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The purpose of this study is to minimize errors that occur when using a four vs six landmark
superimpositioning method in the cranial base to define the co-ordinate system. Cone beam
CT volumetric data from ten patients were used for this study. Co-ordinate system
transformations were performed. A co-ordinate system was constructed using two planes
defined by four anatomical landmarks located by an orthodontist. A second co-ordinate
system was constructed using four anatomical landmarks that are corrected using a numerical
optimization algorithm for any landmark location operator error using information from six
landmarks. The optimization algorithm minimizes the relative distance and angle between the
known fixed points in the two images to find the correction. Measurement errors and co-
ordinates in all axes were obtained for each co-ordinate system. Significant improvement is
observed after using the landmark correction algorithm to position the final co-ordinate
system. The errors found in a previous study are significantly reduced. Errors found were
between 1 mm and 2mm. When analysing real patient data, it was found that the 6-point
correction algorithm reduced errors between images and increased intrapoint reliability. A
novel method of optimizing the overlay of three-dimensional images using a 6-point
correction algorithm was introduced and examined. This method demonstrated greater
reliability and reproducibility than the previous 4-point correction algorithm.
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Introduction

The use of three-dimensional (3D) imaging for ortho-
dontic diagnosis and treatment planning is increasing.1

Cone beam CT (CBCT) is one technology easing the
transition and increasing the accessibility for dental
professionals.1,2 The CBCT technology provides geo-
metrically accurate 3D visualization of anatomical
structures while overcoming the distortion of traditional
two-dimensional (2D) imaging. It also allows axial,

coronal and sagittal dimensional evaluations through
slices.2,3 The use of CBCT can help professionals to
better understand the results of their treatments and
allow for better diagnosis and patient treatment plans.
Nevertheless, the use of CBCT needs to follow careful
cost vs benefit analysis and needs to practice “as low as
reasonably achievable” principle on a case-by-case ba-
sis. Another potential advantage of CBCT 3D imaging
currently being evaluated is the possibility of analysing
skeletal changes resulting from growth or treatment by
using image superimposition. Superimposition has been
done traditionally using lateral cephalograms providing
2D skeletal changes.4 However, methods currently used
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for image superimposition using 3D CBCT images still
need improvement.5–7 The alignment problem between
two images taken at different times can be seen in Figure 1.
To superimpose 3D images, a stable skeletal structure

must be selected to define a reference co-ordinate system.
Several studies6,8–10 have proposed the use of the cranial
base, since this is considered to be a stable area by the
time the orthodontic-patient treatment begins. Most of
the cranial base growth (more than 85%) occurs in the
first 5 years after birth, with only minor changes after-
wards.11,12 Accuracy and reliability studies of landmark
locations in CBCT images have been published.13–16 Few
articles, however, have reported the use of cranial base
landmarks to determine the reference co-ordinate system
for pre- and post-treatment image superimposition.4,17–20

It has been reported that using cranial base landmarks to
define the reference co-ordinate system is not simple and
needs improvement, since minor errors in landmark lo-
cation can magnify the errors of landmarks of interest
located far away from the origin of the co-ordinate sys-
tem.7,17 One issue is that software cannot identify the
centre of landmarks, requiring methods to realign the
images. Recently, Lagravère et al21 proposed a methodol-
ogy to correct for measurement errors using four points.
The purpose of this study is to minimize errors that

occur during image superimposition. This will be done
by first evaluating the use of four vs six landmarks in the
cranial base to define the co-ordinate system followed
by evaluating if the use of more landmarks reduces the
errors associated with the superimposition of serial
CBCT images utilizing the co-ordinate system created
using four vs six landmarks.

Materials and methods

The investigators recognize the controversial risk of CBCT
scanning on children. The current study is a retrospective
study of gathered data. CBCT volumetric data were

taken using a NewTom 3G Volumetric Scanner
(NewTom, Aperio, Italy) at 110 kV, 6.19mAs and 8mm
aluminium filtration. Data from ten patients participat-
ing in a maxillary expansion clinical trial were used for
this study. Ethics approval was received by the institu-
tional health ethics board (study number 5563). Images
were taken using a 12-inch detector field at baseline be-
fore any treatment was done to the patients.

Images were obtained and converted to Digital Im-
aging and Communications in Medicine (DICOM) for-
mat using the NewTom software (Aperio, Italy) with a
voxel size of 0.25mm. Using AVIZO software (AVIZO,
Visualisation Sciences Group, Burlington, MA), the
DICOM format images were rendered into a volumetric
image using 5123 512 matrices giving a range of
400–420 DICOM slices. Sagittal, axial and coronal vol-
umetric slices, as well as the 3D image reconstructions,
were used to determine the landmark positions. Proce-
dures and definitions for landmark location in this study
followed that of previous studies.7,8,15–17

Four landmarks are required to define a 3D ana-
tomical reference co-ordinate system. The left and right
auditory external meatus (AEML and AEMR, respec-
tively) and the dorsum foramen magnum (DFM) were
selected based on the position and early formation in
skeletal growth. The fourth point, ELSA, is defined as
the midpoint between the left and right foramen spino-
sum.22 ELSA was selected as the origin of the new
Cartesian co-ordinate system. From the origin, 3D po-
sitional co-ordinates for the AEML, AEMR and DFM
were determined. Intrareliability values were determined
using intraclass correlation coefficient for all four land-
marks, repeating the process three times for each image.
Intrareliability values for each Cartesian co-ordinate for
all landmarks were reported being the lowest, with
a value of 0.965, in the x-axis for the AEML.7

Landmarks used in the present study are ELSA,
AEML, AEMR, DFM, right foramen ovale (RFO) and
left foramen ovale (LFO) as well as infraorbitals (right

Figure 1 Misalignment present between two images of the same patient taken at different time points during treatment. Arrows indicate the
different areas of misalignment between the two images in the three views
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and left) and mentons (right and left). The principal in-
vestigator, an orthodontic specialist with PhD research
experience in landmark location in CBCTs, located the
landmarks on each image three times. In AVIZO,
spherical markers of 0.5mm diameter were placed in-
dicating the position of the landmark, and the software
used the centre of these spherical markers as the co-
ordinates.

First co-ordinate transformation procedure
A detailed description of the transformation process is
given in the study by Lagravère et al.21 Using an initial
co-ordinate transformation, values were obtained for
the new infraorbitals (right and left) and mentons (right
and left) landmarks. Images were measured three times,
and thus it was expected that an error close to zero
would be obtained based on previous results. After the
analysis was done, a second transformation was per-
formed on the four initial points.

Novel second co-ordinate transformation procedure
involving six landmarks
The relative position of the AEML, AEMR and DFM
landmarks with respect to ELSA should be the same be-
tween two images. Additionally, the position of AEML,
AEMR and DFM with respect to each of the addi-
tional two points, i.e. RFO and LFO, should also re-
main the same between both images. However, owing
to operator errors, small differences in the co-ordinates
are observed between the images. To correct the mea-
surement errors, an algorithm was developed to de-
termine the corrections necessary in the location of
AEML, AEMR and DFM, since these define the co-
ordinate system in the image. This was done to ensure
that the distances and angles between AEML, AEMR,
DFM and ELSA and the distances and angles between
AEML, AEMR, DFM and the two additional static
points (RFO and LFO), which provide additional
metrics to measure the operator error, are maintained.
To achieve this, an error correction vector for each point
that was used to define the co-ordinate system in Image 2
(i.e. duAEML for AEML, duAEMR for AEMR and duDFM
for DFM) was obtained. Vectors duAEML, duAEMR and
duDFM define the co-ordinate system corrections such
that the points AEML, AEMR, DFM and ELSA in
Images 1 and 2 have a minimum difference in relative
distances and angles between each other as well as to
RFO and LFO.

To obtain the error correction for AEML, AEMR and
DFM in Image 2, a multiobjective optimization problem
needs to be solved. The goal is to minimize several
objectives: (a) the difference between Image 1 and Image
2 in relative distance between AEML, AEMR and DFM
as well as to RFO and LFO, and (b) the difference be-
tween Image 1 and Image 2 in relative angles between
AEML, AEMR and DFM as well as to RFO and LFO.
The list of objectives to be minimized is computed using

several equations based on linear algebra and are given
and explained in detail in the Appendix.

To combine the multiple objectives above into a single
objective function, the weighted sum method is used.23

The resulting multiobjective optimization problem is:

Minimize : 
1
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+
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i51
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where fi is the primary objective to be minimized in the
multiobjective optimization problem in Equation (1)
and gi is the secondary objective to be minimized in the
multiobjective optimization problem in Equation (1),
duAEML, duAEMR and duDFM are the correction factors
for the AEML, AEMR and DFM points used to set up
the reference frame in Image 2 and wf,i is the weight
factor applied to the primary equations in the objective
function in the multiobjective optimization problem in
Equation (1) and wg,j is the weight factor applied to the
secondary equations in the objective function in the
multiobjective optimization problem in Equation (1).
The weights are assigned according to the importance of
the objective and must satisfy Equation (6):
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In this article, the weight factors were selected as
follows. Objective function equations were put into two
groups. The first group, named primary objectives and
represented by variables fi, contained all the objectives
that involved AEML, AEMR and DFM. These objec-
tive functions existed in the previous 4-point algorithm
developed by the authors.21 These constraint equations
were treated as the most important, as they ensured that
distances and angles between ELSA, AEML, AEMR
and DFM were the same between the two images. All the
equations in the first group were given equal weight fac-
tor, wf,i. The sum of all weight factors was 0.9, i.e. wf,j5
0.1. The rest of the constraint equations, named second-
ary equations, and represented as gi, are those objectives
related to points LFO and RFO. These objectives are
critical for determining a unique solution. These second-
ary constraints were treated as less vital since they are
used mainly to refine the search and, therefore, were
given a smaller weight factor. All weight factors wg,j were
given equal importance, and their sum was set to 0.1 so
that Equation (6) was satisfied. Therefore, the value of
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each factor is wg,j5 0.0083. It should be noted that
different values for wf,i and wg,j could be used instead
of the proposed 0.9 and 0.1, such as 0.8 and 0.2; how-
ever, based on a parametric study for weight values in the
range of 1–0.8 and 0–0.2 for wf,i and wg,j, respectively, the
proposed weights were shown to provide more accurate
results for several of the validation studies under con-
sideration. Given a new system of landmarks, a similar
parametric study should be performed for selecting the
weights.
The correction factors, duAEML, duAEMR and duDFM,

were bound because it was known that the optimized
positions of each point must lie relatively close to the
originally identified point locations. Although mathe-
matically there may exist solutions outside these bounds,
these solutions are not feasible and must be excluded
a priori from consideration.
The optimization problem has nine design variables

corresponding to the measurement error correction in
each direction for AEML, DFM and AEMR. These
design variables are crucial because they each modify
a point used in the co-ordinate system transformation;
therefore, any changes made to them will indirectly
modify the location of all other points identified.
The optimization problem aims at minimizing the

difference in distance and angle between the points. The
final optimization problem is difficult to solve. It contains
several local minima, of which only the global minimum
is desired. Therefore, a genetic algorithm was chosen
owing to its resiliency to local minima and the ability to
find a global solution. The genetic algorithm used is the
MATLAB (Mathworks Inc., Natick, MA) genetic al-
gorithm routine, named “ga()”. To solve the problem, an
initial population size of 10 000 was used. The algorithm-
specific input parameters used in this research are given
in Table 1.
Our algorithm guarantees that the distance between

ELSA and AEML and AEMR and DFM are as close
as possible for the two images and that the relative
distances between AEML and AEMR, AEML and
DFM, AEML and RFO, AEML and LFO, AEMR
and DFM, AEMR and RFO, AEMR and LFO, DFM
and RFO and DFM and LFO are as close as possible
between Images 1 and 2, respectively; and, finally, that
all angles are as close as possible.

Validation studies
A test was devised to test the repeatability of the 4-point
algorithm (AEML, AEMR, ELSA and DFM) vs the

6-point algorithm (AEML, AEMR, ELSA, DFM, RFO
and LFO). Owing to the voxel size of 0.25mm, it is un-
known where the landmark truly lies within the sphere of
error. To examine the potential effect this uncertainty
could have on the final result, the points on the second
image were displaced in a random amount ranging
between 0mm and 0.25mm within the maximum land-
mark detection error in each direction. Then, each set of
perturbed points with randomized errors were corrected
relative to the first image with both the 4-point and the
6-point algorithms. The suggested solutions for each code
were recorded. To verify the reliability of this new al-
gorithm, five test cases were conducted by identifying the
location of several static points on two different images
using both the 4-point and 6-point correction algorithms.
To further validate the reliability of this method, 100
cases with a random measurement error were analysed
using the 6-point correction.

Clinical studies
Real data for ten patients were analysed using both
the 4-point and 6-point correction algorithms. Each of
the ten patients had two images taken 12 months
apart, and in each case, the second image was cor-
rected relative to the first image. To ensure repeatability,
each patient’s data set was corrected ten times with each
algorithm, and the average correction factors were
found. Four points, infraorbitale left, infraorbitale
right, menton left and menton right, were used as the
controls points to quantify the success of each correc-
tion method. Each of these control points are expected
to remain unmoved between images, and thus their
distances relative to the three points used to construct
the co-ordinate system (AEML, AEMR and DFM)
should remain constant between the first and second
images for each patient. The images used were from
patients in a group age where transverse growth has
had its most significant changes, thus further trans-
verse growth-based changes were neglected. No studies
were found that assessed the 3D position changes in these
specific landmarks within this age group; thus it was
considered that these landmarks may have minor, but
not significant, position changes as a result of growth
within our 1-year imaging time frame.

The average error for each control point is obtained
by first finding the distance between that control point
and each of AEML, AEMR and DFM in the first image
for each patient. Those same distances are then found in
the second image. The error reported is the absolute
value of the difference in distances between points cal-
culated for the first image and the second image. These
calculations are repeated after the positions of AEML,
AEMR and DFM have been optimized with the 4-point
algorithm and then repeated again after the positions of
AEML, AEMR and DFM have been optimized with the
6-point algorithm. The overall average error is found by
averaging the errors between all the points for all the
patients.

Table 1 Genetic algorithm-specific parameters

Genetic algorithm options
Mutation function Mutation gaussian
Cross-over function Cross-over scattered
Selection function Selection tournament
Hybrid function @fmincon
Generations 1000
Population size 10 000
Convergence tolerance 1.003 10205
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Results

Validation studies
Five test cases were analysed using both the 4-point and
6-point correction algorithms, and results for this study
are given in Table 2. The 4-point algorithm proposed in
Reference 20 converged to a new, distinct solution every
time. The 6-point algorithm with a genetic algorithm
optimizer converged to a nearly identical solution in
Trials 1, 3, 4 and 5 (seen in bold) and a separate solution
in Trial 2 (seen in italics). The advantages of the new 6-
point algorithm include much higher intertest reliability
and greater consistency between trials.

It should be noted, as seen in the tables, that the
previous method sometimes provided a better solution;
however, it was suggesting a different optimal position
in every trial. An unstable set of solutions is not desired.
Results show that the new method is able to converge to

the same solution from different starting points across
multiple trials.

The final validation of the reliability of the 6-point
correction method was done using 100 cases with a ran-
dom measurement error. Figure 2 shows that 52% of
these solutions converge to the first major global solution
and a further 44% of these solutions converge to a second
major global solution, meaning that a total of 96% of
results converged to one of two specific solutions.

Clinical studies
The results of the clinical study can be seen in Table 3
and are summarised in Table 4. As can be seen in
Table 3, the 6-point algorithm provided the best solu-
tion with the lowest average distance error for every
single control point. It should be noted that in some
cases, the distance errors actually increased after opti-
mization, most notably seen in Table 3(d) where the

Table 2 Experimental results of five trials with randomized errors

Perturbed points Suggested solution
Trial 1, genetic ELSA 0.00 0.00 0.00 0.00 0.00 0.00

AEML 58.00 17.10 20.19 58.13 15.50 23.18
AEMR 257.46 14.89 20.20 257.34 16.09 0.00
DFM 20.11 49.63 228.69 0.19 46.46 233.74

Trial 2, genetic ELSA 0.00 0.00 0.00 0.00 0.00 0.00
AEML 58.07 16.73 0.24 57.87 16.71 0.36
AEMR 257.44 14.82 0.15 257.66 14.86 0.01
DFM 20.18 49.57 228.71 0.16 50.21 227.87

Trial 3, genetic ELSA 0.00 0.00 0.00 0.00 0.00 0.00
AEML 57.98 17.13 0.08 58.13 15.54 23.10
AEMR 257.90 15.00 0.22 257.35 16.04 0.00
DFM 0.09 49.73 228.79 0.18 46.56 233.60

Trial 4, genetic ELSA 0.00 0.00 0.00 0.00 0.00 0.00
AEML 57.78 16.98 20.16 58.13 15.55 23.06
AEMR 257.56 14.59 20.11 257.36 16.04 0.00
DFM 20.23 49.40 228.75 0.18 46.59 233.56

Trial 5, genetic ELSA 0.00 0.00 0.00 0.00 0.00 0.00
AEML 57.94 16.81 0.23 58.13 15.51 -3.14
AEMR 257.90 14.79 20.06 257.35 16.07 0.00
DFM 0.13 49.75 229.07 0.19 46.51 233.67

Trial 1, F-solve ELSA 0.00 0.00 0.00 0.00 0.00 0.00
AEML 58.00 17.10 20.19 58.16 15.75 0.34
AEMR 257.46 14.89 20.20 257.36 15.96 0.41
DFM 20.11 49.63 228.69 0.96 50.26 227.74

Trial 2, F-solve ELSA 0.00 0.00 0.00 0.00 0.00 0.00
AEML 58.07 16.73 0.24 58.20 15.59 0.49
AEMR 257.44 14.82 0.15 257.32 16.11 0.46
DFM 20.18 49.57 228.71 1.13 50.44 227.41

Trial 3, F-solve ELSA 0.00 0.00 0.00 0.00 0.00 0.00
AEML 57.98 17.13 0.08 58.09 16.02 20.13
AEMR 257.90 15.00 0.22 257.43 15.70 0.55
DFM 0.09 49.73 228.79 0.59 49.99 228.24

Trial 4, F-solve ELSA 0.00 0.00 0.00 0.00 0.00 0.00
AEML 57.78 16.98 20.16 58.00 16.34 0.36
AEMR 257.56 14.59 20.11 257.52 15.37 0.38
DFM 20.23 49.40 228.75 0.47 50.26 227.75

Trial 5, F-solve ELSA 0.00 0.00 0.00 0.00 0.00 0.00
AEML 57.94 16.81 0.23 58.12 15.90 0.30
AEMR 257.90 14.79 20.06 257.40 15.82 0.18
DFM 0.13 49.75 229.07 0.89 50.03 228.16

AEML, left auditory external meatus; AEMR, right auditory external meatus; DFM, dorsum foramen magnum.
The bold formatting indicates that in these trials, the points were almost identical.
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4-point algorithm increased the distance error seen be-
tween AEML, AEMR, DFM and menton right. It is
suggested that this occurs because there is the potential
for an uneven landmark locating error for the control
points. This may cause the correction factors to over-
compensate the correction of one point while improving
the others, and thus increase the error seen for that specific
point. Despite this, both algorithms significantly decrease
the average distance error observed between AEML,
AEMR, DFM and the control points on average.
As can be seen in Table 4, the average error seen in

these distances between the first image and the second
uncorrected image is 1.64 mm. This average error drops
to 1.48 mm when corrected with the 4-point algorithm
and further drops to 1.24 mm when corrected with the
6-point algorithm. These results demonstrate that the
6-point algorithm is capable of increasing intrapoint
reliability between images by a greater degree than the
previously introduced 4-point algorithm.

Discussion

The cranial base is the most stable region in the cranio-
facial part of the body because it is believed to achieve
maximal growth early and before adolescence.24 The
anatomical structures of the cranial base have thus been
widely used as the reference points in the superimposi-
tion of 2D cephalograms for diagnosis, assessment of
change owing to growth of relevant structures and
evaluation of treatment efficacy. Although, historically,
scientists have been unable to prove that there is no
significant change in the cranial base, it is now possible
to assess its stability in the light of technological ad-
vances. Since its introduction, the role of CBCT has
expanded from that of an auxiliary diagnostic tool to
include numerous applications, such as assessment of
3D landmark location, shape and size of hard- and soft-
tissue without the image distortion, magnification and
incorrect landmark positioning associated with 2D
cephalograms.16,25–27 Even with all those benefits, cau-
tion is still needed when acquiring these types of images.
Radiation exposures are lower than traditional medical
CT but higher than traditional cephalometric X-rays.
An example of this is mentioned by Carlson et al28

where the effective dose from a typical orthodontic
CBCT scan—large field of view scan using a Next-
Generation i-CAT machine—is 74 mSv, whereas digital
lateral cephalometric radiography exposes patients to
approximately 5.6mSv of radiation. It should be noted
that many have compared these doses with 1 week of
urban environment exposure or flights.29 Our retro-
spective study used existing images. The aim is to

Figure 2 Histogram of 100 sample convergence results for 6-point algorithm

Table 3 Clinical results of ten real patients

Average error between AEML/AEMR/DFM

Standard
deviation
(mm)

(a) Infraorbitale left distance errors (mm)
Uncorrected 1.93 0.62
Corrected using 4-point method 1.41 0.10
Corrected using 6-point method 1.09 0.24

(b) Infraorbitale right distance errors (mm)
Uncorrected 1.66 0.66
Corrected using 4-point method 1.26 0.15
Corrected using 6-point method 0.95 0.15

(c) Menton left distance errors (mm)
Uncorrected 1.65 0.46
Corrected using 4-point method 1.63 0.21
Corrected using 6-point method 1.58 0.43

(d) Menton right distance errors
Uncorrected 1.34 0.89
Corrected using 4-point method 1.62 0.58
Corrected using 6-point method 1.32 0.38

AEML, left auditory external meatus; AEMR, right auditory external
meatus; DFM, dorsum foramen magnum.

Table 4 Clinical results of ten real patients, overall average distance
errors

Overall average distance errors (mm) Standard deviation (mm)
Uncorrected 1.64 0.62
Corrected using 4-point method 1.48 0.32
Corrected using 6-point method 1.24 0.37
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improve the current methods of determining treatment-
based skeletal changes using technology widely used by
clinicians. By our proposed method, and by using past
data, we can minimize the current use of CBCT scans,
which we believe should be minimized during treatment.
CBCT has become more widely available to the dental
field, and its increasing role in diagnosis and treatment
necessitates the need for a standardized reference system
with stable anatomical structures as the reference points.
Greater use is seen for superimpositioning of 3D images,
but this led to new challenges. A few methods have been
developed and are being tested to accomplish accurate
superimposition. One method is using greyscales to super-
impose images as Cevidanes et al5,30 used to determine the
treatment changes associated with orthognathic surgery.
The basis of the method is to mask all skeletal structures
so that only the cranial base is used for superimposition.
It compares the grey-level intensity of each voxel in the
cranial base to obtain a best fit of both images. The final
output obtained by this method is shown in colour-coded
differences between surfaces. Results obtained are only
reported as changes in two dimensions, for example,
displacement outside or inside of the mandibular rami
and condyles.

Another approach towards superimposing 3D images
uses optimization analysis. This analysis involves min-
imizing the total root mean square error found over
a series of fixed landmark positions, also known as best-
fit analysis. Landmarks have been used since the be-
ginning of cephalometric radiography, and dentists
have been trained to identify landmarks and use these to
diagnose and treat patients. Recently, Lagravère et al21

proposed using a 4-point optimization procedure to
correct for user errors. The optimization procedure in-
volved the location of three points, the left and right
AEM and the DFM, on an image of a patient relative
to their location on a previous image. This problem,
named here the 4-point algorithm, had nine constraint
equations, nine variables and used a Newton–Rhapson
algorithm to obtain an exact solution to the problem.
The constraint equations related the distances and
angles between points in each image. The variables were
nine measurement error correction factors, one for each
axis (x, y and z) of each movable point (AEML, AEMR
and DFM). The non-linear solver, in this case a
Newton–Rhapson algorithm, is used to find the values of
the measurement error correction factors needed to make
all constraint equations equal in each image. After ex-
tensive use of the algorithm, it was found that there were
multiple exact solutions. It was thus concluded that
a more accurate method for obtaining the corrections was

necessary to obtain a unique solution. The new optimi-
zation formulation, described in the Materials and
methods section, named here the 6-point algorithm, not
only optimizes the location of the same three points (i.e.
AEML, AEMR and DFM) but also includes two addi-
tional points in each image. The two new points are used
to help obtain a specific solution each time. The two new
points are both foramen ovale (right and left) that have
been reported to have a high intrareliability, similar to that
found for the foramen spinosum.8

It has been reported that intrareliability of the land-
marks forming the co-ordinate system (ELSA, AEML,
AEMR and DFM) was excellent in all axes.17 The ad-
dition of two extra landmarks (FOR and FOL) in the
optimization analysis was shown to reduce the envelope
of error when determining the co-ordinate system. Fu-
ture research is needed to verify alternative options to-
wards this superimposition technique. The addition of
two extra points to the original four points improved the
optimization. A next step would be to try new points
close to the vicinity of the original ones and to use
greyscales on the area surrounding the six points used in
the present method. Other methods such as merging two
volumes30 and minimizing the least-square error of
a function (usually colour scale) between two images31

should also be studied. The method proposed by
Dranischnikow et al31 has proven to be quite capable of
matching complex geometries. The method proposed by
Dranischnikow et al was successfully used to align the
sectional cone beam CT images of a jaw and MR or CT
images of lungs. The proposed method by Dranischni-
kow et al is likely to be more accurate and it does not
depend on the landmark identification, thereby re-
moving any operator errors; therefore, it will be in-
vestigated in the future. However, it is a more complex
method to implement compared with the proposed ap-
proach. Using our simplified approach, our findings are
already within the clinical error range required for or-
thodontic treatment, thereby providing a trade-off be-
tween the ease of implementation and the desired result
accuracy.

In conclusion, a novel method of optimizing the
overlay of 3D images using a 6-point correction algo-
rithm was introduced and examined. This method dem-
onstrated greater reliability and reproducibility than the
previous 4-point correction algorithm and showed
greater resiliency to landmark identification error. When
analysing real patient data, it was found that the 6-point
algorithm reduced errors between images and increased
intrapoint reliability compared with both uncorrected
images and images corrected with the 4-point algorithm.
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Appendix

This appendix provides a complete list of objective
functions associated with the multiobjective optimiza-
tion problem in Equation (1). Objective functions in-
volving points AEML, AEMR and DFM are indicated
as fi and are known as the primary objectives, since they
involve the points that define the co-ordinate system
and are also the points for which the corrections are
obtained. Objectives involving RFO and LFO are

indicated as gi and are known as the secondary objec-
tives. They are used to increase the accuracy of the
correction calculations. Note that points RFO and LFO
will not be used to define the co-ordinate system.

The objective functions below, f1–f5 and g1–g6, are
aimed at quantifying the difference between Image 1
and Image 2 of the relative distance between points and
they are given by
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‖x1AEML‖2 ‖x2AEML‖

nd
5 f1

‖x1AEMR‖2 ‖x2AEMR‖

nd
5 f2

‖x1DFM‖2 ‖x2DFM‖

nd
5 f3

‖x1AEML 2 x1AEMR‖2 ‖x2AEML 2 x2AEMR‖

nd
5 f4

‖x1AEML 2 x1DFM‖2 ‖x2AEML 2 x2DFM‖

nd
5 f5

‖x1AEMR 2 x1DFM‖2 ‖x2AEMR 2 x2DFM‖

nd
5 f6

‖x1AEML 2 x1RFO‖2 ‖x2AEML 2 x2RFO‖

nd
5 g1

‖x1AEML 2 x1LFO‖2 ‖x2AEML 2 x2LFO‖
nd

5 g2

‖x1AEMR 2 x1RFO‖2 ‖x2AEMR 2 x2RFO‖

nd
5 g3

‖x1AEMR 2 x1LFO‖2 ‖x2AEMR 2 x2LFO‖
nd

5 g4

‖x1DFM 2 x1RFO‖2 ‖x2DFM 2 x2RFO‖

nd
5 g5

‖x1DFM 2 x1LFO‖2 ‖x2DFM 2 x2LFO‖
nd

5 g6

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ðA1Þ

where nd5
1
6
+6

i51fi;initial 1
1
6
+6

j51gj;initial is a constant

value used to normalize the equations as discussed
below.

The co-ordinate of a point is represented by x. The
superscript represents the image and the subscript
represents the point. For example, symbol x1AEML
represents the co-ordinates of AEML in Image 1.
x2AEML are the co-ordinates of AEML in Image 2. Since
the points representing the co-ordinate system are cor-
rected during the optimization, the co-ordinates of
AEML in Image 2 are given as

x2AEML[ x2AEML;original 1duAEML ðA2Þ

and duAEML is the unknown error correction vector.
Note that for RFO, x2RFO [ x2RFO;original, i.e. the co-
ordinates for RFO and LFO do not change during the
optimization since only the points that form the co-
ordinate system are corrected.

The distance between points is computed using the
Euclidean distance. Symbol ‖‖ in the equations above
therefore represents the Euclidean distance between two
points. When only one point is shown, it represents the
distance between that point and ELSA. For example,

equation f1 computes the difference between the rel-
ative distance from ELSA to AEML in Image 1 and
Image 2, once the correction duAEML, duAEMR and
duDFM has been applied. Note that equations f1–f3
can only be applied to AEML, AEMR and DFM,
since these are the only points that are moved during
the optimization problem. The distance between ELSA
and LFO and RFO is the same during the optimization
process.

In addition to reducing the relative distance between
points, the difference between images of the relative
angles between points should also be minimized.
Therefore, objectives f7–f9 and g7–g12 below aim at
quantifying the difference between Image 1 and Image 2
of the relative angle between points. To achieve this
goal, the objective functions return the difference be-
tween the cosine of the relative angle between points,
thereby providing a normalized value between zero and
one. The equations are given as

ðx1AEML× x
1
AEMRÞ

‖x1AEML‖‖x
1
AEMR‖

2
ðx2AEML× x

2
AEMRÞ

‖x2AEML‖‖x
2
AEMR‖

5 f7

ðx1AEML× x
1
DFMÞ

‖x1AEML‖‖x
1
DFM‖

2
ðx2AEML× x

2
DFMÞ

‖x2AEML‖‖x
2
DFM‖

5 f8

ðx1AEMR× x
1
DFMÞ

‖x1AEMR‖‖x
1
DFM‖

2
ðx2AEMR× x

2
DFMÞ

‖x2AEMR‖‖x
2
DFM‖

5 f9

ðx1AEML× x
1
RFOÞ

‖x1AEML‖‖x
1
RFO‖

2
ðx2AEML× x

2
RFOÞ

‖x2AEML‖‖x
2
RFO‖

5 g7

ðx1AEML× x
1
LFOÞ

‖x1AEML‖‖x
1
LFO‖

2
ðx2AEML× x

2
LFOÞ

‖x2AEML‖‖x
2
LFO‖

5 g8

ðx1AEMR× x
1
RFOÞ

‖x1AEMR‖‖x
1
RFO‖

2
ðx2AEMR× x

2
RFOÞ

‖x2AEMR‖‖x
2
RFO‖

5 g9

ðx1AEMR× x
1
LFOÞ

‖x1AEMR‖‖x
1
LFO‖

2
ðx2AEMR× x

2
LFOÞ

‖x2AEMR‖‖x
2
LFO‖

5 g10

ðx1DFM× x1RFOÞ
‖x1DFM‖‖x1RFO‖

2
ðx2DFM× x2RFOÞ
‖x2DFM‖‖x2RFO‖

5 g11

ðx1DFM× x1LFOÞ
‖x1DFM‖‖x1LFO‖

2
ðx2DFM× x2LFOÞ
‖x2DFM‖‖x2LFO‖

5 g12

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ðA3Þ

where · represents the dot product between the two
points and ‖‖ again represents the Euclidean distance
between two points. For example, x1AEML × x1AEMR rep-
resents the dot product between ELSA and AEML and
between ELSA and AEMR as shown in Figure A1.

In multiobjective optimization problems, it is im-
portant that all objectives are of similar sizes, otherwise
the optimization algorithm will not converge or it will
converge to solutions that are not optimal. To correct
this, normalization of all objectives was performed so
that each of the objectives would be bound between zero
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and one, preventing any single residual from being
significantly larger than the rest and having an over-
whelming influence on the solution.32 After various
methods of normalization were explored, it was decided
that, for distances, each distance constraint equation
would be divided by the average sum of all the initial
residuals of these distance constraint equations. Each
term of each angle constraint equation was already
between zero and one.

Figure A1 Angle between AEML and AEMR. AEML, left auditory
external meatus; AEMR, right auditory external meatus.
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