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ABSTRACT

Almost all natural soils are highly variable and rarely homogeneous. Soil
heterogeneity can be classified into two main categories. The first category is lithological
heterogeneity, which can be manifested in the form of soft/stiff small soil volumes
embedded in a stiffer/softer larger media of different soil types. The second source of
heterogeneity can be attributed to soil inherent spatial variability, which is the variation
of soil properties from one point to another in space due to variation of deposition

conditions and loading history.

The main objective of this study is to clearly understand the design consequences
of soil heterogeneity and to investigate different ways to incorporate it into geotechnical
engineering design framework. This has been applied to static problems, such as shallow

foundation settlement, and dynamic problems, such as liquefaction assessment.

The effect of different types of heterogeneity on the macro behavior of soil under
static loading has been investigated through deterministic numerical analysis with
stochastic input soil parameters. A shallow foundation resting on heterogeneous soil
media was adopted as a consistent example for demonstrating the influence of ground
heterogeneity on static geotechnical field problems. In addition, co-depositional fine
tailings — sand embankments were analysed to assess the impact of lithological

heterogeneity on the stability of such innovative tailings disposal systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dynamic problems have been addressed through analysis of well-documented
case histories of potentially liquefiable sites in California, USA. Empirical techniques
were adopted in the analyses of these sites. Cone penetration test (CPT) data recorded at
these sites were used to identify different lithologies and to assess different elements of
soil inherent spatial variability. These elements were applied to perform liquefaction

analyses of these sites in a probabilistic analysis framework.

This research study indicated that the influence of soil heterogeneity on its
engineering behavior is problem-dependent. Quantitative assessment of this influence can
be obtained by separate comprehensive analyses of each geotechnical field problem.
Using mean values of soil properties in deterministic geotechnical analyses was found to
be on the unsafe (non-conservative) side. In addition, a list of characteristic risk-based

soil parameters for different applications is provided for use in engineering design.
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Marina District using the 0.085 percentile of the CPT tip resistance data. (hatched
squares represent measured settlements at the site in €M) .....ccccecneevreenevcrcneenennes 306

Figure 9.10. A site plan showing contours of computed settlements (in cm) across the
Marina District using representative CPT tip resistance percentiles. a) the upper
limits for estimated settlements using the 0.20 and the 0.17 percentiles for sections A
and C, respectively b) the upper limits for estimated settlements using the 0.20 and
the 0.17 percentiles for sections A and C, respectively. ....c.ccceeveerivrvencinnenccrrenennnes 307

Figure 9.11. Post-liquefaction volumetric strain as a function of factor of safety (modified
from IShihara 1993).......ccccciviieienenenrierrereseeesiesssestssssacensessestonssessenssessmssesseness 308

Figure 9.12. A site plan showing contours of computed settlements (in cm) using (m-

o) as a representative CPT tip resistance (Robertson 1995). ......ccceevmvecervvcirncnnnne 308
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CHAPTER1

INTRODUCTION

1.1. STATEMENT OF THE PROBLEM

Almost all natural soils are highly variable in their properties and rarely
homogeneous. Soil heterogeneity can be cfassiﬁed into two main categories. Lithological
heterogeneity, which can be manifested in the form of thin soft/stiff layers embedded in a
stiffer/ softer media or the inclusion of pockets of different lithology within a more
uniform soil mass. The second source of heterogeneity can be attributed to soil inherent
spatial variability, which is the variation of soil properties from one point to another in

space due to different deposition environment and loading history.

Early attention to the problem of soil non-homogeneity emerged from the field of
petroleum engineering where efforts were devoted towards assessing the effect of
heterogeneity on the production of oil fields. This was prominently applied to estimate
representative hydraulic conductivity values for the field of interest that honored detailed
ground heterogeneity. On the other hand, geotechnical practice has generally relied on
increased safety factors and experiential judgment to deal with different types of ground
heterogeneity. Deterministic analyses have usually been conducted on simplified ground
profiles with the selection of single-valued soil parameters to represent each lithological

unit,

Early attempts to rationally deal with the variability of soil properties in
geotechnical engineering involved the introduction of reliability-based design methods
that combined limit equilibrium analysis with Monte Carlo simulation technique. This
was followed by the introduction of different types of stochastic finite element analysis as

an effective way to incorporate soil spatial variability into a numerical analysis
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framework. It is worth noting that almost no attention has been given to assess the effect
of lithological heterogeneity on the macro (overall) behavior of heterogeneous soil media.
The treatment of such heterogeneity has been exclusively left to local experience and

engineering judgment.

It has been readily acceptable, recently, that unavoidable degrees of uncertainty
are usually involved in geotechnical design and that the main source of such uncertainty
is the difficulty associated with selecting design parameters for different field problems.
As a result, implementation of statistical techniques into geotechnical analysis has
become a valuable tool to assess the implications of ground variability on engineering
behavior of soils under different loading conditions. Since geotechnical engineers usually
have limited statistical backgrounds, there has been a need to ascertain whether methods
can be developed to obtain risk-based representative soil parameters for use in simplified

deterministic analysis, while continuing to honor detailed ground heterogeneity.

1.2. OBJECTIVES OF THE RESEARCH PROGRAM

The main objective of this research study is to quantify the effect of ground
heterogeneity on the macro behavior of soil under static and dynamic loadings. This is
accomplished by:

1. Assessing the consequences of lithological heterogeneity and inherent spatial
variability of soil properties on the engineering behavior of soil;

2. Providing methods to obtain risk-based characteristic (representative) design
parameters of soil that honors detailed ground heterogeneity;

3. Examining the safety level associated with the current state of practice in some
geotechnical applications, such as shallow foundation and liquefaction assessment;

4. Studying the applicability of up-scaling techniques and homogenization theories in
geotechnical design scheme; and
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S. Developing a risk-based design approach for co-depositional sand — fine tailings
embankments, where lithological heterogeneity is manifested in fine tailings pockets

spatially distributed in a bigger uniform sand mass.

1.3. THESIS OUTLINE

In order to achieve the objectives mentioned in the previous section, this study has

passed through several stages as outlined below.

In Chapter 2, a detailed review of literature is provided. This covers various topics
in petroleum engineering literature relevant to the scope of this study, such as up-scaling
techniques and homogenization theories. Basic principles of geostatistics necessary to
identify different elements of soil spatial variability are summarized. Attempts made by
geotechnical engineers to incorporate soil spatial variability into probabilistic analysis
framework are discussed together with their implementation into geotechnical field
problems, such as shallow foundation and liquefaction assessment. In addition, different
decision making algorithms are presented with examples of their applications in the field

of geotechnical engineering.

In Chapter 3, the effect of lithological heterogeneity on the macro behavior of soil
is investigated. This has been carried out through numerical analysis of a theoretical
model consisting of a thin soft clay layer embedded into a uniform rectangular mass of
sand under plane strain conditions. The applicability of up-scaling techniques commonly
used in petroleum engineering literature to the theoretical model is examined. In addition,
the results obtained from the theoretical model are applied to a shallow foundation

problem to investigate their applicability to geotechnical field problems.

In Chapter 4, the effect of a different form of lithological heterogeneity is

investigated. The engineering behavior of co-depositional sand - fine tailings
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embankments, where pockets of fine tailings are randomly distributed in a bigger mass of
medium dense sand is assessed. This has been carried out using numerical analysis and
implementing multiple realizations of the spatial distribution of the fine tailings pockets
within the sand mass. The safety level of this tailings disposal system is investigated in

terms of failure probability and associated vertical displacements.

In Chapter 5, the effect of inherent spatial variability of soil properties on the
macro behavior of soil is studied in a probabilistic analysis framework. This has been
carried out through stochastic numerical analysis of a theoretical model of spatially
variable rectangular sand mass under plane strain conditions. The effect of different
elements of soil spatial variability on soil mechanical behavior under static loading is
quantified. In addition, attempts have been made to develop risk-based characteristics

(equivalent) elastic modulus of sand that can be used in engineering design.

In Chapter 6, the effect of inherent spatial variability of soil properties on the
behavior of shallow foundation is investigated in a probabilistic analysis framework. This
has been carried out through stochastic numerical analysis of a strip footing resting on a
spatially variable sand medium. An attempt is made to assess the safety level associated
with the current state of practice and to obtain a risk-based characteristic elastic modulus
that can be used in simplified deterministic analyses while continuing to honor detailed
ground heterogeneity. The stochastic analyses outcomes are compared with the results
obtained in Chapter 5 to examine the sensitivity of stochastic analyses to changes in

stress path and boundary conditions.

In the Chapter 7, a simplified geostatistical analysis of liquefaction-induced
ground response at the Wildlife site, California, is presented. Cone penetration test (CPT)
results are implemented into a geostatistical analysis framework to assess the effect of
ground heterogeneity on soil behavior under dynamic loading. Different criteria used to

quantify liquefaction-induced damage are examined and attempts are made to obtain risk-
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based characteristic CPT parameters that can be used in simplified deterministic

liquefaction analyses.

In Chapter 8, a geostatistical analysis of earthquake-induced ground response at
the Treasure Island site, California, is provided in a fashion similar to Chapter 7. An
attempt is made to examine the applicability of the results obtained in the previous

chapter to other liquefaction case histories.

In Chapter 9, a geostatistical analysis of liquefaction-induced ground response at
the Marina district, California, is presented in a fashion similar to the previous two
chapters. In addition, the results obtained in this chapter are used to verify and refine the

outcomes of the stochastic analyses carried out in Chapters 7 and 8.
In Chapter 10, the outcomes of the analyses performed in the previous chapters

are integrated and the main conclusions of this research study are summarized together

with recommendations for future research.
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CHAPTER 2

AN OVERVIEW OF SOIL HETEROGENEITY: QUANTIFICATION
AND IMPLICATIONS ON GEOTECHNICAL FIELD PROBLEMS

2.1 INTRODUCTION

Almost all natural soils are highly variable in their properties and rarely
homogeneous. Soil heterogeneity can be classified into two main categories. Lithological
heterogeneity, which can be manifested in the form of thin soft/stiff layers embedded in a
stiffer/softer media or the inclusion of pockets of different lithology within a more
uniform soil mass. The second source of heterogeneity can be attributed to soil inherent
spatial variability, which is the variation of soil properties from one point to another in

space due to different deposition conditions and loading history.

Early attention to the problem of soil non-homogeneity emerged from the field of
petroleum engineering where efforts were devoted towards assessing the effect of
heterogeneity on the production of oil fields. Geostatistical theories and up-scaling
techniques were implemented to estimate equivalent permeabilities for the fields of

interest that honored detailed reservoir heterogeneity.

In the field of geotechnical engineering, relying on high safety factors and local
experience have been the conventional tools to deal with ground heterogeneity.
Morgenstern (2000) introduced case histories for different geotechnical applications
where relying solely on engineering judgment resulted in poor to bad predictions in up to
70% of the cases considered. As a result, it has been readily accepted that there is a need

to develop more reliable tools to incorporate ground heterogeneity in a rather quantitative

A version of this chapter has been published in the Canadian Geotechnical Journal, Vol. 40, No. 1: 1-15.
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scheme amenable to engineering design. Early attempts to rationally deal with the
variability of soil properties in geotechnical engineering involved the introduction of
reliability-based design methods that combined limit equilibrium analysis with Monte
Carlo simulation technique. In addition, the stochastic finite element method was
introduced as an effective way to incorporate soil variability into a numerical analysis
framework. Recently, attempts have been made to incorporate spatial correlation between
soil properties into a statistical design scheme using either of the above approaches or
through implementing the outcome of Monte Carlo simulation into deterministic
numerical analysis schemes. It is worth noting that almost no attention has been given to
assess the effect of lithological heterogeneity on the macro (overall) behavior of
heterogeneous soil media. The treatment of such heterogeneity has been exclusively left

to local experience and engineering judgment.

The main objective of this chapter is to discuss the different techniques developed
to deal with soil heterogeneity in both petroleum and geotechnical engineering and their
applicability to geotechnical field problems. In addition, attempts will be made to identify

- the difficulties associated with obtaining representative parameters that honor detailed
ground heterogeneity. In the following sections, techniques developed in the petroleum
literature to deal with lithological heterogeneity are discussed. Then, different elements
of inherent soil variability will be presented along with their implications on geotechnical
field problems, such as settlement of shallow foundation, liquefaction susceptibility, and
seepage flow. Limitations of current practice will be addressed and potential trends for
future studies will be suggested. Finally, different decision algorithms will be discussed

together with examples of their applications in geotechnical analyses.

2.2 LITHOLOGICAL HETEROGENEITY

The impact of lithological heterogeneity of the ground on the production of oil

and gas reservoirs has been a major area of study in petroleum engineering practice.
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Several up-scaling techniques were developed to deal with complex ground profiles, such

as the sand shale sequence shown in Figure 2.1. The main aim of these techniques was to

scale up fine scale permeability to coarser scales amenable to flow simulation and
engineering calculations. These averaging techniques can be classified into:

1. Empirical techniques, such as the power averaging technique (Deutsch 1989). These
are the simplest forms of up-scaling laws;

2. Semi-empirical methods, such as the renormalization (King 1989) and the REV-
Renormalization (Norris et al. 1991). They are more sophisticated than the previous
type but have limited theoretical basis; and

3. Analytical techniques, such as that proposed by Warren and Price (1961). These

methods are rather cumbersome to implement in practice.

The power averaging method was obtained through non-linear regression of the
results obtained from a 3-dimensional numerical simulation of flow through sandstone-
shale formations. The analysis was carried out under different target shale volumes and
the equivalent permeability was regarded as that of a homogeneous soil mass producing
similar flow under the same head difference and boundary conditions. This equivalent

permeability, k., was found to satisfy the relation:

ke =[Vshk31 +(1—Vsh)k(:s]”m k (2'1)

where: ky, and k, are the permeabilities of the shale and sandstone, respectively;
Vi is the volume fraction of shale; and

o is an averaging power.

The value of ® was suggested to range from —1 to 1 depending on the direction of
flow and the geometrical anisotropy of shale, i.e. the ratio between the vertical to the
lateral extent of shale. The major advantage of this method is its simplicity while the

main drawback is that the shale blocks were assumed to be uncorrelated to each other.
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In the renormalization technique (King 1989), a simulation grid is generated
across the analysis domain and a constant value of soil permeability is assigned to each
element of the simulation grid. Then, these elements are grouped into blocks of four and
assigned an effective (equivalent) permeability value, k., as illustrated in Figure 2.2. This
effective permeability was obtained based on the analogy between water flow through

soils of different permeabilities and electric current flow through a network of resistors:

k.= 4(k: + ka)(ka + kallko ka (ki + k) + ki ks (ko + kd)] (2-2)

[kaks (ki + k) +kiks (ko + k4)][§i k] + 30k + ko)(ks + ka)(ki + ka)(ka2 + ka)

where k. is the equivalent permeability of four soil blocks of permeabilities ki, ka, k3, and

ka, as shown in Figure 2.2

The above procedure can be applied to the new grid and repeated several times
depending on the scale of interest. This method was originally developed for uncorrelated
permeability fields, but it is also valid to correlated fields. It is worth noting that only
isotropic media, of equal permeabilities in vertical and horizontal directions, were
considered during the development of this technique. However, the method can be
extended to anisotropic media by applying the up-scaling procedure to both vertical and
horizontal directions. In spite of the theoretical basis implemented in this technique, it
can be regarded as a relatively complicated method compared with the empirical formula

presented in Equation 2-1.

The REV-Renormalization approach (Norris et al. 1991), for up-scaling of sand-
shale formations for flow simulation, combined the representative elementary volume
(REV) theory with the renormalization technique. The REV theory defines a specific
averaging volume at which all microscopic variations are averaged out producing a
representative single macroscopic value, which is usually referred to as the representative
elementary property (REP), (Norris et al. 1991). The REV technique was originally

developed to assess representative property of porous materials, where the representative

-9.
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property at the smallest scale represents the property of either a void or a solid. By
gradually increasing the averaging volume, more voids and solids are included in the
averaging volume resulting in fluctuation in the representative property, as shown in
Figure 2.3. The REV can be defined as a critical averaging volume beyond which there is
no significant fluctuation in the representative property, as the addition of extra voids or
solids has a minor effect on the averaged property. In the REV-Renormalization
technique, subsurface soil is discretized into exclusive geological units characterized by a
specific type of sedimentary structure. Within each unit, the spatial distribution of sand
and shale is translated into binary maps. The renormalization technique is, then,
employed to determine soil permeabilities at different averaging volume scales to
determine the REV and the associated equivalent permeability, which is regarded in this
case as the REP. It was concluded from the results obtained using this approach that
effective permeability was mainly dependant on the relative volume and connectivity of

different lithologies rather than their inherent spatial variability.

The first rational attempt to provide an analytical solution to the problem of soil
lithological heterogeneity and its effect on flow was proposed by Warren and Price
(1961). They combined the results of physical modeling with that of numerical
simulation and suggested the geometric mean as an estimate of the effective permeability
of a heterogeneous medium. Afterwards, several studies were carried out to develop
enhanced measures of effective permeability. Two main approaches were adopted in
these studies, the effective medium theory and the perturbation expansion, as discussed
by King (1989). In either case, the effective permeability estimates were considered

accurate only for small ranges of permeability fluctuations.

In the field of geotechnical engineering, almost no attempt has been made to
assess the effect of lithological heterogeneity on the macro behavior of soil mass in spite
of the need to develop such algorithms for certain geotechnical applications. An example
of these applications is co-depositional sand - fine tailings embankments, shown in

Figure 2.4. The basic idea of this tailings disposal system is to mix fine tailings, which
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behave as very soft clay, with sand to obtain relatively steeper embankments, compared
with conventional thickened tailings embankments (Robinsky 1999). The heterogeneous
nature of these embankments requires an estimation of equivalent engineering parameters
that take into consideration the effect of spatial distribution of fine tailings pockets on the

overall behavior of these embankments.

2.3 INHERENT SPATIAL VARIABILITY OF SOIL PROPERTIES

Most geotechnical analyses are deterministic in the sense that average soil
parameters are given to each distinct layer. The uncertainties in these properties and their
variation from one point to another in space have been accounted for, qualitatively, by the
use of safety factors and by implementing local experience and engineering judgment.
The selection of these design parameters, however, has contained some degree of
uncertainties and consequently a degree of unavoidable risk. These uncertainties can be
attributed to the following factors (Phoon and Kulhawy 1999):

1. Soil inherent spatial variability due to variation in deposition conditions and stress
history from one point to another in space;

2. Measurement errors due to insufficient control of testing procedure and equipment;

3. Deterministic trends in soil properties such as the increase in soil strength with depth
due to the increase in confining pressure; and

4. Collection of field data over long time periods.

This study will focus primarily on soil spatial variability, where stochastic
analysis can be employed to assess its influence on engineering design. To proceed with a
stochastic analysis, the main elements of soil inherent spatial variability have to be
identified, such as:

1. Classical statistical characteristics, such as the mean, coefficient of variation (COV),

and probability distribution of soil data;
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2. The spatial correlation structure that describes the variation of soil properties from
one point to another in space;

3. The limit of spatial continuity, beyond which no or small correlation between soil
data exists; and

4. The volume-variance relations, which help assess the reduction in the variance of

field data upon averaging over a certain volume of interest.

Details of the above elements are discussed in the following sections.

2.3.1. Classical Statistical Characteristics of Soil Properties

Several attempts have been made to obtain classical statistical properties of soil,
such as the mean value, coefficient of variation, and probability distribution, throughout
geotechnical engineering practice. These statistical characteristics have been discussed by
several authors, such as Lumb (1970), Schultze (1975), and Griffiths and Fenton (1993).
Phoon and Kulhawy (1999) provided an excellent summary of different statistical
characteristics for different soil types and field tests. Generally, it was found that high
variability, expressed in terms of high coefficient of variation, was usually associated
with strength parameters, and that undrained shear strength was usually highly variable
compared to drained friction angle. It is worth noting that different probability
distributions models such as normal, lognormal, and beta distributions have been
implemented by different authors to curvefit the results of field data. This implies that
these distributions are probably site and parameter specific and that there is no generic

distribution pattern for soil properties.

2.3.2. Spatial Correlation between Soil Properties

Soil properties do not vary randomly in space; rather such variation is gradual and

follows a pattern that can be quantified using spatial correlation structures, where soil
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properties are treated as random variables. Spatial correlation structure is often expressed

in terms of the variogram (Deutsch 2002) or the covariance function (Vanmarcke 1977).

The variogram is a measure of dis-similarity between two points in space

separated by a distance h, according to the relation:
2y(h) = Var[Z(u + h) - Z(w)] (2-3)

where: 2y(h) is the variogram value at a separation distance h;
Z (u) is the value of the random variable at location u;
Z (u+h) is the value of the random variable at distance h from Z (u); and

Var [ ] is the variance operator.

On the other hand, the covariance is a measure of similarity between the above

two points and can be obtained through:

C(h) = E[Z(u).Z(u + h)] - m? (2-4)

where: C(h) is the value of the covariance function at a separation distance h;
m is the mean value of Z; and

E [ ] is the mean operator.

Variogram and covariance functions are correlated through the variance of field

data, 0'2, in the form:
7(h) =6’ -C(h) | (2-5)
It should be emphasized that the above variogram and covariance relations are

only valid for stationary random fields where both the mean and standard deviation are

constants across the domain of interest. Most soil mechanical properties, however, are
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expected to exhibit spatial trends especially in the vertical direction due to their
sensitivity to change in confining pressure. An example of these vertical trends is shown
in Figure 2.5.a where the tip resistance, q., of cone penetration test data tends to increase
with depth. To satisfy stationarity condition, these trends must be removed (detrended) in
a process often referred to as detrending of field data. The detrending process is usually
carried out by identifying deterministic trends in field data implementing regression
analysis (Deutsch 2002), as shown in Figure 2.5.a. It should be realized that the linear
variation of cone tip resistance with depth, shown in Figure 2.5, is a simplifying
assumption for practical application; as such variation can take other forms especially for
sandy soils. Spatial trends in field data, however, should be kept as simple as possible to
minimize the uncertainty associated with the assessment of these trends (Baecher 1987).
This uncertainty in spatial trends may have a significant influence on the outcomes of
stochastic geotechnical analyses especially in the presence of limited field data. Neter et
al. (1996) and El-Ramly (2001) provided an excellent discussion on the assessment of
this uncertainty and its implications on statistical analyses. The detrending process results
in generating detrended field data, as shown in Figure 2.5.b, which can be considered as

stationary random variables using the relation:

q=q,-9,(2) (2-6)

where q is the detrended cone tip resistance and q, (z) is the deterministic vertical trend.

Spatial correlation structures are usually characterized by their model types and
the limit of spatial correlation between field data. Spatial correlation models are
parametric relationships used to curvefit the experimental variograms, or covariance
functions, obtained from analysis of field data. Deutsch (2002) has provided an excellent
summary of common variogram models used in practice. Examples of these models, such
as spherical, exponential, and gaussian models, are shown in Figure 2.6. These models
help determine the spatial correlation between field data at any separation distance and in

different directions. In addition, they can incorporate other geological information such
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as direction of maximum continuity and maintain numerical stability of stochastic
simulation (Deutsch 2002). The limit of spatial continuity is discussed in more details in

the following section.

2.3.3. Limit of Spatial Continuity between Field Data

The limit of spatial continuity is defined as the separation distance between field
data at which there is no, or insignificant, spatial correlation. This limit can be expressed
in terms of the spatial range (Deutsch 2002), the scale of fluctuation (Vanmarcke 1977),
or the autocorrelation distance (DeGroot and Baecher 1993). The spatial range, a, can be
defined as the separation distance at which the variogram reaches the sill (variance) and
correlation between data no longer exists, as shown in Figure 2.6. For variogram models
where the variogram is asymptotic to the sill (6?), as the case for exponential and
gaussian models, an effective range can be considered as the separation distance at which
the variogram reaches a value equal to 0.95 the sill. The scale of fluctuation, 6, estimates
the distance within which soil properties show relatively strong correlation and data
become either above or below the mean value. Vanmarcke (1977) developed a simplified
procedure to estimate the scale of fluctuation for different spatial correlation structure
models. The autocorrelation distance, R, is the separation distance at which the
covariance function decays to a value of o/e, where e is the base of natural logarithm, and
correlation between field data can be considered relatively weak. A relationship between
these different measures was developed in this study, as illustrated in Appendix 2-A and

summarized in Table 2.1.

2.3.4. Volume-variance Relations

The volume-variance relationships are analytical expressions used to obtain the
variance of spatial averages of field data over certain volumes of interest. These spatial
averages usually have a narrower probability distribution function than those associated

with field data (Vanmarcke 1977) and consequently a smaller variance. The variance of
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these spatial averages can be correlated to the point variance using the variance reduction

factor, 12, as discussed by Vanmarcke (1984) through:
(©)=TI,-c 2-7)

where: ¢ is the standard deviation of field data (point statistics);
or is the standard deviation of the spatial average of data over volume v; and

I'v is the square root of the variance reduction factor.

The variance reduction factor depends on the averaging volume, type of
correlation structure, and the limit of spatial correlation between field data. Several

analytical expressions for the variance reduction factor were introduced by Vanmarcke
(1984), in the form:

2
ri=2- (%) . (—;{— -1+¢™R for exponential correlation structures (2-8-a)

2
3=2- (—%) [ %;— . ﬁ(g—) -1+ TR for gaussian correlation structures  (2-8-b)

where: T2 is the one-dimensional variance reduction factor;
R is the autocorrelation distance;

T represents the size of the average volume; and

T, . . . . .
F’(E) is the error function, which varies from 0 to 1 as T increases from o to <.

The above expressions are based on the assumption that the averaging process
occurs in one direction only. These expressions can be easily extended to the three-
dimensional case by assuming separable correlation structures (Vanmarcke 1984). Such
an assumption implies that the three-dimensional variance reduction factor could be

expressed as the product of its one-dimensional components in the form:
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v=I'n Iy I (2-9)

where: I'r,,I'ry,Ir. are the one-dimensional variance reduction factors in x, y and z

directions, respectively.

The variance reduction factor tends to 1 when the parameter T is small compared
to the spatial range. For many geotechnical applications, the size of the averaging volume
in the horizontal direction is usually small compared to the horizontal spatial range. As a
result, it has been a common practice in many geotechnical implementations of the
variance reduction factor to assume that its value is affected only by the size of the
averaging volume in vertical direction, i.e. layer thickness. This is because the variance

reduction factor in the horizontal direction can be reasonably assumed equal to one.

In a similar fashion, the variance reduction factor for spherical correlation
structures was developed in this study, as explained in Appendix 2-B, and could be

expressed in the form:

(2-10)

Spatial averages of random variables are spatially correlated in a way similar to
point (field data) statistics. This correlation can be quantified in a pair wise manner by
assessing the coefficient of correlation between any couple of one-dimensional spatial

averages, as shown in Figure 2.7, through the relationship (Vanmarcke 1977):

_ D3.I’*(Dy) =~ D&1-I”*(Dow) ~ D - I (Dez) + Do I (Dora)
2:Di.T (D) Du.T (D)

P12 (2-11)
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where: p; is the correlation coefficient between the spatial averages over the depths D,
and Do,
*(Dy), T (Do) > T (De), and T2(Dyy,) are the variance reduction factor over
averaging thickness equal to Dy, Dy, Do, and Dz, respectively; and
I (D)) and T (D,) are the square roots of variance reduction factor over

averaging thickness equal to D; and D, respectively.

24 STOCHASTIC ANALYSIS TECHNIQUES IN GEOTECHNICAL
ENGINEERING

Stochastic analysis provides an excellent tool to account for the variability of soil
properties and to develop rational algorithms to estimate soil design parameters on a
probabilistic basis, where the associated risk level can be quantified. Several approaches
have been adopted by geotechnical practitioners to implement stochastic analyses in
geotechnical field problems, such as liquefaction assessment, slope stability analysis, and
foundation settlement. Examples of these approaches are:

1. Application of reliability principles to limit equilibrium analysis;
2. Stochastic finite element analysis; and

3. Application of stochastic input soil parameters into deterministic numerical analysis.

Detailed discussion of the above approaches is provided in the following sections

together with examples of their applications to geotechnical field problems.

2.4.1. Application of Reliability Principles to the Limit Equilibrium Analysis

Statistical analysis of limit equilibrium problems was primarily developed to
perform probabilistic slope stability analysis using different techniques, such as analytical

approaches, approximate solutions, and Monte Carlo simulation.
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Analytical approaches, such as those proposed by Tobutt and Richards (1979),
were primarily concerned with obtaining closed form solutions for the statistical
properties of earth slopes factors of safety. These solutions do not provide information
about the output probability distribution and become cumbersome when considering

different sources of uncertainty.

Approximate solutions of probabilistic slope stability analysis, such as the first
order second moment (FOSM) and the point estimate method (PEM), have been
advocated by several authors, such as Christian et al. (1994). The basic idea of the FOSM
method (Harr 1987) is to express factor of safety as a function of different random
variables considered in the statistical analysis. This function is then expanded about the
mean values of these random variables using Taylor expansion, retaining only linear (first

order) terms, where the mean and variance of safety factor can be assessed through:

E[F.S]=F(E(x1), E[Xa], verevn.. E[x.]) (2-12-2)
i=n 2 i=n j=n

Var[FS] = ‘z(—a—lf--cx.) +2-3 z(?—F— —‘?EJ LClx;,%,] (2-12-b)
i1l 0x; 1 i=1 =1\ O x; Ox;

where: E[F.S] and Var[F.S] are the mean and variance of factor of safety, respectively;
CIx;, x;] is the covariance between the random variables x; and x;; and

n is the number of random variables

The major advantage of this technique is its simplicity, especially when
considering different sources of uncertainty, as it provides direct estimation of the mean
and variance of factors of safety. However, the accuracy of this technique is questionable,
especially when dealing with highly non-linear relations and large soil variability, due to

the truncation of high order terms in Taylor expansion.

In the PEM (Rosenblueth 1975 and 1981), the probability distribution of each of

the random variables is represented by two points estimates x+ and x- with probability
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densities of p+ and p-, respectively. This is based on the analogy between probability
disi:ributions and distributed vertical loads on a horizontal rigid beam resting on two pin
supports (Harr 1987). For symmetrical probability distributions, p+ and p- are taken
equal to 0.5; while x+ and x- are taken one standard deviation above and below the mean
value of the random variable, respectively. The mathematical details of this method are
complicated enough to be beyond the scope of this study and interested reader can refer
to Harr (1987) for more details. This technique is quite useful when it is difficult, or even
impossible, to obtain derivatives of the factor of safety with respect to different random
variables to apply the FOSM method. The main limitation of this technique is the
complexity in calculations when considering multiple random variables in the assessment
of safety factors. An excellent summary of the accuracy and limitations of this method
has been provided by Christian and Baecher (1999).

The early implementation of Monte Carlo simulation to limit equilibrium analysis
considered soil, or rock, properties as uncorrelated random variables (Kim and Major
1978). Several realizations of soil design parameters were obtained and used to develop a
histogram for the factor of safety of earth slopes. Recently, the effect of spatial
correlation between soil properties has been accounted for through the application of
geostatistics principles and volume-variance relationships (El-Ramly 2001). A complete
probability distribution of output variables, such as the factor of safety, can be obtained
and the failure probability can be reasonably assessed. This is a major advantage over
other analysis technique where some assumptions have to be made about the probability
distribution of output variables. It should be noted, however, that Monte Carlo simulation
has its own limitations, which can be summarized as follows:

1. The need to define a reliable input reference distribution, which requires a
considerable number of field data. In addition, older versions of Monte Carlo
simulation algorithms used to deal only with parametric probability distribution
functions, i.e. probability distributions that can be defined through mathematical
relationships such as normal and lognormal distribution. Field data, however, do not

necessarily fit into any of these parametric distributions. This problem has been
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overcome by recent versions of Monte Carlo simulations, such as that of Deutsch and
Journel (1998), which are capable of dealing with non-parametric distribution
functions directly inferred from field data;

2. Clustering of the simulation outcome into a limited zone of the input probability
distribution, as the drawn samples are more likely to be in areas of higher probability,
as shown in Figure 2.8. This problem mainly arises in cases where insufficient
number of realizations (number of iterations in Monte Carlo algorithm) is used in the
simulation process (Palisade Corporation 1996). This may result in sampling values
of the random variable away from the tails of the input probability distribution, which
can be on the unsafe (non-conservative) side. This problem, however, can be
overcome by using a number of realizations large enough to reproduce the input
probability distribution; and

3. Depending on the number of variables involved in the simulation process, Monte
Carlo simulation may require a significantly large number of iterations and

- consequently a considerable computational effort. However, the author believes that

this problem has been overcome by the new generation of fast computers.

2.4.2. Stochastic Finite Element Analysis

The stochastic finite element method (SFEM) is a modification of the traditional
finite element method to capture the effect of soil spatial variability on numerical
analysis. This is carried out by using finite element discretization to obtain direct
assessment of the mean and variance of nodal displacements together with the covariance
between displacements at different nodes of the numerical analysis mesh (Baecher and
Ingra 1981). This assessment is usually accomplished by calculating a covariance matrix,
whose value depends on the characteristics of spatial correlation between soil properties,
such as variogram model and spatial range. These characteristics are captured into the
finite element scheme by introducing the matrix of differentials, which assesses the effect
of the variation of mechanical soil properties from one element to another on the global

stiffness matrix. For more details about SFEM, the reader can refer to Baecher and Ingra
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(1981); and Auvinet et al. (1996). Different modifications of SFEM have been developed
by introducing different numerical techniques to capture soil spatial variability. Examples
of these modifications are the probabilistic finite element method (Righetti and Harrop-

Williams 1988) and stochastic integral formulations (Zeiton and Baker 1992).

The major advantage of the SFEM is the direct assessment of statistical
characteristics of output variables, such as the mean and variance. This helps avoid long
computational time associated with incorporating several realizations of spatially variable
soil parameters into deterministic analysis scheme, as discussed in the following section.
On the other hand, different limitations of the SFEM have been discussed by several
authors, such as Baecher and Ingra (1981); and Auvinet et al. (1996), and they can be
summarized as follows:

1. The analysis results are not affected by the probability distribution of input random
variables. Furthermore, a distribution has to be assumed for output variables as SFEM
provides only an assessment of the mean and standard deviation;

2. Element variance and covariance matrices are functions of element shape and
geometry and their determination becomes quite tedious for irregular element shape
and complicated boundary conditions;

3. Limited to small variability due the error associated with the truncation of higher
order terms in Taylor expansion, which is used for the determination of mean values
of the response variables, such as surface settlement;

4. Integration of the random variable field over eéch element may result in a change in
the anisotropy ratio of the correlation structure of soil properties;

5. Usually limited to linear elastic behavior of soil to avoid extreme complexity in the
computation process; and

6. Does not adequately capture the behavior of soil properties with skewed probability
distributions.

Due to the above limitations, the use of stochastic finite element analysis has

received limited attention from geotechnical practitioners and researchers.
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24.3. Application of Stochastic Input Parameters into Deterministic Numerical
Analysis

Deterministic numerical analysis with stochastic input soil parameters has been
recently adopted by many researchers, such as Paice et al. (1994), and Popescu et al.
(1998), as a technique to incorporate soil spatial variability in geotechnical design. Monte
Carlo based simulation techniques have been used to generate several realizations of soil
properties that vary from one point to another across the domain of interest, as shown in
Figure 2.9. This spatial variation is usually employed into the numerical analysis scheme
by assessing soil properties at the center of each element of the numerical simulation
grid, and assuming them to be constant within that element. By analyzing several
realizations of the spatially variable soil medium, histograms of response (output)
variables can be obtained. Examples of the simulation algorithms commonly used in
practice are the Sequential Gaussian and the Sequential Indicator simulations (Deutsch

2002), and the Local Average Subdivision technique (Fenton and Vanmarcke 1990).

The Sequential Gaussian Simulation (SGS) is the most commonly used technique,
especially in the field of petroleum engineering. The basic idea of this technique is
illustrated in Figure 2.10. Input random variables are transformed into standardized
normally distributed random variables with zero means and unit variances, for which
different variogram characteristics are assessed. Simulated values of a standardized

variable, Z, can be determined at any node of the simulation grid through:

Z,(w)=Z (u)+R(v) (2-13)

where: Z; (u) is the simulated value of the variable Z at location u;
Z" (u) is the krigged estimate of the variable Z at location u; and

R (u) is a random residual.
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The krigged estimate is a linear estimator of the variable Z at location u in space,
where the value of Z is unknown, using the krigging interpolation techniques (Journel
and Huijbregts 1978). This estimate depends on different characteristics of spatial
correlation structure (variogram) and does not vary from one realization to another, and
can be assessed through:

z*(u)=,“§lxi~Z(ui) | (2-14)

~ where: Z(1;) is a known value of Z at location u; in space, either from field data at that
location or previously simulated nodes; and
Liis a weight given to field data at location u; that depends on the characteristics

of the spatial correlation structure.

The random residual R(u) follows a normal distribution with zero mean and
variance equal to the krigging variance (Deutsch 2002). A different value of R(u) is
obtained in each realization of Monte Carlo simulation resulting in a variation of the
simulated value of the random variable, Z(u), from one realization to another. A random
path is followed to assess the value of the standardized random variable at each node of
the numerical simulation grid. The simulated values are then back-transformed to their
original probability distribution. By repeating the above procedure, several realizations of

soil spatial variation across the analysis domain can be obtained.

2.5 APPLICATION OF STOCHASTIC ANALYSIS TO GEOTECHNICAL
FIELD PROBLEMS

The stochastic analysis techniques discussed in the previous sections have been
implemented in several applications throughout the history of geotechnical engineering

practice to assess the impact of ground variability on geotechnical field problems. In the
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following sections, an attempt is made to address the current state of practice in some of

these applications and its limitations together with potential trends for future research.

2.5.1. Stochastic Analysis of Shallow Foundation Settlement

Early attempts to perform probabilistic analysis of foundation settlement started in
the late 1960s. Wu and Kraft (1967) estimated the uncertainty in soil bearing capacity
and foundation settlement through assessing the uncertainty in applied load, soil strength,
and deformation parameters. The uncertainty in soil strength was estimated through
assessing the variability of laboratory undrained shear strength for clayey soils and that of
SPT data for sandy soils. Resendiz and Herrera (1969) carried out a probabilistic analysis
of settlement and rotation of flexible and rigid footings over randomly variable
compressible soils. A one-dimensional settlement model was adopted in which the
coefficient of volume change was characterized as a normally distributed random
variable. The analysis results were used to obtain design parameters that satisfied
tolerable settlements and rotations criteria together with minimum expected monetary
loss. These studies can be considered as a good start to address such complex problem.
However, they were fairly primitive as some elements of soil inherent variability, such as

spatial correlation between soil properties, were not adequately considered.

The modem approach to deal with uncertainty in foundation settlement started in
the early 1980s with the pioneer work of Baecher and Ingra (1981). In their study, two-
dimensional stochastic finite element analysis was carried out to assess the uncertainty in
total and differential settlement. Soil elastic modulus was treated as a random variable,
whereas Poisson’s ratio was assumed to be constant across the soil mass. Two spatial
correlation models, the exponential and the squared exponential (gaussian), were
considered and the response variables (total and differential settlement) were assumed to
be normally distributed. The uncertainty in total settlement was expressed in terms of the
coefficient of variation of the maximum settlement and was found to increase with higher

autocorrelation distance, as shown in Figure 2.11. Furthermore, the study proposed a
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critical ratio of 0.75 to 1 between the autocorrelation distance, R, and footing width to be
associated with maximum differential settlement. On the other hand, the type of
correlation structure was found to have insignificant effect on both total and differential
settlement. A limiting assumption of the study was the assumed linear elastic soil
behavior, which implies, together with the use of SFEM, a small variation in soil
properties to avoid the development of plastic zones and the onset of non-linear
constitutive behavior. In addition, the effect of different probability distributions of soil

properties on the expected uncertainty was not assessed.

Zeitoun and Baker (1992) proposed a stochastic approach for settlement
prediction of shallow foundations using the stochastic integral formulation (SIF)
technique, which is a modification to the SFEM. It was assumed that soil would exhibit
linear elastic behavior under both axi-symmetrical and plane strain conditions. Soil shear
modulus was treated as a random variable, whereas Poisson’s ratio was assumed to be a
deterministic constant throughout the soil medium. The Gaussian model was chosen to
represent the spatial variation of shear modulus across the problem domain. Equations
were obtained for the determination of the mean and standard deviation of total and
differential settlement. The uncertainty in total and differential settlements was expressed
in terms of the coefficient of variation (COV) and was found to be proportional to the
increase in the autocorrelation distance. For the axi-symmetric case, the increase in COV
of total settlement normalized to COV of shear modulus was found to increase gradually
until reaching an asymptotic value smaller than one, as shown in Figure 2.12. This
indicated that the variability in surface settlement was usually smaller than that of the
underlying soil properties. The technique used in the study had serious limitations as
unrealistic spatial correlations were assumed either through the use of a very high
horizontal autocorrelation distance or by considering the soil medium to be in the form of
concentric rings of constant elastic modulus. Furthermore, no information was provided
about the probability distribution of output variables; and the effect of different spatial

correlation structures was not accounted for. Finally, the use of SFEM implied some
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restrictions on the range of soil variability used in the analysis to prevent development of

plastic zones as discussed in the previous paragraph.

The effect of random soil stiffness on foundation settlement was reinvestigated by
Paice et al. (1994) through the use of deterministic finite element analysis with stochastic
input soil parameters. Poisson’s ratio was presumed constant, whereas the elastic
modulus was regarded as a spatially random variable resulting in a ground profile as
previously shown in Figure 2.9. Soil elastic modulus was assumed to follow a lognormal
probability distribution with a coefficient of variation (COV) ranged between 0.02 and
0.42 and exponential correlation structure. The settlement was expressed in terms of the
influence coefficient (I) proposed by Poulos and Davis (1974). The mean of the influence
coefficient (m;) and its coefficient of variation (cy/m;) were found to increase with higher
scales of fluctuation (6g) and coefficients of variation of the elastic modulus (cg/mg), as
shown in Figure 2.13. It was, also, concluded that the effective mean elastic modulus,
back-calculated from settlement below the footing centerline, showed close agreement
with the geometric mean of the elastic modulus random field. This study has some
limiting assumptions such as the linear elastic soil behavior, the isotropic correlation
structure, and the symmetry of spatial distribution of elastic modulus around the footing
centerline. In addition, the effect of different types of correlation structures and the

sensitivity of the results to the number of realizations were not considered.

The effect of random fluctuations of the interface between soil layers on the
uncertainty in foundation settlement has been accounted for by Brzakala and Pula (1996).
This uncertainty in soil geometry was converted into a new random field expressed in
terms of the interface fluctuation and was incorporated into stochastic finite element
analysis. The mean settlements and the associated coefficients of variation were
determined at several points on the ground surface together with the correlation between
the computed settlements at these points. The analysis results showed smaller values for
the coefficient of variation of surface settlement compared to that of soil layers interface.

This indicated that the uncertainty in the interface between soil layers did not have a
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profound effect on the uncertainty in settlement analyses. The limitations of the study lie
in the linear elastic soil behavior and neglecting the inherent soil variability within layers.
In addition, the effect of different types of probability distribution and correlation

structure on the stochastic analyses outcomes was not adequately addressed.

It is worth noting that the above studies have not considered the effect of
changing the state of stresses in subsurface layers on the outcome of geotechnical
stochastic analyses. In other words, the sensitivity of the statistical characteristics of
response (output) variables to wide ranges of applied vertical and horizontal stresses was
not adequately addressed. In addition, these stochastic analyses have not been used to

develop risk-based representative soil parameters that honor detailed ground variability.

2.5.2. Stochastic Analysis of Liquefaction Problems

Early attempts to quantify the stochastic nature of liquefaction problems were
focused on developing analytical expressions to estimate the uncertainty in liquefaction
potential assessment. Yegian and Whitman (1978) conducted a pioneer study to provide a
statistical evaluation of annual probability of failure for potentially liquefiable sites. This
was carried out by combining the annual probability of given earthquakes with the
probability of ground failure under these earthquakes. In addition, an analytical
expression was developed to assess the uncertainty in a limit state parameter, proposed to
estimate the maximum shear resistance of the ground. A major limitation of that study
was that the effect of spatial correlation between soil properties was not accounted for
and that the uncertainty in the results were assumed to be insensitive to the probability
distribution of the input random variables. Furthermore, the derivation of the expression
for the limit state parameter was based on the assumption that soil shear resistance and

vertical effective stress were two independent random variables.

Recently, the use of deterministic finite element analysis with stochastic input soil

parameters has gained much popularity in the field of probabilistic liquefaction analysis.
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Several attempts have been made to apply this technique to study case histories that

involved potentially liquefiable ground conditions.

Fenton and Vanmarcke (1991) performed one-dimensional finite element analyses
to assess the effect of spatial variability of soil properties on liquefaction potential at the
Wildlife site, California. Soil properties, such as porosity, Poisson’s ratio, elastic
modulus, permeability, and the dilation angle, were considered as random variables. The
first two properties were considered to be normally distributed, whereas the rest were
assumed to follow a lognormal distribution. The effect of correlation structure was taken
into consideration through the application of the variance reduction factor proposed by
Vanmarcke (1977). Several realizations of soil properties were generated using the Local
Average Subdivision technique, and were excited by various earthquake motion applied
at the base of soil columns using DYNA1D software. The study introduced measures of
liquefaction potential such as A that prescribes the lateral extension of Zones associated
with different values of normalized pore pressure (Wo,) and y that depicts the
connectivity of these zones. A critical threshold for A, associated with high risk of
liquefaction occurrence was proposed. Scale of fluctuation, 6, was found to have
insignificant effect on A, and substantial influence on y, as shown Figure 2.14. A main
limitation of the study is that the sensitivity of the results to the number of realizations
was not taken into consideration. Moreover, the effect of different probability
distributions of soil properties was not accounted for together with the use of one-
dimensional analysis, in which the analysis domain was divided into soil columns
neglecting the coupling between soil elements. Finally, the study provided no basis for
the critical threshold suggested to be associated with high risk of liquefaction and did not
quantify the combined effect of the lateral extent of the liquefiable zones and their

connectivity.
Popescu et al. (1996) carried out one of the pioneer investigations on the effect of
soil spatial variability on liquefaction assessment using the results of cone penetration

test, where cone tip resistance, ¢., and the cone index, I, were treated as random
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variables. A simulation algorithm was developed for the simulation of non-gaussian
multivariate random field. A non-linear regression algorithm was adopted to determine
the probability distribution and the correlation structure of the random variables. The
problem was analysed using the DYNAFLOW software, implementing stochastic input
soil parameters obtained using the correlations between soil properties and CPT data. For
comparison, a deterministic numerical analysis was carried out using the mean values of
soil parameters. Increased pore pressure was predicted from the stochastic analysis due to
the generation of loose sand pockets within the analysis domain that the deterministic
analysis could not account for, as shown in Figure 2.15. A characteristic percentile of
cone tip resistance was proposed for use in deterministic analyses to predict the same
maximum pore pressure obtained from stochastic analysis. The effect of using different
probability distributions to fit the field data was found to have a pronounced effect on the
predicted pore pressure. The major limitation of the study lies in the use of only four
realizations to quantify the effect of soil variability, which may not be sufficient to
sample the expected range of response, as discussed earlier. In addition, the effect of
spatial correlation range on the study outcomes was not accounted for. The author
believes, however, that this spatial range may have a profound effect on liquefaction
susceptibility and need to be considered in future stochastic liquefaction studies. In
addition, the strength percentile proposed for use in deterministic analysis, to capture the

effect of soil spatial variability, was subjectively assessed.

Popescu et al. (1998) extended the previous study to provide liquefaction potential
measures through two-dimensional stochastic analysis where cone tip resistance was
treated as a spatially random variable. The effect of inherent variability was assessed
through 25 realizations of the spatial distribution of CPT data across the site. A series of
deterministic finite element analysis was carried out, using different percentiles of the
recorded CPT data, to estimate equivalent (representative) soil parameters that can
capture the implications of soil spatial variability. These parameters were considered to
be associated with the upper limit of Monte Carlo simulation response range. The Agg

index was proposed as a measure of aerial extent of liquefiable layers, for which the
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normalized induced pore pressure, pw/o,, exceeded a value of 0.80. Whereas, the
liquefaction index, Q, was proposed as the average induced pore pressure ratio in the
horizontal direction. Furthermore, the differential horizontal deformation between the
ground surface and the base of the analysis domain was adopted as an estimate of the
liquefaction induced deformations. It was concluded from the results shown in Figure
2.16 that the initiation of soil liquefaction can not be accurately predicted by
~ deterministic models employing average soil parameters, which can not account for the
presence of loose pockets within soil masses. Moreover, the variability of cone tip
resistance data, expressed in terms of their coefficient of variation, was found to have a
significant effect on selecting representative soil parameters for use in liquefaction
analysis. This study, as the case of the previous one, did not take into consideration the
sensitivity of the analysis to the number of realizations of soil properties. In addition, the
proposed equivalent parameters could be considered over-conservative, as they were
associated with the most critical response of the stochastic analysis. Moreover, the effect

of the type of correlation structure and its spatial limit was not accounted for.

Once again, the effect of changing the state of stresses in soil mass on the
outcome of stochastic analyses has not been adequately considered in any of the above
studies. For example, more investigation is needed to ascertain whether or not the same
values of the representative cone tip resistance percentiles of Popescu et al. (1998) would
be obtained if potentially liquefiable layers were to be at different depths below ground
surface. In addition, no decision making approach was adopted to provide representative

soil parameters that depend on the risk level of the problem considered.

2.5.3. Stochastic Analyses of Seepage Flow and Retaining Walls

The problem of water flow through heterogeneous porous media has been studied
thoroughly along the history of petroleum engineering and water resources research. One
of the pioneer attempts to apply the principles of geostatistics into the geotechnical

engineering practice to study the effect of soil spatial variability on seepage flow was
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made by Griffiths and Fenton (1993). In their study, the Local Average Subdivision
simulation technique was used to generate 1000 realizations of spatially variable
hydraulic conductivity below a water retaining structure. The resulting field was then
mapped onto a finite element mesh in order to perform numerical analysis of the problem
under deterministic boundary conditions. The hydraulic conductivity, k, was assumed to
follow lognormal probability distribution and the effect of spatial correlation structure
was accounted for through quantifying the influence of the scale of fluctuation on
different response (output) variables. It was found that the variation of the permeability
field, expressed in terms of its COV, had a substantial influence on the mean value of
flow rate and exit hydraulic gradient, and an insignificant effect on the mean uplift force.
The scale of fluctuation was found to have a profound effect on the mean value of the
exit gradient rather than other response variables. The uncertainty in these variables was
found to increase with higher values of COV and scale of fluctuation. The limitations of
the study lie in the use of an isotropic correlation structure where the vertical and
horizontal ranges were assumed equal, and that the effect of different probability
distributions and correlation structure model were not accounted for. Furthermore, the
sensitivity of the analysis to the number of realizations of the random variable, hydraulic

conductivity, was not considered.

Duncan (2000) conducted a stochastic analysis to assess the uncertainty
associated with the factor of safety against sliding for cantilever retaining walls backfilled
with compacted silty sand. In the study, soil unit weight, concrete unit weight, and
friction angle between the wall and soil were considered as random variables. The
coefficient of variation of the safety factor against sliding was estimated using the Taylor
series techniques (United States Army, Corps of Engineers 1994). The probability of
failure was assessed assuming that the factor of safety would follow a lognormal
distribution. Furthermore, it was assumed that the probabilistic analyses results were not
sensitive to the probability distribution of the input random variables. The main limitation
of that study was ignoring the effect of spatial correlation between soil data on the

calculated failure probability. In addition, there was not any evidence to support the
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assumption that the factor of safety was log-normally distributed. In addition, the author
believes that the soil friction angle should have been considered as a random variable due

to its significant effect on the assessment of active earth pressure.

2.6 DECISION MAKING IN GEOTECHNICAL ENGINEERING

One of the major challenges that face geotechnical engineers is to make decisions
regarding the soil parameter to be used in engineering analysis. These decisions have to
be based on information that invariably has a certain degree of uncertainty. Consequently,
the decision making process is considered to be governed by two factors, the uncertainty
in the decision variables and the risk level of the project. Several decision making
algorithms have been used throughout the history of geotechnical engineering practice,
such as the worst case and quasi worst case approaches, reliability-based techniques,
confidence interval approach, and Bayesian decision analyses. Details of these algorithms

will be discussed in the following paragraphs.

The worst case approach aims at achieving absolute safety of the project and
relies on the notion of maximum loss and maximum expected hazards, often referred to
as the maxi-max criterion (Ang and Tang 1984). For example, if the range of the
measured friction angle of a sandy deposit at a certain site ranges from 30 to 40 degrees,
the design value will be assessed as 30 degree. This approach is over conservative and

rarely used in practice.

On the other hand, the quasi worst case approach (Pate-Comell 1987) tries to
apply some kind of engineering judgment into the above approach to provide an upper
bound for the risk level. Revisiting the above example, the sandy soil at the site is
classified (say medium dense sand) and the minimum value associated with such

classification (say 33 degree) will be used as the design value. A common problem of the
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two approaches is that no information can be obtained about the risk level associated with

the design value.

The reliability-based approach relies on selecting design parameters that satisfy a
desired degree of reliability or a certain probability of failure. This approach has been
commonly used in slope stability analysis. Wolff (1996) proposed soil design parameters
to be associated with reliability index, B, of 3 for routine slopes and B of 4 for critical

slopes such as dams. The reliability index can be obtained through:

B= mes—L (2-15)
Grs

where: mgs is the mean factor of safety;
L is a limit state value usually equal to 1; and

oFs is the standard deviation of the factor of safety.

In a similar fashion, the US Corps of Engineers (1995) proposed an assessment of
the performance level of embankments depending on the target reliability index and the
corresponding failure probability, as shown in Table 2.2. Comparing the recommendation
presented in Table 2.2 with the suggested values of reliability index of Wolff (1996)
implies that the selection of design parameters for earth slopes should be associated with
critical failure probabilities no more than 0.1%. British Columbia (BC) Hydro developed
a similar approach for dam design based on a thorough review of different potential
hazards (Whitman 2000). In their criterion, critical failure probabilities were assessed as a
function of potential number of fatalities, as shown in Figure 2.17. On the other hand, El-
Ramly (2001) concluded that critical failure probabilities developed in geotechnical
literature were over-conservative and that a critical failure probability of (1-2)% could be
regarded as an upper bound for satisfactory performance of earth slopes. This critical
value was assessed based on extensive probabilistic slope stability analyses of several

case histories in North America and Hong Kong.
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In the confidence interval approach (Harr 1987), soil parameters associated with
the upper and lower limits of a certain level of confidence are proposed as design
parameters. The selection of design parameters associated with 90% level of confidence,
commonly used in practice, is illustrated in Figure 2.18. Using these design parameters
provides a range for output (response) variables, such as the factor of safety, with only a
5% chance that the actual value of these variables will be either larger than the upper

limit or smaller than the lower limit of this range.

The most robust decision making algorithm is the Bayesian decision analysis
(Benjamin and Cornell 1970, and Deutsch 2002), where the impact of making mistakes in
estimating design parameters is expressed in terms of monetary values. This approach
utilizes loss functions and histograms of soil parameters to obtain optimal estimates of
these parameters associated with minimum expected monetary loss. The loss functions
are mathematical relations used to quantify the effect of making mistakes in selecting
design parameters. These functions can take different forms, such as linear, quadratic,
and exponential, as shown in Figure 2.19 for linear loss functions. For more details of the
application of this approach, the reader can refer to Deutsch (2002). The main limitation
of this approach is the difficulty associated with its application in cases where loss of

human lives may be expected.

Along the history of geotechnical engineering, few attempts have been made to
implement the above approaches into field problems. One of the pioneer works in this
area was that by Folayan et al. (1970), where the Bayesian decision analysis was applied
to settlement prediction analysis. In their study, the compression index, C;, was treated as
a random variable and the results of 27 one-dimensional consolidation tests were used to
obtain a histogram for C.. In addition, an exponential loss function was adopted to assess
a value of C; that produced the minimum expected loss. The main limitation of the study

‘'was ignoring the effect of spatial correlation characteristics of C; on the analysis results.
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