National Library
of Canada

l* du'Canada
Canadian Theses Service

i
Ottawa, Canada :
K1A ON4 : -

-~

CANADIAN THESES

- -
NOTICE

The quality of this microfiche is heavily dependenl upon the
qQuality of the original thesis submitted for micrbfilming. Every
effort has been made to ensure the highest quality of reproduc-
tion rbossrble

' -
if pages are missing, contact the unnversny which granted the
degree

Some pages may have indistinct print especially if the original
pages were typéd with a poor typewriter ribbon or if the univer-
sity sent us an inferior photocopy.

Prevrously copyrighted materials (journal articles, publlshed
testsf etc ) are not-filmed.

Reproduction-in full or in part of this film 1sl'igoverned by the
Canadian Copyright Act, R.S.C. 1970, ¢. C-30.

v

THIS DISSERTATION
"HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

s s

NL-339(r.86/06)

Bibliothéque nationale

Services des théses canadiennes

THESES CANADIENNES

AVIS

La qualit¢ de cette microfiche dépend grandement de la qualité
de la thése soumise au microfitmage Nous avons tout fait pour
assurer une qualité supérieure de reproduction

S'i manque des pages. veuillez communiquer avec luniver-
sité qui a conféré le grade

La qualité¢ dimpression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylographiées
a l'aide d'un ruban usé ou si 'université nous a fait parvenir
une photocopie de qualité intérieure

Les documents qui font déja I'objet d'un droit d'auteur (articles
de revue, examens publiés. etc) ne sont pas mlcro!i'lmes.

La reproduction, méme partielle, de ce microfitm est soumise

4 la Loi canadienne sur le droit d'auteur. SRC 1970, c. C-30.

LA THESE A ETE |
MICROFILMEE TELLE QUE
- NOUS L’AVONS REGUE

 Canadi

3



THE UNIVERSITY OF ALBERTA

NATURAL CONVECTION IN LIQUIDS WITH TEMPERkTURE*DEPENDENT
PROPERTIES AND SOLIDIFICATION
by

PERIANNA GOUNDER SABHAPATHY

A THESIS
SUBMITTED TO THE .FACULTY OF GRADUATE STUDIES AND RESEARCH

//?%'pAhTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

- OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL ENGINEERING

. EDMONTON, ALBERTA

SPRING 1986

‘ [J



Permission has been granted
to the National Library of.
Canada to microfilm this
thesis and to lend "or sell
copies of the film.

The  author (copyright owner)

has reserved other
publication rights, and
neither the thesis nor
extensive extracts . from 1t
may be printed or otherwisa
reproduced without. his/her
written

-

- ’ IS8N

spermission.

L'autori;aﬁxon a 8td accordée
a la

Bibliothéque nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
tilm.

‘L'aukteur (titulaire du droit

d’auteur) se ré&serve tes
autres droits de publication;

ni la thé&se ni1 de longs
extradit: age celle-ci ne
doivent @tre imprim&s ou

autrement reprodults sans son
autorisation. écrite.
=

0-31%5-30197-x

/



[

' /
> THE UNIVERSITY OF /ALBERTA

RELEASE FORM

[

NAMé OF AUTHOR PERIANNA GOUNDER SABHAPATHY
TITLE OF THESIS NATURAL CdNVECTION IN LIQUIDS WITH
TEMPERATURE-DEPENDENT PROPERTIES?ANb
SOLIDIFICATION .
DEGREE FOR WHICH THESIS WAS PR=SENTED ﬁOCTOR‘OF PHILOSOPHY
YEAR THIS DEGREE GRANTED SPRING 1986
Permission 1is hereby granted to THE UNIVERSITY OF
ALBERTA LIBRARY to reproduce single copies of this
thgsis and to lend or sell such copies for private,
scholarlonr scientific research purposes only.

The author reserves other publication rights, and
neithér the thesis nor extengiVe extracts from it may
be printed or otherwise reproduced without thg aﬁthor's
written permission.

(SIGNED) ... E ~%’£~a

oA pm s o e e &V s o0 e .

PERMANENT ADDRESS: ‘ a9,
Pudupatty, Elur (PO),
Puduchatram (Via),téalem (Dt),

: Tamil Nadu 636018, INDIA.

wr,

. DATED 28th February 1986.



THE UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

.The undersig\nied”certify ‘that they have rea;i;‘ a‘nd;
. recommend to the Faculty of Graduate Studies a_nd.“‘Re‘ASe_varch“,h
for 'acceptance a thesis entitled NATURAL CONVBCTION IN
LIQULDS WITH TEMPERATURE DEPENDENT PROPERTIES AND ‘ \
SOLIDIFICATION Submltted by PERIANNA GOUNDER SABHAP ‘ i.n
partial fulfilment of th(—i requirements for ‘the dggree of '

DOCTOR OF PHILOSOPHY.

e g

X perv1 ) .
o 7 <
e . 5
LEEC R 4 QIO .'l.. -
" . - <
p ...-.6». /r’__-r‘ .To . s .
T

-----

/(-Aéf

oo-.oo-c-oo-o-o

External E:xam‘n\er

cao
P
v

Date. /\8-5"“4""72@/786 . . .



LauQurgd urturteris CslSgd MuQurgd
QuUtQuega sravu sAq.

To discern the truth in eVerything,
by whomsoever spoken, is wisdom.

~TIRUKKURAL

¥}






v

Abstract

The effects of.tempefafure-dependent properties on the
laminar natural convective ﬁoundary layer flow along an -
isotbermai~vertical flat pié&e we;e studied numerically for
liquids with Prandtl numbers 1 to «. The effects of
temperature—depenéent viscosity and coefficieqt,of thermal
expansion on the stabilityvof/thellaminar flow were
investiga;ed employing linear stability theory. The
transient laminar natural convective flow along a smooth‘
vertical circular cylipder subjected to a step cﬁange in
surface temperature was analyzed numerically‘for various
radii’ of the cylinder.

Experiments were conducted in water with an isothermal
vertical.éircular pipe (outside diameter 41.31mﬁ di length
1 m) for various combinations of wall and ambient
‘temperatures in the rangé 0 to 35°C. The flow was visualized
using shadéwgraph and dye injectioh technigques and the
points of onset of instability and transition to turbulent;
flow were ogfained‘fqr the.naturallynoccurring‘disturbances.'
The effects of natural convection on freezing of water over
a cohvectiyely cooled vertiéal?circular pipe were studied
experihéntal}y fo; ambient tEmperétures between 8 and 17.5°C:
and coolant temperatu;gé between -10 and -20°C.

p Nﬁmeribal'solu;ions indicate -that for ﬁoderafe

f;mperaturevdifferenées between the wall and the ambient
- liquid, the density ‘can be assumed to Be ;ohstgnt in the

governing equations except in the buoyancy force term. The

’
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assumption that density varies linearly with temperature .in

the buoyancy force tefm'underpredicts the surface Heat
-transfer, the-surfate shear stress; and the total‘massvfiow
réee‘fbr 60wn’flows,‘and overpredicts them for up flows. The
effects are sfgnificant for ligquids with small aé,well as
large Prandtl numbers. The temperature-dependent viscosity
"increases the surface shear stress, aﬁd'decreases the
surface hl%t trahsfér énd the total mass flow rate for a
cooled'wall, ahd the reverse ?s true for a heated wall.
Temperature~dependen£ thermal conductivity, and specific
hFat at constant pressure also have significant effects on

-~

the surface shear stress, the surface heat transfer, and the

total mass fiow rate.
For liqui\s, the temperature~depéndent viscosity
stabilizes the flow'along a heated wall and destabilizes it
éloné a cooled wall. The temperature-dependeﬁt‘ebefficient‘
of thermal expansionyinitially étabilizes the flow for a
khéatedfﬁal@ but farther downstream it .destabilizes the flow.
.For hater,,the numerical results predict - that the critical
y. : :
G%aéhof nhmber for'the onget of instability is discontinoﬁsv
in the region where fiow reversals occur due to the density’
maximum. The trends of .experimentally obtained‘cfiticai |
lvalue§ of Grasﬁof number for ;he‘onset of instabilty and the
tran%ition to turbulence in water agree with the‘numerical
predictions. The temperature measurements and fhef

shadowgraph flow visualization studies reveal that the

‘critical Grashof numbers for the onéeg of ,instability and

“vii
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the transition to turhulent flow are lower during the

h)

transient period than at the steady state.

s
- .

When water freezes over a convectively ;ooled‘vertical
circular pipe in natural_convection, tﬂe thicknesé of the
_ice iayer increases with axial‘distanéngh the laminar'
'regime,Aremajns nearly coﬁstant in the transition régime,
and‘deéreases with'axial distanée in the turbulent ;egime.
The heat transfer éoekficieﬁts af the interface obtained
from the heat conduction énalysis of tbe sqlidified region
agree fairly well:.with ﬁhose‘giveq in iite}atuce for the

natural convect%ve.flow along an isothermal vertical flat

i

plate. i ; : EE S o
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Nomenclature
= real constants
= ] h
Biot number, Cro/kS

complex constants

]

= width of the plate, m
= dimensionless wave velocity, Chapters 2 to 4
= specific heat of the solid, kJ/(kg.°C),

£

Chapter 7

.specific heat at constant pressure, kJ/(kg.°C)

\

= specific heat at constant pressure evaluated at

)

temperatures t., t_, t, and t_, respectively

diameter of the pipe, m
= friction factor at x m from thﬁ/ieading edgé
= similarity stream function .

a5,

= accleration due to.-gravity, mz/s
= dimensionless stream function, eq. (2.47)
= dimensionless stream function, eg. (2.50)

= 4(er/4)]/4,'Chapters 2 to 4 »

=‘length scale, [gﬁ(to—tw)/uzl]/B, mf], Chapter'S.

= freezing front spéed, dS/dr, Chapter 7

:?Graéhof number, g(po-pm)x3/(p0u§ ), Chapters 2

and 3

Grashof humber, gat|to—tm|9 x3/v§,'chapter 4

H,

anshof'ngmbef,,gﬁ(to—tm)x3/v2, Champter 5

.dimensionless temperature, ‘eq. (2.47)

local heat t;gnéfer coefficients, W/(m2.°C)

‘heat transfer coefficient at the coolant side

XX e
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o]
n

and at the interface, respectively, Chapters

- 6 and 7 ,
h > averagé heat transfer coefficient <
H _ = dimensionless temperature, eq. (2.50)
H = cOnveo£ion parameter at the

interface, hfro/(ksec), Chapter 7

i = V(-1 | \ e
J = Jacobian of transformation; X, Y. "X ¥, .
: I
k ) = thermal ¢onductivity, W/(m.°C) N
ks'kl = thermal conduqtiviry of the solid-and the liqguid

respectively ' :

kf’kr'ko”kw . l‘ o . ~
= thermal conductivity™eyaluated at temperatures
Lo SR
te, T, tO apd-;m.resggctlve%y

L : % latent heat of .freezing '

va = charaé;eristic length, eqg. (2.16)

M,N = numbefqu grids in X and Y directions

‘ \

'3:vgpsgective1§,‘Chaptgr 5

M,N 5&“'7 = number of grids in the transférmed.piane,
A £ - M X
Chapter 6 - o
n = outwafd‘normal_at the 1interface

Nu ‘¥ = local Nusselt number
_Nu ='av¢ré9g Nusselt numbeg
b,pm,pd " = pressure,. pressure at tﬁe ambignt‘condjtion’and
. preséure aifference (pfpm),‘respectivély
P,Q . .. = coordinate control functions
Pr =‘Prahdtl number
constant, Chapter 3
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= exponent of the peﬁperature term, Chapter 4

<

Q' " = total heat transfer rate .

r l = position of reference tempgratdre, Chapter 2

r = radial coord}nate, Chapters 5 to 7 ' o

ff = interface position, Chapperé‘é and 7

' ' = radius of the cylinder, Chapters 5 to 7 |

K = teﬁperature parameter, (tmrtw)/(to—tm),

RN Chapter 4 ‘

R = dimensionless radial coordinate,vr/go, Chapter 7

R, = dimensionless radius of the cylinder,-rG, )
Chaﬁter S

Ra = Rayleiéh number, (er Pr)

Re ,Red = Reynqlds numbe;s; Chaptef 6

s” = temperature disturbance amplitude~function

S5, = real andg imaginary parts of temperature \\\/
disturbance amplitude function, respectively

S - - = dimensionless interféce position, rf/ro

totte bttty bt

= temperature, coolant temperature, film : o,
temperature, temperature at the density maximum,

reference temperature, surface temperature and

~ambient temperature, respéctively

T = absclute temperature, K

u,v = velocity component in X and.y directions

UWV = dimensionles; velocities,’u/yG and v/vG,;
reSpectivély, Chapter 5 .

w = total hass flow rate, kg/s

wp'wv = predsure “work and viscous d}ssipation terms,
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respectively

1§

Cartesian coordinates »

il

dimensionless distances, xG and yG,

~

respectively, Chapter 5

= dimensionless coqplex wave number,

Chapters 2 to 4

= real and imaginary parts of the compiex wave

. number, Chapters 2 to 4 f

At

= thermal diffusivity, Chapter 5
= thermal diftusivity of the solid, Chapter 7

. 2. 2
= transformation factors, a=x_+ , B=x_x + ,
. 7 Y %0 Yiq

7=x§+y§, Chépter 6
- coefficient, (°C) 2, eq. (4.1)
= coefficient of thermal expansion, K

= coefficient of thermal expansion evaluated at

témperatures tf"tr’ to and t_, respectively

= dimensionless frequency, disturbance equations,

Chaters 3 and 4

= real and imaginary sparts of the freguency,

[}

. - Q
Chapters 2.to 4

r Joe :
= dimensionless parameters' for variation of

dynamic viscosity with témﬁerature,

Chapters 2 to &

1

boundary layer thickness, m

local ice layer thickness, Chapters 6 -and 7
0 te) | _ ‘ o
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= dimensionless parameters for variation of

. coefficient of thermal expansion with temperature,

Chapters 2 to 3 _
:lperturbgtion parameter, cs(tf—tc)/L, Chapter 7
= dimensionless parameters for variation of
specific heat with temperature, Chapter 2

= similarity variable

= dimensionless temperature, (t~t®)/(to—ta),
Chapter 2

= dimensionless temperature, (t ~tuf/(t0~t;),
Chapters 3 and 4

= dimensionless temperature, (e-t )/ (tg-t ),
Chapter 5

= dimensionless temperature, (t—tc)/(tf—tc),
Chapters 6 and 7

= cooling temperature ratio, (tf—tc)/(tm~tf)‘

= thermal diffusivity

= dimensionless paraméters for variation of
thermal conductivity. with temperature, Chapter 2
= constant, Chapters 3 aﬁd_4 ‘

= dynamic viscosity, kg/{(m.s)

Mf,ﬂr,#o,um

Laad Faad Laad

= dynamic viscosity evaluated at temperatures,tf,

t. tb and t_, respectively - ‘

= kinematic viscosity

= similarity variable, eq. (2.47)

= curvature parameter, Chapter 5-

= coordinates in the transformed plane, .Chapter 6

'
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= time, g, Chapters 2 to 4

= time, s|, Chapters 5 to 7
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= dimensionless time, (;eas)/rg,\Chapter 7

= shear st}ess at the surface, 1“(”“/“Y)‘y;0'
Chapter 2 ~

I
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coolant

]
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fl
"film" condition,‘Chapters 2 to 4
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= liquid.
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1. Introduction

Natural convective flows arise due to the effect of a
A

density difference resulting from a temperature or
concentration difference in a body force field such as the
gravitational field. In natural convection, there is no

-

erxternally induced flow field as in forced convection.
Natural convective flows are abundant in nature and
technology. For example, natural convection plays é vital
role in the circulations of étmééphere, oceans, lakes and

" other wéter bodies. The predominant mode o% heat rejection
in many electrical and electronicldevices 1s natural
convection. In natural convection, the flow field 1s linked
with and dependent on temperature and coﬁcenﬁration fields.
Mathematical énalysis of natural convective_fléws over
'complex geometr&éé 1s generally difficult. Hence, natural
convective flows afe normélly idealized 1nto flows over
simpler geometries with simple boundary conditions. Among

>

these'flows, the natural convgctive flow along an 1sothermal

]
vertical surface i1s technically very important.

1.1 Previous Analyses on the Effects of Variable Properties
» of the Fluid on the Natural Convective Flow Along a
"

Vertical Surface

1.1.1 Laminar Flow

»

Even for the laminar natural convective flows over
idealized geometries, the exact governing eguations are

usually intractable. Hence, it is customary to"make some

1



i . . . .
approximations to the governing equations. The most

)
frequently employed approximations, known as Boussinesg
approximations, consist of the following steps:

1. thé'density ofjthe fluid is assumed to be constant
n all terms of the governing equations except in
s

the buoyancy force term where it is assumed to

vary linearly with QemperatJre,
Lo Tt

M : -~

2. all other physical properties are assumed to be
constant, and

3. the viscous dissipation and the pressure work are

neglected. k

The laminar’natural_convéctive floy along an 1sothermal
vertical flat plate with Bogssiﬁ?Sq approximations has been
of interest to many investigéta}s,for more than 100 years.
One of the earliest inQestigatobs-to attempt a solution of
the governing eqguations for this classical problem was
Oberbeck (1879). Lorenz (1881) aésﬁmed'that the streamlines
and the isotherms were parallel to the vertical surface and
solved the resulting ordinary differential equations to s
obtain the local Nusselt number at the surface.

Pohlhausen along with Schmidt and Beckmann (1930)
employed boundary layer approximations and similarify
variables techniqgue to transform the partial differential
. equations into a set of ordinary’differéntial equations and
obtained approximate solutions‘for.air. Schmidf and Beckmann
‘also performed experiments for the natural convective flow .

alohg a heated vertical plate in air and measured velocity

and temperature profiles. saunders (1939) and Schuh (1948)A



obtained approximate solutions for various Prandtl numbers.

O;trach (1953) obtained the exact numerical solutions
to the governing equations for Prandtl numbers from 0.01 to
‘1000. His solutions agreed well with the experimental
results of Schmidt and Beckmann. Since then there have been
a number of studies on the laminar natural convective flow
along a vertical surface encompassingAa wide range of
conditions. These studies are discussed in Jaluria (1980).

Boussinesg approximations are justified only if the
temperature differenece between the surface and the ambient
medium -is small. For example, it was shown by Gray and

. *

Giorgini (1976) that at 15°C and lvatmospheric pressure,
Boussinesq approximations are valid only when the
tepperatpre difference between the surface and the ambient
medium is less than 1.25°C for water and 28.6°C for alr. At
larger temperature differepces the effects of veriable ”
pgaperties‘must be included in the analysis. There have been
a number of studies, in the past, on the effects of variable
properties of the fluid on the laminar natural convective
flow along a vertical f}at.platg; |

Sparrow (1956) and Sparrow and Gregg (1958),
investigated perfect gases for different property laws and
elso considered liguid mercury. They determined reference
temperatures for evaluat1ng the propertles to be used to
calculate the natural convective heat transfer from the
constant property relations. They also found that the use of
film temperature is adequate for most appl1cat10ns. Hara

(1958) employed a perturbation method to study the effects
s . b

-
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of variable properties for éirh Minkowycz and Sparrow (1966)
studied the non-ideal gas behaviour of steam and proposed
refefence temperatﬁres for calculeting-the natural
cohvective heat transfer at the surfacel Nishikawapand Ito
(1969) considered the variable property effects in water and
in CO, near supercritical pressure conditions.

Fujii et al. (1970) proposed two kinds of experimental |
correlations, one ,using the‘physical properties at a
refegence temperature, and the other using‘'the properties at
the"ambient temperature with supplementary terms referred to
the variation of kinematic v1sc051ty ilth temperature.fplau
(1970 1974) studied the effects of variations of coefficient
of thermai expansion and viscosity with temperature for the
natural convective flow along an isothermally heeted
vertical plate in water and in liquids‘for moderate °
temperature diffenences (~10 to 30°C) between the wall and
‘the ambient medium. He found that the temperature-dependent
v}seosity increases the surface heat transfer rate whereas
the temperature-dependent coefficient of thermal expansioﬁ
has little effect on it. He also showed that the effects of
variation of the coefficient of thermal exapansion are
negligible when Pr - w.‘

- Barrow and Seetharamarao‘(1971) examined the effects of
temperéttre—dependent coefficient of thermal expansion for
dn-isothermal vertlcal surface in water. They found that it
‘has con51derab1e 1nfluence on the local Nusselt number at

the surface. They neglected the effects of variable

viscosity. Brown (1975) extended the work of Barrow-and



Seetharamarao by employing an integral method to include the
variation of density with temperature. He concluded that its
effects are more complex than the approximations madg in the
previous investigations.

Ackroyd (1974) showed that the effects of viscous
diss;pation and pressure work can bé’neglectéd'ﬁnder normal
conditions and that the variations in the properties of the
ambient fluid are important. Ito et al. (1974) considered
the effects of variable properties for a uniform héat flux

.

vertical surface in o1l and in supercritical CO Carey and

5-
Mollendorf (1978) studied the effects of variation of
viscosity with temberature for ligquids with Prandtl numbers
1 to 1000. They examined both heated and cooled walls and
determined thq‘limits of variation of viscosity with
température for which the Boussinessq approximations are
valid within #5%. They neglected the effects of variatgon of
coefficient of thermal expansion with temperature.

Shaukatullah and Gebhart (1979) considered the effects
of variable properties for an isothermal-wvertical flat
surface in water for various Combinations of wall and
amblept temperatures in the-range 0 to 100°C. Their analysis
was restricted to specific combinations of wall and ambient
fémperatures in water. Cérey and Moliendorf (3980) extended
their earlier work to study the effécts of variation.of
viscosity ﬁith témperafure for a freely—risiqgggiang plume,

-a pléhé wall plume and a uniform heat flux vertical surface.

'vThgse:studiés on the effects of variable properties on.

the laminar natural convective flow along a vertical surface
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have mainly been done for a particular fluid or considering

the vafiation of one or two properties in detail. Also,
there i1s disagreement on the effects of variations of
density and the coefficient of thermal expansion with
temperature (Barrow and Seetaramarao, 1971, Piau, 1974 aﬁa
Brown, 1975). Hencé a further detailled study 1is necéssary to
find the effects of variable properties on the laminar
natural convective flow along an isothermal vertical flat

+

plate.

1.1,2‘Stability of Laminar Flow
Near the leading edge of the vertical flat plate the
natural convective flow’is always laminar. Away from the
leading edge, the laﬁinar flow becomes unstable to
ever-present disturbances in ‘the system. The therhal
transport 1s differenf in lamina;, transitigh, and turbulent -
regimes of the flow. Hence the knowledge of/the nature of
the fiow is important for estimating the thermal transport.
The transition from laminar regime - to turbulent regime
depends on the stability characteristics of the flow.
Stability aﬁd transition to turbulence of natural convective
-flows over vertical surfaces have beén extensively studied
by many investigators ehpiﬁying Boussinesg appréximations.
Eckert and Soehhghen,(1951) were aﬁong th; earliest to
perform experiﬁents,with the primary purpose of studying the )
stabi{ity and trénsition to turbulence of laminar natural
cénvective bopndary layer flows. Using a Maékuehnder

interferometer, they were able to observe the naturally
‘ e



occurrﬂng disturbance temperature distributions along aﬁ
isothermal vertical flatgplate in ailr. Theyvobserved the
formation and amplification of a wave disturbance which was
initially two-dimensional and sinusoidal. However as the
disturbance amplified/further, the wave form became more
complex and eventually gave way to a threg dimensional
disturbance. This ejperiment estalbrlished that the natural
convective flow becomes unstable to some wave disturbance
having a particulér wave number. \

The first analytical attempt to predict the stability
of natural coﬂvectivg bounday layer flows was made by Plapp
{1957). Usinglthe linear stability theory, he derived the
disturbance momentum and energy equations and obtained a
coupled set of equations, one a fourth order, and the other
a second order. He found approximate soultions for an
isothermal vertical flat plate in air. )

Szewczyk (1962) presented a theoretical and
experimental study of the stability of natural convective
flow along an isothermal vertical flat plate in water. He
used an asymptotic technique to}obtain solutions about both
the inner and the outer critical layers to the uncoupled
equations for a Prandtl number_of 10. The critical values of

_Grashof number obtained for the naturally occurring
disturbances in his experiments were lower than those
obtained from his theoretical analysis.

1t appears thét Nachtsheim (1963) was the first to
obtain a numerical solution of the couplea disturbance

equations. He determined both the uncoupled and the coupled

/



neutral stability curves for the natural convective flbw of
air, and water along an isothermél verticql flat plate. He
showed that the temperature coupling can have an appgeciable
effect Sn the stability, particularly foér lower values of
the wavé'number-Grashof number product. Since thenl;here
have been a number of iheo;etical and experimental studies
on the stability of natural convective flows along vertical
surfaces for various conditions. )

Polymeropoulos and Gebhart (1967), Knowles and Gebhart
(1968), and Dring and Gebhart (1968) investigated the
stability of’laminar bouﬁdary layer flow along a vertical
uniform heat flux surface. Fujii et al. k1970)’studied
experimentélly the Patu?al convective flow along a vertical
ci;cular cylinder for various liguids with Prandtl numbers
from 2 to.2600. They visualized the flow for both constanf
ﬁ;éllhtemperature and constant surface heat flux conditions
and found thét the boundary layer develops through laminar,
vortéx—sfreetc_transition to ;urbulent, and turbulent flow.
They suggested’that the phenqmena of transition to
turbulence occur mainly due to the vqrtices in the outer
part of the boundary layer. They also cbtained the local
Nusselt number for various regimes of the fiow.

Colak-Antic and Gortler (1971) visually investigated
the three—dimenSional transition phenomena in the natural
Eonvecbiye boundary layep along a heated plate in water
under cont:élled forced distufbaﬁces. They obseqvéd distrete

longitudiﬁal'Vbrtices in the outer part of the boundary

—

A

layer. The break-down of these vortices causes the 4
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transition of the laminar boundary layer into turbulent

flow. Hieber and Gehhakt (1971) proposed a new numericgl

method to solQe t he disturba

Iy

equations. Other studies on
this‘subject can be found in'the recent literatﬁfe review by \
Gebhé;t and Mahajan (1982). ; , N
"There has been no comprehensive'study, to date, on the
effects of variable prqper{ies on the stability of iaminar
natural Convective flow along a vértical surface. Plau

{1974) analyzed the experimental data for heated walls and

concluded that the temperature-dependent viscosity has a

stabilizing effect for liquids and destabilizing eftect for
gases. It is of interest to note that in the forced ‘
convective flow of a liguid over a flat plate 1t was shown
theoretically by Haubtmann (196?), and’theoféticall; and
experimentally by Wazzan et al. (1968)chat the
temperature-dependent viscosity destabilizes the flegw for Q
cooled wall, and stapilizes the flow for a heated wall.

The préblem of the stability‘of laminar‘n?pural
convective boundary layerifiow 1s an intereétjng.combihatzon
ot the pfoblems of boundary layer sﬁability (hydrodynamic
stability) and thermal‘sgability.ﬂsince the natural
convectiXe flow is a shearing motioﬁ, tﬂé problem of 1ty
stability contains all the features of bbunaar} layer
stability. However, as there is é_tehperature-differeﬁcc
between the wall and the aﬁbieﬁt medi;m in the natural
convective‘flow; the essential features of tgg thermél . L
staﬁility are also inherently present.'Hehcé a defailed}

theoretical and experimental study is necessary to ‘find the

-



effects of variable properties on the stability of laminar
natural convecfive flow along an isothermal vertical
surface. -

It is well known that water exhibits a density maximum
near 4°C.’When the surfacg and the ambient temperatures are
on the opposite sides of the témperature corresponding to

the density maximum, the buoyancy force reverses in

©

airection inside the thermal boundary layer. Also, flow
reversal and a rapid decrease in surface heat transfer may
occur. There have been a number of studies on the effects of
maximum density on the laminar natural conQective flow along .
a vertical flat plate and the references can be found in 
Yui1ll (1972) and Carey et al. (19807.-Récently\Padlog and
Mollendorf (1983) studied the effects of‘variable propert&es
on the laminar natural convective.flow in water near the
density maximum region. B :

The présenée of density maximum, and the process of

buoyancy force reversal with the possiblity of gonvéc;ive
' \

“inversion of the flow complicate the stability

H

characteristics of naturil convective flwws in cold water.
Qureshi:(l980) found that the buoyancy induced flow in water
at’ its dens}&y maximum along é vertical uniform heat flux
surface is initially stable. But farther downstream the

dispurbanqeyampiification’rate increased. The density

[ S

maximum was also found to delay the beginning of transition.

to turbqlencé. . 7
Carey and Gebhart (1981) v1suallzed the flowﬁgdﬁ;c nt {

G 4 : . A
.“to a vertical ice surface melting in cold water and obéénxﬁf///

a4
’
#
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bi-directional flow near the maximum density region.
Joseberger and Martin (1981) studied experimentally the
melting of a vertical ice surface in salt waterfor various

salinities and ambient temperatures. They also obtained an

approximate solution for the turbulent flow near the maximum

density.
Recently Higgins and nghart 1982,1983) studied the
stability of buoyancy‘inducedAflows in cold water adjacent
! _ ‘
differences (=5°C) between the surface and.the ambient

medium. They found that the Bodssinesq approximations

overpredict the buoyancy force in up flow circumstances and

the resulting neutral stability curves lie to the left of
the true ones. The reverse is true .for down flows. They
neglected ‘the effects of temperature~dependeht viscosity.

‘fThe,vgsggsity of cold water is a strong function of
LT oL o _;\. .

Ntemperatdréi Hence it is
both the maximum density and the temperature-dependent
viscosity on the stability of laminar natural convective
flows in cold water.
-
1.2 Previous Analyses on the Transient Matural Convective
Flow Along a Vertical Circular éylinder

In many sitﬁations such as nuclear reactor accidents,
.coaling of electriéal and-electronic equipments and heat
transfer from a human body, the naturalvcpnvective flow

' during the transient period is very important. Many such

surfaces can be approximated as vertical circular

to an isothermal vertical flat surface for small temperature

important to study the effects_QL s~

~
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T
cylindrical surfaces for theoretical analysis. It is ﬁo be
noted that the vertical flat plate is a special case of a
vertical circular cylinder’with an {nfin%tg fadius.

The steady laminar nafural convective flows along
vertical flat surfaces have been studied extensively in the
past empléying similarity vgriables. For vertical circular
cylindrical surfaces the flows do not normally yield
similarity solutions, and they have been studied by
approximate methods such as heat balance integral (Lefevre
and Ede, 1956, and Hama et al., 1959), perturbation-
expansion (Sparrow and Gregg, 1956, Kuiken, 1968a, Fujii and
UehaTa, }970, and Aziz aﬁd Na, 1982), locai non—similérity
(Minkowycz and Sparrow, 1974) and two—péint finite
difference (Cebeéi, 1974) . Thesg studies also contain other
related works on this subjéct. |

The transient natural Convecéive flow along a vertical
surface subjécted to a step change in surface temperature or
surface heat flux has mainlf been studied for a flat plate.
For an infinite isothermal vertical flat plate, with a
parallel flow‘assumption,~lllingworth (1950) found that the

‘temperature field in the boundary layer 1s identical to that

of unsteady one-dimensional heat conduction into a _—

semi-infinite body. Sugawara and Michiyosﬁi (1951)'carried 
‘out a similar analysis and determined the short time'gor @
which the parallel flow approximation is valid;

Siegel (1958) analyzed the ‘transient natural convective
flow along a semi-infinite vertical flat surface subjécted

to a stgb change in surface tempearture or heat flux by

S

e



emp}oyiné Von Karman-Pohlhausen integral method and the
method of characteristics. He determined the time required
for the steady flow to-become established at any position
elohg the plate. The boupdary layer thickness was found to
reach a maximum, and the heat trarnsfer coefficiént at the
surface a minimum during the transient period. This 1s due
to the fact that at 5 given position along the plate, the
heat conduction process is sufficiently rapid to enable the
boundary layer thickness to grow beyond the steady state
thickness before the constraints induced by ehe leading edge
can propagate to that location and prevent the growth from
continuing as if the plate wete infinite in length. The
overgroyéh 1n the boundary layer tgickness‘causes a minimum
in the/ﬁeat'tranéfer coefficient at the surface. The
experimental analysis in water bf Goldstein and Eckert
(1960) confirmed the above predictions. Gebhart (:1968)
investigated the effect of surface thermal capacity. The
effect of Prandtl number was investigated by Schetz and
Eichhorn (1962), and by Menold and Yang (1962).

Hellume and Churchill (1962) presented a finite
difference numerical solution of the governing partial
differential equations for tﬁe transient flow along a
verticalkplate subjected to a step chenge in surface
temperature. Their result agreed with the result of earlier
invespigators that the local heat transfer coefficient at
‘any point on the surface goes through.a minimum during the
transient period. Goldstein and Briggs (1964) investigated

the flows from vertical plates for constant surface heat

<



N

3

14

i
flux and constant wall temperature, ano fromfcylinders for
@onstano heat flux conditions. They predicted that the
difference between the minimum heat transfer coefficient
which occurs during the transient period and the steady
‘state Qalue i1s larger for a stepr change in surflace
temperature than-that for a step change in surface heat
flux. It was also found that the difference is larger for
lower Prandtl numbers.

Brown and Riley (1972) reduced the governing'equations
to a similarity form and obtained approximate analytical
foiutions for small and large tinesf They also predicted a
time up to which their unsteady solution is applicable.
Ingham (1978) reinvestigated the solution obtained by ;
Hellums and Churchill (1962) and concluded that the. -
numerical technigque may introduce artificial diffusion in
the-calculations. Sanmakia an% Gebhart (1978,1981) and
Sammakia et al. (1982) investigated the flow along»a
vertical flat surface subjected to a step changeg 1n85urface
heat flux by employing a similar numer1cal method Their
experimental results in water agreed with those obtained~‘
numericglly.;There is little information on the transient
natural convective flow along a vertical c1rcu§fr cylinder

%ﬁujected to a step change 1n surface temperature or. surface

heat flux except the approx1mate analytlcal study by.

Goldstein~and Brlggs (1964) for the case of constant surface -

- - ¥
heat flux. Hence, a detailed study of the tran51ent natural

convectlve flow along vert1ca1 surfaces is necessary.

Ay
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1.3 Previous Analyses on the Effects of Natural Convection
on Solidification and Melting Prqbléms
In many natural convective flow circumstances, when the

wall temperature is sufficlently below the freezing

\\,temperature of the liquid (less than -5°C for water at 15°C

and 1 atmospheric pressure, for example), the iiquid
solidifies onto the wall. Problems associated with these
processes involve heat transfer with phase change. The
standard procedure in solidificétion and melting problems is
to find the shape and the position of the solid-liquid
interface at differenf‘times for the given boundary
Conditiong. These -transient problems with a moving boundary
are nonlinear in character and hence exact solutions havér
‘been found‘onlyﬂfor pfoSlems involving simpler geometries
and initial coqditions.‘The early analytical solutions dealt
with the problem as a one-dimensional conduction and they
are given in Carslaw‘aﬁd Jaeger (1959), and Ozisik (1980).
Tien and Yeﬁ (1960.) obtained aﬁ approximate solution
for the solid-liquid moving boundary problem including the
buoyancy effects in the lquid. Boger and Westwater (19g7)
experimentaliy‘measured the_inéerfacial vqlocitiés and
transient and steady state tehperaturé profiles during
freeziﬁg and melting of water between two isothermal
horizontal bérallel plates. Székeley and Chhabra (1970) °
studied the solidificétibn of lead over an isothermally
cooled vertical flat surface. They found that ‘the
experimentall} obtyihed shape'of the solid-liquid interface

was controlled by the natural convection in the liquid.



Lapadula and Mueller (1970) presented an approximate
solution for the transient development of the solid-1liquid
interface when a superheated liquid solidifies onto a cooled

vertical wall. They included the effect. of natural

convective heat transfer adjacent to the interface in theirg

analysis.

Of late, there have been a numbe} of experimental
studies on the effects ef natural convection on both
solidification -and melting problems involving various
geometries and boundary condtions. Sparrow et al.. (1979)
studied the freezing vf a phase change medium (a paraffin)
over a vertical tube and found that the steady state shape
and pdsitjonfof the solid—liquid interfece was controlled by
natural convection. Sparrow et al. (1977) and Bareiss and
Beer k19801 studied the inffuence of natural convection on
the shape and the positiqm‘of the solid-liguid interface in

N

the melting process due to a,heated_vertical_cylinder. A
éummary of other inVestigations can‘be/found in the recent
literature review by. V1skanta (1983). ‘

‘These investigations were malnly concerned w1th
solidification or melting problems when the natural
convective flow adjacent to-the interface is in the laminar
regime. If the superheating in the llqu1d or the geometry\ofv

the system is large,'tran51t10n and turbulent regimes will -

also occur. in ‘the natural convectlve flow adjacent to the

‘interface. It is .to be noted that when water freezes over a’

Vcooled planar plate or ;n51de a tube in forced convectlon,

transition; and turbulent flows have 'dramatic effebts_bn>the

N
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shape of the ice layer profile (Hirata et al., 1979b, Cheng
et al., 1981, and Gilpin, 1979,198#): Hence,. it is important
to study the effects of natural convection on solidification
or melting problems when the flow is in transition er
turbulent regime.

-

‘1;4 Present Analysis
The present study 1is cqncerned mainly with the natubali
convective flow aiong a Yertical surface in a quilescent
ambient liquidt ‘ A o l'_)
In'Chaptér 2, the effects of:temperature~de§endent
lproperties on the laminar bounaaryvlayer flow aleng an
isothermal vertical flat piete are Studiea. The effects of
‘vall the relevant properties are considered by(éﬁploying
dlmen51onless parameters The‘effects of Var{ation of
~density wlth temperature in varlous terms of the governxng
.equations are considered in detail. A-better approximation
of the variation of denei€; with temperature in the bboyancy
force tetm than»thOSe employed in‘previou§tinVestigationé is
considered in the form of a d&ménsienless perameter. Both
‘heated and Cooied walls are examineg. Liguids with:braﬁdtl
numbers * to'w,ere considered. The vafiable‘property‘effects
on the temperature and velecity‘profrles are also studied in
- detail, lt\ ' S | - | -

| .
\ n

In Chapter 3A the effects of varlat1ons of v1sc051ty
and oeeff1c1ent of. thermal expans1on wlth temperature on the‘
stablllty of the lamlnar boundary 1ayer flow along an

1sothermal vertlcal”flat plate,are studled_numer1cally for

-~ . - §
\

[
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various Prandtl numbers. Experiments were also conducted
with a copper circular cylinder (outside diameter 41.3 mm
and length 1 m) in water for various combinations of wall -
and ambient tgmperatdkeé in the range of 5 to 35°C. The flow
was visualized with shadowgraph and dye injection
techniques.

In Chapter 4, the stability of laminar boundary layef
flow along an isothermal vertical flat plate in cold water
1s studied. Thefeffects of both the maximum density and the
temperéture—dependent viscosity are examined. Various
combinations of wall and ambient temperatures in the range 0
to 20°C are considerd. In particular, the flow fr?m an
isothermal wall at OfC, corresponding to an ice éerace, 1s
studied in detail. The stability characteristics of the flow
with and without buoyancy force reversals inside the‘thermal
boundary layer are analyzed.
X In Chapter b5, the transient flow along a vertical
‘ciréulé? cylinder sgbjected to a step chaﬁge in surface
temperature is investigatéd numerically for various
curvatures of the cylinder and Prandtl numbers 0.1 to 10.
Experiments were also conducted in water with a vertical
copper ¢ylinder for a step change in surface temperature.
" The fléw was also visualized using shadowgraph teéhnique.
lIn‘CBapter 6, the local heat transfer coefficients at
thg solfdfliquid interface are obtained by numerically
so}ving the temperature field inside the solidified regibn.

The solutions are compared with a simple one~dimensional

‘ . ) ) \
_analysls, The example problems, taken from literature,

El



involve freezing of water ovér a planar plate in
longitudinal flo;, a cyiinder in cross flow and inside a
pipe with ice bands.

In Chapter 7, the effects of natural convection in
laminar, trans&tidn, and turbulent flow regimes are‘analyzed
when water freezes ovef.a convectively cooled vertical
circular cylinder. The effecks of stratification and
‘dissolved air in ambieﬁt water, and the stability of the
interface to artificially induced disturbances are L
investigated. A one-dimensional analysis of the transienw
development of solid-liguid }nterface 1s also presented tor
the solidification of a liquid over a convectively cooled

-

vertical pipe.



2. The Effects of Temperature-Dependent Properties on the
Laminar Natural Convective Flow Along an Isothermal Vertical

Flat Plate

v

.
In this Chapter, the effects of temperature-dependent
properties on the laminar natural convective boundary layer/
flow of a liquid along an iédthermal vertical flat plate are
studied numerically for Prandtl numbers from 1 to «. The
effects of all the relevant properties are considered
employing dimensionless parameters. The effectsfof variation
of density with temperature in VQ:&ous terms of the
governing equations are analyzed in detail. A better
approximation of the variation of density with temperature
than those employed in previous investigations is considered
in the buoyancy force term. Both heated and cooled walls are

examined. The effects of variable properties on temperature

and velocity profiles are ‘also studied in detail.
2.1 Theoretical Analysis

2.1.1 Governing Equations

The coordinate system is shown in Fig. 2.1. The
quiescent ambient medium and the surfacé'bf\thé”&ertical
,flat plate are at congiant temperatures t. Qﬁd tO’
respectively. The flow is assumed to be steady and
two—dimensional..The equatibns governing the conservation of-

mass, momentum, and energy for the laminar natural

5.

20



- (a) Up Flow (b) Down Flow

Fig. 2.1 The coordinate system

o2
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convective flow of a Newtonian fluid of variable properties

are given by (Batchelor, 1967),

|
|

com(— 4t — )+ —

2 0u ov a du av)
3 0x oy oy g

T dp - op ap ' .
- (=) {(uU— + v—) + ) 2.4
sl Vax T Ve e (2.4)

du 2 du av. ] du du av]2
where ¢ = |2— - — (— + —)| — + |— + — +

[zav 2 3u dv . Jov
dy .3 ox ay

-

For the ambient fluid | s , o .

—= = -p g . ) (2.5)
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In addition to the above equations, anAeQUatié; Qf'
sta&e, relations for the propefty variations, éhé‘the
béundary conditions are needed for the compfete ‘
.specification of the problem.

These equations are complex and it ig'duggicﬁig toA{
solve them. Hencé some approximations are reqﬁdred to
simplify them. Because of the semi-infinite nature of rﬂé
region, the complete set of boundary cbnditions 1s not -
evident. The boundary layer formul%tiOn.will,simplify the
problem and eliminate the necessity of specifying those
boundary conditions which are not. evident.

‘The boundary layer equations are obtafqed after
normalizing Fhese equations'and performing aJ_order of
magnitude anaiysis. The detaiied procedure of nérmalization,v
.order of magqitude.analxsis, and the conditions neces%ary'
for empléying the boundary layer approximations are giveh ip
detail in Appendix AJ The boundary layer eguations governing

the flow are given by

i) 3, . - . _
—(pu) + —=(pv) =0 (2.6)
X - dy , .

du du ’ 0 du

—_— — = - 4+ — - (2~7>
Plue T Vay T 9leame) ay[“fi}']

. -2 1ot
P ox oy ayL oy



24

The boundary conditions dre,

at'y=0,u=v=Oandt—=tOforallx (2.9)
& :
as 'y » «, u~»0and t » t_ for all x ‘ (2.10)
at x = 0, u=v=0and t = t_all y >0 (2.11)

The properties of the flui&%%re functions of
temperature»andhpressure: At moderate pfessures, the
.properties.of most ligquids are not strong functions of
pressure. Hence, the effects of variations of properties
with pressqﬁg;g§n’bé neglected normally. But the properties
of most liQG}ﬁ; aré strong functions of temperature. For
‘example, Figs. 2.2(a) and (b) show the variations of
properties with temperature at 1 atmospheric pressure for
water and ethyl alcohol, respectively. It is seen cleérly
that the température dependence of properties (the
coefficient of thermal expansion, the viscosity and the
Prandtl number, 1n particular) are significant. (The
variations of properties in Figs. 2.2(a) and (b) are shown
with respect to a reference temperature at 0°C, for easy
'comparison. It will be shown later that the ratios of most
properties with reference to a particular temperature rather
than the absplute values are important). In this analysis,
the film texgeéature, te =0.5(t0+tm), wi%f‘ge used as the
reference temperature. The analysis can” be easily extended
to any other reference temperature.

Introducing the. following variables,

o
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Fig. 2.2(a) The properties of water
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Fig. 2.2(b) The properties of.ethyl alcohol
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.. [ 4
B
wp andfﬂp are pressure work and viscous dissipation
. terms respectively, and L 1s a characteristic length. The

-

example,

and At=10°C, Lo, =

(}4va)

liguids under normal conditions, va

for water at

1s very small,

. T )
order of'W_ is |—I|F' and that of W s [(F")z]. For
i . At v

is very large (tor

1 atmospheric pressure when tf=20°C

2400 m). Hence, in equation (2.16), as

the pressure work and the viscous

~

dissipation terms can be neglected under normal conditions.

Yo The expressipns for the local surface heat transfer

rate,
§

are given by

It is to be noted that for a given fluid,

the surface shear stress,

and the total mass flow rate

k.p r 11/4

= Eﬁ - 00 [E;lJ (-6'(0)] (2.21)
£ Kepgp L 4
] MAP r_113/4
ro/ o (v /x)?) = 20 4[1_"} F''(0) (2.22)
HePg 4

> . ' 5 1/4

w. = bf(pu)dn = 4bu [S—ET F(e=) (2.23)
X 0 £l 4

knowing the

functxonal depghdence of properties with temperature, the

exact numerlcal solutlons can be obtalned for the glven wall

and amblent tenperatures (Shaukatul%ah and Gebhart,

and‘Spafrow;

"1979,

1956). The present analysis considers the

"~ effects of variable properties in%xerms of dimensionless

parameters and hénce it is not re%tricted to a particular

.fluid or specific combinations of wall and ambient
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X
temperatufgé.

2.1.2 Variation of Density with Temperature

The density appears in the form of p/pf 1n viscous
force and heat conduction terms, and as a multiplication of
p/pO and (pw—p)/(pm—po) in the buoyaﬁcy force term (see
egs. 2.15 to to 2.17). In thei.case of liguids, for moderate

temperature differences betweén the wall and the ambient

——medium+4~¥0t6 50°C, for water, for example), p/pf is nearly

equal to 1. Hence, the variation of density with temperature
in viscous force and heat conduction terms can“be neglected.
This can also be proved rigorously from the solutions to
equations (2.15) to (2.17) for typical liquids as showg
below.

The eqbations (2.15) to-(2.17) were solved numerically
employing‘a fourth order Runge—Kutta.method for typicai
liquids with te=50°C and {A;r;60‘C for three different cases

|

(1)‘u=u(t), k=k(t) and cp=gp(t), and p=p(t) in all

terms of the equations,

hY

P
buoyancy force term of the equation (2.15)

(2) u=u(t), k=k(t) and c =cp(t), and p=p(t) only in the

(3) B=He, k=k ¢ and cp=cpf'

buoyancy force term of the equation (2.15).

and p=p(t) only in the

The results are given in Table 2.1. [The functional
variations of properties with temperature, u(t), k(t), cp(t)

and p(t) are given in Appendix B]. The solutions were also
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-60
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-60
60
-60
60

-60
60
-60
60
-60
60

-60
60
-60
60
-60
60

-60
60
-60
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-60
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Table 2.1 The effects of variation of density with

) F(0) -6'(0) F (=)
water (f=50
0.34548 0.87909 O 31646
O 64211 O 83243 0.36912
0O .34776 O 88780 0.31830
0.63558 Q0 .82048 0.36780
O . 56654 O 90424 O 35994
O 46172 O . 80443 O.30124
Benzene (f-SO
0.34605 O 89767 0.25651
0O .5980% 1 10693 0.33414
0. 35464 Q. 92936 0. 26043
0.58352 1.06733 0.32932
0 .47858 1. 01154 0.29543
O 45637 0.98581 0.28477
Ethy 1 Alcohol tf-SO
0.26091 1.08568 ' 0O.19568
0. 57615 1. 36813 0.30140
Q.26686 1.12098 0.19883
0.56162 1.32156 0.29716
0.42049 1 24653 0.24542
0 .39086 1.19956 0.23266
Freon R12 t _=5Q
- f
Q.48957 _0.69468 ©0.31897
0.55%98 1 04057 0.37128
0.52044 O 75601 0.33215
0 51496 0. 93150 O 35928
0.56523 O 86198 0 .36985
0.48562° 0.79109 0 32596
Note:
»
S1 = ——F''(8), S2
u .
£Pf
S1
R1 = ,

B0 g

For cases 1 and 2
p=p(t), w=u(t), cp=cp(t) and k=k(t).

R2

%

temperature
.S Se
Pr=3 554
O 63949 O 83311
O 40870 O 85252
O 63716 O 83279
0 41231  0.85432
O 56654 O 90424
QO 46172 O 80443
N
Pr u 827
0. 52440 O 98293
0.41541 1 00514
0.51775 0O .98037
QO 42116 1.00874
O 47858 1t 01154
O 45637 O 98581
Pr=11 699
0O.46783 1. 18557
0.34767 1.24341
0.46269 1 18368
O 35204 1 24765
O 42049 1 24653
O 39086 1 19956
Pr=3 151
0.67006 0.90225
O 40932 0 75288
0. 64900 0.89462
0 42792 0.76071
0 .56523 O 86198
0.48562 0.79109
KoPo
= i—-——‘["e' (0)]
£Pf

S2

O w0 =0 = O =20 w0 = O =20 wl -

O -0 =0 -~

60 g,

R1

.24333
. 79656
.23879
.80164
. 10149
.89769

. 12160
.88849
. 10736
.90078
.02359

97609

. 15303
.85687
. 14036
.86764
.03635
.96333

.27374
. 77809
.23370
.81345
07446
.92313

Q-+ =+0-0 O=~-0-0 OQ-0000

Q-0 «0O ~
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R2 R3
96903 0 94227
99161 1.09906
96867 0.94774
199371 1.09513
05177 1.07173
93568 O 89695
.98422 0.88458
00646 .1 15229
98166 0.89810
01007 1.13566
01287 1. 01879
98710 © 9§203
96941 0.81946
01671 1.26220
96786  0.83266
02017 1 24444
01926 1.02776
98085 ©.97433
,08944  0.91490
90908 1.06494
.08023  0.9527p
91853 1.03052
.04081 1.06084
95522 0.93495
F(>)
[+-] e
F(=) 5. a.

Case

WWNRN - WWRANKN o - WWRNRKN -

WWRN - -

But for caSe 1 p=p(t) in all terms, and for case 2 p=p(t) .in
the buoyancy ‘force term only. -

For case 3 u=u_,
buoyancy force“term

k=k

B.A.=Boussinesq approximations

o~ = ~ — \
Sﬁl;p—cpf’ k‘kfrvand p=p(t)

in the



31

compared with that obtained with Boussinesqg approximations

and are given in the last three columns of the Table. For

the Bouésinesq approximations, the properties- were

calculated at the film temperatures

By comparing the local Nusselt number at the surface,

the friction factor and.the total mass flow rate for the

cases (1) and (2), it can be seen that the error in

qegle§ting the density variation with temperature in terms

other than the buoyancy farce term is small. For example,

~60°C and t, =

for water when At = f 50°C,

Nu - .

N = 0.96903 for case 1 and
uelg.a.
Nu

—X . = (0.96867 for case 2.

Nu_ | :
Xx'B.A

(The subscript "B.A." denotes the solution
approximations). The effects of neglecting

varlation in terms other than the buoyancy

¢

velocity and temperature profiles are also

Figs. 2.2(c) and (d), for example).

for Boussinesqg
the .density
force term on

small (see

This clearly shows that

the conclusion arrived at by Brown (1975) that the density’

~variation was very important in all terms of the governing

equations 1is incorrect. Brown neglected the effects of

variations of other properties (viscosity,

for example) with

temperature in his analysis and also his treatment of the

buoyancy force term seems to be incorrect.

. A
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Fig. 2.2(c) The effects of variation of density with

temperature for water when t¢=50°C and |At|=60°C
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In the buoyancy force term, the conventional assumption
that the density varies linearly with temperature is not

strictly valid. This can be seen from the solution to case

(3). For example, for water when At = -60°C and te = 50°C
Nu
—X = 1.05177 for case 3
Ulg.a.
As this ratio is different from 1.0, a better approximation

of the variation of density in the buoyancy force term than

the conventional.linear variation 1s necessary. . ;>
Also, by comparing the solutions to cases (2) and (3)

for a particular liquid with.the same At and te, it can‘be

seen that it. is important to include the variatiens of

viscosity, thermal conductivity and specific heat in the

analysis.

2.1.3 Preseng TreatQEnt of the Buoyancy Force Term

The sole driving force in natural convective flows is
the buoyaney force resulting from the variation of density
with temperature. Hence, the density cannot be assumed to be
cqngtant in the buoyancy force term. As shown before, the
Iconventional assumption that the denéity varies linearly
with temperature-in the buoyancy force term is not justified
for large temperature differences. Hence, a better
approx1mat1on of the variation of density w1th temperature
which accomodates a similarity solution is necessary for the

buoyancy force term.
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When the density of a liquid 1is moﬁotonicallygﬁ

>

decreasing or increasing between temperatures t. and t

1 27
from the mean value theorem one obtains,
‘ op
- = — - o 2D
PP, at|C(t1 t,) ( 4)
where c lies between t, and t,- For most liguids, the
. . . : dp
density varles nonlinearly with temperature and hence — 15

at

a fungtion of temperature. .As a first approximation the
temperaturé at ¢ can be taken to be equal to (t]+t2)/2..Th}s
is equfvalent to saying that p(t) is a Second order
polynomial. For moderate temperature differences pO/p is
nearly eQual to 1. Hence, the dimensionless buoyancy force

term can be written as

(e

S p_~p

'Pm_PO p P@"PO

= (2.25)

. =
where the temperature at ¢ 1s between t and t, and the

tempetathre at d is between tw_and to. Hence, for the
parabolic variation of density with temperature it can, be

easily shown that
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%
apl
ot 'C .
5 = 1+efS9~l) (2.26)
atlf L
By - B
where €e = (2.27)
g, + 8
0
Hence the dimensionless buoyancy force term becomes
- — sv0[1—ef<1—6)] (2.28)
PP P
Had the Grashof number been defined as,
gb_(ty-t )x>
er = 5 (2.29)
14
r {
where t, f ty - r(t0~tm) (2.30)

and r 1s the position of
1t could be easily shown
force term would become,

L
PP

pBr(to—tm)

reference temperature,

that the dimensionless buoyancy

= 9[1-6;(2—2r—9)]

(2.

31)
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Bo‘ﬁm 1
where €. = (2.32)
r 20
r >
f ¢
3
The value of r varies from 0 to 1. The film temperature

corresponds to r=0.5.
The parameter e (or cr) depends on the variation of
" the coefficient of thermal expansion with temperature. 1t

‘can be seen from eq. (2.27) that the value of e, normally

f
lies between +1 and -1. The absolute value of the parameter
€ is greater than 1 when there 1s a density extremum

i
between t . and t_ and for such a case, the present analysis

0
1s not strictly‘valid. A positive value of € corresponds to
up flow circumstances and a negative value to down_floh. The
Boussinesq approximation corresponds to the case when (fzo.
Piau (1974) proposed the following model to incorporate

the temperature-dependent coefficient of thermal expansion.

He approximated the dimensionless buoyancy force

b © [1+e_( )] ( )
_— = g 1te 6-0.5 2.33
pﬁr(to—tw) p
PP
where € = £ 70 1 (2.34)
P PP

He did not provide a mathematical explanation for the above
approximation. .

In Fig. 2.3(a), the diménsionless buoyancy force for

different models are cbmpared with the exact value for water
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Fig. 2.3(a) The dimensionless buoyancy force for different .

models when r=0.5
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with t=50°C and |At[=66°C at all points in the thermal
boundary layer. It 1s seen that the present fq{mulation
gives a better approximation of the buoyancy férce (and
hence an accurate value of local Nusselt number at the
surface) than that of Piau '1974) or Boussinesg

.

approximation. For example, for water when t0=3O°C and
t®=10°C, the#error 1n the local Nusselt number at the
surface with the present approximation is less than 1%
whereas the errors due to Piau (1974) and the Boussinesqg
approximations are about 8% and 4% respectiveiy (see also
Appendix C).

The assumption that the density varies linearly with
temperature underpredicts the buoyancy force for down flows
and overpredicts it for up flows. Figs. 2.3(b) and (c)
compare the dimensionless buoyancy force for different
models for reference temperatures t_ and to respectively.
The error in the bﬁoyancy force term with Boussineq
approximation or that of Piau (1974) is more pronounced when

t, or to 1s chosen as the reference temperature. The present
model predicts the buoyancy force fairly well irrespective
of the choice of 'the reference temperature. Eventhough
Piau(1974) assumed that the coefficient of thermal expansion

varies linearly with temperature, his treatment of the

_« buoyancy force-term seems to be incorrect.

L .
i \

(X7
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Fig. 2.3(b) The dimensionless buoyancy force for different

models when r=1.0
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2.1.4 variations of Viscosity, Thermal Conductivity, an
Specific Heat with Temperature ‘

The properties, viscosity, thermal cdnductivity, and
Specific heat aﬁpear in the governing equations as ratios of
“/“f' k/kf and cp/cpf respectively. Similarity sélutions
exlist when the ratios are functions of 7 alqne. This 1s also
true 1f they are functions of 6. A wide variéty of functions
such as algebraic expressions, e€xponential forms satisfy
this requirement. For m‘ate tempera’ture differences, each
ratio ma} be approximated.by a linearized Taylor series

expansion about a reference temperature. They are given by,

~T
1 2 - ' :
R e ZE (eme ) = ey (6-141) (2.35)
u u_ ot L r r '
r r :
k 1 3k ) 2 1en (6 1+' y -
Pl 1 Palieey r(t; t.) = 1A r) (2.36)
r r
&
C 1  odc ' .
—PLC = 1+E— Py | (e-t ) = 145 (6-1+r) | (2.37)
pr pr
. ‘ 1 du R
where v, = ;; TS r(to-tm) . ,\4 82.38)
. 1 k. ‘
AL = | _(ta~t ) (2.39)

r Ed_t 0 o o
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—t_) | é ©(2.40)

“/“f' k/kf and cp/c corréspond to the c¢ase when

rpf
r=0.5, that is, when the film temperature is ch9§en as the
reference temperature. If r=0.5 and the properties vary

linearly with temperature, 1t can be easily shown that

(uy/B 1) —
= 2-—————— .

Y¢ (“0/“m*1) ‘ (2.41)
(ko/km-1)

Ay = 22— T o .

L PWIRIT (2.42)
.(c /e -1)

o= 2 RO P (2.43)

(cpo/cpm+1)

v

\
%

_ In therres?nt s;udy,»unlessnexpricitly stated, the
‘reférénce temperature isva55umed to be the film tehperature.
. The values of e, kf, and Sf'normally lie between +2 and_ -2
(see egs. (2.41) to (2.43)). The éase.of 7f=xf=gf=o,
corresponds to Boussinesq approximations. For lfquids, the
viscosity decreases with an increase in temperature. -Hence,
a negati:g value 6f Ts corresponds to a heated wall and a !
positiv§ value,.the cooled wall. When the thermal
conduCtivity increases with temperéturel‘a positive vélpe of

kf corresponds to a heated wall and a negative value, a

cooled wall. Similarly, when the specific heat increases

*
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with temperature, a positive value of Sf means a heated wall
and a negative value, a cooled wall.
With' the above assumptions and approximations the

equations (2.15) to (2.17) become,

d_[um (6-0.5)} F} + 3FF''~ 2(F'>2 +
dn t '
6l1-c (1-6)] = 0 | (2.44)
d ' _ ) ,
;[11+xi(w—o.5>fa'J + {1+gf(9—0.5)i S(PrIFE' = 0 (2.45)
. "
F(0) = F'(0) = 6(0) - 1 = F'(») = (=) = 0 (2.46)

2.1:5 The Governing Equations for Liguids with Very Large
Prandg} Numbers |

For many ligquids such as viscous oils, the Prandtl
number is far greater than.- 1. Hence it is of interest to
examine thé efgects of variable bropérties for the limiting
case of Pr » =, gbr liguids witﬁ large Prandtl numbers, the
Baéural convection boundary:layer has two regions. In the
‘1inner region, where there is a tangible,pemperature'
~difference, buoyancy effect exists (Le Fevre, 1956, and'
Kuiken, 1968b and 196éc). Ih the outer region, novbuoyanéfr
i'effecvt exists. The liquid in this region is flowing due to
viscous-:contact with the inner region. As a direct numerical
integration of the equations (2.44) to (2.46) is difficult

for very large Prandtl numbers, a singular perturbation

>
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technigue, similar to the one shown 1n Kuiken (1968c) 1is

employed.

The Inner Problem
Introducing the following transformations in the

equations (2.44) and (2.45) (Kuiken, 1968c¢)

F = Pr_3/4

g(t), 8 = h{t), 7 =’£ Pr—‘/4 (2.4,

the governing equations become for Pr-o,

* "

1 _
[1+7f(h-5)] g''" + ygh’glt o4 h[1—ef(1—h)]
+ —[3gg''-2(g'")°} = 0 (2.48)
Pr
] () ' 2 __1 [ _ :
[l+xf(h—5)] h''t + Xe(h')" + 3[1+5.(h E)]gh =0 (2.49)

—

I

The Outer Problem
Introducing the f6liowing transformations in the

equations (2.44) and (2.45) (Kuikeﬂ, 1968c)

—k/4

F = Pr G(Z), 6 = H(Z), 7 = = pr'/* (2.50)

the governing eqguations become for Pr-«,

v
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(1-—L) G'** + 366" "-2(G' )% .= 0 ‘ (2.51)

H = 0 : (2.52)

The equations can be solved by a singular perturbation

technique. The perturbation parameter is (Pr)—]/z. The
boundary conditions are (Kuiken, 1968c),
3 :
g = ag = h-1 =0 at & = 0 (2.53)
dG _
3z - 0 as = +» 0 . (2.54)

The remaining boundary conditions have to be obtained from
matgﬁing the inner and the outer stream functions. For
example, for the zeroth order equations, it can be easily

shown that (Kuiken, 1968c)

2 |
-+ 0as § + o < (2.55)

ag

Gy + 0 at £ 0 | o (2.56)

- .

dg daG, - : ‘

2 0 (2.57)

at FRS « 4= 240

2.2 Results and Discussion
" The equations (2.44) to (2.46) were solveafnumérically
for various 'values of the'parameters'ek, Yo xf and Sf, for

Prandtl humbers 1, 2, 10, 20 and 100. For Pr » =, solutions

4
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to the zeroth order perturbations were obtained for the

equations (2.48), (2.49) and (2.51) to (2.57).

2.2.1 The Effects of Variation of Coefficignt of Thermal
Expansion with Temperature
The effects of variation of tvoefficient of thermal

expansion with temperature on the laminar natural convective

flow are given in terms of the dimensionless parameter «

o

£ -
€f e the more pronounced are
the effects of temperature-dependent coefficient of thermal

The larger the absolute value of

expansion _on the natural convective flow. The ca$b ef=0
corresponds to Boussinesq approximations. Figs. 2.4(a) to
(f) show the effecps of €g on the temperature and the
velgcity profiles for Prandtl numbers 1, 10, and 100. fable
2.2 compareé its effects on the surface né?t transfer, the
surface sﬁear stress, and the total mass f&o@ rate for
various Prandtl numbers. The’parameters Yeo kf and 5f were
taken to be equal to zero for this case.

The dimensionleés buoyancy fbrce is lower for positive
valﬁes of €f and it is higher for ﬁegative values (see
eq. (2.28) and Fig. 2.3(a)). Hence, a positivg value of e
decreases the maximum Qelocity and the total mass flow rate
and a negative value increases them. The thicknesses of
“hermal and velocity boundary layers are slightly larger for
a positive value of €5 and smaller for-a negative value.'Av
pogig?ge value of €¢ decreasés the surface heat -transfer and
the surface shear stress, and a negative valﬁe‘increaseq
‘them. The larger the absolute value of efi'the more

v
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Fig. 2.4(a) The effects of e¢ on temperature profile for

Pr=1
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Fig. 2.4(b) The effects of €¢ on velocity profile for Pr=1
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Fig. 2.4(c) The 'efﬁfects of € on temperature profile for

Pr=10 "



0.16

51

Fig. 2.4(d) The effects of Ef on vekﬁE;E)Qg{ofile for
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Fig. 2.4(e) The effects of efton temperature profile for

V]

Pr=100
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008

002

Fig. 2.4{f) The effects of €s on v‘él'ocity‘ profile' for

Pr=100 = .
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pronounced are the effects.

From Table 2.2, the effect of ¢, on the local Nusselt

f
number can be written as,
o ’/
4 Nu K
Y = (1-0.5¢.)0 %% S (2.58)
UX'6f=O ‘ h .
»

The above relation is accurate, within 21% fg@gthe range <t
the parameter € and the Prandtl numbers inveétigated. This
also clearly sﬁows that, contrary to Piau (1974), the
effects of variation of coefficient ofw%thermal expansion

v

with temperature on the surface he§§~transfer are

significant for small as well as large Prandtl numbers.

N

7 :

2.2.2 The Effects of Variation ofuyiscosity with Temperatur;
. The effects of variation of v%rcosity with temperature
on the lamina? naturél convective flOﬁ are given in terms of
the dimensionless péraméter v¢- The 1a§%er the absoiute
value of Yo qﬁg more pronounced‘aﬁe the effects of
‘temperature~dependent viscosity on the natural convectivé
flow. The case 7f=0 gorresponds o} Boussihesq
approximations. Figs. 2.5(a) to (f) show the effects of Te
on the temperature and the velocity profiles for Prandtl
numbers 1, 10, ahé”iOO; Table 2.3 compares its effects on
‘fhe surface éheér stresé, the surface heat transfer, and the
total masé flow rate for various Prandtl numbers. The

’parametgr; €cr Rf and Sf were taken to be'equal to zero for

this case.
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" Fig. 2.5(b) The effects of 7 on velocity -profile for Pr=i
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‘ The analysis 1s similar to Carey and Mollendorf (1978),

except that the values of"yf are different and Prandtl
numbers 2 and 20 are also inéluded. For liguids, a positive"
value of Te corresponds to a cooled wall and a negative

f

value, a heated wall. For a coodled wall, the liquid near the
wall is more viscous than the liquid away from it. Hence a

~
positive value of ¢ increases the shear stress and

decreasés‘the surface heat. transfer and the total mass flow
rate. The thickness of vglocity boundary layer 1is smaller

o for a positive value Of'yf ahd that of thermal boundagy'

layer is slightly larger. The maximum velocity is also

slightly lower and it occurs farther away from the wall. The

effect of T¢ is more pronounced on the velocity profiles
;:;!r -
tha® oen the temperature profiles. The opposite remarks are.
. -

true for a negative value of Tg-

From Table 2.3, the effect of ¢ on the local Npsselt

-

.
a

number can be writtep as,’

Nu, )=0.28

= (1+0.257, -© (2.59)

.Nux|7f=0.

-

Ty - s N i R
The above relation is accurate within #2% for théﬁ%angg‘of
the paramet,er"b‘?yf and Prandtl. numbers investigated. (Carey

i - .
- and Mollendorf (1978) did not give a correlation for the -

¢

;‘10cél'ﬁussélt number , to include the effect of Te)e
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2.2,3 The Effects of Variation of Thermal Conductivity with

Temperature

-

I

The effects of variation of thermal conductivity with
temperature on the laminar natural convective flow are given
in terms of the dimensionless parameter hf. The larger the
absolu%e value of Af, the more pronounced are the effects of
temperature-dependent thermal conductivity on the natural
convective flow. The case Af=0 corresponds to Boussinesg

}
approximations. Figs. 2.6(a) to (f) show the effects of kf

e

on the temperature and the velocitj profiles for Prandtll

. &
numbers t, 10, and 100. Table 2.4 compares its effects on
the surface shear stress, the surface heat transfer, and the
total mass. flow rate for various Prandtl numbers. The

v

parameters €cr Vg and Sf were taken to oe equal to zerd for

this case. ; | .
When the thermal conductivity of~the,liquid increases

with temperature‘ a positaive value of l‘ .corresponds to a

.

heated wall and a negatlve value, a, cooled wall For ‘a

s

~p051t1ve value of A ,éthe th%rmal conduct1v1ty of the liquid .
near the w;ll 1s higher. than 1t is away from the wall.

,Hence, a p051t1ve »glue of kf increases the surface heat <
transfer and reduces the‘'thickness of the thermal boundary
layer sllghtly °Also, a p051t1ve value 1ncreases }h; max imum
veloc1ty and the surface shear %tr;;s sllghtl%E’The opposite
\remarks are true for a negative value of -A;. For moderate
and large Prandtl numbers, Af has l1ttle effect on the total -

- mass flow rate due to the small°thermal boundary 1ayer
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Fig. 2.6(a) The effectls of 7\f on temperature profile for
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Fig..2.6(f) The effects of A, on velocity~profile for
| Pr=100 | ‘
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From Table 2.4, the effect of A¢ on the local Nusselt

number can be written as,

1

(1+0.1051,) ﬁ (2.60)

The above relation iS accurate within *1% %or the-range of
the parameter Xf and the Prandtl. numbers investigated. For
most liquids, the thermal.conduCtivityiis not a stroné
function of Eempeégturg and hence, the effect of A, can be
normally neglected.
2.2.4 The Effects of Variation of Specific Heat with
Temperature ‘
The effects of variation of specific heat with

temperature on the laminar qatural convective flow are given
in terms of the dimensionleés parameter Sf. The larger the
absolute value of Sf, the more prdnounced are the effects'of
temperature-dependent specific heat on the}natural
conyective flow. The cas% $f=0 corresponds Eo Boussinésq
approximations. Figs. 2:7Wa) to (f) show the effects of S¢
-on temberaturé and velocity profiles for Prandtl numbers 1,
1b, aﬁdv100. Table 2.5 compares its effects on the surfécé
shear stress, the Sufﬁaée heat transfer, and the total mass
flow rate for various values of Prandtl numbers! The

parameters €er Vg and kf were taken to ke equal to zero for

this case.

5
A
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Fig. 2.7(d) The effects of §¢ on velocity profile for.

Pr=10
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“2.7(e) The effects of Kf on temperature profile for

<

Pr=100;
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Fig., 2.7(f) The effects of Sf on ve,l(ocity profile for
' . - Pr=100 B A
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When the specific heat of the liquid ine?eases with
temperature, a positive value of.Sf cprrespdnds to a heated
wall and a negative value, a cooled wall. For a positive
value of Sf, the specific heat of the ligquid near the wall
is Elgher than it is away from the'wall, The liguid near the
wall having a larger heat capacity aides ;h\conductlnq heat
farther away from the wall. Hence-a positive value of gt
increases the thicknesses of thermai and velocity boundary
layers and the maximum velocity®slightly. Also, a .positive
value of Sf increases. the surface shear stress and the total
mass flow rate, and.decreases the surface heat transfer.:The
opposite remarks are true for a negative value of Mg

From Table 2.5, the-effect of xf on the local Nusselt

number can be written as,

w o~

(1-0.0458 ) (2.61)

The above relation is accurate within +1% for ﬁhe range of
the parameter gf and the Prandtl numbers investigated. éer
most 1iquids,~a§ the specific heat is not a strong functipn
ofefemperature, its effect can be normally neglected. .

©2.2.5 The Effects of Variable Properties for Liquids with
: . S -
Very Large Prandtl Numbers

-

Table 2.6 shows the effects of Variable“pﬁfperties on
the surface heat transfer, the surface shear stress; and the

total mass flow rate for Pr » <, Only zeroth order solutions



Table 2.6 The effects of variable propeffies for Pr » =

~0000000 ~
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86209
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77227
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.85668
.84664

83594
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Note:
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86754
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. 19023
.25160
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For this case
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0.62977 0.88576 0.36036
0. 66040 *0.92885 0.38751
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were obtained. Higher order solutions,.if necessary, can be
obtained in a similar manner. The elfects of the .
diménsionless parameters, €er Vg xf and Sf’on the natural
convective flow are the same as discussed in the previous

par;grapﬁs. Ik can be seen that, contrary to the conclusions
arrived by Piau (1974), the effects of ¢, as well as ;f' Mo
and 5f on %he surface heat transfer, the surfage shear ) /A
stress and]the total mass flow rate are important for

liguids with very large Prandtl numbers. For example, when
e=1.0, and 7.=A;=t,=0.0, for Pr -~ =,

NuX : '
= 0.83465

When Xf=1,0, and €f=7f=5f=0°07 for Pr »+ =,

= 1.09250
tro

2.2.6 The Effects of Variétions of Both the Coefficient of

"fhégmal ExpansiOn and thé ViScoéity with Témpera;ure
For ¢most liquida, especially for water and aqueous
solutions,‘both the coefficient of thermal expansion and the
.viscosity-are strong functions of temperature (see Figs.
2.2(a)*§§h (b)). Hence, it is important to study their
' effects“tbgethgr, For moét,liquids, and for watér when both
'to and ém are larger than tm'(the tempepaturé corresponding
to the density maximum),lef is positiyéiapd 7f'is negative

for a heated wall, and e, is negative(and"yf is positive for
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va cooled wall. For water, when both tO and t, are lower than
tﬁ’ both €¢ and §f are negative for a heated wall and

p051t1ve for a cooled wall.

Flgs 2.8(a ) to (d) show the effects of both € and Teo
for_typical combinations,'on temperature and velocity '
profiles for a Prandtl number of.10. Table 2.7 compares
‘their effects on t:2\3urface shear stress, the sutface heat
transfer, anq the total mass flow rate. The parameters kf
andﬂsf were taken to be eqhal to zero for this case. When

the signs of €¢ and Tg are different, their effects oppose

each other.*When the signs are the same, their effects add
to each other.
From Table 2.7, the -.effects of Qf and Yg OD the local

Nusselt number can be written as,

)0.24

0.28

Nu . (!.O—O.SEf

o Mxlefayim0  (140.2570)

(2.62)

iR

-

' The above relation’ is accurate within +1.5% for the range of

T

the parameters efrand 7f investlgated As explalned before,

,that‘cf and T¢ have oppos1te.SJgns normally. Under these
conditions, it i§ seen%from eq, (2.62) that their effects on
’the surface heat transfer oppose each other - Hence, the
Boussinesqg a;ptox1matlohs may glve falrly accurate results
even for larger temperaturemdlfferences between the wall:-and
the: amblent medium than the one beﬂow wh1ch\these
approx1ma;10ns have been 'shown to be val1d by Gray, and

oo Al
S

G;orgfnl {1976). 7 ‘"" R
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Fig. 2.8(@5 Typical temperature profiles for Pr=10 with

"

\ opposing effects of € and ¢
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-~
.

Fig. 2:8(b) Typic%l velocity profileéffo: ?:=10 with

opposing effects of €¢ and T¢
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Fig. 2.8(c) T&pical temperature profiles for Pr=10 with

aiding effects of €¢ and 7
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Fig; 2.8(d) Typical velocity profiles for Pf=]0 with

éidipg“effects of e, and 7
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Table 2.7 The effects of €¢ and T¢

Fi

[eNeleNeloleRoNoNeReReNeNoleRoRoNoNeNoNoNol

(0)

.41920
.27005
.31149
.37106
.46512
. 64007
.23492
.27072

32220
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.55465
. 333906
.39117
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.58440
.80446
.37229
.42948
.51174
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88319

R1

. 00000
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76345
.B406 1
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.76861
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66156
.21325
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14794
.05343

. e 2 220 n 2220000000000 -

Note:

. 16644

-6'(0)
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.03300
.05881
.09136
. 13389
. 19355
.93242
.85790
.98962
.03083
.08848
. 17166
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. 23384
. 27945
.34345
. 22540
.25357
.2894 1
. 33642
.40239

e X o X o T SRR

For this case

R1

R2"

R3

(1+o.57f)Ff'(0)

F'l

(0T vy =0

-6'(0)

-

F(=)|

(0)|ef=7f=p

F(=)

7f=0

“ b ts rt s O0O0O0O0 0000 -

RZ’

.88341
.80548
.93332

96969

02071
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2.3 Conclusions. b
, .

The effects of temperature-depen@ent properties on the
laminar natural convective boundary i;§er flow along an
isothermal vertical flat plate were studied numerically for
liguids with Prandtl ﬁumbers from 1 to =, ﬁumerical
solutions indicate that for most liguids when the
temperature difference between the wall and the ambient
medlum is moderate {~10 to 50°C, For water, for example),
the densxty can be assumed to be constant in all terms of
the governing equations except in the buoyancy force term.

The assumption that the density varies linearly with
temperature in.the buoyancy force tgrm underpredicte the
surface heat transfer, the surface shear stress, the total
mass flow rate and the maximum velocity for down flows, and
overpredicts them for up flows. The effects are more
pronounced for large temperature diffe;ences between the
wall and the ambient medium. The effects are significant for
liquids with.small‘és well as large Prandtl numbege:

The temperature—dépendent.viscosity increases the
sQrface heat,transfe: and the total mass flow rate for a
heated wall and decreases them for a cooled wall. The value
of surface shear stress is lower for a heated wall and
“higher for a cooled wall. Tbe effects‘ef variable viscosity
and coefficient of thermal‘expansion normEily oppose each
other and henee‘the Boussinesq approximations give fairly

accurate results even for moderate temperature dlfferences

between the wall and the amblent med1um.\ .
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3. The Effects of Temp;rature—Dependent Viscosity and
Coefficient of Thermal Expansion on the Stability of Laminar

Natural Convective Flow Along an Isothermal Vertical Surface

In this Chapter, the effect;uof temperature—depéhdent
viscosity and coefficient of thermal expansion on the
stability of laminar natural convective boundary layer flow
of a 1ifuid along an isothermal vertical flat plate are
studied numericaily for various Prandtl numbers.
Experimental results for the onset of instability and the
transition to turbulence a;e,also‘presented for. the natural

cgnvective flow of water along an isothermal vertical

_circular cylinder (outside diameter 41.3 mm and length 1 m)

for various combinations of wall and ambient temperatures in

the range 5 to 35°C.
3.1 Theoretical Analysis

3%5.1 Linear Stability Theory

- ‘Mathematical analysis of the stability of laminar K
n%tural convective flow over a vertical urface has been
done mainly from the standpoint ofvlinear stability theory.

Small two dimensional veIGEfty, tehperature, and pressute

“disturbahces are applied on}the”two dimensional‘lamina;‘flow

equations. The base flow is assumed to be steady and it is

: %, . ‘ . . . :
taken?as the first order laminar boundary layer equations.
A

The di%turbance equations are obtained from the two

90 . .
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dimensional equations after substracting the base flow
equations. Only the firs: order terms in disturbances are
retained as the disturbances are assumed to be small. The |
disturbance equations are further simplified by applying the
parallel flow approxiﬁation. This translates 'into neglecting
the gradients of the base flow in the longitudinal direction
and the base flow velocity component normal &o the surface.
Then the disturbances are postulatéd to be frav¢lling waves
whose amplitudes are functions of the coordinate nﬁrmal to
the surface aiohe. This leads to a set of linear stability
equations for the natural convective flow and were first

derived by Plapp (1957). ’ p
3.1.2 Governing Equations

The coordinate system is the same as the one shown in
Fig. 2.1. The guiescent ambient medium and the surface of
the vertical flat plate are at constant gemperaturés t_ and
tor respectively. The absolute viscosity A and dens&ty p are
assumed éo be functions of temperature alone. The thermal
conductivity‘k'and specific héat cp are assumed to~bép
constant. The dissipation terms due to pressure and
viscosity are neglecteél As demonstrated in the previous
chapter, p is assﬁmed'to be constant in‘éll terms of the
governing equations except the buoyancy force-térm. The
resultinqgequations governing the consegbation of mass,
mohentum, and energY-for.the two dimensional natural

convective flow are given by
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— *+ — =¢ ’ (3.1)
o oy
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¢ E‘\, (VA apc 0 ou
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o7 c> ay ax & ox ox
2 (au v ] (3
-+ —_— u — -+ — 2
ay ay X
ev ov av apd 3 [ ov
cl— * u— * Vv—) = - + — | 2u—
cr o ay oy oyl oy
o du ov ] .
+ — = — o300
ox oy ox |
¢ oot ot a2t azt
pc (— =+ v— * v—) = k(—=s = ) f s
E o7 0 x oy ax© ay2
4 ‘ :
f}:x = ( C R (- )
o = ‘
where o, = (g,~p)
Trne four Gepender: variabies U, v, t, and pd; an

centi .
R

u(x,),l).=_ﬂ(¥,y) + Z(x,y,r) ‘ To(3.6)

vix,y,7) - vix,y) + ;(x,y,f) E (2.7)

t(x,y,;) = tlx,y) = ;(x,y,r) | . (Z.E)

pd(x,y,rf ; ﬁd(xry) + éd(x,y,r) .‘ (3.9)

px.y, 1) = plx,y) + plx,y,m) C(3.10)

*

The

v

réiatibnéhintc the £quations (3.1) to (3.5) and emploYihg

the assumptions in.linear stability theory.

disturbance equi;}ohs are obtained by substituting these
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3.1.3 Base Flow Equations

The base flow equations are,

du v
- +

— — =0 (3.11)
ox oy - roan
_ _ 23u ~ du - 3 [ du

(u + vy —) = ( -p) + —|py— (3.12)
e T oy Pt 5y[uay } !
pe (5 2L g2t 0% (3.13)
C Uy — +t v — = s .
i p X oy 2

=Y
o

The boundary conditions are

for all x (3.14)
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as y -+ o, for-all x. ‘ (3.15)
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o
oY)
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n

at x = 0, t, for all y > 0 (3.16)
The equations (3.11) to (3.13) are simplified by employing \\\~/
similarity variables technigue. Introducing the following

s

varilables, N

g(pm—po)x3 r 11/4 '
Gr, = — =2 - | G =4 ———} (3.17)
. X V2 i . 4‘ 5
Po”s
Gy - G Fin) | (3.18)
= —, =V s
K 4§ . £ 1
<
-t -t _ Y Yy
T - L | ©(3.19)
to-t 0y 9=
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the equations (3.11) to (3.16) become,

L

d [u ) Dm‘ﬁ p
——[—— F"] + 3FF' '~ 2(F')2 + tQ = 0 : (3.20)
dn ne P Pg P

6'" + 3PrFeo’

"
(]
—
e

-

F(0) = F'(0)

"
<
(e
~
1
"
)
—
"8
]
<
—
8
-
I
(]

For liquids, when the temperatufe difference between
the surface and the ambient medium is moderate (~10 to 50°C
for water, for example), as shown 1in thei&revious chapter,

e dimepsionless buoyancy force and the ratio u/uf can be

written\q§,

PP P
— :9 = 9[1~ef<1—e)] o (3.23)
' 1 d - 1
= D (e e E P T I (3.24)
M Ke dt 2
BB, 1 a
where € = 0 and v = — —§~|f(t0—tm)
ﬁ0+ﬁm , “f dt

a

For most liquids, and for wa}sr when both to and t_ are
larger than t_, the value of € va}fé%*from,+1 to ~1;_
positive for up flows (hea;ed‘wallSi*aﬁﬁﬂhegatiye for down
flows (cooled walls). The viécosity of liquids decreases
with an increase in\temperature. Hence, for fhe linear
variation of viscosity with temperatyﬁe, the value of Te

é‘\
varies from-+2 to -2, positive for a ‘cooled wall and

N

ws
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negative for a heated wall. The case 7f=ef=0 corresponds to

Boussinesqg approximations. £

3.1.4 Disturbance Equations o

The disturbance eguations are,

—_t —— = ( (3.25)
67 oy
;(‘au - du - au ) 9Py © 3 [ au
+ v = - - _— _
P T Y ax oy ax 7T o Mox
0 Ju 5]
N Y S A (3.26)
2y dy ax
- oV -~ dv oP4 , 2 [, av
+ _— = -~ —_— —_—
Par T Y A dy ay | ““ay
) du ov
+ — + —) (3.27)
ax[“ oy dx ] )
; X 2. .20
- ot - ot 27t 07t
pc_( *u——) = k(—— + >—) : (3.28)
P or ox ax 2y
The boundary conditions are
at y =0, u =v =t =0 ) (3.29)
as y * ®, u =v =+t =0 ‘ (3.30)

The velocity and temperature disturbances are assumed to be

travelling waves, as shown below.

\
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@ = ¢(y) el lax=fr) (3.31)
¢ = s(y) elax h7) (3.32)
> - a‘ b a~
- and u = _f_' v = —_i_

dy : X

The disturbances are composed of a number of discrete
partial fluctuations, each of which consists of a wave

propagatig in x direction. In general, both a and.ﬁ are

N

V complex. a. (the real part of a) denotes the wave number, ﬁr

(the real part of ), the frequency and a;, ﬁi (the o

-

imaginary parts), the amplification rates (ﬁi>0 denotes

~

temporal amplification while ai<0 denotes spatial

amplification in the positive direction of x).

The two cases of interest are those in which either a

or f is wholly real. The theoretical analysis can bé done

~

either for spatial amplification (a complex and § real) or

~

for temporal amplification _(a real and é complex). But in
experiments (when forced distS?BEﬁEésmeie introduced), a
spatially growing (or decaying) wave pat;;rn is normally
geng;ated by a localized oscillating source, such as a
ribb&h. Hence, it is important to-do the fheoretical
analysis for the spatial amplificafion of unstable
disturbances. It is to be noted that whether the disturbance
growth occurs temporally or spaéially,,the ﬁ%utral stability

curvq“gai=ﬁi=0) is always the same. The relation between

temporal and spatial amplification (or damping) of unstéble
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ﬁ}x grow spatially (a complex and f real).
L '

5 |
- | , , .
%é@hdisturbances has been discussed in detfail

s

by Gastgr“‘
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oy

‘XE (1962,1965). In this analysis, the disturbances are assumed
2 g -

* 7  Employing the linear stability theory and introducing

‘E .
the following dimensionless variables (Jaluria, 1980),
4
{ g . 5
, 4 x o 48 o6x
6 &+ — a = a &b, g =, 5 c =
G S )G
» 4¢x e s
o(n) = ——, skn) = ——
v .G <& (t'O—‘tco)

f °

]

the equations. {3.25) to (3.30) become,?

i - 1
[o7 ' - 2 a% ' + a%el [1+ 9.(6-2)]
-, | : 2

iaG[(F"‘C)(¢"_,a2¢)‘F'P-"¢] - 27f6|(¢vvv_a2¢v)

i 1
L 7f9"(¢"+a2¢) < 246's = [1+2¢.(6-2)]s' (3.35)

£
;-
.?,:- s''. - a% g = iaGPr[(F'~-c)s - ¢'6"'] 7
$10)=0"(0)=5(0)=¢(=)=¢" (=)=s(=)=0 .~
, 3.1.5 Numerical Method ©

(3.36)

(3.37)

At large 7, the solutions to the base flow eqguations

(3.20) to (3.24) are given by .(see Appendi

- R B
F=A+Ce 3An/} :\\ d

[27a%pr2(aPr-1)]

8= B e SAPI?

x E),

e—3APrn

(3.38)

(3.39)
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where X =.1-—/—, q = 1—ef, and A, B, and C are real

constants. Pl

The equations (3.20) to (3.24) were 1ntegrated
nume;icqlly across the boundary layer from the outer edge to
t%e hall, assuming some valuyes for A, B, and C. The boundary
conditions were checked at 7=0. Shooting method was employed
to correct the values of A, B, and C so that the‘bouﬁdary
conditions were satisfied at n=0. The solution was assumed

v

to havéfconyerged when the relative errors in, A, B, and C,
ané the boundary conditions at n=0 were less than JO_G.

The equations (3.35) to (3.37) describing the
disturbance flow 1s a sixth order eigenvalue ppdblem, linear
in the distutﬁénqe amplitudes ¢ and s. a and f were chosen
to be.the eigenvalues of the system. The numerical method
employed to solve the disturbance.eguations was the same as
the one given by Hieber and Gebhart (1971).

| The solutions to the equationg (3.35) to (3.37) can be

written as a linear combination of six independent integrals

as,

.
- d .
I

= B1¢1+B2¢2+B3¢3 (3.40)

. s(n) = B,s,+B,s,+B_s ‘(3.41)

where B,, B, and B,
1.0, thus fixing the disturbance level arbitrarily. The

are complex constants. B1 was taken as

integrals were obtained from the solution of disturbance -
d

. equations y§;35) to (3.37) .at large values of n. They are

given by
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¢, e 2 | (3.

q(a3/7\)e_a372

’3 7 a2-a?) (a2-al)] "
43 3792
iaPrGG; e @7
S, = (3
1 [ag -(3APr+a)2]
'y :
P
faPrGG; e 927
S, = - (3
2 [aé —(3APr+a2)2]
Sy = e 437 » (3
where a, = +[a - X ] and a; = +[a —iacPrG]
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.42)

43)

.44)

.45)

.46)

.47)

For given values of G and f (f is a dimensionless real

number), a complex value for a was assumed. Starting with

(3.40) and (3.41) as the initial values, the eguations

(3.35) to (3.37) were integrated across the boundary layer

using a fourth order Runge-Kutta method. B2 and B3 were

determined by satisfying two of the three boundary

conditions at n=0. The remaining boundary condition at 7=0

is satisfied only if the assumed value of d is the

“eigenvalue of the equations.(3.3§) to (3.37) for the given

Qélqgs of G and 8. The value of a which satisfied the third

boundary condition at =0 within 10—5 was found iteratively.

The singularity that occurs in the disturbance equations at
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(F'-c)=0 was stepped over by the numerical scheme.

The distributions for the disturbance velocity and
temperature can be obtained from,the equations (3.35) to
(3.37). The disturbance equations are linear and
homogeneous. Hence, the absolute magnitudes for the
disturbance velodity and temperature cannot be obtained.
Each distribution was normalized by the numerically obtained

max imum value in the boundary layer. They are given by

2

o len?rien 1/2 |
- R Y (3.48)
UmaxA {(‘Pr) +(¢1) }max '
v (0 )2+(6.)°  q1/2
R EUSECAG.
. flo )5+ (o)) .
. (s_)%+(s)? 1/2 )
B - > 5 - (3.50)
Fmax {(Sr) +(Si) }max

3.2 Experimental Apparatus and Procedure

3.2.1 Experimental Apparatus
The experimental apparatus consisted mainly of a water
tank, a-test section, a coolant system, and a traversing
. A

mechanism. The photograph of the apparatus and test section
P g : : ]
“Is shown in Fig. 3.1. The schematic diagram is sgown in
c .

Fig. 3.2.
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Fig. 3.1 Photo‘graph of the experimental apparatus
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The water tank was'0.6 m long,‘0.6 m wide;‘and 1.6 m
high. Itvwas made up of galvanized mild steel platee of 4 mm
‘thickness. It had '9 mm thick plexiglass windows on all four
sides. Its sides were insulated with fiberglass leaving
small portlons for flow visualization (The photograph shows
the apparatus without the insulation). To avoid the
stratification of water inside the -tank, water could be
circulated near the top &nd the bottom of the tank.
Perforated thin copper plates installed near the, top and the
bottom of the tank preveanted any disturbance due to
circulation reaching the center of .the tank. The temperature
of water inside the steel tank was measured by a
copper~constantan thermocouple assembly consisting of seven
thermocouples on a plexiglass tube, one for every 0.25 m
height. » | N

The test sectron consisted of a 1 m long copper pipe
with an outeide diameter of 41.3 mm and a wall thickness of
3 mm. It was. connected to concentric PVC pipes at both ends
The air gap between the PVC plpes acted as an insulation.
The whele arrangement was held vertlcally in the center of
the water tank. The PVC pzpes were connected to a coolant
‘circulation loop at the top and the bottom of the-tank. In
order to obtain an isothermal surface -over the entire length
. of the' copper pipe,’ the coolant was circulateéd at a high
flow rate ((5~16) X 107> m3/s) Also, a helical copper wire
‘was 1nserted inside the copper plpe to provide turbulent
flow and heat transfer augmentatlon. The coolant

temperatures ,at the inlet and the outlet of the test section

AY
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“

were measured by lron-constantan tﬁermocouples.

The coolant system consisted of a éoolant tank, a
refrigerafion system (Tecumsh Refriderator, Model
AH 2511KU),‘a‘heater, a temperature contréller (YSI Model 72
Proportional Controller), a centrifugal pump (Morarch Model
BVE-30), and the associated piping érrangemeﬁts. Plaih tap
water was used as the working fluid in the Co;\ant system.
The water could be cooled or heated to desired temperatures.
The‘temperature controller controled the temperature of
water within 0.1°C. The centrifugal pump was used éo
circulate the water through the test section. The pump and
the associated pipings were insulatéd.

The temperature in éhe boundary -layer was measured by a
thermocouple mounted on a traversing mechanism. The
traversing mechénigm had two sliding afrangements, one
moving in the horizontal direction and the other in the
verticai direction. The horizontal slidihg arrangement could
be moved accurately to 0.0254 mm (0.001 inch) by manual
rotation of a lead screw. A variable speed d. c. motor
(Bodine Electric Gear Motor, Type NSH-33R) with a controller
was used to move the vertical sliding mechanism. The whole
arrangement was supported by an aluminium frame on levelling
screwé. A steel arm, supported by the horizontal slidiﬁg
érrangemenf, carriéa the thermocouple and the dye injection
rake. |

The thermocouple probe was made up of a thin plexiglass
rod in the form of a two-tined fork. The thermocouple, made

—~

.by joining 0.076 mm copper and constantan wires, was
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suspended between the tips of the tines. The thermocouple
junction had a diameter of about 0.1 mm. Fig. 3.3 shows a
typical calibration curve for this thermocouple in the
temperature range 0 to 20°C. This thermocouple had an
accuracy of $0.05°C. The iron-constantan thefmocouples
measuring the coolant temperatures and the copper-constantan
thermocouples measuring the ambilent water temperatures were
accurate within #0.1°C. A OMEGA TRC-III Ice Point Reference
Chamber (accuracy 0 to 0.1°C) was used for the ice point
reference temperature. A HP 3490A digital voltmeter with a
resolution of 1 uV was used to measure the voltage outputs

from ‘the thermocouples.

3.2.2 Flow Visualization Techniques
Flow visualization techniques used Qere the shadowgraph °
and the dye injection meéthods. A slide projector fitted with
a vertical line slit was used as the light source. A white
foam card board at the back of the ;ater tank served as the
screen. A Nikon 35 mm camera Qith a motor drive, and a timer
were used to take the shadowgraph pictures. Kodak 2475
recording film with a variable ASA was used. A dye, formed
by dissolving methylene blue in water, was used. The
traversing mechanism was used to inject the dye at the
desired locations. Whén the temperature difference between

t

the wall and the ambient water was small, the dye injection
| .

method was the only one used as the shadowgraph was not very

clear under these conditions.
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3.2.3 Experimehtal Procedure

The steel tank was filled with deaerated plain tap
wqter and allowed to équilibrate for about éne to two hours.
The constant temperature fluid was brought down to the
desired temperature and then the fluid was allowed to
circulate through the test éection. The bulk temperatureé of
the fluid at the inlet and the outlet of the test section
wéfe always within 0.2°C. The surface temperature of the
copper pipe was taken as the average of these two
temperatureé. The dye was injected continuously for ‘flow
visualization studies.

After about 15 minutes of starting the experiment, thus
allowing ample time for the initial disturbances to die
away, the light source was turned on and the flow was
visualized. The locations of the onset of instability and
the transition to turbulent flow were closeE& observed. The
onset of instability was taken as the nearest point to the
leading edge where small oscillations on the dye were
observed. As the disturbances movéd.downstréam they

7

amplified and became vortices. The vortices, as they moved
downstream, broke down into turbulent flo;t The point of
transition to tufbulent'flow was taken as the nearest point
to the leading edge below which the flow was always
turbulent: The fléw was considered to be éurbuient when it
had a iérger bounda:y layer and exhibited thednature of
complete disorder and mixing.

)

The temperature of the ambient-water was measured by

the“copper—constantan/?hé?mocouple assembly. It was . always
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within 0.25°C in the range of the test section. The
experiments were repeated for various combinations of
amblent and wall temperatures 1n the range 5 to 35°C. Both
heated and cooled walls were examinea‘ The experiments were
conducted late at night to minimize the disturbances due to
normal activities in the bwuillding during the day time.

3.3 Results and Discussion 2 .

The equations (3.20) to (3.24) and (3.35) to (3.37)
were solved pumerically and the stability plane was obtatined
for various values of Pr, ¢ and €f- The numerical solutions
co;respondiﬁg to Boussinesq approximations (7f=ef=0) agreed
very well with those given by Nachtsheim (1963) for Pr=0.733

and Pr=6.7.

3.3.1 The Effects bf Variation of Viscosity with Temperature
The effects of temperature-dependent ViSCOSitngggthe
laminar flow were discussed in Chapter 2 in terms of the
dimensionless parameter 7f.'The larger\the absolute value of
Tgo the more pronounced are the effects of
temperature-dependent viscosity. The effects of T¢ OD the
Stability of the laminar flow are shown in}Figs. 3.4(a) to
(f) for Pr=10. Fig.~3;4(a)‘Shows the stabilify plane for
7£=0 (Boussinesg approximatiéhs), Figs. 3.4(b) and (c), the
stability planes for positive values of T¢ (cooled walls),
and éigs. 3.4(d) and (e), the stability planes for negative
values of v, (heatgd walls). Fig. 3.4(f) compares.the

neutral stability Curves‘for various' values of TE and it is
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seen that the curves for the positive values of ¢ lie to
the left of the ones for the negafive values. Hence, for the
same temperature difference between the wall and the ambient
liguid, the location at which the laminar flow first becomes
unstable to disturbances is nearer to the leading edge for a
cooled wall than for a heated wall.

The transtion of laminar flow into turbulent flow
depends on the growth of the disturbance as it moves
downstream. The disturbances with frequencies higher than
the one torresponding to the critical value of G normally
amplify faster (Hieber and Gebhart, 1971). If Ay 1s the-
amplitude of a disturbance fregquency at the neutral curve
(G=Go), its amplitude, AG' at a location G is given by

(Jaluria, 1980) °

Ag
7 — < exp(A) » (3.51)
Ao
: G
where A=J (-a.)dG
1
G

At the neutral curve A is equal to zero and contours of
constant A may be determined by following vafious.constant
frequency paths and evaluating the above integral along
these paths. By comparing the contours and values of ai in
Fiés.’3.4(a) to (e), it can be easily seen that disturbances
' amplify faster fdr positive vaules Qf oL (cooled walls, for
liquids) than for the the negative'valuee (heated wélls, for

~

“y liquiés).
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The naturally occurring disturbances of varying
frquency and amplitude enter the flow at various distances
from the leading edge. As the disturbances move downstream,
only those within a narrow range of frequencies amplify
faster depending on the local Gé?shof number and the
distance from the leading edge. That is, the natural
convective flow favours disturbances having specific
frquencies and transfers more energy into them. This
frequency filtering phenomenon has received considerable

\
experimental support and the details can be found 1in Jaluri%
(1980). Comparing the contours of a; in Figs 3.4(a) to (e),‘
it can be easily seen that for positive values of Yo the
frequency filtering mechanism is more pronounced. The larger
the positive value, the more pronounced are the effects. !
| Figs. 3.5(a) and (b) show the effects of variable
viscog?ty for Prandtl numbers 20 and 50. The same trends are
observed as for the case of Pr=10. Hence, as in forced
convection, for liguids, the natural convective flow along a
cooled vertical isothermal wall is more unsfable than the
flow along a heated wall. The frequency filteriﬁg mechanism
is more bronounced,for a cooled wall than for a heated wall.
Also, as the disturbances ampiify faster for a cooled wall,
the transiﬁion to turbulent flow may occur earlier. |
Figs. 3.6(a) to (d) show typical disturbance velocity and
temperature profiles for Pr=10 and for 7f50.0, 0.8 and -0.8,~
The base flow velocity boundary layér thickness is

larger for a negative value of T¢ than for a positive value

(see Fig. 2.5(d5).,Pfevious experimental studies (Fujii et
\_/ [ 4 . -
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Pr=10
=007
G=75
7t
0.0 ,
R I S T 0.8 4
L} R - ... —-08
i | 1

3

Fig. 3.6(a) The disturbance temperature profile for various

values of T¢ when f=0.07, G=75 and Pr=10
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T -
4 5 6

T
n
"Fig. 3.6(b) The disturbance temperature profile for various

values of ¢ when $=0.04, G=400 and Pr=10



Fig. 3.6(c) The disturbance velocity profile for various

values of vy, when, §=0.07, G=75 and Pr=10
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Fig. 3.6(d) The disturbance velocity profile for various:

values of ¢ when f$=0.04, G=400 and Pr=10
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al., 1970, andfgglak—Antic and Gortler, 1971) and the
RRAA \

present floR“visdégi;ation studies (to be discussed later)
indicate that the breék-down of the vortices in the outer
part of the laminar boundary layer causes the flow to become
turbdlent. Hence the base flow velocity boundary layer
thickness may have an effect on the stability of the flow.
But this 1s not evident from the disturbance velocity and
temperature profiles. This may be due to the fact that the
linear stability theory is valid only in the region where
the flow is two-dimensional whereés the vortices acquire a
three-dimensional characteghpefore’breaking down into

'\

turbulent flow. \\ ARN

v

N

é?3.3.2 The Effects of Variation of\Coefficient of Thermal

y

Expansion with Temperature . N\

As indicated earTier, for most'quuidsfiand for water
when both ty and t_ are larger than t;\ a'neéétivé\value of
€¢ denoteg a;cooled wall (down flow) an&§@ positive value
denotes a heated wall (up flow). The effééts 8f°ff on the
base flow temperature and velocity profiléézare shown in
Fig;. 2.4(c) and (d) and were discussed in detail ;p
Chapter 2. .

Figé. 3.7(a) to (A) show g%%‘stability planes for the
cases of €.=0.5, -0.5, 1.0 and -1.0. Fig. 3.7(e) compares
‘the neutral stability curves for various valuésuof Ef.'A
negaﬁive value of'ef lowers the critical Grashof number forl

the onset of instability and a posifive value increases it

(see Fig. 3.7{e)). Hence a heated wall stabilizes the flow °
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initially and the cooled wall destabilizes it. But the
vélues of a, are lower for a heated wall (¢f positive) thah
thése for a cooled wall (ef neg?tiye) for the same '
temperature difference between the wall and the ambient
liquid (see Figs. 3.7(b) and (d), for example). Hence: from
eqg. (3.51), the rate of amplification of the disturbance may
be faster for a positi&e value of ef‘than for a negative
value, at larger wvalues of G.

It is also seen that the effect of e, is not as Y
pronounced as that of 7 (compare Figs. 3.4(c) and. (e), and
Figs. 3.7(b) and (d), for example). Hence, for most liguids,
when the variation of the coefficient of thermal expansion
is taken into consideration, the flow is initially more
unstable for a cooled wall. But, as the disturbances amplify

t
\

faster for a heated wall than for a cooled wall at
downstream locations, the transition to turbulence may occur
earlier for a heated wall than for a cooled wall.
Figs. 3.8(a) fo (d) show typical disturbance temperature and
velocity profiles. As before, the effect of the base flow
velocity or temperature boundary layer thickness on the
onset of instability and transition to turbulent flow is not
evident from the disturbance profiles.
. ,
3.3.3 The Effects of Variations of Both the Viscosity and
thevCoefficiént of Thermélexpansion with Temperature.
For many liquids,‘in particular for water and aqueous
solutions, both the viscosity and the coefficient of thermql

"expansion are strong functions of temperature. Hence it is
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Fig. 3.8(a) The disturbance temperature profile for various

values of ¢ when B=0.07, G=75 and Pr=10
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1.0
Pr=10
| £=0.04
08 | G400
) e,
061 —— 00
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f{mu‘ ---------- 0.5
04
0.0 | | S |
0 3 4 5 6

" Fig. 3.8(b) The disturbance temperatufé profile for various

values of e vhen f=0.04, G=400 and Pr=10
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Fig. 3.8(c) The -disturbance velocity profile.for various
.~values of ef,when'ﬁ=0.07, G=75 and Pr=10
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Fig. 3.8(4d) The‘disturbénce'velocity profile for various

values of € when =0.04, G=400 and Pr=10
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important to Study the effects of both ¢ and €¢ ON the

stability of laminar natural convective flow along’an
isothermal vertical flat plate.
Numerical results were obtained for a typical case of

natural convective flow from an isothermal vertical flat

plate in water for tg=20°C and lto—tm|=20°C, with and

without the variations of viscosity and coefficient of
thermal expansion with temperature. The approximate values

of 7f and e for a cooled wall are 0.50 énd -0.55,

f
respectively and for a heated wall, -0.50 and 0.55,

I

respectively. The Prandtl number i1s approximately equal to

7. The case of yg=e =0 .corresponds to Boussinesq

f
approximaiions. The base flow temperature and velocity
brofiles are similar to the ones shown in Figs. 2.8(a) and
(b).

Fig. 3.9 compares the contours of ai=0.00 and -0.0? for
both heated and éqoled walls with and without the effects of
variable properties. It can be-seen that for the cooled wall
the critical Grashof number for the onset of instability is
lowef and the rate of amplificatiéﬂ of disturbance is faster
for the variable‘prgperty case than for the constant
property case. The frequency filtering mechanism ;s also
more pronounCea for the cooled wall. It is to be noted that
-whén € is positive the amplification of disurban¢es may be
_faster at downstream locationsﬂ Hence, the transition to

turbulent flow may occur earlier for a heated wall when the

effects of variable properties are considered.

|
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tJ 3.3.4 Experimental Resulﬁs‘

Experiments were conducted with an isothermal vertical
circular cylinder of diameter 43.3 mm and length 1 m in
water for various combinations of wall and ambient
temperatures in the range 5 to 35°C. The flow was visualized
by shadowgraph amd dye injection technigues. Fig. 3.10(a)
shows a typical:shadowgraph when t0=5.O°C and t_=28.0. The
flow was completel} laminar near the leading edge. For this
case, at prroximately 16.0 cm from the leading edge sma&l

oscillations on the dye were detected. This point was taken

as the point of onset of instability.

As the disturbances moved downstream, they amplified
with time and distance and became vortices. The vortices can
be clearlfvseen in the range 30 cm to 55 cm from the leadi%g
edge.’The vortices were mainly confined to the outer part of
the boundary layer. This observation agrees with previéus
experimental studies in water by Fujii et al. (1970) and
Colak-Antic and Gortler (1971). The break-down of these
vortices causes the flow to become turbulent and 1t occurred
in the range 55.0 cm to 57.5 cm from the leading edge, for
the case shown in Fig. 3.10(a). As the flow. was completely
tufbulent below 57.5 cm from the leading edge, this point
was taken as the point of transition to turbulence for this
case. .

;ﬁiﬁh Fig. 3.10(b) shows the critical values of Rayleigh
! number for,fhe'onset of instability and the transition to

turbulence for various temperature differences between the

wall and the ambient medium. Fujii et al. (1970) showed that .
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<«€— Onset of Instability
- 20 |

Transition pg Turbulence

Fig. 3.10(a) Typical shadowgraphwfléw visualization
photograph in water for t;=5.0°C and t_=28.0°C at steady
1

‘state
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Fujii et al (1970)
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Fig. 3.10(b) The experimentally obtained critical values

of Rax in water
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the tran§ition to turbulent flow occurs when the value of
Ra is becween (2 to 6) X ]0. They also found this value
to be 1ndependent of the liguids they studied (water '

Mobiltherm 0il and spindle o0il). The critical values of Ra

" for the transtion to turbulent flow obtained in the present

gtudy are within the range of Fujii et al. (1970).

The critical values of Ra for the onset of instability
obtgined experiment;lly'are 2 to 3 orders of magnitude
vh‘ighe,r than those gbtainé?";'om the linear stability

analysis (not shown in the"iguref. This is due to the fact

. that the neturally ococurring disturbance'ean be detected

expkrimentally only when its amplitude is~finite whereas the
linear stability theory assumes a infinitesimal value. From
ng. 3.10(b), it can be seep'that the larger the temperature

difference between the wall and the ambient medium, the

lower ws the critical value for both cooled and heated

" walls. | ‘ X

The theoretical analysis was done for a vertical flat
plate ‘whereas the experimental results were obéainedffof a
vertical ci:cula; cylinder. The ekperimental_vaiues~fot the
cylinder can assumed to be those of a Qerticel flateplafe if
the value of the parameter (d/x)(Ra )'1’/4 > B, where q§15 the
Qutside diameter of the cylinder, x is the dlstance from. the

-

leading edge to the po1nt of meésurement and B is a constant

'(JaIUrla, 1980) The 16¢al Nusselt numbersnat the surface

obtalned experlmentally by Fu311 et al, (1970) for a

circular cyllndex (o. d. 80 mm) were within 1.3% of the

values for a §1at plate. The.vaLue of*the constant "B for the
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experiments conducted in the/present study was within range’

- of Fujii et al. (10 to 30 in\the present experiments and S

to 80 in Fujil et al.). Hence, the present experimental
results for the cylinder may be assumed to corrébégnd to

those of a vertical flat plate.

3.4 Conclusions

The.effects of temperature—dependeAt viscosity and
coefficient of thermal expansion on the stapility of laminar
natural convective boundary layer lew of a liguid along an
isothermal vertical flat plate were investigated numerically
for variohs Prandtl numbers. The results indicated that the
variation of viscosity with temperature destabilized the
flow for.a EOéled wall and stabilized it forva heated wall.

The frequency filtering mechanism was more pronounced for a

cooled wall.

- v
~ . \

The variation of coefficient of thermal expansion with
temperature lowered the critical Grashof number for the
onset of instability for a'eooled wall but the distutbance
- .growth rate was faster for a heated wall. Hence, the
var1at1on of coeff1c1ent of thermal expansion w1th
temperature initially stabilized the flow for a heated wall
But farther downstream it destabilized the flow. The trends
of exper1MEntally obtained crltlcal values of Grashof number
for the onset of 1nstab111ty and the transition to turbulent
flow agreed with the numerical predictions. S

It should be polnted out that the 1nstab;llty mode and
.the transition mechanism fo&-the cylinder may be .somewhat

k4

'
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different from those of the flat plate. Hence, eventhough
the flat plate is a special case of a circular cylinder with

an infinite radius, the experimentai results obtained in

po

this study should be interpreted under this light.
-



4. The Effects of Maximum Density and Temperature-Dependent
Viscosity on the Stability of Laminar Natural Convective

Flow of Cold Water Along an Isotherma} Vertical Surface

As the natural convective flows arise due to a density

difference arising.from a tempe;ature’or concentration
Adifference, an accurate description of the density as a
function of temperature or concentration 1s important. This
1s especially true in the case of water near its density
maximum. In Chapter 3, the effects of temperature-dependent
viscos;ty and coefficient of thermal expansion on the
-stability of laminar natural cénvective flow along an
isothermal vertical surface were studied. As explaihed in
Chapter'2, the theoretical formulation for the variation of
coefficient of thermal expansion with temperature }hat was
used in Chapter 3 may not be wvalid when there is é density
maximum,

, In this Chapter, the stability of laminar natural
convective boundary layer flow of cold water along an
isothermal vertical flat plate is studied employing the new
density relationship suggested by Mollendorf and Gebhart
(1977). The effects,of bpth thehdensity maximum and the
ﬁemperature-dgpendent viscoéity’are exaﬁined. Various.
combination&~of wall and apbiént temperaturés in the range 0
to 20°C are considerd. In parﬁiculé;,_tﬁe flow from an
isothermal wall at 0°C, corresponding to an ice sufféce,-isn

o

studied in detail. The stability characteristics of the flow

~

142 , :
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with and without buoyancy force reversals inside the thermal

T

boundary layer are analyzed.
4.1 Theoretical Analysis

4.1.1 Variations of Density and Viscosity of Cold Water with
Temperature |
For pure water at 1 atmospheric pressure, Gebhart and
Mollendorf (1977) have shown that the following the
density-temperature relationship accurately correlates the
density 1in the temperature range 0 to 20°C.

LY

p(t)=p_(1-a |t-t_|%) (4.1)

e

S

where g=1.8949, at=9.2972 X 10" % ang tm=4.0293°C (tm is the
temperature corresponding to the density maximum).

The viscosity of water is a strong function of
temperaturei For example, the viscosity of water decreases
‘by 80% as the temperature increases from 0°C to 20°C. Hence,
it is important to include the effects of
temperature dependent v1scosxty in the analysis..For
'moderate temperature dlfferences between the wall and the'
‘ambzent water (~ 10 to 20°C), one can assume that the |
v1sc051ty may be approximated by a llnearlzed Taylor serles
‘eXpanelon about a reference temperature, say, the film

temperature. The linearized approximation about the film

temperature yaa%g%ﬁﬁn in eq, (3.24).
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4.1.2 Governing Equations

The coordinate system is the same as the one shown

Fig. 2.1,

in

With the density formulation for the cold water as

shown in eqg. (4.1), the base flow equations and the boundary

conditions, corresponding to egs. (3.20) to (3.22) are,

9"

+ 3PrF@'

F(0)=F'(0)=68(0)-1=F"' (=)=6(w)=0

3FF' ' -

2% + [16-r|9 - |R|9) = 0 (4.2)

‘ | (4.3)

(4.4)

- s

|
‘ -gatlto-tmlq x> r 1/
where Gr_= . G=4|—=| .
P V2 4
0 £ \ _
%
; -
G | t -t
T):—Z' \l/:VfG F(n)l’ 6: *®
4x to-t
. , J 0 ‘e
thte - 39 R
R= m , U=g§l"—, an:d V:—_.L
P ! X
to ta Y |
t

|

The prime denotes diffefentia%ion with respeét_to n and

denotes up and down flows, reépectively. The temperature

l

parameter R indicates the pro%imity of the temperaturés to'

and t, to t . For given Valueé of t, and t., a large

absolute value of B;(say; Lﬁ{>8) indicates.a condition

‘remote from the maximum density region., For smaller values

v
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-

of |R|, the effect of maximum éenéity becomes important. The
range of values of R for which the flow reversals occur has
been discussed in detail by Carey et al. (1980) . ;

As shown in the previous chapter, the disturbance
equations were ébtained by employing the agsumptions
invdlvéd in linear stability theofy, such as small
disturbances and parallel flow approximation. Assuming the
disturbances to be two-dimensional travelling waves and

non-dimensionalizing the variables the disturbance eguations

become,

[u_][¢.... S 2 aZpr 4 044 _
e

iaG[(F'—c)(¢"—a2¢)—F"'¢]

_2[L:,'(¢vvv_a2¢v) - [ﬁ—]”(¢"+a2¢)‘

He He
6-R - i
I[q( ) |9—R[q Tsv + q(q—1)|9—R|q 256" (4.5)
|6-R| |
s'' - a? s = iaGPr[(Ff—é)s‘— 9'6"1] : (4.65
6(0)=9" (0)=5(0)=¢(=)=¢" (=) =5(=) =0 )

i

Higgins and Gebhart (1983) studied the stability of
‘laminar-natufal convective boundary flow-of cold water along
- an isothermal vertical flat plate for smallktemperaturé

differences (~5°C). They neglected the effects of variation

N
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of viscosity with temperature. In the present study, a more
detailed analysis of the stability of the natural convective
boundary layer flow along a vertical flat plate is done |
including the effects of variation of viscosity with
temperature. Various combinations wall and ambient water
temperatures in fhe range 0° to 20°C are considered. In
particular, the flow from a wall at 0°C corresponding to an

ice surface is studied in detail.

4.1.3 Numerical Method

The numerical $ethod employed to solve the base flow
and the disturbance equations is the same as the one shown
in the previous chapter. With the density formulation as
shown in eqg. (4.1), the solutions to the base flow
eqs}/§4.2) to (4.4) at large 7, correépoﬁding‘to eqs. (3.38)

and (3.39), are given by,

g-2
- B R |R - ,
'F = A +Ce 3An/A * 3 é I e 3APC7 (4.8)
. . [27Aa°Pr“(APC-1)]
: ()
9 = B e SAPIT (4.9)
7f(
where A = 1—5—, and A, B, and C are real constants.

Q

The integrals-¢1, ¢2, ¢3, S,r S, and's3, corresponding

to egs. (3.42) to (3.47), were obtained from the solution of

3
LS £

disturbance egs. (4.5) to (4.7) at large values of n. They

'

" are given by _ . * [

)

{
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¢, e 2 (4.

glasy/N) R|R|Cr2 e 437

¢ = 4 (4
3 2 2 2 2
, [(03 a )(a3 a2)]
iaPrGe: e 7 LN
s, = (4
! [a§ —(3APr+a)2]
iaPrGe e *27 ®
S, = (4
2 [a2 ~(3APr+a )2]
3 2
1 . /’
53 f e'a3n' ‘ (4
2 1acG 1/2 2 . 1/2
where a, = +la” - 5 -and a3 = +|la”"~1acPrG

4.2 Résq}ts and Discussion
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.10)

11)

.12)

.13)

.14)

.15)

The equations (4.3) to (4.8) were solved numerically,

and thg‘neutral stability curves and the constant
amplification contours were obtained for three diiferent
cases, l ' 1_

'(a): ‘both ty and t are below o

¢ | (b): both t, and t_.are above t_, and

(c);'tb and t_ are on the opposite sides of to.

s ) “ /"’A . .
There is no buoyancy force reversal acé?és-the thermal

N
@

“h
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boundary layer for the cases (a) and (b). The buoyancy force
may reverse inside the thermal boundary layer in case (c)

due to the presence of the density maximum. Both cooled and

~heated walls weré,examined. Stability analysis was done only

g

for the céses with no.flow_revefsals. When there 1s a flow
reversal, the-boundary layer approximation itself may not be
Qalid and flow may not be steady as shown by Carey et al.
(1980) . |

Fig. 4.1 shows typical base flow temperature and
velocity profiles for various t_ when t0=0°C. For up flows
there is a buoyancy force reversal at the edge of the
boundary layer when t_ 1is greater than t,- For down flows
the buoyancy force reversal occurs near the wall.

4.2.1 Neutral Stability Curves When Both t. and t_ are Below

0

/

or Above t
m -
Figs. 4.2(a) and 4.3(a) show the nose region of the
neutral &tability curves for various values of t_ when
t0=0°C and 5°C, respectively. Figs. ‘4.2(Db) and 4.3(b) show
the nose region of the neutral stability curves for various
values of'tO when t_=0 and 5°C, respectively. Figs. 4.2(e)

and 4.3(c) show the dimensionless buoyancy force at all

points inside ‘the thermél_bound;;g layer for the cases shown

in Figs. 4.2(a)'and (b$%, and Fi s{’4.3(a) and (b),

respectively. The flow is up for the casesfggg;ﬁqi?.Fags.
e / :
~4.2(a) and 4.3(b), and is down in Figs. 4.2(b) and 4.3(a).

. “ ¥ -
Foné&ﬁven values of te and |At|, the down flows are more

bunstable than up flows. This is due to the fact that the

®
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0.08
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0.00

- Fig. 4ﬂ1ATypi¢él baSe flow temperature and velocity

profiles for various values of tmwwhen't0=0°C
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— t,=0 °C, FLOW=1 (UP),
) ---t_=0°C, FLOW=-1 /
9.0 — (DOWN)

1/

Jt=R °C
30 tg=3 °C
tg=4 °C

Dimensidnless Buoyancy F’orée,
FLOW[|8—R*—|R/%]

i 1

, , i L
0 02 04 06 08 1
6=(t-t. )/ (t,-t.)

] T

Fig. 4.2(c) The dimensionless buoyancy force,when both t,
. [ .

~ and t_. are below t
@ ] . m
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30 ‘
—— t,=5 °C, FLOW=-1
- -t _=5°C, FLOW=1
U 1 .
O ﬁ t,=6 °C
O -7
8' — 20~ o
©
2 &
o Q 7
2E  10-
-
Q
E
OO -'- j Y I .I [ LI T

0 02 04 06 08 1°
b=(t—t. ) to-t.) -

'Fig. 4.3(c) The dimensionless. bu.oryanc:_y force when both t, -
-and t_ are aboveb.t:m
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dimensionless buoyancy forcé is larger for down flows than
for up flows (see Figs. 4.21c) and 4.3(c)). Tﬁis is similar
to the effect of variation of coefficient of thermal
expansion with temperature which was discussed in the
previous chapter. Foér a given value of ty or t., the flow 1s
more uhstable for smaller values of |at] than for larger
ones. Also the flow is unstable to a wide range of oY
freqﬁéncies for smaller vaiues of |at].

4.2.2 Neutral Stability Curves When t, and t_ are on ‘the

0

¢™ Opposite sides of t

a0y
-

The inétability”aﬁalysis was done only for those
combinations of to and t_ for which there are no flow

reversals. Fig. 4.4(a) shows the nose region of the neutral

stability curves for various values of te &>tm) when t =0°C.

»

'. The flow is down for the cases shown. The flow 1s more

. A N -
unstable when t_ 1is,6closer to toe Also, the frequency

filtéring mechanfsm is more pronounced when t_ is closer to
toe Fig. 4.4(§) shows the nose region of the neutral
stability’curves for. various values of ty (>tm)_when td;0°C,
'The flow is down‘for thg cases shown. The.flow is more
ﬁnstableéﬁhén g is farther awayffrom ty thgﬁ Qhehhfé Is

nearer to tn- -The fipw is unstable to a wider range of

2!
-~
B

frequencies when to‘is‘farther away  from to-
Fig. 4;4(&5 shows the'QimensionIESs bp@yaﬁéy force at
nall‘poinfs inside the thermal boundary‘iayér for the'cases
ého&h]in Figé. 4;4(a) and {b). When tg éhd‘tm.ére"on the
fqppésite sides of‘tﬁ, the flowzbécomés'mére unstable when s

St

>

-
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thqu is a buoyancy»forqé reversal inside the thermal
bqundary layer. Also, the frequency filtering mechanism is
more pronounced when there 1s a buoyancy force reversal. The
more 51gn1f1cqnt is the buoyancy force reversal, the lower
is .the value of critical G for the onset of instability
(compare the cases for t_=7.0 and 6.0°C 1in Figs. 4.4(a) and

-~

(c), for example).

J

.7 4.2.3 The Effects-of Variation of Viscosity with Temperature

" Figs. 4.2(a) to 4.5(b) show the effects of variation of
viscosity with temperature on the stability of-‘the laminar

flow- for various combinations of wall and ambient

temperatures. The temberature-dependent viscosity stabilizes

4

L

the fl%& for heated walls and destibilizes the flow for

coolea walls. Moreover, the disturbances amplify faster for
a cQoléd wall than for a heated wall (see"Fig. -4.5(a)).
Thése effects (particularlyfthe dis;urbénce amplification
réuel aréxmore pronounced. for larger temperature differences

between the wall and the ambient water. Fig: 4.5(b) 'shows

the critical values.of G and § obtainedufrom the linear

%

stablllty analy51s. The cr1t1ca1 value Qf\G is d1sc0nt1nuous

'S

and tBe vaLue of ﬁ is 1ower in the flow reversal regaon. As

the’ dlsturbances ampllfy faster ﬁor a cooled wall thg.

9

;trans1t10n to turbulent flow may occur at a lower value of
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pare shown in Fig. 4.6(b). The experimentally obtained

- 163

-

4.2.4 Flow Visualization Studies.

AN

The points of.onéet of in%tability and trangitioﬁ to
éurbulént'flow were obtainéd for the natural convective flow
along an isotgizmal vertical circular cylinder in water for
variou§ values of t_ an%/}o in the range 0°C to.20°C. Dye
injection and shadowgraph flow visualization techniques.were
used to obtain the critiéal values. The experimenfal
apparatus and test section was the same the one deshribea in
the previods chapter eerpt that a second coolant system >
consisting of a mixture of 60% (by yélume)“ethylené glyco%,
30% water~ané 10%¥ methanol was used to cool the cyfinder/for
low temperatures (near 0°C) and for iée fOrmation over the
cylinder. The experimental procedure was fhe same as
deécribed in the one described in Chabté}‘3. When a thin ice
layer was present on the test séctiom the surface ‘;
.temperatdre was taken‘to be 0°C.

. Fig.‘4.6(a) shows typical dye injection photbgréphs
‘2t6=15.5°c, t;=0°k}.jThe QscillationS1and the eventual break
down of the dye are cleaiiy’seeh. The, critical valués of Ra

for the onset of instability and the transition to turbulent

~flow for different values of t_ for an ice surface (£y=0°C)

critical values of Ra  for the ﬁrénsapron to turbulent flow
‘abpeqr to be'slightly higher;than‘the range«of values éiven
by Fujii et al. (1970). This may be due to the faet that a
*dehsity-maximum‘waé pr¢Sent for the'éaséﬁishgwﬁ in Figq.
4.7(b)qﬁﬁ;re§€‘F?5ii:et'al. (f970)Astudied casésifég away
from‘aldénsitYfmaximum; The Vafiétfan;of the 6bser§§d

;

i
i
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Fig. 4.6(b) The experimentally obtained critical values of
Ra - for the onset of instability and the transition to

turbulent flow in water for an ice surface
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o

critical Ra, with t for the onset of instability is similar_

to that of G- with t_ as& sghown 1n ¥ﬁg% 4.6(b)i s
It shouLd'be st;essed agéin tﬁat'the eXpeériments were &
‘conduétea with a vertical circular cylinder whereas the
instability analysis was done for\g\ﬁﬁéz plate. Hencé, the
coméarison between the thebreticélly obtained critica% .

values and the experimentally obtained values has to be made

under” this light.

4.3 Conclusions y
The stability of Buoyancy induced flow albng'an
1sothermal vertica} flat surface in cold water has been o
, ‘ 4 RS

studied in detail for hé@éing‘and gooling situations. The .
: : : o .
numerical results reveal that the critical Grashof number

for the onset of instability may be discontinous in’the

region where flow reversals occur. The tembérature;depehdent-

viscosity.stabilizes the flow for a heated wall and
destabilizes it for‘a cooled wall. The trends of

experimedtally obtained critical values of -Rayleigh number

o x o - )

for .the onset of instability and the transition tg.turbulent.
. . . - N y '-": ‘nJ M R

R
S

" flow support the numerical predictions. ‘ 1

n . ' ‘ ‘, -

»
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5. Transient Laminar Natural Convective Flow Along a

Ventical Circular Cylinder Subjected to a Step Change in

° Surface Temperature

¥

Ay

In this Chapter, the transient laminar natural.
convective flow alé;g.a vertical circular cylinder subjected
to a step change'in surface température is 'investigated
numerically for various curvatures of the cylinder and’
Prandtl numbers 0.1, 0.72, 1.0 and 10.0. In addition,
experiments were done in water with a smoofh‘vertical
,Circular copper pige (outside diaméfer 41.3 mm and length
1 m) for a step change in surface temperature. The transient

{ and the steady state temperatures were measuréd at various
. locations inside the thermal boundary layer and the flow was

visualized using the shadowgraph flow visualization

* technique.
". 5.1 Theoretical Analysis

5.1.1 Governing Equations
The physical model and the coordinate system are shown -
in Fig. 5.1, The quiescent ambient medium and the surface of

the vertical circular cylinder are at a constant temperature

"t . At time 7=0, the surféce temperature of the cylinder is

-}

changed from t_ to to: (It appears that there are no
approximate analyticél or numerical solutions available in
. . =

the literature for the transient laminar natural convective

i67 . -
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flow adjacent to a vertical circular cylinder subjected to a
step change'in surface tempefature). The transient flow that
arises as a result of the step chamge—in—surface temperature
can be briefly described}as follows (Siegel, 1958)..At a
finite distance from the leading edge, the flow initially
develops as if the cyliédef were infinite-in extent. Owing
to the wavelike nature of the uﬁsteady boundary layer
equations, a finite Fime\elapses before {he leading ?dge
influences‘fhe flow development at that section; thereafter
a transition to the steady state'solution takes place. The
initial stage of transient flow deveioment for the
semi—infinite vertical circular cylinder is discussed in
detail Appenaii‘D. —
Employing the familjar Boussinesg and boundary layer
approximations, the equations governing tﬂe conservation—oaf—

mass, momentum, and energy for the transient natural
,‘ .

convective flow along the cylinder are given by

.

a_u + a—v— + Z =0 (5.1)
ox or r

e au du , 1 au 8%y

e/ + U= + v— = gf(t-t_) ¥ v[— — + ——5] (5.2)

a7 ox  or | r dr - 3r
st .at 8t [1 ot 2%t |
__.__' + y— + Yy— = al:_. — 4+ ——~—2—] : (5.3)
37T ax or r or 5r . ,

,

The initial and the boundary condition%)are,



for + < 0O, ) .

c
L
<
]
o
o)
2
Q
r'f‘
]

t. for all x

c
H
<
N
o
o
5
Q,
ad
T
rt
o
o]
ﬁ.
<
n
o

170

and y (5.4)
for all x (5.5)
all x »,*j (5.6)

for'all y > 0, (5.7)

The equations are the similar to the ones given .in Sparrow

and Gregg (1958) except for the additional unsteady terms.

It is to be noted that the boundary layer approximations are

not valid near the leading edge. Introducing the following

dimensionless variables,

1 U .
X = xG, Y = yG, RO = rOG, U = G
.
v ”- t-t
V= —, 1=p"7, 8=
vG / to"tm

where y = -1y and G =

the governing equations become,

‘ S

U v v

— = e =

83X Y  Ry+Y |

U 302U 12U 22U

ar X 3y _R6+Y oY ay2
¢ o ' e 2

36 26 36 1 [ 1 36 d e]

— + U=+t V== — ' — 4 5

ar 8% " 3Y Pr [Ry*Y 3Y oy

(5.8)

(5.9)
(5.10)
(5.11)

(5,12)

(5.13)



»

)
for r < 0,

U=V =20 and 6

]

for T 2 0, ' . l
» U =yv =.O and 6 = 1 at Y =
U ~»0and 6 » 0 as Y » <=,
U ='y = 0 and 6 = 0 at X =

For a given value of X, the value of R
effect of curvature; the smaller the value,
pronounced is the effect of curvature.

equations reduce to the ones corresponding to a verti

The initial and the boundary conditions become, 1

Y

.

1
o

0 for all X ané Y

0, for all X

for all X

7
171

(5.14)
(é-"m’\
('5.|t)‘)

0, for all ¥ > 0 (5.1

When R+, -the

0 detérminés the

the more

0

flat plate. The relatlon betweEP~Rﬂ and ;*\the curvaggre"_

parameter of Sparrow_apd Gregg (1958

1/4
X
g = 2(2) /22

The local Nusselt number is.given by

<

/ .

Nu_ =

/ hx
Xk

[ 39| ]
oY ¥=0

Nu

X L 1/4 [ 06 }

or X -—| 4
(er)U4 _ 0Y y=¢

5.1.2 Numerical Method

), 1s g1ver(<by’

R

o

AN

/ __—15.18)

(5:19)

~(5$20)

9

An explicit finite difference method similiar to the

¢

one discussed in Hellums and Churchill (1962) was used to

solve the‘equationéi(5,11),td (5.17).

The space under

investigation was divided into a grid dimension of M X N in
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£o ,1 depending on

N4

,r:_
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X and Y coordina%eAdirections, respectively. A variable grid
 system with grid sizes varyingiih geometric pfogression was
used. Finér grids near the leading edge and the surface, and
"coars¢f~grids away fromftheﬂleading edge‘and the‘surf;ce
were used. The sméflest and the largest grid~§izés in the
X-direction were between 2 and 2.5, andﬂgepween 6 and 7
respectively. The maximum value of X vq:ﬁed@from‘zgs to 250.
In the Y—dirgctiéqéfthe smallest grid size .varied from 0.5

The maximum grid size in the Y

“

,direc;ion was between 2 and 4.5. fhe maximdm value of Y

varied .from 45 .to 90. The value of M was between 55 . and 65,
and that of N wa#*beﬁween 35 to 45.

The'gove}ning equations, and the initial and the
boundary conditions were finite differenced and solved for
each grid point starting at time 7=0. The.solution_was then
marched in‘time‘ﬁith sufficiently small time steps until the
values of U, V, and 6 attain their sté%dy‘state values. The

steady state was considered to have been achieved when the

"Ghang in two cosecutive values of U, V, and 6 was less than

0.5 percentyat all points in the solutiomlregion. When the

convergence criterion was taken as 0.25 percent, there was

" not én;happféciable differgnce in the solution from that of

'Q.S'percent e?cept that at the outer edge of the boundary

layer U converged rather slowly.

o .
, 0
T -
(2

-~

S
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¢

5.2 Eé;erimental Apparatus and Procedure
The‘experimentaliapparatus‘yas the same as the one
described in detail in Chapter 3. |
The steel tank was filled'with deaerated plain tap
water. The water was alloWed’to equilibrate for about'one Lo
two hours. The coolant was brought down to the de51red
temperature and was kept c1réulat1ng in the bypass loop. 7The
thermocouple was p051t10ned at the desired location at which
the transient temperatute was to be recorded. The light
sourqe”waslswitched'on{ The flow was then allowed to
circdlate’thtough the‘testAsection. The output ot the
/thermocouple,;andfthe temperatures of the coolant at the
inlet and the‘outlet were continuously recorded. The
:”tran51ent flow was photographed The flow became steady
wlthln 5.m1nuces of startlng the experlment for temperature
. differences larger than 1d°C The steady state natural
_convective flow was’ photographed after 10 mlnutes of
starting the experlment. The inlet and the outlet coolant

temperatures were always found to be w1th1n 0. 25 C. The

[

sunﬁace temperature‘wasﬁtaken to be the average of these

‘ temperatutes,\The steady state temperature profile in the

boundary layer was fieasured at various axial locations.
. . . ) ] - ” . . .

'S, 3 Results and Dlscussxon-; ‘
The equatlons (5 11) .and (5.17) were solved numer1cally
for Pr= 0 1, 0. 72 1 .0 and 10.0, and R0=2 0, 10.0 and 100. 0.
" The tran51ent and the steady state solutlons vere obtalned

for Grashof numbers,up to 107Q ' kp | K\_ .
. ,{}&P . ‘ o o~ ) “r
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5.3.1 Steady State Temperature and Axial Vélocity Profiles

Figs. 5.2(a) to 5.4(bk show the steady stéte
temperature and aﬁial velocily profiles for typical values
of Pr, RO, énd\er.'For larger values pf RO(>1OO), the
spea%ﬁ\state,temperéture and velocity profiles agreed very -
well with those obtained er@ the sim%larity solution for ah'
flat plate. For example, wheh-ka was equal to Jb7iand Ry
was equal to 100, the velocity énd tehperature prqéi}es
agreed very closely with thosevobtained for(a flat plate for
the Prandtl numbers studied (solutions for a flat plgfe were
givén in Chapter;2). This ensured the validity and the |
accuracy of the numerical scheme .

Eof'given values of Pr and er, the ﬁhicknesSes of the
temperature and the.gglocity boundary layers were larger for
syaller valules'of.R0 as seen from Figs. 5.2(a) and (b), and
figs. 5.4(a) and (b). Also, the temperature gradients near
the wall were Jlarger and the maximum velocities weée loyér‘
for smaller values of RO.-For example, at er=107 the'-
maximum velocities for R0=2 were about 14 to 18%‘lower than
those 9f-R0=100 for the Prandtl numbers investigated. As in
the case .of a flat platé, for given values Qf;RO and ‘Pr, the
‘thicknesses of velocity and tempgrature bounda;y,layers were
smaiier tor lower values of Gr, as seen from Figs.! 5.3(a) |
and (b), and Figs. é.4(a)'and_(b). Also, the maximum

velocities were lower for these cases.

¥

* Figqg, S.Sﬁéomparés the steady state local Nusselt numbér
" ‘at the surface with that of Aziz and Na (1982) forutypicaif
values of the curvature parameter {. It is seen that the

~

-



N

175

¢

N . ¥
Fig. 5.2(a) The steady state temperature profiles for

“various values of Ry and Pr when Gr =1 X 107ﬁ_
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15.0

10.0 -

9.0

Fig. 5.2(b) The\steady‘state velocity pgdfiles,for various‘

values of R, and Pr whenfer=3.X 10’

1

-
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Fig. 5.3(a) The steady state temperature—ppolees for

various values of Gr and Pr whin R -10

8"

}

p———
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Fig. 5.3(b) The-stéady state velocityibféfilgé for various

values of er and Pr when R0=10\"
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S
N

Fié. 5.4(a) The stgédy state ;;hpeﬁature profiles for

‘various valuéé of RO and‘Gr'x ghen Pr=0.72
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. ,\g:;_'i'g'; 5.4(b) The steady §tatesvelocity profiles for various
L Cy : o ¢ '
. ‘ values of Ry and Gt when Pr=0.72

. . l"‘ i .
» . . S«
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| __ Aziz and Na (1982)
. 3.0 -
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:;; Pr=072 .
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~ 4f)¢’/" / -
7. Lo_ﬁ/ Pr=10.0 )
Present study
| A Pr=0.72
+ Pr=1Q.0
OO '}1 T 1 T Tt 7T l‘l‘lfﬁ.*[-
- - 00 . 25 5.0 75
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Fig. 5.5 The steady state local Nusselt number for various
. “ ﬂ

- values of §
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present numerical solution agrees fairly well with the -

\

perturbation solution of Aziz and Na.

5.3.2 Transient Temperature and Axial Velocity Profiles

The transient temperature and velocity profiles
obtéined numerically fgr typical.values of Pr, RO anrd er
are shown in Figs. 5.6(a) to 5.9(d). During the initial
stages of the transient stéte, the heat transfer process is
mainly by conduction and hence the diffusion of héat was
slower for larger Pr and smaller RO. For given values of‘RO
and Gr#, the transients lasted longer for larger Pr as shown
in Figs. 5.6(a) and (b). The larger the value of Gr_, the
longer was tﬁe time required for the effect of leading edge
to be felt. Hence, the transients lasted longer at larger
values of er for given values of Pr and RO as shown in
- Figs. 5.7(a) and (b), and Figs. 5.8(a) and (b). For giveﬁ
er and Pr, the ﬁransients_lasted longer for-'smaller values

of R, as seen from Figs. 5.9(a) to (d). The boundary layers

0
developed slowly, especially‘in the outer region.when R, was
smaller.’

The dimensionless temperature at poiﬁts in the inner
pbrtion of the thgrmal boundary layer went through a maximum
auring the tragsient period. This overshoot in temperature‘
was found to be largér in the region where the velocity is
maximum. The temperature overshoot was larger for Prandtl
numbers 0.72 énd 1.0 for givén values of R, and er.‘For a
given value of Pr, the temperature overshoot was found to be

larger when the valhes of érx and,R0 are larger. Also, for
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~ Figl. 5.7(a) The transient temperature profiles.at

er=1 X 107 when R0=10 and Pr=0,72
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“y

smaller Prandtl numbers a siight ove;shoot in U occurred
near the rggion where the value 1s maximum. As before, the
6vershoot in U was larger for-Prandtl numbers 0.72 and 1.0,
and for larger values of er and RO.~This 1s due to the fact
that at a given position along the cylinder, the heat
condu;pion process 1s sufficiently rapid to enable the
boundgky layer .thickness to grow beyond the steady state

!
thickness before the constaints induced by the leading edge
can propagate to that location and prevent the growth from
continuing as if the cylinder were infinite in length. The

overgrowth in boundary layer thickness causes a minimum in

the heat transfer coeffigﬁent at the surface.

5.3.3 Transient Local Nusselt Numbers
The variation of local Nusselt number with
dimensionless time 7 for different values of RO' Pr and er

is shown in Figs. 5.10(a) to (c). When R, was smaller, the

0
effect of curvature was ‘more pronounéed and hence the steady
state value of Nux was larger thaﬁ t?at of a flat plate. As
shown in Fig. 5.5, the steady state values of Nux obtained
in the presént study agreed fairly well with the recent
improved perturbation solutions by Aziz and Na (1982). The
difference.in the steady state valueé of Nu, betwqén the
present'numerical solutions and those given Aziz and Na was
less than 5% except neér the leading edge. The agreement was
betfer for larger values of RO and er. The Nusselt number

Nux went through a minimum value during the transjent'

period.-For larger values of Gr, and RO, the difference

N
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2.0

Fig. 5.10(b)The transient local Nusselt numbar for varioUs

values of.er‘and R, when Pr=0.72 {
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4.0

Fig. 5.10(c)The transient local Nusselt number for various

values of Gr, and Pr when R,=10
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between the steady state Nux and the minimum value that
occurred during the transient period was slightly larger.
This undershoot 1in Nux was not as large as the overshéot 10
temperature that occurged away from the surface,‘as

indicated in the previous section.

5.3.4 Temperature Measurements

Figs. 5.1T(é) to (j) show the analog recerds of the
transient and the steady state temperatures at various
locations inside the thermal boundary layer when the wall
was suddenly cooled. For the experimental®records shown; t he
ambient temperature was at a constant value between 20.0 and
22.5°C. The wall temperature was kept at a cohstant-value
between 10.0 and 12.5°C except for the case (j) where it was

5.0°C. Each of these measurements were taken sepaéately with
" the same thermocduple. The steady state value of er varied
from 1.5 X 107 to 7.4 X 109. (Th; properties weré‘calculafed
at the corresponding film temperature). The time taken to
cool the wall from the ambient temperature to the the
coolant temperature was about 5 seconds. As the transients
lasted longer than 1 minute, it was assumed that there was a
stép change in wall temperature.

During the initial'transiént period, the mode of heat
Fransfer was conduction éhd'héhge,the temperature dropped.
éﬁgbtﬁlyn As éﬁmg'{ﬂcreased, the éffegt of the presence of
the leading edge propagated downstream. At lower values of
Gr, the fléwkwas laminar during the transient and the steady

state periéds as seen from Figs. 5.11(a) and (b). &t poihts
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. Fig. 5.11 The experimental temperature records at various

~ locations inside the thermal- boundary layer when the wall

was suddenly'cooﬁjﬁ
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farther away from the leading edge the flow became unstable
to disterbances that were present 1n the system. The flow
became unstable at a lower value of er during the transient
period than that et steady state period as seen from

Figs. 5.11(c) to (f). Figs. 5.11(g) to (i) show that for a
particular value of er the disturbance temperatﬁre level
was larger during the transient period than at steady state.
Also, the transition to turbulent flow occurred at a lower
Gtx during the transient period than at the steady state
period.

Fig. 5.12 shows the numerically competed transient and
steady state temperature profiles and the expetimental
measurements for the case with er=1.56 X 107 and Pr=7.4.
The value of RO in this case was 102. The agreement between

the numerical predictions and the experimental measurements

was fairly good.

" 5.3.5 Flow Visualization Studies

'Figs. 5.13(a) to (p) show the transient development of
the natural convective flow as visualized by shadowgraph for
the case when t0—5 0° C and t_=28.0°C. The temperature

d1fference between the amblent water and the wall was kept

| large so that the flow can be visualized clearly As

I

expected, during the early pe;lod'the-flow was lamlnar
everywhere asvphewn in Figs. 5.13(b) and (c).

As the boundary layer grew and the rate of flow

" increased with time,}et distances away from the.leading

edge, the flow became unstable to disturbances that are

. +
/ ' -
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Fig. 5.13 Flow visualization phothraphs of transient flow

development in water
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Fig. 5.13 Flow({vi%ualization photographs of transient flow

development‘in water
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Fig. 5.13 Flow visualization photographs of ‘transient flow

development in water



> 206

present in the.SystemZ These disturbance Yavé% can be seen
in Fig. 5.13(d) in the range 47.5 cm and 52.5 cm from the
leading edge. These disturbances amplified as they moved-
downstream and are clearly sé€en in Fig. 5.13(e) in the range
52.5 cm and 57.5 cm from the leading edge.  -Soon these
disturbances became vortices. Also, disturbances appeared at
many locations and this can be seen in Figs. 5.13(f) and
(g). As these vortices moved downstream, they broké down
into turbulence, as shown 1n Fig. 5.1§(h) at approximately
75 c¢cm from the leading edge. As more vortices broke down
into turbulence the point of transition to turbulent flow
moved closer to the leading edge as shown in Figs. 5.13(i1),
(§) and (k). *

It was found that during the transient period the flow
could be locally turbulent at some locations and be laminar’
at points above and below them. In Fig. 5.13(k) at |
approximately 47.5 cm from the leadiﬁg edge the disturbance
'is on the verge of breaking down into turbulent flow whereas
the flow 1s still laminar at 50 cm and this can be also seen
in Fig. 5.13(1). At 36 seconds, the flow was turbulent at
all locaitions below 50 cm /from the leéding edge as shown in
Fig. 5.13(m). During the trénsient period, the point of
transition to turbulent flow moved down slightly and this
~can be seen from Figs. 5;13(n) and (o). The flow at steady
state 1s shown in Fig. 5.13(p) and it can be seen thdt*;he I&
flow was turbulent below 56 cm from the leading edge. Also,

du?ing:the-transient period.the thickness,d? the boundary \

layer was larger'thah that during the steady state pé}idd as
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seen from Figs. 5.13(n) and (p).

5.4 Conclusions

The transient laminar nétural convective flow along a
. smooth vertical circular cylinder'subjected to a step change
in surface temperature was investlgated numerically and
experimentally. Numerical results indicate that during the
transient period there is an overshoot in temperature in the
thermal boundary layeﬁJand an Qndershoot in the local
Nusselt number at the surface. The temperature measurements
‘in'water during the transient and the steady state periods
agree fairly well with those obtained ﬁumerically. The flow
visualization studies and the temperature measurements show
that the critical values of Gr for the onset of .instability

and the transition ‘to turbulent flow are lower during the

transient period than at the steady state period-

N



6. Determination of Local Heat Transfer Coefficients at the
Solid-Liquid Interface by Heat Conduction Analysis of the

50lidified Region'

In this Chapter, it will be demonstrated that when
freezing or meltiné takes place over (or inside) Qarious
geometries, the local transfer coefficient at the

Hg\ solid—liquid interface can be obtained fairly accuratelx

k from a ene~diﬁensional heat conduction analysis of the

solidified region.;This is shown by comparing the
two-dimensional numerical solution with the one—dimensional
analytlcal’gBlutlon for a few example problems taken from
the literature. The condltlons for the validity of the.
‘one-dimensional approximagion ‘are also given. The example
problems 1nvolve freezing of water over a planar gyate in
longztudlnal flow (leata et al., 1978a.and 1978b)l)a

cyllnder in cross flow ﬂOkada et al., 1978, and’ Cheng et
\\//-al., 1981) and freezing og_water inside a pipe with ice
bands (Gilpin, 1979,1981). S L

-

\éﬁ 1 Theoretlcal Analys1s
When solldlflcatlon or melting occurs under external or
fiﬁternal, laminar or turbulent cond;t1ons 1nvo;v1ng various
~geqmetricel.shapes{ the solidfliquid interface.ye often

irreguiaf and can be oscillatory (Gilpin et al., 1980, for

Y A version of thlS chapter has been published:
,Cheng, K, C., and Sabhapathy, P., Transactions of ASME,
J. Heat Transfer' vol. 107, pp, 703-706, 1985.
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example). Thus, in experimental investightions involviny
solidification or melting processes, 1t 1s generally -
difficult to determine the heat transfer coefficients(gt.the
interface by direct measurement of thg’temperature profiles.
Under many circumstances, the shape of the solidified region
can be obtained by photographic method. The boundary wall
temperatures at any instant are either known or can bev
measufed. The interface is at a constant freezing point
tgmperature. Then the local heat transfer coefficient at the
interface can be determined by sol?ing the Laplace equation
with Dirichlet boundary conditions for the temperature fieldC>
inside the solidified region.

v For‘the solution of the Laplace eguation inside a
complex geometry, one can employ various approximafe
analytical or numerical methods. At steady state or’
guasi-steady state, the local convective heat transfer
coefficient at the ice-water interface can be obtained from -

-

a heat balance equation at the interface as ~

~

i = tg) TRy %rt;lf =0 T(6.1)
ot ) . .

SE'f is the local temperature gradient for the ice layer at
the interface and it can be fquq@ from the heat conduction
‘analysis of the ice layer. This involves finding a solution
of Laplace equation in an arbitary geometry. The steady

two-dimensional heat conduction equation for the solidified

region is
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v%t = 0 (6.2)
S A T 52 1 d 2°

where vT = 5 + -3 or 5 + - — 4+ >
Ix dy ar r or dx

The boundary conditions are

\ .

t = tf, at the interface (6.3)
to= oty at the cooled wall (6.4)

Other boundary conditions such as a convective boundary
condition at the cooling wall may’be specified depending on
the particular phase change problem.

By employing the method of Qoundary—fitted coordinate
systems, the irregular or gqmplicated physical domain for
the solidified.region such as the one shown in Fig. 6.1(a)

éaA be transformed into a regular domain such as the one
~shown Fig. 6.1(b). This technigue is based on the automatic
numerical generation of a curvilinear coordinate system. A
detailed account of this method can be found in Thompson
(1978). When the solidified region is specified by the
Cartesian system, the boundary-fitted coordinaj:e system 1is
generated by numerically solving thé'followingwsysfem of

elliptic equations.
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Fig. 6.1(a) THe bhys&cal plane for ice formatién around a

-~

: \ cooled cylinder
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ax - 2Bx + X + J2(Px + an)

it
o
o]
w

£t in nn 4

aYpp ~ Zﬁyzn + 7y J2(Py£ + Qyn) =0 (6.6)

nn

Dirichlet boundary conditions are prescribed at the
boundaries. The coordinate control functions P and QO allow
node points to be concentrated in some desired part of the
domain such as the layer near the ice-water interface. The
equation for the température field 1nside the transformedf
plane becomes,

4

syt 3% (P, + ot.) = 0 (6.7)

atyy = 28ty nn ¢

£¢

JThe ice-water interface corresponds to 7{(x,y)=N in Fig.
6.1(5) and a constant temperature t=t, is  specified there.
Other boundray conditions are transformed in a similar
manner. Then the finite-differenced equations and the
boundary conditions can be solved easily, uUsing a successive
over-relaxation procedure, for example. The temperature

derivative in the outward normal direction at the ice-water

L 3
interface can be shown to be (Thompson, 1978),

LI Nt ¥ (6.8)
an gy 172 00N o

Valn
Thus, the normal derivative at the in;erface, and hence the

local heat transfer coéfficient, can be cbtained more easily

than the collocation method or' direct finite differenée
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method. The total heat transfer rate per unit axial distance

can be obtained frqm
0 = fih(y) "/ %1ar (6.9)

Similarly the local heat transfer coefficient at the cooled
wall and the coiresponding heat transfer rate ca% be found.
In"this study, the square mesh sizes (M,N) were chosen
by triai and errof; (M=25, N=11,16) ﬁor the flat plate,
(M=37, N=11,76) ﬁ;r the cylinder and?(M=26, N=11) for the
pipe were used to obtain the numerical solution. The
convergence criterion used 1n findiﬁg the coordinates was
T X 10-3 of the maximum value of the coordinate in that
particular direction and that for the dimensionless
temperature (1.0 at the interface and 0.0 at the cooled

3

wall) was also 1 X 10 °. The maximum difference in the total

heat transfer rates at the cooled wall and the interface was
found to be less than 0.5 percént in all cases»studied.

An approkimate solution to the local heat transfer
coefficients at the interface can 5e found from a
one-dimensional analysis of the solidified region. For the
~case of ice formation on a cooled flat plate, the local heat
transfer coefficient h can be compﬂféh/;f6ﬁ the following

I

equation ‘

&5

R h:; 1 ' ] 3 (6.10)

For ice formation outside a cooled cylinder, it can be shown

. a0
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that (Carslaw and Jaeger, 1956),

h = 6.11
Ty [S (1/Bi+1nS) } ( )
6 k. 1 -
h = [ } for Bi »+ « , (6.12)
Ly S 1nS

For the ice formation inside a cooled pipe, it can be shown

that
6 ki ]
h = & [ — ] ‘ (6.13)
Ty S {1/Bi1+1n(1/S)}
6 _k, f .
h = [ } for Bl + o (6.14)
o S In(1/S) 1 :

The validity of one-dimensional model is assessed against
the two-dimensional model.

' 6.2 Results and Discussion

"6.2.1 Ice Formation Over an Isothermally.Cobled Planar Plate
The transition from laminaf to turbulent flow on a
frozen layer formed on an isothermally cooled flat plate
placed in a stream of warm @ateg was studied in (Hirata et
al., 1978a, 1978b). Due to ﬁhe interaction between the ice
sur face and the convective heat tranSfef, two ques of f
transition,_hamely smooth transition-and step transition,
were observed in the transition fiow regime. For both modes,
the transition Reynolds number was found to be substantially

lower than that for flow on a flat plate. The local heat

!
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transfer coefficient at the ice-water interface was
determined by the analysis of the temperature field in the
ice‘layer for two cases shown in Hirata et al. (1979b) and
the results are given 1in Fig.‘6.2. For smooth transition,
the local heat tranfer coefficients from the one—dimensionél
solution and the two-diménsjional solution agreed within 1
percent. For the step transition, the two solutions were
within 1 percent for Nux at all positions except near the
region where there was a sudden change in the ice layer
thickness. Near that region, the one-dimensional solution ,
was found to overpredict the local Nusselt number at points
near a local maximum 1ce layer thickness and to underpredict
at points near a local minimum. Hence, a one-dimensional
analysis can be'applied when the thickness of the ice layer
changes smoothly and a two-dimensional analysis is needed

when there is a sudden éhange of ice layer thickness,.

6.2.2 Ice Formation Around an Isothermally Cooled Cylinder
in Crossflow

When water freezes over an isothermally cooled cylinder
in cross flow, the ice layer formed has a comple% shape
(Okada et al., 1978, and Cheng et al., 1981). The local heat
transfer coefficient at the interface of the frozen‘layer
was deteryihed by finite difference method in (Okada et al.,
1978) and by a collocation method in (Cﬁeng_et al., 1981)
using the‘tijdimensioﬁal heat conduction equation in
cylindrical coordinates for the doubly connected region. The

shapes of the frozen layers were determined by measurements
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in Okada et al. (1978) and by photographs in Cheng et alr
(1981). For the profiles given 1n the above two studYe;; the
local heat transfer‘Coefficients at the interface were
determined by both the method of boundary-fitted coordinate
systems and the one-dimensional analysis. The results are
shown in Figs. 6.3(a) and (b). (The local heat transfer

coefficients, rather than the local Nusselt numbers, are
I.

;\

Ao
plotted in the figures for easy cOmparison with literature).

The present two-dimensional solution agreed fairly well with
the values given in the above studies. As noted earlier,
that the one dxmen51onal analy51s overpredicts the local
heat transfe?g§eeff1c1ents where the ice layer thickness was
locally maximum and gave fairly accurate results when the
ice layer thickness changes smoothly.
‘6.2.3 Ice Formation Inside a ConQectively Cooled Pipe
Freezing of water inside a cooled vertical pipe is of
considerable technical importance particularly in the
"blockage of water pipes in cold regions. The ice-band
structure in the form of surface waves at the ice-water
intérfacé inside a cooled pipe was ficrst reported by Gilpin
(1979; 1981) for the Réynblds number range 3.7 x 102 to
.4 x 104. The local heat transfer. coefficients at the

ice-water inyg;ﬁace for a typical’éteédy—state ice layer
profile shown in Gilpin (1981) were determined by the method
of the boundary-fitted coordinate systems. As noted in
previous qase§,-the one~-dimensional solution predicted a

higher value for the "local heat transfer coefficient at
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.
points near the maximum 1ce layer th&%@ness and agreed
fairly well with the two-dimensional ;nalysis when the ice
layer thickness changed smoothly (see Fig. 6.4). It 1s noted
that the determinat{on of the local heat transfer

coefficients by temperature profile measurements would be

extremely difficult for this case.

6.3 Conclusions

.The method of boundary-fitted coordinate systems wa;
applied to a class of steady-state ice formation*problems
involving simply or doubly connected solidified regions in
determining the local heat transfer coefficients at the
solid-liquid interface> It was also shown that a )
one-dimensional analysis gives fairly accurate results for
the local heat transfer coefficient% at the ice-water
interface except at points near a loé@l maximum oOr '‘minimum
ice layer thickness. It is to be noted that the
determinatién of the local heat transfer coefficient at the
solid-liquid interface from the heat conduction analysis of
the solid region has not been widély employed in the past.

This method may be very useful in situations where it is

very difficult to measure the temperature profile.
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7. An Experimental Investigation of Ice Formation Over a
Convectively Cooled Vertical Circular Cylinder 1n Natural

. 1
Convection

In this Chapter, a one-djmensional analysis of the
transient development of the solid-liguid interface when a
superheated liquid solidifies on a convectively cooled
vertical pipe is presented. Experimental results for
freezing of water (8 to 17:5°C) over a coéled vertical pipe
(coolant temperature range -10 to -20°C) are given.

'~ Photographs of transient and steady state ice layer profiles
are presented. The effects of natural convection in all the
three fegimes of the flow (1aminarh transition, and
turbulent) are examined. The qffegts of stratification and

- dissolved air in the ambieﬁfhwater, and the stability of the
" interface to’aytificially induced disturbances are also

investigated. . \

7.1 A One-Dimensional Analysis of the Transient Development
" of the Solid-Liquid Interface .

Wwhen a warm quiescent liquid solidifies over a cooled

iy

vertical cylindrical surface, the preéence of natural
convection in the liquid adjacent to the interface affects

the position and the shape of the interface at any time,.

- ———— e e o= - — - ———

"A version of this chapter has been presented! Cheng, K. C.,
and Sabhapathy, P., the 23rd ASME National Heat Transfer
Conference, Denver’, Colorodo, Aug. 4-7, 1985, and published
as ASME Paper 85-HT-1- o -

»
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Experiments on freezing of water, to be described 1n detail
later, indicate that the surface of the interface 1is smoothI
and the ice thickness changes gradually with distance except
near the ieading edge. Hence, the temperéturé distribution
inside the solid layer can be assumed to be one-dimensional
at any time except near the leading edge. Previous studies
on solidification or melting over a convectively cooled or
heated cylindrical pipe have mainly employed finite
difference numerical methods (Yuen and Kleinman, 1980,‘for
example). Also, these studies neglected the effect of
natural convection in the liquid. In the present analysis,
the effect of natural convection heat tgansfer in thé liquid
was included and the position of the solid-liguid interface
was obtained by employing a perturbation method which was
simpler and straightforward. ’

A. schematic . diagram of one-dimensional solidification
of a warm liquid over a cooled vertical circular cylinder is
shown in Fig. 7.1. The phase transition was assumed to take
place at a constant temperature and the density difference
‘between the solid and the liquid was neglected. The tfme
taken for the steady natﬁral convective flow to be
estaBlished was assumed to Be_small and the natural
convective heat transfer coefficient ét‘thé interface was
assumed to be constant with time. (The heat transfer
~coefficient can be obtained from thi»correlations évailable
in the literature for the natural convective flows over
isothermal vertical surfaces and also, from the heat

-~

conduction analysis of the steady‘state solidified region).



225

L

Coolant
Flow

)
VAKX
LY T

(r.

Fig. 7.1 The coordinate system for a one-dimensional

analysis of the ice layer
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Also, the thermophysical properties of the solid were

assumed to be independent of temperature.

The governing equations fior the temperature

distribution inside the solid layer, and the interface

position are given by
14

/

—s * = —) : (7.1)

2) : (7.2)

where L is the latent heat of freezing. (Other symbols are

defined in the Nomenclature).

: . ‘
The boundary conditions aTe \

at

at

at

= tg (7.3)
ot i )
6 37" h (t-t_) (7.4)
£ = I (7.5)

When the convective heat transfer coefficient between the

coolant and the wall,'hc + «, the boundary condition (7.4)

reduces to that of a constant wall temperature. Introducing

the following dimensionless variables,
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r ¢ T €a .
R = -, S = -, T = ,
r r 2
0 0 ,fo
cs(tf~t ) t-t
€ = , 6 =
L t.—-t
f "¢

the equations and the boundary conditions become,

3% 1 26 26
2 4+ - e—_ = € —_ (7.6)
ds 26
— = —] - H (7.7)
aT aR R_S
h,r. t .-t
where H = £ 0 and 6 = £
k_6 C t -t
S C o ~f
136 -
— — = (R, 7)| . (7.8)
Bl OR'R=1 . R=1
h r |
where pi = <0
k
S
6(s,7) =1 (7.9}
S(r=0) = 1 ' (7.10)

" When Bi -+ = the bOUﬁdary cordition (7.9) reduces to that of -
a constant wall temperature.

«
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The dimensionless parameters of the problem are H
and e. H is a measure of heat transfer by convection at the
interface. The larger the 'value of H, the smaller is the
thickness of solidfied layer at steady state for a g;ven
wall temperature. When the liguid is at its freezing
temperature,’H is equal to zero. At steady sta;e, the
interface position and H are related by (from solving egs.

(7.6) to (7.10))

1

: 7.11
S{1/Bi+1nS] ( )

For an isothermal wall, € is a measure of the ratio of
the heat capacity of *the solid layer to the latent heat of
freezing aﬂd is called Stefan number. For water e 1s less
than 1.0 uqder normal- freezing conditions. Hence, a
perturbatgén technique s%milar to the one employed by
Seeni;af/and Bose (1982) for a flat plate can be used to
gbté;n approximate g%lutions to the set of equations (7.6)

~to (7.10). As shown by Seeniraj and Bose, the independent
variable 7 Qas replaced by S(7), and G=dS/dr (G is the
fréezing speed). Employing e as a perturbation parameter, .6
and b can be written as, |

(S

6(R,S) = 0,(R,S) + ¢6,(R,S) + e?6,(R,S) + .... (7.12)
G(S) = Gy(S) + €G,(S) + e2G,(S) + ... ' (7.13)

Substituting the -above equations in equations (7.6) to



(7.10) and equating the terms with the same POWErS of e, the

res_lting eguations anc the boundary conditions become,

r | 0 for i-= O

a
iae
—
3
] —
Q)
LT
Il
—_
~J
~

ar
pol
N
pe}
(¥
2 o)
—
[e¥%
D

I 6. —21  for i z 1

96 . g
—2 - H for i = 0
OR g=g
G. = (7
1 36 .
——3; ., for 1 2 1
| 9R R=sS
of
& R o= , 7—1 = Bi¢f fer 1 2 0 (7.0
OR 1
| for 1 = C \\
|
at K =56, ¢€.= (7.
i
[ 0 for 1 2 1
anc 7{S=1) = C (7.°¢

The sclutions to the zeroth and the first order

perturbations are
1/Bi + 1lnR * : o)
0 " 1/Bi + 1nS : (7.1

1
= - . - H .20
0~ S(1/Bi. + 1nS) . (7
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2 2 2
FR F R R
6 = __1 —inR - —
LTI T S [2 1Inf ~— + F,lnR + F3] (7.21)
)
G. = _iT s 1 S1nS - = + 2 (7.22)
1 2Bi 2 2 S
-
G
where F1 = - 0 5
S(1/Bi+1nS)
. _ (s®/2)01-1/Bi-1ns]1+(1/Bi)(1-1/Bi-1/2]
2 1/Bi+1nS
F L L 1 F ]
= —_—— - + + —
3 Bi|Bi 2 2

Higher order solutions can be obtaineg;in a similar mannef
and a better approximation to 6 and G can be obtained by
employing the transformation suggested by Shanks (1953).
Once G is known, 7 can be obtained as a function of S, by
inverting the equation 6=dS/dr and intégrating it
numerically.

At steady state, the heat conducted through the solid
layer is exactly balanced by the heat convected from the

liquid at the interface. Hence, the local and the average

heat transfer coefficients at the interface for the 'steady -

state condition are given by

LN

‘ k 8 /r .
h, = —5¢ 0 . (7.23)
s[1/Bi + 1nS] . :
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X . ‘
J h, dx ‘ (7.24)
0 .

The corresponding‘expressiohs for the local and the average

Nusselt numbers at the 1nterface are,) ,
[}
h,x |
Nu, = —f- (7.25)
X k
1
- h, x
Nu = -JkL— (7.26)
l //‘._—-\
7.2 Experimental Apparatus and Procedure //
The experimental apparatus was the same as the one K
. N~

described in Chapter 3 except that the coolant was a mixture
of 60% (by volume) ethylene glycol, 10% methanol and 30%
water. Fig. 7.2 shows the_phptograph of the probe used to
measure the ice layer thickness. The probe was made up of
two thin stainless steel shimstocks with a 'Delrin' tip so
that the freezing front might not decay when tbuched. The
steel arm mounted on the horizontal slldxng arrangement
carrled the probe. When the tip touched the ice surface, the
shimstocks made contact with each other and was sensed
electronically for ice thickness measurement.

The steel tank was filled with deaerated (~27.5 in Hg.
vacuum) tap water at a-desired temperature and was allowed
to equilibrate for about one to two hours. The coolant was
brought down to a desired teﬁperature and was kept
circulating in the: bypass loop. The flow was then allowed to

circulate through the test section. The 1n1et and the outlet
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Fig. 7.2 Photograph of the probe used to measure the ice

layer profile
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temperatures of the coolant were continuously recorded. They

were always within 0.1°C except during the initial cooling
stage when the difference between them was as high as 0.5°C.
The temperature of the ambient water was measured
periodically. The ice profiles were also photographed at
different times. The position of ice-water interface was

measured with the probe at selected locations during

transient and steady state periods.

7.3 Results and Discussion
) - . )

7.3.1 Transient Development of the Interface

Experiments were done for various coolant temperatures
from ~10 to -20°C and ambient‘water temperatures from 8 to
17.5°C. An estimate of the convective heat transfer
coefficient at the wall indicated that the Biot number was
about 10 to 30. It 1s to be nosed that the ice-water
interface corresbonds to a constant temperature at 0°C.

Figs. 7.3(a) to (c) show the photographs of transient
ice layer growth for t_=9.9°C and tc=—18.6°C. The thickne;s
of the ice layer changed rapidly near the leading edge and
vincreased slowly away from it.-Vi5ualization of the flow
adjacent to the interface by shadowgraph technique for this

case revealed that the flow was mainly laminar for the

.« entire length of the cylinder with some disturbances on the

laminar flow observed below 45 cm from the leading edge. The
thickness of the ice layer continued to increase for the

entire length of the cylinder.
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Fig. 7.3(a) éhotographs of ice layer growth for t_=9.9°C and
tcé—18.6°C
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Fig. 7.3(b) Photographs of ice layer growth for t=9.9°C andm
—_ o
t,=-18.6°C
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T = 120 min

:’ l N
Fig. 7.3(c) Photographs of ice layer growth for t_=9.9°C,afd
. - g;mb'.' '
t,=-18.6°C * ag
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Figs. 7.4(a) to (c} show the photographs of the

‘transfent ice layer gr th for t®=13.5°C and tc=*16.7°C. The
flow visualizatio shadowgraph method indicated that the
natural convective flow was laminar up to about x=30 cm.
Small disturbances on the laminar flow were obserQed 1n the
region x=30 cﬁ to x=50 cm. As the disturbances moved
downwards, they amplified with time and distance and became
vortices. The vortices were observed~below 50 cm from the
leading edge. Below 85 cm from the leediﬁg edge, the
vortﬁces intermittently broke down into turbuleh e and hence
the start of transition regime can be taken‘as'ﬂ=85bcm
approximately. The flow was not fully turbulent at x=100 cm.
The thickness of the ice layer continued to inctease_in the
laminar regime even when there wete some small disturbancegs
on the flow. 1t was of nearly uniform thickness when the
disturbances on the laminar flow were large and also in the
traps}tion regime as seen from the photographs. Fig. 7.4(d)
. shows the ice layer profile 5 minutes after the the eoolant
circulation was cut off and the ice'leyer was allowed to
melt in the embient water. The ice layer near the leading
edge of the copper p1pe had already melted away .

Figs. 7.5(a) to (c) show the photographs of the
tran51ent ice layer growth for t_=17.5°C and t ==-15. 0 C. The
naturaI ‘convective flow was lamlnar up to about x=25 cm. Small
dlsturbances on the laminar flow were present 1n the range
X= 25 to x=40 cm. Large dlsturbances on the lamlnar flow were

.

present in the-region x=40 cm to x=75 cm.  In the region

x=75 cm to x=90 cm, the vortices were observed to break down.
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."F;ig. 7.4(a) Photographs of ice layer growth for t_=13.5°C
and tc=—16.7°C

o
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Fig. 7.4(b) Photographs of ice‘j@[growth for t_=13.5°C
 -and t_=-16.7°C |
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Fig. 7.4(c) Photographs of ice layer growth for t_=13.5°C
and- t_=-16.7°C
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Fig. 7.4(d) Photographs ice layer melting for t_=13.5°C

R

~and t_=-16.7°C
~ C
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Fig. ‘7._5(a)' Photographs of ice 1ayer growth for tAm=17.5°C :
. t . . =-5, o .. . e
and t:_c 15.0°C

»
e 2
. Sl e -
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Fig. 7.5(b) Photographs of ice ‘layer growth for t_=17.5°C

£ -~

and t =-15.0°C -
C
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=100

Fig. 7.5(c) Photographs of ice layer growth for ‘tm-_-1_7."5°c
. _ L .
y ‘aAnd . 15.0°C
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intermittently into turbulence. Hence, this region can Be
taken as the transition regime. The flow was fully turbulent
below 90 cm from the leading edge. As before, the thickness
of the ice layer countinued to increase in the laminar regime
of flow and was of nearly uniform thickness when the
disturbances on the laminar flow were of large amplitude,
and in the transition regime. It slowly decreased with
distance in the turbulent regime. The change iﬁ ice layer
thickness in the transition regime from laminar to turbulent
flow was not as sharp as that observed in forced flow
(Hirafa et al., 1979b). Fig. 7.5(d) shows the photograpg of
the ice layer 5 minutes after the coolant flow was shut off
and the ice layer was’allowed to melt in the amblent water.
The iée layer melted faster near the leading edge and in the
[&*tdrbulent flow regime.

In all the three regimes of the natural convective flow
in water adjacent to the ice—waier interface, -the 1ice layer
continuéd to grow until the conduction heat transfer through
-theice layer was exactly balanced by the natural convection
heat transfer in water at the interface. As expected, the
ice layer growth slowed down as time progressed. The {ower
the ambient water temperature, the longer was_the time

' requﬁred fo theisteady state condition to be achieved for a

given wall temperatgre. For a®given ambient water

/
temperature the steady state thickness q;/thgtgée layer was
larger for a lower wall temperature. Fig. 7.6 mpd¥es the
%ﬂforeticaliy pred¥cted transient dimensionless ice layer

thicknesses with those obtained experimentally for typical

*

¥
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Fig. 7.5(d) Photographs of ice layer melting for t_=17.5°C
- and tc=—1‘5_.0°C_
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coolant and ambient temperatures at x=40 cm. For numerical

e solutions the value of H was obtained from the corresponding
experimentally measured steady state ice layer thickness |
(see eq. 7;11): The numerically pfedicted values ére in fair

agreement with the experimental values when Bi=10.

7.3.2 The Eocal and the Average Heat Transfer Coefficients
at tge Interface
As explained earlier, at steady state, the heat

transfer by natural convection in water at the interface is
(fxactly balanced by the heat' transfer by conduction through

he ice layer. Fig, 7.7 shows the variation of the local
Nusselt number at the interface obtained from a
one-dimensional heat conduction analysis of the ice layer
with the Rayleigh number for typical ambien; water
temperatures. The wall temperature for these calculations
was taken as the average of the.inlet and the outlet coolant
temperatures. (This is not strictl} true and it will be
explained later). The relation between the local Nusselt
number and the Rayleigh number for the laminéf—natural
convective flow from an isothermal verticgl flat plate is

1

jflso shown for comparison. (As discussed in Chapter 3, the

A7 . . . : B
<) ksults obtained in the present experiments may be assumed

Ve oo
T

.A{ to those for a flat plate)’. The local Nusselt~number"
obtained from the conduction analysis is seen to be higher
than that of the natural convective flow from a vertical
. LT - ) )
isothermal flat plate (&re possible causes for this

discrepancy will be examined later). The transition regime
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- of the natural convective flov can be takeh as that of \

Ra =(2 to &) X 1010 . . ‘ h

Fig. 7.8 shows the average heat transfer coeff1c1ents

at lhe 1nterface for typical ambient water temperatures.ﬂak
before, the value$ obtained from the opnductlon heat «

‘transfer analysis of ice layer are largér than those for the
natural convective heat transfer frofm an isothermal vertical

A}

flat.plate. The possible causes for the discrepancy may be
/o . ' .

due to cne or several of the following reasons. The
. _/ . ~ an
entrdpped air bdbbles in the ice layer during initial. stage,
i H . , . . . -
to bé explained later, ngede the growth and reduce the
' a,

steady state ice thickness The assumption of. constant wall

temperature to have a value eQual to the average of the
H oo

inlet and the outlet coolant temperatures 1s hot strlctly

o
v

true 51nce a f1n1te value of heat transfer coeff1c1ent

« exists thween the wall and the coolant. Since the ice layer
* S
o 'grows very slowly for lamger times, the 1ce layer thlckness /
: A .
'l‘measured ‘for the steady sﬂate’cond1t1on may be¢sl1ghtly e

lower .than the actual value. APso, near the lead1ng edge,
"8 » S :
‘ the heat transfer process 1s°tW6 d1mens10nal As emplalned -

, AR : Q-

NI
the prev1ous Chapter ;He one d1m s1onal analysxs

0

<

“l, predlct5°a lower value ﬁbr the\local heat transfer

®
V‘\

coefflcient near that regmo% S : o,
o g, .". A . . '. :PGQ’ np . . N ‘
< om . . -,v"‘.' . e ) reo M Vo . R °

,1,3 3 Tﬁé'ﬁffécts of StratifiCation of Ambient Water

When sol1d1f1cat10n or melt1ng takes place 1n ‘a ’,

;3:§chnf1nedlspace ‘the amb1ent l1qu1d tends. to become stably~'

"strat1f1ed and hence 1t 1s 5f 1nteréstfto know the - effect of
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strapification on the shape and the position of the
solid-liquid interface. Fig. 7.9 shows the thickness of
steady state ice layer for a typical case of a stratified
amnient water with tm£16.0°Cvat x=0 cm and t _=9.4°C at
x=100 cm, and when te =-16.8°C. Thé stratification of ambient
water was nearly linear for thls(cgge The iee layer
thickness continued to increase over the entire, length of
the. cylinder. The flow~visualization by shadowgraph
‘technique indicated that the flow nae laminar up to x=30 cm
and small disturbances were present on the.laminar flow for
x:3b_cm to x=40 cm. Laryge disturbances were present in the

egion x=40 cm to x=80 cm. For distances greater than /”’,

s were observed to break down into

o
<

cm the ‘vortic

0]

A=
/

turbulence.'&he flow was not fully. turbulent at x=100 cm,
The thickness of the ice layer continued to 1ncrease in the
laminar and the transition regimes as shown in Fig. 7.9.
7.3.4 Cracking\of IceﬁLayer During Melting

After stopping the coolant c1rculat10n, the ice layer
was allowed td melt 1n the ambient water. In certain cases,
‘after about.2 to 3 minutes of stopplng the flow of coplant,
the ice layer cracked with-a fairly loua‘noisea'The ice
layer usually cracked when its thlckness was larger (~15 to
25 mm) . The larger the thlckness of the 1ce ‘layer, the
.lbnder was the cracking noise. For example, the ice layer -
cracked when t =11, 5°C and tc-—16 0°C, and it meltedlwithout*

,crack1ng for t_=9.0°C and t. =-12. 5 C. Flgs. 7. 10(a) to (b)
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Fig. 7.'9'Photograph5\of ice layer v‘gro,wth-in stratified
ambient water .
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show the cracked ice profile for the particular case when
tm=9.8°C'and tc=~18.0°C. Cracks ran along the axial as well
as the circumferential direction as seen from Fig. 7.10(c),
which shows a section of this ioe_layer between x=60 and

85 cm clearly.

Y

7.3.5 The Effects of Dissolved Alr in Ambient Watet

Under '‘normal conditions water‘cootains some diseolyed
ailr. Wheo water freezes, the air is rejected.atathe}
ice—-water interface gue_to the dlfference in soluhility of
air in water and in ice. The evolution of air results in
entrapment of the air bubbles in the ice layer during the,
.initial stage when the advancement of'the‘interﬁace"is
faster (Petrle et al. 1980). Also, the nato}al convective
flow adjacent to the interface is in. the tran51ent stage and.
hence the velocity of the flow is lower.lﬁlthough the water
was deaerated before filling -into the tank, there was still

‘ some air present 1n the amblent water. To find the effect of

dissolved air in water, experlments were done w1th deaerated

2

water, and with tap water without deaeration for therame

\ coolant and amb1ent temperatures. It'was found that the

presence of air in water reduced the th1ckness of the ice

layer at- steady state cond1t1on slightly. For example, ta:

‘thickness of the ice layer at steady state for 't —16 5 C abl~
R .
4 te =~16, 0°C was about 5 percent less for watef w1thout

deaeratlon‘than that for»the deaerated water. The 1ntefface‘-

v,
’

was obsefyed to be smooth 1n both cases.'i"- o oot

nd e Y, - e <
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Fig. 7.11 shows a section of the ice layer-containing
‘air bubbles; The presence of air bubbles in the ice layer
~alters its heat transfer characteristies and this might be
one of the reasons for the'discrepancy in the heat transfer
coefficients at the interface between those calculated from
the heat conduction analysis of the iee layer and those
obtained from the natural convective flow aloqg'an
isqthefmal vertical flat plate; when the ice layer
cohtaining air bubhles was allowed to'melt in the ambient
water, the air bubbles are released from the ice layer into
the natural convectivéﬂhoundary layer adjacent to the
lnterface. The air' bubbles enhanced the-heat transfer from
‘the ice layer to.water and aleo‘caused'the flow to become
turbulent earlier. Hence, the’ice layer melted faster with
the presence of air bubbles than”without them.

, ‘
7.3.6 The Effects of‘Artificially~lnduced<Distuthances'
' When water freezes over'an isothermally cooled flat

_ plate in forced flow, it has been found that the ite layer o
is unstable to dlsturbances that are 1nduced on the ice |
. surface in the form of grooves at certa1n 1ocat10ns (Gilpin
et als, 1980) In order to study the stability of-mce layer *

.,to art1f1c1a11y 1nduced dlSturbances in natural ﬁonvect1ve ‘

! .
T a
o

'flow, the ice layer was locally melted in the for M of a .’

* K

»gngbve for about one-half |of the cifcumference. It was foun&ﬂ

.

B that the ice layer remaln a

stable 1n all reglmes df the '4§?
flow studled and the dlstérbance did not propagate D
downstream as_found in ‘the ﬁorcedyflow~egper1ments._The,ice,'

®
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ph éhowingffhe:preseﬁceﬁof’air bubbles

in-the ice layer




.

258

layer grew back in the melted region and the disturbance

disappeared completely. Figs.  7.12(a) to (d) show the

artificially induced disturbance and its recovery process at

x=50 cm yhen t =16.1°C and.tc=—l7.3°c under steady state ice
layer conditions. The photographs were taken with a time  _
interval of two minutes. The recovery time for this
disturbance was about 10 minutes. If the coolant flow was
stopped with the groove present, the ice layer melted very
slowly around the groove until its thickness near the groove
approached that of the groove and the groove disappeaﬂgd

entirely. e

7.4 Conclusions o \ .
The effects of natural convéction'on“freezing of Zater
over a convectively cooled vertical circular cylinder were

b
v o &
studied experimentally. In the laminar flow regime, the

thickness of the ice layer increased with axial distance. In.

t

the tran51t10n regime, ‘the ice layer had nearly un1§orm‘

-

thickness In the tu:buLent regime,. the thlckness decreased
slowly with dlstance. ® Q

" A one d1menst~nal analy51s of tra591ent solidification;
of a warm ‘liguid over a. cooled ventlcal c1rcular cyllnder_v
w;;h~a convecteve boundary condltxon was also presented and:
the predicted results combared }aﬁriy well with theee»‘
obtained experimentally. Th& local and the asgraée heaf
transfer coeff1c1ents at the 1nterface obtalned by the

<

conductlon heat transfer analy51s of the ice layer agreed

falrly well wath t e‘values for the natural convectqve flow

. rl .
bd . .
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- along an isothermal vertical flat plate available 1n the

literature. Héhce, this méthod‘of determining the heat

transfe; coefficients atsthe interface by the heat

conduct ion analysis of the solid region can be effectively

used to study convective heat transfer problems in flows
P

with';ecirculatjon, irtlows er complex geometries, and

inside pipes where the dirett measurement of temperature
\ .

The effects éf stratification and dissolved air 1n the
am£ient water were also studied. When the ambient’water°has
stabl¥ stratified the thickness of the 1ice layericontinUed
to incréase in the laminar and the trénsitibn regimes. The
entrapment air bubbles in the ice layer due to the dissolved
air in the ambient wateg reauced éhg steady sta%e iéerlayer
thickness slightly. The ice layer was found to be stable to

.

disturbances induced on its surface in the form of a

~

circumferential groove.
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8. Conclustions

8.1 Scope of Results

- : .
The effects of temperature-dependent properties on :he

laminar natural convective boundary layer flow along an
isothermal ~werfical flat plate‘were studied numerically for
1qUids with Prandtl numbers from | to =. A1l the relevant
properties were considered in. the form of dimenSionless
parameters.
effects of temgerature—dependent vroperties on temperature

and velocity profiles were also 'studied in' detail.

“The effects of teuperature-dependent viscosity and the

coefficient of- thermal expansion on the,stability of laminar

natural convective boundary layer flow along an 1sothermal

vertical flat plate were studied-employing linear stability

theory. The effect of maximum density was a¥so investigated’

. . . . . [
for various combinations of wall and ambient temperatures

"with and without the buoyancy force reversal inside the
. Y 1
thermal boundary layer. The flow from a vertical wall at

0°C, corresponding to an ice surfade, was investigated in

detail. Expefiments were: conducted 1n water wlth a Vertical

PeN

. Ccircular copper cylinder (out51de diameter 41, 3 mm and

l length i m) for various combinations of - wall and ambiept

Rtemperatures from 0 to 35°%C. The flow was Vimualized using
shadowgraph and dye 1n]ect10n flow v1sual1zat10n technigues.
B N
& The tran51ent natural convective flow along a vertical

c1rcular cylinder subjected to a’ step change in surface

Both heated and cooled walls were examined. The

-

temperatute was studied.numerlcally‘EOr varioqs radii‘of.the'

. o *
; . o _ : . S
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: walltand’thefambient liquid, the density could be assum

j—in the buoyancy\force term. In the buoyancy force term, a
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cylinder with Prandtl numbers 0.1 to 10.0, and Grashof
numbers up to 107. The transient temperatare and velocity
profiles and the local Nusselt number at the surface were
obtained. The transient flow was also visualized 1n water
using the shadowgraph technique.

The method of boundarf—fitted coordinate systems was

applied to a class of steady-state ice formation problems

s

involving simply or doubly connected soltdif{ed regions 1in
detetmining the local heat transfer ceefficients at the
ice-water ADterface: The two-dimensional solutigns were
compared wtth a simple one—dimensionai ahalysis. The effects
of natural Convection.on freezjng of wateﬁ,over a
convectively eooied vertical circular eylinden were studied &
fsxperimentally. The transient solidification of a warm

liquid over a convectively cooled vertical circular pipe was

also ahalyied employing a one-dimensional analysis.

8.2 Conclusions and Significance
It was shown clear}y that for moderate .temperature
~differences (~10 to 50°C for water, for example) betwegg,eﬁé’gt\\

to

be constant«in all terms ofgthe governing eqdations excegt

better approx1mat10n of the variation of den51ty with

temperature than the conventlonal Bouss1nesq approx1mat1on;

s

was cons;dered employxng a d1mens1onless parame%er.

The assumpt1on that the density variés llnearly wlth

temperature in the buoyanCy force term underpredlcted the

y e L _ i

.‘ . & N B . . . - i
/ : 4 \ ) " B :
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surface heatctransfer, the 5urface‘shear stress, the total
mass flow rate and,the maximump velocity for down flows, and
overpredicted them for up flows.®The\dffects were more
pronounced.ror‘large temperature differefces between the &~

wall and the ambient medium. The effects were significant

for liquids with small as well as™arge Prandtl numbers.

The temperature-dependent viscosity increased ,the :
surface heat transfer, the total mass flow rate apd the .
- :\“
maximum velocity, and decreased the surface shear stress for 6

a heated wall. When the thermal conduct1v1ty 1ncreased with

temperature, the surface heat transfer and the surface shear
e "Jl

stress increased for a heated wall. When the spec1f1c heat

increased witb- temperature, the surface shear stress ap@kthe~

e
+

total mass flow rate ghcreased, and the surface heat
. \ o .

i

tfansfer decreased for a heated wall. The opposite,remarﬁs
"were true for a cooled wall.rfhe,effects of variable

properties on the local Nusselt number at the surface were

' tY . . » ‘ + . o .
"given in terms‘of the dimensionless parametets for various

.

values of the Prandtl number.

&

N : S .. - - .
The temperature-dependent viscosity destabilized the:t

laminar natural convective, boundary layer flow;'“

a
g .
cdoled wall and stablllzed it along a heated»d_ ﬂg“ﬁoreover

the dlsturbances ampllfled faster for a cooled wall than for

&

a heated vall, The frequency fllterlng mechan1sm was also

more pronounced for a COoled wall. The varlatlon of |
-‘COéff1C1€nt of thermal expans1on w1th temperature iowered

o the crxtlcal Grashof number for the onset of 1nstab111ty for‘d

a cooled wall but the d1sturbance growth rate was faster for
[ #o K
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a heated wall..Hence, the temperature-dependent coefficient
of thermal expandjon initially stabilized the flow for a

heated wall, but fabtther downstream it destabilized the

.

flow. For water, the numer1ca1 results predicted that the
critical Grashof number for the onset of 1nstab111ty was
discontinous in the region where flow reversals occur due to
the maximum density. The’ trends of experimentally obtained
critical values of Grashof number for the onset of
instability and the transition to turbulent flow supported
the numerical predictions.

For the transient natural convective flow along a
vertical circular cylinder, numerical resulte iﬁdicated that
during the transient period there Wwas an overshoot in
temperarure in the'thermal boundary‘layer and an undershoot
in the local Nusselt number at the surface. The experimental
temperature measurements in water during the transienr and
the steady state peridds agreed fairly well with those
‘obtained numerically.,The flow visualization studies and the
temperatureAmeaSurements showed that the critical values of
Grashof number for the onset of instability and the

transition to turbulevce were lower during the transient

~
~

. period than at the sfeady State‘period. \
When solidification or meltiﬁg occUrred under externalf
or internal, laminar or turbulent conditions involving
‘vatious geohetriCal shapes, a one-dimensional analySis gave
fairly accurate results for the local”heat transfer ‘

coeff1c1ents at the 1nterface 1f the thlckness of the

Solldlfled layer changed gradually



Vo

265
When water froze over a convectively cooled vertical
circular pipe in natural convection, thé thickness o% the
ice layer increased with the axial distante‘in th'laminar
regime. Ih the transition regime, the ice iayér had nearly
unifbrm thickness. In the turbuleent regime, tﬁe thickmess
decreased slowly.with distance. The local and the average
heat transferﬁcoefficients at the interface obtaﬁned by the
conduction heat transfer’analysis of the ice la}er'agreed
fairly well wi;h the valuesofor the natural convective flow
along an isothermal vertigal flat plate ayailablg in the
literature. Hence, this method of determining ﬁhe:ﬁeat
transfer coefficients at the interface by the heat
conduction analysis of the solidified regioﬁ can be
effectively used to study convective heat transfer problems
in flows with recirculation; in flows over complex
geometries, and inéide pipes where the direct measurement of
temperature profiles may be difficult. | ° ‘
. ©
8.3 Recommendations

Experimental verification of the effects of

temperature-dependent.'ro erties on the laminar natural N
g - prop <

“convective flow along an isothermal vertical flat plate. is

necessary. For liquids with moderate and large Prandtl
numbers, the effects are more pronounced on the velocity
profile than on the temperature ptofile. "Hence, they can be

verified by measuring the velocity profiles for various

~combinations of wall and ambiént temperatures. For water,

both the viscosity and'tbe coefficient of thermal expansion

IS . - -
TN . . . .
[
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are strong functions of temperature. Under normal
conditions, their effects oppose each other. Hence,
different liquids, each with a particular property,varying
predominantly over others, have to be used for experiments.
“For example, for lubricating oils, the Qiscosity varies more
predomi;antly than other proprties.

The experiments,reported inh this study on the stability
of laminar natural convectlve flow along’ an 1sotherma1‘
vertical c1rcular cyllnder are gqualitative in nature.

Further experlments especially on the amplification
characteristicg_Of disturbances are needed. This can be done
. by artdfictaliy~inducing the disturbanced¥and measuring
their amplification rates for various cohbinations of wall

and ambient temperatures.

o
¢

In this study, numerical solutions were obtained the
tran51ent natural convect1ve flow along a vertical c1rcu1ar
cylinder subjected to a step change in surface temperature

Experimental measurements of transient veloc1t¥ profiles for
various radii of the cylinder are necessary to confirmlthe
-,numerical predictions.

In solxdlfxcatlon and melting problems the natural
convectlon in " the llqu1d pleys a sxgnlflcant role on the
shape and the position of the soiid-liquid 1nterface. In
\thle study, .experiments were done for freezing of water over
a cenvectively cooled vertical circular pipe.’ This ;ork can.
be ea511y extended to free21ng of watet)over other

geometrles such as an 1ncl1ned vertlcal ‘flat plate and a

hor1zontal_cy11nder.> : x .
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. ‘ Appendix A

’

“The Norﬁal?zatiqh and the Order-of-Magnitude Analysis of
Laminar Flow Equ;tions

Y fhg eéuations go;érning the conservation of mass,
momentum, .and energy for the two-dimensional laminar natural
Convecﬁive flow of an i15otropic Newtonian fluid of variable
properties along an\ifothermal vertical flat plate are given

by (the dimensional guantities are given with a -)

(Batchelor, 1867),

. TR A | ‘ . (A.1)
. ox . ay
- . du - U OPg4 - - du
6 (u V) = - — + glp_~-p ) + 2u ——
ox oy o x X X
2 - 3u v 9 [- du  av '
oz el — >] * — [u (e + — )] (A.2)
37 ax 3y 3y dy oxX -
IR ~ v 2Py 8 T - av -
(U 5= + v =) & s [2“ —_—
Ix 9y Jdy oy oy
- du - 9w 3 au v
el (—__—-_ ?-:—)J = I: (— + — )] (A.3)
3 °dx¥ -, 0y X ay. 0X .
1 -9t . * 3 - 9t . . @ at
< p.Ci (\;l; — + v —&) = — —) + —(k —)
P % % dx . ¥x--,  dy dy
i T 6— | : ::.a‘- * - a‘_ ' - ‘
'éw b :—(—g—) [u ? + v LEL] tue » (A.4)
YO s ot P ax ayg " "
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where N .
- [ du 2 du dv } du [au dv J2
@ = 2___ - — — + — ) — + - + — +
9x 3 % » ay dX ay dx
v 2 du dv v
2— - —(— + —) | —
Ay 3 dx oy Ay -
and E‘Dd = (b —po:)

For the ambient fluid

— = p,9 ; , (A.5)
ax .

oo
As a first step 1n seeking any simplification to the above
set of steady’two dimensional equations, an attempt 1s made
to normaiize the dependent and independént variables by
introducing a set of characteristic quantities (given with
subscript c¢). The definition of eaéh of these characteristic
quantitiés must come either from the boundary conditions and

the governing equétions or from the physical description of

the problem. The normalized variables are defined as

follows,
¢
- 4 - - - J
. X Y u v
X = —, y 22—, U= —, VvV = —
. X Ty u \Y
- C L [ C C
| ?,,.,/»-T—:‘:Nf\‘\ ) ] L
-t p u. k ’ ¢
fi= e p = —; u = —, k = T Sp - £,
ty te - Pe He c € pe
‘ ) ‘

y . o
A . . . .
‘The normalized 'variables are substitued in the equations

(A.1) to (A.4). The resulfing eguations are,
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(A.6)
ap -
a . (b, - P )g
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2 du cXe 3V
- u(s— T)}
3 X ucyc y
(A.7)
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»
There are only two groups of terms in the continuity

nship between one .
4

of the velocities and the density, both groups must be of
'3 .

eq. (A.7). As there is no special relﬂtio

the same order. Hence,

><[C
@]

(A.10)

0
s ’ <
e} 9]

P
The flow 1s thermally developed. Hence, in the energy
eg. (A.9), the order (of Convectjpn terms has to be equal to

the order of the larger of the two conduction terms,

namely
the lateral conduction term.
pccpc c c
2
X
c YC
Ye Ve .
1. e. _— (A.11)
X Pr y2
¢ c

b
For moderate and large Prandtl numbers, the viscous
fprée term is<of the same order as the buoyancy force tertn.
Hence, in the mqméntum eqg. (A.8),

-
I

u ) o
cC C _ : a

> ~ (pm po)g ‘ (.A.12')
Y. ’

.

It can be~easily shown from egs. (A.11) to (A.13) that -
| r
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Y -1/ .
¢ (ra ) V8 ~ (A.13)
X X
c :
' 3
9lp =Pyl x_
where RaX =
PoYclc
Hence the condition for the boundary layer approximation
e
— <1 is Ra_ >> 1 (A.14)
X L X .
c

When the bounddry layer approximation is employed the

eqguations (A.1) to (A.4) become (dropping the - fqr the sake

of convenience), .

9 0 Co.
—(pu) + —(pv) = 0 (A.15)
ax ay »
. du du Ju
(u— + v—) = g(p_-p) + —(u—) (A.16)
. £ oX oy B dy “ay
at ot 2 at T 2 3 au] 2 :
pe_ (U + veo) = o (kom) - —(22) OB, 2 (A.17)
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Appendix B

«

Variations of Properties of Liquids with Temperature

The propertﬁes of the liquids,‘density (kg/m3),'
. R

viscosity

(CP);

thermal conductivity (W/mz/K)

2

, and specific

heat at constant pressure (kJ/kg/K) used in Chapter 2 were

taken from Fowle (1944), Touloukian and Ho (1972), Kell
4 . S ( :

(1975);‘Fujii et al. (1978) and Weast (1982)¢ In particular,

the variations of properties with temperature employed ing

the numerlcal calculations are

Water

p(t)=(a,+a t+a,t2+a3t34a4t4+a

0

where

1

2

a0=999.83952,

1
2
3

5

a.=+0.16945176 X 10
a,=-0.79870401 X 10
a =—Q!46170461 X 10
a,=+0.105563b2 X 10
a.=-0.28054253 X 10

=+0.16879850 X 10

a

6

and t 1s the

If t<20°C

log10u(t)

emperature in °

{
/

/

/(b +b (t-20. 0)+b (t-20.0) )

t

+02
-02
-04
-06

\

)y /(1. O+a%t)

-09 .

~-01

C

5
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[l

If £t > 20°C
u(t) ‘ 2 A
=(b6(20.0—t)+b7(20.o—t) )/(b8+t)

t

log
10
#20

.where 1=1301.0
b2=998.333
b3=8.1855
b4=0.00585

‘ 5=~1.30233
1.3272

[}

6
-0.001053

]

b
b
b,

b.=

8 105.0

.“ .
u20—1.002 )

where | c0=-0.92247
c1=2;8395
2 c2=—1.8097
c3=0.52577
c4=-Q:07344'
T=t+273.15 .“ .
T0=273-15

L ' (d.) (a.t)]
cp(t)—d4[d]+d2(1.0+?.lt) 3 +d5 X 10°"6 ]

where | d1=0.996185



P %‘;{

I

>

\ .
d,=0.0002874

2
} d,=5.26
d,=4.1855
dc=0.01116
d=-0.036
Ethyl Alcohol -
| o . ,
p({t)=a./(1.0+a t+a t2+a t3)
0 Tattes 3
where a0=806.0 _
2,=0.10414 X 1079
a,=0.78360 X 10 "
a;=0.17168 X 1070
u(t)=b0+b1t+b2t2+b3t3
wmgre b0=1.77126
b,=-0.335179 X 10
-@‘ b,=+0.291416 X 10
SEEN B
b,=-0.101107 X 10

k(T)=(cy*c T)c,

where c0=0.609512 X 100
0

'~c1=—o.7o924 X 10

2
6
2

l

-01
-03
-05

3
0

j

|

/

/
/

/
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— c,= 0.41840 X 10 03
T=t+273.15
¢ (T)=(d.+3 . T+d.T?+d.3)d
p 0 71 2 3 4
where d0=0.504351
d,=-0.481584 x 10 03
\ -
d,--0.921631 x 10 0° .
dy= 0.114379 x 10797
d,= 4.184
T=t+273.15
’ »
Benzene
p(t);a /(1.0+a t+a t2+a t3)
0 . 1878, 3
where a05899.0 »
a1=0.11763‘X'40_02 )
a,=0.12775 X 10‘05
a,=0.80650 x 1008
_ . . 2 3 4
u(t)—b0+bft+b2t +b3t +b4t
where b0=0.908.909
' ' -01

,=-0.171538 X 10

b,= 0.246300 x 10 03 -
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by=-0.217716 X 10705
b,= 0.786713 X 10708
k(T)=(c0+c]T)c2
where c0=0.52527é X 1003 - : P
c,=-0.604093 x 10°° |
c,= 0.41840 X 10703 o
T=t+273.15 ..
.A" ?
c (T)=(d.+a.T+d.%+d.T3)d. :
p 0 1 2 3 4 - =
where d0=0.28370Qm‘
d,=0.275787 X 10703
45=4.232387 x 10706 .
#17d,=0.106981 X 107 °° | °
| d,= 4.184
‘ T=t+273.15
Freon R-12
Ay ‘ )
o .3.25
p(t)—1000.0/(a0+a1t+a2ta )
where a0=0}7080

-02

a.=0.11% X 10 ‘
1 . _ ,

a2=0.140 X 10
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t_=t+60.0
a

4(t)=b ]O{b1/(t+b2)} \

0
where . .
’b0= 0.179 x 10 9!
by= 0.341 X 100
by= 0.292 x/10°0° /
k(t)=co+c1t
where 6.=+0.784 X 1070
G=""-
c,=-0.367 X 10703
'/
oo _a (d.)
cp(t)—d0+d1t+d2ta 3
-03
where d0=0.926 d1=0.944 X 10
-10 ’

d2=0.750 X 10
d3=4.45

In Chapter 4, to study the effects of maximum density
in the case of water, thé density-temperature relationship
proposed by Gebhart and Mollendorf (1977) was used. .

p(t)=p (1-a |t-t |9
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where g=1.8949, at=9.2972 X 10_6 and the temperature
corresponding to the desity maximum, tm=4.0293fc. The
advantage of this relation 1s that the effect of maximum
density 1s characterized by a single parameter R, as defined

in Chpater 4. The above relation®is valid in the temperature

range 0 to 20°C for pure water at | atmospheric pressure.

¥



Appendix C

The Error in the Local Heat Transfer Coefficient due to
Boussinesqg Approximations for a Typical Laminar Flow
Situation in Water

In this section, the error in the local heat transfer
coefficient due to Boussinesq approximations 1s calculated
for the lamilinar natural Cohvéctive boundary layer flow of
water along an i1sothermal vertical flat plate at 10 cm from
the leading edge when the film temperature and the
:temperature difference between thevwall and the ambient
medium are 20°C. The error is calculated for three reference
temperatures, namely tO’ tf and t_. Also, the error due to
the model proposed by Piau (1974) to include‘the effects of
variable properties is given. The functional variation
of properties with temperature are éiven in Appendix B. The

properties of water for the temperatures of interest are:

10°C 20°C 30°C
Pr 9.3367 “ | 6.9437 5.3907
o (kg/m>) . 999.6995 998.2054 995.6562
u {(cP) 11.3072 1.0019 . 0,7976
v x 10% (m?/s) 1.3076 ~ 1.0038 0.8011
k (W/mK) p 0.5869 . 0.6034 0.6182
cp (kJ/kg/K)v 4.1919 4.1816 , ©4.1782
8 x 10° (x7 1 0.0880 0.2068 0.3032

.\
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Geometry: vertical flat plate
Fluid: water
x=0.10 m

t,=20°C and |t

£ -t _|=20°C

0
Y Error i1in the local heat transfer coefficient due to

Boussinesq approximations

-

tr=t0 tK‘:tf tr=tm
(a)heated wall +21.7 : +3.7 ~22.0
(b)rooled wall -26.2 -1.7 +15.0
h(x) ~-h(x)
% Error=100 B.A. :
_ h(x)

where h(x) is the local heat transfer coefficient including

the effects of variable properties and h(x) is the local

B.A.
heat transfer coefficient with Boussinesg approximations.
(Egs. (2.15) to (2.17) were solved. to obtain the value of
h(x)).

Piau(1974)

(a)heated wall _ -7.5

It is clearly seen that the error in the local heat
transfer éoefficient is more éronognced whén either‘to or t_
is selected as the referen¢é.temperature for both Boussinesq
approximations and Piau's model. _ |

1

3
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Appendix D g -
9

. :
Points Away From the Leading Edge
6 4
The.ﬁransient natural convective floy that arises as a

result ofea step inérease in surface temperature can be
descibed as folldas; Heat is.cOnducted into the Eluid from .
the wall rezult{hg in a ?h}n verticdl layer of ﬁeéted fluid”
The fluid moves up as the budyancy force acclerates it.

o . . . “ .
. : . ]

Moment um is both advected away by this welocity and diffused

into the‘ambiénf fluid Heat is also convected vertically by
thls veloc1ty and the layer will continue to gro;suntll the
heat conducted in from the boundary balances that convected
Vaway The scale analysis 1s similar to the transient flow
inside a rectangular cavity described in detail by Patterson

4
-

ang..Imberger (1980). "
But for points at a finite distance %he leading
edge, the initial stage of the transieTt nagﬁ;al coﬁvectiue
'flow-develoﬁment is a pure conduction ﬁhase.'The flow 1is
paraliélfto,the'axis of the cylinder and is independent of
. the a%ial coordinate, X. #he transverse velocity component,
v is zero. The temperatune, t and the (axial) velocity, u
-are-funéﬁions of the radiél coordinate, r and time,"; .
Employing,Boussihesq approximations, ﬁhe equatiuns governing

the conservation of momentum and energy for this regime are

Ve L

~given
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ou 1 du 62u )
L = gB(t—tm) t |- — > (D.1)
" 3T r oot ¢
[ ).
ot [1 ot azt} (' 2
— = ql— — + ! D.'
ar r or ar2
The initial and the boundary conditions are,
for 1 < 0,
u=20and t =t_ for all y (D.3)
for 7 =2 o,
u=0and t = to at y = 0, for all x . (D.4)
u-~+0andt »t_asy > = , (D.5)

1t should be stressed again that for a semi-infinite
vertical circular cylinder the equations (D.1) to (D.5) areg
valid only for an initial short period of time before the
leading edge effect is felt at that particular axial

location, The propagation distance xp of the leading edge

may be estimated as follows (Siegel,. 1958):

»

(u(e,r )1 . 47 (D.5)

O —")

xpG )=

wheré the maxAmum value of the vertical velocity component
is embloyed in determining the maximum distance‘proﬁagated
by: the leading edge effect. This allows a determination of
the time period for which the conduction solution may.be

expected to épply locally befqre convection effects beéome

significant. Approximate solutions to egs. (D.1) to (D.5)



can be obtained by a perturbation technique.

Points Near the lLeading Edge

Durinag the initial stage, the flow veldcities are
smaller. Hence,.neér the leading edge, the effect of axial
conduction terms may be important and the compléte
two-dimensicnal equations have to be solved to get an
accutrate‘solution. This 1s especially true at low Prandtl

numbers.
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Appendii E

A Note on the Numerical Methods Employed in the Thesis

In this section a brief description of the numerical
methods employed in different Chapters 1s given.

The base flow equations for the laminar natural
convective flow along an isothermal vertical flat plate
given 1in Chapters 2‘to 4 constitute a system of fifth order
ordinary differential equations, coupled in température
through the buoyancy~force term of the momentum eguation.

For example, the equations given in Chapter 3 are:
2

4
S {14y, (6-0.5)} F''| + 3FF' "= 2(F')° =+
dn f

C6live  (8-1)] = 0 TR

\
N

6'' + 3PrFE' = 0 O (C.2),
The corresponding boundary conditions are
F(0) = F'(0) = 6(0) - 1 = F' (=) = 6(=) =0 (C.3)

A number of numerical techniques can be employed t§
solve a system of.ordinéry differential equations with
+boundary conditions specified at two different points. In
this analysis, the integration scheme employed was a fourth
order Runga-Kutta hethod. The integraiipn was performed
starting from the outer edgé of the bdﬁndar& layef to the

ot
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wall. A set of approximatevsolutions for F and 8 when n-e
were used as the starting values. The approximate solutions
fof F and 8 when n-»= can be found as followé:

From the boundéry conditions at n=e, f(=)+ A, the

entrainmeng velocity, a constant. Hence, in the far field,

the egs. (C.1) to (C.3) can be written as,
AF''' 4 3AF' = - gt (C.4)
€'+ 3PrAe’ = 0 (C.5)
where A= j—E— and g = 1~ef.

The eqguation (C.5) can be integrated to obtain:

¢=B exp{(-3PrAn)

-~

The solution to eq. (C.4) can be written as the sum of a
L ] .
homogeneous solution and a particular solution. The

homogeneous solution Fh i1s obtained from the homogeous part
J

“of eq. (C.4).

exp(-3An/))

=C tComn+Cy . .

Fy

The particular solution Fp 1s given by
< ‘ |
B . . .
F o= . 2q e 3APry
. P [27a%Pr¢ (APr-1)]

The complete solution for n4e
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F=F) +F_ ‘,,//////

. . . R Y
Employing the boundary conditions at n-=, it can be easily

foN

1

shown that C]=A; C2=O, and let C3=C.

Hence the solutions for n-»= are

~3An /A Bg .~ 3APTT

+
[27A3Pr2(kpr—1)]

"Tj
It

A+ C e (3.38)

-

e 3APIT (3.39)

¢ = B
The asymptotic solutions: provided effective starting values
to an integration scheme beginning at large n (#10.0, for
Pr=10, for example) and proceeding inward to n=0. The

-

constants were guessed intialiy, and the integration was
performed. The constants were cor?ected by a shoéting
technigue. With correct gusses, the specified conditions at
the wall 7n=0 would be satisfied.

The disturbance equations can be éolvea in a similar
manner. The asymptotic sclutions for the disturbance

equatiohs and further details are given Chapters 3 and 4

(see sections 3.1.5 and 4.1.3).

>

Chapter 5 ‘ A | ,QD 9
The equations governing the transient natural

gdnveéfive flo@vélong a vertical.circular cylinder subjected

to a step change in surface temperature are a system of
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partial differential equations. The numerical method
employed to solve these equations was a straight forward

upwind finite differene scheme. The details of the method

can be found in goache (1982) and Carnahan et al. /{1969).
(see also section 5.1.2, for further details). )
Chapter 6 )

In Chapter 6, the method boundary-fitted coordinate
systems was ?mployed to find the temperature distribution
inside the” irregular solidified region. A detailed account
of this method can be found in Thompson (1978). The finite
differenced equations and the boundary conditions were
solved using a successive over-relaxation (SOR) procedure
(see section 6.1, for further details). The details éf SOR
can be }ound in any standard book on the numerical analysis

(Carnahan et al., 1969, for example).
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