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Abstract 

In ruminants, evidence is accumulating regarding the associations between rumen 

microbial taxonomic features and feed efficiency. However, to date, how rumen microbial 

functional features contribute to the variations in feed efficiency of beef cattle has not been well 

understood. Moreover, whether the rumen microbiota could be selected and regulated by host 

genetics still needs to be answered. To fill the knowledge gap, four studies (Chapters 2 - 5) were 

designed and performed in this thesis. 

Chapter 2 aimed to develop a pipeline to identify and quantify the active rumen 

microbiota using total-RNA-based sequencing (metatranscriptomics), and to compare its 

outcomes with widely used 16S rRNA/rDNA amplicon sequencing. Taxonomic assessments of 

metatranscriptomics, 16S rRNA and 16S rDNA amplicon sequencing datasets were performed 

using a pipeline developed in house. Compared to 16S rRNA/rDNA amplicon sequencing, 

metatranscriptomics can identify more bacterial and archaeal taxa, and detect more interactions 

among microbial taxa. These findings validated the feasibility to conduct the taxonomic analysis 

for the active rumen microbiota using metatranscriptomics. 

In Chapter 3, metatranscriptomics was applied to characterize active rumen microbiomes 

of beef cattle with different feed efficiency (efficient: low residual feed intake [L-RFI]; 

inefficient: high residual feed intake [H-RFI]). Lachnospiraceae, Lactobacillaceae, and 

Veillonellaceae were more abundant in H-RFI cattle, and Methanomassiliicoccale were more 

abundant in L-RFI ones (P < 0.10). Meanwhile, 32 microbial metabolic pathways and 12 

carbohydrate-active enzymes were differentially abundant (P < 0.05) between two groups, where 

most of them were more abundant in H-RFI cattle. These results suggest that rumen microbiomes 

of inefficient cattle may have higher and more diverse activities than those of efficient cattle. 
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Chapter 4 was conducted to investigate the associations between the rumen microbiome 

and feed efficiency (RFI) in various beef cattle breeds. Rumen microbiomes from three breeds 

(Angus, Charolais, and Kinsella composite hybrid) were profiled using metagenomics and 

metatranscriptomics. There were distinguishable rumen microbiota and functional potentials 

among three breeds, but differences of functional activities caused by the breed effect were less 

apparent. Differential microbial taxonomic and functional features at both DNA and RNA levels 

were detected between H- and L-RFI cattle; nevertheless, most of them only showed differences 

between H- and L-RFI animals within a breed, suggesting that there are host genetics and rumen 

microbiome interactions contributing to the variations in feed efficiency.  

In Chapter 5, rumen microbiota from a cohort of 712 beef cattle were assessed using 16S 

rDNA amplicon sequencing, and results showed that breed, sex, and diet could influence rumen 

microbiota. Heritability estimation was conducted for microbial taxonomic features using the 

animal model based on the genomic relationship matrix. It revealed that host genetics affected the 

alpha- and beta-diversities of rumen microbiota, and the abundance of ~30% of rumen microbial 

taxa (heritability estimate ≥ 0.15). In addition, 19 SNPs located on 12 bovine chromosomes were 

found to be associated with 14 rumen microbial taxa. Our study revealed the host genetic effect 

on the rumen microbial colonization in cattle, highlighting the potential to manipulate the rumen 

microbiota through genetic selection and breeding. 

Overall, findings in this thesis enhanced our understanding on the associations between 

rumen microbial functional features (at both DNA and RNA levels) and feed efficiency in 

various beef cattle breeds. Moreover, it provides the evidence that the rumen microbiota is 

partially shaped by host genetics, which built a theoretical foundation for further manipulating 

the rumen microbiota using genetic approaches to improve feed efficiency in beef cattle.  



 iv 

Preface 

This thesis is an original work by Fuyong Li. The research project, of which this thesis is 

a part, received research ethics approvals from the Livestock Care Committee of the University 

of Alberta (AUP00000777 and AUP00000882). 

Part of Chapter 1 has been submitted to Journal of Dairy Science as an invited review: Li, 

F., Neves, A. L. A., Ghoshal, B., & Guan, L. L. (2017), titled “Mining metagenomic and 

metatranscriptomic data for clues about microbial metabolic functions in ruminants”. I was 

responsible for manuscript writing. Neves, A. L. A. and Ghoshal, B. contributed to manuscript 

editing. Guan, L. L. contributed to concept formation, manuscript writing and editing. 

Chapter 2 of thesis has been published as Li, F., Henderson, G., Sun, X., Cox, F., Janssen, 

P. H., & Guan L. L. (2016). “Taxonomic Assessment of Rumen Microbiota Using Total RNA 

and Targeted Amplicon Sequencing Approaches”. Front Microbiol, 7, 987. 

doi:10.3389/fmicb.2016.00987. I was responsible for experimental design, data generation, data 

analysis and interpretation, and manuscript writing. Henderson, G. contributed to data 

interpretation and manuscript writing. Sun, X. contributed to experimental protocol optimization. 

Cox, F. contributed to DNA isolation and 16S rDNA amplicon sequencing. Janssen, P. H. 

contributed to data interpretation and manuscript writing. Guan L. L. contributed to experimental 

design, data analysis and interpretation, and manuscript writing. 

Chapter 3 has been published as Li, F., & Guan, L. L. (2017). “Metatranscriptomic 

Profiling Reveals Linkages between the Active Rumen Microbiome and Feed Efficiency in Beef 

Cattle”. Appl Environ Microbiol, 83(9). doi:10.1128/aem.00061-17. I was responsible for 

experimental design, data generation, data analysis and interpretation, and manuscript writing. 

Guan, L. L. contributed to experimental design, data analysis and interpretation, and manuscript 

writing.  



 

Dedication 

 

This thesis is dedicated to my beloved family! 

Sincerely appreciate your support and encouragement all the time! 

 

瑾以此论文献给我挚爱的家人！ 

感谢你们对我一直以来的支持与鼓励！ 

 



 v 

Acknowledgements 

First of all, I would like to express my earnest appreciation to my supervisor Dr. Leluo 

Guan! Thank you for giving me your patient guidance since we knew each other in 2010! You 

consider me as your family and always offer me helpful and useful suggestions on both scientific 

research and life. You not only taught me how to become a happy and optimistic person, but also 

taught me how to be a hard-working and flexible researcher! Without your help, I am not able to 

develop my ability to independently and critically think, which is an essential ability for being a 

PhD. It is my greatest honor to be your student and to complete my PhD program under your 

supervision, and all your supports to me will be stored in my heart forever. 

At the same time, I am profoundly grateful to Dr. Masahito Oba and Dr. Paul Stothard for 

being my supervisory committee members. During the last five years, you provide me 

constructive comments and valuable suggestions on my project, which guaranteed the progress of 

my work. What’s more, Dr. Oba provided me fundamental knowledge on ruminant digestion, 

metabolism, and nutrition, and Dr. Stothard passed on his helpful skills in bioinformatics to me, 

which built up a foundation for me to conduct my project. Meanwhile, I also wish to say thanks 

to my previous committee member Dr. Gemma Henderson. I will never forget your help and 

suggestions on my study! 

Furthermore, I sincerely appreciate Dr. Christopher Creevey’s help and suggestions on 

my project. Many thanks for inviting me to your lab, and shared your bioinformatics pipelines for 

metagenomics and metatranscriptomics to me. Your contribution is an indispensable part of this 

project. Moreover, lots of thanks to Dr. Changxi Li for your assistance and help when I did my 

study to link rumen microorganisms to host genetics. Without your guidance, it could not be 

successfully moved forward! 



 vi 

Moreover, I would like to deliver my profound appreciation to all previous and current 

members in Dr. Guan’s group: Drs. Weiwu Jin, Mi Zhou, Emma Hernandez-Sanabria, Josue 

Romao, Guanxiang Liang, Nilusha Malmuthuge, Ou Wang, Duanqin Wu, Diming Wang, Yuwei 

Ren, Ke Zhao, Huizeng Sun, Bin Yang, Zhi Zhu, as well as Yanhong Chen, Xu Sun, Bibaswan 

Ghoshal, Rebecca Kong, Eoin O'Hara, Yang Song, André Luis Neves, Anusha Bulumulla, Jitka 

Hromadkova, and Junhong Liu. It is my great pleasure to work together with you. All of you 

make our group seem like a big family! In addition, please allow me to say thanks to Drs, 

Chunyan Zhang, Tianfu Yang, and Feng Zhang due to their helps on the data analysis; and thanks 

to Thomas Hitch for passing on his knowledge to me, and helping me for my metagenomics and 

metatranscriptomics data analysis. 

I would like to express my gratitude to my friends in Edmonton, Jing Cao, Jinhu Liu, Yu 

Qian, Lihui Du, Xiaoyan Chen, Yalu Yan, Tingting Ju, Weilan Wang, Xiaoxi Lin, Xiaohong Sun, 

Guanshi Zhang, Mingliang Jin, Qingbaio Xu. You always share my joys and sorrows during 

these five years, which makes my stay in Edmonton become an impressive memory in my life. 

Last but not least, my dear family, please accept my sincerest and warmest appreciation 

for your understanding, support and encouragement all the time! Greatest thanks to my wife 

Yuanyao Chen. Whenever I need you, you are always there for me! My love for you is from the 

bottom of my heart, and I will spend the rest of my life trying to achieve it. Billions of thanks to 

my beloved parents Xilong Li and Xiaoling Wang. Thanks a million for your always support! It 

is understatement to say that I deeply love you, because great love is beyond words. Again, I am 

truly grateful to all of you! 



 vii 

Table of contents 

Abstract ........................................................................................................................................... ii 
Preface ............................................................................................................................................. iv 
Acknowledgements .......................................................................................................................... v 
Table of contents ........................................................................................................................... vii 
List of tables .................................................................................................................................... xi 
List of figures ................................................................................................................................ xii 
List of abbreviations ..................................................................................................................... xiii 
Chapter 1. Literature review ............................................................................................................. 1 

1.1 Background ............................................................................................................................ 1 
1.2 Feed efficiency ....................................................................................................................... 2 

1.2.1 Feed conversion ratio (FCR) ........................................................................................... 2 
1.2.2 Residual feed intake (RFI) .............................................................................................. 3 
1.2.3 Factors affecting RFI ....................................................................................................... 4 

1.3 Rumen microbiota .................................................................................................................. 7 
1.3.1 Compositional characteristics of the rumen microbiota .................................................. 8 
1.3.2 Functions of the rumen microbiota ............................................................................... 10 
1.3.3 Factors impacting on the rumen microbiota .................................................................. 12 

1.4 Host genetic effect on the gut microbiota ............................................................................ 14 
1.5 Methodologies to study rumen microorganisms .................................................................. 17 

1.5.1 Cultivation-based approaches ....................................................................................... 17 
1.5.2 Marker gene based approaches to study the rumen microbiota .................................... 18 
1.5.3 Metagenomics and metatranscriptomics to study the rumen microbiome .................... 19 
1.5.4 Pipelines to conduct rumen metagenomics and metatranscriptomics ........................... 22 

1.6 Linkages between the rumen microbiome and host phenotypes .......................................... 32 
1.6.1 Feed efficiency .............................................................................................................. 33 
1.6.2 CH4 emissions ............................................................................................................... 34 
1.6.3 Microbial responses to diet and feed additives ............................................................. 36 

1.7 Knowledge gaps ................................................................................................................... 37 
1.8 Hypotheses and objectives ................................................................................................... 38 
1.9 References ............................................................................................................................ 39 
1.10 Tables ................................................................................................................................. 63 
1.11 Figures ................................................................................................................................ 64 

Chapter 2. Taxonomic assessment of rumen microbiota using total RNA and targeted amplicon 
sequencing approaches ................................................................................................................... 65 

2.1 Introduction .......................................................................................................................... 65 
2.2 Materials and Methods ......................................................................................................... 67 

2.2.1 Animals and sampling ................................................................................................... 67 



 viii 

2.2.2 Nucleic acid extractions ................................................................................................ 68 
2.2.3 RNA library construction and sequencing (RNA-seq) ................................................. 69 
2.2.4 Amplicon-seq of 16S rRNA/rDNA using pyrosequencing (RNA/DNA Amplicon-seq)
 ................................................................................................................................................ 69 
2.2.5 Analysis of the RNA-seq dataset .................................................................................. 70 
2.2.6 Analysis of RNA/DNA Amplicon-seq datasets ............................................................ 72 
2.2.7 Validation of bacterial relative abundance using qRT-PCR and qPCR ........................ 73 
2.2.8 Statistical analysis ......................................................................................................... 74 
2.2.9 Data submission ............................................................................................................ 75 

2.3 Results and Discussion ......................................................................................................... 75 
2.3.1 Analyzing rumen microbiota using RNA-seq and RNA/DNA Amplicon-seq ............. 75 
2.3.2 Microbial taxa detected from RNA-seq and RNA/DNA Amplicon-seq ....................... 78 
2.3.3 Estimated microbial relative abundance from RNA-seq and RNA/DNA Amplicon-seq
 ................................................................................................................................................ 80 
2.3.4 qRT-PCR and qPCR validation of estimated relative abundance among datasets ....... 83 
2.3.5 Alpha-diversity estimators in the RNA-seq and RNA/DNA Amplicon-seq datasets ... 84 
2.3.6 Co-occurrence analysis of abundant microbial taxa detected by RNA-seq and DNA 
Amplicon-seq ......................................................................................................................... 85 
2.3.7 Methodological caveats of this study ............................................................................ 87 

2.4 Conclusion ............................................................................................................................ 89 
2.5 References ............................................................................................................................ 90 
2.6 Tables ................................................................................................................................. 102 
2.7 Figures ................................................................................................................................ 107 

Chapter 3. Metatranscriptomic profiling reveals linkages between the active rumen microbiome 
and feed efficiency in beef cattle .................................................................................................. 113 

3.1 Introduction ........................................................................................................................ 113 
3.2 Materials and Methods ....................................................................................................... 115 

3.2.1 Animal experiments and rumen digesta sample collection ......................................... 115 
3.2.2 RNA extraction and sequencing .................................................................................. 116 
3.2.3 Assessment of the active rumen microbiota using metatranscriptomics ..................... 117 
3.2.4 Estimation of functional activities from rumen metatranscriptomes .......................... 117 
3.2.5 Comparisons of rumen metatranscriptomes between H- and L-RFI beef steers ......... 118 

3.3 Results ................................................................................................................................ 119 
3.3.1 Rumen metatranscriptomes generated by RNA-seq ................................................... 119 
3.3.2 Active rumen bacterial and archaeal communities of beef steers ............................... 120 
3.3.3 Active microbial metabolic functions and enzymes in the rumen of beef cattle ........ 121 
3.3.4 Comparison of active rumen microbiota between H- and L-RFI beef steers .............. 122 
3.3.5 Differential microbial metabolic pathways and CAZymes between H- and L-RFI cattle
 .............................................................................................................................................. 123 



 ix 

3.3.6 Relationships between active phylotypes and metabolic pathways in the rumen ....... 124 
3.4 Discussion .......................................................................................................................... 125 
3.5 Conclusions ........................................................................................................................ 131 
3.6 References .......................................................................................................................... 132 
3.7 Tables ................................................................................................................................. 143 
3.8 Figures ................................................................................................................................ 147 

Chapter 4. Metagenomics and metatranscriptomics reveal the breed effect on the rumen 
microbiome and its associations with feed efficiency in beef cattle ............................................ 151 

4.1 Introduction ........................................................................................................................ 151 
4.2 Materials and Methods ....................................................................................................... 153 

4.2.1 Animal experiments and sample collection ................................................................ 153 
4.2.2 DNA extraction and metagenome sequencing ............................................................ 153 
4.2.3 RNA extraction and metatranscriptome sequencing ................................................... 154 
4.2.4 Analysis of metagenomes and metatranscriptomes .................................................... 155 
4.2.5 Statistical analysis ....................................................................................................... 156 

4.3 Results and Discussion ....................................................................................................... 157 
4.3.1 Compositional profiles of the active rumen microbiota .............................................. 157 
4.3.2 Breed effect on the active rumen microbiota .............................................................. 158 
4.3.3 Breed effect on differential microbial taxonomic features between RFI groups ........ 160 
4.3.4 Functional profiles of the rumen microbiome at DNA and RNA levels ..................... 162 
4.3.5 Breed effect on differential microbial functions between H- and L-RFI steers .......... 167 

4.4 Conclusions ........................................................................................................................ 170 
4.5 References .......................................................................................................................... 171 
4.6 Tables ................................................................................................................................. 178 
4.7 Figures ................................................................................................................................ 183 

Chapter 5. Unraveling genetic determinants for the rumen microbiota: insights for breeding more 
sustainable cattle .......................................................................................................................... 190 

5.1 Introduction ........................................................................................................................ 190 
5.2 Material and Methods ......................................................................................................... 193 

5.2.1 Animal experiments and rumen sampling ................................................................... 193 
5.2.2 DNA extraction, high-throughput sequencing, and quantitative PCR (qPCR) analysis
 .............................................................................................................................................. 193 
5.2.3 Microbial composition analysis .................................................................................. 194 
5.2.4 Co-occurrence network of rumen microbiota ............................................................. 196 
5.2.5 Genotyping .................................................................................................................. 196 
5.2.6 Heritability estimations ............................................................................................... 197 
5.2.7 Genome-wide association studies (GWAS) ................................................................ 198 

5.3 Results ................................................................................................................................ 198 
5.3.1 Survey of rumen microbiota using a large cohort of beef cattle ................................. 198 



 x 

5.3.2 Factors driving segregation of rumen microbiota ....................................................... 199 
5.3.3 Microbial interactions detected in the cattle rumen .................................................... 200 
5.3.4 Heritability estimates of rumen microbiota ................................................................. 201 
5.3.5 SNPs identified for rumen microbial taxonomic features through GWAS ................. 202 

5.4 Discussion .......................................................................................................................... 203 
5.5 References .......................................................................................................................... 211 
5.6 Tables ................................................................................................................................. 220 
5.7 Figures ................................................................................................................................ 225 

Chapter 6. General discussion ...................................................................................................... 231 
6.1 Active rumen microbiota estimated using total-RNA-based metatranscriptomics ............ 232 
6.2 Understanding of rumen microbial functional activities in beef cattle .............................. 234 
6.3 Associations between the rumen microbiome and feed efficiency in cattle ...................... 236 
6.4 Rumen microbiome is affected by host genetics ................................................................ 239 
6.5 Limitations ......................................................................................................................... 241 

6.5.1 Rumen sampling could impact the outcomes of microbial profiling .......................... 241 
6.5.2 Rumen sampling under different diets ........................................................................ 242 
6.5.3 Comparison between total-RNA-based and mRNA-enriched metatranscriptomes .... 243 

6.7 Implications ........................................................................................................................ 244 
6.8 References .......................................................................................................................... 246 

Bibliography ................................................................................................................................. 253 
 



 xi 

List of tables 

Table 1.1 Widely-used programs for quality control (QC) of sequencing reads ........................... 63 
Table 2.1 General sequence profiles of RNA-seq and RNA/DNA Amplicon-seq datasets ........ 102 
Table 2.2 Summary of sequences used for the taxonomic analysis from chimera-depleted RNA-
seq and Amplicon-seq datasets .................................................................................................... 103 
Table 2.3 Differential taxa among RNA-seq and RNA/DNA Amplicon-seq datasets ................ 104 
Table 2.4 A comparison of alpha-diversity estimators between RNA-seq and RNA/DNA 
Amplicon-seq datasets .................................................................................................................. 105 
Table 2.5 qRT-PCR and qPCR primers ....................................................................................... 106 
Table 3.1 Residual feed intake, dry matter intake, and RNA quality of samples ........................ 143 
Table 3.2 Details of metatranscriptomic datasets ......................................................................... 144 
Table 3.3 Relative abundances of active bacterial and archaeal taxa estimated using 
metatranscriptomics ..................................................................................................................... 145 
Table 3.4 Comparisons of alpha-diversity indices between H- and L-RFI cattle ........................ 146 
Table 4.1 Phenotypes of beef cattle with three breeds used for this study .................................. 178 
Table 4.2 Summary of sequencing data for metagenomes and metatranscriptomes ................... 179 
Table 4.3 Relative abundance of differential microbial taxa between RFI groups in three breeds
 ...................................................................................................................................................... 180 
Table 4.4 Comparisons of alpha-diversity indices between beef cattle with different RFI values
 ...................................................................................................................................................... 181 
Table 4.5 Abundance of differential functional categories between RFI groups in three beef cattle 
breeds ........................................................................................................................................... 182 
Table 5.1 Diet information for animal experiments ..................................................................... 220 
Table 5.2 Single nucleotide polymorphisms (SNPs) information ................................................ 221 
Table 5.3 Alpha-diversity indices of beef cattle population ........................................................ 222 
Table 5.4 Heritability estimates of rumen microbial abundance, diversity indices, and ratios 
between dominant microbial groups ............................................................................................ 223 
Table 5.5 Identified bovine SNPs that associated with rumen microbial taxa ............................. 224 
 
 



 xii 

List of figures 

Figure 1.1 A general workflow to conduct rumen metagenomics and metatranscriptomics ......... 64 
Figure 2.1 Flow chart of the pipeline for analyzing rumen microbiota using RNA-seq and 
RNA/DNA Amplicon-seq ............................................................................................................ 107 
Figure 2.2 Microbial community composition estimated in the RNA-seq and RNA/DNA 
Amplicon-seq datasets .................................................................................................................. 108 
Figure 2.3 Dissimilarities among the RNA-seq, RNA Amplicon-seq and DNA Amplicon-seq 
datasets revealed by principal coordinate analysis (PCoA) ......................................................... 109 
Figure 2.4 Validation of bacterial relative abundance using qRT-PCR and qPCR ..................... 110 
Figure 2.5 Rarefaction analysis of rumen bacteria and archaea ................................................... 111 
Figure 2.6 Co-occurrence of abundant microbial taxa in the RNA-seq and DNA Amplicon-seq 
datasets ......................................................................................................................................... 112 
Figure 3.1 Profiles of bovine rumen microbiome ........................................................................ 147 
Figure 3.2 Microbial compositional profiles of H- and L-RFI animals visualized using principal 
coordinate analysis (PCoA) .......................................................................................................... 148 
Figure 3.3 Differential rumen microbial metabolic pathways and carbohydrate-active enzymes 
(CAZymes) between H- and L-RFI cattle in metatranscriptomic datasets .................................. 149 
Figure 3.4 Correlation patterns showing associations between active microbial taxa and metabolic 
pathways ....................................................................................................................................... 150 
Figure 4.1 Relative abundance of the most abundant (top ten) rumen microbial taxa among three 
beef cattle breeds .......................................................................................................................... 183 
Figure 4.2 Rumen microbial compositional profiles of three beef cattle breeds visualized using 
the principal coordinate analysis (PCoA) ..................................................................................... 184 
Figure 4.3 Abundance of observed eggNOG functional categories among metagenome, T-
metatranscriptome, and M-metatranscriptome datasets ............................................................... 185 
Figure 4.4 Distinguishable microbial functional profiles between rumen metagenomes and 
metatranscriptomes ....................................................................................................................... 186 
Figure 4.5 Microbial functional profiles of T- and M-metatranscriptomes ................................. 187 
Figure 4.6 Microbial functional profiles of three beef cattle breeds ............................................ 188 
Figure 4.7 Identified differential genes/transcripts between H- and L-RFI groups from 
metagenome, T-metatranscriptome, and M-metatranscriptome datasets ..................................... 189 
Figure 5.1 Composition of rumen microbiota in beef cattle ........................................................ 225 
Figure 5.2 Factors drive segregation of rumen bacterial communities ........................................ 226 
Figure 5.3 Effects of breed, sex, diet, and age on the alpha-diversities and abundance of rumen 
bacteria and archaea ..................................................................................................................... 227 
Figure 5.4 Relationships between predominant rumen microbial groups .................................... 228 
Figure 5.5 Co-occurrence network of rumen microbial taxa ....................................................... 229 
Figure 5.6 SNPs associated with rumen microbial taxa ..............................................................  230 



 xiii 

List of abbreviations 

AA: auxiliary activity 

ADG: average daily gain 

AMOVA: analysis of molecular variance 

ANG: Angus  

BTA: Bos taurus autosome 

CAZyme: carbohydrate-active enzyme 

CBM: carbohydrate-binding module  

cDNA: complementary DNA 

CDs: coding sequences 

CE: carbohydrate esterase 

CH4: methane 

CHAR: Charolais 

cpm: counts per million reads 

DMI: dry matter intake  

DNA Amplicon-seq: sequencing of PCR amplicons of marker genes (e.g., 16S rDNA) 

FCR: feed conversion ratio 

FDR: false discovery rate 

G matrix: genomic relationship matrix 

GH: glycoside hydrolase 

GHG: greenhouse gas 

GT: glycosyl transferase 

GWAS: genome-wide association study 

HYB: Kinsella composite hybrid 



 xiv 

M-metatranscriptome: mRNA-enriched metatranscriptome 

MAF: minor allele frequency 

mRNA: messenger RNA 

MWT: metabolic weight 

NGS: next generation sequencing technology 

ORF: open reading frame 

OTU: operation taxonomic unit 

PCA: principal component analysis  

PCoA: principal coordinate analysis 

PCR: polymerase chain reaction 

PL: pectate lyase  

QC: Quality control 

qPCR: quantitative PCR 

qRT-PCR: quantitative reverse transcription PCR 

QTL: quantitative trait locus 

RFI: residual feed intake 

RIN: RNA integrity number  

RNA Amplicon-seq: sequencing of PCR amplicons of marker gene transcripts 

RNA-seq: RNA sequencing 

rRNA: ribosomal RNA 

SNP: single nucleotide polymorphism 

T-metatranscriptome: total-RNA-based metatranscriptome 

VFA: volatile fatty acid 



 1 

Chapter 1. Literature review 

 

1.1 Background  

In Canada, there are about 10 million beef cattle as of January 2017, including 0.2 million 

bulls, 3.8 million cows, 1.5 million heifers, 1.2 million steers and 3.3 million calves (Statistics 

Canada, 2017). Around 1.3 million tonnes of beef are produced every year in Canada, and $33 

billion of the Canadian economy is from the beef industry annually (Statistics Canada, 2017). 

Although beef production indeed brings high quality protein sources (e.g., meat) and economic 

profits to people, there are still several challenges in the current beef production chain. First of 

all, livestock production, especially the beef operations, competes for resources with humans, not 

only for land and water, but also for cereal grains (Eisler et al., 2014; Thornton, 2010). As the 

global human population is projected to reach 9.15 billion in 2050 (Alexandratos and Bruinsma, 

2012), more resources are needed for both human consumption and beef operations in the near 

future. Secondly, the beef cattle operations may bring negative effects on the environment, such 

as nitrogen-rich pollutants and methane (CH4) emissions (Morgavi et al., 2013). For instance, the 

livestock sector accounts for 18% of global greenhouse gas emissions and 35 - 40% of 

anthropogenic CH4 emissions (Steinfeld et al., 2006), which is particularly caused by the enteric 

fermentation and the manure handling in ruminant operations (Xue et al., 2014). At the same 

time, CH4 emissions represent 2 - 12% energy loss from the gross energy intake in cattle 

(Johnson and Johnson, 1995). These challenges are barriers to achieve more sustainable and 

efficient beef cattle operations.  

One strategy to break through these barriers is to improve feed efficiency of beef cattle, 

which could increase the food utilization rate, thereby making cattle eat less but produce more or 

maintain the same production level. For example, an efficient individual could consume 3.77 kg 
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less diet than an inefficient one per day (Basarab et al., 2003). Improvement of feed efficiency 

could also decrease negative environmental effects of the beef cattle operations, because efficient 

cattle produce lower amount of manure and emit ~25% less CH4 than inefficient ones (Hegarty et 

al., 2007; Nkrumah et al., 2006). Meanwhile, considering feed related costs represent the biggest 

outgoing expense (55 - 70%) for the beef industry, the increase in feed efficiency directly ascends 

profits for beef producers. During a typical finishing period (around 112 - 150 days), it costs $38 

- 50 less to feed an efficient beef bull than an inefficient one (Crews, 2005), and a 5% 

improvement of feed efficiency could bring four times greater economic benefits than a 5% 

improvement of rate of gain (Government of Alberta, http://www1.agric.gov.ab.ca/). 

 

1.2 Feed efficiency 

Feed efficiency is a measure to determine the animal productivity based on the amount of 

dietary inputs, and for meat-producing animals it could be simply described as the amount of feed 

consumed divided by the animal weight gain during a certain period (Lamb and Maddock, 2009). 

As we mentioned above, feed efficiency is one of keys related to the sustainability, 

environmental effects, and profits of beef cattle production, which is attracting more and more 

research attention. To measure and determine feed efficiency, several indices have been 

developed, such as residual feed intake (RFI), feed conversion ratio (FCR), gain: feed ratio (G: 

F), partial efficiency of growth (PEG), maintenance efficiency. Currently, FCR and RFI are two 

most frequently used indices for feed efficiency in beef cattle that are summarized as follows: 

 

1.2.1 Feed conversion ratio (FCR) 

For meat-producing animals, FCR represents the ratio of feed intake to weight gain during 

the measurement period, which is one of the most traditional indices for feed efficiency and 

http://www1.agric.gov.ab.ca/)
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calculated as average daily feed intake (dry matter intake; DMI) divided by average daily gain 

(ADG). According to this definition, low and high FCR indicates high and low feed efficiency, 

respectively. However, FCR is negatively correlated with ADG (Arthur et al., 2001), suggesting 

that using FCR as the index to select feed efficient animals (lower FCR) may lead to the selection 

of individuals with higher mature weight/size and faster growth rate (Santana et al., 2012). This 

undesired selection increases the maintenance and feed requirements, consequently raises feed 

costs. Indeed, these undesired outcomes have been observed in the beef industry for last several 

decades (Government of Alberta, http://www1.agric.gov.ab.ca/), and these larger cattle are not 

necessary better in terms of production and profitability. In addition, FCR is a gross measurement 

that does not separate energy inputs for maintenance and growth requirements (Carstens and 

Tedeschi, 2006). Accordingly, FCR is not an ideal index for feed efficiency in the beef cattle 

operations. 

 

1.2.2 Residual feed intake (RFI) 

RFI, also called net feed efficiency (or net feed intake), is defined as the difference between 

the actual feed intake and the expected feed intake for growth during a test period (Koch et al., 

1963). Individuals with negative/positive RFI values are considered to be efficient/inefficient 

because they eat less/more than expected. For beef cattle, RFI values are calculated based on 

DMI, ADG, and MWT (metabolic body weight) over a certain test period (Nkrumah et al., 2006), 

which take both maintenance and growth requirements into consideration via a linear regression 

(Basarab et al., 2011). At present, ultrasound back fat has also been incorporated into the RFI 

calculation to make RFI independent from this trait (Basarab et al., 2011). RFI is a moderately 

heritable trait with a heritability ranging from 0.26 to 0.43 (Crews, 2005; Nkrumah et al., 2007a). 

Compared to other indices of feed efficiency (e.g., G: F, FCR, PEG, etc.), RFI is independent of 

http://www1.agric.gov.ab.ca/)
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growth and body weight (Koch et al., 1963). As a result, using RFI is suitable to compare 

differences among animals at different development stages and/or from different breeds, and 

selecting improved RFI will not show incidental alterations for growth and body weight, unlike 

FCR. Therefore, RFI is becoming the preferred measurement of feed efficiency for beef cattle.  

However, using RFI as feed efficiency index also has limitations. Firstly, ~50% of steers 

changed their RFI rankings between growing and finishing stages, even under the same diet 

(Durunna et al., 2011). This RFI re-ranking indicates that RFI measured during a certain period 

may not accurately represent feed efficiency through the entire life of beef cattle. Secondly, 

although relationships between RFI and most of meat quality traits are weak (Ceacero et al., 

2016), a previous study still reported negative correlations between RFI and a few meat quality 

traits (Nkrumah et al., 2007a). Selecting low RFI cattle may cause unfavorable decreases in meat 

quality traits, such as marbling score (Hoque et al., 2006) and tenderness (McDonagh et al., 

2001). Last but not least, to calculate RFI, individual feed intake should be recorded for 9-12 

weeks using the automatic feeding measurement system (such as the GrowSafe system) (Moore 

et al., 2009), which is time-consuming and expensive.  

 

1.2.3 Factors affecting RFI 

At least five physiological processes, including feed intake, feed digestion, metabolism, 

activity, and thermoregulation, contribute to 73% of total RFI variations in ruminants (Herd and 

Arthur, 2009). The roles of these five physiological processes in feed efficiency are summarized 

as below. 1) Feed intake. Feed intake is related to the maintenance requirement of animals. With 

the increase of feed intake, the energy for feed digestion and the heat increment level of feeding 

also ascend. Hence, animals with lower RFI should have lower feed intake, because the energy 

expended as heat increment and fermentation (HIF) is lower in this case, which has been 
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confirmed by Nkrumah et al. (2007a). 2) Feed digestion. Digestibility was negatively correlated 

with RFI in beef cattle, with the correlation coefficiency r = -0.44 (Herd and Arthur, 2009), 

suggesting that efficient animals (low RFI) have greater digestibility and substrate availability 

than inefficient (high RFI) ones. 3) Body composition and metabolism. Richardson et al. (2001) 

reported that progenies from high RFI parents had higher whole-body fat but lower whole body 

protein than offspring of low RFI parents, because the fat deposition rate was faster and some 

undesirable fat (e.g., subcutaneous fat) were accumulated in high RFI animals. In addition, Herd 

et al. (2004) noted that individuals with low RFI deposited more protein with less degradation 

and/or turnover than individuals with high RFI. 4) Activities and feeding patterns. RFI is 

positively associated with the animal activity level (Rauw et al., 2006), where the activity  

included feeding, chewing, ruminating, and locomotion at different speeds (Herd and Arthur, 

2009). More active animals have higher maintenance requirement, resulting in higher heat 

production and lower metabolic efficiency (Herd et al., 2004). Meanwhile, it has been observed 

that high RFI individuals had longer daily feeding duration, longer head down time, and higher 

feeding frequency than low RFI ones (Nkrumah et al., 2007b). These suggest that inefficient 

individuals spend longer time standing and eating than efficient animals, where standing 

consumes more energy than lying (Richardson and Herd, 2004). 5) Thermoregulation. 

Thermoregulation is highly regulated by the respiration rate, but the direct relationship between 

the respiration rate and RFI has not been studied in ruminants yet. Instead, the relationship 

between the heat production and RFI was investigated to indirectly represent the relationship 

between thermoregulation and RFI (Nkrumah et al., 2006). These authors reported a positive 

correlation between the heat production and RFI in beef steers, suggesting a higher energy loss 

via thermoregulation in inefficient animals.  
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From the above described physiological processes, protein turnover, tissue metabolism 

and stress (37%), digestibility (10%), HIF (9%), physical activity (9%), body composition (5%), 

and feeding patterns (2%) have been reported as the main biological factors affecting RFI (Herd 

and Arthur, 2009). In addition, host genetic elements also contribute to RFI variations. For 

instance, RFI is a moderately heritable trait with a heritability ranging from 0.26 to 0.43 (Crews, 

2005; Nkrumah et al., 2007a). In addition, Barendse et al. (2007) detected 161 single nucleotide 

polymorphisms (SNPs) associated with RFI in cattle, representing 141 genetic regions. These 

SNPs located in miRNA motifs, promoter sequences, mRNA sequences, and so on, suggesting 

that several different types of DNA variants contribute to RFI variations. Then Nkrumah et al. 

(2007c) identified 8 significant quantitative trait loci (QTLs; P < 0.05) on BTA 1, 5, 7, 8, 12, 16, 

17, and 26, as well as several suggestive QTLs (P < 0.10) for RFI in beef cattle. After that, 

Sherman et al. (2008) reported that bovine GHR (growth hormone receptor), ghrelin, and NPY 

(neuropeptide Y) genes had effects on RFI, and Karisa et al. (2014) also found other genes (n = 

24) associated with RFI in cattle, such as PARP14 (poly(ADP-ribose) polymerase family member 

14) gene and CAST (calpastatin) gene. Besides DNA variants, shifts of gene expression have also 

been linked to RFI. Perkins et al. (2014) found expression levels of NPY, RLN3 (relaxin 3), 

MC4R (melanocortin 4 receptor), GnRH (gonadotropin releasing hormone), GnIH (gonadotropin 

inhibiting hormone), and POMC (pro-opiomelanocortin) genes in arcuate nucleus, and Leptin 

gene in adipose tissue, were both related to RFI. Recently, Kong et al. (2016) identified 122 

differentially expressed genes from rumen epithelial tissues between high and low RFI steers 

using RNA-sequencing. All these results confirm that host genetic features both at genomic 

(DNA) and transcriptomic (RNA) levels contribute to RFI variations. 

Moreover, RFI could be influenced by environmental factors, such as seasonality and 

diet. Mujibi et al. (2010) suggested that differences between seasons, in terms of temperature, 
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humidity, solar radiation, and wind speed, could possibly affect feed intake and thus feed 

efficiency. The dietary effect on RFI in beef cattle was revealed by Durunna et al. (2011), 

through measuring RFI twice under both growing and finishing diets. They reported that more 

than 50% individuals switched their RFI ranking when diets were changed. This could be 

explained by the lack of ability of animals to efficiently adapt to a different feed (Durunna et al., 

2011) and/or different diet and host interaction patterns, in which the rumen microbiome plays a 

role. Indeed, it has been reported that the dietary change affected microbial diversities and 

activities (Bevans et al., 2005; Petri et al., 2013), which were associated with the RFI re-ranking 

(Hernandez-Sanabria et al., 2012). As one of the most important links between diet, host, and 

RFI, better understanding the role of the rumen microbiota is essential. 

 

1.3 Rumen microbiota 

Rumen is the largest stomach in ruminants, which is an anaerobic chamber harboring a 

complex microbial community. The rumen microbiota mainly consists of bacteria, archaea, fungi, 

ciliated protozoa, and phages (with the concentration up to 1011, 109, 106, 106, 1010 per g of 

digesta or per ml of fluid) (Morgavi et al., 2013), which co-evolves with ruminants. Ruminant 

hosts provide anaerobic environments to rumen microorganisms for residence and growth, while 

rumen microorganisms produce fiber-degrading enzymes and equip ruminants with the ability to 

convert cellulosic plant materials into high protein products for the human consumption. These 

microorganisms can convert feedstuffs into volatile fatty acids (VFAs, e.g., acetate, propionate, 

butyrate, etc.), ammonia, microbial protein, vitamins, energy, and so on. VFAs produced by the 

rumen microbiota could meet 70% of the daily energy requirement for the host (Bergman, 1990). 

In the meantime, the rumen microbiota is also responsible for producing greenhouse gases (e.g., 

CH4, CO2, etc.). Therefore, rumen is one of microbial ecosystems attracting more and more 
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research attention nowadays. Exploring compositional and functional characteristics of the rumen 

microbiota could help us optimize strategies to enhance the rumen microbial fermentation and 

decrease negative environmental effects, ultimately to achieve more sustainable ruminant 

operations. 

 

1.3.1 Compositional characteristics of the rumen microbiota 

Bacteria are the predominant population in the rumen: 70-80% of them are attached to the 

feed particles (Minato et al., 1993), 20-30% of them are free-floating in the rumen fluid 

(McAllister et al., 1994), and approximately 1-2% of them attach to the rumen epithelium (Chen 

et al., 2011). Through estimating the bacterial population using 16S rDNA-based methods, 

Firmicutes and Bacteroidetes were regarded as the most predominant bacterial phyla with both 

highest abundance and the largest number of species-level operation taxonomic units (OTUs) 

(Kim et al., 2011). Lachnospiraceae and Prevotellaceae was the most predominant family 

belonging to Firmicutes and Bacteroidetes, respectively (Kittelmann et al., 2013). At the genus 

level, Prevotella was the most abundant group among many ruminant species across a wide 

geographical range (Henderson et al., 2015). 

The majority of rumen archaea could be classified as methanogens that belong to 

phylum Euryarchaeota (Hedderich and Whitman, 2006). Rumen methanogens are found in the 

rumen fluid, attached to protozoa, within protozoa, and attached to the rumen epithelium (Janssen 

and Kirs, 2008). Among all rumen methanogens identified using 16S rDNA-based methods, 

Methanobrevibacter was the most abundant genus (61.6%), and there were two major clades 

Methanobrevibacter gottschalkii clade (33.6%) and Methanobrevibacter ruminantium clade 

(27.3%) within this genus; the other two abundant genera were Methanomicrobium (14.9%) and 

Methanomassiliicoccus (15.8%) (Janssen and Kirs, 2008; Seedorf et al., 2014). 
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The cell number of rumen ciliated protozoa is not as high as bacteria, but they account for 

up to half of the rumen microbial biomass (Russell and Rychlik, 2001). Sequencing PCR 

amplicons of 18S rDNA from protozoa, revealed that two genera Entodinium and Epidinium 

were the most abundant protozoa groups in the rumen (representing 38% and 17% of protozoal 

sequences, respectively) (Henderson et al., 2015; Kittelmann et al., 2013). In addition to these 

two most abundant protozoal groups, Ostracodinium, Anoplodinium-Diplodinium, 

Eremoplastron-Diploplastron, Eudiplodinium, Polyplastron, Dasytricha, and Isotricha were all 

present in more than 70% individuals among different ruminant species (Henderson et al., 2015). 

Rumen anaerobic fungi belong to phylum Neocallimastigomycota, which either attach to 

the fibrous plant particles or free swim in the rumen fluid (Gordon and Phillips, 1998). Fungi 

account for 8 - 20% of the rumen microbial biomass (Tapio et al., 2017). Till now, six rumen 

fungal genera (i.e., Anaeromyces, Caecomyces, Cyllamyces, Neocallimastix, Orpinomyces, and 

Piromyces) have been isolated and characterized (Firkins and Yu, 2015; Gruninger et al., 2014b). 

Recently, through using internal transcribed spacers 1 and 2 (ITS1 and ITS2) as marker genes, 

some new fungal groups were detected (Koetschan et al., 2014). Through sequencing PCR 

amplicons of ITS1 genes, Kittelmann et al. (2013) reported that Neocallimastix (28%), Piromyces 

(20%), and novel clades (including SK1, SK3, and SK4; 16%) were predominant fungal genera 

in the rumen. However, at the RNA level, Piromyces, Neocallimastix, and Orpinomyces were the 

most active fungal genera based on the metatranscriptomic data (Qi et al., 2011).  

Although there is a high number of virus living in the rumen (1010 per g of digesta or per 

ml of fluid) (Morgavi et al., 2013), the structure of rumen viral community has not been well 

described till now. According to metagenomic data, Siphoviridae (36%), Myoviridae (28%), and 

Podoviridae (14%) were identified as the most abundant viral families in the rumen (Berg Miller 

et al., 2012). 
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1.3.2 Functions of the rumen microbiota 

Bacteria play a major role in the conversion of feed to VFAs and microbial protein in the 

rumen. Specifically, feed particle attached bacteria mainly contribute to the fiber digestion and 

are responsible for the majority of endoglucanase activity (Koike et al., 2003), free-floating 

bacteria in the rumen fluid can initiate the digestion of ingested particles (McAllister et al., 

1994), and rumen epithelium attached bacteria involve in oxygen scavenging, recycling of 

epithelial tissue, and urea hydrolysis (Chen et al., 2011).  

Methanogens utilize H2 and carbon substrates (e.g., CO2, acetate, methanol, formate, etc.) 

to produce CH4 and consequently maintain a low H2 pressure in the rumen (Hedderich and 

Whitman, 2006). Efficient H2 elimination could decrease the inhibitory effect of H2 on the rumen 

fermentation and thus increase the fermentation rate. There are three major methanogenesis 

routes existing in the rumen: CO2 reduction pathway, C1 compound conversion pathway, and 

acetate fermentation pathway (Zhou et al., 2010). Most of rumen methanogens carry out CO2 

reduction pathway: they utilize H2 and/or formate as electron donors to reduce CO2 to CH4. In C1 

compound conversion pathway, methyl groups in methylamines, methanol, and so on, are main 

substrates for methanogenesis. Some methyl components are firstly oxidized to CO2 to generate 

electrons, which are then used to further reduce the methyl components to CH4. The substrate of 

acetate fermentation pathway is acetate that could be dissimilated to CH4 and CO2 by a few 

species, but this pathway does not make significant contribution in the rumen (Janssen and Kirs, 

2008).  

Many ciliated protozoa ingest and store small starch particles, which could adjust the rate 

of rumen fermentation and avoid rumen acidosis caused by the excessive fermentation (high 

lactate production and fast drop of pH). Moreover, some protozoa carry out the cellulose 

digestion that could occupy up to 33% of the rumen fiber digestion capability (Russell and 
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Rychlik, 2001), and the attachment of protozoa to feed particles could extend their retention time 

in the rumen. In addition, protozoa are responsible for the bacterial protein turnover through 

predation of bacteria, and eliminating protozoa could increase the rumen microbial protein supply 

(Newbold et al., 2015). Last but not least, protozoa are intimately related to methanogenesis due 

to their high H2 production ability using hydrogenosomes (Embley et al., 1997; Newbold et al., 

2015), and the abundance of protozoa has been correlated to CH4 emissions (Tapio et al., 2017). 

However, several defaunation (removing protozoa from the rumen) studies suggest that protozoa 

are not irreplaceable rumen members for the host survival and nutrition (Newbold et al., 2015).  

As initial colonizers of lignocellulosic substrates, rumen fungi could not only produce 

fibrolytic enzymes to chemically degrade plant cell walls, but also physically penetrate and 

destroy plant tissues using their rhizoids (Qi et al., 2011). Benefitted from the invasive 

colonization of fungi to plant tissues, bacteria could more efficiently degrade plant cell walls 

through the surface erosion, representing a mutualistic relationship between fungi and bacteria in 

the rumen (France et al., 1990). Through breaking down plant materials, such as cellulose and 

hemi-cellulose, fungi could generate acetate, propionate, butyrate, as well as other metabolic end 

products include H2, CO2, formate, and so on (Gruninger et al., 2014b; Kittelmann et al., 2012).  

Virus could control the amount of microorganisms, select phage-resistant microbes, and 

promote horizontal gene transfer (HGTs) in an ecosystem (Berg Miller et al., 2012). Because 

phages are involved in the lysis of bacteria, they probably play an essential role in the dynamics 

of rumen bacterial population, to maintain the balance of rumen microbial communities (Klieve 

and Swain, 1993). Considering the lysis of bacteria leads to the destruction of protoplasm, this 

process may reduce feed conversion efficiency in the rumen. Meanwhile, the lysis of rumen 

bacteria triggered by phage could be a factor contributing to protein recycling, which also 

decreases feed utilization efficiency (Swain et al., 1996). What’s more, previous studies have 
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detected transfers of antibiotic resistance genes between bacteria (McCuddin et al., 2006; 

Toomey et al., 2009), and exchanges of genes coding carbohydrate enzymes between bacteria 

and eukaryotes (Garcia-Vallve et al., 2000; Ricard et al., 2006). These HGTs could be possibly 

facilitated by phages (Rohwer and Thurber, 2009). 

 

1.3.3 Factors impacting on the rumen microbiota 

The rumen microbiota could be affected by many factors, mainly including diet, feed 

additives, host species, host age, and physical environmental factors.  

1) Diet. Diet has been shown to be one of major factors affecting the rumen microbial 

community in many studies (Ellison et al., 2014; Henderson et al., 2015; Petri et al., 2013; Sun et 

al., 2010), because it determines available substrates for rumen microorganisms. Specifically, 

Henderson et al. (2015) revealed that diet was the major factor for relative abundance of many 

rumen bacterial taxa; Ellison et al. (2014) also found that rumen microbial communities were 

distinct between forage-fed and concentrate-fed animals: forage-fed animals had more diverse 

microbial communities compared to concentrate-fed animals, and rumen methanogens were more 

prevalent under forage-based diet, which was consistent with results from Petri et al. (2013). 

Through investigating rumen bacterial changes under different concentrate levels, Sun et al. 

(2010) reported that bacterial communities were relatively stable when feeding 0% to 50% 

concentrates, but high level concentrate diet (70%) indeed caused a decrease in the diversity of 

rumen bacteria.  

2) Feed additives. Many feed additives showed a significant influence on the rumen 

microbiota. Probiotics, such as active dry yeast (ADY), affected the abundance of bacterial taxa 

(such as SR1, Fibrobacter succinogenes, Prevotella, etc.) in dairy cows (AlZahal et al., 2017). 

As a prebiotic, cellooligosaccharides (CE) increased the abundance of fibrolytic bacteria and 
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methanogenic archaea in dairy calves (Uyeno et al., 2013). Vitamin E did not only lead to higher 

bacterial and protozoal numbers, but also affected the abundance of some methanogen species 

according to in vitro experiments (Belanche et al., 2016). Fatty acids, such as docosahexaenoic 

acid (DHA), altered rumen bacterial and archaeal communities, but did not significantly affect 

rumen fungi or protoza in dairy cows (Torok et al., 2014). In dairy cows, monensin did not affect 

the archaeal population, but reduced the bacterial diversity, and decreased/increased the 

abundance of 23/10 bacterial OTUs (Scharen et al., 2017). In addition, medicines, for instance 

acarbose, changed rumen bacterial community structures, decreased the abundance of Firmicutes 

and Proteobacteria, and increased the proportion of Bacteroidetes, Fibrobacteres, and 

Synergistetes according to in vitro batch culture studies (Yin et al., 2014).  

3) Host species and breed (genetic background). Guan et al. (2008) reported that rumen 

bacterial profiles were clustered according to beef cattle breeds. Later on, Hernandez-Sanabria et 

al. (2013) revealed that rumen bacterial communities in the progeny of cattle were affected by the 

sire breed, and Henderson et al. (2015) found that host genetic background affected the 

abundance of some bacteria groups in the rumen (such as Fibrobacter, unclassified 

Veillonellaceae,  unclassified Clostridiales, and so on).  

4) Host age. One significant study to link age to the rumen microbiome was conducted in 

dairy cattle by Jami et al. (2013). They found that the abundance of three dominant bacterial 

phyla Firmicutes, Bacteroidetes and Proteobacteria all shifted along with age. Meanwhile, the 

diversity of the rumen microbial community increased and the community became more 

homogeneous as dairy cattle grew.  

5) Physical environmental factors. Rumen microbial communities are partially structured 

by several environmental factors, such as ambient temperature (McEwan et al., 2005), day length 

conditions (McEwan et al., 2005), season (Noel et al., 2017), geographical locations (Ishaq et al., 
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2015), and so on. In addition, several host physiological features are also related to shifts of the 

rumen microbiome, including health status (Plaizier et al., 2017), stress (Deng et al., 2017), feed 

intake (Derakhshani et al., 2016). All these factors mentioned above suggest that the rumen 

microbiome could be theoretically manipulated through optimal feeding, genetic selection, and 

improved management for hosts. 

 

1.4 Host genetic effect on the gut microbiota 

Due to the effect of host genetic background on the rumen microbiota, it is reasonable to 

speculate that there are genetic elements (e.g., SNPs, genes, QTLs, etc.) contributing to the 

variations in the rumen microbial community. Detection of these rumen-microbiota-associated 

genetic features is the foundation to manipulate rumen microorganisms using genetic selection 

and breeding. At the same time, identifying these genetic features could help us better understand 

mechanisms behind interactions between ruminants and their microbiota, which is a fundamental 

and primary step for optimizing host-microorganism interaction patterns in the future. To date, 

although no study has been done to identify potential rumen-microbiota-associated genetic 

elements in ruminants, studies have been conducted in human and mouse to link host genetics 

and the gut microbiota. 

The effect of a single gene on the gut microbiota could be detected using candidate gene 

methods, in which one gene is added or deleted using an animal model (for example: mouse). 

Through these approaches, host genes were proved to have significant influence on the diversity 

and structure of the gut microbiota (Kostic et al., 2013; Spor et al., 2011). For instance, the 

knockout of NLRP6 (NOD-like receptor family pyrin domain containing 6) gene increased the 

abundance of Bacteroidetes and TM7 (Elinav et al., 2011), while the knockout of TLR2 (toll-like 

receptor 2) gene significantly decreased the abundance of Firmicutes, and tended to increase the 
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abundance of Proteobacteria, Bacteroidetes and Actinobacteria in mouse gut (Kellermayer et al., 

2011). In human, it is not feasible to perform gene knock-out or knock-down, but analyzing 

effects of different genotypes within a gene on the gut microbiota is an alternative way. 

Khachatryan et al. (2008) reported that mutations of MEFV (mediterranean fever) gene decreased 

total bacteria numbers, reduced diversities, shifted the abundance of members belonging to 

Bacteroidetes, Firmicutes and Proteobacteria in human gut; Frank et al. (2011) found that 

genotypes of NOD2 (nucleotide-binding oligomerization domain-containing protein 2) and 

ATG16L1 (autophagy related 16 like 1) genes were associated with shifts of the gut microbial 

composition in human.  

At present, quantitative genetics, especially genome-wide association study (GWAS), is 

becoming a powerful strategy to globally scan gut-microbiome-associated genes and QTLs across 

the whole genome. These approaches have been applied in human and mouse: Benson et al. 

(2010) treated the abundances of gut microorganisms as quantitative and polygenic traits, and 

identified 18 QTLs significantly or suggestively associated with the mouse gut microbiome. Then 

a follow-up study reported 42 QTLs for the abundance of 39 microbial taxa in a different mouse 

strain (Leamy et al., 2014), including 4 QTLs that have been detected previously (Benson et al., 

2010). In Goodrich et al. (2014) and Goodrich et al. (2016), authors assessed heritabilities of gut 

microbial features in human and found that one-third identified OTUs were heritable with 

heritability no less than 0.15, providing the evidence that the variations of gut microbiota are 

affected by the host genetic effect. Hence, it is becoming more certain that there are genetics 

components associated with the human gut microbiome. Indeed, using data from Human 

Microbiome Project (HMP), Blekhman et al. (2015) reported overall host genetic variations were 

correlated with the gut microbial structure. They also found that the abundance of 

Bifidobacterium was associated with LCT (lactase) and UBXN4 (UBX domain protein 4) genes, 
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and Prevotella was associated with PLXND1 (plexin D1), OR1S1 (olfactory receptor family 1 

subfamily S member 1), and TBPL2 (TATA-box binding protein like 2) genes, as well as the 

associations between Alistipes and FAM113A (PC-esterase domain containing 1A) gene, and 

between Lachnobacterium and EPDR1 (ependymin related 1) gene. Also based on HMP data, 

Ma et al. (2014) revealed that mitochondrial DNA haplogroups were not only associated with the 

abundance of several gut microbial taxa, but also associated with the general community 

structure, in which haplogroups refer to groups of similar haplotypes (groups of genes) that share 

several polymorphisms (Stewart and Chinnery, 2015). At the same time, they reported that there 

were 5 mtSNPs (mitochondrial single nucleotide polymorphisms) associated with the gut 

microbial taxonomy profile. Through combining GWAS and the candidate gene approach, 

Goodrich et al. (2016) obtained substantial associations between genes and the gut microbiota in 

UK population. Specifically, six genes (e.g., GNA12 [G protein subunit alpha 12], OR6A2 

[olfactory receptor family 6 subfamily A member 2], CD36 [CD36 molecule], LCT, ALDH1L1 

[aldehyde dehydrogenase 1 family member L1], and RAB3GAP1 [RAB3 GTPase activating 

protein catalytic subunit 1]) were validated to be associated with the abundance of five gut 

microbial taxa (SMB53, Cc 115, Blautia, Bifidobacterium, Unclassified SHA-98) using the 

candidate gene method. The association between LCT gene and Bifidobacterium is consistent 

with the previous study (Blekhman et al., 2015). Then GWAS revealed additional associations: 

SLIT3 (slit guidance ligand 3) gene with unclassified Clostridiaceae, R3HDM1 (R3H domain 

containing 1) gene with Bifidobacterium, UHRF2 (ubiquitin like with PHD and ring finger 

domains 2) gene with weighted UniFrac distance (beta-diversity index), and two SNPs on 

chromosome 4 with Bray Curtis dissimilarity (beta-diversity index). Recently, Turpin et al. 

(2016) performed GWAS to evaluate the associations between host genetic variations and the gut 

microbiota in two human cohorts (discovery cohort [n = 1098] and replication cohort [n = 463]). 
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In total of 58 SNPs were associated with the abundance of 33 gut microbial taxa in the discovery 

cohort; 4 of them (located in CNTN6 [contactin 6], DMRTB1 [DMRT like family B with proline 

rich C-terminal 1], SALL3 [spalt like transcription factor 3], and close to UBR3 [ubiquitin protein 

ligase E3 component n-recognin 3] genes) were further confirmed in the replication cohort to be 

associated with Faecalibacterium, Lachnospira, Eubacterium, and Rikenellaceae, respectively.  

All these above-mentioned studies verified the feasibility to investigate the association 

between host genetics and the gut microbiome using GWAS. However, the rumen is different 

with the post-gastric mammalian digestive tract in terms of physiological characteristics, so 

that host effects identified within monogastric animals (such as immune system, secreted 

antimicrobial peptides, and so on) may be less on the rumen microbiome (Henderson et al., 

2015). Therefore, it is necessary to perform GWAS on the rumen microbiome, to discover 

genetics elements contributing to rumen microbial variations.  

 

1.5 Methodologies to study rumen microorganisms 

1.5.1 Cultivation-based approaches 

For a long time, the rumen microbiota was investigated primarily using cultivation-based 

approaches, comprising isolation and cultivation of pure strains, which allow us to look at 

metabolic functions of an isolate and define its ecologic niche in the rumen. Most of our existing 

knowledge on rumen microbial functions is based on these methods. However, many rumen 

microorganisms cannot grow by cultivation (Kim et al., 2011), and thus research attention is 

being moved from cultivation-based methods to culture-independent molecular biology 

techniques recently. Even so, cultivation-based methods are not out of date. By using these 

approaches, we could sequence the complete genome of an isolate, predict its functions, and then 

further verify these predicted functions using physiological studies (Creevey et al., 2014). 
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Information obtained from cultivation-based methods is the foundation to build reference datasets 

and to facilitate the culture-independent data analysis. For example, the Hungate 1000 project is 

on its way to provide a comprehensively rumen-specific database after sequencing around 1000 

genomes of rumen bacteria, archaea, fungi, and ciliate protozoa. To date, the Hungate 1000 

project has 437 rumen microbial cultures being sequenced, and 311 genomes are already 

available at the Joint Genome Institute (JGI; http:// genome.jgi.doe.gov). 

 

1.5.2 Marker gene based approaches to study the rumen microbiota  

The development of culture-independent molecular techniques, mainly based on marker 

genes (e.g., 16S rDNA for bacteria and archaea, mcrA gene for archaea, 18S rDNA for protozoa, 

and internal transcribed spacer [ITS] gene for fungi, etc.), opened a new window to study the 

composition of the rumen microbiota. There are different culture-independent approaches that 

have been applied to study the rumen microbiota: PCR amplification, quantitative real-time PCR, 

PCR-based fingerprinting methods (PCR-DGGE [denaturing gradient gel electrophoresis], PCR-

TTGE [temporal temperature gradient gel electrophoresis], T-RFLP [terminal restriction 

fragment length polymorphism]), Fluorescence in Situ Hybridisation (FISH), sequencing of clone 

library, etc. Advantages and limitations of these methods have been comprehensively reviewed 

and summarized by Zhou et al. (2011b). Nowadays, analyzing PCR amplicons of marker 

genes/transcripts using next generation sequencing technologies (called amplicon sequencing), is 

a well-accepted approach to generate rumen microbial compositional profiles, which have been 

applied in several significant studies (Henderson et al., 2015; Kim and Yu, 2014; Kittelmann et 

al., 2013). However, inherent PCR biases coming from the primer selection (Hong et al., 2009) 

and amplification cycling conditions (Huber et al., 2009) are unavoidable in amplicon 

sequencing. In addition, amplicon sequencing has the limitation to discover novel phylotypes, 
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because PCR primers are usually designed according to known sequences (Ross et al., 2012; 

Urich et al., 2008). 

 

1.5.3 Metagenomics and metatranscriptomics to study the rumen microbiome 

1.5.3.1 Metagenomics and metatranscriptomics 

Metagenomics and metatranscriptomics refer to analyzing the assemblage of entire 

microbial genomes and transcriptomes from environmental samples. Initially, these 

methodologies started with the cloning of environmental DNA/RNA into vectors (e.g. fosmids, 

bacterial artificial chromosome vectors, etc.), followed by sequence-based and/or function-driven 

analysis. Nevertheless, the rapid reduction of costs for NGS accelerated the development of those 

methodologies, and currently they are usually defined as the direct high-throughput shotgun 

sequencing of total DNA and RNA in environmental samples (aka shotgun metagenomics and 

metatranscriptomics), which are adopted in this thesis. The cloning-vector-based metagenomics 

and metatranscriptomics, as well as related studies will not be included and summarized here.  

As mentioned above, metagenomics and metatranscriptomics have become powerful and 

feasible tools to explore the microbiome of an ecosystem. By using metagenomics and 

metatranscriptomics, functional potentials (DNA-based) and functional activities (RNA-based) 

can be estimated, respectively. The advantage of these approaches is that they can better answer 

the two basic questions: “Which members are there?” and “What are they doing?”. 

“Which members are there?” Although amplicon sequencing is rapid and low cost, the 

taxonomic assessment of the microbiota can be misleading due to inherent PCR biases and 

limitations to discover novel phylotypes. However, PCR biases can be avoided by skipping the 

targeted PCR procedure when metagenomics and metatranscriptomics data are used to estimate 

the taxonomic composition of the microbiota. Recently, it has been reported that metagenomics 
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and metatranscriptomics can be used for the taxonomic assessment of the microbiota, which is 

less biased and more quantitative than amplicon sequencing. 

“What are they doing?” For a long time, the study of microbial functions highly relied on 

pure culture-based approaches, which allow us to investigate a specific isolate’s metabolic 

functions and to obtain its single genome/transcriptome. But culture-based methods are not able 

to characterize functions of uncultured microorganisms, or to elucidate overall functions of all 

microorganisms within a complex microbiota. Because metagenomics and metatranscriptomics 

can capture the whole genomic and transcriptomic repertoire for both cultivable and uncultivable 

microorganisms, they are immensely helpful in functional prediction with high accuracy.   

Till now, microbiomes from several ecosystems have been explored using metagenomics 

and metatranscriptomics, including soil (Tveit et al., 2014; Urich et al., 2008), seawater (Baker et 

al., 2013; Martinez et al., 2013), animal gastrointestinal tract (Franzosa et al., 2014; Qin et al., 

2010), plant rhizosphere (Mendes et al., 2014), and so on. But the number of rumen-related 

metagenomic and metatranscriptomic studies is still low. Understanding microbial taxonomic and 

functional characteristics is vital to link the rumen microbiome to host phenotypes, which can 

help us develop strategies to optimize the rumen microbial fermentation for higher productivity. 

 

1.5.3.2 Application of metagenomics and metatranscriptomics in studying the rumen 

microbiome 

Previous rumen metagenomic and metatranscriptomic studies mainly focused on 

genes/transcripts encoding enzymes for carbohydrate metabolism, especially enzymes for the 

degradation of lignocellulosic material that comes from plant cell walls. For instance, Brulc et al. 

(2009) conducted the first shotgun metagenomics-based study to screen carbohydrate-active 

enzymes (CAZymes), and identified genes encoding glycoside hydrolases (GHs, n = 35), 
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carbohydrate-binding modules (CBMs, n = 3), carbohydrate esterases (CEs, n = 5), and pectate 

lyases (PLs, n = 1) from the fiber-adherent rumen microorganisms in beef cattle. Later on, 

shotgun metagenomics was applied to identify biomass-degrading genes in rumen 

microorganisms of dairy cattle by Hess et al. (2011). In that study, a total of 27,755 

carbohydrate-active genes were detected and 90 proteins were expressed; 57% of them were 

related to the degradation of cellulosic substrates. Meantime, Qi et al. (2011) performed a 

metatranscriptomic analysis to estimate functions of rumen eukaryotes in muskoxen, and  

reported the expressions of genes encoding GHs, CEs, PLs, and CBMs in eukaryotes of the 

muskoxen rumen. Later on, a number of follow-up studies have been conducted to detect 

carbohydrate-degrading enzymes as well as related components in diverse ruminant species using 

metagenomics and metatranscriptomics (Bensoussan et al., 2017; Comtet-Marre et al., 2017; Dai 

et al., 2012; Findley et al., 2011; Gruninger et al., 2014a; Jose et al., 2017; Lim et al., 2013; 

Lopes et al., 2015; Pope et al., 2012). 

Recently, metagenomics and metatranscriptomics have been applied to study the rumen 

virome, whose composition and functions are largely unknown. Berg Miller et al. (2012) 

conducted the first metagenomics-based survey of the rumen virome in dairy cattle and reported 

that the rumen virome was enriched for phages and transposable elements. According to their 

results, rumen viruses not only had large numbers, but also displayed high diversity. Later on, 

Ross et al. (2013c) obtained 14 putative viral sequence fragments from dairy cattle rumen 

metagenomes. They found taxonomically variable but functionally conserved rumen viromes 

among individual dairy cows. In addition, Yutin et al. (2015) explored the diversity of virophages 

and identified a new family of virophages using metagenomics. The findings from above studies 

suggest that metagenomics is a powerful tool to discover novel viruses, which opens a new 
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window to intensively study functions of the rumen virome, and to better understand how viruses 

interact with other microbial groups (bacteria, archaea, protozoa, and fungi) in the rumen. 

In addition to studying the virome, metagenomics and metatranscriptomics have also been 

used to investigate the rumen bacteria communication pattern via commuquorum-sensing (QS) 

systems (Ghali et al., 2016), as well as functional potentials of the rumen microorganisms to 

degrade royal demolition explosives (RDX) (Li et al., 2014). Overall, these highlight the 

potentials of metagenomics and metatranscriptomics to comprehensively discover novel 

functions and features of the rumen microbiome. 

  

1.5.4 Pipelines to conduct rumen metagenomics and metatranscriptomics 

To date, standard pipelines and general programs for rumen metagenomic and 

metatranscriptomic analysis have not been well established. Therefore, integrating and comparing 

outcomes from different studies is still a problem. To solve this problem, in this section, an 

overview of the major steps of metagenomics and metatranscriptomics is summarized (Figure 

1.1), including nucleic acid extraction, sequencing platform selection, library construction, 

quality control of sequencing outputs, compositional analysis, assembly-based functional 

analysis, assembly-free functional analysis, and comparative analysis.   

 

1.5.4.1 DNA/RNA extraction 

To perform metagenomics and metatranscriptomics, the first step is to isolate high quality 

DNA/RNA from rumen samples. Yu and Morrison (2004) and Henderson et al. (2013) compared 

effects of different DNA extraction methods on rumen samples. Although it is not conclusive 

which method is universally reliable in all situations, these two studies recommended to use 

repeated bead beating plus column (RBB+C) or phenol-chloroform and bead beating with 
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filtration kit (PCQI) methods to isolate DNA from rumen samples. Wang et al. (2011) developed 

an RNA extraction method specifically for rumen samples, which is based on liquid nitrogen 

grinding of whole ruminal solids and acid guanidinium-phenol-chloroform extraction plus 

column purification (SRCI). This method was used in the rumen metatranscriptomic study 

conducted by Qi et al. (2011). High quality RNA with RNA integrity number (RIN) higher than 

7.0 can be obtained using these rumen-specific RNA extraction protocols, which are 

recommended for further rumen metatranscriptomic studies. In addition, other RNA isolation 

methods were also applied in two independent rumen metatranscriptomic studies (Poulsen et al., 

2013; Shi et al., 2014), but qualities of isolated RNA were not mentioned and thus are not able to 

be evaluated. 

 

1.5.4.2 Sequencing platform selection and library construction 

To date, there are two commonly used sequencing platforms for metagenomics and 

metatranscriptomics: Roche/454 platform (shut down in 2013) and Illumina system 

(https://www.illumina.com), although a few studies have also tried Pacific Biosciences platform 

(http://www.pacb.com/) (Driscoll et al., 2017; Tsai et al., 2016) and Ion Torrent platform 

(https://www.thermofisher.com) (Whiteley et al., 2012). Currently, the majority of rumen-related 

studies are relying on the Illumina system and thus the following sections will focus on this 

system. 

For metatranscirptomic studies, before generating libraries, whether the mRNA 

enrichment is necessary or not should be considered based on research objectives. Because a 

large fraction of total rumen microbial RNA constitutes rRNA (> 90%) (Poulsen et al., 2013), the 

enrichment of mRNA can be conducted to increase the sequencing depth of mRNA in order to 

capture more active functional transcripts. For example, Shi et al. (2014) and AlZahal et al. 



 24 

(2017) successfully enriched mRNA from rumen content/fluid samples using commercial kits. 

However, Tveit et al. (2014) reported that the mRNA enrichment biased the distribution of 

mRNA, although it increased the proportion of mRNA. Hence, Tveit et al. (2014) suggested to 

omit the mRNA enrichment step and to use total RNA for the library construction, which can 

provide both taxonomic information (estimated based on rRNA) and functional profiles (derived 

from mRNA) for the active microbiome. With the reduction in NGS costs, sequencing total RNA 

with greater depth becomes more feasible. 

 

1.5.4.3 Quality control (QC) of sequencing outputs 

After obtaining sequencing reads, assessing the output quality and performing quality 

control (QC) are crucial steps prior to further analysis, which mainly includes two aspects while 

studying the rumen microbiome. The first aspect is to trim low quality bases and residual 

artificial sequences. These noises decrease the accuracy of taxonomic analysis (Bokulich et al., 

2013), disturb read mapping, and affect de-novo assembly (Sturm et al., 2016). Several programs 

have been developed for this step, including Trimmomatic (Bolger et al., 2014), PRINSEQ 

(Schmieder and Edwards, 2011), FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), NGS 

QC Toolkit (Patel and Jain, 2012). The main functions of these widely-used programs are 

summarized in Table 1.1. Among these programs, Trimmomatic is a flexible and efficient 

preprocessing tool that is specifically designed for Illumina outputs and can generate outcomes 

superior to, or at least competitive with other programs (Bolger et al., 2014), and thus we 

recommend to use this program for the QC process. In addition to the programs listed in Table 

1.1, there are other available options that have been briefly compared by Pandey et al. (2016), to 

which the reader is referred. 
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The second aspect of QC is to remove host sequences, because these sequence 

contaminations possibly cause mis-assembly of microbial sequences and lead to erroneous 

conclusions (Schmieder and Edwards, 2011). In human fecal and milk samples, human DNA 

sequences reached as high as 64% and 77% of total metagenome libraries, respectively, 

suggesting the contamination of host genetic materials is a serious concern for metagenomic 

studies (Schmieder and Edwards, 2011; Ward et al., 2013). In rumen meta-omic studies, although 

host contaminations are not serious (0.43%) (Shabat et al., 2016), checking and discarding them 

are still recommended. To filter the host (such as Bos taurus for cattle and Ovis aries for sheep) 

sequences, reads from rumen metagenomic and metatranscriptomic datasets need to be aligned to 

the host (Bos tauras or Ovis aries) genomes and mapped sequences should be discarded. 

Currently, the MG-RAST (Meyer et al., 2008) based pipeline and the TopHat2 (Kim et al., 2013) 

based approach have been suggested by Shabat et al. (2016) and our research group for this step, 

respectively. MG-RAST is a web-based data analysis pipeline, while TopHat2 is a program to 

map/align RNA-Seq reads to reference genomes using a local computer. For this step, the 

algorithms behind these two methods were both Bowtie-based (Langmead and Salzberg, 2012), 

and thus the overall outcomes should not be significant different between them. Researchers can 

make their own choices based on their available computing sources: if they have a local computer 

with high calculation capacity, they can run the TopHat2 based pipeline; if they don’t have a 

powerful computer, MG-RAST can be a good choice, but the running time after uploading data 

to MG-RAST is longer than running the analysis locally. 

 

1.5.4.4 Compositional analysis 

Amplicon sequencing is the most widely applied approach to estimate the compositional 

profiles of the rumen microbiota (Henderson et al., 2015; Kittelmann et al., 2013), which has 
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been mentioned in section 1.5.2. To achieve the taxonomic analysis of amplicon sequencing, 

there are mainly three strategies to define Operational Taxonomic Unit (OTU): de novo, closed-

reference, and open-reference OTU picking (Navas-Molina et al., 2013). Most existing analyses 

for amplicon sequencing were based on the arbitrary definition of OTUs. Sequences are clustered 

into OTUs based upon similarity (typically 97% similarity for 16S rDNA sequences), which is 

called de novo OTU picking (Rideout et al., 2014). Although this 97% similarity was considered 

sufficient to delineate species (Koeppel and Wu, 2013), it is only approximate. Sometimes 

different species have similar 16S rDNA sequences with high identity (≥ 99%), such as Bacillus 

globisporus and Bacillus psychrophilus (Fox et al., 1992), as well as Clostridium botulinum and 

Clostridium sporogenes (Rossi-Tamisier et al., 2015). On the contrary, multiple copies of 16S 

rDNA from a single species may have similarity lower than 97% (Vetrovsky and Baldrian, 2013). 

Accordingly, the diversity of the microbiota may not be accurately estimated based on these 

arbitrarily defined OTUs, and analysis at the OTU level may not reflect the “true” and “biological 

meaningful” microbial composition completely. Therefore, along with the improvement of 

reference databases, aligning sequences directly to pre-defined reference sequences (called 

closed-reference OTU picking) (Rideout et al., 2014), is a potential choice to avoid the problem 

of de novo OTU picking. However, it is notable that closed-reference OTU picking cannot 

identify novel phylotypes, because sequences not matched to references are excluded from the 

further analysis. Therefore, after closed-reference OTU picking, performing an addition step of 

de novo OTU picking for those sequences failed to match to references (called open-reference 

OTU picking) can complement this limitation (Rideout et al., 2014), which is recommended for 

the taxonomic analysis using amplicon sequencing. 

In addition to the amplicon sequencing approach mentioned above, taxonomic analysis 

can also be performed based on metagenomic and metatranscriptomic datasets. From 
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metagenomic datasets, the taxonomic profiles can be estimated based on metagenomic 16S rDNA 

reads. This strategy was firstly suggested and tested in marine metagenomes by Logares et al. 

(2014). Later on, Ellison et al. (2014) and Taxis et al. (2015) applied this approach to evaluate 

the rumen microbial composition. Due to the low proportion of 16S rDNA among total DNA 

(0.001% - 0.12%) (Ellison et al., 2014; Logares et al., 2014), the shortcoming of this approach is 

that high sequencing depth is required to generate enough 16S rDNA reads, which dramatically 

increases the costs. For metatranscriptomic studies, 16S rRNA extracted from total RNA 

sequencing can be utilized to generate rumen taxonomic profiles and to represent active microbial 

taxa. This approach was firstly developed for soil metatranscriptomes by Urich et al. (2008), and 

then was applied to study the active microbiota in soil (Tveit et al., 2014), hydrothermal vents 

(Lanzen et al., 2011), and animal gut (Poulsen et al., 2013; Schwab et al., 2014). However, it has 

not been used for rumen samples. To perform these rDNA/rRNA based taxonomic analyses, 

rDNA/rRNA reads should be identified and extracted from metagenomic and metatranscriptomic 

datasets, which can be achieved using programs such as SortMeRNA (Kopylova et al., 2012), 

Bowtie2 (Langmead and Salzberg, 2012), and BLAST (Altschul et al., 1990).   

Furthermore, other alternative strategies, such as aligning total metagenome and 

metatranscriptome reads to genome references or clade-specific marker gene databases, are also 

used to generate the taxonomic profiles, which have been adopted in the various bioinformatics 

pipelines including MG-RAST pipeline (Meyer et al., 2008), Phymm/PhymmBL program (Brady 

and Salzberg, 2009), and MetaPhlAn software (Segata et al., 2012). In addition, Ghoshal et al. 

(unpublished data) recently developed a pipeline to enhance the compositional analysis of rumen 

metagenome datasets using Kraken (Wood and Salzberg, 2014) and customized databases. 

However, it is notable that these strategies rely heavily on the integrity of databases, and it is 

probably not efficient for samples from poorly characterized environments (e.g. rumen).  
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1.5.4.5 Assembly-based functional analysis 

Two assembly strategies. Assembly of short reads is expected to reconstruct genomes and 

transcriptomes of both cultivable and uncultured organisms from sequencing datasets, which can 

provide valuable information on protein coding genes and/or operons for the whole microbiome. 

Despite the impossibility of obtaining complete genome(s) or transcriptome(s) in most cases, 

assembly is still worth performing in order to obtain longer contigs (long sequence fragments 

combined from short reads) that will increase the sequence annotation accuracy. For 

metatranscriptomic data, rRNA sequences should be discarded from the dataset before the 

assembly, and only the filtered putative mRNA reads should be included into the downstream 

functional analysis. Two strategies can be employed for assembly: reference-based assembly and 

de novo assembly.  

The reference-based assembly strategy only works when sequencing reads are from 

species with known reference genomes or from species closely related to the known reference 

genomes. If there are insertions, deletions, or copy number variations, these regions cannot be 

successfully assembled using reference-based approaches (Thomas et al., 2012). Compared to 

reference-based assembly, de novo assembly reconstructs contigs from sequencing datasets 

without the aid of genome information. Therefore, considering the complexity of the rumen 

microbiome and the unavailability of a high number of rumen microbial genomes, de novo 

assembly strategy is primarily recommended in rumen-related metagenomic and 

metatranscriptomic studies. Currently, most of the existing de novo assemblers have been 

designed based on the de Bruijn graph, such as Meta-Velvet (Namiki et al., 2012), 

SOAPdenovo2 (Luo et al., 2012), Velvet (Zerbino and Birney, 2008), MEGAHIT (Li et al., 

2015), and metaSPAdes (Nurk et al., 2017). Till now, the majority of rumen-related 

metagenomic and metatranscriptomic studies have included the de novo assembly step in the 
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analysis, with only two exceptions (AlZahal et al., 2017; Poulsen et al., 2013). It is noticeable 

that due to conserved genome regions, organism variability, and gene shifts, de novo assembly 

may bring chimeras and ambiguities into contigs, especially for complex microbial communities 

(Segata et al., 2013), such as rumen.  

Gene prediction and functional annotation. After assembly of metagenomic reads, gene 

prediction and annotation procedures are similar to the framework of the single microbial genome 

analysis. Contigs are scanned to identify protein coding sequences (CDs) and/or open reading 

frames (ORFs), as well as other components. The gene prediction can be achieved using several 

gene predictors that are particularly designed for metagenomics, including Prodigal (Hyatt et al., 

2010), MetaGeneMark (Zhu et al., 2010), FragGeneScan (Rho et al., 2010), and so on. The gene 

prediction step should be omitted from the metatranscriptomic analysis, and assembled RNA 

contigs (e.g. transcripts) can be used directly for the annotation. The principle behind the most 

frequent annotation approach is to assign predicted CDs/ORFs/transcripts against well-

characterized databases using homology search, either based on nucleotide or translated protein 

sequences. There are a number of well-accepted databases for the annotation, such as RefSeq 

(Pruitt et al., 2012), UniProt (Pundir et al., 2017), KEGG (Kanehisa et al., 2012), eggNOG 

(Huerta-Cepas et al., 2016), COG/KOG (Tatusov et al., 2003), and SEED (Overbeek et al., 

2005). Several programs, including BLAST (Altschul et al., 1990), USEARCH (Edgar, 2010), 

DIAMOND (Buchfink et al., 2015), are all available to perform homology detection. In addition 

to the homology-based approach, Hidden Markov Models (HMM)-based method (Eddy, 2011) 

can also be used to identify protein domains, and are more suitable to annotate sequences with 

low identity to references. The annotation procedure can also be conducted through web-based 

annotation pipelines, such as MG-RAST (Meyer et al., 2008), WebMGA (Wu et al., 2011), and 

Galaxy (https://usegalaxy.org/), which combine several of above-mentioned tools. 
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Quantification of predicted genes/transcripts. After assembly, sequencing data only have 

quality characteristics (presence and absence of genes/transcripts) without quantity characteristics 

(abundance and expressions). To perform the subsequent comparative analysis among treatments 

and/or samples, original sequencing reads should be mapped to predicted genes/transcripts to 

estimate the abundance/expressions using tools such as Bowtie2 (Langmead and Salzberg, 2012), 

BWA (Li and Durbin, 2010), USEARCH (Edgar, 2010), DIAMOND (Buchfink et al., 2015), or 

BLAST (Altschul et al., 1990). Outputs from these bioinformatics programs are usually SAM 

(Sequence Alignment/Map), BAM (Binary Alignment/Map), or BLAST-format files. In order to 

make these outputs adapted for the downstream statistical analysis, they should be further 

converted to count or abundance files using programs including HUMAnN (Abubucker et al., 

2012), MEGAN (Huson et al., 2016), HTSeq (Anders et al., 2015), and SAMtools (Li et al., 

2009a).   

 

1.5.4.6 Assembly-free functional analysis 

The assembly-free approach is to align original short reads (post QC) to existing 

functional databases or annotated reference genomes, which is considered as an alternative way 

to estimate functional profiles of metagenomes and metatranscriptomes. For metatranscriptomic 

data, rRNA reads should be removed and only putative mRNA sequences should be kept for the 

analysis. This approach has been used in many metagenomic and metatranscriptomic studies 

(Dubin et al., 2016; Franzosa et al., 2014; Sanders et al., 2015), but only two of them are rumen-

related (AlZahal et al., 2017; Poulsen et al., 2013). The accuracy of the assembly-free approach 

highly depends on the reference databases. For well-characterized environments, such as human 

gut with 77% of the taxa cultured and genomes identified (Lagier et al., 2016), this approach is 

reliable and its outcomes are convincing (Dubin et al., 2016; Franzosa et al., 2014). However, for 
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poorly-described environments without complete references, such as rumen (with > 55% 

“unclassified” and “unnamed” microbial phylotypes) (Henderson et al., 2015), only a low 

proportion of mRNA reads could be mapped to the KEGG database (~8%; Li et al., unpublished 

data.) and the remaining unmapped reads have to be ignored for the downstream analysis. This 

can explain why only two rumen-related meta-omics studies adopted this approach (AlZahal et 

al., 2017; Poulsen et al., 2013).  

MG-RAST (Meyer et al., 2008), HUMAnN (Abubucker et al., 2012), and MEGAN 

(Huson et al., 2016) are well-accepted programs to conduct the assembly-free approach. The 

feasibilities of these programs have been tested, and they have been successfully applied to study 

microbiomes from many environments, such as soil (Urich et al., 2008), animal gut (Franzosa et 

al., 2014; Sanders et al., 2015), and plant rhizosphere (Mendes et al., 2014). Therefore, we 

suggest that these programs can be applied to study the rumen microbiome if the assembly-free 

approach is to be used. With the Hungate 1000 project on its way, it will provide a 

comprehensively rumen-specific database after sequencing around 1000 genomes of rumen 

bacteria, archaea, fungi, and ciliate protozoa, which will make the assembly-free approach more 

feasible for characterization of rumen metagenomes and metatranscriptomes in the near future. 

To date, the Hungate 1000 project has 437 rumen microbial cultures being sequenced, and 311 

genomes are already available at the Joint Genome Institute (JGI; http:// genome.jgi.doe.gov). 

 

1.5.4.7 Comparative analysis 

In the majority of metagenomic and metatranscriptomic studies, the ultimate goal is to 

identify differences among treatments and/or samples at taxonomic and functional levels. An 

important aspect before the comparative analysis is to apply the appropriate normalization to all 

related counts (e.g., genes, transcripts, functional pathways, etc.) obtained from previous steps. 
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This is because different samples have different sequencing depths and genes/transcripts are not 

of the same length. To normalize different sequencing depths, the counts per million reads (cpm) 

is commonly used by dividing the count of each gene/transcript to the total number of mapped 

reads. The limitation of this approach is that the length variations of genes/transcripts are not 

accounted for, and thus it is suitable to compare the same functional features between samples 

but not suitable to compare different functional features within the same sample. If characterizing 

the functional profile and comparing different genes/transcripts within the same sample is one of 

the research objectives, it is necessary to take the length of each gene/transcript into consideration 

and normalize the gene/transcript counts to reads/fragments per kilo base per million mapped 

reads (RPKM/FPKM). In addition, since most of sequencing data are still not normally 

distributed after normalization, further data transformation is necessary to make the data more 

appropriate for frequently-used normal-distribution-based statistical methods, such as ANOVA/t-

test based on arcsine square root transformation (Franzosa et al., 2014). Otherwise, approaches 

specifically-designed for sequencing data should be adopted to perform the comparative analysis, 

including LEfSe (Segata et al., 2011), DESeq2 (Love et al., 2014), edgeR (Robinson and Smyth, 

2007), and so on. 

 

1.6 Linkages between the rumen microbiome and host phenotypes 

As an essential part of the digestive track in ruminants, the rumen microbiome (at both 

taxonomic and functional levels) has been linked to many host phenotypes, such as milk 

composition (Jami et al., 2014), rumen acidosis (Khafipour et al., 2009), feed efficiency 

(Hernandez-Sanabria et al., 2010; Shabat et al., 2016), CH4 yields (Shi et al., 2014; Wallace et 

al., 2015), and so on.  
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1.6.1 Feed efficiency 

Most of known linkages between feed efficiency and the rumen microbiome were 

revealed at the taxonomic level. Guan et al. (2008) observed low-RFI cattle had more similar 

rumen bacterial profiles that separated from high-RFI individuals, which is the first attempt to 

link the rumen microbiome to feed efficiency within our best knowledge. After that, many 

follow-up studies were conducted to further investigate these linkages and to identify particular 

rumen microbial taxa related to feed efficiency. The abundance of bacteria taxa at different 

taxonomic levels, such as phylum-level taxa (Firmicutes and Lentisphaerae), family-level taxa 

(Lachnospiraceae, Paraprevotellaceae, Prevotellaceae, RF39, S24-7, and Veillonellaceae), 

genus-level taxa (Anaerovibrio, Butyrivibrio, Clostridium, Coprococcus, Eubacterium, 

Fibrobacter, Lactobacillus, Prevotella, Pseudobutyrivibrio, Ruminococcus, Succiniclasticum, 

and Succinivibrio), and so on, are all reported to be associated with feed efficiency in beef and 

dairy cattle (Carberry et al., 2012; Hernandez-Sanabria et al., 2010; Hernandez-Sanabria et al., 

2013; Jewell et al., 2015; Myer et al., 2015a). The abundance of rumen archaeal taxa, including 

Methanobrevibacter smithii, Methanosphaera stadtmanae, and Methanobrevibacter sp. strain 

AbM4, as well as the overall archaeal community structure, are also associated with feed 

efficiency in beef cattle (Carberry et al., 2014; Zhou et al., 2009; Zhou et al., 2010).  

However, at the functional level, the associations between the rumen microbiome and 

feed efficiency have not been well estimated and more research attention is being paid on this 

aspect. Ross et al. (2012) verified the variations of rumen metagenomes between different dairy 

cows were larger than the variations caused by repeated samplings within the same cow, firstly 

indicating the feasibility to link the rumen metagenome to host phenotypes. Applying 

metagenomics to rumen samples from dairy cows, Shabat et al. (2016) revealed that more 

efficient individuals possess lower diverse rumen microbiomes at both species and gene levels, 
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and the prediction of feed efficiency using genes of rumen microbiomes can reach up to 91% 

accuracy. In the meantime, they found that genes enriched in the efficient group mostly belonged 

to Megasphaera elsdenii, while the similar trend was not observed in the inefficient group. 

Therefore, they suggested that microbiomes of inefficient cattle might utilize more diverse 

substrates and produce more diverse products, which either have negative effect on the host or 

cannot be efficiently absorbed by the host. These findings suggest that rumen microbiomes of 

inefficient cattle have more diverse functional potentials (at the DNA level) than those of 

efficient cattle, which contribute to the host feed efficiency variations. 

 

1.6.2 CH4 emissions 

As major CH4 producers, the overall abundance of total rumen methanogens only had 

weak or even no correlation with CH4 emission levels, while the composition and the structure of 

the archaeal community had more significant effects on CH4 yield (Tapio et al., 2017). For 

example, the relative abundance of Methanobrevibacter gottschalkii, Methanogenic archaeon, 

Methanosphaera spp., Methanomassiliicoccus, and so on contribute to the variations of CH4 

emissions in cattle and sheep (Kittelmann et al., 2014; Poulsen et al., 2013; Shi et al., 2014; Zhou 

et al., 2011a). In addition to archaeal communities, rumen bacterial profiles are also associated 

with CH4 emissions (Kittelmann et al., 2014): there are three different ruminotypes comprising 

various bacterial taxa, in which higher abundance of H2-producing bacteria correlated with higher 

CH4 yield. The abundance of Proteobacteria, especially family Succinivibrionaceae, showed a 

negative correlation with CH4 emissions (Wallace et al., 2015). Furthermore, the abundance of 

rumen protozoa was reported to be positively correlated with CH4 yield using a meta-analysis 

(Guyader et al., 2014), and this negative correlation pattern was confirmed through the 

elimination of rumen ciliate protozoa that reduced 11% CH4 production (Newbold et al., 2015).  
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The first attempt to link the rumen metagenome to CH4 emissions was conducted in dairy 

cows by Ross et al. (2013b), who successfully predicted CH4 yields using metagenomic profiles 

with an accuracy of prediction 0.466. Soon afterwards, Shi et al. (2014) reported that it was the 

expressions of methanogenesis-related genes instead of the abundance of these genes contributing 

to the CH4 yield variations in sheep, when sheep rumen microbiomes were assessed using 

metagenomics and metatranscriptomics. Specifically, the CH4 metabolism pathway (ko00680), 

three genes encoding subunits of methyl coenzyme M reductase, and several genes encoding 

enzymes for the CO2/H2 pathway expressed higher in high CH4 emitters. Therefore, they 

suggested that reducing expression levels of these genes could be a strategy for future CH4 

mitigation. Contrary to that study, Wallace et al. (2015) revealed genes directly or indirectly 

involved in methanogenesis were on average 2.7-fold more abundant in high CH4 yield beef 

cattle based on rumen metagenomics, suggesting that functional characteristics of the rumen 

microbiome at the DNA level should also be considered as the target for future CH4 mitigation. 

Through combining metagenomics, metatranscriptomics, and amplicon sequencing, Kamke et al. 

(2016) reported that Sharpea spp. and Megasphaera spp. were more abundant, and 

genes/transcripts for sugar transport, lactate utilisation and production, propionate metabolism, 

and butyrate metabolism were enriched in low CH4 yield sheep. These suggest that more hexoses 

were firstly fermented to lactate and then converted to butyrate by Sharpea spp. and 

Megasphaera spp. through a two-step process in the rumen of those low CH4 yield animals. In 

addition, through comparing microbiomes between yaks/Tibetan sheep from high-altitude (low 

CH4 producers) and cattle/ordinary sheep from low altitude (high CH4 producers) using 

metagenomics, Zhang et al. (2016) found that ruminants with low CH4 emissions had more 

abundant energy- and carbohydrate-metabolic-related functional categories, while high CH4 

producers had enriched functions related to methanogenesis (such as the CO2/H2 pathway and the 
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methylotrophic pathway). Overall, these suggest that metagenomics and metatrnascriptomics can 

reveal the potentials (DNA) and activities (RNA) of rumen functions and/or enzymes involved in 

methanogensis, providing future targets for methane mitigation in ruminants. 

 

1.6.3 Microbial responses to diet and feed additives 

As described in section 1.3.2, diet and feed additive are two main factors to shape the 

rumen microbial community structures. As one of the main factors to shape the rumen 

microbiome (Henderson et al., 2015), diet contributes to rumen microbial variations at both 

taxonomic and functional levels, which has been confirmed using metagenomics (Campanaro et 

al., 2017; Ellison et al., 2014). Metagenomics was also applied to study the rumen metabolic 

disorder (e.g. frothy bloat) caused by microbial functional shifts after beef cattle received the 

high crude protein (CP) diet (Pitta et al., 2016). 

Metagenomics and metatranscriptomics were utilized to look into effects of feed additives 

on the rumen microbiome. For example, Ross et al. (2013a) investigated the effect of two 

methane-mitigating feed additives (grapemarc and a combination of lipids and tannin) on the 

rumen microbiome using metagenomics in dairy cattle. These two additives actually altered 

microbiomes in similar ways, both of which affected four second level KEGG categories (e.g. 

amino acid metabolism, carbohydrate metabolism, translation, and biosynthesis of other 

secondary metabolites). Meanwhile, adding rapeseed oil (RSO) supplementation to the diet of 

dairy cows reduced CH4 emissions, and the mechanism of this effect was investigated using 

rumen metatranscriptomics (Poulsen et al., 2013). After adding RSO to diet, it was observed that 

down-regulated expressions in several microbial genes of enzymes involved in methylamine-

based methanogenesis, including dimethylamine permease (DMA), DMA methyltransferase 

corrinoid protein, trimethylamine:corrinoid methyltransferase, which were all related to the 
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decrease in Methanomassiliicoccales. Denman et al. (2015) studied the CH4 inhibition effect of 

bromochloromethane (BCM, an anti-methanogenic compound) on goats via metagenomics. 

Higher abundance of genes involved in the succinate pathway were detected in rumen 

microbiomes in response to BCM, and thus they speculated that this pathway could primarily 

consume H2 when methanogenesis was inhibited. The above findings indicate that metagenomics 

and metatranscriptomics are power tools to detect the microbial shifts in response to dietary 

intervention strategies. 

 

1.7 Knowledge gaps 

Although rumen microorganisms have been explored in the last decade using culture-

independent molecular techniques, the current understanding of its phylogenetic diversities is 

primarily from studies using marker genes based approaches as well as a few studies using 

metagenomics. Because marker genes based approaches have inherent biases as we mentioned in 

section 1.5.2 and DNA-based metagenomics could not distinguish active, inactive, and dead 

cells, metatranscriptomics is becoming a potentially powerful approach to identify active 

microorganisms, which has been applied in soil (Tveit et al., 2014; Urich et al., 2008), 

hydrothermal vents (Lanzen et al., 2011), animal gut (Poulsen et al., 2013; Schwab et al., 2014), 

etc. However, metatranscriptomics has not been used to assess the compositional profiles of the 

rumen microbiota and there is no well-defined pipeline to achieve the taxonomic analysis based 

on rumen metatranscriptomic data. Moreover, our understanding of the associations between 

functional features of the rumen microbiome and feed efficiency is merely based on a recent 

metagenomic study in dairy cattle (Shabat et al., 2016). So far, no study has been conducted to 

link rumen microbial functional features (at both DNA and RNA levels) to feed efficiency in beef 

cattle, and whether these associations are universal among different beef cattle breeds is 
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unknown. Furthermore, it has been known that several genes and QTLs contribute to the 

variations of the gut microbiota in humans and mice (section 1.4), and host genetic background 

could impact on the rumen microbiota (Guan et al., 2008; Henderson et al., 2015; Hernandez-

Sanabria et al., 2013). However, mechanisms and genetic components behind the host genetic 

effect have not been investigated in ruminants.  

 

1.8 Hypotheses and objectives 

I hypothesized that total-RNA-based metatranscriptomics could be applied to characterize 

both compositional and functional characteristics of the rumen microbiome, and 

metatranscriptomes differ among cattle with varied feed efficiency and different breeds. 

Moreover, I also hypothesized that rumen microorganisms can be influenced by host genetics, 

and bovine genetic elements (e.g., SNPs, genes, QTLs, etc.) can contribute to the variations of the 

rumen microbiota. 

The long-term objectives of this project were to identify associations between the rumen 

microbiome and feed efficiency, and to detect bovine genetic components for the rumen 

microbiome that are responsible for higher feed efficiency. The specific objectives were: 1) to 

develop a pipeline to achieve the taxonomic analysis using metatranscriptomic data (Chapter 2); 

2) to assess compositional and functional profiles of the active rumen microbiome using 

metatranscriptomics, and to link these active microbial features with feed efficiency in beef cattle 

(Chapter 3); 3) to investigate associations between rumen metagenome/metatranscriptome and 

feed efficiency (RFI) in various beef cattle breeds (Chapter 4); 4) to identify bovine genetic 

components (e.g., SNPs, genes, QTLs, etc.) for the rumen microbiota using GWAS (Chapter 5). 
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1.10 Tables 

Table 1.1 Widely-used programs for quality control (QC) of sequencing reads 
Program Input Major QC functions 
Trimmomatic 
(Bolger et al., 2014) 
 

Single-end & Paired-end 
(Illumina) 

1. Cut primer, adapter and other 
artificial sequences 

2. Drop low quality reads 
3. Trim low quality bases 
4. Crop reads to certain length 

   
PRINSEQ 
(Schmieder and 
Edwards, 2011) 

Single-end & Paired-end 
(Illumina, 454/Roche, 
Ion Torrent) 

1. Perform summary statistics of 
sequences 

2. Drop low quality reads 
3. Trim low quality bases 
4. Crop reads to certain length 
5. Filter reads by GC content 

   
NGS QC Toolkit 
(Patel and Jain, 2012) 

Single-end & Paired-end  
(Illumina, Roche/454) 

1. Perform summary statistics of 
sequences 

2. Cut primer, adapter and other 
artificial sequences 

3. Drop low quality reads 
4. Crop reads to certain length 
5. Trim homopolymer 

   
FASTX-Toolkit 
(http://hannonlab.cshl 
.edu/fastx_toolkit/) 

Single-end 
(Illumina, 454/Roche, 
Ion Torrent) 

1. Perform summary statistics of 
sequences 

2. Cut primer, adapter and other 
artificial sequences 

3. Drop low quality reads 
4. Trim low quality bases 
5. Crop reads to certain length 

   
ClinQC 
(Pandey et al., 2016) 

Single-end & Paired-end 
(Illumina, 454/Roche, 
Ion Torrent, Sanger) 

1. Perform summary statistics of 
sequences  

2. Cut primer, adapter and other 
artificial sequences 

3. Drop low quality reads 
4. Trim low quality bases 

   
SolexaQA 
(Cox et al., 2010) 

Single-end & Paired-end 
(Illumina, 454/Roche, 
Ion Torrent)  

1. Perform summary statistics of 
sequences 

2. Drop low quality reads 
3. Trim low quality bases 
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1.11 Figures 

	
Figure 1.1 A general workflow to conduct rumen metagenomics and metatranscriptomics. To 
perform the functional analysis of metatranscriptomic data, it is necessary to discard rRNA reads 
and only include putative mRNA into the analysis. 
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Chapter 2. Taxonomic assessment of rumen microbiota using total RNA and targeted 

amplicon sequencing approaches 

 

2.1 Introduction 

Microbiota play essential roles in many ecosystems, including the animal gastrointestinal 

tract, and have attracted much attention in the past decade due to the understanding of their 

functions in host productivity and health (Holmes et al., 2012; Million et al., 2013; Yeoman and 

White, 2014). Numerous studies have shown that changes in gastrointestinal microbiota at the 

taxonomic and/or functional levels are associated with host dysfunction and metabolic diseases 

(Marchesi et al., 2015; Ojeda et al., 2015), highlighting the importance of studying the 

interactions that exist between gastrointestinal microbiota and host animals. Therefore, an 

accurate assessment of the composition and diversity of rumen microbiota is essential to link 

microbiota changes to host performance under different conditions. 

To date, culture-independent molecular-based taxonomic assessment of microbiota has 

primarily relied on the sequencing of PCR amplicons of targeted microbial genes at the DNA 

level (DNA Amplicon-seq). Although Amplicon-seq has been widely used, it can be biased due 

to primer selection (Hong et al., 2009) and/or amplification cycling conditions (Huber et al., 

2009). It is also limited in discovering novel microbial phylotypes because the associated primers 

are designed based on known sequences (Ross et al., 2012; Urich et al., 2008). In addition, to 

study different groups of microbes within the same microbiota, a wide range of primers is needed 
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(Kittelmann et al., 2013). Total DNA sequencing (metagenomics) has also been widely used to 

study microbiota without PCR amplification, and provides information on the presence and 

absence of phylotypes, but it mainly offers insight in microbial functions through studying 

microbiota-associated genes. Although a couple of studies have assessed microbial profiles based 

on 16S rDNA sequences generated in metagenomics datasets (Ellison et al., 2014; Logares et al., 

2014), most metagenomic studies rely on parallel DNA Amplicon-seq to characterize microbial 

communities (Mason and Scott, 2014; Rooks et al., 2014) due to the low fraction of 16S rDNA 

reads present in metagenomics datasets (Logares et al., 2014). Meanwhile, DNA-based methods 

do not directly measure the activity of the microbiota because they cannot distinguish the 

presence of genes that stem from active cells, inactive but alive cells, dead cells, or lysed cells 

(Gaidos et al., 2011).  

To overcome these limitations of DNA-based approaches, recent improvements in RNA 

sequencing have created a great opportunity to study potentially active microbiota. However, 

RNA sequencing has mainly been applied to elucidate the functions of microbiota through the 

mRNA enrichment (de Menezes et al., 2012; Franzosa et al., 2014) and to study active 

phylotypes through 16S rRNA amplicon sequencing (RNA Amplicon-seq) (Gaidos et al., 2011; 

Kang et al., 2013). Total RNA sequencing (RNA-seq) has been explored for taxonomic 

assessment in a number of environments, including soil (Tveit et al., 2014; Urich et al., 2008), 

hydrothermal vents (Lanzen et al., 2011), and the animal gut (Poulsen et al., 2013; Schwab et al., 

2014). However, most of these studies did not compare outcomes between DNA- and RNA-
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based methods for the same samples and did not compare RNA-seq vs. Amplicon-seq 

(DNA/RNA), except Berry et al. (2012), who used DNA Amplicon-seq and RNA-seq to study 

shifts in murine gut microbiota in dextran sodium sulfate (DSS)-induced colitis, and Lanzen et al. 

(2011), who explored microbial communities at both the DNA and RNA levels in the 

hydrothermal vents. To date, it is not conclusive which method is the most reliable to assess 

animal gastrointestinal microbial communities because the different outcomes of these methods 

have not yet been comprehensively compared.  

In this study, we compared bacterial and archaeal community profiles in rumen digesta 

samples using RNA-seq and RNA/DNA Amplicon-seq with standard protocols and a pipeline 

developed in house. The rumen microbial community is complex and includes bacteria, archaea, 

protozoa and fungi (Edwards et al., 2004). Although Poulsen et al. (2013) used RNA-seq to study 

rumen microbiota, they mainly focused on methanogens and did not analyze bacteria or compare 

RNA-seq with Amplicon-seq (DNA and RNA). In this community study, our aim was to gain a 

better understanding of the differences between the techniques using different genetic materials 

(DNA vs. RNA) and how they affect interpretation of microbiota-associated data.  

 

2.2 Materials and Methods 

2.2.1 Animals and sampling 

Rumen digesta samples were collected from five 10-month-old crossbred beef steers, 

which were raised under feedlot conditions on a high-energy finishing diet, as previously 
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described (Hernandez-Sanabria et al., 2013) and followed the guidelines of the Canadian Council 

on Animal Care (Olfert et al., 1993). The animal protocol was approved by the Animal Care and 

Use Committee of University of Alberta (protocol no. Moore-2006-55). Animals were not 

starved before the sampling, and were slaughtered before feeding. For each animal, ~3 g of 

rumen digesta were collected at slaughter and stored in RNAlater (Ambion, Carlsbad, CA, USA) 

at -20 °C for further analysis.  

 

2.2.2 Nucleic acid extractions 

Total RNA was extracted from rumen digesta using a modified procedure based on the 

acid guanidinium-phenol-chloroform method (Béra-Maillet et al., 2009; Chomczynski and 

Sacchi, 1987). Specifically, for ~200 mg of rumen digesta sample, 1.5 ml of TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA), 0.4 ml of chloroform, 0.3 ml of isopropanol and 0.3 ml of high 

salt solution (1.2 M sodium acetate, 0.8 M NaCl) were used. RNA quality and quantity was 

determined with the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) 

and the Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA), respectively. RNA samples with 

the RNA integrity number (RIN) higher than 7.0 were used for downstream analysis. DNA was 

extracted from 25-30 mg of freeze-dried and ground rumen digesta according to the PCQI 

method (modified phenol-chloroform with bead beating and QIAquick PCR purification kit) 

(Henderson et al., 2013; Rius et al., 2012).  
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2.2.3 RNA library construction and sequencing (RNA-seq)  

Total RNA (5 Pl of 20 ng/Pl) from each sample was used to construct an RNA library 

following the TruSeq RNA sample Prep v2 LS protocol (Illumina, San Diego, CA, USA), 

without the mRNA enrichment (rRNA removal) step. The quality and concentration of cDNA 

fragments (~260 bp) containing artificial sequences (adapters, index sequences, and primers; 

~120 bp) and inserted cDNA sequences (~140 bp) were assessed using an Agilent 2100 

Bioanalyzer (Agilent Technologies) and a Qubit 2.0 fluorometer (Invitrogen), respectively, 

before sequencing. RNA libraries were paired-end sequenced (2 × 100 bp) using an Illumina 

HiSeq2000 platform (McGill University and Génome Québec Innovation Centre, QC, Canada).  

 

2.2.4 Amplicon-seq of 16S rRNA/rDNA using pyrosequencing (RNA/DNA Amplicon-seq) 

For the DNA Amplicon-seq, partial bacterial and archaeal 16S rRNA genes (the V1-V3 

region for bacteria and the V6-V8 region for archaea) were amplified as previously described by 

Kittelmann et al. (2013) and sequenced using 454 GS FLX Titanium chemistry at Eurofins 

MWG Operon (Ebersberg, Germany). For the RNA Amplicon-seq, total RNA was first reverse-

transcribed into cDNA using SuperScript II reverse transcriptase (Invitrogen) with random 

primers following procedures for first-strand cDNA synthesis. Then, partial 16S rRNA amplicons 

of bacteria and archaea were generated using the same primers as for the DNA Amplicon-seq and 

sequenced using a 454 pyrosequencing platform at McGill University and Génome Québec 

Innovation Centre (Montreal, QC, Canada). 
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2.2.5 Analysis of the RNA-seq dataset 

The sequence data quality was checked using the FastQC program 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The program Trimmomatic 

(version 0.32) (Bolger et al., 2014) was used to trim residual artificial sequences, cut bases with 

quality scores below 20, and remove reads shorter than 50 bp. The filtered reads were then sorted 

to enrich for 16S rRNA fragments for taxonomic identification and mRNA reads for functional 

analysis (not reported in this study) using SortMeRNA (version 1.9) (Kopylova et al., 2012) by 

aligning with the rRNA reference databases SILVA_SSU (release 119), SILVA_LSU (release 

119) (Quast et al., 2013), and Rfam 11.0 (Burge et al., 2013). After the 16S rRNA sequences 

were enriched, downstream analyses were performed using the mothur program (version 1.31.2) 

(Schloss et al., 2009) according to the procedures (http://www.mothur.org/wiki/MiSeq_SOP) 

described by Kozich et al. (2013), with modifications. For taxonomic identification, regionally 

enriched reference datasets were built for bacteria and archaea (mothur command: pcr.seqs). 

Specifically, sequences belonging to the V1-V3 region (mean length: 466 bp) were extracted 

from the aligned Greengenes 16S rRNA gene database (version gg_13_5_99 accessed May 2013) 

(DeSantis et al., 2006) for bacteria. For archaea, sequences belonging to the V6-V8 region (mean 

length: 456 bp) were extracted from the aligned rumen-specific archaeal 16S rRNA gene 

database derived from a previous study (Janssen and Kirs, 2008). The starting and ending 

positions of the targeted regions were located based on the alignment of Amplicon-seq reads to 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.mothur.org/wiki/MiSeq_SOP
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the references databases (Figure 2.1) because these amplicons were generated using designed 

primers for known regions.  

The overall RNA-seq data analysis pipeline is illustrated in Figure 2.1. Briefly, sorted 

paired-end reads belonging to bacterial and archaeal 16S rRNA were joined (mothur command: 

make.contigs) to increase the length by combining the forward and reverse sequences. Joined 

sequences (mean length: 140 bp) with ambiguous bases or longer than 200 bp were discarded 

(mothur command: screen.seqs) to remove sequences without overlapped regions. Identical 

sequences were then binned to generate a set of unique sequences to facilitate the counting of 

their frequencies in each sample (mothur commands: unique.seqs and count.seqs). Next, the 

bacterial and archaeal 16S rRNA sequences in the sample datasets were aligned to the regionally 

enriched bacterial (the V1-V3 region) and archaeal (the V6-V8 region) references (see above), 

respectively (mothur command: align.seqs with default option). Sequences for which less than 50 

bp aligned to the reference datasets were culled (mothur command: screen.seqs). After alignment 

filtering (mothur command: filter.seqs), combining the identical sequences, and counting the 

frequencies (mothur command: unique.seqs), pre-clustering was performed to decrease the 

complexity of our sample datasets by clustering highly similar sequences with one nucleotide 

identity difference (mothur command: pre.cluster). UCHIME (Edgar et al., 2011) in de novo 

mode and with default settings was applied to identify and remove chimeras (mothur command: 

chimera.uchime & remove.seqs). Finally, chimera-depleted sequences were subject to taxonomic 

assignment to different phylotypes using a naive Bayesian algorithm (Wang et al., 2007) with a 
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minimum confidence of 0.8 (mothur command: classify.seqs), and then the taxonomic rank and 

the relative abundance for each phylotype was calculated (mothur commands: phylotype, 

make.shared, classify.otu, and get.relabund). To make alpha-diversity estimators comparable 

among samples and different methods, all samples were standardized to the same number of 

sequences (the smallest sampling size) by randomly selecting sequences from the chimera-

depleted datasets (mothur command: sub.sample). Alpha-diversity analysis was conducted at the 

bacterial family level and archaeal species level. The Good's coverage, the Shannon index, the 

inverse Simpson index, the number of observed phylotypes, and the Chao estimator were 

calculated based on the normalized samples (mothur command: summary.single). 

 

2.2.6 Analysis of RNA/DNA Amplicon-seq datasets 

The procedures were similar to those described for the RNA-seq dataset (Figure 2.1). 

Briefly, after trimming primers and screening homopolymer runs (maximum length: 6), only 

sequences over 200 bp in length with an average quality score over 25 and with less than 6 

ambiguous bases were included in the analysis. This step was performed using mothur (version 

1.31.2) (Schloss et al., 2009) with the command trim.seqs. After clustering similar sequences, the 

chimeras were checked and discarded from reads with good quality. The chimera-depleted reads 

were used for taxonomic identification and to calculate the relative abundance of each phylotype. 

The alpha-diversity was analyzed using the standardized chimera-depleted sequences according 

to the lowest number of reads.  
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2.2.7 Validation of bacterial relative abundance using qRT-PCR and qPCR 

Quantitative reverse transcription PCR (qRT-PCR) and quantitative PCR (qPCR) were 

further performed to validate the relative abundance data obtained from RNA-seq, RNA 

Amplicon-seq, and DNA Amplicon-seq. Three primer pairs (Table 2.5) were used to enumerate 

the total bacteria, Bacteroidetes, and Gammaproteobacteria in each rumen sample. Standard 

curves were constructed using serial dilutions of plasmid DNA from clones identified as 

Butyrivibrio hungatei (for total bacteria, using an initial concentration of 8.50 × 108 mol/μl), 

Prevotella sp. (for Bacteroidetes, using an initial concentration of 2.89 × 108 mol/μl) and 

Tolumonas auensis (for Gammaproteobacteria, using an initial concentration of 2.68 × 108 

mol/μl). The copy numbers for each standard curve were calculated as described previously (Li et 

al., 2009b). For qRT-PCR, cDNA was first reverse-transcribed from 20 ng of total RNA using 

iScrtpt reverse transcription supermix for RT-qPCR (Bio-Rad, Hercules, CA, USA) and then 

diluted 5 times. One microliter of diluted cDNA was subjected to a qRT-PCR reaction using 

SYBR Green chemistry (Fast SYBR Green Master Mix; Applied Biosystems) in a StepOnePlus 

Real-Time PCR System (Applied Biosystems). The relative abundances of Bacteroidetes and 

Gammaproteobacteria compared to total bacteria were calculated according to the following 

equation: relative abundance = QTarget / QU2, where QTarget was the quantity of each target, and QU2 

was the total bacteria quantity. Concurrently, we performed qPCR using total DNA (1 μl × 10 

ng/μl total DNA per reaction) and followed the same procedures mentioned above to verify DNA 

Amplicon-seq results. 
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2.2.8 Statistical analysis 

In this study, only taxa with a relative abundance > 0.1% in at least two samples within 

the RNA-seq, RNA Amplicon-seq, and DNA Amplicon-seq datasets were defined as detectable 

and subjected to downstream statistical analysis. Statistical summaries (mean and SEM) of the 

detected taxa, and Pearson’s correlation analysis for qRT-PCR/qPCR validation were all 

performed using R 3.1.2 (R Core Team, 2014). Principal coordinate analysis (PCoA) of the 

microbial profiles generated from the different datasets was conducted based on the Bray-Curtis 

dissimilarity matrix. The microbial relative abundance was arcsine-square-root transformed 

(Franzosa et al., 2014), and then Repeated Measures ANOVA was performed to compare the 

differences among three datasets. P values were adjusted into FDR using Benjamini-Hochberg 

method (Benjamini and Hochberg, 1995), and a threshold of FDR < 0.15 was applied to 

determine the significance (Korpela et al., 2016). Co-occurrence analysis was performed for the 

bacterial families and archaeal taxa detected in both the RNA-seq and DNA Amplicon-seq 

datasets (with relative abundance > 0.1% in all five samples) based on Spearman's rank 

correlation (Barberan et al., 2012). An association network was constructed using CoNet (Faust 

et al., 2012) and displayed using Cytoscape 3.2.1 (Faust et al., 2012; Shannon et al., 2003). 

Effective alpha-diversity estimators (Jost, 2007) were compared among the RNA-seq, RNA 

Amplicon-seq, and DNA Amplicon-seq datasets using paired Wilcoxon signed rank test. 
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2.2.9 Data submission 

RNA-seq and RNA Amplicon-seq datasets were submitted into the NCBI Sequence Read 

Archive (SRA) under the accession number PRJNA275012, and DNA Amplicon-seq sequences 

were also placed in the NCBI SRA under the accession number PRJNA273417. 

 

2.3 Results and Discussion 

2.3.1 Analyzing rumen microbiota using RNA-seq and RNA/DNA Amplicon-seq  

This study assessed active rumen microbial communities using RNA-seq and is the first 

study to compare RNA-seq outcomes with the well-accepted Amplicon-seq methods to evaluate 

rumen microbiota. It has been reported that rRNA levels directly relate to the protein synthesis 

potential of microorganisms (Blazewicz et al., 2013) and are correlated with activity (Bremer and 

Dennis, 2008; Poulsen et al., 1993). rRNA abundance data obtained from total RNA sequencing 

could potentially be used as one of the indices to taxonomically assess potentially active 

microbes within a sample. To explore the possibility of taxonomic profiling using total RNA-seq, 

we first enriched 16S rRNA sequences from an RNA-seq dataset (Figure 2.1). In total, an 

average of 38,496,238 ± 2,037,011 (mean ± SEM) reads per sample (192,481,188 reads in total) 

were obtained after quality control filtration. Among them, 92.9 ± 1.1% belonged to small and 

large subunit rRNA, with 13.7 ± 5.6% and 0.2 ± 0.0% being bacterial and archaeal 16S rRNA, 

respectively (Table 2.1). It is notable that a large fraction of rRNA was classified as eukaryotic 

18S (22.1 ± 5.9%) and 28S (32.2 ± 8.2%) rRNA (Table 2.1). Although these reads were not 
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analyzed in the current study, the high number of these sequences indicates the possibility of 

assessing rumen eukaryotic microbiota using RNA-seq in future studies. After combining paired-

end reads and removing non-overlapping sections, 10,782,833 bacterial and 152,585 archaeal 

joint 16S rRNA sequences were obtained. 

In this study, we included regionally enriched 16S rRNA gene reference datasets for 

taxonomic analysis rather than aligning the sequences to the full-length 16S rRNA gene database 

directly. Because the length of Illumina RNA-seq reads is short, 16S rRNA sequences could be 

randomly aligned to different regions of the 16S rRNA gene. It is known that different 

hypervariable regions of the 16S rRNA gene can affect diversity estimation and taxonomic 

classification (Logares et al., 2014). If these short 16S rRNA sequences are directly mapped to 

full-length 16S rRNA gene references for taxonomic analysis, as has been performed in previous 

studies (Tveit et al., 2014; Urich et al., 2008), it could lead to a mixed taxonomic profile as well 

as an overestimation of diversity. To avoid such potential bias, two regionally enriched reference 

datasets were generated from the Greengenes 16S rRNA gene database (version gg_13_5_99 

accessed May 2013) (the V1-V3 region for bacteria) and the rumen-specific archaeal 16S rRNA 

database (Janssen and Kirs, 2008) (the V6-V8 region for archaea) (see details in the Materials 

and Methods section). These regions were chosen because the V2-V3 region is the most efficient 

region for assessing bacterial community (Chakravorty et al., 2007), while the V6-V8 region is 

the most efficient region for identifying archaea and estimating the archaeal community diversity 

(Snelling et al., 2014). After identifying sequences belonging to the bacterial V1-V3 region and 
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the archaeal V6-V8 region, sequences aligned with more than 50 bp of the reference datasets 

were then subjected to chimeric sequence detection (2,423,139 bacterial and 25,451 archaeal). 

After the removal of 9,353 bacterial sequences (0.4%) and 139 archaeal sequences (0.6%) 

through chimera checking, 2,413,786 of the V1-V3 region-enriched bacterial sequences (mean 

length: 124 bp) and 25,312 of the V6-V8 region-enriched archaeal sequences (mean length: 133 

bp) were subject to further taxonomic analysis (Table 2.2).  

RNA and DNA Amplicon-seq of the same rumen samples generated 37,105 (7,421 ± 506; 

mean ± SEM; RNA Amplicon-Seq dataset) and 31,031 (6,206 ± 645; DNA Amplicon-Seq 

dataset) bacterial reads, respectively, as well as 8,303 (1,661 ± 20 for RNA Amplicon-Seq) and 

6,663 (1,333 ± 95 for DNA Amplicon-Seq) archaeal reads, respectively (Table 2.1). From these 

two datasets, 6,461 / 5,505 bacterial reads (17.4% / 17.7%) and 562 / 662 archaeal reads (6.8% / 

9.3%) were detected and removed as chimeric sequences. In total, 30,644 / 25,526 bacterial reads 

(mean length: 476 / 487 bp) and 7,741 / 6,041 archaeal reads (mean length: 451 / 462 bp) were 

used for taxonomic identification and quantification (Table 2.2). 

In this study, we used the de novo (database-independent) mode to determine chimeras 

rather than reference-based chimera detection. This is because the existing chimera reference 

databases only contain sequences from cultured organisms (Haas et al., 2011) and are not suitable 

for real samples that contain uncultured bacteria and archaea. Notably, higher percentages of 

chimeric sequences (17.4% / 17.7% of the bacterial and 6.8% / 9.3% of the archaeal sequences) 

were removed from the RNA/DNA Amplicon-seq datasets than from the RNA-seq dataset, which 
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had only 0.4% of their bacterial and 0.6% of their archaeal sequences removed due to the 

presence of chimeras. In Amplicon-Seq datasets, chimeras are produced during PCR 

amplification, and they can lead to biased estimation of the diversity and/or the identification of 

differences between microbial communities (Edgar et al., 2011), while in RNA-seq datasets, 

chimeras might stem from the cDNA synthesis and/or fragment enrichment procedures used 

during the library construction. Our results indicate that RNA-seq was less affected by chimera 

formation than was Amplicon-seq. 

 

2.3.2 Microbial taxa detected from RNA-seq and RNA/DNA Amplicon-seq  

From the RNA-seq dataset, 94.6% and 86.9% of the bacterial V1-V3 region-enriched 

sequences were classified at the phylum and family level, respectively (Table 2.2). Due to their 

short sequence lengths, 86.2% of bacterial sequences from the RNA-seq dataset could not be 

classified at the genus level. Thus, only bacterial taxa at the phylum and family levels were 

retained for further analysis. For archaea, 98.0% of the V6-V8 region-enriched sequences were 

classified in a mixed taxonomic rank scheme (Table 2.2). We classified archaeal sequences at 

different taxonomic levels because most of the predominant archaeal phylotypes (such as 

Methanobrevibacter ruminantium and Methanobrevibacter gottschalkii) have well-studied 16S 

rRNA genes for use as references (Janssen and Kirs, 2008), and even short reads could be 

classified at the species level. However, for the poorly studied groups, such as 

Methanomassiliicoccales, reads could be only classified at the order level based on this rumen-
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specific archaeal database (Janssen and Kirs, 2008). From RNA/DNA Amplicon-seq datasets, 

98.2% / 98.8%, 86.8% / 87.1% and 98.6% / 99.7% of the total reads were assigned at the 

bacterial phylum, bacterial family and archaeal mixed taxon levels, respectively (Table 2.2). 

The bacterial and archaeal taxa detected in the three datasets were generally similar, with 

a total of eleven bacterial phyla, twenty-one bacterial families and six archaeal taxa identified. Of 

these, seven bacterial phyla, fifteen bacterial families and five archaeal taxa were commonly 

detected across the three datasets (Figure 2.2). Notably, there were unique bacterial and archaeal 

taxa identified in each dataset (Figure 2.2d). Firstly, two bacterial families and one archaeal 

taxon (Desulfovibrionaceae, Sphaerochaetaceae, and Methanobrevibacter woesei) were detected 

only in the RNA-seq dataset and not in the RNA/DNA Amplicon-seq datasets. Henderson et al. 

(2015) also reported the absence of Desulfovibrionaceae and Methanobrevibacter woesei, and the 

low abundance (≤ 0.1%) of Sphaerochaetaceae in the rumen digesta when using DNA 

Amplicon-seq with the same PCR primers, suggesting that the amplicon-based approach and/or 

the primers used may have masked the detection of these taxa in the rumen. In addition, lower 

sequencing depth of RNA/DNA Amplicon-seq could also lead to the missing detection of these 

taxa. As shown in Table 2.2, the number of bacterial and archaeal reads from the RNA-seq 

dataset was about 80-90 times higher and 3-4 times higher than that from RNA/DNA Amplicon-

seq datasets, respectively. And thus increasing sequencing depth could probably enhance the 

detection of these taxa in the Amplicon-seq datasets. Secondly, two bacterial phyla 

(Elusimicrobia and Verrucomicrobia) and one bacterial family (Elusimicrobiaceae) were 
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detected only in the RNA-based datasets (RNA-seq and RNA Amplicon-seq) and not in the DNA 

Amplicon-seq dataset. Our results suggest that these two phyla may be more active in the rumen, 

and they may be underestimated based on the DNA Amplicon-seq dataset. Moreover, the absence 

of Elusimicrobia and Verrucomicrobia in the DNA Amplicon-seq dataset may be due to the 

unsuccessful isolation of their DNA, and it has been reported that various DNA extraction 

methods could impact the taxonomic outcomes of rumen microbiota assessments (Henderson et 

al., 2013). Finally, the bacterial family Streptococcaceae was detected only in the DNA 

Amplicon-seq dataset with a low relative abundance of 0.1 ± 0.1%. Previous studies on the 

bacterial profiles of rumen digesta from the same cattle used in this study (Hernandez-Sanabria et 

al., 2012) and different cattle (Petri et al., 2013; Xia et al., 2015) have also reported the absence 

of Streptococcaceae. In a recent study based on a large number (n = 742) of rumen and foregut 

digesta samples and DNA-based Amplicon-seq, Streptococcaceae also showed low prevalence in 

all animals (Henderson et al., 2015). These suggest that Streptococcaceae may have low cellular 

abundance and even lower activities in samples assessed in the current study. 

 

2.3.3 Estimated microbial relative abundance from RNA-seq and RNA/DNA Amplicon-seq  

Principal coordinate analysis (PCoA) of the relative abundances of commonly detected 

bacterial phyla, bacterial families, and archaeal taxa revealed dissimilarities in microbial profiles 

between RNA- and DNA-based approaches (Figure 2.3). For each animal, the RNA-seq and 

RNA Amplicon-seq generated similar rumen bacterial profiles (at both the phylum and family 
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levels), which generally separated with that assessed using DNA Amplicon-seq (Figure 2.3a and 

2.3b). However, for each animal, three datasets displayed generally similar archaeal profiles 

(Figure 2.3c); the RNA-based assessment outcomes of L52 and L59 were distinct from their 

DNA-based profiles because these two samples had a high abundance of 

Methanomassiliicoccales in the RNA-based datasets (Figure 2.2c). Among the shared taxa, four 

bacterial phyla (Bacteroidetes, Lentisphaerae, Proteobacteria, and Synergistetes), eight bacterial 

families (Dethiosulfovibrionaceae, Lactobacillaceae, Mogibacteriaceae, Paraprevotellaceae, 

Prevotellaceae, S24-7, Succinivibrionaceae, and Victivallaceae), and one archaeal taxon 

(Methanomassiliicoccales) had significantly different relative abundances among the three 

datasets (FDR < 0.15; Table 2.3). Lanzen et al. (2011) reported that the dominant taxa within 

hydrothermal vent field microbiota showed similar outcomes on the RNA and DNA levels based 

on their Amplicon-seq results, which is not consistent with our findings and is probably an 

extremely environment-specific case. In addition, such discrepancy may also be due to different 

targeted amplicon regions (the V5-V6 region in Lanzen et al. (2011) vs. the V1-V3 / V6-V8 

regions in the current study) as well as different reference databases used (the Silva SSURef in 

Lanzen et al. (2011) vs. the regionally enriched Greengenes/rumen-specific archaeal databases in 

our study). Therefore, different methods and strategies should be carefully considered for 

samples from various environmental conditions. 

The dominant bacterial phyla detected by DNA Amplicon-seq were Bacteroidetes (50.3 ± 

8.7%; mean ± SEM), Firmicutes (29.4 ± 6.2%), and Proteobacteria (14.3 ± 8.5%), which is 
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consistent with previous studies using DNA-based methods. For example, Bacteroidetes (range, 

8.0 to 60.1%) and Firmicutes (range, 33.6 to 85.0%) were reported as the most abundant phyla, 

and Proteobacteria was commonly detected but less abundant (range, 0.6 to 20.1%) in the rumen 

(Jami and Mizrahi, 2012; Kim and Yu, 2014; Petri et al., 2013). However, the predominant 

bacterial phylum detected by RNA-based approaches (RNA-seq and RNA Amplicon-seq) was 

Proteobacteria (47.6 ± 14.2% and 46.3 ± 14.3%, respectively), followed by Bacteroidetes (23.3 

± 7.9% and 22.7 ± 8.1%), and Firmicutes (16.2 ± 4.5% and 19.2 ± 6.0%). The higher proportion 

of Proteobacteria in the RNA-based datasets confirmed similar findings by Kang et al. (2013) 

and Kang et al. (2009), who applied RNA amplicon-based sequencing and rRNA-based clone 

libraries, respectively, to study the rumen microbiota. At the bacterial family level, the most 

abundant bacterial family was Succinivibrionaceae (belonging to the phylum Proteobacteria) in 

the RNA-seq (45.6 ± 14.0%) and RNA Amplicon-seq (45.1 ± 14.4%) datasets, while it was 

Prevotellaceae (belonging to the Bacteroidetes) in the DNA Amplicon-seq dataset (38.7±8.6%). 

Succinivibrionaceae was an abundant family at the DNA level when ruminants were fed high-

energy diets (Henderson et al., 2015; Hernandez-Sanabria et al., 2012; Petri et al., 2013), and the 

significance of Succinivibrionaceae may be underestimated using DNA Amplicon-seq. The 

predominance of Prevotellaceae detected in the DNA Amplicon-seq dataset is similar to that 

observed in previously studies using DNA-based approaches (Henderson et al., 2015; Kittelmann 

et al., 2013; Petri et al., 2013). However, its abundance, as estimated in the RNA-seq (16.4 ± 

5.7%) and RNA Amplicon-seq (17.9 ± 7.2%) datasets, was significantly lower (FDR < 0.15). The 
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family Lactobacillaceae, belonging to the phylum Firmicutes, also had a lower abundance in the 

RNA-based datasets (0.3 ± 0.1% using RNA-seq and 0.2 ± 0.1% using RNA Amplicon-seq) than 

in the DNA Amplicon-seq dataset (8.1 ± 5.0%, FDR < 0.15). These two families probably had 

higher cellular abundance but relatively lower activities in the bovine rumen. 

From the RNA/DNA Amplicon-seq datasets, Methanobrevibacter gottschalkii 

(28.2±9.7% / 37.1±10.6%), Methanobrevibacter ruminantium (37.1 ± 12.4% / 36.4 ± 13.1%), 

and Methanomassiliicoccales (30.9 ± 10.0% / 15.7 ± 2.0%) were dominant but with different 

rankings. The DNA Amplicon-seq outcomes are generally consistent with previous studies that 

used the same approaches (Henderson et al., 2015; Kittelmann et al., 2013). The archaeal taxon 

Methanomassiliicoccales, which has been previously referred to as Rumen Cluster C or 

Thermoplasmatales (Gaci et al., 2014; Janssen and Kirs, 2008; Poulsen et al., 2013), was 

predominant in the RNA-seq dataset (38.8 ± 11.9%), followed by Methanobrevibacter 

ruminantium (30.2 ± 10.4%) and Methanobrevibacter gottschalkii (22.4 ± 7.4%). The high 

proportion of Methanomassiliicoccales from the RNA-based datasets supports the hypothesis that 

they are more active in the rumen, as many studies have suggested (Janssen and Kirs, 2008; 

Jeyanathan et al., 2011; Ohene-Adjei et al., 2007; Williams et al., 2009; Wright et al., 2007).  

 

2.3.4 qRT-PCR and qPCR validation of estimated relative abundance among datasets 

qRT-PCR and qPCR were performed to estimate the relative abundances of two 

predominant phyla (Bacteroidetes and Proteobacteria) among all three datasets. 
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Gammaproteobacteria was selected to represent Proteobacteria because 95.8%, 98.0% and 

96.5% of the Proteobacteria reads from the three datasets belonged to the class 

Gammaproteobacteria. The qRT-PCR results for Bacteroidetes were in agreement with the 

RNA-seq (Pearson's correlation coefficient [r] = 0.97, P < 0.05) and the RNA Amplicon-seq (r = 

0.97, P < 0.05) results, and the qPCR results for Bacteroidetes were also consistent with the DNA 

Amplicon-seq results (r = 0.88, P = 0.05) (Figure 2.4). The relative abundance of 

Gammaproteobacteria estimated using qRT-PCR was correlated with that from the RNA-seq 

dataset (r = 0.97, P < 0.05) and the RNA Amplicon-seq dataset (r = 0.99, P < 0.05), and there 

was also a high degree of correlation between qPCR and DNA Amplicon-seq (r = 0.99, P < 0.05) 

for Gammaproteobacteria. The overall consistent trends between the RNA-based approaches and 

qRT-PCR (as well as between DNA Amplicon-seq and qPCR) confirm the different relative 

abundance detected in the three datasets. 

 

2.3.5 Alpha-diversity estimators in the RNA-seq and RNA/DNA Amplicon-seq datasets 

In the present study, alpha-diversity indices were estimated based on the observed 

phylotypes at the family level for bacteria and at the species level for archaea. To avoid potential 

differences caused by different sequencing depths among the three datasets, the samples were 

randomly normalized according to the lowest number of reads (3,476 bacterial sequences and 

1,074 archaeal sequences per sample after normalization). The values of Good’s coverage were 

all above 99% for the bacterial and archaeal data from the three datasets, indicating that the 
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numbers of reads after normalization were sufficient to represent the microbial communities. The 

Shannon index and the inverse Simpson index were not significantly different (P > 0.1, the paired 

Wilcoxon signed rank test) among the three datasets (Table 2.4). The number of observed 

phylotypes and the Chao estimator tended to be higher in the RNA-seq dataset than in the 

RNA/DNA Amplicon-seq datasets for bacteria and archaea (P < 0.1, the paired Wilcoxon signed 

rank test; Table 2.4), which was further confirmed using rarefaction analysis (Figure 2.5). These 

results suggest that more microbial taxa could be detected using RNA-seq than using RNA/DNA 

Amplicon-seq. In the Amplicon-seq datasets, some phylotypes were probably overlooked due to 

the bias of primers and/or amplification conditions during the PCR process, which may explain 

the difference in richness among the three datasets. 

 

2.3.6 Co-occurrence analysis of abundant microbial taxa detected by RNA-seq and DNA 

Amplicon-seq  

The relationships that exist among microbial taxa could be a determining factor for 

microbial community composition (Prosser et al., 2007). To explore the relationships among 

different taxa in our samples, Spearman's rank correlation was used to identify the co-occurrence 

patterns of different microbial groups in both the RNA-seq and DNA Amplicon-seq datasets 

(Figure 2.6). The RNA Amplicon-seq dataset was not included due to its similar outcomes to the 

RNA-seq dataset, with high correlation for all samples (Spearman's rank correlation coefficient 

[ρ] = 0.88 - 0.98, P < 0.0001) (Figure 2.2 and 2.3). As shown in Figure 2.6, the microbial taxa 
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identified using RNA-seq were more closely correlated than those identified using DNA 

Amplicon-seq. There may be stronger interactions among microbes within a microbiota at the 

transcriptional level than that at the genomic level, which has been suggested recently by 

İnceoğlu et al. (2015). Previous studies have revealed associations among microbes 

(Ruminococcaceae and Mbb. gottschalkii, Succinivibrionaceae and Methanomassiliicoccales, 

Mbb. gottschalkii and Mbb. ruminantium, and Methanomassiliicoccales and Methanosphaera, 

etc) in rumen using DNA Amplicon-seq (Henderson et al., 2015; Kittelmann et al., 2013). In this 

study, we also detected a negative relationship between Mbb. gottschalkii and Mbb. ruminantium 

(ρ = -0.9, P < 0.1; Figure 2.6) in the DNA Amplicon-seq dataset. In the RNA-seq dataset, we 

confirmed that Succinivibrionaceae was positively correlated with Methanomassiliicoccales (ρ = 

0.9, P < 0.1) (Figure 2.6). The bacterial families Lachnospiraceae, Mogibacteriaceae, 

Prevotellaceae, Ruminococcaceae, and Spirochaetaceae were positively correlated with each 

other (P < 0.1), and all of them were negatively correlated with Succinivibrionaceae and 

Methanomassiliicoccales (P < 0.1) in the RNA-seq dataset (Figure 2.6b). However, the negative 

correlations between Succinivibrionaceae and the other 4 bacterial families, and between Mbb. 

gottschalkii and Mbb. ruminantium, are possibly because they displayed the arithmetic 

replacement effect (shifts in abundance of predominant phylotypes will have effects on others 

when analyzing proportion data) as suggested by Henderson et al. (2015). Meanwhile, only two 

taxa, Succinivibrionaceae and Mbb. ruminantium, showed significantly positive correlations 

between the RNA-seq and DNA Amplicon-seq datasets (ρ = 1.0, P < 0.05 and ρ = 0.9, P < 0.1, 
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respectively). No other taxa exhibited strong consistency between the RNA-seq and DNA 

Amplicon-seq datasets, indicating that cellular abundance did not correspond to the activities of 

most rumen taxa.  

 

2.3.7 Methodological caveats of this study 

This study has limitations that should be taken into account. Firstly, the sampling timing 

may have more of an effect on RNA-based than DNA-based approaches of profiling microbial 

communities. If assessing the activities of rumen microbiota is the main study objective, the 

sampling timing should be carefully considered. In this study, rumen digesta samples were 

collected before the feeding, which probably resulted in different RNA profiles than in digesta 

samples collected after feeding. However, the same rumen digesta sample was used for RNA and 

DNA extraction in our study, so the detected differences between RNA- and DNA-based 

analyses are valid and not biased due to different sampling times. Second, during RNA isolation 

processes, RNA yield may differ according to extraction method (such as between physical, 

mechanic, enzymatic, and chemical methods) (Stark et al., 2014). Meanwhile, not all microbes 

can be lysed with equal efficiency, and notably, RNA yields from Gram-positive bacteria are 

generally lower than those from Gram-negative bacteria (Stark et al., 2014). For instance, 

members of Proteobacteria and Bacteroidetes are Gram-negative, while most Firmicutes 

members in the rumen are Gram-positive, which may explain the higher abundance of 

Proteobacteria and Bacteroidetes, and the lower abundance of Firmicutes in the RNA-seq 
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dataset. Moreover, significant differences in microbial community structures were also 

demonstrated to correspond to different DNA extraction methods in a report by (Henderson et al., 

2013). Third, because methods (Griffiths et al., 2000; Leininger et al., 2006) for co-extraction of 

RNA and DNA could not generate the high quality RNA for RNA-seq in our samples (RNA 

integrity number < 3.0), the RNA and DNA extraction were conducted separately using two 

independent protocols to ensure the high quality RNA and DNA in the current study, which could 

potentially lead to differences between RNA- and DNA-based methods. Furthermore, the RNA 

was transcribed to cDNA using the random primers before making the RNA-seq and RNA 

Amplicon-seq libraries, while the DNA Amplicon-seq was performed using regional specific 

primers to amplify DNA template directly, which could also contribute to differences among 

three datasets. Fourth, because rRNA content per cell varies between different microbial 

phylotypes (Medlin and Simon, 1998; Sievert et al., 2000), such intrinsic differences in rRNA 

content could also influence the relative abundance determined using RNA-seq. Future 

experiments to globally compare the rRNA content per cell among different microbial phylotypes 

in the rumen microbiota and normalize rRNA concentrations from different phylotypes can 

improve the accuracy of microbial community profiling using RNA-seq. Fifth, the quantification 

of total and/or species-specific rRNA is a valid and well-accepted approach to estimate the 

microbial activity, which has been applied in more than 100 studies (Blazewicz et al., 2013). 

However, the use of rRNA as an indicator of specific microbial functional activity in complex 

environmental samples still need to be further validated by correlating them with the mRNA 
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information within the same metatranscriptomic datasets. Sixth, in the current study, the RNA-

seq dataset was generated on an Illumina HiSeq2000 platform, whereas RNA/DNA Amplicon-

seq was performed using a 454 pyrosequencing platform. It has been demonstrated that there are 

different features between these two platforms, such as read length, accuracy, and throughput 

(Liu et al., 2012). However, previous studies have revealed the consistency of microbial 

community profiles generated across sequencing platforms (Caporaso et al., 2012; Nelson et al., 

2014), but differences in sequencing depth could have an impact on the detection of low-

abundant taxa.  

 

2.4 Conclusion 

A comparison of the microbial profiles generated from RNA-seq and RNA/DNA 

Amplicon-seq revealed the generation of different taxonomic profiles of the same rumen 

microbiota between these methods, and thus their results could not be simply combined. The 

RNA-based methods could more robustly detect microbial phylotypes with potentially metabolic 

activities in the rumen and also detect more interactions among these phylotypes than DNA 

Amplicon-seq. In addition, compared to RNA/DNA Amplicon-seq, the RNA-seq approach 

showed more diversity and could detect more bacterial and archaeal phylotypes in the rumen. 

Although the RNA-seq approach has the advantage of simultaneously identifying and quantifying 

active microorganisms within a microbiota, the data are not conclusive on which method is the 

best for analyzing animal gastrointestinal microbiota due to the different technologies and 
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constraints of DNA vs. RNA and due to differences in nucleotide extraction, sequencing, and 

analysis protocols. Nevertheless, this is the first study to compare RNA-seq and RNA/DNA 

Amplicon-seq for the taxonomic assessment of rumen microbiota, and differences among these 

methods should be carefully considered to accurately assess gastrointestinal microbiota in future 

studies. 
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2.6 Tables 

Table 2.1 General sequence profiles of RNA-seq1 and RNA/DNA Amplicon-seq2 datasets 
Method  Sample Mean ± SEM 

 L46 L52 L59 L132 L145 
RNA-seq Bacterial 16S rRNA (%) 4.2  4.5  30.0  5.3  24.5  13.7±5.6  

Bacterial 23S rRNA (%) 7.7  9.3  50.6  9.4  42.5  23.9±9.3 
Archaeal 16S rRNA (%) 0.1  0.1  0.3  0.2  0.4  0.2±0.0 
Archaeal 23S rRNA (%) 0.4  0.2  0.8  0.9  1.5  0.7±0.2 
Eukaryotic 18S rRNA (%) 30.9  30.3  5.5  33.5  10.0  22.1±5.9 
Eukaryotic 28S rRNA (%) 47.8  46.3  9.2  42.3  15.5  32.2±8.2 
5S rRNA (%) 0.0  0.0  0.0  0.0  0.0  0.0±0.0 
5.8S rRNA (%) 0.1  0.1  0.0  0.1  0.0  0.1±0.0 
Other RNA (%) 8.8 9.2 3.7 8.4 5.6  7.1±1.1 
       
No. of total reads 42,161,316 41,860,772 41,422,056 33,763,140 33,273,904 38,496,238±2,037,011 

        
RNA Amplicon- 
seq 

No. of bacterial reads 7,331 8,513 8,472 6,991 5,798 7,421±506 
No. of archaeal reads 1,671 1,698 1,707 1,616 1,611 1,661±20 

        
DNA Amplicon- 
seq 

No. of bacterial reads 5,690 5,262 7,932 4,632 7,515 6,206±645 
No. of archaeal reads 1,157 1,177 1,684 1,286 1,359 1,333±95 

1. RNA-seq: total RNA sequencing. 
2. Amplicon-seq: sequencing of targeted PCR amplicons of bacterial and archaeal 16S rRNA/rDNA. 

 



 103 

 
Table 2.2 Summary of sequences used for the taxonomic analysis from chimera-depleted RNA-seq and Amplicon-seq datasets 

 RNA-seq RNA Amplicon-seq DNA Amplicon-seq 
 No. of 

reads 
Classified Unclassified No. of 

reads 
Classified Unclassified No. of 

reads 
Classified Unclassified 

Bacteria (phylum) 
2,413,786 

94.6% 5.4% 
30,644 

98.2% 1.8% 
25,526 

98.8% 1.2% 
Bacteria (family) 86.9% 13.1% 86.8% 13.2% 87.1% 12.9% 
          
Archaeal (mixed) 25,312 98.0% 2.0% 7,741 98.6% 1.4% 6,041 99.7% 0.3% 
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Table 2.3 Differential taxa among RNA-seq and RNA/DNA Amplicon-seq datasets1 
Taxa 
levels 

Classifications RNA-seq 
 

RNA Amplicon-
seq 
(Mean±SEM) 

DNA Amplicon-
seq 

FDR2 

Bacteria     
 Phyla Bacteroidetes 23.3±7.9%a 22.7±8.1%a 50.3±8.7%b 0.09 
  Family Paraprevotellaceae 0.2±0.1%a 0.3±0.1%a 1.8±0.3%b 0.09 
  Family Prevotellaceae 16.4±5.7%a 17.9±7.2%a 38.7±8.6%b 0.14 
  Family S24-7 0.2±0.1%a 0.2±0.1%a 3.1±1.0%b 0.09 
 Phyla Firmicutes3 16.2±4.5% 19.2±6.0% 29.4±6.2% 0.35 
  Family Lactobacillaceae 0.3±0.1%a 0.2±0.1%a 8.1±5.0%b 0.09 
  Family Mogibacteriaceae 0.5±0.1%a 0.8±0.2%ab 1.3±0.2%b 0.09 
 Phyla Lentisphaerae 0.2±0.1%a 1.3±0.6%b 0.1±0.1%a 0.09 
  Family Victivallaceae 0.2±0.1%a 1.3±0.6%b 0.1±0.1%a 0.09 
 Phyla Proteobacteria 47.6±14.2%a 46.3±14.3%a 14.3±8.5%b 0.09 
  Family Succinivibrionaceae 45.6±14.0%a 45.1±14.4%a 13.8±8.6%b 0.09 
 Phyla Synergistetes 0.9±0.2%a 3.6±1.1%b 0.3±0.1%c 0.12 
  Family Dethiosulfovibrionaceae 0.8±0.2%a 3.6±1.1%b 0.3±0.1%c 0.12 
Archaea     
 Mixed Methanomassiliicoccales 38.8±11.9%a 30.9±10.0%b 15.7±2.0%ab 0.09 

1. Only commonly detected phylotypes among three datasets were compared. 
2. P values were obtained using Repeated Measures ANOVA based on the arcsine square root-
transformed proportion values, and then were adjusted into FDR using Benjamini-Hochberg 
method (Benjamini and Hochberg, 1995). A threshold of FDR<0.15 was applied to determine the 
significance. Within a row, means with different superscript are significantly different. 
3. The relative abundance of the bacterial phylum Firmicutes did not show differences, but two 
families belonged to this phylum were different among datasets.  
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Table 2.4 A comparison of alpha-diversity estimators between RNA-seq and RNA/DNA Amplicon-seq datasets 
 Bacteria Archaea 

 RNA-seq 
 
 

RNA Amplicon- 
seq 
(Mean±SEM) 

DNA Amplicon- 
seq 
 

RNA-seq 
 
 

RNA Amplicon- 
seq 
(Mean±SEM) 

DNA Amplicon- 
seq 
 

Number of observed phylotypes 45.4±2.8*1) 33.2±2.9# 35.6±3.1# 11.8±0.4a 6.2±0.2b 7.6±0.5c 
Chao 52.1±3.8* 43.0±7.3*# 40.4±3.3# 12.7±0.5a 6.2±0.2b 8.4±1.0b 
Shannon2 1.9±0.3 1.8±0.3 2.0±0.2 1.2±0.1 1.0±0.0 1.1±0.1 
Inverse Simpson 4.3±1.2 4.2±1.3 4.8±1.0 2.5±0.2 2.3±0.1 2.5±0.3 
Good's coverage 99.7% 99.8% >99.8% >99.8% >99.9% >99.9% 

1. Within a row, means with different superscript tend to be different at P<0.1. Comparison was conducted using paired Wilcoxon 
signed rank test for bacterial and archaeal communities separately, and thus estimators between bacterial and archaeal groups are not 
comparable. 
2. Shannon indices showed in the table are the raw value, and the comparison of Shannon index among datasets was based on the 
exponentially transformed values (Jost, 2007) using paired Wilcoxon signed rank test. 
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Table 2.5 qRT-PCR and qPCR primers 
Target  Sequence (5'->3')  Reference 
Total Bacteria Forward  ACTCCTACGGGAGGCAG  (Stevenson and 

Weimer, 2007)  Reverse  GACTACCAGGGTATCTAATCC  
Phylum Bacteroidetes Forward  CAGCAGCCGCGGTAATAC  (Schwieger and 

Tebbe, 1998)  Reverse  CCGTCAATTCCTTTGAGTTT  
Class Gammaproteobacteria Forward  CMATGCCGCGTGTGTGAA (Muhling et al., 

2008)  Reverse  ACTCCCCAGGCGGTCDACTTA 
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2.7 Figures 

 
Figure 2.1 Flow chart of the pipeline for analyzing rumen microbiota using RNA-seq and 
RNA/DNA Amplicon-seq. The regionally enriched Greengenes 16S rRNA gene database (version 
gg_13_5_99 accessed May 2013) was used to analyze the bacterial community, and the 
regionally enriched rumen-specific archaeal database was used to analyze the archaeal 
community.

RNA-seq dataset RNA/DNA Amplicon-seq dataset

Quality control and trim adapter (FastQC & Trimmomatic)

Enrich bacterial and archaeal 16S rRNA reads (SortMeRNA)

Merge paired-end reads into joined reads 
mothur: make.contigs

Discard joined reads (>200 bp, ambiguous bases)
mothur: screen.seqs

Unique and count identical sequences
mothur: unique.seqs & count.seqs

Bacterial and archaeal 16S rRNA/rDNA reads

Unique and count identical reads
mothur: unique.seqs & count.seqs

Align reads to 16S rRNA gene references
mothur: align.seqs (default option)

Bacterial database: 
aligned from 138 to 2227

Archaeal database: 
aligned from 955 to 1510

Enrich references for bacteria (V1-V3) and archaea (V6-V8) 
mothur: pcr.seqs (positions from Amplicon-seq alignment)

Align sequences to regionally enriched reference databases
mothur: align.seqs (default option)

Remove sequences with less than 50 bp aligned and filter alignment
mothur: screen.seqs & filter.seqs

Unique identical sequences and count frequencies
mothur: unique.seqs

Cluster similar sequences with one nucleotide identity difference
mothur: pre.cluster

Identify and remove chimeras: de nove mode 
mothur: chimera.uchime & remove.seqs

Sequences classification using a naive bayesian algorithm (min 
confidence: 0.80) and calculate phylotype abundance 

mothur: classify.seqs & phylotype & make.shared & classify.otu
& get.relabund

Trim primers and quality control (mothur: trim.seqs) 

Standardize the read count of samples and analyze the alpha-
diversity

mothur: sub.sample & summary.single
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Figure 2.2 Microbial community composition estimated in the RNA-seq and RNA/DNA 
Amplicon-seq datasets. Microbial community composition of (a) bacterial phyla, (b) bacterial 
families, (c) archaea, and (d) dataset specific taxa. 
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Figure 2.3 Dissimilarities among the RNA-seq, RNA Amplicon-seq and DNA Amplicon-seq datasets revealed by principal coordinate 
analysis (PCoA). (a) PCoA based on shared bacterial phyla, (b) PCoA based on shared bacterial families, (c) PCoA based on shared 
archaeal mixed taxa. PCoA was performed based on the Bray-Curtis dissimilarity matrix. 
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Figure 2.4 Validation of bacterial relative abundance using qRT-PCR and qPCR. Relative 
abundances of Bacteroidetes (a) and Gammaproteobacteria (d) from qRT-PCR and RNA-seq 
dataset, Bacteroidetes (b) and Gammaproteobacteria (e) from qRT-PCR and RNA Amplicon-seq 
dataset, and Bacteroidetes (c) and Gammaproteobacteria (f) from qPCR and DNA Amplicon-seq 
dataset. 
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(B) Bacteroidetes (r=0.97, P<0.05) 
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(C) Bacteroidetes (r=0.88, P=0.05) 
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(D) Gammaproteobacteria (r=0.97, P<0.05) 
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(E) Gammaproteobacteria (r=0.99, P<0.05) 
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(F) Gammaproteobacteria (r=0.99, P<0.05) 
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Figure 2.5 Rarefaction analysis of rumen bacteria and archaea. Collector’s curves for (a) the 
number of bacterial phylotypes at the family level (b) the number of archaea phylotypes at the 
species level (c) Chao based on bacterial phylotypes at the family level (d) Chao based on 
archaeal phylotypes at the species level. The number of reads in each sample was randomly 
normalized to 3,476 for bacteria and 1,074 for archaea. 
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Figure 2.5 Rarefaction analysis of rumen bacteria and archaea. Collector’s curves for (a) the 
number of bacterial phylotypes at the family level (b) the number of archaea phylotypes at the 
species level (c) Chao based on bacterial phylotypes at the family level (d) Chao based on 
archaeal phylotypes at the species level. The number of reads in each sample was randomly 
normalized to 3,476 for bacteria and 1,074 for archaea. 
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Figure 2.6 Co-occurrence of abundant microbial taxa in the RNA-seq and DNA Amplicon-seq datasets. (a) Correlation matrix of 
abundant microbial taxa and (b) Network of abundant microbial taxa in the RNA-seq dataset. Only bacterial families and archeael taxa 
with a relative abundance > 0.1% and detected in all five rumen samples using both RNA-seq and DNA Amplicon-seq were analyzed 
using the Spearman's rank correlation. The RNA Amplicon-seq dataset was not included into the analysis, because its bacterial and 
archaeal profiles were similar to profiles from the RNA-seq dataset. In (a), the sub-matrix surrounded by the black square exhibits 
correlations between taxa in the RNA-seq and DNA Amplicon-seq datasets. Strong correlations (Spearman's rank correlation 
coefficiency [r] ≥ 0.9 or ≤ -0.9) were displayed with * (0.05 < P < 0.1) and ** (P < 0.05), while the other correlations were showed as 
blank. In (b), a connection with a green/red line means a strong positive/negative correlation (r ≥ 0.9 or ≤ -0.9 and P < 0.1). 
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Chapter 3. Metatranscriptomic profiling reveals linkages between the active rumen 

microbiome and feed efficiency in beef cattle 

 

3.1 Introduction 

Ruminants can convert fibrous plant materials into edible meat and milk products for 

human consumption through rumen microbial fermentation. The symbiotic rumen microbiota 

mainly consists of bacteria, archaea, fungi, and ciliated protozoa (Deng et al., 2008) that can 

produce volatile fatty acids (VFAs), microbial proteins, and vitamins for the host animals. 

Energy from VFAs (mainly acetate, propionate, and butyrate) produced by rumen microbes can 

fulfill approximately 70% of the host’s energy requirements (Flint and Bayer, 2008), and 

microbial proteins can account for up to 90% of amino acids arriving into the small intestine of 

ruminants (Russell and Rychlik, 2001). In addition, rumen microbes can also synthesize most B-

vitamins to meet the nutritional demands of the host (Santschi et al., 2005). To date, multiple 

studies have reported that the rumen microbial composition is associated with feed efficiency in 

beef (Carberry et al., 2012; Guan et al., 2008; Hernandez-Sanabria et al., 2010; Myer et al., 

2015a; Zhou et al., 2009) and dairy (Jewell et al., 2015) cattle, suggesting that rumen microbial 

function may be one of the factors that impact the cattle’s feed efficiency. Feed efficiency is one 

of the most important traits in cattle farming because the feed cost accounts for most of the 

production expense, specifically, as 60 - 70% of the total cost in beef production (Karisa et al., 

2014). In addition, efficient beef cattle produce 20% less methane than inefficient ones 

(Nkrumah et al., 2006); hence, enhancing the feed efficiency of beef cattle can also decrease 

their environmental footprint. Therefore, the improvement in feed efficiency is vital to meet the 

global food security needs of the next few decades.   
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Previous studies on associations between rumen microbiota and beef cattle feed 

efficiency revealed that the bacterial profiles in the rumen of efficient beef cattle differed from 

those of inefficient ones, and the abundances of bacterial genera such as Butyrivibrio, 

Lactobacillus, Prevotella, Ruminococcus, and Succinivibrio were associated with feed efficiency 

traits, including residual feed intake (RFI), dry matter intake (DMI), average daily gain (ADG), 

and feed conversion ratio (FCR) in beef steers (Guan et al., 2008; Hernandez-Sanabria et al., 

2010; Myer et al., 2015a) and heifers (Carberry et al., 2012). Similarly, abundances of rumen 

archaeal taxa such as Methanobrevibacter smithii, Methanosphaera stadtmanae, and 

Methanobrevibacter sp. strain AbM4 have also been reported to be associated with RFI in beef 

steers and heifers (Carberry et al., 2014; Zhou et al., 2009). However, these studies only focused 

on the rumen microbial community composition and did not provide information on microbial 

metabolic functions.  

Metagenomics and metatranscriptomics are approaches that can be used to study 

functional aspects of the microbial community at the genomic and transcriptional levels, 

respectively. Although metagenomics has been recently applied to link the rumen microbiome to 

host phenotypes (such as the feed efficiency and methane yields) in ruminants (Shabat et al., 

2016; Shi et al., 2014; Wallace et al., 2015), it does not allow for the assessment of the activities 

of rumen microbes or their actual gene expression levels. Until now, only a few studies have 

been performed to study the active functional characteristics of the rumen microbiome using 

metatranscriptomics, which includes the identification of eukaryotic gene expressions in 

muskoxen rumen (Qi et al., 2011), the changes in rumen microorganisms and their gene 

expressions as related to sheep methanogenesis levels (Kamke et al., 2016; Shi et al., 2014), and 
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the activities and functions of the archaeal phylotype Methanomassiliicoccales in dairy cows in 

response to rapeseed oil (Poulsen et al., 2013).  

To date, linkages between active rumen microbiomes and feed efficiencies in beef cattle 

have not been studied yet. In the present study, we investigated the compositional and functional 

profiles of active rumen microbiomes in beef cattle with different RFIs using 

metatranscriptomics. RFI, the difference between an individual’s actual feed intake and their 

predicted feed intake (Koch et al., 1963; Nkrumah et al., 2006), is one of the well-accepted feed 

efficiency measurements that has been applied in different livestock industries (Aggrey et al., 

2010; Koch et al., 1963; Nkrumah et al., 2006; Patience et al., 2015). Animals with low RFI (L-

RFI) are considered to be feed efficient, whereas high RFI (H-RFI) individuals are considered to 

be inefficient. Identification of rumen microbes that contribute to feed efficiency may provide 

information towards future applications for the direct administration of microbes to improve the 

feed efficiency of inefficient animals. 

 

3.2 Materials and Methods 

3.2.1 Animal experiments and rumen digesta sample collection 

Animals used in this study were selected from a herd of 180 crossbred beef steers under 

feedlot conditions at the Kinsella Research Station at the University of Alberta. Animals received 

the high-energy finishing diet as described by Hernandez-Sanabria et al. (2013) from 10 months 

old till slaughter at 13 months old. The experimental protocol was approved by the Animal Care 

and Use Committee of the University of Alberta (protocol no. Moore-2006-55), according to the 

guidelines of the Canadian Council on Animal Care (Olfert et al., 1993). RFI values were 

calculated based on DMI (dry matter intake), ADG (average daily gain), and MWT (metabolic 
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weight) during the 90-day experimental period, as described by Nkrumah et al. (2006). For each 

animal, rumen digesta was collected at slaughter, stored in RNAlater (Ambion, Carlsbad, CA, 

USA) at 4 °C overnight, then transferred to -20 °C for long-term storage. In the current study, 

rumen digesta samples from 20 steers with the highest (n = 10) and lowest (n = 10) RFI values 

were subjected to RNA extraction and the metatranscriptomic analysis. 

  

3.2.2 RNA extraction and sequencing 

Total RNAs were extracted from rumen digesta samples using the procedure outlined in 

Chapter 2, which were modified based on the acid guanidinium-phenol-chloroform method 

(Béra-Maillet et al., 2009; Chomczynski and Sacchi, 1987). For each sample, the RNA yield was 

determined using a Qubit 2.0 fluorimeter (Invitrogen, Carlsbad, CA, USA), and the RNA quality 

was examined with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 

RNA samples with RNA integrity number (RIN) scores higher than 7.0 were used for the 

metatranscriptomic analysis. Total RNA (100 ng) of each sample was used for the 

metatranscriptomic library construction using the TruSeq RNA sample Prep v2 LS kit (Illumina, 

San Diego, CA, USA), without the mRNA enrichment step. RNA libraries were evaluated using 

an Agilent 2200 TapeStation (Agilent Technologies) and a Qubit 2.0 fluorimeter (Invitrogen). 

cDNA fragments (~140 bp) were paired-end (2 × 100bp) sequenced using an Illumina HiSeq 

2000 system at the McGill University and Génome Québec Innovation Centre (Montréal, QC, 

Canada). All sequences were deposited into the National Center for Biotechnology Information 

(NCBI) Sequence Read Archive (SRA) under accession number PRJNA275012. 
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3.2.3 Assessment of the active rumen microbiota using metatranscriptomics 

Taxonomic assessment of the active rumen microbiota was conducted following the 

pipeline as described in Chapter 2. Briefly, after quality control and filtration of raw reads, 

bacterial and archaeal 16S rRNA sequences were selected and further aligned to the V1-V3 

region-enriched Greengenes database (DeSantis et al., 2006) and to the V6-V8 region-enriched 

rumen-specific archaea database (Janssen and Kirs, 2008), respectively, using mothur program 

(Schloss et al., 2009). De novo chimera detection was performed, and chimera-removed 

sequences were taxonomically assessed using the naive Bayesian method. The microbial 

community diversity parameters were estimated, including the richness index (Chao), the 

evenness indices (Shannon Evenness and Simpson Evenness), and the alpha-diversity indices 

(Shannon and Inverse Simpson). To make these parameters comparable among 

metatranscriptomic libraries, the number of sequences per sample was normalized to the lowest 

counts for bacteria and archaea in all samples. Taxonomic profiles were summarized at the 

family level for bacteria and at the mixed taxonomic level for archaea.  

 

3.2.4 Estimation of functional activities from rumen metatranscriptomes 

To analyze functional pathways and carbohydrate-active enzymes (CAZymes) of the 

rumen metatransciptomes, putative mRNAs were obtained from metatransciptomic datasets after 

removing rRNAs using the SortMeRNA program (v1.9) (Kopylova et al., 2012). These putative 

mRNAs were firstly aligned to the bovine genome (UMD 3.1) using TopHat 2.0.9 (Kim et al., 

2013) to filter out the host mRNAs. Then, the filtered mRNA sequences were de novo assembled 

for each sample using MetaVelvet (Namiki et al., 2012) with multiple kmer sizes (k = 31, 41, 51, 

and 61) and a minimum output contig length of 100 bp. Assembled contigs from each sample 
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were then pooled together, and identical contigs were binned to construct a non-redundant contig 

set. Demultiplexed contigs were annotated using the UBLAST program in USEARCH v8.1.1861 

(Edgar, 2010) against the KEGG database (Kanehisa et al., 2012) for the metabolic pathway 

prediction, and against the Carbohydrate Active enZYme (CAZy) database (Lombard et al., 

2014) for the CAZymes analysis, separately. For each contig, the best hit with e-value < 1e-5, 

bitscore > 60, and sequence identity > 30% was used for annotation identification (Palomo et al., 

2016). For the metabolic pathway analysis, mRNAs were mapped to annotated contigs with 

KEGG information using the UBLAST program with an e-value of 1e-5 as the cut-off. Outputs 

of the mapping step were then used as inputs for the HUMAnN2 program (Abubucker et al., 

2012), to calculate the abundance of each pathway. To estimate CAZymes profiles, mRNAs 

were aligned to assembled contigs with CAZy annotation using bowtie2 program (Langmead and 

Salzberg, 2012) and quantified using SAMtools (Li et al., 2009a). Abundances of pathways and 

CAZymes were normalized into counts per million reads (CPM) for downstream analysis. 

 

3.2.5 Comparisons of rumen metatranscriptomes between H- and L-RFI beef steers 

In this study, only bacterial families and archaeal taxa with a relative abundance greater 

than 0.1%, as well as metabolic pathways and CAZymes with CPM > 5, in at least 50% of the 

animals within each efficiency group were regarded as being detected and used for the 

comparison analysis. Relative abundance values of bacterial families and archaeal taxa were 

arcsine square root-transformed (Franzosa et al., 2014) and were then subjected to comparative 

analysis between H- and L-RFI steers using the t-test. The data were transformed to stabilize the 

variance of the proportion data, making them more appropriate for application in the t-test 

framework. Principal coordinate analysis (PCoA) was also applied to virtualize the 



 119 

compositional differences of the H- and L-RFI groups’ rumen microbiota, which was conducted 

based on the Bray-Curtis dissimilarity matrices at the bacterial family level and at the archaeal 

species level. Moreover, the parsimony test and the analysis of molecular variance (AMOVA) 

between H- and L-RFI groups were performed to check whether their microbial communities 

had the same structure based on normalized metatranscriptomic datasets using mothur built-in 

code. Effective alpha-diversity parameters (Jost, 2007) were compared between these two groups 

using the Kruskal-Wallis rank sum test because these indices did not follow the normal 

distribution. To generally compare microbial functional profiles between efficient and inefficient 

animals, principal component analysis (PCA) was performed based on generalized logarithum 

transformed CPM of metabolic pathways and CAZymes separately. After that, the abundance of 

each microbial metabolic pathway and each CAZyme was compared between two animal groups 

using Linear discriminant analysis Effect Size (LEfSe) (Segata et al., 2011), and features with 

Linear Discriminant Analysis (LDA) score > 2 and P < 0.05 were considered to be significantly 

different (Mottawea et al., 2016). 

 Correlations between observed microbial taxa (bacterial families and archaeal taxa) and 

metabolic pathways were explored using Spearman's rank correlation. Correlation analyses were 

performed for all twenty animals, as well as within each RFI group. Correlations with ρ > 0.5 or 

< -0.5 and P < 0.05 were considered significant, with ρ representing the correlation coefficient. 

 

3.3 Results 

3.3.1 Rumen metatranscriptomes generated by RNA-seq 

Residual feed intake (RFI) values were significantly different between H- and L-RFI 

groups (1.45 ± 0.17 vs. -1.64 ± 0.21 kg/day; P = 1.06e-9). In addition, H-RFI animals also had 
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higher DMI than L-RFI individuals (11.88 ± 0.33 vs. 8.79 ± 0.39 kg/day; P = 9.55e-6) (Table 

3.1). A total of 1,202.5 million reads were generated from these 20 rumen samples with an 

average of 60,123,520 ± 1,870,616 (mean ± SEM) per library. After quality control, combining 

paired-end reads, clustering unique and similar sequences, and filtering chimeras, 673,171 ± 

106,772 sequences were separated as bacterial V1-V3 regional 16S rRNAs, and 9,445 ± 1,380 

sequences as archaeal V6-V8 regional 16S rRNAs. From each metatranscriptomic library, 

4,595,730 ± 424,774 sequences were retained as mRNAs after removing host bovine mRNAs. 

After de novo assembly of mRNAs, it yielded an average of 302,815 ± 21851 contigs (N50 

length: 155 ± 2 bp) and a total of 4,149,313 unique contigs. After aligning these contigs against 

KEGG and CAZy databases, 929,287 (22.4%) and 117,537 (2.8%) contigs were annotated, 

respectively, which were then used as the reference datasets. An average of 70.7 ± 2.2% and 3.2 

± 0.4% of mRNAs could be mapped back to these KEGG and CAZy annotated reference contigs, 

respectively. Details of the metatranscriptomic datasets are listed in Table 3.2.  

 

3.3.2 Active rumen bacterial and archaeal communities of beef steers 

Taxonomic profiling revealed that sequences belonging to ten bacterial phyla (ranging 

from 6 to 10), 19 bacterial families (ranging from 12 to 19), and six archaeal taxa (ranging from 

4 to 6), accounted for 92.5 ± 0.8%, 80.0 ± 2.2%, and 91.7 ± 1.9% of the total bacterial and 

archaeal abundance, respectively (Table 3.3). Because 70.7% ± 3.8% of the bacterial reads could 

not be classified at the genus level, the downstream taxonomic analysis for the bacterial 

communities was retained at the family level. Based on Good's coverage values, the number of 

enriched 16S rRNA sequences from the metatranscriptomic datasets were sufficient to cover 

more than 99.0% of taxa at the bacterial family and the archaeal taxa levels (Table 3.4). 
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Bacterial and archaeal taxa with a relative abundance > 0.1% in all 20 animals were 

defined as the active core rumen microbiota. The active core microbiota consisted of six bacterial 

phyla including Proteobacteria (46.2 ± 6.1%), Firmicutes (23.2 ± 3.5%), Bacteroidetes (17.5 ± 

2.7%), Spirochaetes (2.6 ± 0.4%), Cyanobacteria (1.0 ± 0.1%), and Synergistetes (0.7 ± 0.1%); 

eight bacterial families including Succinivibrionaceae (44.1 ± 6.2%), Prevotellaceae (11.2 ± 

1.8%), Ruminococcaceae (7.6 ± 1.3%), Lachnospiraceae (6.1 ± 1.3%), Veillonellaceae (3.7 ± 

0.9%), Spirochaetaceae (2.0 ± 0.3%), Dethiosulfovibrionaceae (0.7 ± 0.1%), and 

Mogibacteriaceae (0.7 ± 0.1%); and four archaeal taxa including Methanomassiliicoccales (35.6 

± 4.0%), Methanobrevibacter ruminantium (34.6 ± 4.4%), Methanobrevibacter gottschalki (18.4 

± 3.1%), and Methanosphaera (0.8 ± 0.1%). The core active microbiota accounted for 91.4 ± 

0.9% (phylum level), 76.0 ± 2.6% (family level), and 89.4 ± 3.3% (taxa level) of the bacterial 

and archaeal abundance, respectively. Although these core taxa were consistently detected 

among the 20 animals, we observed noticeable individual variations in their abundances 

(coefficient of variation [CV], ranged from 50.2% to 104.0%) (Table 3.3). 

 

3.3.3 Active microbial metabolic functions and enzymes in the rumen of beef cattle 

Based on metabolic pathway profiles generated using HUMAnN2, 189 KEGG pathways 

were observed, and 57 of them were excluded from downstream analyses as exogenous pathways. 

In total, 112 core pathways were ubiquitous in all 20 rumen samples with CPM > 5, which 

represented 72.9 ± 1.0% of mapped mRNAs (Figure 3.1a). These 112 core pathways belonged 

to four first level KEGG functional categories, including “metabolism” (33.4 ± 1.2%), “genetic 

information processing” (31.7 ± 1.0%), “cellular processes” (6.6 ± 0.3%), and “environmental 

information processing” (1.2 ± 0.2%). At the second level of the KEGG hierarchy, these core 
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pathways belonged to 20 KEGG functional categories, with “carbohydrate metabolism” (14.1 ± 

0.4%), “translation” (11.4 ± 0.8%), “folding, sorting and degradation” (10.9 ± 0.4%), 

“replication and repair” (9.1 ± 0.7%), and “amino acid metabolism” (5.2 ± 0.3%) as the top five 

most abundant functions. Within these five second level functional groups, “ko00030: Pentose 

phosphate pathway” (2.5 ± 0.1%), “ko03010: Ribosome” (10.0 ± 0.7%), “ko04120: Ubiquitin 

mediated proteolysis” (6.2 ± 0.5%), “ko03430: Mismatch repair” (3.3 ± 0.3%), and “ko00250: 

Alanine, aspartate and glutamate metabolism” (2.3 ± 0.1%) were the most abundant pathways in 

their respective functional groups. In addition, eukaryotic pathways were also identified in our 

datasets, such as “ko04145: phagosome” (1.6 ± 0.1%), “ko04142: lysosome” (1.4 ± 0.1%), and 

so on (Figure 3.1a). In terms of CAZyme profiles, a total of 168 CAZymes were detected (6 AA 

[auxiliary activity], 14 CE [carbohydrate esterase], 91 GH [glycoside hydrolase], 46 GT 

[glycosyl transferase], and 11 PL [polysaccharide lyase]), and 126 of them were observed with 

CPM > 5 in all 20 animals, which were considered as core rumen CAZymes (representing 94.8 ± 

4.7% of total CAZyme reads). GT2 (33.0 ± 5.7%), GH13 (5.8 ± 0.6%), and GH9 (5.8 ± 0.7%) 

were the most abundant CAZymes in the rumen of these steers (Figure 3.1b). 

 

3.3.4 Comparison of active rumen microbiota between H- and L-RFI beef steers  

The principal coordinate analysis (PCoA) did not show clear separations of the active 

rumen microbiota between H- and L-RFI steers based on the Bray-Curtis dissimilarity matrices 

of bacterial families and archaeal taxa (Figure 3.2). Meanwhile, the parsimony test and the 

analysis of molecular variance (AMOVA) also did not show significant differences between the 

H- and L-RFI groups in either the bacterial and archaeal communities (P = 0.34 and 0.44 for the 

bacterial community, respectively; P = 0.67 and 0.13 for the archaeal community). When 
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diversity indices were compared, the richness index (Chao), the evenness indices (Shannon 

Evenness and Simpson Evenness), and the alpha-diversity indices (Shannon and Inverse 

Simpson) were not significantly different (P > 0.05, Kruskal-Wallis rank sum test) (Table 3.4) 

between the two groups. However, when the relative abundance of each taxon was compared, 

three bacterial families Lachnospiraceae, Lactobacillaceae, Veillonellaceae and one archaeal 

taxon Methanomassiliicoccale tended to be different (P = 0.08, 0.08, 0.09 and 0.07, t-test, 

respectively) between the H- and L-RFI cattle (Table 3.2). The relative abundance of 

Lachnospiraceae, Lactobacillaceae, and Veillonellaceae in the H-RFI group (8.3 ± 2.3%, 0.6 ± 

0.1%, and 5.2 ± 1.6%, respectively) was at least 2-fold higher than those in the L-RFI group (3.8 

± 0.7%, 0.3 ± 0.1%, and 2.2 ± 0.4%, respectively). The relative abundance of 

Methanomassiliicoccales was higher in L-RFI steers (42.9 ± 6.6%) than that in H-RFI steers 

(28.3 ± 3.5%) (Table 3.2).  

 

3.3.5 Differential microbial metabolic pathways and CAZymes between H- and L-RFI 

cattle 

Although the PCA did not show clear separation based on CAZyme profiles between two 

feed efficiency groups, it showed two major clusters according to RFI classification based on 

detected KEGG pathways, except for four individuals (L37, L52, L59, and H50) (Figure 3.3a 

and 3.3b). Through conducting the LEfSe analysis, 32 differentially expressed KEGG pathways 

were identified (LDA score > 2 and P < 0.05) between the two animal groups: 30 pathways were 

more abundant in the H-RFI group, while two pathways (ko03015: mRNA surveillance pathway 

and ko04130: SNARE interactions in vesicular transport) were more abundant in L-RFI animals 

(Figure 3.3c and 3.3d). Among these 32 differentially abundant pathways, 26, 4, and 2 of them 
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were related to “metabolism”, “genetic information processing”, and “cellular processes” (first 

level KEGG functions), respectively. Within these 26 metabolism-related pathways, there were 

six “cofactors and vitamin metabolism” pathways (ko00670, ko00730, ko00770, ko00785, 

ko00790, and ko00860), five “terpenoids and polyketides metabolism” pathways (ko00281, 

ko00900, ko00908, ko01051, and ko01055), and four “amino acid metabolism” pathways 

(ko00270, ko00300, ko00340, and ko00350; related to cysteine, histidine, lysine, methionine, 

and tyrosine). Meanwhile, the LEFSe analysis also revealed 12 differentially abundant CAZymes 

between two RFI groups (LDA score > 2 and P < 0.05). Only one CAZyme (GT31) was 

enriched in L-RFI animals, and the other 11 CAZymes (AA0, CE4, CE14, GH14, GH36, GT4, 

GT8-9, GT28, GT30, and GT47) were all higher abundant in the inefficient group (Figure 3.3e 

and 3.3f).  

 

3.3.6 Relationships between active phylotypes and metabolic pathways in the rumen  

Correlation analysis using Spearman's rank correlation revealed various significant 

(coefficient [ρ] > 0.5 or < -0.5 and P < 0.05) relationships between active taxa (bacterial families 

and archaeal taxa) and active metabolic pathways (Figure 3.4a). When animals from two feed 

efficiency groups were analyzed together, in total of 115 significant correlations were identified. 

However, when relationships between taxa and metabolic pathways were further explored within 

each RFI group, more correlations were revealed (n = 177 in the H-RFI group, and n = 152 in the 

L-RFI group) and correlation patterns were different between two RFI groups (Figure 3.4b and 

3.4c). Moreover, the relative abundances of three differential bacterial families between H- and 

L-RFI animals (Lachnospiraceae, Lactobacillaceae, Veillonellaceae), were all significantly 

correlated with the same four pathways (ko00680: Methane metabolism, ko00630: Glyoxylate 
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and dicarboxylate metabolism, ko00380: Tryptophan metabolism, and ko00280: Valine leucine 

and isoleucine degradation) and clustered together in the H-RFI group, while their relative 

abundances were associated with different pathways in L-RFI animals.  

 

3.4 Discussion 

The current study aimed to link the active rumen microbiome with feed efficiency (RFI) 

in beef cattle by assessment of the active rumen microbiota and its functions using total RNA-

based metatranscriptomics. Firstly, active core rumen microbiota including six bacterial phyla, 

eight bacterial families, and four archaeal taxa were identified, suggesting their essential roles in 

occupying rumen ecological niches because they have also been reported to inhabit the rumen of 

beef heifers (Petri et al., 2013), lactating cows (Jami and Mizrahi, 2012), and other ruminant 

species (Henderson et al., 2015) using DNA-based identification. For example, family 

Prevotellaceae (belonging to phylum Bacteroidetes) is highly abundant at both the DNA (up to 

59.9%) (Stevenson and Weimer, 2007) and RNA levels (11.2%, this study). Members of 

Prevotellaceae utilize various substrates, such as starch, protein, peptides, hemicellulose, and 

pectin, to generate a wide range of end products, mainly short chain fatty acids including acetate, 

succinate, and propionate (Carberry et al., 2012; Russell and Rychlik, 2001). This bacterial 

family has a remarkable degree of genetic diversity (Avgustin et al., 1997; Purushe et al., 2010), 

which occupies various ecological niches within the rumen (Jami and Mizrahi, 2012). Our results 

provide further understanding regarding its consistent presence in the rumen, especially with 

animals fed a barley-based high grain diet. It was surprising to identify the high relative 

abundance (7.6%) of the family Ruminococcaceae (belonging to phylum Firmicutes) in the 

active core rumen microbiota under a barley-based high grain diet because this family has been 
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considered to consist of mainly fibrolytic organisms. However, recent studies have reported that 

members of this family such as Ruminococcus bromii and other Ruminococcus spp. are highly 

involved in starch hydrolysis (Klieve et al., 2007; Klieve et al., 2012), and the relative 

abundance of this family in the rumen is associated with the proportion of barley grain in the diet 

(Xia et al., 2015). Due to the considerable genetic diversity among members in this family 

(Klieve et al., 2007), it is necessary to look at them at genus, species, and/or strain level to 

further understand the functions of this family in the rumen under high grain dietary conditions. 

Different from previous studies, we found that the most abundant active rumen bacterial 

family in beef steers fed with barley was Succinivibrionaceae (44.1 ± 6.2%), which belongs to 

the phylum Proteobacteria. Previous DNA-based studies revealed its abundance ranging from 

0.6 to 20.1% (Kim and Yu, 2014; Petri et al., 2013). Members of Succinivibrionaceae can utilize 

hydrogen to produce succinate, a precursor of propionate (Pope et al., 2011), one of the major 

VFAs utilized for gluconeogenesis in the liver (Young, 1977). The predominance of 

Succinivibrionaceae at the RNA level suggests it may be the major contributor for rumen 

propionate production under the barley-based high grain diet through production of upstream 

succinate. Future studies to compare the abundance of this family under different dietary 

conditions (different types of grain, high grain vs. high forage), as well as to measure the 

concentration of succinate, will provide more direct information of its functional role in the 

rumen. In the meantime, we identified two archaeal taxa, Methanomassiliicoccales and Mbb. 

ruminantium, as the most active methanogens in the rumen of steers fed a barley diet. 

Methanomassiliicoccales utilize methanol and methylamines as major energy and carbon sources 

to produce methane (Poulsen et al., 2013; Sollinger et al., 2016), while Mbb. ruminantium 

produces CH4 by utilizing CO2, formate and H2 as substrates (Miller et al., 1986; Russell and 
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Rychlik, 2001). Their high abundances suggest that the methyl compound conversion route and 

the CO2 reduction route are the major methanogenesis pathways in the rumen of beef steers fed a 

barley-based diet. 

The further identification of 112 active core metabolic pathways and 126 CAZymes in 

this study provides more understanding of the basic housekeeping activities of the rumen 

microbiome. The high abundance of metabolism-related functions (carbohydrate, amino acid, 

and energy metabolism), especially carbohydrate metabolism, confirmed similar findings 

reported using metagenomic analysis (Wang et al., 2013). For example, “ko00500: starch and 

sucrose metabolism” was observed as one of the core pathways in the rumen of beef cattle fed 

with grain diet based on metagenomic datasets (Wang et al., 2013). In addition to starch and 

sucrose metabolism, this pathway is also related to the metabolism of many hydrolytic products 

(e.g., maltose, glucose, fructose, xylose, etc.), which are by-products of the digestion of feed 

starch (Wang et al., 2013); therefore, it is not surprising to detect the high activity of this 

pathway in beef cattle fed with barley. Meanwhile, “ko00680: methane metabolism” was also 

ubiquitous in all 20 animals, which further highlights the importance of methane production as 

part of the key microbial functions in rumen. Previous studies reported that although genes 

belonging to this pathway had similar abundance between high and low methane emitters (Shi et 

al., 2014; Wallace et al., 2015), variations in their expression levels were associated with 

methane yields (Shi et al., 2014). The consistent presence and the noticeable abundance 

variations (CV: 21.9%) of this pathway at the RNA level further suggest that it could be the 

target for the rumen methane mitigation as suggested by Shi et al. (2014). Our findings underline 

some of the housekeeping functions of rumen microbiomes, including microbial metabolism and 
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survival, and their variations may contribute to different host phenotypic performances such as 

cattle feed efficiency. 

Indeed, differences in rumen metatranscriptomes at both taxonomic and functional levels 

between H- (inefficient) and L-RFI (efficient) cattle were identified. Different relative abundance 

of Lachnospiraceae between RFI groups suggests that the activity of this family may be 

associated with feed efficiency in beef cattle, probably because some members of 

Lachnospiraceae are major butyrate producers (Meehan and Beiko, 2014). Recently, ruminal 

butyrate concentration has been reported to be associated with feed efficiency (Guan et al., 

2008), and the abundance of this family at the DNA level has also been linked to feed efficiency 

(Myer et al., 2015a) in beef steers. Therefore, the higher abundance of this family in H-RFI 

animals may be accompanied by increased butyrate metabolism, which affects feed efficiency. 

However, the identified more butyrate producers in inefficient animals is in conflict with the 

previous findings that L-RFI animals tended to have higher butyrate concentration as compared 

to H-RFI animals (Guan et al., 2008). Such discrepancy may be due to that the abundances being 

identified at the family level, while this family has 24 genera and several unclassified strains 

with different functional niches (Sayers et al., 2011), and less than half of its members have the 

butyrate production capacity (Meehan and Beiko, 2014). Moreover, we did not detect differences 

in butyrate concentration in the rumen fluid of the same twenty animals (Hernandez-Sanabria et 

al., 2010) and found no significant correlation between the activity of Lachnospiraceae and the 

“ko00650: butanoate metabolism” pathway. Further studies at deeper taxonomic levels 

(genus/species) and/or using culture-based methods may provide more information regarding the 

relationships between Lachnospiraceae, butyrate production, and feed efficiency.  
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Additionally, Methanomassiliicoccales was more abundant in L-RFI animals. The 

members belonging to this order are H2-dependent methylotrophic methanogens, which can use 

methylamine as energy and carbon sources and provide additional NH4
+ to the entire rumen 

bacteria (Brugere et al., 2014; Poulsen et al., 2013). The concentration of methylamine in the 

rumen increases with increasing amounts of dietary barely, and methylamine is a harmful 

component for the host due to its degradation products such as hydrogen peroxide and 

formaldehyde (Ametaj et al., 2010; Saleem et al., 2012; Yu et al., 2006). The higher abundance 

of Methanomassiliicoccales in efficient animals suggests that more methylamine might be 

utilized to supply additional NH4
+ during the methanogenesis which may not only generate NH4

+
 

for rumen nitrogen cycling but also decrease the potential negative effects caused by high 

concentrations of methylamine.  

In the current study, we found that 30 differential metabolic pathways and 11 CAZymes 

were more abundant in H-RFI cattle, while only 2 pathways and 1 CAZymes were more 

abundant in the L-RFI group. A recent metagenomics study also revealed that a significantly 

higher number of KEGG pathways were enriched in the microbiomes of H-RFI cattle (Shabat et 

al., 2016), suggest that the rumen microbiomes of inefficient cattle may have higher and more 

diverse activities than those of efficient cattle. In addition, four amino acid metabolism pathways 

related to cysteine, histidine, lysine, methionine, and tyrosine were more active in H-RFI beef 

steers. Using metagenomics, Shabat et al. (2016) also reported that these four and several other 

pathways related to protein/amino-acid metabolism were enriched in H-RFI dairy cows. These 

data suggest differences in nitrogen metabolism between animals with different feed efficiencies. 

Specifically, rumen microbiomes in H-RFI animals seem to have higher nitrogen metabolism 

activities. In line with our speculation, previous studies have shown that H-RFI dairy cows and 
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beef heifers had low rumen NH3 concentration (Lawrence et al., 2011; Rius et al., 2012), 

indicating higher rumen nitrogen utilization (Bach et al., 2005; Broderick and Reynal, 2009) as 

compared to L-RFI individuals. Furthermore, different correlation patterns between microbial 

phylotypes and functional pathways were observed for two RFI groups, meaning that the same 

phylotypes may have different functional niches in the rumen of H- and L-RFI animals. One 

taxon may involve multiple metabolic pathways and one metabolic pathway may be attributable 

to multiple taxa. These complicated relationships could not be revealed by our correlation 

analysis. Furthermore, as reviewed and discussed by Blazewicz et al. (2013), there are 

limitations of using rRNA as the proxy of microbial abundances. Future culture-based studies 

need to be applied to explore relationships among rRNA abundances, mRNA abundances, 

microbial taxa abundances, and metabolic functions to validate our current findings.  

Although the PCA based on metabolic pathways generated two major clusters 

corresponding to steers’ RFI rankings, there are four animals as exceptions. This indicates a role 

for the host in the relationship between rumen microbiome and feed efficiency. It has been 

reported that host genetics and sire breed can impact the association between rumen microbiota 

and RFI (Guan et al., 2008; Hernandez-Sanabria et al., 2013). Future studies to identify the host 

factors regulating the rumen microbiome are needed to further elucidate how host-microbial 

interactions in the rumen contribute to the beef cattle feed efficiency. 

Together, the above metatranscriptome analysis indicate that inefficient (H-RFI) cattle’s 

microbiomes may have higher activities and more diverse abilities to utilize feed compounds and 

to generate more diverse products. The higher microbial activity in H-RFI animals could be due 

to their higher intake. It is known that microbial activities are strongly correlated with the feed 

intake (Pathak, 2008) because rumen microorganisms can have more available substrates and 
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nutrients for growth. In the meantime, increased feed intake can lead to a higher rumen passage 

rate (Colucci et al., 1982), which is associated with increased microbial growth and activities 

(Martinez et al., 2009; Shriver et al., 1986), due to a decrease in the proportion of the energy 

used for maintenance and reduced microbial generation times (Firkins, 1996; Sniffen and 

Robinson, 1987). In addition, the difference in activity outcomes could be also affected by the 

total microbial mass, which was not evaluated in this study due to the limitation in sampling 

process. Moreover, efficiency of rumen function is related to both microbial production and host 

absorption. Although the rumen microbiomes of H-RFI animals may be more active, the host 

may have less absorption capability and metabolism. Indeed, transcriptome profiles of ruminal 

epithelial tissues of the same animals revealed higher expression of genes involved in 

intercellular gaps in L-RFI steers, indicating greater and more efficient paracellular absorption of 

nutrients by efficient animals as compared to inefficient animals (Kong et al., 2016). Therefore, 

future studies on measuring metabolites and/or enzymes in the rumen, total rumen microbial 

mass as well as rumen passage rate are needed to explore and further understand the 

relationships among microbial fermentation, host rumen epithelial absorption, and feed 

efficiency. 

 

3.5 Conclusions  

This study comprehensively explored the active compositional and functional 

characteristics of the rumen microbiome in beef cattle using metatranscriptomics. Our results 

revealed an active core microbiome in the bovine rumen, which showed consistent occurrences 

but noticeable variations among individuals. The presence of a rumen microbial core indicates 

that there are fundamental and essential active components commonly involved in rumen 
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functions. Furthermore, cattle with different RFIs showed different rumen microbial 

characteristics at both the compositional and functional levels, suggesting possible links between 

the active rumen microbiome and host feed efficiency. It is noticeable that only a small fraction 

of assembled mRNA contigs (22.4% in the datasets) could be mapped to the KEGG database, 

and the functional analysis only focused on these annotated mRNAs in the present study. 

Similarly, Ross et al. (2012) reported that only 6.0% of metagenomic reads could be mapped to 

existing databases. A low ratio of mapped reads highlights that the majority of rumen microbial 

genes have not been deposited in current databases and that bovine rumen microbial functions 

have yet to be sufficiently addressed. Potentially, the Hungate 1000 project 

(http://www.rmgnetwork.org/hungate1000.html) will provide a reference dataset of rumen 

microbial genome sequences after sequencing cultivated rumen bacteria, archaea, fungi and 

ciliate protozoa. To date, the Hungate 1000 project has 437 rumen microbial cultures being 

sequenced and information of 311 genomes are already available in the Joint Genome Institute 

website (JGI; http://genome.jgi.doe.gov). Future studies through comprehensive annotation using 

culture-based references will help identify the unmapped mRNAs. Regardless, our findings 

provide evidence that the active rumen microbiome is one of the biological factors that may 

contribute to the variations in feed efficiency of beef cattle. The information from the current 

study highlights the possibility to enhance nutrient utilization and improve feed efficiency 

through altering rumen microbial functions. 
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3.7 Tables 

Table 3.1 Residual feed intake, dry matter intake, and RNA quality of samples  
ID RFI DMI RIN  ID RFI DMI RIN 

High RFI (H-RFI) group  Low RFI (L-RFI) group 
H11 1.74 13.48 8.7  L37 -1.39 9.39 9.6 
H16 2.75 13.14 9.2  L40 -1.57 9.51 8.2 
H17 0.98 11.49 10  L46 -1.10 9.91 8.7 
H27 1.23 11.81 8.0  L52 -2.03 10.12 7.7 
H50 1.11 12.01 8.8  L59 -2.13 8.70 9.4 
H56 1.63 13.14 8.9  L96 -1.22 8.89 8.2 
H107 1.64 11.05 8.6  L132 -2.33 7.08 7.2 
H150 1.43 11.06 7.9  L145 -2.81 6.24 8.8 
H152 0.85 10.51 9.1  L166 -1.11 8.79 7.8 
H176 1.11 11.12 9.2  L167 -0.75 9.25 9.2 
         
Mean 1.45 11.88    -1.64 8.79  
SEM 0.17 0.33     0.21 0.39  
  
RFI P = 1.06e-9 (t-test) 
DMI P = 9.55e-6 (t-test) 

Abbreviations: RFI, residual feed intake; DMI, dry matter intake; RIN, RNA integrity number. 
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Table 3.2 Details of metatranscriptomic datasets 
ID RNA reads 

before QC1 
(n) 

RNA reads 
after 
 QC1 
(n) 

Bacterial 
16S 

rRNAs 
(n) 

Archaeal 
16S 

rRNAs 
(n) 

Bacterial  
16S V1-3 
rRNAs2 

(n)  

Archaeal  
16S V6-8 
rRNAs2 

(n) 

Putative 
mRNAs 

(n) 

Filtered 
mRNAs3 

(n) 

Contigs 
from 

assembly 
(n) 

N50 
length 
(bp) 

mRNAs 
mapped 

to KEGG 
contigs 

(%) 

mRNAs 
mapped 
to CAZy 
contigs 

(%) 
H11 73827508 57354074 889564 56032 151643 8773 8163684 8161850 372803 162 80.1 1.8 
H16 79194124 60906642 1992501 76529 355507 11689 8581748 8579902 374521 160 80.2 2.8 
H17 65401858 47977240 7447570 196346 1213447 26179 3325950 3324960 461132 182 44.8 7.1 
H27 62235658 45957158 7629938 46312 1517769 6836 2486024 2485536 225135 149 62.0 5.3 
H50 56771000 41494434 6847953 69968 1262589 9660 2504632 2501746 246297 159 58.1 6.1 
H56 69151956 51379420 5269009 86009 974614 13755 5357570 5353220 475048 153 69.3 2.7 
H107 61481768 46533042 2283981 98971 385906 14846 5557232 5485382 350655 152 75.2 1.8 
H150 58736994 45041246 2530302 99000 455280 14912 5329762 5326836 421865 154 70.1 1.9 
H152 59751554 44557518 5838899 75394 1077754 10269 3017982 3017154 204919 153 68.7 3.8 
H176 56635428 42618418 4258673 135999 700214 18598 3920272 3918724 353586 156 65.1 3.5 
L37 64079478 45866208 7616850 52640 1450595 7413 2327054 2325998 206300 152 61.8 5.8 
L40 60218214 46117206 1170583 16835 213773 2326 6101582 6097016 376242 152 75.9 1.7 
L46 54205486 41288720 879337 19785 160778 2853 5446990 5445430 193744 157 85.4 1.8 
L52 53474730 40956170 920779 11455 166953 1588 5548290 5545406 329771 152 76.3 1.5 
L59 55264142 40562424 6073409 50022 1149642 6952 2128574 2127674 142198 150 68.6 5.5 
L96 62808446 47472578 2677871 70125 460620 9814 4950778 4939332 343411 150 71.6 1.9 

L132 43604698 32822248 873288 34116 136487 4279 4140402 4138846 206500 151 82.5 1.5 
L145 44825366 32706490 4005649 64819 737083 9029 2462640 2370336 207088 151 64.3 3.5 
L166 61866444 46318910 639976 5561 114850 824 6617426 6614742 331424 155 77.9 1.9 
L167 58935556 44182504 3980271 58490 777920 8299 4156582 4154512 233664 152 76.2 2.8 

             
Mean 60123520 45105633 3691320 66220 673171 9445 4606259 4595730 302815 155 70.7 3.2 
SEM 1870616 1483393 567906 9983 106772 1380 424073 424774 21851 2 2.2 0.4 

1. QC: quality control. 
2. These numbers are after chimera removing. 
3. These numbers are after removing bovine mRNAs. 
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Table 3.3 Relative abundances of active bacterial and archaeal taxa estimated using 
metatranscriptomics  

Taxonomic 
level 

Classification Overall H-RFI 
(Mean±SEM) 

L-RFI 
 

P1 

Bacteria1       
    Phyla Actinobacteria 0.2±0.0% 0.3±0.0% 0.2±0.0% 0.14 
       Family Coriobacteriaceae 0.2±0.0% 0.2±0.0% 0.2±0.0% 0.18 
    Phyla Bacteroidetes 17.6±2.7% 16.6±3.3% 18.6±4.4% 0.80 
       Family Bacteroidaceae 0.1±0.0% 0.2±0.1% 0.1±0.0% 0.75 
       Family p-2534-18B5 0.9±0.3% 1.2±0.6% 0.6±0.3% 0.64 
       Family Paraprevotellaceae 0.2±0.0% 0.2±0.1% 0.3±0.1% 0.72 
       Family Prevotellaceae 11.2±1.8% 9.9±1.9% 12.4±3.2% 0.64 
       Family RF16 0.3±0.1% 0.2±0.1% 0.5±0.2% 0.16 
       Family S24-7 0.2±0.0% 0.2±0.0% 0.2±0.0% 1.00 
    Phyla Cyanobacteria 1.0±0.1% 1.0±0.2% 1.1±0.2% 0.83 
    Phyla Firmicutes 23.2±3.5% 28.0±6.2% 18.5±3.0% 0.21 
       Family Erysipelotrichaceae 0.8±0.2% 0.7±0.2% 0.9±0.3% 0.63 
       Family Lachnospiraceae 6.1±1.3% 8.3±2.3% 3.8±0.7% 0.08 
       Family Lactobacillaceae 0.5±0.1% 0.6±0.1% 0.3±0.1% 0.08 
       Family Mogibacteriaceae 0.7±0.1% 0.7±0.2% 0.6±0.1% 0.66 
       Family Ruminococcaceae 7.6±1.3% 8.8±2.0% 6.4±1.6% 0.33 
       Family Veillonellaceae 3.7±0.9% 5.2±1.6% 2.2±0.4% 0.09 
    Phyla Lentisphaerae 0.2±0.0% 0.2±0.1% 0.2±0.1% 0.91 
       Family Victivallaceae 0.2±0.0% 0.2±0.1% 0.2±0.0% 0.94 
    Phyla Proteobacteria 46.2±6.1% 42.6±9.4% 49.8±8.3% 0.56 
       Family Desulfovibrionaceae 0.2±0.0% 0.3±0.1% 0.2±0.0% 0.56 
       Family Succinivibrionaceae 44.1±6.2% 40.8±9.4% 47.5±8.3% 0.57 
    Phyla Spirochaetes 2.6±0.4% 3.0±0.6% 2.2±0.5% 0.41 
       Family Sphaerochaetaceae 0.3±0.1% 0.5±0.2% 0.2±0.0% 0.11 
       Family Spirochaetaceae 2.0±0.3% 2.2±0.5% 1.9±0.5% 0.71 
    Phyla Synergistetes 0.7±0.1% 0.7±0.1% 0.7±0.1% 0.95 
       Family Dethiosulfovibrionaceae 0.7±0.1% 0.7±0.1% 0.7±0.1% 0.95 
    Phyla Tenericutes 0.2±0.0% 0.2±0.0% 0.2±0.1% 0.91 
    Phyla Verrucomicrobia 0.5±0.1% 0.4±0.2% 0.6±0.2% 0.43 
Archaea1      
       Mixed Methanobrevibacter gottschalki 18.4±3.1% 17.2±4.7% 19.7±4.1% 0.56 
       Mixed Methanobrevibacter ruminantium 34.6±4.4% 41.6±6.0% 27.5±5.8% 0.11 
       Mixed Methanobrevibacter woesei 0.1±0.0% 0.1±0.0% 0.1±0.0% 0.83 
       Mixed Methanobrevibacter wolinii 2.2±1.4% 2.7±2.5% 1.7±1.3% 0.96 
       Mixed Methanomassiliicoccales 35.6±4.0% 28.3±3.5% 42.9±6.6% 0.07 
       Mixed Methanosphaera 0.8±0.1% 0.7±0.1% 0.8±0.1% 0.88 

1. P-value between the H- and L-RFI groups was obtained using the t-test based on the arcsine square 
root-transformed relative abundance values. 
2. Bacterial and archaeal communities were analyzed separately.
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Table 3.4 Comparisons of alpha-diversity indices1 between H- and L-RFI cattle 
 Bacteria  Archaea 

 Overall (n=20) H-RFI (n=10) 
(Mean±SEM) 

L-RFI (n=10) 
 

P2  Overall (n=20) H-RFI (n=10) 
(Mean±SEM) 

L-RFI (n=10) P2 

Richness index          
    Chao1 96.75±2.17 95.65±2.72 97.86±3.48 0.65  10.35±0.22 10.19±0.34 10.51±0.28 0.36 
Evenness indices          
    Shannon evenness 0.45±0.03 0.46±0.05 0.43±0.04 0.41  0.55±0.02 0.56±0.02 0.54±0.03 1.00 
    Simpson Evenness 0.06±0.01 0.07±0.01 0.05±0.01 0.23  0.30±0.01 0.31±0.01 0.29±0.02 0.94 
Diversity indices          
    Shannon 1.98±0.15 2.04±0.22 1.92±0.20 0.50  1.22±0.04 1.23±0.05 1.21±0.07 0.94 
    Inverse Simpson 5.16±0.71 5.89±1.18 4.44±0.79 0.29  2.78±0.14 2.84±0.19 2.72±0.21 0.94 
Good's coverage3 >99% >99% >99%   >99% >99% >99%  

1. To make alpha-diversity indices comparable among metatranscriptomic libraries, the number of sequences per library was normalized to 
114,850 and 824 for bacteria community and archaea community, respectively, according to the minimum read number among all libraries. 
2. P-value was obtained based on effective values of each index (transformed according to Jost (2007)) using the Kruskal-Wallis rank sum 
test. 
3. Good's coverage = (1-n1/N) × 100%, where the n1 is the number of OTUs that only sampled once and N is the number of all OTUs. 
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3.8 Figures  

 

 

 

 

 

 

 

 
 
Figure 3.1 Profiles of bovine rumen microbiome. (a) Microbial metabolic pathways based on their First and Second Level functions in 
the KEGG hierarchy. (b) Carbohydrate-active enzymes (CAZymes). These graphs were generated using the program Krona (Ondov et 
al., 2011). 
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Figure 3.2 Microbial compositional profiles of H- and L-RFI animals visualized using principal 
coordinate analysis (PCoA). The first two PCoAs were plotted and they were calculated based on 
the Bray-Curtis dissimilarity matrices at the bacterial family level (a) and archaeal species level 
(b). 
 
 

(A) Bacterial communities at the family level (B) Archaeal communities at the mixed taxonomic level

-0.4 -0.2 0.0 0.2 0.4

-0
.1

0.
0

0.
1

0.
2

0.
3

PCoA1 (63.1%)

P
C

oA
2 

(1
1.

7%
)

H107

H11

H150

H152

H16

H17

H176

H27

H50

H56

L132

L145

L166

L167L37

L40

L46
L52

L59

L96

H-RFI
L-RFI

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

PCoA1 (35.4%)

P
C

oA
2 

(1
7.

1%
)

H107

H11

H150

H152

H16

H17

H176

H27

H50

H56

L132

L145

L166

L167

L37

L40

L46

L52

L59

L96

H-RFI
L-RFI



 149 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.3 Differential rumen microbial metabolic pathways and carbohydrate-active enzymes 
(CAZymes) between H- and L-RFI cattle in metatranscriptomic datasets. (a) PCA based on 
microbial metabolic pathways. (b) PCA based on CAZymes. Histograms of Linear Discriminant 
Analysis (LDA) for the differential metabolic pathways (c) and CAZymes (e). Abundances of 
differential pathways (d) and CAZymes (f). Pathways and CAZymes with LDA score > 2 and P 
< 0.05 were considered as significantly differential features. 
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Figure 3.4 Correlation patterns showing associations between active microbial taxa and 
metabolic pathways. (a) Correlation patterns based on all 20 animals. (b) Correlation patterns 
within the H-RFI group. (v) Correlation patterns within the L-RFI group. Correlation analyses 
were conducted using Spearman’s rank correlation. Only strong (correlation coefficient [ρ] > 0.6 
or < -0.6) and significant (P < 0.05) correlations were chose to be displayed. The scale ranged 
from -1 (red) to 1 (blue). 
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Chapter 4. Metagenomics and metatranscriptomics reveal the breed effect on the rumen 

microbiome and its associations with feed efficiency in beef cattle  

 

4.1 Introduction 

Beef cattle provide high quality protein sources (meat) and economic profits to humans. 

With the increase of global human population, there are increased resource competitions (e.g., 

land, water, and cereal grains) between human and livestock, especially for the beef operations 

(Eisler et al., 2014; Thornton, 2010). Improving feed efficiency of beef cattle could enhance the 

feed utilization ratio, and thus make them consume less feed (especially human edible cereal 

grains) but maintain higher or equal production performance. Meanwhile, 35 - 40% of 

anthropogenic CH4 (one of greenhouse gases) emissions come from the livestock sector 

(Steinfeld et al., 2006), which are largely produced during the rumen fermentation and manure 

handling in the ruminant operations (Xue et al., 2014). Improving feed efficiency can decrease 

these negative environmental effects caused by the beef cattle operations, because cattle with 

high feed efficiency cattle not only emit less CH4 (~25%), but also excrete less feces than those 

with low feed efficiency (Hegarty et al., 2007; Nkrumah et al., 2006).  

The rumen microbiota consists of bacterial, archaea, fungi, ciliated protozoa, and phages 

(Morgavi et al., 2013). They are responsible for the rumen fermentation and several studies have 

reported their associations with feed efficiency in beef and/or dairy cattle. However, most of 

these studies only focused on the taxonomic profiles. Differences in relative abundance of several 

rumen microbial phylotypes were reported between high and low feed efficiency individuals 

(Carberry et al., 2012; Hernandez-Sanabria et al., 2010; Jewell et al., 2015; Myer et al., 2015a; 

Zhou et al., 2009); alpha-diversity indices of rumen bacterial and archaeal communities also 
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contributed to the variations of feed efficiency in cattle, where inefficient individuals possessed 

more complex and diverse microbial communities (Shabat et al., 2016; Zhou et al., 2009). 

Nowadays, metagenomics and metatranscriptomics are becoming powerful tools to study 

and link rumen microbial functions to host feed efficiency. Using these approaches, two recent 

studies linked rumen microbial functional profiles to feed efficiency in cattle (Shabat et al., 2016; 

Chapter 3). Both of these studies suggest that rumen microbiomes from inefficient cattle may 

have more diverse functional potentials and higher activities than those in efficient cattle, leading 

to a wider range of fermentation products, but these products may not be efficiently utilized by 

the host and/or even harmful to the host. To date, previous studies on the associations between 

the rumen microbiome and feed efficiency were conducted without the consideration of the host 

genetic effect. However, previous studies have suggested that rumen microbial profiles were 

distinguishable among hosts with different genetic backgrounds (Henderson et al., 2015; 

Hernandez-Sanabria et al., 2013). This could partially explain that association patterns between 

the rumen microbiome and feed efficiency showed low consistency among different studies. 

Therefore, a more comprehensive study is needed to understand how rumen microbiomes interact 

with hosts from different genetic backgrounds and how these interactions contribute to feed 

efficiency in beef cattle. 

In the present study, rumen microbiomes of beef cattle from three different breeds with 

extremely high and low feed efficiency performances were explored using metagenomics, total-

RNA-based metatranscriptomics and mRNA-enriched metatranscriptomics, aiming to generate 

more conclusive understanding on the role of the rumen microbiome in beef cattle feed 

efficiency. In addition, the direct comparison between mRNA-enriched and total-RNA-based 

metatranscriptomics for same rumen samples was conducted to provide useful information for 

further rumen metatranscriptomic study design. 
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4.2 Materials and Methods 

4.2.1 Animal experiments and sample collection 

Forty-eight steers were selected from a herd of 738 beef cattle that were born in 2014 and 

raised at the Roy Berg Kinsella Research Ranch, University of Alberta, according to their breeds 

and residual feed intake (RFI) ranking. These 48 steers belong to three breeds and two RFI 

groups (high RFI [H-RFI, > mean + 0.5 × SD] and low RFI [L-RFI, < mean - 0.5 × SD]), 

including two purebreds (Angus [ANG]; H-RFI, n = 8; L-RFI, n = 8) and Charolais [CHAR]; H-

RFI, n = 8; L-RFI, n = 8), and one crossbred (Kinsella composite hybrid [HYB]; H-RFI, n = 8; L-

RFI, n = 8). The HYB population was bred from multiple beef breeds including Angus, 

Charolais, Galloway, Hereford, Holstein, Brown Swiss, and Simmental as described previously 

(Nkrumah et al., 2007b). The animal study was approved by the Animal Care and Use 

Committee of the University of Alberta (protocol no. AUP00000777), following the guideline of 

the Canadian Council on Animal Care (Olfert et al., 1993). Dry matter intake (DMI) and eating 

frequency (times of an individual visiting the feed bunk per day) were individually recorded 

using the GrowSafe system (GrowSafe Systems Ltd., Airdrie, AB, Canada). RFI values were 

calculated based on DMI, average daily gain (ADG), metabolic weight (MWT), and backfat 

thickness as descried by Basarab et al. (2011). Steers were slaughtered before feeding at 

Lacombe Research Centre (Agriculture and Agri-Food Canada, Lacombe, AB, Canada). Rumen 

disgesta samples were collected at slaughter, snap-frozen using liquid nitrogen, and stored under  

-80°C until further analysis. Rumen weight was obtained after completely emptying rumen 

digesta and fluid using a weight balance. 

 

4.2.2 DNA extraction and metagenome sequencing 

Total genomic DNA was isolated from rumen digesta using the repeated bead beating 
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plus column (RBB + C) method as described by Yu and Morrison (2004). The quality and 

quantity of DNA was measured using a NanoDrop Spectrophotometer ND-1000 (Thermo Fisher 

Scientific Inc., Wilmington, DE, USA). Metagenome library was constructed using the TruSeq 

DNA PCR-Free Library Preparation Kit (Illumina, San Diego, CA, USA), and the quantity of 

each library was evaluated using a Qubit 2.0 fluorimeter (Invitrogen, Carlsbad, CA, USA). 

Sequencing of metagenome libraries was conducted at the McGill University and G nome 

Qu bec Innovation Centre (Montr al, QC, Canada) using Illumina HiSeq 2000 (100 bp paired-

end sequencing of ~350 bp inserts). 

 

4.2.3 RNA extraction and metatranscriptome sequencing 

Total RNA was extracted from rumen disgesta following the procedure described in 

Chapter 2. The RNA yield was measured using a Qubit 2.0 fluorimeter (Invitrogen), and the 

RNA quality was measure using an Agilent 2200 TapeStation (Agilent Technologies, Santa 

Clara, CA, USA). Only samples with RNA integrity number (RIN) ≥ 7.0 were used to generate 

metatranscriptome libraries. In the current study, two types of metatranscriptome libraries were 

constructed: total-RNA-based metatranscriptome libraries (T-metatranscriptome) and mRNA-

enriched metatranscriptome libraries (M-metatranscriptome). For the M-metatranscritpome 

library construction, rRNA in each sample was depleted using Ribo-Zero Gold rRNA Removal 

Kit (Epidemiology) (Illumina) according to the manufacturer’s instruction. Total RNA and 

enriched mRNA was used for T- and M-metatranscriptome library construction, respectively, 

using TruSeq RNA Library Prep Kit v2 (Illumina). Sequencing of T- amd M-metatranscriptome 

libraries was conducted at the McGill University and G nome Qu bec Innovation Centre 

(Montr al, QC, Canada) using Illumina HiSeq 2000 (100 bp paired-end sequencing of ~140 bp 

inserts) and 2500 (125 bp paired-end sequencing of ~140 bp inserts), respectively. 
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4.2.4 Analysis of metagenomes and metatranscriptomes  

The quality control of each dataset was performed to trim artificial sequences (adapters), 

cut low quality bases (quality scores < 20), and remove short reads (< 50 bp) using Trimmomatic 

(version 0.35) (Bolger et al., 2014). The program SortMeRNA (version 1.9) (Kopylova et al., 

2012) was used to extract rDNA and rRNA reads from sequencing datasets. Non-rDNA/rRNA 

reads were then mapped to the bovine genome (UMD 3.1) using Tophat2 (version 2.0.9) (Kim et 

al., 2013) to remove potential host DNA and RNA contaminations. Taxonomic profiles of the 

active rumen microbiota were generated using 16S rRNA extracted from T-metatranscriptomes 

following the pipeline described in Chapter 2. 

To estimate rumen microbial functional profiles, non-rDNA sequences from 

metagenomes (n = 48) were pooled together, and were then de novo assembled using Spherical 

program (https://github.com/thh32/Spherical). During running Spherical, Velvet was set as the 

assembler with the kmer size of 31, Bowtie2 was set as the aligner, and 25% of total pooled 

sequences were subsampled as the input for each iteration of assembly with eight iterations in 

total. Assembled contigs were annotated using the blastx module in DIAMOND (Buchfink et al., 

2015) against the UniProt database (The UniProt Consortium, 2017), and only annotations with 

bitscore > 40 were kept for the downstream analysis. Overlapped annotations were filtered and 

converted into the GFF format using the MGKit package (https://bitbucket.org/setsuna80/mgkit). 

Non-rDNA/rRNA sequences from metagenomes (n = 48), T-metatranscriptomes (n = 48), M-

metatranscriptomes (n = 48) were individually aligned to assembled contigs using Bowtie2 

(Langmead and Salzberg, 2012) and then counted using HTSeq (Anders et al., 2015). Only reads 

mapped to contigs with eggNOG annotation information were further retrieved to calculate the 

abundance of genes and functional categories using MGKit (Huerta-Cepas et al., 2016). 

 



 156 

4.2.5 Statistical analysis 

Values of RFI, DMI, eating frequency, and rumen weight were compared among three 

breeds using ANOVA, and the comparison between efficient (L-RFI) and inefficient (H-RFI) 

animals were conducted using t test within each breed separately. In the current study, only 

microbial taxa with a relative abundance higher than 0.01% in at least 50% of individuals within 

each breed were considered as being observed and used for the analysis. Bacterial compositional 

profiles were summarized at phylum and genus levels, and archaeal communities were 

summarized at the species level, respectively. Relative abundance of microbial taxa was arcsine 

square root transformed (Franzosa et al., 2014), and then compared among breeds (using 

ANOVA) and between RFI groups within each breed (using t test). To make alpha-diversity 

indices (including Chao1, Shannon evenness, Simpson evenness, Shannon index, and inverse 

Simpson) comparable among samples, the number of sequences per sample was normalized to 

the lowest reads number for bacteria (n = 274,885) and archaea (n = 4,263), respectively. These 

indices were compared between H- and L-RFI groups within each breed using Kruskal-Wallis 

rank sum test. Principal-coordinate analysis (PCoA) was used to virtualize rumen microbial 

communities based on the Bray-Curtis dissimilarity matrices at the genus level for bacteria and at 

the species level for archaea.  

Only functional categories and genes/transcripts with a minimum relative abundance of 

0.01% in at least three samples within a dataset were considered as being detected as suggested 

by Franzosa et al. (2014). The abundance was then normalized into counts per million (cpm). To 

compare general microbial functional profiles among different datasets, breeds, and RFI groups, 

the principal component analysis (PCA) was conducted based on the auto-scaled cpm of 

functional categories and genes (or transcripts). Correlations between datasets were calculated 

using Spearman’s rank correlation. Abundance of functional categories and genes (or transcripts) 
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were compared among sequencing datasets, breeds, and RFI groups using DESeq2 (Love et al., 

2014). 

 

4.3 Results and Discussion 

Residual feed intake (RFI) values were not discriminated among three breeds (P = 0.73), 

but they were significant different between L- and H-RFI animals within each breed (P < 1.00e-

5; Table 4.1). After quality control, a total of 2622.07M, 2645.13M, and 3087.41M sequences 

were generated with an average of 54.63M, 55.11M, and 64.32M per sample for metagenomes, 

T-metatranscriptomes, and M-metatranscriptomes, respectively. From metagenomes/T-/M-

metatranscriptomes, 99.37 ± 0.03% / 6.29 ± 0.16% / 53.34 ± 2.14% (mean ± SEM) sequences 

were categorized into non-rDNA/rRNA, and sequences aligned to the bovine genome were lower 

than 0.20% in all three datasets (Table 4.2).  

 

4.3.1 Compositional profiles of the active rumen microbiota 

From T-metatranscriptomes, a total of 38,610,728 sequences were enriched as bacterial 

V1-V3 regional 16S rRNA (804,390 ± 63,802; mean ± SEM) and 745,816 sequences as archaeal 

V6-V8 regional 16S rRNA (15,538 ± 1,388), which were used to generate compositional profiles 

of active rumen bacterial and archaeal communities. It is notable that there were only 42.15% and 

64.39% bacterial and archaeal sequences falling within named genera and named species, 

respectively (Supplementary Table S4.1). The high proportion of unclassified taxa at the deep 

taxonomic level emphasizes that more effort, especially isolation and pure culture based studies 

are necessary to comprehensively characterize rumen microorganisms. In the present study, to 

better represent rumen microbial communities and detect the potential associations between 

microbial taxa and feed efficiency, unnamed and/or unclassified taxa were included in the 

https://www.dropbox.com/s/cg1552343g0l8gf/Supplementary%20Table%20S4.1%20Rumen%20microbial%20compositional%20profiles%20among%20three%20beef%20cattle%20breeds.xlsx?dl=0
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analysis.  

In total, 15 bacterial phyla, 108 bacterial genus-level taxa, and 24 archaeal species-level 

taxa were identified from T-metatranscriptomes (Supplementary Table S4.1). Among them, 13 

bacterial phyla, 66 bacterial genus-level taxa, and 16 archaeal species-level taxa were detected 

across all samples, confirming the idea that there is a core rumen microbiota (Henderson et al., 

2015). The dominant bacteria phylum was Bacteroidetes (26.32 ± 1.34%), followed by 

Firmicutes (25.74 ± 0.91%), Spirochaetes (12.81 ± 0.99%), and Proteobacteria (11.04 ± 1.54%). 

At the genus level, Prevotella (11.94 ± 0.49%), Treponema (11.25 ± 0.95%), unnamed 

Succinivibrionaceae (8.98 ± 1.50%), unclassified Bacteroidales (6.05 ± 0.29%), and Fibrobacter 

(6.01 ± 0.64%) were the most abundant bacterial taxa. The rumen archaeal community was 

dominated by Methanobrevibacter ruminantium (27.58 ± 1.50%), unclassified 

Methanomassiliicoccaceae (19.53 ± 1.12%), Group12 sp. ISO4-H5 (Methanomassiliicoccaceae-

affiliated; 11.05 ± 1.20%), and Methanobrevibacter gottschalkii (10.22 ± 1.09%) (Figure 4.1 and 

Supplementary Table S4.1). These results are generally comparable to previous described 

rumen microbial profiles (Henderson et al., 2015; Kim et al., 2011). 

 

4.3.2 Breed effect on the active rumen microbiota 

The distribution of detected active microbial taxa was not equal, when it was compared 

among three breeds (Figure 4.1). Although breed did not influence any alpha-diversity indices (P 

> 0.05 by Kruskal-Wallis rank-sum test; Supplementary Table S4.1), the principal-coordinate 

analysis (PCoA) showed that rumen bacterial and archaeal communities in HYB were distinct 

from those in ANG and CHAR (Figure 4.2). Comparison analysis based on the arcsine square 

root-transformed relative abundance revealed that around ~50% of observed microbial taxa were 

affected by breed, including 8 bacterial phyla (e.g., Bacteroidetes, Spirochaetes, etc.), 55 taxa at 

https://www.dropbox.com/s/cg1552343g0l8gf/Supplementary%20Table%20S4.1%20Rumen%20microbial%20compositional%20profiles%20among%20three%20beef%20cattle%20breeds.xlsx?dl=0
https://www.dropbox.com/s/cg1552343g0l8gf/Supplementary%20Table%20S4.1%20Rumen%20microbial%20compositional%20profiles%20among%20three%20beef%20cattle%20breeds.xlsx?dl=0
https://www.dropbox.com/s/cg1552343g0l8gf/Supplementary%20Table%20S4.1%20Rumen%20microbial%20compositional%20profiles%20among%20three%20beef%20cattle%20breeds.xlsx?dl=0
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the genus level (e.g., Prevotella, Treponema, etc.), and 10 species-level archaeal taxa (e.g., 

Methanomassiliicoccaceae-affiliated Group12 sp. ISO4-H5, unclassified Methanobrevibacter, 

etc.; Supplementary Table S4.1).  

Several biological factors potentially contribute to the rumen microbiota variations among 

breeds. Firstly, we observed significantly different eating frequencies among three breeds: HYB 

showed lower eat frequency (29.73 ± 1.99 time/day) than that of ANG and CHAR (37.63 ± 1.61 

and 36.59 ± 1.56 time/day, respectively; P = 6.30e-03) (Table 4.1). Because salivation is 

enhanced during eating than resting (Beauchemin et al., 2008), lower eating frequencies may lead 

to lower amounts of saliva produced in HYB, which consequently results in the shift of rumen 

pH and thus influences the rumen microbiota (Hernandez et al., 2014). Meanwhile, ANG and 

CHAR had higher feed intake (DMI; 10.73 ± 0.27 and 10.33 ± 0.28 kg/day, respectively) than 

HYB (9.27 ± 0.28 kg/day; P = 3.23e-03) (Table 4.1). It is known that the growth of rumen 

microbiota is positively correlated with feed intake due to more available substrates and nutrients 

for the microbial growth (Pathak, 2008; Singh et al., 1977). Furthermore, we also observed 

different rumen sizes due to the breed effect (P = 1.36e-02) (Table 4.1). Both feed intake and 

rumen size have impact on the rumen passage rate (Colucci et al., 1982). And the rumen passage 

rate could then affect the rumen microbial growth (Martinez et al., 2009; Shriver et al., 1986), 

because it is associated with the microbial energy flux (maintenance vs. growth) and microbial 

generation times (Firkins, 1996; Sniffen and Robinson, 1987). In addition, it has been suggested 

that the increased rumen passage rate and washout decreased the abundance of rumen 

methanogens (Janssen, 2010), which was further confirmed in a recent study that revealed low 

CH4 yield sheep had smaller rumen size and shorter rumen retention time (Goopy et al., 2014). 

Although effects of those biological factors on the rumen microbial growth/abundance have been 

widely reported as discussed above, how those factors contribute to the variations of microbial 

https://www.dropbox.com/s/cg1552343g0l8gf/Supplementary%20Table%20S4.1%20Rumen%20microbial%20compositional%20profiles%20among%20three%20beef%20cattle%20breeds.xlsx?dl=0
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composition have not been well described. Therefore, further studies to link those biological 

factors to microbial compositional profiles are needed, which could help us better understand the 

breed effect on the rumen microbiota as observed in this study. 

 

4.3.3 Breed effect on differential microbial taxonomic features between RFI groups 

As breed-associated differences were observed for ~50% of bacteria and archaeal taxa, 

analyses of relationship between rumen microbial features and feed efficiency were performed 

under each breed. Relative abundance of Firmicutes (L-RFI: 28.56 ± 1.82% vs. H-RFI: 22.45 ± 

2.14%; P = 0.042) and Chloroflexi (L-RFI: 0.05 ± 0.01% vs. H-RFI: 0.03 ± 0.01%; P = 0.046) 

were different between H- and L-RFI CHAR steers, while no bacterial phylum had different 

abundance between RFI groups in HYB and ANG. When the analysis was conducted at the 

bacterial genus level, 22 (e.g., unnamed Bacteroidales, Butyrivibrio, etc.), one (unnamed RF16), 

and 16 genus-level taxa (e.g., unclassified Clostridiales, unnamed Ruminococcaceae, etc.) were 

differentially abundant between H- and L-RFI steers in HYB, ANG, and CHAR, respectively (P 

< 0.05; Table 4.3). For archaea, differences in abundance of Methanobrevibacter smithii and four 

taxa (unclassified Methanomassiliicoccaceae, unclassified Methanobrevibacter, unclassified 

Group11, and Methanomethylophilus alvus) were detected between H- and L-RFI steers (P < 

0.05) in HYB and CHAR, respectively, but no differential archaeal taxon was detected between 

RFI groups in ANG (Table 4.3). Meanwhile, H- and L-RFI HYB steers differed in Shannon 

index of bacterial communities (P = 0.04). For CHAR steers, two RFI groups had significantly 

different inverse Simpson (P = 0.03) and Simpson evenness (P = 0.03) of archaeal communities, 

as well as Shannon evenness of bacteria communities (P = 0.03) (Table 4.4). 

Differential taxonomic features between H- and L-RFI groups were not consistent among 

three breeds, except for four differential bacterial genus-level taxa in HYB and CHAR (Blautia, 
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unclassified Clostridia, unnamed Mogibacteriaceae, and unnamed R4-45B). Although these 

bacterial taxa were low abundant in the rumen (< 0.5%), it is notable that they all showed higher 

abundance in L-RFI animals than in H-RFI individuals in both HYB and CHAR (Table 4.3). 

Blautia members are ubiquitously distributed in mammal gut with low abundance (Eren et al., 

2015). They have been reported to provide energy to hosts from the fermentation of 

polysaccharides that other microbial taxa cannot (Biddle et al., 2013), and thus higher abundance 

of Blautia may extend the rumen metabolic capacity for steers with high feed efficiency. In 

addition, members of Blautia, such as Blautia hydrogenotrophica, have the capacity to consume 

H2 and produce acetate through acetogenesis (Rey et al., 2010). Therefore, the increased 

abundance of Blautia indicates higher acetogenesis in L-RFI animals, which possibly compete 

with rumen methanogens. Therefore, more acetates rather than CH4 could be generated during 

removing H2 from the rumen in L-RFI individuals, leading to lower energy waste. 

Mogibacteriaceae-affiliated unnamed genus has already been reported to be associated with feed 

efficiency in beef cattle with multiple genetic backgrounds (Myer et al., 2015a), but scarce 

information is available to define its functions in the gut. Abundance of members in this family 

were negatively correlated with body mass index (BMI) in human (Goodrich et al., 2014; Oki et 

al., 2016). Therefore, the higher abundance of Mogibacteriaceae in L-RFI individuals may 

correspond to a leaner body type, which may further correspond to a higher protein deposition in 

individuals with high feed efficiency.  

All 48 steers involved in this study received identical diet and were raised under the same 

environment, but rumen microbial communities were distinguishable among different breeds and 

there were unique differential taxonomic features between RFI groups within each breed. 

Therefore, it is reasonable to speculate that there are several rumen microorganisms belonging to 

different taxonomic groups sharing similar ecologic niches among different hosts. In other words, 
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different microbial phylotypes may utilize similar substrates and produce similar products in the 

rumen. Indeed, previous studies demonstrated that functional profiles of the microbiome were 

more conserved than the taxonomic composition at a certain body site in human (Franzosa et al., 

2014; Human Microbiome Project Consortium, 2012). In ruminants, Taxis et al. (2015) 

suggested that rumen microbiomes were dissimilar at the taxonomic level but considerably more 

similar at the metabolic functional level. Recently, Roehe et al. (2016) and findings in Chapter 3 

further revealed that methane emissions and RFI were more associated with rumen microbial 

functional features rather than taxonomic features. Collectively, merely analyzing rumen 

microbial communities may be not powerful enough to detect, even mask actual linkages 

between rumen microbiomes and feed efficiency. Therefore, it is necessary to further investigate 

how rumen microbial functional features contribute to the variations of feed efficiency. 

 

4.3.4 Functional profiles of the rumen microbiome at DNA and RNA levels 

The de novo assembly of non-rDNA metagenome reads generated a total of 57,696,422 

contigs, with an average length of 144 bp (max 135,846 bp) and a N50 length of 140 bp. After 

filtering overlapped annotations, 20,314,713 contigs (35.21%) were successfully annotated based 

on the UniProt database. An average of 78.47 ± 0.26%, 66.85 ± 0.65%, and 54.43 ± 1.16% of 

sequences from metagenomes, T-metatranscriptomes, and M-metatranscriptomes could be 

mapped back to assembled contigs, respectively, suggesting the assembly was successful. In 

total, 3,589,489 contigs were annotated with eggNOG information, and only reads mapped to 

these contigs were retrieved to estimate functional profiles. Detailed sequencing datasets are 

listed in Table 4.2. 

In total, 23 eggNOG functional categories were observed through the functional analysis 

at both DNA and RNA levels. For metagenome reads, 10.43%, 8.15%, and 8.10% of them were 
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involved in “Replication, recombination and repair”, “Amino acid transport and metabolism”, 

and “Carbohydrate transport and metabolism”, respectively, and 20.07% were poorly 

characterized. For both T- and M-metatranscriptomes, “Carbohydrate transport and metabolism” 

was the most active functional category (13.96% and 13.78% in T- and M-metatranscriptomes, 

respectively), followed by the functional category of “Translation, ribosomal structure and 

biogenesis” (9.22% and 8.66% in T- and M-metatranscriptomes, respectively) (Figure 4.3). 

Accordingly, these results suggest that microbiomes may possess large genetic potentials to 

survive and grow in the rumen, but they were mainly conducting fermentation to degrade feed at 

the point when digesta samples were collected in this study. 

 

4.3.4.1 Comparison between metagenomes and metatranscriptomes 

The principle component analysis (PCA) based on eggNOG functional categories showed 

clear separation between metagenome and metatranscriptome functional profiles (Figure 4.4a). 

Compared with T- and M-metatranscriptomes, metagenomes from rumen digesta samples were 

more closely clustered together and thus more conserved among individuals (Figure 4.4a), 

suggesting that inter-individual functional variations at the RNA level were higher than those at 

the DNA level. Therefore, rumen microbiomes from different individuals may have similar 

functional genetic potentials (at the DNA level), while their actual functional activities (at the 

RNA level) are noticeably more variable, which are similar to the findings of human gut 

microbiomes (Franzosa et al., 2014; Nayfach et al., 2015). To date, most existing associations 

between the rumen microbiome and host phenotypes (e.g., feed efficiency, methane emissions, 

and so on) are built on at the DNA level (Hernandez-Sanabria et al., 2010; Shabat et al., 2016; 

Wallace et al., 2015; Zhou et al., 2010). However, Shi et al. (2014) reported that differences of 

rumen microbial gene expression profiles, rather than genomic profiles were associated with the 
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variations of CH4 emissions in sheep. Collectively, host phenotypic performances may be more 

associated with rumen microbial activities (RNA) than functional genetic potentials (DNA), and 

thus analysis at the RNA level is a more meaningful approach to link the rumen microbiome to 

host performances. 

Several functional categories were abundant at the DNA level but down-expressed at the 

RNA level, such as “Replication, recombination and repair” (~2 folds), “Extracellular 

structures” (~3 folds), “Defense mechanisms” (~3 folds), and so on (Figure 4.3 and Figure 4.4b 

and 4.4c). These functional categories were less active in the rumen of steers used in this study, 

but they represent large functional potentials under environmental challenges. For instance, 

“Defense mechanisms” were down-regulated in both T- and M-metatranscriptomes, however, 

their high abundance at the DNA level suggest that they could be activated when rumen 

microbiomes respond to adverse conditions, such as dietary change, abrupt pH drop, and so on. 

Meanwhile, some function categories, including “Carbohydrate transport and metabolism”, 

“Translation, ribosomal structure and biogenesis”, “Cell motility”, “Cytoskeleton”, etc., were 

overexpressed at the RNA level beyond their DNA abundance (2 - 6 folds). The highest activity 

of “Carbohydrate transport and metabolism” among all rumen functions is consistent with the 

rumen metatranscriptome outcomes reported in Chapter 3, indicating most of active 

microorganisms are fermenting feed carbohydrates (e.g., cellulosic plant materials, starch, etc.) 

when digesta samples were collected. 

Although general functional profiles were different between DNA and RNA levels, strong 

correlations were detected between metagenomes and metatranscriptomes (Spearman’s r = 0.91, 

P = 1.88e-6 between metagenomes and T-metatranscriptomes; r = 0.92, P = 1.69e-6 between 

metagenomes and M-metatranscriptomes; Figure 4.4b and 4.4c), which is line with the 

correlation pattern between human gut metagenomes and metatranscriptomes (Franzosa et al., 
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2014). Through the linear regression estimation, metagenomes could explain 57.57% (P = 2.61e-

06) and 60.81% (P = 6.67e-06) of variations in T- and M-metatranscriptomes, respectively. 

These strong correlations suggest that gene expressions of microbiomes highly depend on their 

gene abundance, although there are other factors (such as environmental factors and post 

transcriptional regulation) contributing to microbial gene expression variations in the rumen. 

 

4.3.4.2 Comparison between M- and T-metatranscriptomes 

The mRNA enrichment step significantly removed rRNA from total RNA. There was 

93.71 ± 0.16% rRNA in T-metatranscriptomes but only 46.66 ± 2.14% rRNA in M-

metatranscriptomes (P = 7.36e-26; Paired Sample t Test; Table 4.2), indicating a successful 

rRNA removal using the Ribo-Zero Gold rRNA Removal Kit. It is worth mentioning that the 

majority of remained rRNA in M-metatranscriptomes was classified as eukaryotic 28S rRNA 

(34.71 ± 0.16%), because this kit is mainly designed to hybridize and remove prokaryotic rRNA 

rather than eukaryotic rRNA. A higher proportion of T-metatranscriptome reads could be mapped 

back to assembled metagenome contigs than M-metatranscriptome reads (66.85 ± 0.65% versus 

54.43 ± 1.16%, P = 6.42e-18; Paired Sample t Test). This suggests that T-metatranscriptomes are 

more similar with metagenomes, while M-metatranscriptomes may capture extra expressed genes 

with low abundance. In addition, there were more annotated mRNA reads in M- than in T-

metatranscriptomes (412,875 ± 30,166 vs 23,590 ± 1,494, P = 1.16e-17; Paired Sample t Test), 

supporting that the mRNA enrichment indeed increase the outcomes of mRNA.  

According to PCA, overall functional profiles did not show clear difference between T- 

and M-metatranscriptomes (Figure 4.5a and 4.5b). At the same time, strong correlations were 

detected between T- and M-metatranscriptome based on both functional categories (Spearman’s r 

= 1.00, P = 3.61e-7) and expressed genes (Spearman’s r = 0.84, P < 2.20e-16) (Figure 4.5c and 
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4.5d). The linear regression analysis based on functional categories and expressed genes gave R2 

value of 1.00 (P < 2.2e-16) and 0.94 (P < 2.2e-16), respectively, when compared T- with M-

metatranscriptomes, confirming that T- and M-metatranscriptomes were highly similar to each 

other. When the cluster analysis was performed within each breed, T- and M-metatranscriptomes 

from the same sample were normally similar to each other (between-method variations < 

between-subject variations) except for a few samples (Figure 4.5e). Previous studies that 

compared human fecal and seawater metatranscriptomes between mRNA-enriched and total-

RNA-based libraries also reported similar results (Giannoukos et al., 2012; Stewart et al., 2010). 

However, when abundance of each functional category was compared between T- and M-

metatranscriptomes using the DESeq2 analysis, it identified 10 differential abundant functional 

categories (P < 0.05), even though their folder changes were inconspicuous (from -1.32 to 1.06; 

Figure 4.5c). At the same time, the DESeq2 analysis revealed that 2,050 genes had different 

abundance between T- and M-metatranscriptomes (FDR < 0.05), and most of them were 

underestimated in M-metatranscriptomes (Figure 4.5d). In line with our results, Tveit et al. 

(2014) also found that the mRNA enrichment step had a significant impact on the abundance 

estimation of each transcript. Because the mRNA enrichment step in this study was based on the 

rRNA depletion strategy instead of PCR amplifying mRNA, it is reasonable to speculate that the 

underestimation of many expressed genes in M-metatranscriptomes may be caused by the mRNA 

degradation during the extended sample processing time.  

To date, the mRNA enrichment is normally conducted prior to the metatranscriptome 

library construction to increase the resolution of mRNA and capture more transcripts for the 

rumen microbiome (AlZahal et al., 2017; Kamke et al., 2016; Shi et al., 2014). But some other 

rumen metatranscriptomic studies were conducted based on the sequencing of total RNA without 

the mRNA enrichment, which also successfully generate functional profiles for rumen 
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microbiomes (Poulsen et al., 2013; Chapter 3). According to our results, although applying the 

mRNA enrichment could increase the sequencing depth of mRNA and enhance the resolution of 

metatranscriptomics on the functional analysis, it may bring about biases for the estimation of 

gene expression levels. In contrast, total-RNA-based metatranscriptomcics not only generates 

similar functional profiles as mRNA-enriched metatranscriptomics, but also can be used for the 

taxonomic identification (Chapter 2). Considering the rapid reduction of NGS costs, plus our 

current findings descripted above, total RNA sequencing rather than enriched-mRNA sequencing 

is more recommended, when researchers plan to globally screen the compositional and functional 

characteristics of the rumen microbiome. However, if expression levels of specific genes and/or 

metabolic pathways need to be explored, the mRNA enrichment is still necessary to be applied 

for the enhanced resolution of metatranscriptomics. 

 

4.3.5 Breed effect on differential microbial functions between H- and L-RFI steers 

Rumen microbiomes from three breeds showed distinguishable functional profiles at the 

DNA level, especially that microbiomes from HYB were separated with those from ANG and 

CHAR (Figure 4.6a). However, at the transcriptomic level (in both T- and M-

metatranscriptomes), differences among three breeds were not obvious (Figure 4.6b and 4.6c). 

These indicate that host genetics may influence functional genetic potentials of rumen 

microbiomes, but their actual activities may be less impacted by host genetics and are more 

driven by environmental factors. And the lack of separation of metatranscirpomes among breeds 

may due to the same diet and environmental conditions for these steers. 

In ANG, RFI had no effect on functional category identified from metagenomes and T-

metatranscriptomes, while “RNA processing and modification” showed higher abundance in M-

metatranscriptomes of L-RFI animals than that of H-RFI ones (P = 0.021). For CHAR, two 
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functional categories “Cell cycle control, cell division, chromosome partitioning”, and 

“Secondary metabolites biosynthesis, transport and catabolism” were more abundant in H-RFI 

animals than in L-RFI animals at the genomic level (P = 0.008 and 0.033, respectively). In T- and 

M-metatranscritpomes, four and two functional categories were differentially abundant between 

RFI groups, respectively. Especially, “Translation, ribosomal structure and biogenesis” and 

“Transcription” had higher expression levels in H-RFI animals from both T- and M-

metatranscritpomes (P < 0.05; Table 4.5). For HYB steers, “Intracellular trafficking, secretion, 

and vesicular transport” was higher abundant in H-RFI steers than in L-RFI steers at the DNA 

level (P = 0.014). “Cell motility” was more abundant at the transcriptomic level revealed from 

both T- and M-metatranscritpomes (P = 0.044 and 0.013, respectively). “Nucleotide transport 

and metabolism” and “Cytoskeleton” only showed different abundance in T-metatranscritpomes 

(P = 0.010 and 0.036, respectively).  

Comparison analysis of metagenomes revealed 932 genes with different abundance 

between H- and L-RFI animals from metagenomes: 591 genes in CHAR, 216 genes in HYB, and 

one gene in ANG, with 124 genes overlapped in both CHAR and HYB. When compared T-

metatranscriptomes, there were 39 differentially expressed genes between RFI groups (29 in 

HYB, ten in CHAR, and none in ANG). From the comparison of M-metatranscriptmes, RFI had 

effects on 14 expressed genes (12 in HYB and two in CHAR) (Figure 4.7a-c). It is notable that 

only three differential genes were detected between H- and L-RFI steers at both DNA and RNA 

levels: two were overlapped between metagenomes and M-metatranscriptomes (genes coding 

2,3-bisphosphoglycerate-independent phosphoglycerate mutase and coding fumarate 

reductase/succinate dehydrogenase flavoprotein domain protein), and one was overlapped 

between T- and M-metatranscriptomes (gene coding phosphoketolase) (Figure 4.7d). 
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Recent studies suggest that rumen microbiomes of H-RFI animals have higher and more 

diverse functional genetic potentials and activities than those of L-RFI individuals (Shabat et al., 

2016; Chapter 3). Those findings are further confirmed in the present study, especially at the 

gene/transcript level, that most of differential microbial genes/transcripts between RFI groups 

were enriched in H-RFI steers than in L-RFI ones (Figure 4.7a-c). Hence, it can be speculated 

that rumen microorganisms of inefficient individuals could ferment a wider range of substrates 

and generate more products. However, these products may be harmful to the host or exceed the 

absorbing capacity of the host, which could be regulated by host genetics and lead to low feed 

efficiency. Conversely, efficient cattle have relatively simpler rumen microbial functions and 

activities, generating more relevant products that could be efficiently absorbed by the host. 

In the present study, although some microbial genes were differentially abundant between 

RFI groups in both CHAR and HYB metagenomes (Figure 4.7a), no functional category (at 

neither DNA nor RNA levels) or expressed gene was universally different between H- and L-RFI 

steers among three breeds (Table 4.5 and Figure 4.7b and 4.7c). These suggest that there are 

different rumen microbiome-host interaction patterns to determine the feed efficiency 

performance in beef cattle. For example, from all three sequencing datasets, we merely observed 

a handful of differential microbial features (at both compositional and functional levels) between 

H- and L-RFI steers in ANG, suggesting that rumen microbiomes in ANG may not or only 

slightly contribute to RFI variations. In contrary, many compositional and functional features of 

rumen microbiomes in HYB and CHAR were associated with host RFI performances. 

Considering different genetic backgrounds (different genotypes) among three breeds, further 

studies to explore interaction patterns between the rumen microbiome and host genotypes are 

needed to better understand how these interactions affect feed efficiency in beef cattle.  
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4.4 Conclusions 

Taxonomic analysis using total-RNA-based metatranscriptomics revealed distinguishable 

active rumen microbiota among three breeds. Meanwhile, functional genetic potentials were also 

affected by the host genetic background according to metagenomics. These breed-associated 

differences represent potential superiorities of each breed, which could be further applied to 

manipulate the rumen microbiota through selection and breeding. However, actual activities of 

rumen microbiomes were less impacted by host genetics but more sensitively respond to 

environmental factors. In addition, rumen microorganisms possess large functional genetic 

potentials to survive and proliferate, with high activities at feed degradation and fermentation for 

rumen digesta samples collected in this study. Therefore, to better associate rumen 

microorganisms with host performances, metatranscriptomics is a more powerful approach. 

Comparison of total-RNA-based and mRNA-enriched metatranscriptomes suggested that mRNA-

enriched metatranscirptomics should be used to study expression levels of specific genes and/or 

metabolic pathways, while total-RNA-based metatranscriptomics can be applied to generate both 

compositional and functional profiles simultaneously. Furthermore, several differential microbial 

features between RFI groups were detected within each breed, including active bacterial and 

archaeal taxa, alpha-diversity indices of microbial communities, functional categories and genes 

(at both DNA and RNA levels). These results extend our understanding on the associations 

between the rumen microbiome and feed efficiency at multiple genetic levels in diverse beef 

cattle breeds. Most of differential microbial features between H- and L-RFI steers were distinct 

among three breeds, suggesting there are host and microbiome interactions in the rumen 

contributing to feed efficiency variations. This knowledge could help us more accurately predict 

feed efficiency using rumen microbial features and better define approaches to manipulate the 

rumen microbiome to improve feed efficiency of cattle from various breeds. 
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4.6 Tables 

Table 4.1 Phenotypes of beef cattle with three breeds used for this study 
  Angus (ANG) Charolais (CHAR) Crossbred (HYB) P value1 
  (n = 16) (n = 16)  (n = 16)  
   (mean ± SEM)   

Residual feed 
intake  
(RFI; kg/day) 

  Overall 0.15 ± 0.21 0.06 ± 0.24 -0.10 ± 0.24 0.73 
      L-RFI (n = 8)     -0.58 ± 0.10     -0.81 ± 0.10     -0.96 ± 0.10  
      H-RFI (n = 8)     0.88 ± 0.15     0.92 ± 0.12     0.76 ± 0.13  
      P value2     1.46E-06     1.87E-08     6.43E-08  

      

Dry matter 
intake  
(DMI; kg/day) 

  Overall 10.73 ± 0.27a 10.33 ± 0.28a 9.27 ± 0.28b 3.23E-03 
      L-RFI (n = 8)     10.19 ± 0.34     9.49 ± 0.24     8.98 ± 0.34  
      H-RFI (n = 8)     11.35 ± 0.31     11.17 ± 0.29     9.67 ± 0.43  
      P value2     0.03     5.80E-04     0.23  

      

Eating 
frequency  
(n/day) 

  Overall 37.63 ± 1.61a 36.59 ± 1.56a 29.73 ± 1.99b 6.30E-03 
      L-RFI (n = 8)     41.25 ± 1.53     35.56 ± 2.65     29.94 ± 2.02  
      H-RFI (n = 8)     33.49 ± 2.13     37.63 ± 1.77     29.44 ± 4.18  
      P value2     9.90E-03     0.53     0.91  

      

Rumen weight  
(kg) 

  Overall 13.02 ± 0.59a 11.29 ± 0.29b NA 6.30E-03 
      L-RFI (n = 8)     12.42 ± 0.80     11.15 ± 0.38     NA  
      H-RFI (n = 8)     13.62 ± 0.87     11.43 ± 0.47     NA  
      P value2     0.33     0.65     NA  

1. P values among three breeds were calculated using ANOVA, and values with different superscripts were 
significantly different (P < 0.05). 
2. P values between H- and L-RFI groups were obtained using t test within each breed. 
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Table 4.2 Summary of sequencing data for metagenomes and metatranscriptomes 

 Metagenome 
(n = 48) 

T-metatranscriptome 
(n = 48) 

(mean ± SEM) 

M-metatranscriptome 
(n = 48) 

 
After QC1 54.63 ± 1.42 M 64.32 ± 0.74 M 55.11 ± 1.90 M 
non-rDNAs/rRNAs 99.37 ± 0.03% 6.29 ± 0.16% 53.34 ± 2.14% 
rDNAs/rRNAs 0.63 ± 0.03% 93.71 ± 0.16% 46.66 ± 2.14% 
Host DNAs/RNAs 0.13 ± 0.06% 0.05 ± 0.01% 0.14 ± 0.05% 
Reads mapped back contigs 78.47 ± 0.26% 66.85 ± 0.65% 54.43 ± 1.16% 
eggNOG annotated reads 1,010,497 ± 32,603 23,590 ± 1,494 412,875 ± 30,166 

 1. QC, quality control. 
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Table 4.3 Relative abundance of differential microbial taxa between RFI groups in three breeds 
 Taxon H-RFI L-RFI P value1 

(Mean ± SEM) (Mean ± SEM) 
Angus (ANG)     
    Genus level Unnamed RF19 0.49 ± 0.08% 1.31 ± 0.32% 0.045 
Charolais (CHAR)     
    Phylum level Firmicutes 22.45 ± 2.14% 28.56 ± 1.82% 0.042 
    Phylum level Chloroflexi 0.03 ± 0.01% 0.05 ± 0.01% 0.046 
    Genus level Unclassified Clostridiales 3.05 ± 0.36% 4.38 ± 0.25% 0.008 
    Genus level Unnamed Ruminococcaceae 1.20 ± 0.34% 2.15 ± 0.32% 0.040 
    Genus level Unnamed S24-7 0.76 ± 0.20% 1.84 ± 0.44% 0.025 
    Genus level Succiniclasticum 0.34 ± 0.15% 0.91 ± 0.10% 0.004 
    Genus level Unnamed Mogibacteriaceae 0.38 ± 0.06% 0.58 ± 0.05% 0.023 
    Genus level Moryella 0.29 ± 0.05% 0.56 ± 0.04% 0.002 
    Genus level Unclassified Clostridia 0.20 ± 0.02% 0.32 ± 0.04% 0.012 
    Genus level CF231 0.09 ± 0.02% 0.21 ± 0.03% 0.009 
    Genus level Unclassified Lachnospiraceae 0.07 ± 0.01% 0.11 ± 0.01% 0.042 
    Genus level p-75-a5 0.05 ± 0.01% 0.10 ± 0.02% 0.023 
    Genus level Unclassified Mogibacteriaceae 0.05 ± 0.01% 0.08 ± 0.01% 0.049 
    Genus level R4-45B 0.01 ± 0.01% 0.04 ± 0.01% 0.019 
    Genus level Blautia 0.004 ± 0.001% 0.013 ± 0.003% 0.004 
    Genus level Adlercreutzia 0.004 ± 0.001% 0.007 ± 0.001% 0.046 
    Genus level Unclassified Christensenellaceae 0.004 ± 0.001% 0.007 ± 0.001% 0.043 
    Genus level Unclassified Anaerolineae 0.004 ± 0.001% 0.005 ± 0.001% 0.018 
    Species level  Unclassified Methanomassiliicoccaceae 23.41 ± 1.31% 14.65 ± 2.96% 0.014 
    Species level Unclassified Methanobrevibacter 5.48 ± 0.65% 8.24 ± 1.05% 0.033 
    Species level Unclassified Group11 10.72 ± 0.86% 6.22 ± 1.69% 0.019 
    Species level Candidatus Methanomethylophilus alvus 4.46 ± 0.37% 2.68 ± 0.75% 0.027 
Crossbred (HYB)     
    Genus level Unclassified Bacteroidales 1.04 ± 0.13% 1.62 ± 0.09% 0.003 
    Genus level Unclassified Bacteroidetes 0.86 ± 0.16% 1.73 ± 0.15% 0.001 
    Genus level Butyrivibrio 0.97 ± 0.12% 1.58 ± 0.18% 0.009 
    Genus level Unnamed Victivallaceae 0.77 ± 0.17% 1.70 ± 0.21% 0.006 
    Genus level Desulfovibrio 0.21 ± 0.03% 0.43 ± 0.05% 0.002 
    Genus level Unnamed Mogibacteriaceae 0.24 ± 0.02% 0.36 ± 0.05% 0.042 
    Genus level Unclassified Clostridia 0.20 ± 0.02% 0.29 ± 0.02% 0.009 
    Genus level Unnamed Christensenellaceae 0.07 ± 0.01% 0.25 ± 0.10% 0.036 
    Genus level Unclassified Paraprevotellaceae 0.18 ± 0.03% 0.12 ± 0.01% 0.015 
    Genus level Shuttleworthia 0.26 ± 0.09% 0.03 ± 0.01% 0.008 
    Genus level Unnamed Paraprevotellaceae 0.19 ± 0.04% 0.10 ± 0.01% 0.045 
    Genus level Unclassified Aeromonadales 0.15 ± 0.07% 0.01 ± 0.00% 0.027 
    Genus level Unnamed Spirochaetaceae 0.04 ± 0.01% 0.10 ± 0.02% 0.015 
    Genus level Desulfobulbus 0.10 ± 0.03% 0.03 ± 0.01% 0.009 
    Genus level Unclassified Verrucomicrobia 0.04 ± 0.01% 0.07 ± 0.01% 0.045 
    Genus level Unnamed R4-45B 0.02 ± 0.01% 0.07 ± 0.02% 0.008 
    Genus level Mitsuokella 0.05 ± 0.01% 0.01 ± 0.00% 0.029 
    Genus level L7A_E11 0.01 ± 0.00% 0.04 ± 0.01% 0.006 
    Genus level Roseburia 0.04 ± 0.01% 0.01 ± 0.00% 0.020 
    Genus level Blautia 0.01 ± 0.00% 0.04 ± 0.01% 0.035 
    Genus level Unclassified Lentisphaeria 0.01 ± 0.00% 0.03 ± 0.01% 0.005 
    Genus level Unclassified Desulfovibrionaceae 0.01 ± 0.00% 0.02 ± 0.01% 0.039 
    Species level Methanobrevibacter smithii 2.04 ± 0.17% 2.95 ± 0.38% 0.040 
1. P values were calculated between H- and L-RFI groups using t test within each breed, based on arcsine square 
root transformed relative abundances.
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Table 4.4 Comparisons of alpha-diversity indices1 between beef cattle with different RFI values 

  Angus (ANG) 
     (n = 16) 

Charolais (CHAR) 
        (n = 16) 

Crossbred (HYB) 
      (n = 16) 

     (mean ± SEM)  
     
Bacteria     

Chao1 
L-RFI 317.03 ± 11.83 319.87 ± 12.95 381.88 ± 37.60 
H-RFI 337.64 ± 21.82 326.69 ± 16.70 358.74 ± 27.93 
P value2 NS NS NS 

     

Shannon evenness 
L-RFI  0.57 ± 0.01 0.59 ± 0.01 0.57 ± 0.01 
H-RFI 0.58 ± 0.01 0.55 ± 0.02 0.54 ± 0.01 
P value2 NS 0.03 NS 

     

Simpson evenness 
 

L-RFI  0.05 ± 0.00 0.05 ± 0.01 0.05 ± 0.00 
H-RFI 0.05 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 
P value2 NS NS NS 

     

Shannon index 
L-RFI 3.17 ± 0.05 3.28 ± 0.06 3.21 ± 0.04 
H-RFI 3.18 ± 0.06 3.06 ± 0.10 3.01 ± 0.07 
P value2 NS NS 0.04 

     

Inverse Simpson L-RFI 12.26 ± 0.96 13.89 ± 1.22 13.18 ± 0.74 
H-RFI 12.78 ± 0.97 10.96 ± 1.31 10.53 ± 1.14 
P value2 NS NS NS 

     
Archaea     

Chao1 
L-RFI 25.88 ± 1.03 28.06 ± 2.36 24.17 ± 0.95 
H-RFI 24.25 ± 1.22 24.65 ± 1.38 25.31 ± 1.32 
P value2 NS NS NS 

     
Shannon evenness L-RFI  0.64 ± 0.02 0.62 ± 0.02 0.66 ± 0.02 
 H-RFI 0.64 ± 0.02 0.66 ± 0.01 0.65 ± 0.01 
 P value2 NS NS NS 
     
Simpson evenness L-RFI  0.22 ± 0.02 0.20 ± 0.01 0.24 ± 0.02 
 H-RFI 0.23 ± 0.02 0.26 ± 0.02 0.24 ± 0.01 
 P value2 NS 0.03 NS 
     
Shannon index L-RFI 2.00 ± 0.07 1.95 ± 0.06 2.07 ± 0.07 
 H-RFI 1.98 ± 0.07 2.07 ± 0.04 2.05 ± 0.03 
 P value2 NS NS NA 
     
Inverse Simpson L-RFI 5.21 ± 0.51 4.74 ± 0.37 5.67 ± 0.46 
 H-RFI 5.19 ± 0.50 5.93 ± 0.36 5.48 ± 0.14 
 P value2 NS 0.03 NS 

Note: 1To make alpha-diversity indices comparable among samples, the number of sequences per sample was 
normalized to the lowest reads number for bacteria (n = 274,885) and archaea (n = 4,263), respectively. 
2P values were obtained between H- and L-RFI groups within each breed using the Kruskal-Wallis rank sum 
test; NS, not significant with P value not less than 0.05.  
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Table 4.5 Abundance of differential functional categories between RFI groups in three beef cattle breeds 

1. cpm, counts per million reads. 
2. P values were obtaining between H- and L-RFI steers using DESeq2 within each breed. 

 Functional category H-RFI L-RFI P value2 
(Mean±SEM; cpm1) (Mean±SEM; cpm1) 

Angus (ANG)     
  M-metatranscriptome RNA processing and modification 49.84 ± 10.56 195.48 ± 103.74 0.021 
     
Charolais (CHAR)     
  metagenome Cell cycle control, cell division, 

chromosome partitioning 
12909.00 ± 347.45  11589.90 ± 301.67 0.008 

  metagenome Secondary metabolites biosynthesis,  
transport and catabolism 

12971.28 ± 700.02 11296.28 ± 508.41 0.033 

  T-metatranscirptome Translation, ribosomal structure and 
biogenesis 

96639.54 ± 3962.26 84353.42 ± 3284.80 0.026 

  T-metatranscirptome Transcription 50431.27 ± 982.96 48084.54 ± 739.42 0.025 
  T-metatranscirptome Coenzyme transport and metabolism 32933.44 ± 1089.03 35990.82 ± 1219.48 0.046 
  T-metatranscirptome Chromatin structure and dynamics 874.42 ± 160.48 1409.80 ± 122.53 0.041 
  M-metatranscirptome Translation, ribosomal structure 

and biogenesis  
92501.13 ± 4666.25 72050.06 ± 3878.38 0.001 

  M-metatranscirptome Coenzyme transport and 
metabolism  

33326.68 ± 825.36 38128.97 ± 1781.97 0.014 

     
Crossbred (HYB)     
  metagenome Intracellular trafficking, secretion, 

and vesicular transport 
16275.15 ± 367.52 14238.87 ± 417.81 0.014 

  T-metatranscirptome Cell motility 24372.19 ± 1793.06 33107.68 ± 5178.07 0.044 
  T-metatranscirptome Nucleotide transport and 

metabolism 
28338.08 ± 1255.51 24255.68 ± 1009.29 0.010 

  T-metatranscirptome Cytoskeleton 4102.77 ± 1936.53 4132.47 ± 3014.61 0.036 
  M-metatranscirptome Cell motility 24493.50 ± 1808.59 37334.38 ± 6269.31 0.013 
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4.7 Figures 

 

 
Figure 4.1 Relative abundance of the most abundant (top ten) rumen microbial taxa (at phylum 
and genus levels for bacteria and at the species level for archaea) among three beef cattle breeds. 
ANG = Angus, CHAR = Charolais, HYB = Kinsella composite hybrid. 
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Figure 4.2 Rumen microbial compositional profiles of three beef cattle breeds visualized using 
the principal coordinate analysis (PCoA). The PCoA was conducted at the bacterial genus level 
and at the archaeal species level separately, based on Bray-Curtis dissimilarity matrices. The top 
three PCoAs were plotted for bacterial (a) and archaeal (b) communities. 
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Figure 4.3 Abundance of observed eggNOG functional categories among metagenome, T-
metatranscriptome, and M-metatranscriptome datasets. T- and M-metatranscriptome represents 
total-RNA-based and mRNA-enriched metatranscriptome, respectively. 
 
 

(CPM)
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Figure 4.4 Distinguishable microbial functional profiles between rumen metagenomes and metatranscriptomes. (a) PCA for eggNOG 
functional categories, which was calculated based on auto-scaled abundances (cpm) of functional categories. (b) Correlation between 
metagenome and T-metatranscriptome. (c) Correlation between metagenome and M-metatranscriptome. Each scatterplot in b and c 
illustrates log10-transformed mean abundances (cpm) of each functional category at DNA and RNA levels. 
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Figure 4.5 Microbial functional profiles of T- and M-metatranscriptomes. PCA for eggNOG 
functional categories (a) and expressed genes (b), which were performed based on auto-scaled 
abundances (cpm) of functional features. Correlations between rumen T- and M-
metatranscriptomes were calculated using Spearman’s rank correlation based on functional 
categories (c) and expressed genes (d). Each scatterplot in c and d illustrates log10-transformed 
mean abundances (cpm) of each functional category and each expressed gene. (e) Cluster 
analysis showing that between-method variations were lower than between-subject variations, 
which was conducted based on auto-scaled abundances (cpm) of functional categories using 
Euclidean as distance measure and Ward as clustering method. 

 188 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 Microbial functional profiles of T- and M-metatranscriptomes. PCA for eggNOG 
functional categories (a) and expressed genes (b), which were performed based on auto-scaled 
abundances (cpm) of functional features. Correlations between rumen T- and M-
metatranscriptomes were calculated using Spearman’s rank correlation based on functional 
categories (c) and expressed genes (d). Each scatterplot in c and d illustrates log10-transformed 
mean abundances (cpm) of each functional category and each expressed gene. (e) Cluster 
analysis showing that between-method variations were lower than between-subject variations, 
which was conducted based on auto-scaled abundances (cpm) of functional categories using 
Euclidean as distance measure and Ward as clustering method. 

2 3 4 5

2
3

4
5

Spearman's r = 1.00, P = 3.61e-7

T-metatranscriptome [log10(cpm)]

M
-m
et
at
ra
ns
cr
ip
to
m
e[
lo
g1
0(
cp
m
))

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

Spearman's r = 0.84, P < 2.20e-16

T-metatranscriptome [log10(cpm)]

M
-m
et
at
ra
ns
cr
ip
to
m
e[
lo
g1
0(
cp
m
))

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

Spearman's r = 0.84, P < 2.20e-16

T-metatranscriptome [log10(cpm)]

M
-m
et
at
ra
ns
cr
ip
to
m
e[
lo
g1
0(
cp
m
))

2 3 4 5
2

3
4

5

Spearman's r = 1.00, P = 3.61e-7

T-metatranscriptome [log10(cpm)]

M
-m
et
at
ra
ns
cr
ip
to
m
e[
lo
g1
0(
cp
m
))

a c

b d

e



 188 

 
 

 
 
Figure 4.6 Microbial functional profiles of three beef cattle breeds. PCA for eggNOG functional 
categories from metagenomic (a), T-metatranscriptomic (b), and M-metatranscriptomic (c) 
datasets, which were performed based on auto-scaled abundances (cpm) of functional features. 
 
 

a b c
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Figure 4.7 Identified differential genes/transcripts between H- and L-RFI groups from 
metagenome (a), T-metatranscriptome (b), and M-metatranscriptome (c) datasets, as well as 
differential genes/transcripts between RFI groups in all three datasets (d). H-RFI (+) and L-RFI 
(+) represents the number of genes/transcripts enriched in H-RFI and L-RFI animals, 
respectively. 
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Chapter 5. Unraveling genetic determinants for the rumen microbiota: insights for 

breeding more sustainable cattle 

 

5.1 Introduction 

The global human population is estimated to reach 9.15 billion by 2050, and is projected 

to result in an increased demand for livestock meat and milk products as a major protein source in 

the diet (Thornton, 2010). The majority of the world's milk and a high proportion of meat come 

from ruminants, mostly cattle, goats and sheep, highlighting the importance of ruminant animal 

production in the agriculture sector. Although cattle productivity has been improved through 

feeding cattle with cereal grains, such production systems will face the challenge of potential 

competitions for these inputs with humans (Eisler et al., 2014). In addition, increasing beef 

production through raising more animals requires more arable land and water (Thornton, 2010), 

and it also poses significant environmental issues. Cattle produce enteric methane (CH4) and 

nitrogenous compounds through urine and manure (Morgavi et al., 2013), which contribute to 

greenhouse gases as well as environmental pollution. Thus, improving production efficiency is 

one of the priorities for mitigating these impacts whilst satisfying the increased demand for beef 

producers. 

Ruminants have evolved to possess a diverse symbiotic microbiota in their rumen. The 

rumen microbiota, mainly consisting of bacteria, archaea, ciliated protozoa, fungi, and viruses 

(Firkins and Yu, 2015), can degrade complex plant polysaccharides and produce volatile fatty 

acids (VFAs), microbial proteins, and vitamins, which provide nutrients to meet the host’s 

requirement for maintenance and growth. Using omics-based approaches, recent studies have 

suggested that differences in rumen microbiota were associated with cattle production and health 

traits, such as feed efficiency (Shabat et al., 2016; Chapter 3 and 4), CH4 yields (Wallace et al., 
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2015), milk composition (Jami et al., 2014), and ruminal acidosis (McCann et al., 2016). Hence, 

the rumen microbiota is a potential target for manipulation to improve ruminant productivity and 

animal health, as well as to reduce CH4 emissions.  

It has been commonly accepted that diet plays the main role in shaping the gut microbiota 

(Spor et al., 2011); however, more and more evidence from quantitative genetics, especially 

genome-wide association studies (GWAS) have revealed that host genetics is also important in 

determining the composition of gut microbiota in humans and mice. For example, 18 quantitative 

trait loci (QTLs) were found to be associated with the abundance of mouse gut microbial taxa 

(Benson et al., 2010), and a follow-up study reported 42 QTLs for the abundance of 39 microbial 

taxa in a different mouse strain (Leamy et al., 2014). Two studies conducted to estimate 

heritability of gut microbial taxonomic features in human found that the abundance of one-third 

of the identified operational taxonomic units (OTUs) were heritable with moderate or high 

heritability estimates (Goodrich et al., 2014; Goodrich et al., 2016). In addition, substantial 

associations between specific host genes and the gut microbiota were observed in the UK human 

population using GWAS. Examples included, the gene SLIT3 (slit guidance ligand 3) with 

unclassified Clostridiaceae, R3HDM1 (R3H domain containing 1) with Bifidobacterium, and 

UHRF2 (ubiquitin like with PHD and ring finger domains 2) with weighted UniFrac distance (a 

measure of the similarity) (Goodrich et al., 2016). Recently, 58 single nucleotide polymorphisms 

(SNPs) were also reported to be associated with the abundance of 33 gut microbial taxa in human 

(Turpin et al., 2016).  

In ruminants, early studies have indicated that the rumen microbiota could be influenced 

by host breed/species (Guan et al., 2008; Henderson et al., 2015; Hernandez-Sanabria et al., 

2013; Paz et al., 2016; Roehe et al., 2016). For instance differences in the composition of rumen 

microbiota were detected between Holstein and Jersey cows fed the same diet (Paz et al., 2016). 
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However, lactation cycles and age effects were not considered and these factors do contribute to 

the variations of rumen microbiota (Jami et al., 2013; Jewell et al., 2015). In one of these studies 

researching the role of rumen microbiota in CH4 emissions, host genetics was reported to affect 

the archaea:bacteria ratio in the rumen (Roehe et al., 2016), but it was unclear whether host 

genetics affect the rumen microbial composition. In another recent survey of rumen microbiota of 

742 rumen and foregut samples from 32 species or sub-species of ruminants and foregut 

fermenters across continents (Henderson et al., 2015), the effects of diet, geographical regions, 

and genetic backgrounds of the host were confounded and could not be clearly separated. In two 

other studies investigating rumen microbiota from beef cattle with different feed efficiency (Guan 

et al., 2008) and sire breeds (Hernandez-Sanabria et al., 2013), although effects of breed (Guan et 

al., 2008) and sire breed (Hernandez-Sanabria et al., 2013) on the rumen microbiota were 

observed, rumen microbial communities were described using low resolution methods based on 

PCR-based fingerprinting method and qPCR. Currently, there is no in-depth understanding of 

how, and to what extent, host genetics can impact which microbial taxa because the host genetic 

effect on the rumen microbiota are poorly identified.  

Recent studies highlight the individual variations of rumen microbiota in both beef 

(Chapter 3) and dairy cattle (Jami and Mizrahi, 2012) even when animals were fed the same diet 

and managed under the same environment, further suggesting an important role of host genetics 

in rumen microbial composition. In this study, we hypothesized that there are specific host 

genetic components (e.g., SNPs, genes, QTLs) contributing to the variations of microbial 

composition in the rumen, which could drive the “individualized” rumen microbiota. We 

assessed compositional profiles of the rumen microbiota, estimated the heritability, and 

performed GWAS for rumen microbial taxonomic features, through surveying a cohort of beef 

cattle (n = 712) raised under the same environment. With this extensive dataset and 
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comprehensive analyses, we aimed to determine the potential to breed beef cattle with a desirable 

rumen microbiota that contributes to high productivity and low environmental impact. 

 

5.2 Material and Methods 

5.2.1 Animal experiments and rumen sampling 

A total of 712 beef cattle from three populations, including purebred Angus (ANG, n = 

203) and Charolais (CHAR, n = 114) cattle, and Kinsella composite hybrid (HYB, n = 395), were 

raised under the same feedlot conditions at the Roy Berg Kinsella Research Ranch at the 

University of Alberta. The HYB population was bred from multiple beef breeds including Angus, 

Charolais, Galloway, Hereford, Holstein, Brown Swiss, and Simmental as described previously 

(Nkrumah et al., 2007b). The experimental protocol was developed according to the guideline of 

the Canadian Council on Animal Care (Olfert et al., 1993), and was approved by the Animal 

Care and Use Committee of the University of Alberta (protocol no. AUP00000882). Animals 

were fed with different diets according to their breed, sex, and growth stages (Table 5.1). 

Approximately 50 ml of rumen sample (including rumen fluid and feed particles) was collected 

from each animal using the oro-gastric tubing before feeding as previously described 

(Hernandez-Sanabria et al., 2010), when the cattle were 293.0 ± 0.6 (mean ± SEM) days of age. 

Samples were immediately frozen using dry ice and then stored at -80 °C for further processing. 

  

5.2.2 DNA extraction, high-throughput sequencing, and quantitative PCR (qPCR) analysis 

Total DNA was isolated from each rumen sample using QIAGEN BioSprint 96 

workstation (Valencia, California, United States) at Delta Genomics (Edmonton, AB, Canada). 

To assess the rumen bacterial and archaeal compositional profiles, the bacterial V1-V3 region 

and the archaeal V6-V8 region of 16S rRNA genes were amplified using primers as described 
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previously (Henderson et al., 2015), i.e. for bacteria, the primers were Ba9F (5'-

GAGTTTGATCMTGGCTCAG-3') and Ba515Rmod1 (5'-CCGCGGCKGCTGGCAC-3'); for 

archaea, the primers were Ar915aF (5'-AGGAATTGGCGGGGGAGCAC-3') and Ar1386R (5'-

GCGGTGTGTGCAAGGAGC-3'). Regional amplicons were paired-end sequenced (2 × 300 bp) 

using the Illumina MiSeq PE300 at Génome Québec Innovation Centre (McGill University, 

Montréal, QC, Canada). All sequencing data are available for download from the National Center 

for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under accession number 

PRJNA393057. 

qPCR was performed to determine the abundance of rumen bacteria and archaea through 

enumerating their 16S rRNA gene copy numbers, using U2 primers for bacteria (forward: 5'-

ACTCCTACGGGAGGCAG-3'; reverse: 5'-GACTACCAGGGTATCTAATCC-3') (Stevenson 

and Weimer, 2007) and uniMet1 primers for archaea (forward: 5'-

CCGGAGATGGAACCTGAGAC-3'; reverse: 5'-CGGTCTTGCCCAGCTCTTATTC-3') (Zhou 

et al., 2009). Standard curves were made using serial dilutions of plasmid DNA containing full 

length of 16S rRNA gene of Butyrivibrio hungatei (for U2 primers, using an initial concentration 

of 8.50 × 107 mol/μl) and partial 16S rRNA gene of Methanobrevibacter sp. strain AbM4 (for 

uniMet1 primers, using an initial concentration of 1.58 × 107 mol/μl). qPCR was conducted using 

SYBR Green chemistry (Fast SYBRH Green Master Mix; Applied Biosystems) in the 

StepOnePlus Real-Time PCR System (Applied Biosystems), and the 16S rRNA gene copy 

numbers per ml of rumen sample were calculated using the formula from a previous study (Zhou 

et al., 2009). 

 

5.2.3 Microbial composition analysis  

Sequencing data were processed using the MacQIIME version 1.9.1. Briefly, paired-end 
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forward and reverse reads were joined, and then primers and homopolymer runs (maximum 

length: 8) of joined sequences were trimmed. Only sequences t 400 bp in length, with the 

average quality score t 25, and with ambiguous bases d 6 were remained for downstream 

analysis. De novo chimera checking was performed using UCHIME (Edgar et al., 2011) and 

operational taxonomic unit (OTU) picking was conducted using usearch (Edgar, 2010) to cluster 

similar sequences sharing t 97% similarity. Representative sequences for bacterial and archaeal 

OTUs were assigned to the Greengenes 16S rRNA gene database (version gg_13_8) (McDonald 

et al., 2012) and RIM-DB database (Seedorf et al., 2014), respectively, using BLAST (Altschul 

et al., 1990). Samples with < 500 bacterial sequences or samples with < 100 archaeal sequences 

were removed from the compositional analysis (Henderson et al., 2015). To estimate Good’s 

coverage and α-diversity indices (Chao1, Shannon index, and Simpson index), bacterial and 

archaeal sequences per sample were normalized to 2,000 and 500, respectively, using 100 

subsampling iterations. These α-diversity indices were calculated at the genus level for bacterial 

communities, and at the species level for archaeal communities. β-diversity (Principal 

Coordinates Analysis [PCoA]) was calculated based on normalized sequence numbers (n = 2,000 

for bacteria and n = 500 for archaea) using Bray-Curtis dissimilarity matrices. Samples with read 

number less than these cut-offs were not included in the analysis. The sequencing data were 

summarized at five taxonomic levels (from genus to phylum) for bacteria, and at six taxonomic 

levels (from species to phylum) for archaea. Only taxa with a relative abundance > 0.5% in at 

least one of samples were considered as detected taxa and included into the downstream analysis 

(Henderson et al., 2015). 
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5.2.4 Co-occurrence network of rumen microbiota 

Correlations between detected bacterial OTUs at the genus level and archaeal OTUs at the 

species level were inferred using the SparCC program (Friedman and Alm, 2012) implemented in 

mother (Schloss et al., 2009), with default settings apart from “permutations = 10000”. To avoid 

the potential bias on the co-occurrence calculations caused by different sequencing depths among 

samples, bacterial and archaeal OTU tables were subsampled to 2,000 and 500 reads for each 

sample, respectively, and samples with read number less than these cut-offs were removed from 

the downstream analysis. Bacterial and archaeal OTUs that were found in < 20% of animals in 

the population were also eliminated as previously suggested (Ramayo-Caldas et al., 2016). The 

correlation patterns were further filtered to select only correlations with coefficient > 0.3 or < -

0.3 and with P value < 0.001, which were then displayed using Cytoscape (Shannon et al., 2003). 

 

5.2.5 Genotyping 

Genomic DNA was extracted from ear tissue of each animal, and genotyping was 

performed for all 712 beef cattle using the Illumina BovineSNP50 v2 Genotyping BeadChip 

containing 54,609 SNPs (San Diego, CA, United States) at Delta Genomics (Edmonton, AB, 

Canada). All 712 individuals were successfully genotyped with genotypes > 80%. Quality control 

for SNPs was then performed according to the following criteria: a) P value of Chi-square test of 

Hardy-Weinberg equilibrium > 10−6; b) minor allele frequency (MAF) < 5%; c) genotyping call 

rate < 90%. Missing genotypes were imputed using the R package synbreed (Wimmer et al., 

2012). After filtering and imputation, 42,809 SNPs remained to construct the genomic 

relationship matrix (G) which was used in an animal model to estimate the heritability. In total 

42,374 SNPs with known chromosomal position were used for GWAS (Table 5.2).   
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5.2.6 Heritability estimations 

Only animals with completed rumen microbial profiles, phenotypic records and genotype 

information were included in this study. The relative abundance values of each microbial taxon 

were log10-transformed (Benson et al., 2010). All values were plotted and possible outliers (out 

of mean ± 3SD) were removed, resulting in a total of n = 646 ~ 668 animals in the analyses for 

each microbial feature. To capture the additive genetic relationships among individuals, the 

genomic relationship matrix (G) was constructed based on the SNPs after quality control (n = 

42,809) using the method previously developed (VanRaden, 2008) in the R package synbreed 

(Wimmer et al., 2012). The heritability of each rumen microbial feature was estimated using the 

following animal model in ASReml (Gilmour et al., 2014): 

 

yijklm = μ + bi + sj + dk + gl + am + eijklm                                   [1] 

 

Where yijklm is the microbial feature including log10-transformed abundance, alpha-diversity 

indices, and the top five bacterial/archaeal PCoAs from the Bray-Curtis matrices based PCoA as 

listed in Table 5.4; μ is the overall mean; b is the fixed breed effect with 3 classes (ANG, CHAR, 

and HYB); s is the fixed effect explaining differences between bull, heifer, and steer; d is the 

fixed effect of four different diets; g is the covariate representing the age effect at sampling, a is 

the random additive genetic effect following a distribution of N(0, Gσa
2), with the genomic 

relationship matrix G and the additive genetic variance σa
2; e is the random residual effect 

following N(0, Iσe
2), with identity matrix I and residual variance σe

2. The heritability (h2) was 

defined as: 

 

h2 =  σa
2 / (σa

2 + σe
2)                                                                 [2] 
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5.2.7 Genome-wide association studies (GWAS) 

Firstly, microbial taxonomic features were adjusted for the fixed effects and covariate, 

including breed, sex, diet, and age. SNP positions were obtained using the SNPchiMp v.3 web-

based tool (Nicolazzi et al., 2015), and only SNPs with known positions (n = 42,374) were kept 

for the analysis. These SNPs were located on 30 Bos taurus chromosomes (29 autosomes [BTA] 

and the X chromosome; Table 5.2). GWAS were performed using rrBLUP (Endelman, 2011) in 

R package as the model below: 

 

y*
ij = μ + ai + mj + eij                                                                                                                    [3] 

 

Where y*
ij is the adjusted values of microbial taxonomic features; a and e is the random additive 

genetic effect and the random residual effect, respectively, with assumptions of distribution, 

variance and covariance structure as descripted above in model [1]; m is a fixed effect modeling 

the additive SNP effect. SNP genotypes were coded as -1/0/1 for genotype aa/Aa/AA. For each 

trait, P-values from testing the SNP effects were adjusted into genome-wide false discovery rates 

(FDRs) using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). Associations 

with FDR < 0.1 were considered significant, and associations with 0.1 < FDR < 0.2 were 

regarded as suggestively significant.  

 

5.3 Results 

5.3.1 Survey of rumen microbiota using a large cohort of beef cattle 

Rumen microbiota were surveyed using a cohort consisting of bulls (n = 71), heifers (n = 

350) and steers (n = 291) that were born in 2014 and raised at the Roy Berg Kinsella Research 

Ranch at the University of Alberta. An average of 8,016 ± 96 (mean ± SE) and 1,862 ± 22 
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quality-filtered sequences were generated per animal for bacteria and for archaea, respectively, 

which were binned into a total of 67,791 bacterial and 168 archaeal OTUs (≥ 97% similarity). 

Good's coverages for both bacterial and archaeal communities were higher than 99% (Table 5.3). 

After classifying these OTUs into different taxonomic levels, 17 phylum-level taxa, 21 class-

level taxa, 24 order-level taxa, 37 family-level taxa, and 64 genus-level taxa were detected for 

bacterial communities (with a cutoff for relative abundance > 0.5% in at least one of samples as 

suggested previously) (Henderson et al., 2015). Meanwhile, one phylum-level taxa, three class-

level taxa, three order-level taxa, three family-level taxa, ten genus-level taxa, and 14 species-

level taxa were detected for archaeal communities (Supplementary Table S5.1). The dominant 

bacterial phyla were Bacteroidetes (44.05%), Firmicutes (36.42%), and Proteobacteria (4.61%), 

and each of the remaining 14 minor phyla accounted for < 1.00% of abundance. The most 

abundant archaeal taxa were Methanobrevibacter gottschalkii (85.09%) and Methanobrevibacter 

ruminantium (9.91%), followed by members of Methanomassiliicoccaceae (3.49%) (Figure 5.1 

and Supplementary Table S5.1). From those 64 bacterial genus-level taxa and 14 archaeal 

species-level taxa, Prevotella, unclassified Ruminococcaceae, unclassified Clostridiales, 

unclassified Bacteroidales, unclassified Lachnospiraceae, and Methanobrevibacter gottschalkii 

were found in more than 95% of the animals. 

 

5.3.2 Factors driving segregation of rumen microbiota 

General community structures (Principal Coordinates Analysis [PCoA] based on Bray-

Curtis dissimilarity metrics), alpha-diversity indices (Chao1 for richness and Shannon for 

evenness), and abundance (16S rRNA gene copy numbers from qPCR) of rumen bacterial and 

archaeal communities were affected by breed, sex, and diet, while the age effect was only 

detected for the richness and abundance of bacteria communities (Figure 5.2 and 5.3 and 

https://www.dropbox.com/s/iixgtl7h4hai7by/Supplementary%20Table%20S5.1.xlsx?dl=0
https://www.dropbox.com/s/iixgtl7h4hai7by/Supplementary%20Table%20S5.1.xlsx?dl=0
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Supplementary Table S5.1). From 197 detected bacterial and archaeal taxa, 50% (99), 91% 

(180), 92% (181), and 11% (22) of them were affected by breed, sex, diet, and age (P < 0.05), 

respectively (Supplementary Table S5.1).  

Specific to the observed breed effect, both bacterial and archaeal profiles differed between 

Angus (ANG) and Charolais (CHAR) breeds of cattle, while those from the Kinsella composite 

hybrid (HYB) were overlapped with the two pure breeds (Figure 5.2). CHAR microbiota 

(bacterial and archaeal) were less diverse (with the lowest Chao1 and Shannon indices) than 

those of ANG and HYB (Figure 5.3a-d), while ANG microbiota had the highest richness 

(Chao1; Figure 5.3a and 5.3b). Meanwhile, a similar level of bacterial abundance was detected 

among the three breed populations (P = 0.15), with higher archaeal abundance for HYB 

compared with those in CHAR and ANG (P = 2.7e-4; Figure 5.3e and 5.3f).  

PCoA also displayed a sex effect on the bacterial communities, with no obvious sex effect 

on archaeal communities (Figure 5.2). In addition, comparison analysis of alpha-diversities 

revealed that the bull rumen microbiota had the lowest richness and evenness for archaeal 

communities and highest richness for bacterial communities (Figure 5.3a-d). Among the three 

genders, bulls had the highest archaeal but lowest bacterial abundance, while steers had lowest 

archaeal but highest bacterial abundance (Figure 5.3e and 5.3f). 

 

5.3.3 Microbial interactions detected in the cattle rumen 

Bacterial abundance was correlated with archaeal abundance (correlation coefficient [ρ] = 

0.26, P = 3.64e-12; Spearman's rank correlation; Figure 5.4a). Meanwhile, the abundance of 

Firmicutes was negatively correlated with that of Bacteroidetes (ρ = -0.83, P = 2.20e-16; Figure 

5.4b). The most abundant archaeal species Mbb. gottschalkii was also negatively related to the 

second abundant archaeal species Mbb. ruminantium (ρ = -0.75, P = 2.20e-16; Figure 5.4c). In 

https://www.dropbox.com/s/iixgtl7h4hai7by/Supplementary%20Table%20S5.1.xlsx?dl=0
https://www.dropbox.com/s/iixgtl7h4hai7by/Supplementary%20Table%20S5.1.xlsx?dl=0
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addition, co-occurrence networks were observed for the bacterial communities but not for the 

archaeal communities (Figure 5.5), with 72 significant associations (52 positive and 20 negative) 

(correlation coefficient < -0.3 or > 0.3 and P < 0.001) being identified between bacterial taxa at 

the genus level. Four major modules comprised of correlated bacterial taxa were observed, 

centered by unclassified Clostridiales, unclassified Succinivibrionaceae, unclassified 

Coriobacteriaceae, and unclassified Christensenellaceae, respectively (Figure 5.5b-e).  

 

5.3.4 Heritability estimates of rumen microbiota 

The proportion of rumen microbial taxon at multiple taxonomic levels was treated as an 

individual trait as suggested previously (Turpin et al., 2016), and its heritability (h2) was 

estimated using an animal model based on the genomic relationship matrix (G matrix). In the 

present study, only microbial taxonomic features with a heritability estimate of h2 ≥ 0.15 were 

considered as being heritable. The results showed that animal additive genetic variations 

contributed to relative abundance of 58 (55 for bacteria and 3 for archaea) microbial taxa (h2 ≥ 

0.15; Figure 5.1 and Supplementary Table S5.1) belonging to various taxonomic levels. 

Among those 58 heritable bacterial taxa, 21 of them belonged to the phylum Firmicutes, 

including Ruminococcus (h2 = 0.16 ± 0.08; mean ± SE), unclassified Clostridiales (h2 = 0.25 ± 

0.09), Blautia (h2 = 0.18 ± 0.08), etc. However, most members belonging to Bacteroidetes, such 

as Prevotella, unclassified S24-7, and unclassified Bacteroidales, were less affected by host 

genetics (h2 < 0.15). For the three heritable archaeal taxa, the heritability estimate was 0.23 ± 

0.08 for Methanobacterium, 0.18 ± 0.08 for Mbb. ruminantium, and 0.23 ± 0.08 for 

Methanobacterium alkaliphilum.  

In addition, rumen bacterial diversity indices, including Shannon index (h2 = 0.23 ± 0.09) 

and Simpson index (h2 = 0.19 ± 0.08), were also heritable (Table 5.4). Meanwhile, moderate 

https://www.dropbox.com/s/iixgtl7h4hai7by/Supplementary%20Table%20S5.1.xlsx?dl=0
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heritability estimates (h2 = 0.15 ~ 0.25) were obtained for PCoA2 (5.13% of variation) and 

PCoA5 (2.40% of variation) of bacterial communities, and for PCoA1 and PCoA2 (35.19% and 

22.31% of variation, respectively) of archaeal communities (Table 5.4). Moreover, moderate 

heritability was observed for the bacterial abundance (h2 = 0.16 ± 0.07) but not for the archaeal 

abundance (h2 = 0.05 ± 0.06) (Table 5.4). The ratio between Firmicutes and Bacteroidetes (h2 = 

0.15 ± 0.07), and the ratio between Mbb. gottschalkii and Mbb. ruminantium (h2 = 0.17 ± 0.08) 

were also moderately heritable traits (Table 5.4), similar to the four major microbial network 

modules (h2 = 0.15 ~ 0.30) (Figure 5.5b-e). 

 

5.3.5 SNPs identified for rumen microbial taxonomic features through GWAS 

When downstream GWAS were performed for microbial taxonomic features with h2 ≥ 

0.1, 19 SNPs located on BTA (Bos taurus autosome) 1, 2, 3, 5, 7, 10, 12, 13, 16, 19, 26, and 27 

were identified to be associated with microbial taxonomic features at the significance level of 

false discovery rate (FDR < 0.1) or at the suggestive significance level of 0.1 < FDR < 0.2. 

Specifically, these SNPs were associated with the abundance of six bacterial genus-level taxa 

(unclassified BS11, Ruminococcus, unclassified Lachnospiraceae, YRC22, unclassified 

Mogibacteriaceae, and unclassified Victivallaceae), three bacterial families (BS11, 

Paraprevotellaceae, and Victivallaceae), one bacterial order (Victivallales), two bacterial classes 

(Spirochaetes and Lentisphaeria), and two bacterial phyla (Spirochaetes and Lentisphaerae) 

(Table 5.5 and Figure 5.6). No significant (or suggestively significant) association was observed 

for alpha-diversity indices, PCoAs, bacterial and archaeal abundance, and relative abundance of 

archaeal taxa.  

The most significant associations were BS11 family and unclassified BS11 at the genus 

level with the SNP: rs110670001 on BTA10 (P = 1.43e-07, FDR = 0.006). In addition, four 
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adjacent SNPs (rs110410597, rs41604961, rs109122489, and rs110469969) located in the region 

of 28.10 ~ 28.18 Mbp on BTA13, which were in complete linkage disequilibrium (data not 

shown), tended to be associated with the phylum Spirochaetes and the class Spirochaetes (P = 

2.45e-05 ~ 2.69e-05, FDR = 0.17 ~ 0.19). Moreover, two genus-level taxa including unclassified 

Lachnospiraceae and Ruminococcus tended to be associated with one SNP (rs109961459 on 

BTA13; P = 2.61e-06, FDR = 0.11) and four SNPs (rs43235157 on BTA1, rs110461771 on 

BTA2, rs41656119 on BTA7, and rs110071335 on BTA10; P = 3.88e-06 ~ 1.80e-05, FDR = 

0.16 ~ 0.19), respectively (Table 5.5 and Figure 5.6). 

 

5.4 Discussion 

The dietary effect on the rumen microbiota has been largely reported (Henderson et al., 

2015), because different diets provide various available substrates for microorganisms with 

different niches due to their nutritional characteristics. However, knowledge of breed and sex 

effects on the rumen microbiota are scarce. In the present study, three beef cattle populations 

showed distinguishable bacterial and archaeal characteristics, supporting previous reports on the 

effects of host genetic background on the rumen microbiota (Guan et al., 2008; Henderson et al., 

2015; Hernandez-Sanabria et al., 2013; Paz et al., 2016; Roehe et al., 2016). For example, the 

breed effect on the general structure of rumen bacterial communities was firstly observed in beef 

cattle based on the PCR-based fingerprinting method and a small sample size (n = 31) (Guan et 

al., 2008), which was confirmed by the PCoA analysis of the current study based a much larger 

cohort of 712 beef cattle. Furthermore, through this extensive dataset and comprehensive 

analyses, our study also confirmed several breed-associated rumen microbial features that were 

sporadically reported previously, such as the abundance of total rumen methanogens (Hernandez-

Sanabria et al., 2013), relative abundance of several microbial taxa (e.g. Fibrobacter, unclassified 
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Veillonellaceae) (Henderson et al., 2015), archaea:bacteria ratio (Roehe et al., 2016), alpha- and 

beta-diversities (Paz et al., 2016).  

It is known that phenotypic variations exist between different breeds in both dairy and 

beef cattle. For example, methane emissions were significantly different between two beef cattle 

breeds (Aberdeen Angus vs. Limousin) (Roehe et al., 2016), and milk yield and milk 

composition differed between Holstein and Jersey dairy cattle (Capper and Cady, 2012). 

However, phenotypic variations could not be fully explained by genetic differences between 

these breeds, and it has been suggested that the rumen microbiota potentially contribute towards 

these variations (Paz et al., 2016). According to our results, the CHAR population had the least 

diverse microbiota compared to HYB and ANG cattle. It has been reported that a less diverse 

rumen microbiota was linked to higher feed efficiency and/or lower CH4 emissions in both dairy 

(Shabat et al., 2016) and beef cattle (Zhou et al., 2009). Indeed, a previous study found that 

CHAR beef steers consumed ~5% less daily dry matter intake (DMI) and had 2.7% more average 

dairy gain (ADG) than ANG beef steers (Mao et al., 2013). Therefore, the greater feed efficiency 

performance in CHAR may be partially explained by the less diverse rumen microbiota of CHAR 

population, which represents a potential genetic superiority of this breed.  

Although sex has also been suggested to be one of factors affecting the composition of 

gut microbiota in humans and mice (Davenport et al., 2015; Org et al., 2016), our current study is 

the first to evaluate the sex effect on the rumen microbiota. We found that the microbiota 

observed in bulls was distinguishable from that of heifers and steers. A recent study reported that 

male castration eliminated the gut microbial differences between males and females, and the 

hormone (e.g. testosterone) treatment prevented the changes of males after gonadectomy 

(Yurkovetskiy et al., 2013). This suggests that differences in sex hormones could be one of 

elements to explain the variations among different genders, because sex hormones affected bile 
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acid profiles (Yurkovetskiy et al., 2013) and the shifts of bile acid consequently influence gut 

microbiota (Li and Chiang, 2015). Meanwhile, males and females may be exposed to different 

environmental microbes due to different diets and different activities (Davenport et al., 2015), 

and thus it could also in part drive the different microbial profiles between sexes. However, such 

a gender effect on the rumen microbiota raises several questions, especially in beef cattle. Most 

of the genetic improvement for productivity was achieved through breeding beef sires and 

passing their desirable characteristics to their offspring steers. Our previous study has suggested 

the sire breed had an effect on the frequency of particular rumen microbial phylotypes in their 

offspring steers, but the gender factor was not considered (Hernandez-Sanabria et al., 2013). In 

the current study, three genders were included for each breed and this factor has now been shown 

to affect both rumen microbial community structures and relative abundance of many taxa. 

However, future research on comparing microbiota from multiple generations of beef cattle with 

different genders is needed to determine to what extent rumen microbiota in bulls could be 

inherited by their offspring. Recent human studies also highlight the potential vertical 

transmission of gut microbiota, especially from mothers to infants (Asnicar et al., 2017). 

Therefore, to what extent cows may impact the rumen microbiota also needs to be explored since 

heifers have different rumen microbiota to bulls.  It is notable that as our study was conducted in 

“real” beef cattle operations, and thus cattle with different genders were fed with different diets to 

fulfill their different energy requirements. Therefore, the sex effect detected can be nested or 

confounded with the dietary effect, which should be considered as a limitation of this study.  

Estimating heritability of rumen microbial members helped identify the host genetic effect 

compared with environmental factors that shape the observed variations in rumen microbiota. To 

estimate heritability, microbial taxonomic features were regarded as complex polygenic traits in 

this study, as previously suggested (Benson et al., 2010). The predominant bacterial phylum, 
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most of the bacterial taxa (20 out of 22) belonging to Bacteroidetes only had low heritability 

estimates, suggesting that members belonging to this phylum are largely affected by 

environmental factors, such as diet. Indeed, many studies have reported diet as the major factor 

determining the abundance of Bacteroidetes, Prevotella, unclassified Bacteroidales, and so on 

(Henderson et al., 2015). The results are in line with studies on human gut, in which taxa 

belonging Bacteroidetes were not heritable and showed obvious shifts under diet interventions 

(David et al., 2014; Goodrich et al., 2014).  

On the other hand, phylum Firmicutes (the second most abundant phylum) and many taxa 

belonging to this phylum (21 out of 52) had moderate heritability estimates, suggesting that the 

host genetic effect contributes to the observed variations in this phylum. This is also consistent 

with a recent study of human gut microbiota (Goodrich et al., 2016). Members belonging to 

Firmicutes play very important roles in fiber digestion and carbohydrate metabolism. For 

example, as the most abundant family in Firmicutes, Ruminococcaceae had moderate heritability. 

This family is composed of both fibrolytic organisms and members involved in starch hydrolysis, 

which could produce acetate, formate, succinate, and so on (Klieve et al., 2007; Russell and 

Rychlik, 2001). Unclassified Clostridiales has been reported to be affected by both host and diet 

(Henderson et al., 2015), and the moderate heritability estimate obtained in this study further 

confirmed the host genetic effect on its abundance. Although a previous study indicated that 

unclassified Clostridiales may play a role in biohydrogenation (Huws et al., 2011), the ecology 

and functions of phylotypes belonging this group are largely unknown because most of them are 

uncultivable. In addition, unclassified Clostridiales was the hub of one co-occurrence network 

module, so the host may also impact the other taxa that have interactions with unclassified 

Clostridiales in the rumen. Therefore, isolating and characterizing members of unclassified 

Clostridiales could be a future research direction which could help define their ecological niches 
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in the rumen and reveal mechanisms between their interactions with the host and other rumen 

microorganisms. Regardless, the observed different heritability estimates between members of 

Bacteroidetes and Firmicutes suggest that host effects are not equal on different rumen microbial 

phylotypes. Therefore, genetic selection and breeding may be applied to alter rumen microbial 

taxa with moderate heritability estimates, whilst it is unlikely to have any effects on those 

members driven by environmental factors. 

Coevolution might be one of the mechanisms to explain different host genetic effects on 

different rumen microbial taxa. For example, we found that the abundance of Ruminococcus was 

influenced by host genetics in the current study. It has been reported that members of this genus 

display large diversity and particular host-association patterns in different mammalian species 

(La Reau et al., 2016), supporting the suggestion that there are coevolutionary relationships 

between Ruminococcus and the host. In addition, as major butyrate producers (e.g. Butyrivibrio, 

Clostridium, etc.) (Russell and Rychlik, 2001), most members of Lachnospiraceae (9 out of 10) 

were not heritable in the rumen, whereas most members of this family were reported to be 

heritable in the human gut (Goodrich et al., 2014). This inconsistency of heritability estimates of 

Lachnospiraceae members between ruminant and human further suggests there are 

coevolutionary relationships between host and the gut microbiota. Further scanning and analysis 

of genomic characters of these heritable rumen taxa, such as the outcomes of the Hungate 1000 

project (http://www.rmgnetwork.org/hungate1000.html), will provide more information to 

explain how host and rumen microorganisms have coevolved at the genomic level, and provide a 

better understanding of how host genetics shape these microbial taxa. 

Furthermore, the identification of associations between host SNP genotypes and rumen 

microorganisms through GWAS provides further knowledge on which genetic components 

contribute to the variations of rumen microbiota of beef cattle. For instance, the SNP: 
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rs110461771 (associated with the variations in the abundance of Ruminococcus), is located 

within the gene RAPH1 (Ras Association (RalGDS/AF-6) and Pleckstrin Homology Domains 1) 

on BTA2. The RAPH1 gene is involved in cell migration, which is the function that has been 

suggested to be associated with the nutrient absorption abilities of the rumen epithelia in beef 

steers (Kong et al., 2016). Therefore, polymorphism of the RAPH1 gene may contribute to 

differences in the rumen epithelial absorption of nutrients such as VFAs. The variations in 

ruminal epithelial VFA absorption have been reported to be associated with differences in 

ruminal pH (Aschenbach et al., 2011) and the shift in ruminal pH could influence the rumen 

microbiota (Hernandez et al., 2014). Another SNP: rs29003226 (associated with the abundance 

of YRC22), is close to the CDC7 (cell division cycle 7) gene on BTA3. The CDC7 gene encodes 

the cell division cycle protein with kinase activity and might be involved in cell division of 

rumen epithelium. It has been reported that increased cell division could increase the 

proportion of epithelial cells, papillae length, and papillae number (Xiang et al., 2016), and 

the variations of these rumen physical structures are expected to have a potential influence on the 

rumen microbiota (Roehe et al., 2016). In addition, the SNP: rs41911152 (associated with 

various microbial groups) (Table 5.5), is located upstream of MYH3 (Myosin Heavy Chain 3) on 

BTA19. The MYH3 gene plays a role in muscle contraction (Racca et al., 2015), and thus it may 

relate to rumen contraction frequency by affecting the muscle action of the rumen wall. Rumen 

contraction frequency is associated with the passage rate of rumen digesta which has been 

suggested to also influence the microbiota (Roehe et al., 2016). Furthermore, expressions of all 

three genes in the rumen epithelial wall were detected in HYB beef steers raised under the same 

environment in our previous study (Kong et al., 2016). Overall, the above microbiota-associated 

SNPs suggest that the host genetics driven rumen physical features and gene expressions could 

drive the composition of rumen microbiota. Future follow-up studies to evaluate the associations 
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between these genes and regions (using higher density SNP markers and/or gene sequencing) and 

rumen epithelial structure and thickness, passage rate, ruminal pH, and rumen microbiota will 

provide more direct evidence to support our suggestions. 

It is notable that several rumen microbiota-associated SNPs overlap with known 

quantitative trait loci (QTLs) for several phenotypic traits in cattle, such as feed efficiency. For 

example, SNPs on BTA1 (rs109763257 and rs43235157), BTA5 (rs41257422), and BTA13 

(rs110410597, rs41604961, rs109122489, and rs110469969) are located within the QTLs for 

average daily gain (ADG) (de Oliveira et al., 2014; Li et al., 2002; Rolf et al., 2012). Meanwhile, 

SNPs on BTA3 (rs29003226), BTA19 (rs41911152), and BTA26 (rs110728224 and 

rs110448978) overlap with QTLs for residual feed intake (RFI, one of feed efficiency measures) 

(Sherman et al., 2009). Such an overlap suggests that these QTLs may have pleiotropic effects on 

both rumen microbiota and feed efficiency, which may partly explain the associations between 

rumen microorganisms and RFI (Shabat et al., 2016; Chapters 3 and 4). For instance, a pervious 

study reported associations between the unclassified [Mogibacteriaceae] and feed efficiency 

(Myer et al., 2015a), and the QTL for feed efficiency on BTA26 overlaps with the QTL for 

unclassified [Mogibacteriaceae] in our study. This region may harbor a gene that affects both 

unclassified [Mogibacteriaceae] and feed efficiency, or the QTL may contain several linked 

genes that individually or simultaneously influence these two traits. In addition, it is also possible 

that host QTLs impact feed efficiency through effects on the rumen microbial composition. 

Further studies are required to confirm these cause-and-effect relationships behind these 

pleiotropic effects between the rumen microbiota and feed efficiency.  

It is worth mentioning that moderate heritability estimates were detected for several feed 

efficiency and/or CH4 emission related rumen microbial features reported in other studies, 

including the Bacteroidetes:Firmicutes ratio (related to CH4 emissions) (Martinez-Fernandez et 
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al., 2016), Shannon index for bacterial communities (related to feed efficiency) (Shabat et al., 

2016), the abundance of Ruminococcus (related to feed efficiency) (Myer et al., 2015a), Blautia 

(related to feed efficiency) (Myer et al., 2015b), Mbb. ruminantium (related to feed efficiency 

and CH4 emissions) (Danielsson et al., 2017; Shabat et al., 2016), and so on. These results 

highlight the potential to manipulate these heritable microbial taxonomic features through genetic 

selection and breeding, which represents a useful strategy to improve feed efficiency and to 

reduce CH4 emissions. After developing genetic or genomic selection tools to predict genetic 

merit of host animals for traits including rumen microbial taxonomic features, feed efficiency, 

CH4 emissions, and other rumen microbiota-related traits (e.g., milk composition, ruminal 

acidosis, etc.), ruminant productivity could be improved through altering the rumen microbiota 

by genetic selection and breeding. In addition, to manipulate those environmentally determined 

phylotypes with low heritability estimates (such as members belonging to Bacteroidetes, and 

most of archaeal taxa), individual feeding schemes should be considered. Therefore, it is 

important to combine both genetics-based (selection and breeding) and management-based 

(individual feeding schemes) approaches to achieve optimal host-microbiota-diet interactions and 

thus enhance the productivity of beef cattle. 

In conclusion, this study assessed the determinant factors for the rumen microbiota, 

estimated the heritability of rumen microbial taxonomic features, and identified genetic 

components associated with specific rumen microbial taxa using samples collected from a large 

cohort of beef cattle (n = 712) raised under the same environment. Rumen microbiota of these 

beef cattle are generally consistent with those typically described at various taxonomic levels 

(Henderson et al., 2015; Kim and Yu, 2014). Multiple factors, including breed, sex, and diet were 

identified to drive the variations of rumen microbiota among animals. The findings on moderate 

heritability estimates for rumen microbial taxonomic features and the identified microbial taxa 
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associated SNPs from GWAS are the first to show direct evidence that rumen microbial 

colonization in beef cattle can be affected by host genetics including breed genetic differences 

and animal additive genetic effects. It further highlights a potential to manipulate the rumen 

microbiota through genetic selection and breeding to enhance the productivity of ruminants. 
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5.6 Tables 

Table 5.1 Diet information for animal experiments 
Sex Breed Diet Diet composition 
Steer HYB Diet A 95% straight oats and free choice hay, 5% rumensin 

pellet  CHAR Diet A 
 ANG Diet B Straight hay 
    Bull HYB Diet C 

80% Silage, 15% whole oats, 5% rumensin pellet  CHAR Diet C 
 ANG Diet C 
    Heifer HYB Diet D 55% Silage, 40% whole oats, 5% rumensin pellet  ANG Diet D 

 CHAR Diet A 95% straight oats and free choice hay, 5% rumensin 
pellet 

Abbreviations: HYB = Kinsella composite hybrid, CHAR = Charolais, and ANG = Angus. 
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Table 5.2 Single nucleotide polymorphisms (SNPs) information 
BTA SNP1  

(n) 
SNP interval  
(Mean, bp) 

 BTA SNP1 SNP interval  
(Mean, bp) 

1 2739 57741  16 1348 60253 
2 2265 60363  17 1333 56221 
3 2049 59151  18 1087 60222 
4 2045 58885  19 1145 55519 
5 1744 69466  20 1296 55146 
6 2104 56607  21 1141 62367 
7 1850 60766  22 1050 58357 
8 1958 57695  23 889 58812 
9 1700 62074  24 1058 58753 

10 1788 58295  25 803 53258 
11 1810 59224  26 899 56741 
12 1391 65428  27 781 58015 
13 1461 57440  28 812 56946 
14 1472 56528  29 882 58005 
15 1378 61325  X 96 1150102 

 
#SNPs before quality control filter: 54609 
#SNPs not following Hardy-Weinberg equilibrium: 1802 
#SNPs with minor allele frequency (MAF) < 5% and genotyping call rate < 90%: 9998 
#Available SNPs for genomic relationship matrix construction: 42809 
#SNPs without position information: 435 
#Available SNPs for genome wide association study: 42374 
1. These numbers are the SNPs involved into the genome wide association study. 
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Table 5.3 Alpha-diversity indices1 of beef cattle population 
Al Bacterial community2   Archaeal community2  

 Mean SEM CV (%)  Mean SEM CV (%) 
  (n=658)    (n=660)  
Chao1 60.88 0.48 20.06  6.48 0.09 37.26 
Shannon 3.00 0.02 15.60  0.63 0.02 62.72 
Simpson 0.78 0.00 12.63  0.21 0.01 73.40 
Good's coverage 99.33% 0.00 0.15  99.72% 0.00 0.14 
1. To estimate these α-diversity indices, the number of bacterial and archaeal sequences per 
sample were normalized to 2,000 and 500, respectively, using 100 subsampling iterations. 
2. These α-diversity indices were calculated at the genus level for bacterial communities, and at 
the species level for archaeal communities. 
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Table 5.4 Heritability estimates of rumen microbial abundance, diversity indices1, and ratios 
between dominant microbial groups 

Rumen microbial taxonomic features  Heritability 
(h2 ± SE) 

 

    Bacteria    
          16S rRNA gene copy number (log10)  0.16 ± 0.07  
          Chao1 index  0.09 ± 0.07  
          Shannon index  0.23 ± 0.09  
          Simpson index  0.19 ± 0.08  
          PCoA1 (6.88% variation)  0.12 ± 0.07  
          PCoA2 (5.13% variation)  0.25 ± 0.09  
          PCoA3 (3.33% variation)  0.08 ± 0.06  
          PCoA4 (2.75% variation)  0.00 ± 0.00  
          PCoA5 (2.40% variation)  0.15 ± 0.09  
    
    Archaea    
          16S rRNA gene copy number (log10)  0.05 ± 0.06  
          Chao1 index  0.00 ± 0.05  
          Shannon index  0.04 ± 0.06  
          Simpson index  0.05 ± 0.06  
          PCoA1 (35.19% variation)  0.17 ± 0.09  
          PCoA2 (22.31% variation)  0.17 ± 0.08  
          PCoA3 (6.18% variation)  0.05 ± 0.06  
          PCoA4 (4.58% variation)  0.00 ± 0.00  
          PCoA5 (2.76% variation)  0.06 ± 0.06  
    
    Ratio2    
        Archaea: Bacteria  0.04 ± 0.06  
        Firmicutes: Bacteroidetes  0.15 ± 0.07  
        Mbb. gottschalkii: Mbb. ruminantium  0.17 ± 0.08  

1To estimate these α- and β- diversity indices, the number of bacterial and archaeal sequences per 
sample were normalized to 2,000 and 500, respectively. α-diversity indices were calculated at the 
genus level for bacterial communities, and at the species level for archaeal communities. 
Principal Coordinates Analysis (PCoA) was conducted using Bray-Curtis dissimilarity matrices. 
2Abundance from qPCR and relative abundance were both log10-transformed before we 
calculated these ratios.   
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Table 5.5 Identified bovine SNPs that associated with rumen microbial taxa 
SNP Position Alleles Gene Consequence Associated Taxon FDR3 P 
rs109763257 1:155345571 C/T NC region1 NA2 Spirochaetes (Phylum) 0.173 1.20e-05 
     Spirochaetes (Class) 0.190 9.43e-06 
rs43235157 1:156294225 A/G TBC1D5 Intron variant Ruminococcus (Genus) 0.191 1.33e-05 
rs110461771 2:92080445 C/T RAPH1 Intron variant Ruminococcus (Genus) 0.164 3.88e-06 
rs29003226 3:51976646 C/G NC region1 NA2 YRC22 (Genus) 0.107 2.53e-06 
rs41257422 5:6266261 A/G NC region1 NA2 YRC22 (Genus) 0.155 7.33e-06 
rs41656119 7:83551608 A/G NC region1 NA2 Ruminococcus (Genus) 0.191 1.80e-05 
rs110670001 10:10930797 C/T NC region1 NA2 BS11 (Family) 0.006 1.43e-07 
     Unclassified BS11 (Genus) 0.006 1.43e-07 
rs110071335 10:81981544 A/C SMOC1 Intron variant Ruminococcus (Genus) 0.191 1.46e-05 
rs109402398 12:37678844 C/T NC region1 NA2 Paraprevotellaceae (Family) 0.105 4.95e-06 
rs110410597 13:28095457 C/T OPTN Intron variant Spirochaetes (Phylum) 0.173 2.45e-05 
     Spirochaetes (Class) 0.190 2.69e-05 
rs41604961 13:28115879 C/T OPTN Intron variant Spirochaetes (Phylum) 0.173 2.45e-05 
     Spirochaetes (Class) 0.190 2.69e-05 
rs109122489 13:28149879 C/T MCM10 Intron variant Spirochaetes (Phylum) 0.173 2.45e-05 
     Spirochaetes (Class) 0.190 2.69e-05 
rs110469969 13:28183389 C/T UCMA  Intron variant Spirochaetes (Phylum) 0.173 2.45e-05 
     Spirochaetes (Class) 0.190 2.69e-05 
rs109961459 13:24202640 A/G NC region1 NA2 Unclassified 

Lachnospiraceae (Genus) 
0.111 2.61e-06 

rs41627213 16:78415671 C/T DENND1B Intron variant Paraprevotellaceae (Family) 0.070 1.65e-06 
rs41911152 19:30220186 C/T NC region1 NA2 Lentisphaerae (Phylum) 0.070 1.64e-06 
     Lentisphaeria (Class) 0.070 1.64e-06 
     Victivallales (Order) 0.034 8.05e-07 
     Victivallaceae (Family) 0.038 8.92e-07 
     Unclassified Victivallaceae 

(Genus) 
0.038 8.92e-07 

rs110728224 26:32497450 A/G NC region1 NA2 Spirochaetes (Phylum) 0.173 4.73e-06 
     Spirochaetes (Class) 0.140 3.31e-06 
rs110448978 26:37871121 C/T KCNK18 Downstream 

variant 
Unclassified 
Mogibacteriaceae (Genus) 

0.187 4.40e-06 

rs42620822 27:42776720 A/G NC region1 NA2 Spirochaetes (Class) 0.196 3.24e-05 
1NC region = non-coding region. 
2NA = not available. 
3For each microbial taxonomic feature, P-value was adjusted into genome-wide false discovery rates (FDRs) 
using the Benjamini-Hochberg method. Associations with FDR < 0.1 were considered significant, and 
associations with 0.1 < FDR < 0.2 were regarded as suggestively significant. 
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5.7 Figures  

 

Figure 5.1 Composition of rumen microbiota in beef cattle. Bacterial community composition was summarized at genus, family, order, 
class, and phylum levels (a), and archaeal community composition was summarized at species, genus, family, order, and class levels 
(b). Heritable taxa (heritability estimate [h2] ≥ 0.15) were indicated using “ ”. These graphs were created using the program 
GraPhlAn (Asnicar et al., 2015). 
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Figure 5.2 Factors (breed, sex, diet, and age) drive segregation of rumen bacterial communities (a) and archaeal communities (b), as 
visualized using principal coordinate analysis (PCoA). To performed PCoA, the number of bacterial and archaeal sequences per 
sample were normalized to 2,000 and 500, respectively, and the PCoA was conducted using Bray-Curtis dissimilarity matrices. 
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Figure 5.3 Effects of breed, sex, diet, and age on the alpha-diversities and abundance of rumen bacteria and archaea. The 16S rRNA 
gene copy numbers per ml of rumen sample were log10-transformed before statistical analysis. Values within each factor that do not 
have a common superscript are significantly different (P < 0.05) according to the Kruskal-Wallis rank sum test. The correlations 
between age and other indices were calculated using the Spearman’s rank correlation (ρ = correlation coefficient). 
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(e) Bacterial 16S rRNA gene copy numbers (qPCR)
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(f) Archaeal 16S rRNA gene copy numbers (qPCR)
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Figure 5.4 Relationships between predominant rumen microbial groups. (a) Ratio of bacterial abundance to archaeal abundance, 
represented by 16S rRNA gene copy number obtained using qPCR. (b) Ratio of Firmicutes to Bacteroidetes. (c) Ratio of 
Methanobrevibacter gottschalkii to Methanobrevibacter ruminantium. The 16S rRNA gene copy number and relative abundance were 
log10-transformed, and the correlation analysis was performed using the Spearman’s rank correlation (ρ = correlation coefficient).

a
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Figure 5.5 Co-occurrence network of rumen microbial taxa (a). Four major co-occurrence network 
modules were centered by unclassified Clostridiales (b), unclassified Succinivibrionaceae (c), unclassified 
Coriobacteriaceae (d), and unclassified Christensenellaceae (e). Only correlations with coefficient > 0.3 
or < -0.3 and with P value < 0.001 were displayed. Heritable taxa were represented by red triangle, while 
inheritable taxa were represented by yellow circle. Values in the parentheses are heritability estimates of 
heritable taxa. A connection with a blue/grey line means a positive/negative correlation. ‘U_’ before the 
taxonomic name represents unclassified. The first two PCs were calculated using PCA for each module. 
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Figure 5.6 SNPs associated with rumen microbial taxa (at phylum, family, and genus levels). 
Only associations with false discovery rates (FDR) < 0.1 (significant) and 0.1 < FDR < 0.2 
(suggestively significant) are displayed. In each plot, values that do not have a common 
superscript are significantly different (P < 0.05) based on ANOVA. The x axis represents 
genotype of a SNP, and the y axis indicated the log10-transformed relative abundance after 
adjusting breed, sex, diet, and age factors. 
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Chapter 6. General discussion 

 

Feed efficiency is one of determinants of the sustainability of the beef cattle production. 

In the past, many effects have been made to improve feed efficiency through breeding and 

genetics, optimal feeding, and improved management. To date, evidence is accumulating 

regarding the associations between feed efficiency and rumen microorganisms in ruminants. 

However, our understanding of the rumen microbiome and its linkages to host feed efficiency is 

still limited, due to 1) the lack of reliable methods to characterize rumen microbial activities and 

functions, 2) the lack of capacity to collect high amount of rumen samples from the real and 

large beef population, and 3) without the knowledge of the host genetic effect on the rumen 

microbiome.  

Findings in this thesis have broadened our knowledge on the rumen microbiome and its 

functions in beef cattle. Firstly, an experimental and bioinformatic pipeline was developed to 

identify and quantify the active rumen microbiota using total-RNA-based metatranscriptomic 

analysis (Chapter 2). Secondly, rumen microbial taxonomic and functional features were 

characterized using metatranscriptomics, and then linked to feed efficiency in beef cattle from a 

single breed (Kinsella composite hybrid; Chapter 3). Thirdly, associations between the rumen 

microbiome and feed efficiency were identified for beef cattle from three different breeds 

(Angus, Charolais, and Kinsella composite hybrid), at both DNA and RNA levels using 

metagenomics and metatranscriptomics (Chapter 4). Furthermore, through a genome-wide 

association analysis (GWAS) for a large cohort of beef population in Chapter 5, moderate 

heritabilities were detected for the diversity of rumen microbiota as well as ~30% of detected 

microbial taxa, and a total of 19 SNPs across 12 Bos taurus autosomes were identified to be 
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associated with relative abundance of 14 microbial taxa. Therefore, this thesis filled several 

knowledge gaps on the rumen microbiome, and provided a basis for the further improvement of 

feed efficiency through manipulating the rumen microbiome in beef cattle. Main findings, 

limitations, and future directions are discussed in following sections. 

 

6.1 Active rumen microbiota estimated using total-RNA-based metatranscriptomics 

Compared with previous studies, the developed pipeline to estimate the active rumen 

microbiota (Chapter 2) was based on two custom-built 16S rRNA gene regionally enriched 

references: bacterial V1-V3 regional database (based on Greengenes 16S rRNA gene database) 

(DeSantis et al., 2006) and archaeal V6-V8 regional databases (based on rumen-specific archaeal 

16S rDNA database, or Rumen and Intestinal Methanogen-DB [RIM-DB]) (Janssen and Kirs, 

2008; Seedorf et al., 2014). Considering the short length of Illumina sequences and the existence 

of conserved regions in 16S rRNA genes, if short rRNA reads are directly aligned to full-length 

16S rRNA gene databases as previous studies did (Tveit et al., 2014; Urich et al., 2008), there 

would be multiple hits, and thus mixed taxonomic profiles and biased estimation of diversity. 

These two regional enriched references were generated to overcome this shortcoming. Future 

studies are needed to further validate the accuracy of our developed pipeline, using a mock 

microbial community, consisting of mixed phylotypes with known composition and genomes. 

From total-RNA-based metatranscriptomes, it is notable that a large fraction of rRNA 

was classified as eukaryotic 18S and 28S rRNA. Although these reads were not analyzed in this 

thesis, the high number of these sequences indicates the possibility of assessing rumen 

eukaryotes using RNA-seq in future studies. We have made some efforts to generate the 

taxonomic profiles for protozoa and fungi through the enrichment of 18S rRNA, and/or ITS 
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reads from total RNA. However, due to limited databases for rumen eukaryotes, the assessment 

of ciliates and fungi are not convincing.  

In contrast to the predominance of Bacteroidetes and Firmicutes reported in previous 

rumen studies (Henderson et al., 2015; Kim et al., 2011), this thesis revealed Proteobacteria was 

the most abundant bacterial phylum in the rumen of steers at the RNA level (Chapters 2 and 3). 

However, when more metatranscirptomes (n = 48) were analyzed using the same pipeline for 

taxonomic assessment (Chapter 4), Bacteroidetes and Firmicutes were more abundant than 

Proteobacteria in those cattle, which is in line with our common knowledge on the rumen 

microbial composition. These differences may be caused by the different storage conditions 

between those rumen samples. Samples for Chapters 2 and 3 were stored in RNAlater at -20 °C, 

while samples for Chapter 4 were snap-frozen using liquid nitrogen and stored under -80°C. 

Although it has been suggested that there is no significant difference between RNAlater and 

liquid nitrogen freezing methods for human gut metatranscriptomes (Franzosa et al., 2014), no 

study has been done to compare the effects of these two storage methods on rumen 

metatranscriptomic profiles. Therefore, it is necessary to perform further comparison studies to 

evaluate the storage effects on rumen metatranscriptomic profiling in the future. In addition, 

rumen samples in Chapters 2 and 3 were collected in 2007 and were sequenced in 2013, whiles 

samples in Chapters 4 and 5 were collected in 2014 and were sequenced in 2015. These different 

storage times may also contribute to these observed differences as a recent study indicated 

(Granja-Salcedo et al., 2017). 

According to results of Chapters 2-4, Methanomassiliicoccales (MCC) is the most active 

archaeal group in rumen (35 - 42%), which was previously called Rumen Cluster C (RCC) or 

Thermoplasmatales (Gaci et al., 2014; Janssen and Kirs, 2008; Poulsen et al., 2013). Early 
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studies at the DNA level reported that the abundance of MCC was around 16% and usually less 

than 20% (Henderson et al., 2015; Janssen and Kirs, 2008; Kittelmann et al., 2013), lower than 

Methanobrevibacter gottschalkii and Methanobrevibacter ruminantium. However, high 

abundance of MCC at the RNA level indicates that members of this group may play more 

important and essential roles in rumen methanogenesis in beef cattle than we thought. It is 

known that methanol and methylamines are major energy and carbon sources for MCC (Poulsen 

et al., 2013), and thus the methyl compound conversion pathway is probably the primary 

methanogenesis route in rumen of beef cattle. Transcripts of MCC were directly associated with 

CH4 emissions (Poulsen et al., 2013) and feed efficiency in cattle (Chapters 3 and 4). Till now, 

only a few members of MCC have been isolated and have available genomic information: most 

of them are human isolates (Noel et al., 2016) and only two are from rumen isolates (Li et al., 

2016; Noel et al., 2016). Therefore, to better understand their ecological niches and functions in 

rumen, more pure-culture based effects should be made to study members of MCC. Furthermore, 

due to its associations with CH4 emissions and feed efficiency, MCC could be considered as one 

of targeted taxonomic groups to manipulate for improved RFI and decreased CH4 emissions. 

 

6.2 Understanding of rumen microbial functional activities in beef cattle 

In this thesis, it was observed that rumen microbiomes had higher functional variations at 

the RNA level than at the DNA level (Chapter 4), and this pattern was also reported in 

microbiomes of human gut (Franzosa et al., 2014; Nayfach et al., 2015) and soil (Urich et al., 

2008). This indicates there may be a similar functional potential pool existing in rumen 

microbiomes across all beef cattle under the same dietary and environmental conditions. Indeed, 

all 48 steers had the same diet and were raised under the same condition. Due to this similarity, 
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the real linkages between the rumen microbiome and host phenotypes may not be detected using 

metagenomics. For example, Shi et al. (2014) identified rumen microbial gene expression levels 

(transcripts abundance) were more related to methane emissions rather than gene abundance. 

Furthermore, several studies have suggested that gene expression profiles of gut microbiomes 

varied significantly under dietary changes but community structures did not change significantly 

(Maurice et al., 2013; McNulty et al., 2011). Collectively, it can be speculated that rumen 

microbial functional activities, rather than microbial community structures and functional gene 

abundance, contribute to host phenotypic variations.  

Therefore, to better understand functional activities of rumen microbiomes, this thesis has 

focused on microbial functional profiles in the rumen of beef cattle through the 

metatranscriptomic analysis (Chapters 3 and 4). In addition to metatranscriptomics, 

metaproteomics is an alternative approach to generate active microbial functional profiles. 

Compared to RNA, proteins have longer half-life (Hargrove and Schmidt, 1989) and higher 

abundance in cells (Schwanhausser et al., 2011). What’s more, metatranscriptomics does not 

account for the dynamics between protein synthesis and degradation as well as post translational 

modification, and not all transcripts identified from metatranscriptomes are translated to proteins 

that directly involve in various biological processes. Accordingly, metaproteomics has been 

suggested as a more accurate method to reveal true functions than metatranscriptomics (Haange 

and Jehmlich, 2016). Therefore, future studies to involve metaproteomic analysis may improve 

our understanding of rumen microbial functions. However, due to the lack of characterized 

rumen microbial proteins, metaproteomics is still challenging. For example, in a recent study 

aiming to profile rumen metaproteomes, only a few hundred proteins were identified (Snelling 

and Wallace, 2017). Moreover, as an extension study of this thesis, metabolomic analysis is 
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under way for rumen digesta samples that have been studied using metagenomics and 

metatranscriptomics in Chapter 4, and these global products/metabolites could be used as direct 

evidence of rumen microbial functional activities. 

 

6.3 Associations between the rumen microbiome and feed efficiency in cattle 

Early studies have suggested that there are associations between taxonomic 

characteristics (e.g., abundance and/or prevalence of microbial taxa, diversity indices, etc.) and 

cattle feed efficiency (summarized in section 1.6.1), but no obvious taxonomic difference was 

detected between high (L-RFI) and low (H-RFI) feed efficiency steers in Chapter 3: with only 

four microbial taxa tending to be different between H- and L-RFI animals (0.05 < P < 0.1). The 

lack of difference is because the analysis in Chapter 3 was conducted at the family level for 

bacteria. It is possible that different bacterial genera within the same family have different 

ecologic niches, while bacteria taxa belonging to different families share similar ecologic niches 

(Jami and Mizrahi, 2012; Klieve et al., 2007). This probably has masked the actual linkages 

between microbial taxa and feed efficiency. Therefore, the analysis in Chapter 4 was moved to 

deeper taxonomic levels (to the genus level for bacteria and to the species level for archaea), to 

make sure each microbial taxonomic group has more similar niches. As expected, there are more 

bacterial taxa at the genus level showed different abundance between feed efficiency groups. 

Accordingly, to better identify the associations between rumen microbial taxa and feed 

efficiency, it is better to conduct the analysis at deeper taxonomic levels (e.g., genus, species, 

strains, etc.) rather than at higher taxonomic levels (e.g. phylum, family, and so on). 

In Chapters 3 and 4, t-test was used to detect differential microbial taxa between high and 

low RFI groups based on the arcsine-square-root-transformed relative abundance (proportion) as 
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previously suggested (Franzosa et al., 2014). This data transformation was conducted to stabilize 

the variance of the proportion data, making them more appropriate for frequently-used normal-

distribution-based statistical methods. However, it is worth mentioning that the transformed 

relative abundance may still not follow the normal distribution, and thus does not fully satisfy the 

assumption of t-test, especially for those taxa with low abundance and low prevalence. Therefore, 

in order to more accurately identify differential microbial taxa between RFI groups, several 

programs and/or methods should be considered in the future, such as LEfSe (Segata et al., 2011), 

DESeq2 (Love et al., 2014), edgeR (Robinson and Smyth, 2007), and ANCOM (Mandal et al., 

2015). A recent study compared the accuracy of several widely-used programs/methods 

(including DESeq2, edgeR, ANCOM, and so on) for the comparison analysis (Weiss et al., 

2017). It reported that DESeq2 was sensitive for small datasets (< 20 samples per group), while 

ANCOM could maintain a low false discovery rate but it was not sensitive for small datasets (< 

20 samples per group). According to the sample size in Chapters 3 and 4, DESeq2 could be a 

more accurate option to detect differential microbial phylotypes between RFI groups. 

Furthermore, recent studies indicate that feed efficiency is actually more related to rumen 

microbial functional features rather than taxonomic features (Roehe et al., 2016; Shabat et al., 

2016). In Chapters 3 and 4, most differential microbial genes/transcripts/pathways between H- 

and L-RFI groups were enriched in inefficient individuals than in efficient ones. This supports 

recent findings using metagenomics (Shabat et al., 2016), where rumen microbiomes of 

inefficient cattle had more diverse functional potentials than those of feed efficient cattle. All 

these suggest that rumen microbiomes of inefficient animals may possess larger capacities and 

higher activities to utilize a wider range of substrates, and thus to generate higher amount and 

more diverse products. On the one hand, the amount of these products may exceed the maximum 
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absorptive capacity of hosts, leading to either harmful accumulation or energy waste, and thus 

lower feed efficiency (Shabat et al., 2016). On the other hand, higher activities of rumen 

microbiomes in inefficient cattle imply higher ratio of microbial proliferation, and thus 

microorganisms themselves also consumed more nutrients/substrates. In contrast, rumen 

microbiomes in efficient cattle may have relatively conserved functional potentials and more 

appropriate activities, which could generate more relevant products and effectively balance the 

rumen microbial fermentation and the host absorption. Currently metabolomic analysis of these 

rumen digesta samples and qPCR of rumen bacteria and archaeal 16S rRNA genes are under way, 

and outcomes of products/metabolites plus abundance estimation for rumen microbiomes could 

tell us whether these speculations are true. 

More differential abundant functional categories between feed efficiency groups were 

detected at the RNA level than at the DNA level (11 versus 3; Chapter 4), suggesting that feed 

efficiency is more affected by activities of rumen microbiomes and less affected by their 

functional genetic potentials. Moreover, many differential abundant genes between feed 

efficiency groups were found from metagenomes, but most of them did not show different 

expression levels from metatranscriptomes (Chapter 4), which represent potential targets for 

further exploration. Working on these differential abundant genes to alter their expression levels 

could be a possible strategy to manipulate the rumen microbiome for improved feed efficiency in 

beef cattle. 

In addition, most of differential microbial taxa and functional features between feed 

efficiency groups only show differences within one breed, rather than shared among all three 

breeds (Chapter 4). This suggests that feed efficiency of beef cattle should be partially affected 

by the host and microbiome interactions, rather than the microbiome itself. This could explain 
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the generally low consistence among different studies when rumen microbiomes were linked to 

feed efficiency. 

 

6.4 Rumen microbiome is affected by host genetics 

The observed breed-associated variations of the rumen microbiome (Chapter 4) represent 

potential genetic superiorities of each breed. For example, among three breeds (Angus [ANG], 

Charolais [CHAR], and Kinsella composite hybrid [HYB]), CHAR had the simplest rumen 

microbial communities. It was suggested that a simpler rumen microbial community was 

associated with higher feed efficiency and lower CH4 emissions (Shabat et al., 2016; Zhou et al., 

2009). Indeed, a previous study found that CHAR steers consumed ~5% less daily dry matter 

intake (DMI) and had 2.7% more average dairy gain (ADG) than ANG steers (Mao et al., 2013). 

Therefore, crossing CHAR with other cattle breeds is a feasible strategy to reduce the complexity 

of rumen microbial communities in other breeds, and thus to enhance feed efficiency and reduce 

CH4 yields in the future. Meanwhile, around half of detected rumen bacterial and archaeal taxa 

showed differential abundance among three breeds, indicating the possibility to manipulate 

particular rumen microbial taxa using crossbreeding. This possibility is becoming more and more 

meaningful, because currently an increased number of host-phenotype-associated rumen 

microbial taxa are being identified, and these host-phenotype-associated microbial taxa are 

potential targets for further improving host phenotypes. 

Furthermore, the obtained moderate heritabilities of rumen microbiota provide the first 

evidence that rumen microbial communities are partially shaped by host additive genetic effects, 

and it is the first time to link rumen microbial profiles and host genotypes in beef cattle (Chapter 

5). Therefore, manipulating heritable rumen microorganisms using quantitative genetics becomes 
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more practicable. These heritable microbial features could be regarded as breeding objectives 

and be involved to the breeding program, which could be ultimately used to improve rumen 

microbiota-associated traits, such as feed efficiency, CH4 emissions, and so on. Through the 

GWAS, several rumen microbiota-associated SNPs were found to overlap with known QTLs for 

feed efficiency in cattle, such as average daily gain (ADG) (de Oliveira et al., 2014; Li et al., 

2002; Rolf et al., 2012) and residual feed intake (RFI) (Sherman et al., 2009). These QTLs may 

have pleiotropic effects on both the rumen microbiota and feed efficiency, which may explain 

the associations between rumen microorganisms and feed efficiency. Meanwhile, it is also 

possible that host QTLs control feed efficiency through their effects on altering the rumen 

microbial composition. Because VFAs produced by the rumen microbiota could meet 70% of the 

daily energy requirement for the host (Bergman, 1990), they are considered as important 

intermedia between the host and the rumen microbiota that affect feed efficiency and CH4 

emissions (Guan et al., 2008; Shabat et al., 2016). Therefore, to further understand how the 

rumen microbiota influences feed efficiency and CH4 emissions, rumen VFA profiles of the 

same animals have been generated and will be used to predict CH4 emissions (Angela et al., 

2000). These data are not included in this thesis because their analysis is part of another PhD 

student’s thesis work. In the future, the linkages among VFAs, microbiota, and host genetics can 

provide more conclusive understanding on the role of host-microbial interactions in cattle feed 

efficiency. Further analyses to explore phenotypic and genetic correlations among the rumen 

microbiota, VFA profiles, feed efficiency, and CH4 emissions may reveal the mechanisms 

behind their relationships, which could help us better define strategies to improve feed efficiency 

and decrease CH4 emissions through working on the rumen microbiota.  
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6.5 Limitations 

6.5.1 Rumen sampling could impact the outcomes of microbial profiling 

Firstly, rumen digesta samples used in Chapters 2-4 were collected from steers at 

slaughter, and it has been suggested that rumen microbial profiles were different between 

samples taken from live animals and at slaughter (Wallace et al., 2014). Although Wallace et al. 

(2014) considered the archaeal abundance in post-mortem rumen digesta as a proxy 

measurement for methane emissions for steers, rumen samples collected from live animals may 

still be more appropriate for rumen microbial profiling and for linking them with host 

phenotypes. Secondly, all rumen samples used for this thesis (Chapters 2-5) were collected in the 

morning before feeding. Li et al. (2009b) did not find obvious effects of sampling time on the 

rumen bacteria using PCR-DGGE and qPCR, but Golder et al. (2014) reported that the rumen 

bacterial community shifted at different sampling times (5, 115, 215 mins after feeding) using 

16S rRNA gene amplicon sequencing. Sampling time may have more significant effects on 

metatranscriptomes than DNA-based outcomes, because gene expressions of microbial genes 

may shift over time due to the amount of available substrates without necessarily changing the 

microbial composition and functional potentials (Firkins and Yu, 2015). Thirdly, samples for 

Chapter 5 were rumen fluid collected through oro-gastric tubing, which is a practical sampling 

method for large number of animals. However, generating microbial profiles using rumen fluid 

samples ignored the bacterial population that attached to feed particles (70-80% of total rumen 

bacteria) (Minato et al., 1993). Additionally, because sampling was conducted for a real and 

large beef population, it is impossible to collect rumen samples multiple times within one day or 

within a short period. In that case, this one-time sampling may bring biases to the estimation of 

microbial profiles. Fourthly, for the oro-gastric tubing, it has been reported that the insertion 
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depth of tubes affected the fermentation parameters of rumen fluid (Shen et al., 2012), and thus it 

may also influence the rumen microbial composition. Therefore, to more accurately generate 

rumen microbial profiles and link them with host performances, all these variables related to 

rumen sampling should be considered and controlled in future studies. 

  

6.5.2 Rumen sampling under different diets 

It has been reported that beef steers changed their RFI classifications when their diets 

were switched from the low energy (growing) diet to the high energy (finishing) diet (Durunna et 

al., 2011), and there were different rumen microbial communities under these two types of diets 

(Ellison et al., 2014; Petri et al., 2013). Meanwhile, our previous study already revealed that 

there were different rumen bacteria phylotypes contributing to the RFI variations under two 

different diets (Hernandez-Sanabria et al., 2012). In the beef cattle operations, most of feed costs 

and grain consumption were attributed to the finishing diet. Therefore, to improve the feed 

efficiency and reduce the costs of feed, identifying microbial features associated with RFI under 

the finishing diet is more economically meaningful than identify them under the growing diet. 

That is the reason that we used rumen samples collected at the finishing stage of beef steers in 

Chapters 2-4. However, heritabilities of rumen microbial features were estimated based on 

rumen samples collected under the low-energy diet rather than the high-energy diet in Chapter 5. 

Because in Chapter 5, we included a large cohort of beef population consisting of three genders 

of beef cattle (bull [n = 71], heifer [n = 350], and steer [n = 291]) from the same generation to 

increase the accuracy of heritability estimation, and it is not realistic to feed bulls and heifers 

with high-energy diet in the real beef cattle operations. Therefore, although rumen samples were 

also collected from steers under the finishing diet (n = 261), the estimation of heritability may be 
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less accurate due to the small population size. To better detect the heritable rumen microbial taxa 

under the finishing diet, rumen samples of steers under the finishing diet were already collected 

from another two generations, and further analysis will be conducted to evaluate the host genetic 

effect on the rumen microbiota under the high energy diet. 

 

6.5.3 Comparison between total-RNA-based and mRNA-enriched metatranscriptomes 

According to the current comparison analysis between total-RNA-based and mRNA-

enriched metatranscirptomes (Chapter 4), we suggested that the mRNA enrichment led to the 

underestimation of many expressed genes and biased the abundance estimation of certain 

functional categories. It may be true, because the mRNA enrichment may bring about biases 

caused by the mRNA degradation during the extended sample processing time. But it is also 

possible that these results and conclusions are inappropriate due to the analysis strategy that we 

applied:  in the current analysis, relative abundance (proportion) of transcripts was compared and 

only transcripts with a minimum relative abundance of 0.01% in at least three samples within a 

dataset remained for the comparison analysis as suggested by Franzosa et al. (2014). This 

comparison analysis based on relative abundance is actually not fair for mRNA-enriched 

metatranscirptomes, because they had almost 20 times more annotated mRNA reads than total-

RNA-based metatranscirptomes. In that case, differences caused by different sequencing depths 

were overlooked. Therefore, to further check the effect of the mRNA enrichment and conduct 

more comprehensive comparison analysis, it may be better to compare the absolute read counts 

directly in future. 

Our results have showed that the mRNA enrichment significantly increased the number 

of mRNA reads (~9 folds) and the number of annotated mRNA reads (~20 folds), compared to 
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total-RNA-based metatranscriptomes. It suggests that the enrichment of mRNA successfully 

increased the sequencing depth of mRNA, which is the advantage of mRNA-enriched 

metatranscriptomics. However, whether the mRNA enrichment is necessary depends on the 

research questions: if the main objective is to explore specific transcripts/pathways, to capture 

more transcripts, or to generate more comprehensive gene expression profiles, the mRNA 

enrichment is suggested; if researchers aim to generate both taxonomic and functional profiles 

simultaneously, total-RNA-based metatranscirptomics should be applied, because rRNA and 

mRNA could be used to estimate the composition and functions of the rumen microbiome, 

respectively.  

 

6.7 Implications 

In Chapters 2 and 3, a pipeline was developed to explore taxonomic and functional 

characteristics of the rumen microbiome using metatranscriptomics. This adds a new alternative 

approach to existing microbiological methods, which allows us to obtain more real-time 

estimations for the alterations of microbial population and functional activities in rumen. An 

accurate evaluation of microbial profiles is crucial for further associating the rumen microbiome 

to host phenotypes. In Chapter 4, rumen metagenomes and metatranscriptomes were compared, 

and separated functional profiles were identified between DNA and RNA levels. This 

observation implied that previously reported associations between the rumen microbiome at the 

DNA level and host phenotypes may not represent their actual linkages. To build more solid and 

accurate associations between the rumen microbiome and feed efficiency or other host 

phenotypes, metatranscriptomics is recommended to profile the rumen microbiome at both 

taxonomic and functional levels. At the same time, the comparison between total-RNA-based 
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and mRNA-enriched metatranscriptomes suggested that whether including the mRNA 

enrichment should depend on research questions. In Chapter 5, heritable rumen microbial taxa in 

rumen were detected, and bovine genetic components associated with rumen microbial taxa were 

identified. These findings provide the evidence that the rumen microbiota is partially shaped by 

host genetics. 

In addition to novel methods and fundamental knowledge on the rumen microbiome, 

outcomes of this thesis can also be applied to the industry as well. Identified feed-efficiency-

associated rumen microbial taxa and functional features could be useful markers to predict the 

feed efficiency performance in beef cattle (Chapters 3 and 4). Nowadays, to calculate RFI, 

individual feed intake must be recorded for 9-12 weeks using the automatic feeding 

measurement system, which is time-consuming and expensive. Our results suggest the possibility 

to design the microbial array that contains probes for these predictive microbial markers of RFI 

(such as marker genes for microbial abundance/activities and functional genes for gene 

abundance/expressions). It will increase the feasibility to quickly generate microbial profiles 

with low costs using rumen samples and thus to predict the RFI performance using microbial 

markers. Because rumen samples could be collected at early time point, this strategy could 

significantly reduce the time of RFI measurement, as well as the costs associated with the 

measurement. Furthermore, moderate heritability estimates were detected for several feed 

efficiency and/or CH4 emissions related rumen microbial features, and several candidate genes 

including RAPH1, CDC7, and MYH3 were suggested to be associated with the rumen 

microbiota. Several rumen microbiota-associated SNPs were found to overlap with known QTLs 

for feed efficiency in cattle. These findings provide an initial but prospective foundation for the 

further genomic selection of a desirable rumen microbiota corresponding to high productivity 



 246 

and low environmental impact. For example, Blautia showed higher abundance in L-RFI 

individuals than in H-RFI ones (Chapter 4). Considering this group had a heritability of 0.18 

(Chapter 5), its abundance could be elevated through selecting and breeding individuals with 

high abundance of Blautia, which could be served as a potential way to improve feed efficiency.  
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