arms90b]

[Berl68]

(B1l+mB87]

[Boch74]

[Donn87]

[Dwel90]

Andersson, R. L. 1988. A Robot Ping-Pong Player: Experiment in
Real-Time Intelligent Control, Cambridge: Massachusetts: The

MIT Press.

Armstrong, W. W. Gecsei, J. 1979 Adaption Algorithms for
Binary Tree Networks, in IEEE Transactions on Systems, Man,
and Cybernetics, Vol 9, no. 5, May 1979. pp 276-285.

Armstrong, W. W., Green, M. 1985. The Dynamics of
Articulated Rigid Bodies for Purposes of Animation, in
Proceedings of Graphics Interface 85. pp 407-415.

Armstrong, W. W, Liang, J., Lin, D., Reynolds, S. 1990.
Experiments using Parsimonious Adaptive Logic, Technical
Report TR 90-30. Department of Computing Science, University
of Alberta, Edmonton, Alberta, Canada.

Armstrong, W. W. 1990. Lazy Learning in Logic Networks, Draft
version June 15, 1990.

Berlekamp, E. R. 1968. Algebraic Coding Theory. New York:
McGraw Hill.

Blume, C., Jakob, W., Favaro, J. 1987. PasRo: Yescat and C for
Robots, second Extended Edition. New York: {pringer-Verlag.

Bochmann, G. V., Armstrong, W. W. 1974. Properties of
Boolean Functions with a Tree Decomposition, in BIT 14. pp 1-
13.

Denner, M. D. 1987. Real-Time Control of Walking. Boston:
Birkhauser.

Dwelly, A. 1990. An Implementation of Adaptive Logic
Networks. Draft version November 11, 1990.

69

[Fost76]

[Gell75]

[Gesc83]

[(Gold85]

[Gruv84]

[Guez88]

[Harn75]

[Hech90]

[Koza%0]

[Lake90]

[Lieb77]

70

Foster, C. C. 1976. Content Addressable Parallel Processors. New
York: Van Nostrand Reinhold.

Gellert, W., Kiisther, H., Hellwich, M., Kastner (Eds) 1975. The
VNR Concise Encyclopedia of Mathematics. New York: Van
Nostrand Reinhold.

Geschke, C. G. 1983. A System for Programming and Controlling
Sensor-Based Robot Manipulators. In Lee, C. S. G., Gonzalez, R.
C., Fu, K. S. (Eds), Tutorial on Robotics, second edition 1986, Los
Angeles: California: IEEE Computer Society Press. pp 560-566.

Goldman, R. 1085. Design of an Interactive Manipulator
Programming Environment, Ann Arbour, Michigan: UMI
Research Press.

Gruver, W. A, Soroka, B. I, Craig, J. J., Turner, T. L. 1984.
Industrial Robot Programming Languages: A Comparative
Evaluation. In Lee, C. S. G., Gonzalez, R. C., Fu, K. S. (Eds),
Tutorial on Robotics, second edition 1986. Los Angeles,
California: IEEE Computer Society Press. pp 455-475.

Guez, A., Selinsky, J. 1988. A Trainable Neuromorphic
Controller. In Journal of Robotic Systems, Volume 5, Number 4.
pp 363-388.

Harnett, D. L. 1975. Introduction to Statistical Methods, Second
Edition. Don Mills, Ontario: Addison-Wesley.

Hecht-Nielsen, R. 1990, Neurocomputing, Don Mills, Ontario:
Addison-Wesley.

Kozakiewicz, C., Ogiso, T., Miyake, N. P. 1990. Calibration
Analysis of a Direct Drive Robot, in Proceedings of IROS’90 IEEE
International Workshop on Intelligent Robots and Systems’90.
pp 213-220.

Lake, R. M. 1970. Dynamic Motion Control of an Articulated
Figure. Masters Thesis, University of Alberta, April 1990.

Lieberman, L. L., Wesley, M. A. 1977. AUTOPASS: An
Automatic Programming System for Computer Controlled
Mechanical Assembly. In Lee, C.S. G., Gonzalez, R. C., Fu, K. S.
(Eds), Tutorial on Robotics, second edition 1986. Los Angeles:
California: IEEE Computer Society Press. pp 540-552.

[Loza83]

[MacW77]

[Meis90]

[Mel90]

[Mi1188]

(Mits85]

[Moha88]

[Moha90]

[Mujt82]

[Naka85]

[Raib86]

[Shim84]

71

Lozano-Pérez, T. 1983. Robot Programming. In Lee, C. S. G,
Gonzalez, R. C., Fu, K. S. (Eds), Tutorial on Robotics, second
edition 1986. Los Angeles: California: IEEE Computer Society
Press. pp 455-475.

MacWilliams, F. J., Sloane, N. J. A. 1977. The Theory of Error
Correcting Codes, New York: North Holland.

Meisel, W. S. 1990. Parsimony in Neural Networks. In
Proceedings 1JCNN-90-WASH-DC, volume 1. pp 443-44¢€

Mel, B. W. 1990. Connectionist Robot Motion Planning: A
Neurally-Inspired Approach to Visually-Guided Reaching.
Toronto: Academic Press, Inc.

Miller, G. S. P. 1988. The Motion of Snakes and Worms. In
SIGGRAPH '88 Conference Proceedings. pp 169-178.

Mitsuishi, M., Shimoyama, I., Miura, H. 1985. Development of
Concurrency Oriented Language "COL". In Proceedings of the
'85 International Conference on Advanced Robotics. pp 87-94.

Mohamed, A. S., Armstrong, W. W. 1988. Measuring Learning
Progress in Intelligent Autonomous Robots, Journal of Robotic
Systems, Volume 5, Number 6. pp 583-607.

Mohamed, A. S. 1990. A Neural Trees Architecture for Rule-
Based Control of Motion, (unpublished).

Mujtaba, M. S., Goldman, R., Binford, T. 1982. The AL Robot
Programming Language. In Lee, C. 8. G., Gonzalez, R. C., Fu, K.
S. (Eds), Tutorial on Robotics, second edition 1986. Los Angeles:
California: IEEE Computer Society Press. pp 530-539.

Nakano, M., et al 1985. TL-10: A Programming Language for
Assembly Robots. In Journal of Robotic Systems, Volume 2,
Number 3. pp 277-288.

Raibert, M. H. 1986. Legged Robots That Balance. Cambridge,
Massachusetts: The MIT Press.

Shimano, B. E., Geschke, C. C., Spaling 1II, C. H. 1984. VAL-II: A
New Robot Control System for Automatic Manufacturing. In
Lee, C. S. G., Gonzalez, R. C,, Fu, K. S. (Eds), Tutorial on
Robotics, second edition 1986. Los Angeles, California: IEEE
Computer Society Press. pp 476-490.

[Shoe85]

[Shri89]

[TakaB81l]

[Tayl82]

Shoemake, K. 1985. Animating Rotation w ith Quaternion
Curves, Proceedings of SIGGRAPH 85, vol 19, no. 3. pp 245 - 254.

Shriver, B. 1989. Artificial Neural Systems. (Video Notes from
an International IEEE Broadcast.) Los Alamitos, California: IEEE
Computer Society Press.

Takes» K., Paul, R. P. 1981. A Structured Approach to Robot
Programming and Teaching. In Lee, C. S. G, Gonzalez, R. C,, IFu,
K. S. (Eds), Tutorial on Robotics, second edition 1986. Los
Angeles: California: IEEE Computer Society Press. pp 514-529.

Taylor, R. H., Summers, P. D., Meyer, J. M. 1982. AML: A
Manufacturing Language. In Lee, C.S. G., Gonzalez, R. C,, Fu, K.
S. (Eds), Tutorial on Robotics, second edition 1986. Los Angeles:
California: IEEE Computer Society Press. pp 491-513.

Appendices

73

I Complete Training Results

Quantiiy | Mean | Std Dev| Std Err |5% Trim| Median]| IQR Max
or[1][x] 9567| 3.8785 .0409 4937 .0000| 1.0000] 123.0000
a’{1]ly] 1.3177 5.1049 .0538 6738 1.0000] 1.0000| 127.0000
alf 1]z} €353 3.4881 .0368 3332 .0000| 1.0000| 151.0000
wux] | 1.5458| 4.8937| .0516 9333] 1.0000] 1.0000] 164.0000
r 2ilyl 2.8976 9.3316 .0984 1.3563 1.0000| 2.0000} 168.0000
w(2]lz] 1.2856 5.5183 .0582 6627 1.0000} 1.0000] 187.0000
a"[3][x] 9876 3.9478 .0416 5246 0000} 1.0000] 146.0000
a"(3llyl 2.3504| 9.1580 .0965 .8891 00001 1.0000] 194.0000
ar[3](z] .9398 4.1653 .0439 4772 .0000| 1.0000{ 134.0000
fH1lix] 1.0074 4.0569 0428 5957 .00001 1.0000] 171.0090
.FrEI iyl 1.4591 5.9345 .0626 .6352 .0000} 1.0000} 147.0000
fe1llz] 1.4899| 9.5086 1002 6569 1.0000] 1.0000{ 208.0000
f'EIZH.‘{] 2.3297 7.9880 0842 1.0864 1.0000| 2.0000} 169.00C *
fe2ilyl 1.4849| 5.6262 .0593 8546 1.0000| 1.0000} 166.0000
fH2 /¢4) 4.0970] 15.2223 .1605 1.4733 1.0000| 2.0000} 181.0000
fri31lx] 7422 2.8522| .0301 43891 .0000] 1.0000{ 161.000"
fr513][y] 1.4091 5.4494 .0574 7037 1.0000} 1.0000} 130.0000
fel3llz] 9499 4.3894 .0463 036 1.0000| 1.0000| 171.0000
gH1 Nx] 2.1521 8.9944 .0948 1.0720 1.0C00} 2.0000| 175.0000
gH1 Iyi 1.0352| 513235 .0543 5065 1.0000| 1.0000 190.0000
gH1 Iz] 2.58981 8.6725 .0914 1.2805 1.0000| 2.00001 135.0000
SHZH"] 1.6510| &.2307 .0657 .8709 1.0000| 1.0000| 186.0000
gE[Z][y] 2.3092 8.8115 .0929 1.0235 1.0000| 2.0000] 154.0000
gH2 Nzl 2.5918} 9.2039 .0970 1.1065 1.0000| 2.0000| 150.0000
g;:[3][x] 1.3683| 4.9512 .0522 .8756 1.0000| 1.0009] 205.0000
gE,[3][y] .7540| 2.7485 .0290 4857 .0000] 1.0000} 156.0C00
gi,[S][z] 1.2713| 4.6701 .0492 7786 1.0000| 1.0000] 123.0000

74

75

Quantity | Mean | Std Dev| Std Err [5% Trim Median | IQR Max

wl2ix] | 11401 9347| .0099| 1.0737] 1.0000] 1.0000| 10.0000
w20yl | 13799 12432| .0131| 1.2780| 1.0000| 1.0000| 21.0000
o2z} | 1.4026] 15112f .0159| 1.2377| 1.0000f 2.0000| 31.0000
izl | 12654 14396| 0152 1.1293| 1.0000) 2.0000 69.0000
2131yl 8i30| 13346 .0141 .6785] 1.0000| 1.0000{ 82.0000
@izl | 1.5663] 16206] .0171] 1.3957] 1.0000] 2.0000] 21.0000
roll[1] 9010 3.3505| .0353 7488 1.0000] 1.0000[211.0000
pitch[1] 8601| 6.1298| .0646 5415|0000} 1.0000] 213.0000
roll[21 5246| 3.2197| 0339 3900 .0000| 1.0000| 212.000G
pitch(2] | 1.1103] 81942 .0864 .6654| 1.0000] 1.0000] 213.0000
ol | 24372] 88949| .0938| 1.3742| 1.0000] 2.0000 193.0000
off1llyl | 2:5804| 11.8330| 1247 .9584| 1.0000| 1.0000| 190.0000
wllfz] | 1:3923] 17540 0185 1.2020] 1.0000{ 2.0000 69.0000
Ji2)x] ! 11567 4.3201| .0455 .8043| 1.0000| 1.0000 | 199.0000
w2yl | 10754 61574) 0649 .5857| 10000 1.0000| 178.C000
il | 1089 1€230) 0171 9591| 1.0000| 2.0000} 95.0000
oyl | 14718] 6.1425] 0648 9116| 1.0000| 1.0000| 190.0000
o3yl | 10385 44601 0470 4953} .0000| 1.0000 | 103.0000
o3z | 13601 217, .0202| 1.2133] 1.0000{ 2.0000 109.0000
i1l | 1.7654] 5.9808f .0630 8331 1.0000] 1.0000| 127.0009
wlllly] | 15493) 53569{ 0565 .8032| 1.0000| 1.6000| 113.0000
wigz | 2426¢! 82928 .0874| 1.1459] 1.0000 2.0000 | 147.0000
W2x] { 25163| 83645\ .0882| 1.1831] 1.0000| 2.0000}202.0000
W2lly] | 1-5250] 5.6957| .0600 7959] 1.0000} 1.0000| 133.0000
wzry | 36872| 105746 .11:5{ 1.9826] 1.0000| 2.0600} 190.0000
o3l) 1.8177] 54913 0579 .9964| 1.0000{ 1.0C00{ 119.0000
FI3lly] 9749 3.2439| .0342 6127 .0000{ 1.0000| 162.0000
W3z | 35831 9.8990| .1043] 1.9688| 1.0000; +.0000 156.0000
Tl | 24616] 96765, .1020] 1.0393] 1.0000| 2.0000] 156.0000
vyl | 12039 4. 7| .0436 .8238| 1.0000§ 1.0000 | 151.0000
wiilizi | 12160 6.1453] .0648 .5004| .0000{ 1.0000| 130.0000
v{2]ix] 8421 4.9815[.0525 .5556| 1.0000| 1.0000 | 198.0000
7121l 9913 25479 .0269 .7832| 1.0000] 1.0000} 130.0100
v[2lz] | 1.6767| 87233 .0920 6068 1.0000] 1.0000| 174.0000
vi3)lx] | 1.5726] 7.7803| .0820 9511| 1.6000| 2.0000 | 180.000C
{31yl 8927] 1.5956| .0168 .7425| 1.0000{ 1.0000| 78.0000
v3][z] 6168| 3.1632| .0333 3644} .0000| 1.0000| 130.0000

II Code Listings

The code listings for this thesis are contained on a Macintosh 800K diskette. If

vou did not get a diskette wvith ‘ps thesis, contact the auther.

76

