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Abstract

How to evaluate the performance of an algorithm is a very important subject in com-
puter science, for understanding its applicability, for understanding the problem which
it is applied to, and for the development of new ideas that help to improve the ex-
isting algorithms. There are two main factors, i.e. the performance measure and the
analysis model, that affect the evaluation of an algorithm. In this thesis, we analyse
algorithms with approximation ratio as a measure under the worst-case analysis and
the smoothed analysis. In particular, several interesting discrete optimization problems
from bioinformatics, networking and graph theory are investigated, and currently the
best approximation algorithms are designed for them under the classic analysis model

— the worst-case analysis and the more “realistic” model — the smoothed analysis.
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Chapter 1

Introduction

1.1 Roadmap

In this chapter, we will first introduce some basic definitions and notations that are
extensively used in the thesis. Then we will briefly introduce the background about the

approximation algorithm and analysis models.

In the following chapters, we will introduce several interesting problems and the ap-
proximation algorithms we designed. First we focus on the some interesting discrete
optimization problems from bioinformatics, networking and graph theory, and design
currently the best approximation algorithms for them under the classic analysis model
— the worst-case analysis. In particular, we will introduce our worst-case analysis re-
sults on the bandpass problem from networks, and the multiple RNA interaction (MRIP)
problem, the mazimum exemplar non-breakpoint similarity (ENBS) problem and the
minimum integer partition (MCIP) problem from bioinformatics. Then we will inves-
tigate the classic NP-hard problem, the minimum independent dominating set (MIDS)
problem, under the smoothed analysis model. In order to look deep into the smoothed
analysis model, we will finally show our smoothed analysis results on two classic data
structures — Trie and Patricia index tree. All the results included in this thesis are

from the collaborative papers to which I made significant contributions.

The bandpass-2 problem arises from optical communication networks using wavelength
division multiplexing technology, and so it can be treated as a variant of the mazimum
travelling salesman problem. The difference between the bandpass-2 problem and the
mazimum travelling salesman problem is that, in former problem’s setting, the edge
weights are dynamic rather than fixed, which makes this problem much harder to solve
than the mazimum travelling salesman problem. We designed the first approximation
algorithm with a performance ratio 19/36 [99], improving the previous best approxima-
tion ratio 1/2 [11, 64], dated back to 2004. Afterwards, another research group made
a progress [28], but soon after we designed two more improved algorithms [53, 98] with
some fascinating new combinatorial techniques on the b-matching. Our first algorithm

and its theoretical analysis methods were presented on the joint conference of the 6th
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International Frontiers of Algorithmics Workshop and the 8th International Conference
on Algorithmic Aspects of Information and Management (FAW-AAIM 2012) [99]. One
of the improved algorithms was submitted to the CoRR [98], and the other improved

algorithm was accepted by the Journal of Combinatorial Optimization [53].

For the MRIP problem, RNA interactions are fundamental in many cellular processes,
where two or multiple RNA molecules can be involved in the interactions. Multiple
RNA interactions are believed much more complex than pairwise interactions. Recently,
multiple RNA interaction prediction was formulated as a maximization problem. We
extensively examined this optimization problem under several biologically meaningful
interaction models. In particular, we presented a polynomial time algorithm for the
problem when the order of interacting RNAs is known and pseudoknot interactions
are allowed; for the general problem without an assumed RNA order, we proved the
NP-hardness for both variants allowing and disallowing pseudoknot interactions, and
presented a constant ratio approximation algorithm for each of them. These results were
presented on the 7th Annual International Conference on Combinatorial Optimization
and Applications (COCOA 2013) [103], and the extended version was accepted by the
Theoretical Computer Science [104].

For the ENBS problem, the genomic similarity measure, called non-breakpoint similar-
ity, is the complement of the well-studied breakpoint distance between genomes (or in
general, between any two sequences drawn from the same alphabet). For two genomes
G and ‘H drawn from the same set of n gene families and containing gene repetitions, we
considered the corresponding ENBS problem, in which we deleted duplicated genes from
G and H such that the resultant genomes GG and H have the maximum non-breakpoint
similarity. We obtained the following results. First, we proved that the one-sided 2-
repetitive ENBS problem, i.e. when one of G and H is given exemplar and each gene
occurs in the other genome at most twice, can be reduced from the mazimum independent
set problem with the instance size becomes squared. This implies that the ENBS prob-
lem does not admit any O(n">~¢)-approximation algorithm, for any ¢ > 0, unless NP =
ZPP. This hardness result also implies that the ENBS problem is W{[1]-hard. Secondly,
we showed that the two-sided 2-repetitive ENBS problem has an O(n°%)-approximation
algorithm. These results were from the collaborative work of several research groups,

which was published on the Theoretical Computer Science [25].

For the MCIP problem, we are given a collection of multisets { X1, Xo,..., Xi} (k> 2)
of positive integers, a multiset S is a common integer partition (CIP) for them if S is
an integer partition of every multiset X;,1 < ¢ < k. The minimum common integer
partition (k-MCIP) problem is defined as finding a CIP for {Xi, Xo,..., X} with the

minimum cardinality. By some interesting combinatorial techniques, we presented a
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g—approximation algorithm for the 2-MCIP problem, breaking an 8-year old record, as
the previous best algorithm of ratio % was designed in 2006 [21]. We then extended
it to obtain a deterministic 3k/5-approximation algorithm for the k-MCIP problem
when k is even (when k is odd, the approximation ratio is (3k 4+ 2)/5). These results
were presented on the 25th International Symposium on Algorithms and Computation
(ISAAC 2014) [105].

For the MIDS problem, it is well known that this problem does not admit a polynomial
time approximation algorithm with worst-case performance ratio of |V|'~¢ for any € > 0
given the input graph G = (V, E) [47]. We investigated it under the smoothed analysis
model. In particular, we first studied the size of the minimum independent dominating
set, denoted as i(g(G,p)), in perturbed graphs g(G,p) and showed that i(g(G,p)) is
asymptotically almost surely ' in ©(log|V|). Furthermore, we proved that the proba-
bility of i(g(G,p)) > +/4|V|/p is no more than 27!V| and presented a simple greedy
algorithm of worst-case performance ratio \/ZW and with polynomial expected run-
ning time. These results were presented on the 19th Annual International Computing
and Combinatorics Conference (COCOON 2013) [100], and the extended version was
accepted by the Theoretical Computer Science [101].

Trie and Patracia index tree are two classic data structures for storing strings. Let
H,, denote the height of the Trie (the Patricia, respectively) on a set of n strings.
It is well known that under the uniform distribution model on the strings, for Trie
H,/logn — 2 [36, 40, 41, 69, 80, 81, 83, 95, 96] and for Patricia H,/logn — 1 [80],
when n approaches infinity. Nevertheless, in the worst case, the height of the Trie on
n strings is unbounded, and the height of the Patricia on n strings is in O(n). To
better understand the practical performance of both the Trie and Patricia index trees,
we investigated these two data structures in a smoothed analysis model. Given a set
S ={s1,52,...,8,} of n binary strings, we perturb the set by adding an i.i.d Bernoulli
random noise to each bit of every string. We showed that the resulting smoothed heights
of Trie and Patricia trees are both ©(logn). These results were presented on the 20th
Annual International Computing and Combinatorics Conference (COCOON 2014) [102],

and the extended version will be published on the Theoretical Computer Science.

1.2 Notations and preliminaries

In this section, some basic notations and concepts are introduced.

'In asymptotic analysis, one says that a property of the graph holds asymptotically almost surely
(a.a.s.) if the property holds with the probability which converges to 1 as the size of the graph tends to
0.
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e Family of Bachmann—-Landau notations:

— f(n) € O(g(n)): 3¢ >0, Ing, ¥V n>ng, f(n)<c-gn).

— f(n) € Qg(n)): 3¢>0, Ing, Vn>ng, f(n)>c-gln).

— f(n) € ©(g(n)): 31 >0, 32 >0, Ing, Vn>mng c1-g(n) < f(n) <
ca-g(n).

— f(n) € o(g(n)): Y e¢>0, Ing, ¥V n>ng, f(n)<c-gn).

— f(n) €w(g(n)): Ve>0, Ing, Vn>mno, f(n)>c-gn).

e (one-tape) Turing machine: A Turing machine can be formally defined as a
7-tuple M = (Q, qo, F,T',b,%, ) where

1. @ is a finite, non-empty set of states;

2. qo € Q is the initial state;

3. F C (@ is the set of final or accepting states;

4. T is a finite, non-empty set of tape alphabet symbols;

5. b € T is the blank symbol (the only symbol allowed to occur on the tape
infinitely often at any step during the computation);

6. X CT'\ {b} is the set of input symbols;

7.5 : (Q\F)xT - Q x T x {L, R} is a partial function ? called the transition

function, where L is left shift, R is right shift.

Anything that operates according to these specifications is a Turing machine.
Roughly, a Turing machine can be imagined as a simple computer that reads
and writes symbols one at a time on an endless tape by strictly following a set of

rules.

e Deterministic Turing machine (DTM): A deterministic Turing machine is a
Turing machine whose set of rules prescribes at most one action to be performed

for any given situation.

e Non-deterministic Turing machine (NTM): A non-deterministic Turing ma-
chine is a Turing machine that may have a set of rules that prescribes more than
one action for a given situation. For example, in a non-deterministic Turing ma-

chine, there may have both the following rules in its rule set.

— If you are in state 2 and you see an ‘A’, change it to a ‘B’ and move right;

— If you are in state 2 and you see an ‘A’, change it to a ‘C” and move left.

2A partial function from X to Y (written as f : X - Y) is a function f : X’ — Y, for some subset
X’ of X. It generalizes the concept of a function f : X — Y by not forcing f to map every element of
X to an element of Y (only some subset X’ of X).

4
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e Probabilistic Turing machine: A probabilistic Turing machine is a non-deterministic
Turing machine which randomly chooses between the available transitions at each

point according to some probability distribution.

e Decision problem: Decision problem is a special type of computational problem

whose answer is either YES or NO.

e P: P is a class of decision problems that can be solved by a deterministic Turing
machine using a polynomial amount of computation time. Following the conven-
tion, the time complexity of an algorithm quantifies the amount of time taken by

an algorithm to run as a function of the length of the string representing the input.

e NP: NP is a class of decision problems for which a given solution can be verified in
polynomial time by a deterministic Turing machine. An equivalent definition for
NP is the following characterization: NP is the set of decision problems solvable

by a non-deterministic Turing machine that runs in polynomial time.

e NP-complete: NP-complete is a class of problems which contains the hardest
problems in NP. That is, every NP problem can be reduced to a NP-complete
problem in polynomial time. Note that each element of NP-complete has to be an

element of NP.

e NP-hard: NP-hard is a class of problems which are at least as hard as the hardest
problems in NP. Problems in NP-hard do not have to be elements of NP, indeed,

they may not even be decision problems.

e Optimization problem: Optimization problem is a class of problems of finding
the best solution from all feasible solutions. Formally, a combinatorial optimization
problem II is a triple (Z, F, f), where Z is a set of instances, F is the set of feasible
solutions, f is the objective function mapping each feasible solution to some real
(non-negative) value. The goal is to find a feasible solution such that its objective

function is either minimized or maximized.

e NP optimization problem (NPO): NP optimization problem is a class of com-

binatorial optimization problems with the following additional conditions:
— the size of every feasible solution s € F is polynomially bounded in the size
of the given instance I;

— the languages {I | I € Z} and {(I,s) | s € F} ? can be recognized in

polynomial time;

— f(z) is polynomial-time computable.

3A formal language L over an alphabet ¥ is a subset of ¥, that is, a set of words over that alphabet.
Here these events are expressed into formal languages.

5
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This implies that the corresponding decision problem is in NP.

e ZPP: ZPP is the complexity class of problems for which a probabilistic Turing

machine exists with these properties:

— it always returns the correct YES or NO answer.

— the running time is polynomial in expectation for every input.

e DTIME: DTIME (or TIME) is the computational resource of computation time
for a deterministic Turing machine. If a problem of input size n can require

f(n) computation time to solve, we have a complexity class DTIME(f(n)) (or
TIME(f(n))).

1.3 Approximation algorithms

With our current information technology development, there are an increasing number
of optimization problems that need to be solved. An algorithm that solves a problem
optimally while the time and space consumption are appropriately bounded is the ideal
case. Unfortunately, many of the most interesting optimization problems are NP-hard,
in other words, unless P = NP, we do not have efficient algorithms to compute the exact
optimums for such problems. A classic NP-hard optimization problem is the mazimum
independent set problem: given a graph G = (V| E), find a maximum size independent
set V7 C V, where a subset of vertices is independent if no two vertices in the subset are

connected by an edge.

One way to deal with these hard problems is to design algorithms by looking for trade-offs
between the quality of the solution and the running time (or space consumption) of the
algorithms. In this thesis, we address these hard problems by relaxing the requirement
of finding an optimal solution. But we aim to compute a solution whose value is as close
as possible to the value of the optimal solution. That is, we consider approximation
algorithms for these hard optimization problems. We call a polynomial time algorithm
A for an optimization problem IT a p-approzimation algorithm if for all instances of the
problem, A produces a solution whose value is within a factor of p of the value of an

optimal solution. We would like to get p as close to 1 as possible.

More formally, consider an optimization problem II = (Z,F, f), where Z is a set of
instances, F is the set of feasible solutions, f is the objective function mapping each
feasible solution to some real (non-negative) value. Let I € Z be some instance of
the problem II. An optimal solution OPT(I) to I is the one that either maximizes or

minimizes the value of the objective function f. And we call II is a maximization or
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minimization problem, respectively. Define the performance ratio of A on the instance
I as

R4 = A(I)/OPT(I). (1.1)

Definition 1.1. (Performance ratio or Performance factor) A function p:Z* —
R™ is called a performance ratio of the algorithm A if R4 > p(n) (or R4 < p(n)) for all
instances I of size n for the maximization (or minimization) problem II. In this case, we
refer to A as a p(n)-approximation algorithm if A is polynomial in the instance size n.
In the special case where p(n) is a constant, say p, we just say A is a p-approximation

algorithm.

In this thesis, we will follow the convention that (1) the size of the instance is taken
to be the size of the input in bits; (2) p > 1 for minimization problems while p < 1
for maximization problems. Since we want to obtain extremely good approximation
algorithms such that the approximation ratio p is as close to 1 as possible, we are most
interested in the polynomial-time approzimation schemes (PTAS) and fully polynomial-

time approximation schemes (FPTAS).

Definition 1.2. (PTAS) For any ¢ > 0, suppose there is a (1 4 €)-approximation
((1 — ¢)-approximation) algorithm A, for the minimization (maximization) II, such that
A.’s running time is a polynomial of the instance size n. We call this family of algorithms

as a polynomial time approximation scheme (PTAS) for II.

Definition 1.3. (FPTAS) A PTAS is called a fully polynomial time approximation

scheme (FPTAS) if the running time of A, is a polynomial in % and the instance size n.

Then we introduce three important concepts for the NP optimization problems.

Definition 1.4. (APX) APX is a class of NP optimization problems that allow polynomial-
time approximation algorithms with approximation ratio bounded by a constant. The

class APX is also sometimes known as Max-SNP.

Definition 1.5. (APX-hard) A problem is said to be APX-hard if there is a PTAS

reduction 4 from every problem in APX to that problem.

Definition 1.6. (APX-complete) A problem is said to be APX-complete if the prob-
lem is APX-hard and also in APX.

There are many reasons forcing us to study the approximation algorithms. First of all,

as we previously introduced, there are plenty optimization problems that hardly admit

4 A PTAS reduction is an approximation-preserving reduction that preserves the property that a
problem has a polynomial time approximation scheme (PTAS).

7
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exact polynomial-time algorithms, for which approximation algorithms are increasingly
being used. A typical example is the classic NP-hard problem — the minimum vertex
cover problem. In the minimum vertex cover problem, given a graph G = (V, E), we are
required to find a vertex subset of the minimum cardinality such that each edge e in the
given graph has at least one endpoint in this subset. Finding the optimum vertex cover
is very time-consuming, which needs exponential running time even for planar graphs of
degree at most 3 [44]. However, there is a simple and fast algorithm by keeping finding
an uncovered edge and adding both endpoints to the vertex cover until no uncovered
edges remain. It is clear that the running time is O(|E|) and the resulting cover has
size at most twice as large as the optimal one’s, which implies this simple algorithm is

a 2-approximation algorithm.

In some situations it is desirable to run an approximation algorithm even when there
exists a polynomial-time algorithm for computing an exactly optimal solution. Because
the approximation algorithm may have the benefit of faster running time, less space con-
sumption, a much easier implementation, or it may lend itself more easily to a parallel
or distributed implementation. These considerations become especially important when
the input size is so astronomical that an exact polynomial-time algorithm with impracti-

100000) " would provide extremely bad performance in practice.

cal running time, say ©(n
Finally, studying approximation algorithms provides a mathematically rigorous basis on
which to look deep into the problems, helps to figure out the problems’ structures, and

then may lead to a new algorithmic approach.

1.4 Three analysis methods

The analysis of an algorithm aims at providing measurement for the performance of
the algorithm. The most commonly used theoretical approaches to understanding the
behaviour of algorithms are the worst-case analysis and the average-case analysis. How-
ever, some of the well-known theoreticians, including Condon, Edelsbrunner, Emerson,
Fortnow, Haber, Karp, Leivant, Lipton, Lynch, Parberry, Papadimitriou, Rabin, Rosen-
berg, Royer, Savage, Selman, Smith, Tardos, and Vitter, wrote (Challenges for Theory
of Computing: Report of an NSF-Sponsored Workshop on Research in Theoretical Com-
puter Science SIGACT News, 1999)

While theoretical work on models of computation and methods for ana-
lyzing algorithms has had enormous payoffs, we are not done. In many sit-
uations, simple algorithms do well. Take for example the Simplex algorithm

for linear programming, or the success of simulated annealing on certain
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supposedly intractable problems. We don’t understand why! It is apparent
that worst-case analysis does not provide useful insights on the performance
of many algorithms on real data. Our methods for measuring the perfor-
mance of algorithms and heuristics and our models of computation need to
be further developed and refined. Theoreticians are investing increasingly in
careful experimental work leading to identification of important new ques-
tions in algorithms area. Developing means for predicting the performance
of algorithms and heuristics on real data and on real computers is a grand

challenge in algorithms.

In this section, we will introduce the two classic analysis models, i.e. the worst-case and
average-case analyses. Then a relatively new analysis model, named as the smoothed
analysis, is also introduced, and a simple comparison is made among the three analysis

models.

1.4.1 Worst-case analysis

The most common analysis toward understanding the performance of an algorithm is the
worst-case analysis. The worst-case analysis requires to bound the worst possible per-
formance an algorithm could achieve. In other words, this analysis is input independent

and it provides a strong guarantee for the performance of an algorithm.

However, the worst-case analysis provides only one point of view on an algorithm’s be-
haviour. In fact, under this point of view, the behaviour is often quite different from
the typical behaviour, which the users are usually more interested in. Indeed, there are
many computational or optimization problems in the real world, ranging from bioinfor-
matics to social science, which can be solved by some heuristics or simple algorithms
efficiently or effectively in most cases while these heuristics or algorithms have very poor
worst-case performance either the running time or the approximation ratio taken as the

performance measure.

A classic example is the simplex method, which is a kind of practical algorithms to
solve linear programs and remains widely used today. Though almost all the simplex
algorithms cost exponential time in the worst case, they often outperform many other
polynomial time algorithms for linear programs, such as the ellipsoid algorithm [60] and
the interior-point method [58], in the real applications [89-91]. Another example is the
well-known algorithm GREEDY for the shortest common superstring problem in bioinfor-
matics. The shortest common superstring problem finds a shortest string s that contains

every s; as a substring for any given n strings s1, s2,...,8,. And it has been extensively
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studied for its applications in string compression and DNA sequence assembly. There
is a very simple algorithm GREEDY, which repeatedly merges two maximum overlap-
ping strings into one until there is only one string left. This greedy algorithm works
extremely well and it was reported that the average approximation ratio is below 1.014
for simulated data [84]. However, its approximation ratio under the worst-case analysis
model is 3.5 [57].

1.4.2 Average-case analysis

To overcome the discrepancy between the poor worst-case performance and the practical
performance, average-case analysis was introduced as an alternate. Under average-case
analysis, a distribution of instances is first assumed and then the expected performance
of the algorithm is measured. Ideally, we are given a mathematically analysable distribu-
tion which is the same or close to the real distribution. However, it is generally difficult
to determine such a distribution because the distribution varies from area to area ac-
cording to where the target algorithm is applied to. Furthermore, in most cases it is
mathematically challenging to express the distribution using a small number of parame-
ters. In most existing average-case analytical work, researchers have to use distributions
with concise description, such as uniform distribution and Gaussian distribution, etc.,
instead of the true but unknown distribution of the real-world instances. One can imag-
ine that these commonly used special distributions may be far from the real ones and
make the analysed instances bear very little resemblance to the real-world instances. In
this sense, though a good average-case performance provides evidence that an algorithm
may perform well in practice, it rarely fills up the gap between the practical world and

theoretical world.

1.4.3 Smoothed analysis

Considering the drawbacks of both worst-case analysis and average-case analysis, Spiel-
man and Teng [89] introduced the smoothed analysis to explain the performance of
algorithms. The basic idea of smoothed analysis is to identify some typical properties of
a given real-world instance, and can be regarded as a hybrid of worst-case analysis and
average-case analysis. More formally, it measures the worst-case expected performance

of an algorithm under slight random perturbation of an instance.

We next see how this analysis method relates to the worst-case and the average-case
analysis methods. In the following content, to distinguish a matrix or a vector from a

scalar, let notations with bold font represent matrices or vectors, if there is no extra

10
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explanation. Besides, a constant with bold font means a matrix or a vector with each

component equal to this constant, say 1 denotes a matrix or a vector consisting of 1’s.

Formally, let @) be a quality measurement, and without loss of generality, assume () has a
property that the larger the worse, such as the running time. Suppose A is the algorithm
we want to analyse, x is (the string representation of) an input instance, Q(A, x) is the
instance based quality measurement, D is the universe of instances, D,, is the subset of

all size n instances in D. The smoothed measure of A under Q is

Qsmooth(na U) = Sup ET{Q(Aa T+o- ’I")},
Z€Dy,
where o € RT, called the perturbation parameter, measures the strength of noise, and r

is some noise vector, which has the same dimension as &’s.

Then we have the following observations. When the perturbation parameter o is ex-
tremely small, £+ o -r = &, which means the smoothed analysis becomes the worst-case
analysis; when o becomes larger, the perturbed instances would have more randomness
and extremely the smoothed analysis would become the average-case analysis. Therefore,
by varying the perturbation parameter o, the smoothed analysis interpolates between
these two extreme cases. Usually we are more interested in the case where o is relatively
small, because real-world instances are often subject to a slight amount of noise. For
example, when input parameters are obtained from physical measurements of real-world
phenomena, the measurements usually have some random uncertainty of low magni-
tudes; besides, if the input parameters are the output of some computer programs, the
numerical calculation of computer programs may also add some uncertainty due to the
numerical imprecision. An example for noise in discrete application is that building
a complicate transportation network is governed by some blueprint of the government
or contractor but the blueprint may still be “perturbed” due to some unpredictable
uncertainty, such as fluctuation of funding budget, some nail household that refuses
uncompromisingly to move when the land is requisitioned for the construction project,

etc..

An algorithm with a good worst-case analysis will perform well on all instances, as the
worst possible performance of the algorithm is bounded under this analysis model. If
the smoothed measure of A under @ is good with some relatively small ¢ and some

¢

reasonable random model for 7, the hard instances are “isolated” in the instance space

and it is unlikely the measure of A under ) will be every bad in real world application.

11
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1.4.3.1 Approximability smoothed analysis

Spielman and Teng [89] first introduced the smoothed analysis to explain the success of
the simplex algorithm with the shadow-vertex pivoting rule in real applications. They
considered the running time as the performance measure and proposed the concept of

polynomial smoothed complezity.

Definition 1.7 (Polynomial Smoothed Complexity [89]). Given a problem II with
input domain D = U, D,, where D,, represents all size n instances. Let R = U,, , R, ; be
a family of perturbations where R,, , defines for each & € D,, a perturbation distribution
of & with magnitude o. Let A be an algorithm for solving II and T'4(x) be the time for
solving an instance * € D. Then algorithm A has polynomial smoothed complexity if

there exist constants ng, 0g, ¢, k1 and ke such that for all n > ng and 0 < o < gy,

—k k
max By, o [Ta(@)]} < 07" 0,

where & ~ R, ,(Z) means « follows the distribution R,, ,(Z).

The problem IT has smoothed polynomial time complexity with some perturbation model

R if it admits an algorithm with a polynomial smoothed complexity.

Spielman and Teng [89] proved that the simplex algorithm with the shadow-vertex pivot-
ing rule is smoothed polynomial under the Gaussian perturbation, that is, the maximum
over A and ¢ of expected running time of the above simplex algorithm on the following

inputs is bounded by a polynomial in m, d, o.

Maximize 2Tx

subject to (A+G) =< (y+h),

where A4 and §,,,,; are arbitrary given matrix and vector respectively; G and h are a
matrix and a vector, respectively, consisting of independent Gaussian random variables
of mean 0 and standard deviation o’ with ¢/ = o -max; ||(7;, @;)||, here @; is the ith row
of A.

Since then, smoothed analysis has been applied successfully to a variety of different al-
gorithms and problems: mathematical programming, scientific computing, game theory,
graph theory, Al related problems and discrete combinatorial optimization problems
etc.. For more detailed surveys of the smoothed analysis, one may refer to [13, 68, 90—
92]. Originally, smoothed analysis was introduced to evaluate the performance of an
algorithm by its running time. There are many other performance measures that are

also very important and reveal some typical properties of an algorithm. For example,

12
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the amount of storage occupied during execution of the algorithm, the number of bits of
precision required to achieve a given output accuracy, the number of cache misses, the
error probability of a decision problem, the number of random bits needed in a random-
ized algorithm, the number of calls to a particular subroutine, the number of iterations

of an iterative algorithm [92].

For an approximation algorithm, we usually concentrate on the quality of the solution
it returns, that is, how well the solution could approximate the optimal one. Therefore
the approximation ratio is regarded as the major performance measure instead of the
running time because an approximation algorithm has polynomial time complexity under
the worst-case analysis model and time complexity based analysis seems to be less of
interest in some sense. In most of the existing work, the performance measures of the
algorithms are usually running time or space consumes. On the other hand, in real
world applications, lots of approximation algorithms perform very well in practice but
have poor approximation ratios under the worst-case analysis, such as the GREEDY for
the shortest common superstring problem as introduced in Section 1.4.1. Therefore,
smoothed analysis on the performance ratio of approximation algorithms would help us
to understand these algorithms better. Besides, for a certain problem, there may exist
some quantity that reveals some essential properties of the problem itself, which in turn
may help us to better understand the problem or to design new more efficient and/or
more effective algorithms. Thus measuring such quantities under a reasonable model,

say smoothed analysis, would be of great significance.

1.4.3.2 Approximability based algorithm design

Smoothed analysis helps us to understand the behaviour of an algorithm better by
revealing its typical properties. Moreover, it helps us to look deep into the problem
itself. In turn, the insight gained from the smoothed analysis results may inspire us

with new ideas in algorithm design for real applications.

For example, inspired by the smoothed analysis for simplex method [35, 89, 106], Kelner
and Spielman [59] proposed the first randomized polynomial-time simplex algorithm for
linear programs. Here is another simple example. Sankar [86] first investigated the
Gaussian Elimination by smoothed analysis. This idea was exploited by Spielman and
Teng [92], who suggested a more stable solver for linear systems. Suppose we are given a

linear system Ax = b and with error tolerance §. Consider the following algorithm [92].

13
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1. Use the standard Gaussian Elimination with partial pivoting rule ° to solve Ax =

b. Suppose x* is the solution returned.
2. If |[|b — Ax™|| < 9, return x*.

3. Otherwise, add a small noise and generate a new linear system (A +¢- G)y = b,
where € is a small positive number and G is a Gaussian matrix with mean 0 and

variance 1.

4. Solve the perturbed linear system with Gaussian Elimination without pivoting and

return the solution.

Sankar [86] proved that if € is sufficiently smaller than A’s condition number x(A), the
solution to the perturbed linear system can well approximate the original one. He also
proved that the quality of the growth factor cannot be too large with high probability.
Thus, the Gaussian Elimination with partial pivoting on the original linear system may
fail due to the large growth factor, but the success of the new algorithm only depends

on the machine precision and condition number of A. 6

Recently, this smoothed analysis based algorithm design method was generalized from
the time complexity smoothed analysis to approximability smoothed analysis by Man-
they and Plociennik [67]. After studying independent number under the smoothed anal-
ysis with a p-Boolean perturbation model (as introduced in Section 1.4.3.3), they pre-
sented an algorithm approximating the independence number «a(g(G,p)) with a worst-
case approximation ratio O(4/|V| - p) and with polynomial expected running time for
sufficiently large p, where G = (V, E) is the given graph, g(G, p) is the perturbed graph

of G 7 and the independent number is the size of the maximum independent set.

1.4.3.3 Perturbation models

As we discussed above, the perturbation model would be very important to the whole
smoothed analysis model. The perturbation model that captures the randomness and
imprecision of the input parameters can vary from application to application. The
following perturbation models are commonly used in existing work on the smoothed

analysis.

Continuous perturbations:

°In partial pivoting, the algorithm selects the entry with largest absolute value from the column of
the matrix that is currently being considered as the pivot element.

SThere is a simple Matlab experiment for this new algorithm in [92].

"The perturbed graph of the input graph G = (V, E) is obtained by negating the existence of edges
independently with a probability p > 0.

14
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Definition 1.8 (Gaussian Perturbation). Let £ € D,. A o-Gaussian perturbation
of & is © = & + g, where g is a Gaussian random vector of mean 0 and variance o2 with
o€ R

Definition 1.9 (Relative Gaussian Perturbation). Let £ € D,. A relative o-
Gaussian perturbation of Z is @ = & - (1 + ¢), where g is a Gaussian random variable of

mean 0 and variance o2 with o € R*.

Definition 1.10 (Uniform Ball Perturbation). Let & € D,,. A uniform ball pertur-
bation of radius ¢ of & is a random vector & drawn uniformly from the ball of radius o

centered at .

Discrete perturbations:

Definition 1.11 (Boolean Perturbation). Let £ = (Z1, -+ ,Z,) € {0,1}" or {—1,1}".
A p-Boolean perturbation of & is a random string = (z1,...,2,) € {0,1}" or {—1,1}",

with Pr{z; = z;} =1 —p.

Definition 1.12 (Partial Bit Randomization). Let Z be an integer with K-bit binary
representation and k < K be a positive integer. A k-partial bit randomization of Z is
an integer x obtained by replacing Z’s k least significant bits (also referred to as the
right-most bits) by the binary expression of a random integer from [0,2%~!] according

to some specific distribution, say uniform distribution, over [0,2*~1] N Z.

Definition 1.13 (Partial Permutation). Let § be a sequence of n elements and
p € [0,1]. A p-partial permutation of § is a random sequence s by first creating a set
S by selecting independently with Pr{i € S} = p,i = 1,...,n, and then uniformly

permuting elements of s in position S while all other elements remaining unchanged.

In the above perturbation models, inputs are perturbed at random, which may be un-
natural for some problems. Thus, it might be necessary to add some constraints on the
perturbation by requiring that inputs should have some typical properties. For example,
a person’s body temperature can neither be too high nor too low, and we should not
allow perturbations of the temperature of human body that violate this constraint to
enter our probability space. In general, the perturbations should make sure that any
perturbed instance carries some certain significant aspects. Spielman and Teng [90] pro-
posed the concept named property-preserving perturbation, which is defined by restricting
a natural perturbation model to preserve certain properties of the original input. More
details about the property-preserving perturbation model can be found in the survey by

Spielman and Teng [90].

Here, we need to mention another very powerful smoothed analysis model, named as

one-step model, due to Beier and Vocking [10]. In this model, an adversary is allowed
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to specify the probability density function for each input value in the input instance.
To prevent the adversary from modelling a worst-case instance too closely, we bound
the density functions from above by a smoothing parameter ¢. Roughly speaking, a
large ¢ forces the algorithm to perform almost as bad as on worst-case instances while a
relatively small ¢ makes the adversary to choose the uniform distribution on the input
space, which mimics an average-case analysis. For example, suppose each input instance
of some problem contains a value vector v = (v1,...,v,),v; € [0,1],7 € {1,...,n}.
The adversary does not fix the value of each v;, instead he specifies probability density
functions f; : [0,1] — [0, ¢] according to which the value v; are randomly drawn inde-
pendently of each other. If ¢ = 1, then the adversary has no choice but to specify a
uniform distribution on the interval [0, 1] for each value v;. In this case, our analysis
becomes an average-case analysis. On the other hand, if ¢ becomes large, then the anal-
ysis approaches a worst-case analysis since the adversary can specify small interval I; of
length é (that contains the values in a worst-case instance) for each value v; from which
the value v; is drawn uniformly. Thus, the adversarial smoothing parameter ¢ serves as

an interpolation parameter between the worst-case and average-case analyses.
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Bandpass Problem!

2.1 Introduction

The bandpass-2 problem is a variant of the mazimum travelling salesman problem arising
from optical communication networks. In optical communication networks, a sending
point uses a binary matrix A,xm, to send n information packages to m different desti-
nation points, in which the entry a;; = 1 if information package i is not destined for
point j, or a;; = 0 otherwise. To achieve the highest cost reduction via wavelength
division multiplexing technology, an optimal packing of information flows on different
wavelengths into groups is necessary [8]. Under this binary matrix representation, ev-
ery B consecutive 1’s in a column indicates an opportunity for merging information to
reduce the communication cost, where B is a pre-specified positive integer called the
bandpass number. Such a set of B consecutive 1’s in a column of the matrix is said to
form a bandpass. When counting the number of bandpasses in the matrix, no two of
them in the same column are allowed to share any common rows. The computational
problem, the bandpass-B problem, is to find an optimal permutation of rows of the input
matrix A,xm such that the total number of extracted bandpasses in the resultant matrix
is maximized [9, 11, 64]. Note that though multiple bandpass numbers can be used in
practice, for the sake of complexities and costs, usually only one fixed bandpass number

is considered [9)].

The general bandpass-B problem, for any fixed B > 2, has been proven to be NP-
hard [64]. In fact, the NP-hardness of the bandpass-2 problem can be proven by a
reduction from the well-known Hamiltonian path problem [44], where in the constructed
binary matrix A, x.m,, a row maps to a vertex, a column maps to an edge, and a;; = 1 if
and only if edge e; is incident to vertex v;. It follows that there is a row permutation

achieving n — 1 bandpasses if and only if there is a Hamiltonian path in the graph.

On the approximability, the bandpass-B problem has a close connection to the weighted
B-set packing problem [44]. By taking advantages of the approximation algorithms de-
signed for the weighted B-set packing problem [8, 18], the bandpass-B problem can be

!This chapter is based on [53, 98, 99].
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approximated within O(B?) [64]. Moreover, since the mazimum weight matching prob-
lem is solvable in cubic time, the bandpass-2 problem admits a simple maximum weight
matching based 2-approximation algorithm [64]. In the sequel, we call the bandpass-2

problem simply the bandpass problem.

Recently in 2012, Tong et al. [99] first presented an intrinsic structural property for
the optimal row permutation. That is, with respect to a maximum weight matching
between the rows, the isolated bandpasses (meaning a 0 above and a 0 below each such
bandpass) in the optimal row permutation can be classified into four disjoint groups;
after extracting bandpasses of the matching out of the instance, certain fractions of these
four groups of isolated bandpasses remain in the residual instance. They proposed to
compute another maximum weight matching in the residual instance, and from which
to extract a sub-matching to extend the first maximum weight matching into an acyclic
2-matching. The acyclic 2-matching is then formed into a row permutation, which leads

to an approximation algorithm with a worst-case performance ratio of 19/36 ~ 0.5277.

As we can see, this performance analysis is essentially based on breaking cycles that are
formed in the union of two matchings [99]; this can be equivalently deemed as partition-
ing (the edge set of) the second matching into two sub-matchings, such that the union of
each of them and the first maximum weight matching is acyclic. Subsequently, Chen and
Wang [28] presented an alternative to compute the target sub-matching (to extend the
first maximum weight matching into an acyclic 2-matching). They showed that a maxi-
mum weight 2-matching (acyclic 2-matching, respectively) can be partitioned into 4 (3,
respectively) candidate sub-matchings. Using the best of these candidate sub-matchings
in their algorithm to extend the first maximum weight matching guarantees a solution
row permutation that contains at least a fraction 117/220 ~ 0.5318 of the bandpasses
in the optimum [28]. Soon afterwards, Tong et al. [98] proposed an improvement to
compute a maximum weight 4-matching in the residual instance, and to show how to
partition it into 7.5 candidate sub-matchings. The improved approximation algorithm

has a worst-case performance ratio of 227/426 ~ 0.5328.

Later, Tong et al. [53] presented another novel scheme to partition a 4-matching into
a number of candidate sub-matchings, each of which can be used to extend the first
maximum weight matching into an acyclic 2-matching. They showed that among these

sub-matchings the maximum weight can be guaranteed to a better extent, and thus

proved a new approximation algorithm of worst-case performance ratio 701_2§/§ ~ (0.5358.
At the end, Tong et al. [53] concluded that this 0.5358-approximation algorithm seems

to have taken full advantage of the structural property of the optimal row permutation.
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In the next section, we introduce some basic concepts and some important lemmas. In
Section 2.3, 2.4, 2.5, we will introduce three main algorithms for the bandpass problem,
denoted as BP1, BP2, BP3, respectively.

2.2 Preliminary

The NP-hardness of the bandpass problem is confirmed via a reduction from the Hamil-
tonian path problem [64]. However, the bandpass problem does not readily reduce to
the mazimum traveling salesman (Max-TSP) problem [44] for the approximation algo-
rithm design. As pointed out in [98], an instance graph of Max-TSP is fized, in that all
(non-negative) edge weights are given at the beginning, while in the bandpass problem
the number of bandpasses extracted between two consecutive rows in a row permutation
is permutation dependent. Nevertheless, as shown in the sequel, the algorithm design
is still based on maximum weight b-matchings for b = 1,2,4, similarly as in approxi-
mating the Max-TSP [27, 50, 78, 88]. Formally, in the Max-TSP problem, a complete
edge-weighted graph is given, where the edge weights are non-negative integers, and the
goal is to compute a Hamiltonian cycle with the maximum weight. Note that there are
several variants of the Max-TSP problem studied in the literature. In our case, the input
graph is undirected (or symmetric) and the edge weights do not necessarily satisfy the

triangle inequality.

In our bandpass problem, since we can always add a row of all 0’s if necessary, we assume,
without loss of generality, that the number of rows, n, is even. A b-matching of a graph
is a subgraph in which the degree of each vertex is at most b. A maximum weight b-
matching of an edge weighted graph can be computed in O(n?m) time [7, 43, 71], where
n is the number of vertices and m is the number of edges in the graph. Note that a
2-matching is a collection of vertex-disjoint cycles and paths. A 2-matching is acyclic if
it does not contain any cycle (i.e., it is a collection of vertex-disjoint paths). A matching
M extends another matching M’ into an acyclic 2-matching if and only if the union of

these two matchings is acyclic.

Given the input binary matrix A, xm, let r; denote the i-th row. We first construct a
graph G of which the vertex set is exactly the row set {r1,ro,...,r,}. Between rows r;
and 7, the firzed edge weight is defined as the maximum number of bandpasses that can
be formed between the two rows (i.e., the number of columns both rows have 1 in) and
is denoted as w(i, j). In the sequel we use row (of the matrix) and vertex (of the graph)

interchangeably.

19



Chapter 2. Bandpass Problem

For a row permutation m = (w1, m2,...,T,), its i-th row is the m;-th row in the input
matrix. We call a maximal segment of consecutive 1’s in a column of 7 a strip of w. The
length of a strip is defined to be the number of 1’s therein. A length-¢ strip contributes
exactly L%J bandpasses to the permutation 7. We use Sy(m) to denote the set of all
length-¢ strips of m, and sy(m) = |S¢(7)|. Let b(w) denote the number of bandpasses
extracted from the permutation m, and p(m) denote the number of pairs of consecutive
1’s in the permutation 7. Notice that a length-£ strip contributes exactly £ — 1 pairs
to the permutation w. Based on the previous definition, we have the following two

equations.

br) =3 silm) KJ — o)+ slm) m (2.1)

3

pr) = " se(m)(0—1) = sa(m) + > _ se(m) (£ — 1). (2.2)

2.2.1 Algorithm template

For the three approximation algorithms BP1, BP2 and BP3, the rough ideas are the
same. The first step is to compute a maximum weight matching M; in graph G. Recall
that there are an even number of rows. Therefore, M; is a perfect matching (even though
some edge weights could be 0). Let w(M;) denote the sum of its edge weights, indicating
that exactly w(M7) bandpasses can be extracted from the row pairings suggested by Mj.
These bandpasses are called the bandpasses of Mj.

Next, every 1 involved in a bandpass of M; is changed to 0. Let the resultant matrix be

denoted as A’

Taxns the resultant edge weight between rows r; and r; be w'(7, 7) — which

is the maximum number of bandpasses that can be formed between the two revised rows
— and the corresponding resultant graph be denoted as G’. One can see that if an edge
(ri,7;) belongs to M, then the new edge weight w'(i,j) = 0. In the second step, we
compute a matching My in graph G’. Let w'(M3) denote its weight or its number of

bandpasses. It is noted that no bandpass of M; shares a 1 with any bandpass of Ms.

The last step is based on whether G[M; U Mj] is acyclic or not. If G[M; U M,] is cyclic,
we need to break cycles first, by removing for each cycle the least weight edge of M.
Otherwise, we do nothing. Finally we stack these paths arbitrarily in the remaining
acyclic graph to give a row permutation 7. It is not hard to see that the number of
bandpasses extracted from 7 is w(M7) + $w'(Ma) and w(My) +w'(Ma), respectively for
the case G[M; U Ms] is acyclic and acyclic, respectively. The main differences and the

beauty of the algorithms lie in how we calculate the second matching Ms.
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2.2.2 Key structure of bandpass

Let 7* denote the optimal row permutation such that its b(7*) is maximized over all row
permutations. Correspondingly, Sa(7*) denotes the set of length-2 strips in 7*, which
contributes exactly so(7*) bandpasses towards b(7*). The key part in the performance
analysis for the algorithms BP1, BP2, BP3 is to estimate w'(Mz), as done in the

following.

First, we partition the bandpasses of So(7*) into four groups: Bj, Bg, Bs, By. Note that
bandpasses of S2(7*) do not share any 1 with each other. B consists of the bandpasses
of Sa(7*) that also belong to matching M; (such as the one between rows r, and 73 in
FIGURE 2.1); By consists of the bandpasses of Sa(7*), each of which shares (exactly)
a 1 with exactly one bandpass of M7, and the other 1 of the involved bandpass of M;
is shared by another bandpass in Bjy; Bj consists of the bandpasses of So(7*), each of
which shares (exactly) a 1 with at least one bandpass of M, and if it shares a 1 with
exactly one bandpass of M; then the other 1 of the involved bandpass of M; is not
shared by any other bandpass of Bs; By consists of the remaining bandpasses of So(7*).

FIGURE 2.1 illustrates some examples of these bandpasses.

U i 0 0 0

¢ A @E (5
k .l w NI
J: BQ[_l] B — 0

1: NI 0 1

t: 0 B

b: [:1]

a :1 Bl

FIGURE 2.1: An illustration of the bandpasses of So(7*) (in ovals) and the bandpasses
of M; (in boxes) for grouping purpose. A horizontal line in the figure represents a row,
led by its index. Rows that are adjacent in 7* and/or row pairs of M; are intentionally
ordered adjacently. In this figure, rows r, and r;, are adjacent in 7*, denoted as (r4, 1) €
7*, and edge (rq,rp) € My as well; the bandpasses between these two rows in Sa(7*)
thus belong to By. Edges (ry,7:), (7,7%), (T¢, 7o) € My, while (r;,7;), (ri,7¢) € T*; the
bandpasses between rows r; and r; and between rows 74 and 7, in So(7*) shown in the
figure have their group memberships indicated beside them respectively.

By the definition of partition, we have

s2(m") = [Bi| + [ Ba| 4 [ B3| + | Bal. (2.3)
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From these “group” definitions, we know all bandpasses of B; are in M;. Also, one pair
of bandpasses of By correspond to a distinct bandpass of M;. Bandpasses of Bg can be
further partitioned into subgroups such that a subgroup of bandpasses together with a
distinct maximal subset of bandpasses of M; form into an alternating cycle or path of
length at least 2. Moreover, 1) when the path length is even, the number of bandpasses
of this subgroup of Bj is equal to the number of bandpasses of this subset of bandpasses
of Mj; 2) when the path length is odd, 2a) either the number of bandpasses of this
subgroup of Bj is 1 greater than the number of bandpasses of this subset of bandpasses
of Mj, 2b) or the path length has to be at least 5 and so the number of bandpasses of this
subgroup of Bs is at least % of the number of bandpasses of this subset of bandpasses of
M;. Tt follows from 1), 2a) and 2b) that with respect to Bs, M; contains at least 2|Bs|

corresponding bandpasses. That is,
1 2
w(Mz) 2 |Bi| + 5|Bz| + 3Bl (2.4)

Apparently, all bandpasses of By are in graph G’, while none of By U By U Bg is in graph
G'.

Note that the bandpasses of By are paired up such that each pair of the two bandpasses
share a 1 with a bandpass of M;. Assume without loss of generality that these two
bandpasses of By are formed between rows r; and r; and between rows r; and ry,
respectively, and that the involved bandpass of M; is formed between rows r; and 7
(see FIGURE 2.1). That is, in the optimal row permutation 7%, rows r; and r; are
adjacent, and rows 7 and 1, are adjacent; while edge (r;,7;) € M;. We remark that
these four rows are distinct. We conclude that edge (r;,7¢) ¢ M;. The proof is simple as
otherwise in the particular column a bandpass would be formed between rows r; and ry,
making the two bandpasses of By lose their group memberships (i.e., they would belong
to Bs).

Lemma 2.1. Assume edge (rj, 1) € My, and that one bandpass of (r;,ry) shares 1 with
(two) bandpasses of By. Then in G edge (rj, i) is adjacent to at most four edges in the
optimal row permutation 7, at most two of which are incident at row r; and at most

two of which are incident at row ry.

Proof. The lemma is straightforward from the above discussion, and the fact that edge

(rj,71) does not belong to m*. O

Continuing with the above discussion, assuming that edge (rj,7;) € Mi, and that one
bandpass of (r;,ry) shares 1 with two bandpasses of By, which are formed between rows

r; and r; and between rows ry and ry, respectively (see FIGURE 2.1). We know that
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in graph G’, between rows r; and 74, in the same column there is a bandpass (which
contributes 1 towards the edge weight w’(i,¢)). We call bandpasses constructed in this
way the induced bandpasses. From Lemma 2.1, edge (75, 7) is adjacent to at most two
edges of 7* incident at row r;. It follows that in graph G’, row 1, can form induced
bandpasses with at most four other rows. In the other words, the subgraph of G’ induced

by the edges containing induced bandpasses, denoted as G7, is a degree-4 graph.

Lemma 2.2. G, is a degree-4 graph, and its weight w'(G%) > 5|Ba.

Proof. The first half of the lemma is a result of the above discussion. Since every pair
of bandpasses of B leads to an induced bandpass, all the edge weights in G/, sum up to

at least §|B,|, which is the number of bandpass pairs in Bs. O

19 . . .
2.3 gz-approximation algorithm BP1
In this section, we will introduce our first improved approximation algorithm BP1 for

the bandpass problem.

2.3.1 Algorithm description

As introduced in the Section 2.2, the first step of BP1 is as same as the algorithm
template described in Section 2.2.1. In the second step of BP1, we compute a maximum
weight matching M, in graph G'. If an edge (r;,7;) belongs to both M; and M, then it
is removed from M,. Such a removal does not decrease the weight of My as w'(i,7) = 0.
Consider the union of M; and My, denoted as G[M; U Ms]. Note that every cycle of this
union, if any, must be an even cycle with alternating edges of M7 and Ms. The third
step of BP1 is to break cycles, by removing for each cycle the least weight edge of Mo.
Let M denote the final set of edges of the union, which form into disjoint paths. In the
last step, we arbitrarily stack these paths to give a row permutation w. The number of
bandpasses extracted from m, b(7), is at least the weight of M, which is greater than or

equal to w(My) + 3w’ (Ma).

2.3.2 Performance analysis

Lemma 2.3. The weight of matching My is w'(Mz) > max{|Ba|, 3|Ba|} > z15|Ba| +
(1 — 2)%|By|, for any z € [0,1].
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Proof. Vizing’s Theorem [107] states that the edge coloring (chromatic) number of a
graph is either the maximum degree A or A 4+ 1. Note that all edges of the same color
form a matching in the graph. We conclude from Lemma 2.2 that, even in graph G/,
there is a matching of weight at least fw'(G}) > 5| Ba|. As G is a subgraph of G’ and
My is the maximum weight matching of G/, w'(Mz) > 75|B2|.

On the other hand, graph G’ contains all bandpasses of By. Therefore, w'(Ms) > %|By|

as well. The last inequality in the lemma then follows trivially,
1 1
max E|B2”§‘B4‘ >x—’Bg’+ 1—%)*‘B4|

for any x € [0, 1]. O
Theorem 2.4. Algorithm BP1 is a cubic time %-appmsm’mation for the bandpass prob-

lem.

Proof. The running time of algorithm BP1 is dominated by the computing for two
maximum weight matchings, which can be done in cubic time. Since M; is the maximum

weight matching in graph G, from Eq. (2.2) we have

w(M) > 2pla*) > 3 (w*) £ sl 1)) . (25)

(=3

Combining Egs. (2.4) and (2.5), we have for any y € [0, 1],

w(My) > 1( —|—Zsz 6—1>+(1—y) <\Bl|+;|Bgl+§|Bgl>. (2.6)

=3

The permutation m produced by algorithm BP1 contains b(r) > w(M;) + sw'(Ma)
bandpasses, as indicated at the end of Section 2.3.1. From Lemma 2.3, we have for any
z € [0,1],

b(m) > w(M) + 255 | Bal + (1~ 2) | Bal. (2.7)

Together with Egs. (2.3) and (2.6), the above Eq. (2.7) becomes,

b(m)

v

w(My) —i—x—\BQ\ + (1 — w) ]B4\

= <52<w*> £ s - 1>>
(=3

1 2
+1=9) (1811 + 3182l + 218l ) + s Bl + (1 )3 B

v
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(=3
1—y x 2(1 —vy)
1-— B — 73 73
=i+ (S5 g )18l + 2+ L
> 5 s(*)+§m:s(*)(f—1) + 1By + Lsp(a) (2.8)
e 12 2\ — ¢\ 18 1 92777 .

where the last inequality is achieved by setting x = % and y = %. Note that for all £ > 3,
£—-1)> %L%J It then follows from Egs. (2.8) and (2.1) that

)2 30 () 15 330w [4]) 2 s e

=3

That is, the worst-case performance ratio of algorithm BP1 is at most %. O

2.4 igg -approximation algorithm BP2

In this section, we introduce our second improved approximation algorithm BP2 for

the bandpass problem.

2.4.1 Algorithm description

Again, the first step is to compute a maximum weight matching M; in graph G, every 1
involved in a bandpass of M is changed to 0 and then construct a new graph G’, which

is the same as we described in the previous algorithm template in section 2.2.1.

In the second step of BP2, we compute a maximum weight 4-matching C in graph G,
which is further decomposed in O(n?%) time into two 2-matchings denoted as C; and
Ca [37, 49]. Let w'(C) denote the weight (the number of bandpasses) of C in the residual
graph G’. Note that no bandpass of C shares a 1 with any bandpass of M;. Using M
and C; and Cy, by Lemma 2.6, we can compute a matching Ms from C of weight at least

L w/(C) such that G[M; U Ms] is guaranteed acyclic.

In the third step, we use the %—approximation algorithm described in [78] to compute
a Hamiltonian path P in G’ whose weight is at least g of the maximum weight of a
Hamiltonian path. Then, using M; and P, by Lemma 2.7, we can compute another
matching M from P of weight at least fw'(P) such that G[M; U My] is guaranteed

acyclic.
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In the last step, we choose the larger one between the two Ms’s found in the last two
steps, and arbitrarily stack the paths in G[M; U M| to give a row permutation .
Note that the number of bandpasses extracted from 7, b(r), is greater than or equal to
w(My) + w' (Ms).

2.4.2 Performance analysis

In O(n?9) time, a 4-matching such as G’ can be decomposed into two 2-matchings [37,

49], each of which is a collection of vertex-disjoint cycles or paths.

Lemma 2.5. Let C be a 2-matching of graph G such that no edge of My is also an
edge of C. Then, we can partition the edge set of C into four matchings Xg, X1, X2, X3
such that G[My U X;| is an acyclic 2-matching for all j € {0,1,2,3}. Moreover, the

partitioning takes O(na(n)) time, where a(-) is the inverse Ackerman function.

Proof. Hassin and Rubinstein [50] have shown that we can compute two disjoint match-

ings Xo and X; in C such that the following two conditions hold:

e Both G[M; U Xy] and G[M; U X;] are acyclic 2-matchings of G.

e Each vertex of C is incident to at least one edge of XgU Xj.

For convenience, let Y be the set of edges in C but not in Xg U X;. By the second
condition, Y is a matching. Consider the graph H = (V,M; UY). Obviously, H is a
collection of vertex-disjoint paths and cycles, and each cycle of H contains at least two
edges of Y. For each cycle C of H, we mark an arbitrary edge of C' that also belongs to
Y. Let X3 be the set of marked edges, and Xy = Y \ X3. Then, both G[M; U X3] and
G[M; U X3] are acyclic 2-matchings of G.

It is not hard to see that with the famous union-find data structure [97], the computation
of Xy and X7 described in [50] can be done in O (na(n)) time. Once knowing X, and
X1, we can obtain X3 and X3 in O(n) time. O

In general, Lemma 2.5 cannot be improved by partitioning the edge set of C into three
matchings instead of four matchings. To see this, it suffices to consider a concrete
example, where C is just a cycle of length 4 and M, consists of the two edges connecting

nonadjacent vertices in C.

Let C; and Cy denote the two 2-matchings constituting to the maximum weight 4-

matching C of residual graph G’. Using Lemma 2.5 alone, C; can be partitioned into four
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matchings Xg, X1, X2, X3 and Cy can be partitioned into four matchings Yy, Y7, Yo, Ys,
such that G[M; U Zj] is an acyclic 2-matching for all Z € {X,Y} and j € {0,1,2,3}.
The following lemma states a slightly better partition when we consider C; and Cy si-

multaneously.

Lemma 2.6. The weight of matching Ma is w'(Ma) > 1= |Bs|.

Proof. Let C; and Cy denote the two 2-matchings constituting to the maximum weight
4-matching C of residual graph G’. Based on the discussion in the last paragraph, we
firstly use Lemma 2.5 to partition the edge set of C; into four matchings Xg, X1, Xo, X3
and the edge set of Cy into four matchings Yp, Y1,Ys,Ys, such that G[M; U Zj] is an
acyclic 2-matching for all Z € {X,Y} and j € {0, 1,2, 3}.

Note that by Lemma 2.5, XU X3 is a matching and that X3 contains the marked edges,
each of which, say e = (u,v), is the lightest edge of the corresponding cycle, say C,
formed in G[M; U X2 U X3]. C is an even cycle. If C' contains at least 6 edges, then
w'(X3NC) = w'(e) < fw' (X2 N C). The following process is to swap certain edges
among Xg, X1, X2, X3 and Yy, Y1, Y2, Y3 to guarantee the property

(P) that each of G[M; U X;] for i = 0,1 and G[M; UY}] for j € {0,1,2,3} is an acyclic
2-matching, and that Xo U X3 is a matching and G[M; U X3 U X3] contains no
length-4 cycles.

Let C = (u,v,z,y) be a length-4 cycle in G[M; U X5 U X3], and assume that Xo U X3 =
{(u,v), (z,y)}. Then, we call edges (u,v) and (x,y) a problematic pair. Our swapping

process is to resolve such problematic pairs. We distinguish three cases.
In the first case, edges (u,z) ¢ C1 and (v,y) ¢ C;.

Assume the other edges of C; incident at u, v, z,y are (u, 1), (v,2), (x,3), (y,4), respec-
tively. These four edges thus all belong to G[M; U Xy and G[M; U X1]. If at least three
of them belong to G[M; U Xy], then in G[M; U X;] three vertices among u, v, x,y have
degree 1 and thus they cannot be in the same connected component of G[M; U X;]. We

can move (exactly) one of edges (u,v) and (x,y) to X7, while maintaining property (P).

We examine next where exactly two of the four edges belong to G[M; U Xy]. Assume
without loss of generality that (u,1) € G[M; U Xp]. If (y,4) € G[M; U Xp], then the
connected component in G[M; U X] containing u has only one edge (u, y), which belongs
to Mi. Thus, if the other edge of C; incident at vertex 1 belongs to X, we can move
edge (u,1) from Xy to X2 U X3, and move edge (u,v) from Xo U X3 to Xp; if the other
edge of C; incident at vertex 1 does not belong to X; (and thus it must be in Xs U X3),
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we can move edge (u,1) from Xy to X;, and move edge (u,v) from Xy U X3 to Xj.

Either way, we maintain property (P) while resolving a problematic pair of Xy U X3.

If (v,2) € G[M1 U Xy, then vertices u and v have degree 1 in G[M; U X;]. Thus, if the
other edge of Cy incident at vertex 1 does not belong to X7, then vertex 1 has degree
1 in G[M; U X;] as well. We conclude that vertices u,v,1 cannot reside in the same
connected component of G[M; U X;]. When v and v are not connected, we can move
edge (u,v) from Xs U X3 to X7; when u and 1 are not connected, we can move edge
(u,1) from Xy to X;, and move edge (x,y) from Xs U X3 to Xy. Again, either way,
we maintain property (P) while resolving a problematic pair of Xy U X3. Symmetric
scenarios can be argued in the same way for vertices 2,3,4. In the remaining scenario,
the other edges of C; incident at vertices 1,2, 3,4 all belong to Xg U X;. We then move
edges (u,1), (v,2), (z,3), (y,4) from XoU X3 to X3 U X3, and move edges (u,v) ((z,y),
respectively) from Xo U Xo to X (X3, respectively). Note that none of these four edges

would form with any other edge into a problematic pair.

Lastly, if (z,3) € G[M1 U Xy], then vertices u and x have degree 1 in G[M; U X;]. Thus,
if the other edge of C; incident at vertex 1 belongs to X1, then vertex 1 has degree 1 in
G[M; U X2 U X3]. We can move edge (u, 1) from Xj to X2 U X3, and move edge (u,v)
from X9 U X3 to Xy. If the other edge of C; incident at vertex 1 does not belong to
X1, then vertex 1 has degree 1 in G[M; U X;] as well. We conclude that vertices u, x, 1
cannot reside in the same connected component of G[M; U X;]. When w and 1 are not
connected, we can move edge (u,1) from Xy to X;, and move edge (u,v) from X5 U X3
to Xg. Symmetric scenarios can be argued in the same way for vertices 2,3,4. In the
remaining scenario, none of the other edges of C; incident at vertices 1,2, 3,4 belongs
to Xo U X1, and that vertices u and 1 (v and 2, z and 3, y and 4, respectively) are
connected in G[M; U X1] (G[M; U Xy, G[M1UX4], G[M;U X, respectively). It follows
that we may move edge (u, 1) from Xj to X7, move edge (y,4) from X; to Xy, and move

edge (u,v) from X9 U X3 to Xy, to resolve the problematic pair.
In the second case, edges (u,x) ¢ C; but (v,y) € C;.

Assume the other edges of C; incident at u,z are (u,1), (z,3), respectively. These two
edges and edge (v, y) all belong to G[M1UXy| and G[M;UX;]. Without loss of generality,
assume (v,y) € Xi; it follows that vertices v and y have degree 1 in G[M; U Xy]. If one
of edges (u,1) and (z,3) does not belong to G[M; U Xy, say (u, 1), then we can move
(u,v) from X2 U X3 to Xp, while maintaining property (P).

If both edges (u,1) and (x,3) belong to G[M; U X], then vertices v and = have degree
1 in G[M; U X;]. When the other edge of C; incident at vertex 1 does not belong to
X1 (but Xy U X3), we can move edge (u,1) from Xy to X1, and move edge (u,v) from
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Xo U X3 to Xp; the symmetric scenario can be argued in the same way for vertex 3;
When the other edge of C; incident at vertex 1 and the other edge of C; incident at
vertex 3 both belong to X1, we can move edges (u,1) and (v,3) from Xy to Xo U X3,
move edge (v,y) from X; to Xy U X3, move edge (u,v) from Xs U X3 to X, and move
edge (z,y) from X3 U X3 to X;. Note that none of these three edges (u, 1), (v,3) and

(v,y) would form with any other edge into a problematic pair.
In the last case, edges (u,z) € C; and (v,y) € C;.

Assume without loss of generality that (u,z) € X and (v,y) € X;. Since C2 do not
share any edge with C;, we consider the degrees of vertices u,v,z,y in G[M; UY;] for
i =0,1,2,3. If in one of these four acyclic 2-matchings, say G[M; U Yj], at least three
of the four vertices have degree 1, say u, v, x, then we can move edge (u,v) from C; to
Yy, and thus the problematic pair of X5 U X3 is resolved. In the other cases, in each
G[M; UY;] for i =0,1,2,3, exactly two of the four vertices have degree 1.

Let the two edges of Co incident at u (v, x,y, respectively) be (u,1) and (u,1’) ((v,2)
and (v,2'), (z,3) and (z,3'), (y,4) and (y,4’), respectively).

If (u,1),(y,4) € Yy, then u and y both have degree 1 in one of G[M; UY;] for i =1,2,3,
say in G[M; UY3]. It follows that if the other edge of Cy incident at vertex 1 does not
belong to Y3, then we can move edge (u, 1) from Yj to Y3, and move edge (u,v) from C;
to Yp to resolve the problematic pair of Xo U X3; or if the other edge of Co incident at
vertex 4 does not belong to Y3, then we can move edge (y,4) from Yj to Y3, and move
edge (z,y) from C; to Yj to resolve the problematic pair of X9 U X3. In the remaining
scenario, the other edge of Cy incident at vertex 1 (vertex 4, respectively) belongs to Y.
Note that in either G[M; U Y1] or G[M; U Ys], vertex u has degree 1, and we assume
without loss of generality that vertex u has degree 1 in G[M;UY7]. Note also that vertex
1 has degree 1 in G[M; UY;]. If edge (y,4’) ¢ Y1, then vertex y has degree 1 as well,
and thus we can move edge (u,1) from Yj to Y7, and move edge (u,v) from C; to Yy
to resolve the problematic pair of Xs U X3; if edge (y,4’) € Y7 but the other edge of
Co incident at vertex 4’ does not belong to Y3, then we can move edge (y,4’) from Y;
to Y3, move edge (u,1) from Yy to Y7, and move edge (u,v) from C; to Yj to resolve
the problematic pair of X5 U X3. Therefore, we only need to argue the scenario where
the other edge of Cy incident at vertex 4’ belongs to Y3. Symmetrically considering Y3,
we may assume without loss of generality that the other edge of Cy incident at vertex
1" belongs to Y3. Consequently, vertices u,1,1" all have degree 1 in G[M; U Y], and
thus u and at least one of 1 and 1’ are not connected. If u and 1 are not connected, we
can move edge (u,1) from Yj to Y7, and move edge (u,v) from C; to Yj to resolve the

problematic pair of Xo U X3; if u and 1’ are not connected, we can move edge (u,1’)
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from Y3 to Y7, move edge (u,1) from Yj to Ys, and move edge (u,v) from C; to Yy to

resolve the problematic pair of Xo U X3.

If (u, 1), (v,2) € Yy, then v and v both have degree 1 in one of G[M; UY;] for i =1,2,3,
say in G[M; U Y3]. The following discussion is very similar to the above paragraph,
though slightly simpler. Firstly, if x and y are not connected in G[M; U Y] (v and v
are not connected in G[M; U Y3], respectively), then we can move edge (x,y) ((u,v),
respectively) from C; to Yy (Y3, respectively) to directly resolve the problematic pair
of X9 U X3. Secondly, if the other edge of Cy incident at vertex 1 does not belong to
Y3, then we can move edge (u,1) from Yy to Y3, and move edge (z,y) from C; to Yj to
resolve the problematic pair of Xy U Xj3; or if the other edge of Cy incident at vertex 2
does not belong to Y3, then we can move edge (v,2) from Y} to Y3, and move edge (z,y)
from C; to Yy to resolve the problematic pair of Xo U X3. Symmetrically and without
loss of generality that (z,3), (y,4) € Y3, if either of the other edges of Co incident at
vertices 3 and 4 does not belong to Y3, the problematic pair can be resolved. In the
remaining scenario, we assume that vertices u and x have degree 1 in G[M; UY;] (and
(v,2),(y,4") € Y1). Note that vertices 1,2,3,4 all have degree 1 in G[M; U Y;] too.
If v and = are not connected in G[M; U Y], then we can swap edges of Xy U X; and
of X9 U X3, and move edge (u,z) from Xy U X3 to Y7, to resolve the problematic pair
of X9 U X3. Otherwise, u and 1 should not be connected in G[M; U Yi], and we can
move edge (u, 1) from Yy to Y7, and move edge (z,y) from X5 U X3 to Yj, to resolve the
problematic pair of Xo U X3.

All the other pairs of edges occurring in Co MY} can be analogously discussed as in either
of the above two paragraphs. Repeatedly applying the above process to resolve the
problematic pairs of XoU X3, if any, we achieve the Property (P) that each of G[M; UXj]
for i = 0,1 and G[M; UYj}] for j € {0,1,2,3} is an acyclic 2-matching, and that XU X3
is a matching and G[M; U X2 U X3] contains no length-4 cycles. Subsequently, we let
X3 denote the set of marked edges, guaranteeing that w'(X3) < fw'(Xa).

It follows that at least one of Xy, X1, Xo, Yy, Y1, Y2, Y3 has its weight greater than or
equal to

1, ) 1 1 1
— + > — X —|By| = —|B
75 (U) (Cl) w (CQ)) =7 X 2‘ 2| 15| 2’,

where the last inequality follows from Lemma 2.2 and the fact that w'(C) > w'(G%). O

The next lemma says that Lemma 2.5 can be improved if the input 2-matching is acyclic.

Lemma 2.7. Let P be an acyclic 2-matching of G such that no edge of Mi is also an
edge of P. Then, we can partition the edge set of P into three matchings Yy, Y1, Ys such
that G[M1 UY}] is an acyclic 2-matching for all j € {0,1,2}. Moreover, the partitioning
takes O(na(n)) time.
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Proof. Note that P is a collection of vertex-disjoint paths. We claim that if P has two or
more connected components, then we can connect the connected components of P into
a single path by adding edges not in M; to P. To see this claim, suppose that P has two
or more connected components. Obviously, we can connect the connected components
of P into a single path by adding edges to P. Unfortunately, some edges of M; may
have been added to P. To remove edges of M; from P, we start at one endpoint of P

and process the edges of P in order as follows:

e Let s and ¢ be the current endpoints of P, and (u,v) be the current edge we want
to process. Without loss of generality, we may assume that the removal of (u,v)
from P yields a path P, from s to v and another path P, from v to ¢, and further
assume that the edges of P, have been processed. Note that at most one of s = u
and v = t is possible because n > 3. If (u,v) & M, then we proceed to process the
other edge incident to v than (u,v). Otherwise, (v,s) & M; or (u,t) ¢ M; because
M is a matching and at most one of s = w and v = t is possible. If (v,s) & M,
then we modify P by deleting edge (u,v) and adding edge (v, s) and proceed to
process the other edge incident to v than (v, s). On the other hand, if (u,t) & M,
then we modify P by deleting edge (u,v) and adding edge (u,t) and proceed to

process the other edge incident to ¢ than (u,t).

By the above claim, we may assume that P is a single path P = (vy,vg,...,vs41), and

denote e; = (vj,vj41) for j =1,2,...,¢.

We next detail how to partition the edge set of P into three required matchings Yy, Y7,
and Y3. Initially, we set Yy = {e1}, Y1 = {e2}, and Y5 = {e3}. Then, for j =4,5,...,¢
(in this order), we try to find a k € {0,1,2} such that Y; U {e;} is a matching and
G[M;UY, U{e;}] is an acyclic 2-matching of G. To explain how to find k, fix an integer
Jj € {4,5,...,4}. Let b be the integer in {0,1,2} with ej_; € Y}, and b’ and V" be the
two integers in {0, 1,2} \ {b}. If G[M; UYy] (respectively, G[M; UYjr]) contains no path
between v; and vj;1, then we can set k = b’ (respectively, k = 0”) and we are done.
So, we may also assume that G[M; U Yy] contains a path P’ between v; and v;4; and

G[M; UYy| contains a path P” between v; and vj;1. See FIGURE 2.2.

Let v;r (respectively, v;#) be the neighbor of v; in P’ (respectively, P”), and vy (re-
spectively, vp») be the neighbor of vy in P’ (respectively, P”). Then, none of edges
(vj—1,v5), (vj,vj41), and (vj41,v;42) can appear in P’ (respectively, P”), because (vj_1,v;) €
Y}, and neither (vj, vj41) nor (vj41,vj42) has been processed. So, all of (v, vyr), (vVj41,vm),
(vj,vi), and (vjy1,vpr) belong to M;. Thus, ' =" and ' = h” because M; is a match-
ing. Consequently, one edge incident to vy (respectively, vp/) in P belongs to Yy and

the other belongs to Y. Hence, i’ < j —1 and ' < j — 1.
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Since e;_1 € Y}, either ej_o € Yy or ej_o € Yyr. We assume that e;_o € Yjy; the case
where ej_y € Yy is similar. Since P” is a path between v; and vj1 in G[M; U Yy,
G[M; U Yyr] contains no path between v; and vj_i. Thus, G[M; UYyr U{ej_1}] is an
acyclic 2-matching of G. Hence, we move e;_1 from Y, to Y. A crucial point is that
the degree of vy in G[M; UY;] is 1. This is true, because vy appears in both P’ and P”
and in turn cannot be incident to an edge in Y;. By this crucial point and the fact that
vy and v; belong to the same connected component in G[M; UY, U {e;}], we know that
G[M; UY;, U {e;}] is an acyclic 2-matching of G. Therefore, we can set k = b.

bl P 4 b’ /
# m@
II " b" bll

FIGURE 2.2: An illustration of moving (v;_1,v;) from Y}, to Yy and adding (vj,vjy1)
to Yy, where (1) the dashed lines indicate edges in Mj, (2) the thin solid lines indicate
edges of P that have not been processed, (3) the lines labeled with b (respectively, b’, or
b") indicate edges in Y3 (respectively, Yy, or Y ), and (4) the two curves may contain
edges of M;.

Obviously, with the famous union-find data structure [97], the above partitioning of the

edge set P into Yp, Y1, Y2 can be done in O (na(n)) time. O

In general, Lemma 2.7 cannot be improved by partitioning the edge set of P into two
matchings instead of three matchings. To see this, it suffices to consider a concrete
example, where P is just a path with edges (v1,v2), (v2,v3), (v3,v4) and M; consists of

edges (v1,v3) and (ve,vy).

Lemma 2.8. The weight of matching My is w'(Mz) > | By.

Proof. Note that graph G’ contains all bandpasses of By, which is an acyclic 2-matching.
By the 7/9-approximation algorithm for the Max-TSP [78], we can compute a Hamil-
tonian path P in G’ of weight at least % of the optimum, and thus of weight at least

Z|Ba|. The above Lemma 2.7 guarantees that

1
w'(My) = qu'(P) = !B4!

- 27
O
Theorem 2.9. Algorithm BP2 is an O(n*)-time %—appmm’mation for the bandpass

problem.

Proof. The running time of algorithm BP2 is dominated by the computing for those

maximum weight b-matchings, for b = 1,2, 4, which can be done in O(n?) time. Since
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M; is the maximum weight matching in graph G, from Eq. (2.1) we have

w(dy) > Sp(n") > 5 <32(7r*) 3 s - 1)) . (2.10)

Combining Egs. (2.4) and (2.10), we have for any real number y € [0, 1],
w(My) > +ZS@ +—y) (B + 5lBal+ 518l ) - (210)
2 3

The permutation m produced by algorithm BP2 contains b(m) > w(M;) +w'(Ms) band-
passes, as indicated at the end of Section 2.4.1. From Lemmas 2.6 and 2.8, we have for

any real number x € [0, 1],

1 7
b() Zw(M1)+x1—5|Bg|+(1—a:)2—7|B4|. (2.12)

Together with Egs. (2.3) and (2.11), the above Eq. (2.12) becomes,

1 7
> M —|B 1—x)—|B
br) 2 w(M) +ac|Bal + (1 - )| Ba

>y <sz<w*> £ sl - 1>>
=3

1 2 1 7
+(1—1) (\Bl\ + —|B2! + 1B3!> +m1—5]Bg\ +(1— x)ﬁ]Bzd

= < +Zse E—l)

1-— 2(1 — 7(1—x
H1-9)IBil+ (2y+ 1l 20 1 T2

v

o7 28 .
142< +ZSg £—1>+213| 1|+m so(m"), (2.13)

where the last inequality is achieved by setting x = % and y = % Note that for all

£>3,(¢—1) > 3|%]. It then follows from Egs. (2.13) and (2.1) that

) 3¢ (s ot 5 3w [5) > B 20

(=3

That is, the worst-case performance ratio of algorithm BP2 is at most igg. O
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2.5 %ﬁ—approximation algorithm BP3

In this section, we will introduce our third approximation algorithm for the bandpass
problem, which is also the currently best approximation algorithm for the the bandpass

problem.

2.5.1 Algorithm description

BP3 is very similar to the algorithm BP2. The main difference is that BP3 presents
another scheme to partition a 4-matching into a number of candidate submatchings,
each of which can be used to extend the first maximum weight matching. Again, the
first step of BP3 is the same as the first step of the algorithm template described in the
Section 2.2.1.

In the second step of BP3, we compute a maximum weight 4-matching C in graph
G', which is then decomposed in O(n??) time into two 2-matchings denoted as C; and
Cy [37, 49]. Let w'(C) denote the total residual weight of all the edges in C. Using M,
and the two 2-matchings C; and Cy, by Lemma 2.16, we can compute a matching My

out of C, of weight at least GEfw’(C) > 0.1433w'(C), to extend M; into an acyclic

2-matching.

We then arbitrarily stack the paths in G[M; U Ms] to give a solution row permutation
7. Note that the number of bandpasses extracted from 7, b(7), is greater than or equal
to w(My) + w'(Ms).

2.5.2 Performance analysis

The following lemma is a restatement of Lemma 2.5.

Lemma 2.10. Let C be a 2-matching of graph G such that My N C = (). Then, we can
partition the edge set of C into four matchings Xo, X1, X2, X3 such that

i) G[M; U X;| is an acyclic 2-matching for all j € {0,1,2,3};

ii) each vertex of C is incident to at least one edge of XoU X1 (and thus Xo U X3 is

a matching);

iii) X3 contains exactly the lightest edge of XoU X3 in every cycle of G[M1U X2 U X3].

Moreover, the partitioning takes O(na(n)) time, where af(-) is the inverse Ackerman

function.
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The correctness of Lemma 2.10 follows from the proof of the Lemma 2.5.

Lemma 2.11. Let X} denote the subset of X3 of which each edge comes from a length-4
cycle of G[M; U Xo U X3], and let X§ = X3 — X5. Then each edge of X5 comes from a
cycle of G[M1 U X9 U X3] of length at least 6.

Proof. Since X2 U X3 is a matching, every cycle of G[M; U X5 U X3] is an even cycle.
The lemma follows clearly, since there are no multiple edges in G[M; U X3 U X3]. O

Lemma 2.12. Let X} denote the subset of Xo of which each edge comes from a length-
4 cycle of GIMy U Xy U X3, and let X5 = Xo — X5. Then w'(X3) < w'(X}) and
W (XY) < (XY,

Proof. The lemma follows clearly, since every edge of X3 is the lightest edge of X5 U X3
in some cycle of G[M; U X5 U X3]. O

The following Lemmas 2.13 and 2.15 state slightly better partition results than Lemma 2.10.

Lemma 2.13. If C; contains no length-4 cycle, then we can partition C1 into four
matchings Xo, X1, X2 and X3 as described in Lemma 2.10, and such that X5 =0 (i.e.,
G[M1UX2UX3] contains no length-4 cycle). Moreover, the partitioning takes O(na(n))

time.

Proof. We firstly use Lemma 2.10 to partition the edge set of C; into four matchings
Xo, X1, X9, X3. The following process is to swap certain edges among X, X1, Xo, X3
to guarantee all three properties stated in Lemma 2.10, plus a novel property that

G[M; U X2 U X3] contains no length-4 cycles.

Let C = (u,v,z,y) be a length-4 cycle in G[M; U X3 U X3], and assume that edges
(u,v), (z,y) € XoU X3 and edges (u,y), (v,x) € M;. We call edges (u,v) and (x,y)
a problematic pair. Our swapping process is to resolve such problematic pairs. We

distinguish two cases.
In the first case, edges (u,z) ¢ C; and (v,y) ¢ Ci.

Assume the other edges of C; incident at u,v,z,y are (u, 1), (v,2), (x,3), (y,4), respec-
tively. These four edges thus all belong to G[M; U Xy] and G[M; U X1]. If at least three
of them belong to G[M; U Xy], then in G[M; U X;] three vertices among u, v, x,y have
degree 1 and thus they cannot be in the same connected component of G[M; U X;]. We
can move (exactly) one of edges (u,v) and (x,y) from Xy U X3 to X;, while resolving

this problematic pair.
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We examine next where exactly two of the four edges belong to G[M; U Xy]. Assume
without loss of generality that (u,1) € G[M; U Xp]. If (y,4) € G[M; U Xp], then the
connected component in G[M;U X7] containing u has only one edge (u, y), which belongs
to Mi. Thus, if the other edge of C; incident at vertex 1 belongs to X, we can move
edge (u,1) from Xy to X2 U X3, and move edge (u,v) from Xo U X3 to Xo; if the other
edge of C; incident at vertex 1 does not belong to X; (and thus it must be in Xs U X3),
we can move edge (u,1) from Xy to Xj, and move edge (u,v) from Xy U X3 to Xj.
Either way, we maintain all three properties stated in Lemma 2.10 while resolving this

problematic pair.

If (v,2) € G[M1 U Xy, then both vertices u and v have degree 1 in G[M; U X;]. Thus, if
the other edge of C; incident at vertex 1 does not belong to X7, then vertex 1 has degree
1 in G[M; U X;] as well. We conclude that vertices w,v,1 cannot reside in the same
connected component of G[M; U X;]. When u and v are not connected, we can move
edge (u,v) from Xo U X3 to X1; when uw and 1 are not connected, we can move edge
(u,1) from Xy to X7, and move edge (z,y) from X9 U X3 to Xy. Again, either way, we
maintain all three properties stated in Lemma 2.10 while resolving this problematic pair.
Symmetric scenarios can be argued in the same way for vertices 2, 3,4. In the remaining
scenario, the other edges of Cy incident at vertices 1,2, 3,4 all belong to XoU X;. We
then move edges (u,1), (v,2), (z,3), (y,4) from Xo U X; to X5 U X3, and move edges
(u,v) ((x,y), respectively) from X, U X3 to X (X7, respectively). Note that none of

these four edges would form with any other edge into a problematic pair.

Lastly, if (z,3) € G[M1 U Xy], then vertices u and x have degree 1 in G[M; U X;]. Thus,
if the other edge of C; incident at vertex 1 belongs to X1, then vertex 1 has degree 1 in
G[M; U X9 U X3]. We can move edge (u, 1) from Xj to Xy U X3, and move edge (u,v)
from Xo U X3 to Xg. If the other edge of C; incident at vertex 1 does not belong to
X1, then vertex 1 has degree 1 in G[M; U X] as well. We conclude that vertices u, z, 1
cannot reside in the same connected component of G[M; U X;]. When u and 1 are not
connected, we can move edge (u, 1) from Xy to X7, and move edge (u,v) from Xo U X3
to Xp. Symmetric scenarios can be argued in the same way for vertices 2,3,4. In the
remaining scenario, none of the other edges of C; incident at vertices 1,2, 3,4 belongs
to Xo U X1, and that vertices u and 1 (v and 2, x and 3, y and 4, respectively) are
connected in G[M; U X;] (G[M; U Xo], G[M1UX1], G[M; U Xy], respectively). It follows
that we may move edge (u, 1) from Xj to X7, move edge (y,4) from X; to Xy, and move

edge (u,v) from Xy U X3 to Xy, to resolve the problematic pair.
In the second case, edges (u,x) ¢ C; but (v,y) € C;.

Assume the other edges of C; incident at u,x are (u, 1), (z,3), respectively. These two

edges and edge (v, y) all belong to G[M;UXj] and G[M;UX1]. Without loss of generality,
36



Chapter 2. Bandpass Problem

assume (v,y) € Xy; it follows that both vertices v and y have degree 1 in G[M; U X|. If
edge (u,1) (edge (x,3), respectively) does not belong to G[M; U Xy], then we can move
(u,v) ((x,y), respectively) from Xs U X3 to Xy to resolve the problematic pair.

If both edges (u,1) and (z,3) belong to G[M; U Xy, then both vertices v and x have
degree 1 in G[M7 U X;]. When the other edge of C; incident at vertex 1 does not belong
to X1 (but Xo U X3), we can move edge (u, 1) from Xy to X, and move edge (u,v)
from X5 U X3 to Xp; the symmetric scenario can be argued in the same way for vertex
3; When the other edge of C; incident at vertex 1 and the other edge of C; incident at
vertex 3 both belong to X, we can move edges (u,1) and (v, 3) from Xy to X U X3,
move edge (v,y) from X; to Xy U X3, move edge (u,v) from Xs U X3 to Xy, and move
edge (x,y) from X2 U X3 to X;. These movings maintain all three properties stated in
Lemma 2.10 while resolving the problematic pair. Note that none of these three edges

(u,1), (v,3) and (v,y) would form with any other edge into a problematic pair.

Note that it is impossible to have both edges (u,x) € C; and (v,y) € C1, as they imply a
length-4 cycle (u, v, z,y) in C; contains. Repeatedly applying the above process to resolve
the problematic pairs of Xo U X3, if any, we achieve the desired partitioning stated in
Lemma 2.10, with the extra property that G[M; U X2 U X3] contains no length-4 cycles.
Therefore, X} = 0. O

Lemma 2.14. Let C be a length-4 cycle in a 2-matching C such that My NC = 0. Then
we can partition C into four matchings Xo, X1, Xo and X3 as described in Lemma 2.10,

and such that the lightest edge of C s assigned to Xo U X3.

Proof. The lemma follows trivially from the observation that exactly two non-adjacent

edges of C have to be assigned to Xs U X3, and either way is feasible. O

Lemma 2.15. Let C; and Co be two disjoint 2-matchings of graph G such that My N (C; U
Co) = (0. Then, we can partition Cy into four matchings Xo, X1, X2, X3 and partition
Co into four matchings Yy, Y1, Ye, Ys such that the partition of C1 satisfies all the desired
properties described in Lemma 2.10 plus X5 = 0 (i.e., G[M; U X2 U X3] contains no
length-4 cycle), the partition of Co satisfies that G[M1 UY;] is an acyclic 2-matching for
all i € {0,1,2,3}. Moreover, the partitioning takes O(na(n)) time.

Proof. We firstly partition C; (Ca, respectively) into four matchings Xo, X1, X9, X3
(Yo, Y1, Y5, Y3, respectively) to satisfies all the desired properties described in Lemma 2.10.
If there is no length-4 cycle in Cy, then Lemma 2.13 implies the current lemma. Other-
wise, for each problematic pair of edges in a length-4 cycle of G[M; U X3 U X3], we can
resolve it as in the proof of Lemma 2.13 as long as the pair of edges do not belong to a

length-4 cycle of C;.
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In the following we address the remaining scenario, by moving one edge of the problem-
atic pair to one of the four matchings Yy, Y1,Y2,Ys. Let C = (u,v,z,y) be a length-
4 cycle in G[M; U X2 U X3|, and assume that edges (u,v),(z,y) € X2 U X3, edges
(u, ), (v,x) € My, and edges (u,z) € Xy and (v,y) € X;.

Since Co do not share any edge with C;, we consider the degrees of vertices u, v, x,y in
G[M, UY;] for i = 0,1,2,3. If in one of these four acyclic 2-matchings, say G[M; U Y],
at least three of the four vertices have degree 1, say u, v, z, then we can move edge (u, v)
from X5 U X3 to Yy, and thus the problematic pair is resolved. In the other cases, in

each G[M; UY;] for i = 0,1, 2,3, exactly two of the four vertices have degree 1.

Let the two edges of Cq incident at u (v, x,y, respectively) be (u,1) and (u,1’) ((v,2)
and (v,2'), (z,3) and (z,3'), (y,4) and (y,4’), respectively).

If (u,1),(y,4) € Yo, then v and y both have degree 1 in one of G[M; UY;] for i =1,2,3,
say in G[M; U Ys]. It follows that if the other edge of Cs incident at vertex 1 does not
belong to Y3, then we can move edge (u,1) from Y to Y3, and move edge (u,v) from
XoUXj3 to Yy to resolve the problematic pair; or if the other edge of Cs incident at vertex
4 does not belong to Y3, then we can move edge (y,4) from Yy to Y3, and move edge
(z,y) from XoU X3 to Yj to resolve the problematic pair. In the remaining scenario, the
other edge of Co incident at vertex 1 (vertex 4, respectively) belongs to Y3. Note that in
either G[M; UY1] or G[M; UY3], vertex u has degree 1, and we assume without loss of
generality that vertex u has degree 1 in G[M; UY;]. Note also that vertex 1 has degree
1 in G[M; UY:]. If edge (y,4") ¢ Y7, then vertex y has degree 1 as well, and thus we
can move edge (u, 1) from Yp to Y3, and move edge (u,v) from Xs U X3 to Yy to resolve
the problematic pair; if edge (y,4’) € Y7 but the other edge of Cy incident at vertex 4’
does not belong to Y3, then we can move edge (y,4’) from Y7 to Y3, move edge (u,1)
from Yj to Y3, and move edge (u,v) from Xy U X3 to Yj to resolve the problematic pair.
Therefore, we only need to argue the scenario where the other edge of Cs incident at
vertex 4’ belongs to Y3. Symmetrically considering Y5, we may assume without loss of
generality that the other edge of Co incident at vertex 1’ belongs to Y3. Consequently,
vertices u, 1,1" all have degree 1 in G[M; U Y;], and thus u and at least one of 1 and 1/
are not connected. If v and 1 are not connected, we can move edge (u, 1) from Yj to Y7,
and move edge (u,v) from Xo U X3 to Yy to resolve the problematic pair; if u and 1’ are
not connected, we can move edge (u,1’) from Y3 to Y7, move edge (u,1) from Yy to Yz,

and move edge (u,v) from X5 U X3 to Yy to resolve the problematic pair.

If (u,1), (v,2) € Yy, then u and v both have degree 1 in one of G[M; UY;] for i =1,2,3,
say in G[M; U Y3]. The following discussion is very similar to the above paragraph,
though slightly simpler. Firstly, if x and y are not connected in G[M; U Y] (v and v

are not connected in G[M; U Y3], respectively), then we can move edge (x,y) ((u,v),
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respectively) from Xs U X3 to Yy (Y3, respectively) to directly resolve the problematic
pair. Secondly, if the other edge of Cs incident at vertex 1 does not belong to Y3, then we
can move edge (u, 1) from Y to Y3, and move edge (z,y) from Xo U X3 to Yj to resolve
the problematic pair; or if the other edge of Cy incident at vertex 2 does not belong to
Y3, then we can move edge (v,2) from Y to Y3, and move edge (z,y) from Xs U X3 to
Yy to resolve the problematic pair. Symmetrically and without loss of generality that
(z,3),(y,4) € Ys, if either of the other edges of Cy incident at vertices 3 and 4 does
not belong to Y3, the problematic pair can be resolved. In the remaining scenario, we
assume that vertices u and = have degree 1 in G[M; UY3] (and (v,2'), (y,4’) € Y1). Note
that vertices 1,2, 3,4 all have degree 1 in G[M; UY}] too. If u and z are not connected
in G[M; UY7], then we can swap edges of XoU X7 and of X2 U X3, and move edge (u, x)
from X5 U X3 to Y7, to resolve the problematic pair. Otherwise, © and 1 should not be
connected in G[M; UYi], and we can move edge (u, 1) from Yy to Y7, and move edge

(z,y) from X9 U X3 to Yp, to resolve the problematic pair.

All the other pairs of edges occurring in Cy N Yy can be analogously discussed as in
either of the above two paragraphs. Repeatedly applying the above process to resolve
the problematic pairs of X5 U X3 that reside in a length-4 cycle of Cy, if any. The
process moves exactly one edge of the pair from Xy U X3 to either of Yy, Y7, Ys, Y3, while
maintaining G[M; UY}] acyclic for all j € {0,1,2,3}. At the end, G[M; U X3 U X3]

contains no length-4 cycles and therefore X} = 0. O

Lemma 2.16. The weight of matching My is w'(Ms) > GEfw’(C).

Proof. Let C; and Cy denote the two 2-matchings constituting to the maximum weight 4-
matching C of residual graph G’ (these two 2-matchings can be obtained from C in O(n?*)
time [37, 49]). Using Lemma 2.10 alone, C; can be partitioned into four matchings
Xo, X1, X2, X3, and Cy can be partitioned into four matchings Yy, Y1, Yo, Y3, respectively,
with the desired properties stated in Lemma 2.10. Separately for each partition, we
apply Lemmas 2.13 and 2.14 to ensure that it maintains all the the desired properties
stated in Lemma 2.10, and it has an extra property that if there is a length-4 cycle in
G[M; U X2 U X3] (in G[M; U Y>3 U Y3], respectively), then the two edges of Xo U X3 (of
Y2 U Y3, respectively) are from and one is the lightest edge of a length-4 cycle of C; (of
Ca, respectively).

Recall from Lemmas 2.11 and 2.12 that X4 denotes the subset of X3 of which each edge
comes from a length-4 cycle of G[M; U X5 U X3] and X4§ = X3 — X}, and X/, denotes
the subset of Xy of which each edge comes from a length-4 cycle of G[M; U X2 U X3]
and X5 = Xy — X}. We similarly define Y3, Yy, Y], Yy, respectively. From Lemma 2.12,
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w'(X}) < w'(X3) and w'(XY]) < 2w/(XY). Let

e {2 w0
o= { v 1)

So we have
W (X5) = w!(X5) + w'(X5) < (14 B)u! (X)) <+ 0/ (XF) < *2 2/ (Xo),

and similarly

1
w/(¥) < 0w (vy),

It follows that if § < v/2—1, we can set My to be the maximum weight matching among
the six matchings { Xy, X1, Xo, Yy, Y1, Yo }:

W (My) > mw’(@ > 8 _32\/§wl(C). (2.16)
Wf(X1)

Otherwise, assume without loss of generality that WX = § > /2 —1. We can apply
Lemma 2.15 to move exactly one edge from every length-4 cycle of C; to either of the
four matchings of Co such that the new partition of Cy, denoted as Wy, Wy, Wo, Wiy, still
has all the desired properties described in Lemma 2.10 and has an extra property that
W = (). Note that W4 = X7 and thus

1
! (X8) = wf (W) < Zuf (W)
W4 = X7 and thus
w'(Xg) = w'(Wy);
|W3| = | X4| and thus by Lemma 2.14
! (X3) < uf (W)

It follows from w'(X}%) = 0w'(X4) and W4 = () that

1

w! (W) = w/(W4) = 3

=55 (w'(X35) + 2w (X3)) <

(w'(W3) + w'(W3)) = o——w'(Wa).

Therefore, when § > /2 — 1, we can set My to be the maximum weight matching among
the seven matchings {Wy, Wy, Wa, Yy, Y1, Yo, Y3 }:

1
w' (M) > ———w'(C) >
T

w'(C). (2.17)

Equations (2.16) and (2.17) tell that in either case, one matching My can be extracted
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from the maximum weight 4-matching C to extend the first maximum weight matching

M, and the weight of Ms is guaranteed to be at least 6735&10’(6’) > 0.1433w’(C). O

Lemma 2.17. The weight of the maximum weight 4-matching C s
, 1 1
w(C)Zmax §|B2”Z|B2|+|B4| .

Proof. Lemma 2.2 states that the subgraph of induced edges, G, is a 4-matching in
graph G’ with weight w'(G%) > 1|Bs|. Therefore, w'(C) > w'(G}) > %|Ba|.

On the other hand, graph G’ contains all bandpasses of group By, and all the edges
containing such kind of bandpasses are in the optimal row permutation 7%, which is an
acyclic 2-matching in graph G'. Let w'(7*) denote the weight of 7* in graph G’, then
we have w'(7*) > |By|. From the partitioning scheme for the bandpasses of Sa(7*), we
know that no edge in G’, belongs to 7*. That is, G, N7* = (. Therefore, in O(n??) time
one can decompose the 4-matching G’ into two disjoint 2-matchings [37, 49], C; and C;

the unions C; U 7* and Co U 7* are both 4-matchings in graph G’. It follows that

1 1
w'(€) Z S (CLUT) + w'(CaUn)) = Suw'(Gy) +w'(m%)) = 7|Baf + [Ba.

1
2
This proves the lemma. O

Theorem 2.18. Algorithm BP3 is an O(n*)-time 0.5358-approzimation for the band-

pass problem.

Proof. The running time of algorithm BP3 is dominated by the computing for those
maximum weight b-matchings, for b = 1,2, 4, which can be done in O(n?*) time. Since

M is the maximum weight matching in graph G, from Eq. (2.2) we have

w(My) > %p(w*) > % (52(71'*) 3 selm) (- 1)) . (2.18)

n
(=3
Combining Egs. (2.4) and (2.18), we have for any real number y € [0, 1],

n

w(ang(sQ(w*H Sg<w*><e—1>)+<1—y> (1311 + 31l + 3180l ) .- 219)

/=3

The permutation 7 produced by algorithm BP3 contains b(7) > w(My) 4+ w'(Ms) band-

passes, as indicated at the end of Section 2.2.1. From Lemmas 2.16 and 2.17, we have

b(r) > w(My) +w' (M) > w(My) + 6 _32\@ (le]Bz\ + ]B4\> . (2.20)
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Together with Egs. (2.3) and (2.19), the above Eq. (2.20) becomes,

b(r) > w(M)+ 6 32\f< |BQ|+|B4|>

>y <52<w*>+ y sm*)(fl))
=3
vaoawﬂ&uﬂ&0+ﬂg7&|6§@m|
= ( )+ Zsz )€ —1) )
+u—www+€;y+6mg>uw+“;”wa+”§@wd
>

46;2‘@ <32(w*) + gse(w*)w _ 1)) 48 _32\/5 <82(7r*) + ;\Blo [(2.21)

where the last inequality is achieved by setting y = 46%73‘/5. Note that for all £ > 3,
(t-1)> %L%J It then follows from Egs. (2.21) and (2.1) that

70 — /2 o A6+3vV2 3 A
blm) = ug(SQ(””m_ﬁ%g”(”)bD

=3
70 — /2
————b(r" 2.22
> BV, (2.22)
. . 46+3v2 ; _ 138492 _
where the last inequality holds because 0-v3 X2 la0—2vs 1. That is, the worst
case performance ratio of algorithm BP3 is at least 70122( > 0.5358. O

2.6 Conclusions and future work

We have presented a series of approximation algorithms BP1, BP2, BP3 for the band-

pass problem. Currently, the algorithm BP3 achieves the best approximation ratio

701525/5 ~ 0.5358. Our algorithms are based on maximum weight b-matchings, for b = 1,2

and 4, similar to an approach to the closely related Max-TSP. The intrinsic structural
property proven for the optimal row permutation and the maximum weight matching is
fundamental, without which no better lower bound on the optimum can be built. The
partition schemes developed in the literature and our scheme on b-matchings could po-
tentially be further improved. When estimating the performance ratio, the best balance
between |Bz| and |By| in the second matching Mj is 1 : 4, which has been achieved in
Lemma 2.17. This suggests that future improvements along this line are possible only

if one can increase both fractions of |Bs| and |By| in the second matching M.
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Our 4-matching partition scheme produces at least 8 matchings, each of which extends
the given matching into an acyclic 2-matching. We also came up with an example (see
FIGURE 2.3), where the 4-matching needs to be partitioned into at least 6 matchings

such that each matching extends the given matching into an acyclic 2-matching. We

Cé

FIGURE 2.3: Each color represents a matching and dashed line means the given match-
ing. This 4-matching needs to be colored with at least 6 colors.

conjecture that the number 6 is “tight”, that is, any 4-matching can be partitioned
into 6 matchings such that each matching extends the given matching into an acyclic
2-matching. If this is true, we can improve Lemma 2.3, Lemma 2.6, inequality 2.17
immediately and thus there exists an improved approximation algorithm for the bandpass

problem.

For the Max-TSP problem, Serdyukov presented a %—approximation algorithm based on
the maximum weight assignment (called cycle cover) and the maximum weight match-
ing [88], which has been improved to the currently best %—approximation algorithm [78].
We believe that the bandpass problem can be better approximated by introducing new
structural properties and/or new techniques; yet we also believe that there will be a gap
from g, due to the “dynamic” edge weights. The novel 4-matching partitioning scheme is
seemingly better than a similar partition result which is the key to the %—approximation
for the Max-TSP problem. We strongly believe that a better approximation for the

Max-TSP problem is possible.

On the other hand, Hassin and Rubinstein gave a randomized approximation algorithm
for the Max-TSP problem with expected performance ratio % [50] (which was subse-
quently de-randomized in [27]). It would be interesting to design a randomized approx-
imation for the bandpass problem too, with a better-than-0.5358 expected performance

ratio.

43



Chapter 3

Multiple RNA Interaction
(MRIP) Problem' — An

Extension of the Bandpass
Problem

3.1 Introduction

RNA interaction is one of the fundamental mechanisms underlying many cellular pro-
cesses, in particular the genome regulatory code, such as mRNA translation, editing,
gene silencing, and synthetic self-assemble RNA design. In the literature, pairwise RNA
interaction prediction has been independently formulated as a computational problem,
in several works including [3, 66, 79]. While these variants are all motivated by certain
biological considerations, the general formulation is usually NP-hard and many special

scenarios have been extensively studied [29, 30, 52, 63, 73, 85].

In more complex instances, biologists found multiple small nucleolar RNAs (snoRNAs)
interact with ribosomal RNAs (rRNAs) in guiding the methylation of the rRNAs [70],
and multiple small nuclear RNAs (snRNA) interact with an mRNA in the splicing of
introns [94]. Multiple RNA interactions are believed much more complex than pairwise
RNA interactions, where only two RNA molecules are involved. In fact, even if we have a
perfect computational framework for pairwise RNA interactions, it might still be difficult
to deal with multiple RNA interactions since for a given pool of RNA molecules it is

non-trivial to predict their interaction order without sufficient prior biological knowledge.

Motivated by the real needs, Ahmed et al. presented in COCOON 2013 their work
on multiple RNA interaction prediction, denoted as MRIP [1]. We give some basic
definitions to introduce the MRIP problem formally. An RNA molecule is a sequence
of nucleotides (A, C, G, and U). A basepair in the RNA is presented as (i,7), where

i < j, indicating that the ¢-th nucleotide and the j-th nucleotide form a canonical

!This chapter is based on [103, 104].
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pairing (i.e., the two nucleotides are either A and U or C and G). The molecule folds
into a structure which is described as a set of basepairs. In general every nucleotide
can participate in at most one basepair, and if not, it is a free base (or nucleotide).
The set of basepairs is nested (a.k.a. secondary structure), if for any two basepairs
(i1,71) and (i2,72) with i1 < @9, either j; < ig or jo < j1; otherwise the set is crossing
(a.k.a. tertiary structure) containing pseudoknots. An interaction between two RNAs

is a basepair which consists of one free base from each RNA. In the sequel, we use

R.Q}/]N.% Ry,
Ry @- = > . 4

~N -
N

free base _ -
R —m—é Ry & s

Rl R2 Rg R4 R5 Rll Rl RIS R14

interaction and basepair interchangeably.

FIGURE 3.1: An illustration of free base, basepair-like structure and pseudoknot-like
structure, where the two pairs connected by crossing red dashed lines form to be a
pseudoknot-like structure.

In the MRIP problem, we are given a pool of RNAs denoted as R = {R1, Ra, ..., Ry}
Without loss of generality, we assume m is even and these RNAs have the same length n.
We use Ry to denote the ¢-th base of R;. Following the formulation by Ahmed et al. [1],
the possible interactions between every pair of RNAs are assumed known. In fact,
these possible interactions can be predicted using existing pairwise RNA interaction
predictors [29, 30, 52, 63, 73, 85]. For a possible interaction (R;¢,, Ri.e,), its weight
w(R; 0., Rine,) can be set using a probabilistic model or using an energy model or simply
at 1 to indicate its contribution to the structure stability. The problem goal is to find
out the order of RNAs in which they interact, that the first RNA interacts with the
second RNA, which in turn interacts with the third RNA, and so on, and how every
two consecutive RNAs interact, so as to maximize the total weight of the interactions
(to achieve the most structure stability). Throughout this section, we consider the uni-
weight case, that is to maximize the total number of interactions. Two interactions
(Riyey, Rise,) and (Rj g, Riyk,) are pseudoknot-like if ¢; < €3 but ky > ko. The MRIP
problem can allow or disallow pseudoknot-like interactions, depending on application

details similar to RNA structure prediction.

For a very special case of MRIP (the Pegs and Rubber Bands problem in [1]), where the
order of interacting RNAs is assumed and pseudoknot-like interactions are disallowed,
Ahmed at al. proved its NP-hardness and presented a polynomial-time approximation
scheme [1]. Given that predicting the interaction order is nontrivial, they also proposed
a heuristic for the more general case with unknown interacting order but still disallowing

pseudoknot-like interactions.
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In this section, we first show that the MRIP allowing pseudoknot-like interactions
and with an assumed RNA interaction order can be solved in polynomial time. Sec-
ondly, notice that the interactions are basepairs and thus follow the Watson-Crick base-
pairing rule. For four RNAs R;, Ri,, Ri,, Ri,, when there are possible interactions
(Riyeys Risey)s (Rigtys Riges)s (Riges, Rige,) (for example, they are basepairs (A, U), (U,
A), (A, U), respectively), then it is naturally to assume another possible interaction
(Riyey, Rige,) between RNAs R;, and R;,. If the given interactions satisfy the above
property then the MRIP problem is said to have “transitivity’ property. By looking
deep into the MRIP problem which allows transitivity, it is similar to the bandpass-2
problem we introduced in the last Chapter. However unlike the bandpass problem, the
interactions caused by the transitivity are not column-wise in the MRIP problem. We
show that the MRIP problem without an assumed RNA interaction order, either allow-
ing or disallowing pseudoknot-like interactions, is NP-hard, and present a constant ratio

approximation algorithm for each variant.

A
Ry

Rs

R,

Ry

FIGURE 3.2: An illustration of transitivity property, where the pair connected by green
dashed line is the possible interaction induced by the transitivity property.

3.2 MRIP with a known RNA interaction order

Within this section, the MRIP problem has a known RNA interaction order, and we
assume the order is (Ry, Ra, ..., Ry). When disallowing pseudoknot-like interactions,
Ahmed et al. [1] showed that the problem is NP-hard via a reduction from the longest

common subsequence problem.

Theorem 3.1. [1] The MRIP problem disallowing pseudoknot-like interactions is NP-
hard.

When allowing pseudoknot-like interactions, we firstly construct a graph H = (U, F)
where every vertex u;p corresponds to nucleotide R,y and two vertices are connected

by an edge if there is a given possible interaction between them. Clearly, one can see
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that a matching M of graph H gives a feasible solution to the MRIP problem allowing

pseudoknot-like interactions, and vice versa. Therefore, we have the following theorem.

Theorem 3.2. The MRIP problem allowing pseudoknot-like interactions can be solved

i polynomaial time.

3.3 The general MRIP

In the general MRIP problem, the RNA interaction order is not assumed. Instead, the
possible interactions are given for every pair of RNAs and the problem goal is to find

an interaction order achieving the maximum number of interactions.

3.3.1 NP-hardness

Theorem 3.3. The general MRIP problem, either allowing or disallowing pseudoknot-

like interactions, is NP-hard.

Proof. Given a 0-1 matrix A, xn, two consecutive 1’s in a column of the matrix is said
to form a bandpass. When counting the total number of bandpasses in the matrix, no
two bandpasses in the same column are allowed to share any common 1. The Bandpass
problem is to find a row permutation for the input matrix to achieve the maximum
total number of bandpasses. Lin proved that the Bandpass problem is NP-hard via a

reduction from the Hamiltonian path problem [64].

Let the i-th RNA be the ¢-th row of matrix A, and there is a possible interaction between
R; ¢, and R;,p, if and only if both positions have a 1. Though such constructed RNAs and
interactions are not necessarily biologically meaningful, this reduction shows the general
MRIP problem is NP-hard. Furthermore, no two possible interactions between a pair of
RNAs are crossing each other, and thus there are no pseudoknot-like interactions. Hence,
the general MRIP problem, either allowing or disallowing pseudoknot-like interactions,
is NP-hard. O

3.3.2 A 0.5-approximation algorithm

Using the possible interactions between the pair of RNAs R; and R;, we construct a
bipartite graph BG (3, j) = (V;UV}, E(4, j)), where the vertex subset V; (V}, respectively)
corresponds to the set of nucleotides in R; (R;, respectively) and the edge set E(3, j)

corresponds to the set of given possible interactions between R; and R;. That is, if
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(Rig,, Rje,) is a possible interaction, then there is an edge between Ry, and Rje, in
BG(i,j). One clearly sees that when allowing pseudoknot-like interactions, the size of
the maximum matching in BG(3, j) is exactly the maximum total number of interactions
between RNAs R; and R;; when disallowing pseudoknot-like interactions, the maximum
total number of interactions between RNAs R; and R; can be computed by a dynamic
programming algorithm similar to one for computing the longest common subsequence
between two given sequences. Either way, this maximum number of interactions is set
as the weight between RNAs R; and Rj, denoted as w(R;, R;).

We next construct an edge weighted complete graph G, in which a vertex corresponds to
an RNA and the weight between two vertices (RNAs) R; and R; is w(R;, Rj) computed
above. Since the optimal solution to the MRIP problem, either allowing or disallowing
pseudoknot-like interactions, can be decomposed into two matchings by including alter-
nate edges in the solution, the maximum weight matching M* of graph G has a weight
that is at least half of the total number of interactions in the optimal solution. It follows
that this maximum weight matching based algorithm, of which a high-level description

is depicted in FIGURE 3.3, is a 0.5-approximation to the MRIP problem.

Input: m RNAs R;,i=1,2,...,m;

Output: a permutation 7 of [m] and interactions between RNAs R, ;) and Ry (1),
fori=1,2,....m—1
1. for each RNA pair R; and R;,

1.1. construct bipartite graph BG(i, j);
1.2. compute w(R;, R;);
construct edge-weighted complete graph Gj;
compute the maximum weight matching M™* of G;
stack RNA pairs in M™ arbitrarily to form a permutation T;
output 7 and the interactions in w (R, ), R,,(Hl)).

Uk N

FIGURE 3.3: A high-level description of APPROX I.

Theorem 3.4. APPROX I is a 0.5-approximation algorithm for the general MRIP prob-

lem, either allowing or disallowing pseudoknot-like interactions.

Proof. When allowing pseudoknot-like interactions, w(R;, Rj) can be computed by a
maximum matching algorithm in O(n?) time, where n is the (common) length of the
given RNAs; When disallowing pseudoknot-like interactions, w(R;, R;) can be com-
puted by a dynamic programming algorithm in O(n?) time. It follows that the time
for constructing graph G is O(m?n3). Graph G contains m vertices, and the maxi-
mum weight matching M* can be computed in O(m?) time. Afterwards, construct-

ing the solution permutation 7 takes trivially linear time. Therefore, APPROX 1 is
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an O(max{m3, m?n3})-time 0.5-approximation algorithm for the MRIP problem al-
lowing pseudoknot-like interactions. For the MRIP problem disallowing pseudoknot-
like interactions, its worst-case performance ratio remains 0.5, but its running time is

O(max{m?, m?n?}). O

3.4 The general MRIP with transitivity

In the last section we proved the NP-hardness for the general MRIP problem, and
presented a 0.5-approximation algorithm. One can imagine that the analysis for the 0.5-
approximation algorithm must be tight, if the given possible interactions are arbitrary. In
this section, we consider a biologically meaningful spectral case where the given possible
interactions are transitive, that is, for any four RNAs R; , Ri,, Ri,, Ri,, when there
are possible interactions (R;, ¢, , Riyey)s (Riyty, Rists)s (Riges, Riye,) (for example, they are
basepairs (A, U), (U, A), (A, U), respectively), then (R; ¢, Ri,e,) is also a possible
interaction between RNAs R; and R;,. We call it the general MRIP problem with
transitivity. Note that in the proof of NP-hardness in Theorem 3.3, the constructed
instance of the MRIP problem satisfies the transitivity property. Thus, the general MRIP
problem with transitivity, either allowing or disallowing pseudoknot-like interactions, is
NP-hard too. We next show that transitivity property can be taken advantage of to

design approximation algorithms with performance ratios better than 0.5.

3.4.1 A 0.5328-approximation for disallowing pseudoknots

The improved approximation algorithm for the general MRIP with transitivity and
disallowing pseudoknot-like interactions is denoted as APPROX II, and its high-level

description in provided in FIGURE 3.4.

Note that in Step 1.2 to compute the maximum number of interactions between two
RNAs R; and R; while disallowing pseudoknot-like interactions, we can use the same
dynamic programming algorithm as used in APPROX I, which runs in O(n?)-time. In
Step 4.2, the best approximation algorithm for the Maximum-TSP (which has a per-
formance ratio of % [78]) is called to compute an acyclic 2-matching; In Step 4.3. to
compute a matching M to extend M*, the union of the edge sets of M and M™, i.e.
G[M U M*], is an acyclic 2-matching (sub-tour is another terminology often used in the
literature). So basically algorithm ApPPROX II adds to the maximum weight matching

M* of graph G a subset of edges that contains a proven fraction of interactions.

Let I denote the set of interactions in the optimal solution. Let J be set of interactions

extracted from the weights of the edges in the maximum weight matching M* of graph
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Input: m RNAs R;, i =1,2,...,m, with transitivity;
Output: a permutation 7 of [m] and interactions between RNAs R ;) and Ry (i11),
fori=1,2,...,m—1
1. for each RNA pair R; and R;,
1.1. construct bipartite graph BG(i, j);
1.2. compute w(R;, R;) disallowing pseudoknot-like interactions;
2. construct edge-weighted complete graph G using edge weight function w;
3. compute the maximum weight matching M* of G;
3.1. delete nucleotides involved in the interactions of M™;
3.2. reconstruct bipartite graph BG(i,j);
3.3. compute w'(R;, R;) disallowing pseudoknot-like interactions;
4. construct edge-weighted complete graph G’ using edge weight function w’;
4.1. compute the maximum weight 4-matching C of G’;
4.2. compute an approximate acyclic 2-matching P of G;
4.3. compute a matching M out of C and P to extend M™;
5. stack RNA paths in G[M* U M] arbitrarily to form a permutation ;
6. output 7 and the interactions in w(Rxgy, Rrit1)) + W' (Rag), Ra(it1)-

FI1GURE 3.4: A high-level description of AppPrOX II.

G. Note that neither I or J contains crossing interactions. Similarly as in the MRIP
problem with a known RNA interaction order (Section 3.2), we construct another graph
H = (U, F) for the instance where every vertex u; corresponds to nucleotide R;; and
two vertices are connected by an edge if there is a given possible interaction between
them. With respect to graph H, both I and J are non-crossing matchings. Therefore,
the subgraph of H induced by the interactions of I and J, H[I U J], is a 2-matching
of graph H, denoted by T'. Using this 2-matching T, we partition [ into 4 subsets of
interactions, I = I1 U I, U I3 U I4, and at the same time partition J into 4 subsets of
interactions, J = J; U Jo U J3 U Jy.

Since T is a 2-matching, there are only alternating paths and cycles in T. First we
consider paths. For a path of length 1, say P = (uj,ug), if its only edge/interaction is
in I NJ, then the edge belongs to I; and belongs to Ji; if the edge is in I — J, then
the edge belongs to 1Iy; if the edge is in J — I, then the edge belongs to J4. For a path
of length 3, say P = (u1,ug, us, uq), if (u1,u2), (us,us) € I, then they belong to I and
edge (ug,us3) belongs to Jo. For a path other than the above cases, the edges of I all
belong to I3 and the edges of J all belong to Js. Afterwards, we consider cycles. For
each cycle, the edges of I all belong to I3 and the edges of J all belong to J3.

Lemma 3.5. Let |X;| denote the size of, that is the number of interactions in, set X,
for X =1,J andi=1,2,3,4. We have |J1| = |L|, |J2| = 3|I2|, and |J3| > 3|I3].

Proof. By the definition of I1, J, I, J2, we can easily see |Ji| = |I1| and |Jo| = L|L5].

For I3 and Js3, from each path or cycle, the number of edges assigned to Js is either
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greater than or equal to the number of edges assigned to I3, or 1 less but in this case
the length of the path must be at least 5. Therefore, the worst case happens when two

and three edges are assigned to J3 and I3 respectively, which implies |J5| > 2[I3]. O

Corollary 3.6. We have

(| = || + [L2] + [I3] + |14, (3.1)
w(M*):‘J1’+’J2‘+‘J3‘+‘J4’, (3.2)
% 1 2
w(M”) = | L] + §|12! + g\f3|, (3.3)
. 1 1
w(M?) 2 S| = 5 (1] + 12| + s] + [La]). (3.4)

Proof. The first two equations are straightforward, following the description of parti-
tioning process and that w(M™*) = |J|. The last two inequalities follow from Lemma 3.5

and Theorem 3.4, respectively. O

After deleting bases involved in the interactions of the maximum weight matching M™*,
graph G’ is constructed the same as graph G except using weight function w’. For a path
of length 3 P = (uy, ug, us, ug), such that (u1,us), (ug,us) € I, the transitivity property
ensures that there is a possible interaction between u; and uy4. Clearly, this interaction
is left in graph G’, and such an interaction is called an induced interaction. Let G’ be
the subgraph of G’ that contains exactly those edges each of which is contributed by at

least one induced interaction.

Lemma 3.7. G, is a 4-matching in G, and its weight w'(G}) > 3| L]

Proof. To prove the first part, we only need to prove that every RNA can have induced
interactions with at most 4 other RNAs. By the definition of I3, there is an induced
interaction (u1, u4) if and only if there is an alternating length-3 path P = (uq, ug, us, ug4),
such that (uy,u2), (us,us) € I and (ug,u3) € J. Suppose up € R;,, for k = 1,2,3,4.
It follows that R;,, R, (Ri,, Ri,, respectively) are adjacent in the optimal permutation
and R;,, R;, are matched in M*. Since each RNA can be adjacent to at most two other
RNAs in the optimal solution, R;, and every RNA can have induced interactions with

at most 4 other RNAs.

The second part of the lemma follows directly from the definition of an induced inter-

action, which corresponds to a distinct pair of interactions of Is. O

It is known that in O(n??) time, a 4-matching can be decomposed into two 2-matchings [37,

49], and a 2-matching can be further decomposed for our purpose in the next few lemmas.
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Lemma 3.8. [28, 98] Let C be a 2-matching of graph G such that M*NC = (). Then, we
can partition the edge set of C into 4 matchings Xg, X1, Xo, X3 each of which extends M*.
Moreover, the partitioning takes O(na(n)) time, where a(n) is the inverse Ackerman

function.

The maximum weight 4-matching C of graph G’ can be decomposed into two 2-matchings
Cy and Co. By Lemma 3.8, C; can be partitioned into 4 matchings X, X1, X9, X3 and
Cy can be partitioned into 4 matchings Yy, Y7, Ys, Y3, each of which extends M ™.

Lemma 3.9. (98] Let C be a 4-matching of graph G such that M* NC = (). Then, we
can partition the edge set of C into 8 matchings such that each of them extends M™ and

the mazimum weight among them is at least %w’(C). Moreover, the partitioning takes
O(n??) time.

Lemma 3.10. The mazximum weight acyclic 2-matching D of graph G' has weight
w' (D) > |14

Proof. Note that graph G’ contains all interactions of I; because only bases involved in
the interactions of M* are deleted. The subgraph of graph G’ containing exactly the
edges contributed by at least one interaction of I is a subgraph of the optimal solution,

and thus it is an acyclic 2-matching in graph G’. Therefore,
w'(D) > |14

This proves the lemma. O

Lemma 3.11. [28, 98] Let P be an acyclic 2-matching of G such that M* NP = (.
Then, we can partition the edge set of P into three matchings Yy, Y1, Ys each of which

extends M*. Moreover, the partitioning takes O(na(n)) time.

Lemma 3.12. [78] The Max-TSP admits an O(n3)-time %—approximation algorithm,

where n is the number of vertices in the graph.

Corollary 3.13. The weight of the second matching M to extend M* has weight w'(M) >

max{l—lg)\fgl, 217’I4|}

Proof. Using Lemmas 3.7 and 3.9, we have
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The corollary holds. O

Theorem 3.14. Algorithm APPROX II is a 0.5328-approximation for the general MRIP

problem with transitivity and disallowing pseudoknot-like interactions.

Proof. Combining Corollaries 3.6 and 3.13, we have for any real x,y € [0, 1],

w(m) = w(M*)+w'(M)

1 2
2 z(lhf+ glll + 5l + (1 - 2)5 (11| + 1] + |Is| + 1)
1 7
+y—|12| +(1- )7|I4|
1—0—33 15+2 3+:1: 41 — 27x — 14
- (1] + = | + |+ ——— |l
54
255
> I I I
= e/l 426| 2|+426’ 3|+426| i
S 227‘1‘
4267
where the second last inequality holds by setting = = % and y = % O

3.4.2 A 0.5333-approximation for allowing pseudoknots

The improved approximation algorithm for the general MRIP with transitivity and
allowing pseudoknot-like interactions is denoted as ApPPrROX III, and its high-level de-

scription in provided in FIGURE 3.5.

Input: m RNAs R;, i =1,2,...,m, with transitivity;
Output: a permutation 7 of [m] and interactions between RNAs R ;) and Ry(i11),
fori=1,2,...,m—1

1. for each RNA pair R; and R;,
1.1. construct bipartite graph BG(i, j);
1.2. compute w(R;, R;) allowing pseudoknot-like interactions;
2. construct edge-weighted complete graph G using edge weight function w;
3. compute the maximum weight matching M* of G;
3.1. delete nucleotides involved in the interactions of M™;
3.2. reconstruct bipartite graph BG(i, j);
3.3. compute w'(R;, R;j) allowing pseudoknot-like interactions;
4. construct edge-weighted complete graph G’ using edge weight function w’;
4.1. compute the maximum weight 4-matching C of G;
4.2. compute a matching M out of C to extend M*;
5. stack RNA paths in G[M* U M| arbitrarily to form a permutation m;
6. output 7 and the interactions in w(Rx(y, Rr(it1)) + W' (Ra(i), Ra(it1)-

FIGURE 3.5: A high-level description of ApPrOX III.
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Approx III is very similar to APPROX 11, and only differs at two places. Firstly, since
the problem allows pseudoknot-like interactions, we run a maximum weight bipartite
matching algorithm to compute those edge weights, in Steps 1.2 and 3.3. Secondly,
computing a matching M to extend M* is now based only on the maximum weight 4-
matching C, of which the weight has a better estimation due to allowing pseudoknot-like

interactions.

The analysis of the algorithm flows also very similarly as in the last section. Again
we do the exactly the same interaction partitioning for the optimal solution and the
maximum weight matching M*. One can easily verify that Lemma 3.5, Corollary 3.6,
and Lemma 3.7 hold. The following lemma is key to the improvement, which estimates

a better lower bound on the weight of the maximum weight 4-matching.

Lemma 3.15. The weight of the mazimum weight 4-matching C of graph G’ is

1 1
w/(C) = max{5|Lal, 7112l + |Lal}. (3.5)

Proof. The first component straightly follows from Lemma 3.7 since G/, is a 4-matching
in graph G’. Note also that graph G’ contains all the edges of the optimal solution,
each of which is contributed by at least one interaction of Iy. This remainder optimal

solution, denoted as P, is an acyclic 2-matching in G’, and has weight w'(P) > |I4|.

Since G is a 4-matching, it can be decomposed into two 2-matchings denoted as D; and
Ds. One clearly see that both P U D; and P U Dy are 4-matchings in graph G’. The

interactions of I; counted towards P are not counted towards G’. Therefore, we have

w'((C)) > max{w (PUD;),w (PUDs)}

1

> 5 (w'(D1) +w'(Dy)) + w'(P)
1

= Sw(GY)+IL]
1

D .

>l + |1

This proves the lemma. ]

Theorem 3.16. Algorithm APPROX III is a 0.5333-approzimation for the general MRIP

problem with transitivity and allowing pseudoknot-like interactions.

Proof. The estimation of the performance ratio of 0.5333 is very similar to that of ratio

0.5328 in Theorem 3.14, and is omitted from here. O
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3.5 Conclusions and future work

We studied the multiple RNA interaction problem. For the general version, we proved
its NP-hardness and also proposed a simple 0.5-approximation algorithm. We tend to
believe that the general MRIP could be difficult to solve. Thus any inapproximablity
proof would be interesting. Based on the conditions whether the transitivity is allowed,
whether the pseudoknot-like interactions are allowed and whether the RNA interac-
tion order are assumed, we investigated several biologically meaningful variants of the
MRIP. By looking deep into the variants which allow transitivity, they are similar to
the bandpass-2 problem we introduced in the last Chapter. However unlike the band-
pass problem, the interactions caused by the transitivity are not column-wise in these
variants. We designed several approximation algorithms for these variants. Motivated
by the real applications, it would be interesting to study other variants of the multiple

RNA interaction problem under other biologically meaningful assumptions.
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Chapter 4

Exemplar Non-Breakpoint
Similarity (ENBS) Problem!

4.1 Introduction

In genome comparison and rearrangement studies, the breakpoint distance is one of the
most well-known distance measures [109]. The implicit idea of breakpoints was initiated
as early as in 1936 by Sturtevant and Dobzhansky [93]. But until only a few years
ago, it had always been assumed that every gene appears in a genome exactly once.
Under this assumption, the genome rearrangement problem is essentially the problem
of comparing and sorting unsigned (or signed) permutations [45, 48]. Computing the
breakpoint distance between two perfect genomes, in which every gene appears exactly

once, can be done in linear time.

Perfect genomes are hard to obtain and so far, can only be obtained in several small virus
genomes. In fact, perfect genomes do not occur on eukaryotic genomes where paralogous
genes are common [76, 87]. In practice, it is important to compute genomic distances
between perfect genomes, such as is done by using Hannenhalli and Pevzner method
[48]. However, one might have to handle the gene duplication problem. In 1999, Sankoff
proposed a way to select, from the duplicated copies of a gene, the common ancestral gene
such that the distance between the reduced perfect genomes (called exemplar genomes)
is minimized. For this case, Sankoff produced a branch-and-bound algorithm [87]. In
a subsequent work, Nguyen, Tay and Zhang proposed a divide-and-conquer method to

compute the exemplar breakpoint distance empirically [76].

From the algorithm complexity research viewpoint, it has been shown that computing
the exemplar signed reversal distance and computing the exemplar breakpoint distance
between two imperfect genomes are both NP-hard [17]. A few years ago, Blin and
Rizzi further proved that computing the ezemplar conserved interval distance between
two imperfect genomes is NP-hard [14]; furthermore, it is NP-hard to compute the

minimum conserved interval matching, that is, without deleting the duplicated copies

!This chapter is based on [25].
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of genes. On the approximability, for any exemplar genomic distance measure d(-,-)
satisfying coincidence axiom (i.e., d(G, H) = 0 if and only if G = H or the reversal of
H), it was shown that the problem does not admit any approximation algorithms, even
when each gene appears at most three time in each input genome [26, 112] unless P = NP.
Slightly later, this bound was tightened, as deciding when d(G,H) = 0 is NP-complete
even if each gene appears in the input genomes G and H at most twice [6, 55]. It follows
that for the exemplar breakpoint distance and the exemplar conserved interval distance
problems, there are no polynomial time approximation algorithms. Furthermore, even
under a weaker definition of polynomial time approximation algorithms, the exemplar
breakpoint distance problem is shown not to admit any weak O(n'~¢)-approximation
algorithm, for any 0 < € < 1, where n is the maximum length of the two input genomes
[26]. The exemplar conserved interval distance problem is also shown not to admit any

weak O(n!~®)-approximation algorithm [24, 112].

Complementary to the genomic distances, computing certain genomic similarities be-
tween two genomes has also been studied in [19]. In general, genomic similarity measures
do not satisfy coincidence axiom. Among others, Chauve et al. proved that computing
the mazimum exemplar common interval similarity between two imperfect genomes is

NP-hard, while leaving open the problem approximability [19].

Here we study the non-breakpoint similarity between two imperfect genomes, which
complements the breakpoint distance measure. Formally, given an alphabet 3 of n
genes and two imperfect genomes G and ‘H drawn from 3, the exemplar non-breakpoint
similarity (ENBS) problem is to delete duplicated genes from G and H such that the
number of non-breakpoints between the two resultant exemplar genomes, G and H, is
maximized. The ENBS problem is NP-hard, and here we study the approximability.
When one of the input genomes is already exemplar, the problem is called one-sided
ENBS; the general case is called two-sided ENBS. We first present a linear reduction
from the mazimum independent set (MIS) problem to the one-sided 2-repetitive ENBS
problem. This reduction implies that the one-sided ENBS problem is W{l]-hard, and
that it does not admit an O(n?5~€)-approximation algorithm, for any ¢ > 0, unless
NP = ZPP. The W[1]-hardness (see [38] for details) and the recent lower bound results
[20] imply that, if k is the optimal solution value to the one-sided ENBS problem, then
barring an unlikely collapse in the parameterized complexity theory, the problem is not
solvable in time f(k)n°®), for any function f. Our second positive result is an O(n%)-
approximation for the two-sided 2-repetitive ENBS problem. Ignoring constants, the

negative hardness result and the positive algorithmic result match perfectly.
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4.2 Preliminaries

In the (pairwise) genome comparison and rearrangement problems, we are given two
genomes, each of which is a sequence of signed (or unsigned) genes. Note that in general
a genome can be a set of such sequences; we focus on such one-sequence genomes,
often called singletons. The order of the genes in one genome corresponds to their
physical positions on the genome, and the sign of a gene indicates which one of the
two DNA strands the gene is located. In the literature, most of the research assumes
that each gene occurs exactly once in a genome; such an assumption is problematic in
reality for eukaryotic genomes and the like where duplications of genes exist [87]. For
such an imperfect genome, Sankoff proposed to select an ezemplar genome, by deleting
redundant copies of each gene, in which every gene appears exactly once. The deletion

is to minimize certain genomic distance between the resultant exemplar genomes [87].

The following definitions are very much the same as those in [17, 26]. Here, we consider
only unsigned genomes, though our results can be applied to signed genomes. We
assume a gene alphabet Y that consists of n distinct genes. A genome G is a sequence
of elements of 3, under the constraint that each element occurs at least once in G. We
allow repetitions of every gene in any genome. Specifically, if each gene occurs exactly
once in a genome, then the genome is called perfect or exemplar; otherwise imperfect. A
genome G is called r-repetitive if each gene occurs at most r times in G. For example, if

Y ={a,b, c}, then genome G = abcbaa is 3-repetitive.

Given an imperfect genome G, one can delete the redundant copies of all genes to obtain
an exemplar sub-genome G, in which each gene from ¥ occurs exactly once. For example,
if ¥ = {a,b,c} and genome G = abcbaa, then there are four distinct exemplar genomes
for G by deleting two copies of a and one copy of b: G1 = abe, Go = acb, Gs = bea, and
G4 = cha.

For two exemplar genomes G and H drawn from a common n-gene alphabet ¥, a break-
point in G is a two-gene substring g¢;g;+1 that, and its reverse g;11¢;, do not occur
as a substring in H. The number of breakpoints in G (symmetrically the number of
breakpoints in H) is called the breakpoint distance between G and H, and denoted
as bd(G, H). For two imperfect genomes G and H, their ezemplar breakpoint distance
ebd(G,H) is the minimum bd(G, H), where G and H are exemplar genomes of G and
‘H, respectively.

For two exemplar genomes G and H drawn from a common n-gene alphabet 3, a non-
breakpoint (or adjacency) in G is a two-gene substring g;g;+1 that, or its reverse g;119i,
also occurs as a substring in H. Likewise, the number of non-breakpoints in G (sym-

metrically the number of non-breakpoints in H) is called the non-breakpoint similarity
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between G and H, and denoted as nbs(G, H). Mutatis mutandis, for two imperfect
genomes G and H, their exemplar non-breakpoint similarity enbs(G,H) is the maximum
nbs(G, H), where G and H are exemplar genomes of G and H, respectively. Clearly, (ex-
emplar, respectively) breakpoint distance and (exemplar, respectively) non-breakpoint

similarity are complement to each other, and they sum to exactly n — 1.

Formally, in the ezemplar non-breakpoint similarity (ENBS) problem, we are given two
genomes G and H drawn from a common n-gene alphabet ¥, and the goal is to compute

enbs(G,H) and the associated exemplar genomes G and H of G and H respectively.

4.3 Inapproximability result

For (any instance of) the ENBS problem, OPT denotes the optimal solution value. We

first have the following lemma.

Lemma 4.1. 0 < OPT < n— 1, where n (> 4) is the size of the gene alphabet.

Proof. Let the n (> 4) distinct genes be denoted as 1,2,3,...,n. We only consider the
exemplar genomes. The upper bound of OPT is achieved by setting G = H; the lower
bound of OPT is achieved by setting G = 123...(n — 1)n (the identity permutation)

and H as follows:

0 (n—=1)(n—3)...531In(n —2)...642, if n is even,
n—1)(n—3)...642n135...(n —4)(n — 2), otherwise.

It can be easily confirmed that between this pair of G and H there is no non-breakpoint.
O

It is interesting to note that, given G and H, whether or not OPT = 0 can be easily
confirmed in polynomial time. For instance, one can use a brute-force method on each
pair of distinct genes to check whether it is possible to make them into a non-breakpoint.
Such an observation implies that there is a trivial O(n)-approximation algorithm for the
ENBS problem. Note that the complement exemplar breakpoint distance problem is
different, which does not admit any polynomial time approximation at all since deciding
whether its optimal solution value is zero is NP-complete [6, 26, 55]. The next theorem
shows that the one-sided ENBS problem does not admit any O(n%5~¢)-approximation
algorithm, for any € > 0.

Theorem 4.2. FEven if one of G and H is exemplar and the other is 2-repetitive, the
ENBS problem does not admit any O(n%>=¢)-approzimation algorithm, for any e > 0,
unless NP = ZPP, where n is the size of the gene alphabet.
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Proof. 1t is easy to see that the decision version of the ENBS problem is in NP. We next
present a reduction from the mazimum independent set (MIS) problem to the ENBS
problem in which the optimal solution value is preserved. The MIS problem is a well
known NP-hard problem that cannot be approximated within a factor of |V|'~¢, for any

€ > 0, unless NP = ZPP, where V is the vertex set of the input graph [51].

Let (V, E) be an instance of the MIS problem, where V' is the vertex set and FE is the
edge set. Let N = |V| and M = |E|, and the vertices of V' are vy, va,vs,...,vy, the
edges of I are ey, eq,€e3,...,ep. We construct a gene alphabet ¥ and two genomes G
and H as follows. For each vertex v;, two distinct genes v; and v} are created; for each
edge e;, three distinct genes e;, x; and x; are created. The alphabet Y contains in total
2N + 3M distinct genes. Let A; denote the sequence of all edges incident at vertex
v;, sorted by their indices. Let Y; = v;A;v], for i = 1,2,..., N, and Yy, = z;27, for
i=12,....,M.

Let

g = 1)11)’17)21)5 . va&xlelw&xQegx'Z e a;MeMx'M.

Clearly, G is exemplar. We distinguish two cases to construct H (as in the proof of

Lemma 4.1):

H =

YN+M—1YN+M—3 ce YIYN+MYN+M—2 . YQ, if NV + M is even,
YNim—1YN+v—3.. - YoYNimY1Ys. .. YNipr—o, otherwise.

Clearly, in either case, H is 2-repetitive. The remaining argument is identical for both

cases.

We claim that graph (V, E) has a maximum independent set of size k iff enbs(G, H) = k.
First of all, since G is exemplar, G = G. If graph (V, E) has an independent set of
size k, then the claim is trivial. To see this, we construct the exemplar genome H as
follows. For all 4, if v; is in the independent set, then we delete A; from Y; = v;A;v].
Next, all other redundant edges can be arbitrarily deleted to form H. This way, v;v} is
a non-breakpoint between G and H, and thus enbs(G,H) = k. On the other hand, if
enbs(G, ") = k, the first thing to notice is that Y; = ;2 (N +1 < j < N + M) cannot
give us any non-breakpoint; so the non-breakpoints between G and H must all come
from Y; = v;Av) (1 < i < N), with A; being deleted to create a non-breakpoint v;v;.
It follows that there are exactly k such A;’s being deleted. For any two such deleted A;
and Aj, there is no edge between v; and v, for otherwise both copies of the edge would
be deleted and consequently H would not be exemplar. Therefore, these vertices form

into an independent set in graph (V, E).
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The above reduction takes polynomial time. Since n = |X| = 2N + 3M € O(N?) and
the MIS problem does not admit any O(N'~¢)-approximation algorithm, for any e > 0,
unless NP = ZPP, our ENBS problem does not admit any O(n%5~¢)-approximation
algorithm. O

e
Y3 Y4 5 U5
FIGURE 4.1: An illustration of a simple graph for the reduction.

In the example shown in FIGURE 4.1, we have

G : v1V] VU5 U3V VLV UsVE T €12 ToeaTh T3esTh Taea T T5esTE and

7_[ . / / / / / / / / / /
L T4TYT2T9V5€4€E5V5V3€1V3V1€1€2V1 5L 5L3TL3X1L1V4€3E5V,4V2€2€3E4V5.

Corresponding to the optimal independent set {vs, v4}, we have
H : 42 xoxhvsesvlvsvhv el eov] wsxt 3t x) o) v4vjvoese vy, The two non-breaking points

are [vgvs] and [vgv)].

4.4 An O(n"%)-approximation algorithm

Here we consider the two-sided 2-repetitive ENBS problem in this section. Let ¥ =
{1,2,...,n} be the gene alphabet, and G = (g192...9p) and H = (hiha...hq) be the
two 2-repetitive genomes. For ease of presentation, for each gene i € X, an occurrence
in G or its exemplar sub-genomes is denoted by i, while an occurrence in H or its
exemplar sub-genomes is denoted by 7~. To implement our algorithm, we construct an
interval element yi+ between ¢; and g;11 for ¢ = 1,...,p — 1; likewise, we construct an
interval element Yy; between h; and hjy1 for j =1,...,¢ — 1. Moreover, for each gene 7

we construct a gene element x;.

4.4.1 Algorithm description

Between any two exemplar genomes G and H derived from G and H respectively, a non-
breakpoint 7j un-ambiguously points to two positions 7; and j; in G and two positions
iz and jo in H such that {g;,,g;,} = {¢",j7} and {hi,,hj,} = {i~,j~}; furthermore,
to obtain G from G, the substring G[i; + 1..j1 — 1] is deleted (similarly, to obtain H
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from H, the substring H[iz + 1..jo — 1] is deleted). Motivated by this observation, we
create a set S(i1, j1;i2, jo) when {g;,, g5, } = {i", 7} and {hs,, hj, } = {i~,j} for some
pair of distinct genes i and j (i < j), for all possible quadruples 1 < i; < j; < p and
1 <y < jo < q. Set S(iy,j1;i9,j2) contains those genes in G[i; + 1..5; — 1] and those
genes in H[iz + 1..j2 — 1], and additionally j; — i; interval elements yj;, yZH, cey y;qfl,
J2 — iz interval elements y, ,y; .4,..., Yjp—1> and two gene elements x; and z;. Clearly,

the total number of such constructed sets is O(n?).

We next remove some of these constructed sets from further consideration, since they
do not correspond to feasible non-breakpoints. There are two cases: In one case, G[i] +
1..71 — 1] contains a gene which occurs only once in G; in the other case, G[i; + 1..71 — 1]
contains both copies of a gene. Since deleting the whole substring G[i; +1..j; —1] of genes
leads to no exemplar sub-genomes of G, g;, g;, is not a feasible non-breakpoint. The same
procedure applies to H, that if H[io+1..jo — 1] contains a gene which occurs only once in
H or contains both copies of a gene, then h;,h;, is not a feasible non-breakpoint either.
Let S denote the collection of the constructed sets after the above removing procedure,

where each set corresponds to a feasible non-breakpoint.

Let Xt = {1t,2%,...,nT}, 7 = {17,27,...,n"}, X = {z1,29,...,2,}, YT =
{yf oy ,ygfl}, and Y~ = {y;,¥5,...,Y, 1} We construct an instance I of set
packing using the ground set U = YT UX- U X UY T UY ™ and the collection S of
subsets of U. Then, the linear time (in |U|) approximation algorithm in [46] for the set
packing problem can be applied on I to produce an approximate solution, which is a sub-
collection Approx(I) of S containing mutually disjoint sets. By the following Lemma 4.4,
the set of non-breakpoints extracted from Approx(I) can be extended into an exemplar
genome G of G and an exemplar genome H of H, such that nbs(G, H) > |Approz(I)|.
We return the pair G and H as the final solution to the ENBS problem. A high-level

description of the approximation algorithm A is in FIGURE 4.2.

Input: ¥ ={1,2,...,n} and two 2-repetitive genomes G and H
Output: Two exemplar genomes GG and H of G and H respectively

1. Construct set S(i1, j1;1i2,j2) for all possible quadruples;
2. Remove infeasible sets and form set collection S;
3. Construct an instance I of set packing:
ground set U = XTUX"UX UYTUY ™ and collection S;
4. Run the linear time set packing approximation algorithm on I:
obtain a solution Approz(I);
5. Extend Approx(I) into exemplar genomes G and H.

FIGURE 4.2: A high-level description of the approximation algorithm Agnps.
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4.4.2 Performance analysis

We first have the following result for the Set Packing problem:

Lemma 4.3. [46] The set packing problem admits an O(|U|+|S|)-time |U|*?-approzimation

algorithm, where U is the ground set and S s the collection of subsets.

Next, we exploit relationships between feasible solutions of the ENBS and the set packing

problem.

Lemma 4.4. If there is a set packing 8" C S of size k, then there is a pair of exemplar
genomes G and H, derived from G and H respectively, such that nbs(G, H) > k.

Proof. Let S1,S5,...,S, be the sets in the set packing S’. Note that these k sets are
mutually disjoint, i.e., no two of them contain a common element from U = X T U X~ U
XuYtuy-.

From the construction process of the sets of S, we know each 5; is associated with an
interval of G and an interval of H, and S; contains all the associated interval elements.
Two disjoint sets S; and S; are thus associated with two non-overlapping intervals of

G (and of H, respectively). Therefore, all the non-breakpoints corresponding to sets

S1,99,...,5 can be formed by deleting all genes from the intervals associated with
sets S1,S59,...,S5%. Moreover, if a gene i occurs only once in G (in H, respectively),
then i* (i~, respectively) does not belong to any of S, So, ..., Sk; likewise, if a gene i

occurs twice in G (in H, respectively), then i (i~, respectively) belongs to at most one
of S1,59,...,Sk. Equivalently, gene i either forms into a non-breakpoint together with
some other gene, or there is still a copy of it in each of the two genomes after deleting

all genes from the intervals associated with sets St, So, ..., Sk.

In the former case, element z; is covered by exactly one of S1, Ss, ..., S, and thus gene ¢
is in a unique non-breakpoint. In the latter case, we may keep an arbitrary copy of it in
G and an arbitrary copy of i~ in ‘H, while deleting the others if any. This way, we obtain
an exemplar genome G from G and an exemplar genome H from H, for which all the
non-breakpoints corresponding to sets Si,S9, ..., Sk are kept. That is, nbs(G,H) > k.
This proves the lemma. In addition, we see that such a pair of exemplar genomes can

be obtained from &’ in a linear scan through the genomes G and H. O

Lemma 4.5. If enbs(G,H) = k, then the optimal set packing has size at least %

Proof. Let G* and H* denote the exemplar genomes of G and H respectively such
that nbs(G*, H*) = enbs(G,H). Clearly, non-breakpoints between G* and H*, when
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regarded as edges connecting the two involved genes, form non-disjoint paths. For each
such path containing ¢ non-breakpoints, a maximum of [gl disjoint non-breakpoints
can be obtained; here two non-breakpoints are disjoint if they do not share any common
gene. It follows from the proof of Lemma 4.4 that the optimal set packing has size at
least g O

Theorem 4.6. The two-sided 2-repetitive ENBS problem admits an O(n3)-time O(n°5)-

approximation algorithm, where n is size of the gene alphabet.

Proof. Let the two 2-repetitive genomes be G and H. Their lengths are thus bounded
above by 2n. For each position pair (i1, j1) in G, we only need to look up at most 4
possibilities to construct sets, each of which contains O(n) elements. Therefore, the
instance I of Set Packing can be constructed in O(n?) time, with |U| < 7n and |S| €
O(n?). Running the approximation algorithm for set packing on I takes O(n?) time,
with the returned solution |Approx(I)| < n. Finally, a pair of exemplar genomes G and

H can be extended from Approxz(I) in O(n) time. Therefore, the overall running time
is O(n?).

From Lemmas 4.3—4.5,

enbs(G, H) 05 enbs(G,H)
nbs(G, H) > |Approx(I)| > ———=/|U|"° = ————=.
(6.H) = |Approa(n)| = *= 72 e — S22
Therefore, our approximation algorithm has a performance ratio in O(n%?). O

4.5 Conclusions and future work

We studied the exemplar non-breakpoint similarity, complement to the exemplar break-
point distance, between two imperfect genomes. We proved that the ENBS problem

0'5_5) for any positive €, even in the one-sided 2-

cannot be approximated within O(n
repetitive case, where n is the size of the gene alphabet. On the positive side, we presented
a cubic time O(n%?)-approximation algorithm for the two-sided 2-repetitive ENBS prob-
lem. Therefore, within the context of 2-repetitiveness, our negative inapproximability
and positive algorithmic results merge perfectly. We believe that our design and analysis
techniques could extend the approximation algorithm for r-repetitive, for any fixed r;
but we are not sure whether the general ENBS problem admits an (n°®)-approximation
algorithm, even in the one-sided case. On the other hand, the approximability for

the (complement) one-sided exemplar minimum breakpoint distance problem, even when

each gene appears in the imperfect genome at most twice, is still open. The only known
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negative result is APX-hardness [6], and the only positive result is the trivial O(n)-factor

approximation.
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Chapter 5

Minimum Common Integer
Partition (MCIP) Problem!

5.1 Introduction

The minimum common integer partition (MCIP) problem was introduced to the com-
putational biology community by Chen et al. [23], formulated from their work on or-
tholog assignment and DNA fingerprint assembly. Mathematically, a partition of a
positive integer x is a multiset o(x) = {ai,as2,...,a;} of positive integers such that
ai + ag + ...+ a; = x, where each q; is called a part of the partition of z [4, 5]. For
example, {3,2,2,1} is a partition of x = 8; so is {6,1,1}. A partition of a multiset
X of positive integers is the multiset union of the partition o(z) for all z of X, i.e.,
0(X) = Wyexo(x). For example, as {3,2,2,1} is a partition of ;1 = 8 and {3,2} is a
partition of zo = 5, {3,3,2,2,2,1} is a partition for X = {8,5}.

Given a collection of multisets {Xi, Xo,..., Xi} (kK > 2), a multiset S is a common
integer partition (CIP) for them if S is an integer partition of every multiset X;,1 < i <
k. For example, when k = 2 and X; = {8,5} and X2 = {6,4, 3}, {3,3,2,2,2,1} is a CIP
for them since {3,3,2,2,2,1} is also a partition for X9 = {6,4,3}: 3+3=6,2+2=4,
and 2 + 1 = 3. The minimum common integer partition (MCIP) problem is defined as
to find a CIP for {Xi, Xs,..., X}} with the minimum cardinality. For example, one
can verify that, for the above X; = {8,5} and Xo = {6,4,3}, {6,3,2,2} is a minimum
cardinality CIP. We use k-MCIP to denote the restricted version of the MCIP problem

when the number of input multisets is fixed to be k.

For simplicity, we denote the optimal, i.e. a minimum cardinality, CIP for { X7, Xo, ..., Xi}
as OPT (X1, Xa,...,Xg), or simply OPT when the input multisets are clear from the
context; analogously, we denote the CIP for { X7, X»,..., X} } produced by an algorithm
A as CIP4 (X4, Xo, ..., Xk), or simply CIP 4; without the algorithm subscript, we use

CIP to denote any feasible common integer partition.

!This chapter is based on [105].
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We mentioned earlier that the MCIP problem was introduced by Chen et al. [23], formu-
lated out of ortholog assignment and DNA fingerprint assembly. The interested readers
may refer to their paper for more detailed descriptions and the mappings between the
problems. More recently, another application of the MCIP problem in similarity com-
parison between two unlabeled pedigrees was presented in [54]. Pedigrees, or commonly
known as family trees, record the occurrence and appearance (or phenotypes) of a par-
ticular gene or organism and its ancestors from one generation to the next. They are
important to geneticists for linkage analysis, as with a valid pedigree the recombination
events can be deduced more accurately [33], or disease loci can be mapped consis-
tently [74, 75]. Jiang et al. [54] considered the isomorphism and similarity comparison
problems for two-generation pedigrees, and formulated them as the minimum common
integer pair partition (MCIPP) problem, which generalizes the MCIP problem. By ex-
ploiting certain structural properties of the optimal solutions for the 2-MCIP problem,

they were able to show that their MCIPP problem is also fized-parameter tractable [54].

5.1.1 Known results

For integer x € Z™, its number of integer partitions increases very rapidly with z. For
example, integer 3 has three partitions, namely {3}, {2,1}, and {1,1, 1}; integer 4 has
five partitions, namely {4}, {3,1}, {2,2}, {2,1,1}, and {1,1,1,1}; while integer 10 has
190,569,292 partitions according to [4].

Given a collection of multisets {X1, Xo,..., X;} (K > 2), they have a CIP if and only
if they have the same summation over their elements. Multisets with this property are
called related [22], and we assume throughout this section that the multisets in any

instance of MCIP are related, as the verification takes only linear time.

One can see that the 2-MCIP problem generalizes the well-known subset sum prob-
lem [34], based on the following observation: given a positive integer number x and a
set of positive integers X = {ai,aq,...,an}, there exists a subset of X summing to z
if and only if for the two multisets X = {ai,a2,...,an} and Y = {z,> /" a; — z},
|OPT(X,Y)| = m. Thus 2-MCIP is NP-hard [22]. Chen et al. showed that 2-MCIP is
APX-hard [22], via a linear reduction (also called an approximation preserving reduc-

tion) from the mazimum bounded 3-dimensional matching problem [56].

Let M = |X1| + | X2| + ...+ |Xk| denote the total number of integers in the k-MCIP
problem. For the positive algorithmic results, Chen et al. presented a linear time
2-approximation algorithm and an O(M?)-time 5/4-approximation algorithm for 2-
MCIP [22], based on a heuristic for the mazimum weighted set packing problem [56].

The 5/4-approximation can be taken as a subroutine to design a 0.625k-approximation

67



Chapter 5. Minimum Common Integer Partition Problem (MCIP)

algorithm for k&-MCIP (when k is even; when k is odd, the approximation ratio is 0.625k+
0.375) [111]. Woodruff developed a framework for capturing the frequencies of the inte-
gers across the input multisets and presented a randomized O (M log k)-time approxima-
tion algorithm for k-MCIP, with worst-case performance ratio 0.6139%(1 + o(1)) [111].
The basic idea is, when there are not too many distinct integers in the input multisets,
most of the low frequency integers will have to be split into at least two parts in any
common partition. Inspired by this idea, Zhao et. al. [113] formulated the k-MCIP
problem into a flow decomposition problem in an acyclic k-layer network with the goal
to find a minimum number of directed simple paths from the source to the sink. Since
this minimum number can be bounded by the number of arcs in the network according
to the well-known flow decomposition theorem [2]|, Zhao et. al. presented a scheme to
reduce the number of arcs in the network, resulting in a de-randomized approximation

algorithm with performance ratio 0.5625k(1 + o(1)), which is the currently best.

5.1.2 Our contributions

We present a polynomial-time 6/5-approximation algorithm for 2-MCIP. Subsequently,
we obtain a 0.6k-approximation algorithm for k-MCIP when k is even (when k is odd,
the approximation ratio is 0.6k + 0.4). It is worth pointing out that the ratio of 0.5625k
in [113] is asymptotic, that it holds for only sufficiently large k; while our ratio of 0.6k
is absolute, that it holds for all £ > 2.

5.2 A 6/5-approximation algorithm for 2-MCIP

In this section, we deal with the 2-MCIP problem. For ease of presentation, we denote
the two multisets of positive integers in an instance as X = {x1,z2,...,2,} and Y =
{y1,y2,...,yn}, and assume without loss of generality that they are related. Recall that,
OPT(X,Y) denotes the optimal solution — the minimum cardinality CIP for {X,Y},
and CIP4(X,Y") denotes the solution CIP produced by algorithm A.

5.2.1 Preliminaries

Chen et al. presented a simple linear time 2-approximation algorithm for 2-MCIP [21,
22], denoted as Apx21. Each iteration of Apx21 chooses an (arbitrary) element x €
X and an (arbitrary) element y € Y, and adds min{z,y} to the solution CIPppx21;
subsequently, if x = y then x is removed from X and y is removed from Y’; otherwise

min{z,y} is removed from the multiset it appears in and max{x,y} is replaced with
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max{z,y} — min{z,y} in the other multiset. Its performance ratio of 2 is seen from the
fact that |OPT(X,Y)| > max{m,n} and that the solution CIPppxo1 contains no more

than m 4+ n — 1 integers. Consequently, we have the following lemma.

Lemma 5.1. [21, 22] max{m,n} < |OPT(X,Y)| < |CIPgpxo1| < m+n — 1.

Given an instance {X,Y} of 2-MCIP and an arbitrary CIP that specifies the integer
partitions for all elements of X and Y, we say that z; € X is mapped to y; € Y if
there exists an element of CIP that is a part of the partition for x; and is also a part of
the partition for y;. This mapping relationship gives rise naturally to a bipartite graph
G(X,Y), in which the two disjoint subsets of vertices are X and Y, respectively, and
vertex x; and vertex y; are adjacent if and only if x; is mapped to y; according to the
CIP. Note that an edge of the bipartite graph G one-to-one corresponds to an element of
CIP, and in general there could be multiple edges between a pair of vertices in G(X,Y).
In the sequel, we use integer x; and vertex x; interchangeably, and use an edge of G and

an element of CIP interchangeably.

For a connected component of the bipartite graph G(X,Y), let X’ denote its subset of
vertices in X and Y’ denote its subset of vertices in Y, respectively; then X’ and Y’ are
related and they are called a pair of related sub-multisets of X and Y'; furthermore, the
edges in this connected component form a common integer partition for X’ and Y’ and
denoted as CIP(X',Y”), with |CIP(X',Y")| > |X'| + |Y'| — 1.

It might happen that the induced bipartite graph G(X,Y) by any CIP of {X,Y} is
connected, or equivalently speaking X and Y has no pair of related proper sub-multisets.
In this case X and Y are basic related multisets. For example, X = {3,3,4} and
Y = {6,2,2} are not basic since {3,3} and {6} is a pair of related proper sub-multisets;
while X = {1,4} and Y = {2,3} are basic. Define the size of a pair of related multisets
X and Y to be the total number of elements in the two multisets, i.e. |X|+ |Y|.

Lemma 5.2. [21, 22] If X and Y are a pair of basic related multisets, then |OPT(X,Y)| =
| X+ Y] —1.

If the minimum size of any pair of related sub-multisets of X andY is c, then |OPT(X,Y)| >
X+ [Y).

It is not hard to see that for any instance of 2-MCIP, the bipartite graph corresponding
to the optimal solution is a forest of the maximum number of trees, each of which
corresponds to a pair of basic related multisets. The main idea in our algorithm is to
produce a solution containing as many trees as possible, via packing as many pairs of

(basic) related multisets as possible. In the sequel, a set containing a single element
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is also denoted by the element, when there is no ambiguity, and X — X’ is the set

minus/subtraction operation. The next lemma handles size-2 related sub-multisets.

Lemma 5.3. [21, 22| For an instance {X,Y} of 2-MCIP, if x; = y; for some z; € X
and y; € Y, then x; & OPT(X — 2;,Y — y;) is a minimum CIP for X and Y, i.e.,
|OPT(X,Y)| = |OPT(X —z;,Y —y;)| + 1.

5.2.2 Algorithm description

In this section we present a new approximation algorithm, denoted as ApPX65, for com-
puting a CIP for the given two related multisets X and Y. The running time and
worst-case performance analyses are done in the next section. Essentially, algorithm
APx65 extends the set packing idea in the 5/4-approximation algorithm [21, 22], to
pack well the pairs of basic related sub-multisets of sizes 3,4, and 5. Nonetheless, our
set packing process is different from the process in the 5/4-approximation algorithm,

and the performance analysis is built on several new properties we uncover between

OPT(X,Y) and our CIP ppxgs.

Let Z = X NY denote the sub-multiset of common elements of X and Y. By Lemma 5.3
we know that OPT(X — Z,Y — Z) W Z is an optimal CIP for X and Y. Therefore, in
the sequel we assume without loss of generality that X and Y do not share any common
integer. In the first step of algorithm APX65, all pairs of basic related sub-multisets of
X and Y of sizes 3,4, and 5 are identified. A pair of basic related sub-multisets of size
i is called an i-set, for i = 3,4, 5; the weight w(-) of a 3-set (4, 5-set, respectively) is set
to 3 (2,1, respectively). We use C to denote this collection of i-sets for i = 3,4, 5.

Let the ground multiset U contain all elements of X and Y that appear in the i-sets
of C. In the second step, the algorithm is to find a set packing of large weight for the
Weighted Set Packing [12] instance (U,C). To do so, a graph H is constructed in which
a vertex one-to-one corresponds to an i-set of C and two vertices are adjacent if and only
if the two corresponding i-sets intersect. This step of computing a heavy set packing is
iterative [12], denoted by GREEDY: suppose P is the current set packing (equivalently
an independent set in H, which was initialized to contain all isolated vertices of H),
and let w?(P) = > pep w?(p) be the sum of squared weights of all i-sets of P; an
independent set T of H (equivalently a sub-collection of disjoint i-sets of C) improves
w?(P) if w*(T) > w?(N(T, P)), where N(T, P) denotes the closed neighborhood of T
in P; finally, if there is an independent set T' of size < 37 which improves w?(P), then
P is replaced by (P — N(T, P)) UT; otherwise, the process terminates and returns the

current P as the solution set packing.
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Input: Related multisets X and Y.
Output: A common integer partition CIPapxgs of X and Y.

. ILlLLtZ=XNY;
12 X+ X-Z,Y+Y -7
1.3. Identify C of all basic related sub-multisets of sizes 3,4, 5;
2. 2.1. Let U be the ground multiset;
2.2. Compute a heavy set packing P for instance (U,C) by GREEDY;
3. 3.1. Let X’ and Y’ be the sub-multisets of elements covered by P;
3.2. Run Apx21 to compute CIPppxo1(X — XY —Y");
3.3. Return Z W (Y x,unpep OPT(Xo, Y0)) & CIP ppxa1 (X — X', Y —Y7).

FIGURE 5.1: A high-level description of algorithm APx65.

Let P denote the set packing computed in the second step, and X’ and Y’ denote the
sub-multisets of X and Y, respectively, of which the elements are “covered” by the i-sets
of P. Note that P is maximal, in the sense that no more i-set of C can be appended
to P. Therefore, in the remainder 2-MCIP instance (X — X', Y — Y’), the minimum
size of any pair of related sub-multisets of X — X’ and Y — Y’ is at least 6. In the
last step, algorithm APX21 is run on instance (X — X')Y — Y”) to output a solution
CIPapx21(X — X', Y — Y’); the final solution CIP ppyxg5(X,Y) is

AT J  OPT(X0,Y5) | & CTPapxan (X — XY —Y7), (5.1)
XowWYoeP

where Xo W Yy € P is an i-set in the computed set packing P. A high-level description
of algorithm APX65 is depicted in FIGURE 5.1.

5.2.3 Performance analysis

The key to the performance guarantee is to analyze the quality of the computed set
packing P in the second step of the algorithm. Let P; denote the collection of i-sets in
P, for i = 3, 4,5, respectively. For the weighted set packing instance (U, C), we consider
one optimal set packing Q* and let @7 denote the sub-collection of i-sets in Q*, for

i =3,4,5, respectively. Let p; = |P;| and ¢ = |Q}], for i = 3,4, 5.

We further let Q;‘j be the sub-collection of Q), each i-set of which intersects with exactly
J sets of the computed set packing P, for i = 3,4,5 and j = 1,2,...,4. Let ¢; = |Q;‘]|
Because the set packing P is maximal, each set of @* must intersect with certain set(s)

in P. This implies

i
¢ =) _qj i=345. (5.2)
7j=1
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On the other hand, every i-set of Q; intersects with exactly j sets of P; therefore
5 i 5
DD Uxay) SIX+ Y =) (i x po). (5.3)

i=3 j=1 i=3

Eq. (5.2) and Eq. (5.3) together give

3¢5 + 245 + 43

3 4 5
= 3 @y +2) di+ ) 4
=1 j=1 j=1

3 4 5
< ([ Doda 2 g |+ | D odd | | D i
j=1 j=1 j=1
5 )
= DD i | 265 + d + di
=3 j—1
< (3ps +4ps +5ps) + 2651 + G50 + G- (5.4)

The following Lemma 5.4 states a key structural relationship between the computed set
packing P and the optimal set packing QQ*. Section 3 is devoted to the proof of this

lemma.

Lemma 5.4. 3¢5 + 2} + ¢ < 5(p3 + pa + ps).

By Lemma 5.3, we assume that there are no common integer elements between the two
input multisets X and Y. Lemma 5.5 presents a quality guarantee on the computed

solution CIP apxe5(X,Y), in terms of the set packing P.

Lemma 5.5. |CIPppxe5(X,Y)| <m+n— (ps+ps+p5+1).

Proof. Note from the description of algorithm APX65 in FIGURE 5.1 that, for every i-set

of the computed set packing P, its common integer partition has the minimum size 1 — 1,
for i = 3,4,5. That is,

H  OPT(Xo,Y0)| = 2ps + 3ps + 4ps, (5.5)
XowYpeP

where Xo W Yy € P is an i-set in the computed set packing P. On the other hand, on

the remainder instance (X — X' Y —Y”), algorithm APX21 returns a solution
|CIP Apxo1 (X — X' Y —Y")| <m +n — (3ps + 4ps + 5ps) — 1. (5.6)

The lemma immediately follows from Egs. (5.5, 5.6). O
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We now estimate OPT(X,Y). Let @, for i = 3,4,5 be the collection of pairs of basic
related multisets of size ¢ induced by OPT(X,Y), and let ¢/ = |Q|. It is clear that

3¢5 + 24 + g5 < 35 + 245 + g5 (5.7)

because Q* is the maximum weight set packing of the instance (U,C) and certainly

Q = QLU Q) UQE is also a set packing.
Lemma 5.6. |OPT(X,Y)| > 2(m+n) — £(3¢5 +2¢} + ¢¢).
Proof. Note that for every i-set of the set packing @), its common integer partition has

the minimum size ¢ — 1, for ¢ = 3,4,5. Every other connected component in graph
G(X,Y) induced by OPT(X,Y’) has size at least 6. Therefore, by Lemma 5.2 we have

5
[OPT(X,Y)| > 245+ 3d) +4d5+ ¢ (m +n — 3¢5 — 4¢} — 5g5)

5 1
= glm+n) = =(3d5 + 245 + g5)
5 1 * * *
> g(mn) — =305 + 241 + ¢5)-
This proves the lemma. ]

Theorem 5.7. Algorithm APX65 is a g—appmximation for 2-MCIP.
Proof. We first examine the time complexity of algorithm APx65. From the description
of algorithm APx65 in Fig 5.1, steps 1.1 and 1.2 can be done in O(m + n) and step 1.3
takes O((m+n)®) time as there are at most O((m+n)?) sets in C. Our weighting scheme
ensures that each iteration of GREEDY increases the sum of squared weights by at least 1.
Note that the sum of squared weights of any set packing is upper bounded by 3(m + n).
We conclude that the total number of iterations in GREEDY is O(m + n). In each
iteration, we check every sub-collection of C of size < 37, which takes O((m +n)>*37)

O((m + n)'®) time. That is, step 2 costs O((m + n)'8%) time. Step 3 takes linear time

as algorithm APX21 runs in linear time. In summary, the total running time of our
algorithm APX65 is O((m + n)'®5).

For its worst case performance ratio, by Lemmas 5.4, 5.5 and 5.6, we have

OPT(X,Y) = 2(m+n)— L(3¢5+2q; +q?)

o 6 mtn—(p3t+pitps+1)
T 5 m4n— (3¢5 +2q5 +q2)
< §Xm+n—(p3+p4+p5+1)
- 5 m—+n— (ps+ ps + ps)
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o 8
5

I

where m = |X| and n = |Y|. Therefore, APX65 is a S-approximation. O

5.3 Proof of Lemma 5.4

Recall the termination condition of algorithm GREEDY for computing the heavy set
packing P, that is, there is no independent set T' such that |T'| < 37 and T improves
w?(P). Also recall the weighting scheme (w3, wy, ws) = (3,2,1), where w; is the weight
of an i-set of C. We summarize in the following Lemma 5.8 some useful properties of the
sets in (03, Q1;, and Q3,, see also FIGURE 5.2. Their proofs are straightforward using

the termination condition and the weight scheme, and we skip them.

Lemma 5.8. (a) Every set of Q5 intersects with a set of P3, and no other set of
Q3 U Q) can intersect with this set of Ps; such sets of Py form a sub-collection
denoted as Py .

(b) Ewvery set of Q% intersects with a set of P3U Py.

(b1) If two sets of Q} intersect with a common set of P, then this set belongs to Ps,
and no other set of Q4; can intersect with this set of P3; such sets of P3 form
a sub-collection denoted as P32, and such sets of Q}; form a sub-collection

denoted as Q1.

(b2) If only one set of Q}; intersects with a set of P3, then no other set of Q%5 UQ%;
can intersect with this set of P3; such sets of Py form a sub-collection denoted

as P?‘?, and such sets of Q% form a sub-collection denoted as Q3.

(b3) Otherwise, a set of Q}; intersects with a set of Py, and no other set of Q%5 U
Q1 can intersect with this set of Py; such sets of Q4 form a sub-collection
denoted as Q3.

Let P} = Py — Py — P? — P3. Clearly, {P}, P}, P§, Py} is a partition of Ps; so is

{Qiﬂ, ﬁ’ Qﬁ a partition of Q.

(c) Every set of Q39 must intersect a set of Ps.

Let p} = |PJ| for j = 1,2,3,4, and ¢;] = |Q}]| for j = 1,2,3.

Lemma 5.9. We have the following relationships: ps = p}, + pg + pg + p%, o =

1 2 3.1 _ 2 1%l 3 2
qn + i1 T 1Y, P3 = G315 P3 = 5441, and P53 = q43 -
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P} P2 P} P,

\ \ I\ N
W \ W\ W\
VY \ W A

Qf" *1 *1 *2 *3
31 41 41 41 41

FIGURE 5.2: The definitions of sub-collections of P3 and (41* using the set intersect-
ing configurations, where a solid (dashed, respectively) line indicates a firm (possible,
respectively) set intersection.

Proof. The first two equalities hold since, by Lemma 5.8(b), {P31, P32, Pg, Pgl} is a par-

tition of Ps, and {Q}1, Q}2, Q;3} is a partition of Q.

The third equality holds by Lemma 5.8(a) that the sets of Q3% and the sets of Pj
one-to-one correspond to each other. Analogously, the fourth equality holds due to
Lemma 5.8(b1) that the sets of Q}} are paired up, and these pairs and the sets of P32
one-to-one correspond to each other; the fifth equality holds by Lemma 5.8(b2) that the

sets of Q}2 and the sets of P§ one-to-one correspond to each other. O

We next construct a bipartite graph H’, which is an induced subgraph of graph H that
we constructed for the Weighted Set Packing instance (U, C), as follows: One subset of
vertices of H' is Q% U Q%, U Q% (which is a sub-collection of the optimal set packing
Q*), and the other subset of vertices of H' is P (which is the computed set packing),
and again two vertices are adjacent if and only if the corresponding two sets intersect.
In the sequel, we use the set of C and the vertex of graph H (or H') interchangeably;
we also abuse the sub-collection, such as Q)3;, of sets to denote the corresponding vertex
subset in graph H (or H'). Once again recall that the termination condition of GREEDY

tells that there is no improving sub-collection of Q3; U Q3, U Q}; of size < 37.

We prove Lemma 5.4 by showing that the inequality holds in every connected com-
ponent of graph H’, followed by a straightforward linear summation over all connected

components. We therefore assume without loss of generality that graph H' is connected.

The following lemma says that the set packing algorithm GREEDY packs a lot more
3-sets into P than 4-sets and 5-sets.

Lemma 5.10. If ps + p5 > 2, then in graph H' the length of the shortest path between
any two vertices a,b € PyU Ps is d(a,b) > 76; consequently, ps > 37 and psy+ps < %pg.

Proof. Let a and b be two vertices of Py U P5 such that there is no other vertex from

P, U P5 on a shortest path connecting them in graph H’. Since H' is bipartite, this path
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has an even length and is denoted as
(a = ag,co,a1,¢1,...,ap,¢o,app1 =),

for some ¢ > 0 (see FIGURE 5.3). Since every vertex ¢; on the path has degree at
least 2, it has to belong to @3, and consequently it has degree exactly 2 in graph
H'. Tt follows that for the independent set T' = {co,c1,...,ce}, w?(T) = 9(£ + 1) and
w?(N(T, P)) = w?({ag,a1,...,ae:1}) < 9+ 8. We conclude that £ > 37 as otherwise
T would be an improving subset of vertices. Therefore, the length of the above shortest

path is d(a,b) > 76 and it contains at least ¢ > 37 vertices of Ps.

P

a = Qp aq Ay a[+1:b

Co 1 PN e Cy

Q35 UQ5UQYL
FIGURE 5.3: The configuration of the shortest path connecting a,b € P, U Ps.

To prove the second half of the lemma, we notice that graph H’ is connected. For every
vertex a € P,U P;5, we pick arbitrarily another vertex b € PyU Ps and consider a shortest

path connecting them in graph H’ that does not contain any other vertex from Py U Ps:
<a =ap,€C0,a1,C1y...,0Qp,Cp,Qp41 = b>7

for some ¢ > 37. Initially every vertex of Py U Ps is worth 1 token; through this path,
vertex a distributes its 1 token evenly to vertices ai,as,...,a1s, which are all vertices
of P3. After every vertex of Py U P; has distributed its token, from ¢ > 37 we conclude

that every vertex of P3 receives no more than % token. Therefore,

1
< —ps.
P4+ ps < 182?3

This proves the lemma. O

From Lemma 5.10, we see that the number of 4-sets and 5-sets in the computed set pack-

ing P is very small compared against the number of 3-sets. In the following Lemma 5.11
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we prove that 2¢3; + ¢35 + ¢4; < 2p3 + ps through an amortized analysis. By Eq. (5.4),

Lemma 5.11 is sufficient to prove Lemma 5.4.

Lemma 5.11. 2¢3; + ¢35 + q3; < 2p3 + pa.

PRrROOF. The proof of the lemma is through an amortized analysis, and is done via five
distinct cases. In the following five lemmas (Lemmas 5.12, 5.13, 5.14, 5.15, 5.18), we
assign 2 tokens for each vertex of 3, and 1 token for each vertex of @3, U @};. So we

have a total of 2¢3; + ¢3, + ¢4, tokens. We will prove that 2q¢3, + ¢35 + qi; < 2p3 +ps by
distributing these tokens to the vertices of P.

We consider the following five distinct cases of graph H', which are separately dealt with
in Lemmas 5.12, 5.13, 5.14, 5.15 and 5.18:

Case 1. ¢3; = q3; =0,

Case 2. ¢3; =1 and ¢j; =0,

Case 3. ¢3; =0 and ¢j; = 1,

Case 4. ¢4, = 0 and ¢}; = 2 with either ¢j{ =2 or ¢}? = 2,

Case 5. g3 + q3; > 2 excluding Case 4.

(Proof of Lemma 5.11 to be continued)

Lemma 5.12. (Case 1) If ¢5; = q3; =0, then 2¢5; + ¢35 + g4y < 2p3 + pa.

Proof. From Lemma 5.8(c), every set of Q3, must intersect a set of P5. If py + p5 < 1,
then we have 2¢3, < 3p3 +5. It follows that when p3 > 5, 2¢3, < 3p3+5 < 4p3 and thus
205+ @+ a5 < 2p3+ps. When ps3 = 4 (3,2,1,0, respectively), w?(P) < 40 (31,22,13,4,
respectively) and thus g3, < 4 (3,2,1,0, respectively) by algorithm GREEDY; that is,
¢39 < p3, and consequently 2¢3; + ¢35 + q1; < 2p3 + pa.

If ps +ps > 1, every set of Q)3, distributes % token to each adjacent set of P. Note that

every i-set of P receives at most 3 token, by Lemma 5.10,

S i ot S < St Dk gy =
qd32 = 2 2pz > 2]93 9 PiTDP5) > 2]93 9 18p3 = 36p37
and consequently 2q3; + g3 + q3; < 2p3 + pa. u

Lemma 5.13. (Case 2) If ¢5;, =1, qj; =0, then 2¢3; + ¢35 + ¢} < 2p3 + pa.
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Proof. From Lemma 5.8(a, ¢), the unique set of Q3; must intersect a set of P3 and every
set of Q3 must intersect a set of Ps3. If ps + ps < 1, then we have 1 4 2¢3, < 3p3 + 5,
or 2¢3 + ¢4 < 3p3 + 4. It follows that when p3 > 8, 2¢5; + ¢35, < 2p3 and thus
20351 + @y + @41 < 2p3+pa; when 2 < pg < 7, 9(g3; + %) < w?(P) < 9p3+4 by algorithm
GREEDY, and consequently 2¢5; + ¢3, + ¢4; < 2p3 + psa; when p3 = 1, w?(P) < 13 and

thus ¢3, = 0 by algorithm GREEDY, and consequently 2¢3; + ¢35 + qj; = 2 < 2p3 + p4.

If ps + ps > 1, the unique set of Q3; distributes its 2 tokens to the adjacent set of Ps,
and every set of 3, distributes % token to each adjacent set of P. Note that every
i-set of P receives at most % token, except the one adjacent to the unique set of Q3;, by

Lemma 5.10 we have,

5 .
) 3 3 5 3 59 3
2q5 30 < —pi+ = <= - < — < 2ps,
q31+q32_;2pz+2_2p3+2(p4+p5)+2_36p3+ Ps
and consequently 2q3; + ¢35 + q3; < 2p3 + pa. O

Lemma 5.14. (Case 3) If g5, =0, qi; = 1, then 2¢3, + @50 + ¢} < 2p3 + pa.

Proof. From Lemma 5.8(b, c), the unique set of }; must intersect a set of P3 U P4 and
every set of (Q3, must intersect a set of P3. If py + ps < 1, then we have 2¢3, +1 <
thus 2¢5, + g5 + ¢f; < 2p3 + pa; when 1 < p3 < 5, 9¢3, +4 < w*(P) < 9p3 +4
by algorithm GREEDY, and consequently 2¢3; + ¢35 + ¢j; < 2p3 + ps4; when p3 = 0,

3ps + 5, or ¢35+ qj; < %p;; + 3. It follows that when p3 > 6, ¢35, + ¢j; < 2p3 and

ps = 1 and w?(P) = 4 and thus ¢}, = 0 by algorithm GREEDY, and consequently
293, + @32 + a3 = 1 < 2p3 + pa.

If ps+ps > 1, the unique set of Q}; distributes its 1 token to the adjacent set of P3U Py,
and every set of )3, distributes l token to each adjacent set of P. Note that every
i-set of P receives at most % token except the one adjacent to the unique set of Q};, by

Lemma 5.10 we have,

N 59
432+ qi1 < Z 5Pt 2_%;03—}- < 2p3,

and consequently 2q3; + ¢35 + q1; < 2p3 + pa. O
Lemma 5.15. (Case 4) If ¢, = 0 and ¢}, = 2 with either i} = 2 or g2 = 2, then

2q3 + q32 + a4y < 2p3 + pa.

Proof. From Lemma 5.8(b1, b2, ¢), each of these two sets of Q}; must intersect a set

of P3 and every set of Q3, must intersect a set of P3. If py + ps < 1, then we have
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2g39 +2 < 3p3 + 5, or g3 + qj; < %pg + % It follows that when ps > 7, g35 + qj; < 2p3
and thus 2¢3; + ¢35 + ¢4 < 2p3 + pa; when 2 < p3 < 6, 93, + 8 < w?(P) < 9pz + 4

by algorithm GREEDY, and consequently 2¢35; + g3, + q§; < ps + 5 < 2ps + pa; when
p3 = 1, g3, = 0 by algorithm GREEDY, and consequently 2¢3; + ¢35 +q3; = 2 < 2p3 + pa.

If ps + ps > 1, each of the two sets of @}, distributes its 1 token to the adjacent set of
P3, and every set of (03, distributes % token to each adjacent set of P. Note that every

i-set of P receives at most § token, except the one(s) adjacent to the two sets of Qj,

by Lemma 5.10 we have,

5 .
7 59

30 aqn < —pi+1< —p3+1<2ps,

q32 Q41_Zz;2pz _36;03 P3

and consequently 2¢3; + ¢35, + ¢4y < 2p3 + pa. o

Note that in Case 5 we have g3, + ¢3; > 2, but if ¢3; = 0 and ¢J; = 2 then we should
have ¢} # 2 and ¢} # 2. Note that we do not have the scenario where ¢j; = 2 but
¢iF = 1, because sets of Q%1 always come in pairs by definition. That is, if g3; = 0 and

¢} = 2 then we should have ¢}} > 1.

Lemma 5.16. In Case 5, g3, > 35 and for any set a € Q% U Q% in graph H',

(a) ifa € Q3UQSS, then for any other set b € Q% UQ%, we have distance d(a,b) > T4;

(b) if a € Q31, then there is evactly one other set b € Q% such that distance d(a,b) <

74; furthermore, b € Qjﬁ too and they come as a pair defining their memberships

of Qi

(c) if a € Q}3, then there is at most one other set b € Q4 such that distance d(a,b) <

38; furthermore, if such a set b exists, then b € Q32 too.

Proof. The proof is similar to the proof of Lemma 5.10. We first notice that the scenario
where there are only two sets in @35, U Q}; and they are adjacent to the same set of P is
included in Case 4. That is, in Case 5, we always have (at least) two sets of Q5 U Q};

not adjacent to the same set of P. Let a and b denote these two sets of Q3; U Q};.

Since H’ is bipartite, the shortest path connecting a and b has an even length and is

denoted as
(a = ag,co,a1,¢1,--.,as,Cp,ap11 =b),
for some ¢ > 1. Since every vertex a; (i = 1,2,...,¢) on the path has degree at least

2, it has to belong to ()%, and consequently it has degree exactly 2 in graph H' (see
FIGURE 5.4).
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P

Co (&1 Cy

a:ao al .. e (lg az+1:b

Q5 UQy Q% Q5 U QL
FIGURE 5.4: The configuration of the shortest path connecting a,b € Q3%; U Q};.

Let T = {ap,a1,...,a¢+1}. Clearly, N(T,P) = {co,c1,...,¢c¢}. If a € QF, we have
w*(T) > 9(¢ + 1) + 4 and w?(N(T,P)) < 9(¢ + 1). The termination condition of
algorithm GREEDY implies that the size |T'| = ¢ + 2 > 37, and thus d(a,b) > 74. One

part of Item (a) is proved.

Consider the remaining case where both a and b are in Q};. If at least one of N(T, P) =
{co,c1,... ¢} is in Py U Ps, then we have w?(T) = 9¢ + 8 and w?(N(T, P)) < 9/ + 4.
Again the termination condition of algorithm GREEDY implies that |T| = ¢+ 2 > 37,
and thus d(a,b) > 74. The other part of Item (a) is proved.

If none of N(T,P) = {co,c1,...,ce} is in Py U Ps, that is, all of them are in P3, then
we have w?(T) = 9¢ + 8 and w?(N(T, P)) = 9¢ + 9. Consider first a € Q31, and let o’
denote the other set of Q31 which comes together with a as a pair (see Lemma 5.8(b1)),
and let 77 = T U {a’}. One clearly sees that N(T", P) = N(T, P), w*(T") = 9 + 12 >
w?(N(T', P)) = 9¢+9. Therefore, again the termination condition of algorithm GREEDY
implies that |T'| = ¢+2 > 37, and thus d(a, b) > 74. This proves Item (b), as d(a,a’) = 2.

We next consider both a and b are in Q}3. Note that if |Q}3| = 2, that is, Q}? contains
only two sets a and b, then Item (c) is proved. We therefore let b’ denote any set of Q2
other than a and b. Using the same argument as in the last paragraph, if ¢’ is adjacent to
any of N(T, P) = {co,c1,...,ce}, then |T| = £+2 > 37, and thus d(a,b) > 74; otherwise

we let the shortest path connecting a and o’ be
!/ / / / / / / /
(CL = Qp,Cp, A1,C1y - >a£’7cé’7af’+1 =b >

for some ¢/ > 1, which has the maximum overlap with the shortest path connecting a
and b. This maximum overlap means the induced subgraph by these two paths does not
contain a cycle. Let T" = {ag,a},...,ap,,} and N(T', P) = {c,c},...,cp} C Ps, and
we have w?(T") = 9¢' + 8 and w?(N(T", P)) = 9 + 9. Let the overlapping sub-path be

(a = ag,cp,a1,c1,...,a0,Co) (see FIGURE 5.5).
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a:ao al .o oe. aO a0+1 .o oe. ... a[ a£+1:b

FIGURE 5.5: The configuration of the overlapping shortest paths connecting a,b € Q32
and connecting a,b’ € Q3.

We then have

/ !/ /!
TUT ={ag,a1,...,00,0o41s 041,015 0po),

/ / /
N(TUT',P) ={c0,C1,--,Co,Coflyr--sCtCoy1s---rCp}s
and thus

w(TUT) =90+ —0)+ 12,
w2 (N(TUT',P)) =9+ ¢ —0)+9.

Therefore, again the termination condition of algorithm GREEDY implies that |7 U
TN =¢+0—-0+3>37,or L+ ¢ —0 > 34. Thus max{/,¢'} > 18, implying that
max{d(a,b),d(a,b’)} > 38. This proves Item (c) of the lemma.

Lastly, to estimate the quantity ¢3,, we know from all the above proof that, either there
is a pair of sets of Q%; U Qj}; at distance > 74, and thus ¢, > 36, or otherwise ¢}7 > 3
and from the last paragraph we have ¢35, > ¢+¢'—o0 > 35. This completes the proof. [J

Lemma 5.17. In Case 5, ¢5; + %qﬁ + %qﬁ + qﬁ < $q§2.

Proof. The proof is similar to the proof of Lemma 5.10.

For every vertex a € @3, U @33, by Lemma 5.16(a) we pick arbitrarily another vertex

b € Q% UQj, and consider a shortest path connecting them in graph H’ that does not
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contain any other vertex from Q3; U Q};:
(a = ag,co,a1,C1,...,a¢,¢pap41 =b),

for some ¢ > 36.

For any two vertices a,a’ € Q1 that come as a pair to define their memberships, by
Lemma 5.16(b) use exactly one of them say a (and mark a’) and pick arbitrarily another
vertex b € Q3 U Q% (b # a') to consider their shortest path in graph H’ that does not

contain any other vertex from Q3; U Q};:
<CL = a0,C0,01,C1y.-.,Qp,Cp,Qpy1 = b>7

for some ¢ > 36.

For any vertex a € @32, if there is another vertex a’ € Q}? such that d(a,a’) < 38, by
Lemma 5.16(c) use the one of them say a (and mark a’) for which there is another vertex
b € Q5 UQ}; such that d(a,b) > 38 and consider the shortest path connecting a and b

that does not contain any other vertex from Q3 U Q};:
<CL = a0,C0,Q01,C1y.-.,Qp,CpyQpy1 = b))

for some ¢ > 18.

Initially every vertex of @3, UQ7%; is worth 1 token, except those marked vertices; through
the picked path, vertex a distributes its 1 token evenly to vertices ai,as,...,ag, which
are all vertices of Q3,. After every vertex of Q3; U Q}; has distributed its token, from
¢ > 18 we conclude that every vertex of (3, receives no more than % token. Therefore,

1 1 1
@+ iqiﬁ + iqiﬁ +q5; < 5852

This proves the lemma. O

Lemma 5.18. (Case 5) If g5, > 1 and ¢j; > 1, orif g5, =0 and ¢j; > 3, orif g5, =0
and ¢ = 2 with ¢;3 > 1, then 2¢3, + ¢y + ¢} < 2p3 + pa.

Proof. Recall that we assign 2 tokens for each vertex of ()5, and 1 token for each vertex
of (3, UQ7};. So we have a total of 2¢3; + ¢35 + ¢J; tokens. These tokens are distributed
to the vertices of P in the same way as before, that each vertex of Q)3; distributes its
2 tokens to the adjacent vertex of P, each vertex of )}, distributes its 1 token to the

adjacent vertex of P, and each vertex of @3, distributes its % token to every adjacent
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vertex of P. Let t(a) denote the total tokens received by a vertex a € P; we have

3, a€e€ P31;
%, a € P32;
2, ac P
ta) <4 (5.8)
5, @ € P?jl,
%, a € Py;
k%’ a € Ps.

It follows that

2g31 + q30 + a1

5 3 5 5
(31)% + Sp3 + 2p3 + pé) + Sps+ops

IN

2 2 2 2

5 3 5 5
= <3p§ + 51?3 +2p3 + 5 (3 —pi—p3 —p§)> + 5Pt 5

14 5 5
P3|+ P4+ D5

= (Spe b ptt
- P TPy pPL Ty

2

3 3, 1, 1 5 5
= 5]03 + <2q31 + 5%% + 2QZ%> + 5]?4 + 5]?5 (by Lemma 5.9)

2 2 3 3 2 2

3 3 1. 5 5
BYE + B X §q32 + P + b5 (by Lemma 5.17)
6 /3 5

— | =p3+ -pa + > (by manipulation)
manipulation
5\ gP3 T oPat b5 p

3 3 * 1 *1 1 *2 5 5 3 3
= —p3s+-|g+-qn + 5971 ) + =pa+ =ps (by manipulation)

IN

IN

9
= gpst 3 (pa+ps). (5.9)

If ps + ps < 1, Eq.(5.9) becomes 2¢3; + ¢35 + ¢i; < %pg + 3. From Lemma 5.16 we

know that there is a shortest path of length at least 38 in graph H’ connecting two
vertices of 3, U Q4. Therefore, p3 + ps + ps > 19. It follows that ps > 18, and thus
2q31 + q30 + q5y < 2p3 < 2p3 + pa.

If ps + ps > 1, by Lemma 5.10, Eq. (5.9) becomes

2q31 + q32 + qu1 < 53 +3 X P8 < 2p3 < 2p3 + pa.

This proves the lemma. O

PROOF (of Lemma 5.11, continued). The five distinct cases of graph H', separately dealt

with in Lemmas 5.12, 5.13, 5.14, 5.15 and 5.18, are complete by considering all possible

83



Chapter 5. Minimum Common Integer Partition Problem (MCIP)

values of quantity g3, + ¢j;. And in each case we have proved that 2¢3; + ¢35 + qj; <
2p3 + pa. O

5.4 A 0.6k-approximation algorithm for k-MCIP

Given an instance of the k-MCIP problem {Xi, Xo,..., Xy}, we first divide these k
multisets into |k/2| pairs {Xo;—1, Xoi}, i = 1,2,...,|k/2], plus the last multiset X}, if
k is odd. Next, we run algorithm APX65 on each pair {X9;_1, Xo;} to obtain a solution
Z; = CIP apxes5(Xai—1, Xo;), for i = 1,2,...,[k/2], plus Z(j41)/2 = Xy if k is odd. We
continue this dividing and running ApX65 on {Z1, Z2, ..., Zj41)/21} if [(K+1)/2] > 2,
and repeat until we have only one multiset left, denoted as CIPgp,1. Clearly, CIPgyq is

a common integer partition of the given multisets X1, Xo, ..., Xj.

Theorem 5.19. k-MCIP admits a 0.6k-approximation algorithm when k is even, or a
(0.6k + 0.4)-approximation algorithm when k is odd.

Proof. The algorithm in the last paragraph producing a feasible solution CIPgy, runs
in polynomial time. We next estimate its performance, and assume that k is even.
By Theorem 5.7, we have |Z;| < $|OPT(Xop;—1, X2)|, for i = 1,2,...,k/2. Let OPT
denote the minimum common integer partition for X, Xo, ..., X. One clearly sees that
|OPT(X2;—1,X2i)| < |OPT|, and from Lemma 5.1 we have

k/2 k)2

6 3k
|CIPfipal| < Z Zi| < Z = |OPT| = —|OPT].
i=1 =1
When £ is odd,
(k—1)/2 (k—1)/2 3k 1+ 2
ClPmal < 3 |1Z+ Xkl < 3 Z|OPT|+]OPT| = =—|OPT],

i=1 i=1

using | Xj| < |OPT| from Lemma 5.1. This completes the proof. O

5.5 Conclusions and future work

We studied the minimum common integer partition problem (k-MCIP) and improved
the previous best approximation ratio for the 2-MCIP. The main idea is that we applied
a novel local search method inspired by the local structure of the 2-MCIP and the
similarity between the 2-MCIP and the weighted t-set packing problem. There are many

directions for the future work for the k-MCIP. One way is to find more specific local
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structure of the 2-MCIP. The second way is to look deep into the relation of the 2-MCIP
and the unweighted t-set packing problem or even the hypergraph matching problem and
then to design new local search strategy. The third way is to investigate the k-MCIP
with larger k& > 2 to see whether our current method is still available. Another way
is to design efficient heuristics for the real application because the k-MCIP has some
biological meanings as we introduced in the first section. Here we need to mention that
our approximation algorithm for the 2-MCIP has been modified to an online toy game.
2 Amazingly, our algorithm is quite fast and returns the almost optimal solution in
most cases. So it would be interesting to investigate our algorithm under the smoothed

analysis model to see its “real” theoretical performance.

2This game was implemented in summer 2014 by Yifan Song, a summer student from the University
of Waterloo. Here is the link for the game: http://beiseker.cs.ualberta.ca:8080/MCIP/.

85


http://beiseker.cs.ualberta.ca:8080/MCIP/

Chapter 6

Minimum Independent
Dominating Set (MIDS)
Problem!

6.1 Introduction

An independent set in a graph G = (V,E) is a subset of vertices that are pair-wise
non-adjacent to each other. The independence number of G, denoted by a(G), is the
size of a maximum independent set in G. One close notion to independent set is the
dominating set, which refers to a subset of vertices such that every vertex of the graph is
either in the subset or is adjacent to some vertex in the subset. In fact, an independent
set becomes a dominating set if and only if it is maximal. The size of a minimum
independent dominating set of G is denoted by i(G), while the domination number of
G, or the size of a minimum dominating set of G, is denoted by «(G). It follows that
1G) <i(G) < al@).

Another related notion is the (vertex) coloring of G, in which two adjacent vertices must
be colored differently. Note that any subset of vertices colored the same in a coloring of
G is necessarily an independent set. The chromatic number x(G) of G is the minimum

number of colors in a coloring of G. Clearly, o(G) - x(G) > |V].

The independence number a(G) and the domination number v(G) (and the chromatic
number x(G)) have received numerous studies due to their central roles in graph theory
and theoretical computer science. Their exact values are NP-hard to compute [44], and
hard to approximate. Raz and Safra showed that the domination number cannot be ap-
proximated within (1—¢) log |V| for any fixed € > 0, unless NP ¢ DTIME(|V [legloglV1) [39,
82]; Zuckerman showed that neither the independence number nor the chromatic num-
ber can be approximated within |[V[!=¢ for any fixed ¢ > 0, unless P = NP [114]; for
i(G), Halldérsson proved that it is also hard to approximate within |V|!=¢ for any fixed
¢ > 0, unless NP ¢ DTIME(2°(VD) [47].

'This chapter is based on [100, 101].
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The above inapproximability results are for the worst case. For analyzing the average
case performance of approximation algorithms, a probability distribution of the input
graphs must be assumed and the most widely used distribution of graphs on n vertices
is the random graph G(n, p), which is a graph on n vertices, and each edge is chosen to
be an edge of G independently with a probability p, where 0 < p = p(n) < 1. A graph
property holds asymptotically almost surely (a.a.s.) in G(n,p) if the probability that a
graph drawn according to the distribution G(n, p) has the property tends to 1 as n tends
to infinity [16].

Let Ln = log; ,_p) n. Bollobds [15] and Luczak [65] showed that a.a.s. x(G(n,p)) =
(14 o(1))n/Ln for a constant p and x(G(n,p)) = (1 + o(1))np/(21n(np)) for ¢/n <
p(n) < o(1) where c is a constant. It follows from these results that a.a.s. a(G(n,p)) =
(1 —0(1))Ln for a constant p and a(G(n,p)) = (1 —o(1))21In(np)/p for C/n < p < o(1).
The greedy algorithm, which colors vertices of G(n,p) one by one and picks each time
the first available color for a current vertex, is known to produce a.a.s. in G(n,p) with
p > n! a coloring whose number of colors is larger than the x(G(n,p)) by only a
constant factor (see Chapter 11 of the monograph of Bollobas [16]). Hence the largest
color class produced by the greedy algorithm is a.a.s. smaller than a(G(n,p)) only by a

constant factor.

For the domination number v(G(n,p)), Wieland and Godbole showed that a.a.s. it
is equal to either |Ln —L((Ln)(lnn))] + 1 or |Ln —L((Ln)(lnn))| + 2, for a con-
stant p or a suitable function p = p(n) [110]. It follows that a.a.s. i(G(n,p)) >
|Ln — L((Ln)(Inn))| + 1. Recently, Wang proved for i(G(n,p)) an a.a.s. upper bound
of |[Ln — L((Ln)(Inn))] + k + 1, where & = max{1,1L2} [108].

Average case performance analysis of an approximation algorithm over random instances
could be inconclusive, because the random instances usually have very special properties
that distinguish them from real-world instances. For instance, for a constant p, the
random graph G(n,p) is expected to be dense. On the other hand, an approximation
algorithm performs very well on most random instances can fail miserably on some
“hard” instances. For instance, it has been shown by Kucera [62] that for any fixed
€ > 0 there exists a graph G on n vertices for which, even after a random permutation of
vertices, the greedy algorithm produces a.a.s. a coloring using at least n/logy n colors,
while x(G) < n°.

We study the approximability of the minimum independent dominating set (MIDS)
problem under the smoothed analysis, and we present a simple deterministic greedy al-
gorithm beating the strong inapproximability bound of n'~¢, with polynomial expected
running time. The MIDS problem, and the closely related independent set and domi-

nating set problems, have important applications in wireless networks, and have been

87



Chapter 6. Minimum Independent Dominating Set Problem (MIDS)

studied extensively in the literature. Our probabilistic model is the smoothed extension
of random graph G(n,p) (also called semi-random graphs in [67]), proposed by Spiel-
man and Teng [92]: given a graph G = (V, E), we define its perturbed graph g(G,p)
by negating the existence of edges independently with a probability of p > 0. That is,
9(G, p) has the same vertex set V as G but it contains edge e with probability p., where
pe =1 —pif e € F or otherwise p, = p. For sufficiently large p, Manthey and Plocien-
nik presented an algorithm approximating the independence number «a(g(G,p)) with a

worst-case performance ratio O(,/np) and with polynomial expected running time [67].

Re-define Ln = log, /, n. We first prove on v(g(G,p)), and thus on i(g(G,p)) as well, an
a.a.s. lower bound of Ln — L((Ln)(Inn)) if p > L. We then prove on a(g(G,p)), and
thus on i(g(G,p)) as well, an a.a.s. upper bound of 2Inn/p if p < 1 or 2Inn/(1 — p)
otherwise. Given the a.a.s. values of a(G(n,p)) and i(G(n,p)) in random graph G(n, p),
our upper bound comes with no big surprise; nevertheless, our upper bound is derived by
a direct counting process which might be interesting by itself. Furthermore, we extend
our counting techniques to prove on i(g(G,p)) a tail bound that, when 4In*n/n <
p < %, Prli(g(G,p)) > \/M] < 27" We then present a simple greedy algorithm to
approximate i(g(G,p)), and prove that its worst case performance ratio is \/m and

its expected running time is polynomial.

6.2 A.a.s. bounds on the independent domination number

We need the following several facts.
Fact 6.1. eTr# < 1+ 2 < e® holds for all x € [-1,1].
Fact 6.2. (%)T <M< (%)T holds for allT =0,1,2,...,n.

Fact 6.3. (Jensen’s Inequality) For a real convex function f(x), numbers x1, xa, ..., Tn

in its domain, and positive weights a;, f (%a;xl> < Z%J; (‘mi); the inequality is reversed

if f(z) is concave.

Given any graph G = (V| E), let g(G, p) denote its perturbed graph, which has the same

vertex set V as G and contains edge e with a probability of

1—p, ifeek,
Pe =
P, otherwise.
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6.2.1 An a.a.s. lower bound

Recall that v(g(G,p)) and i(g(G,p)) are the domination number and the independent
domination number of g(G, p), respectively. Also, Ln = log; /N

Theorem 6.4. For any graph G = (V, E) of large enough size, say n > 30, and ZInﬁ <
p<1l-— 21“”, a.a.s.
1(g(G,p)) = Ln — L((Ln)(Inn)).

Proof. Let S, be the collection of all r-subsets of vertices in g(G, p), and these (Z) sets
of S, are ordered in some way. Define I; as a boolean variable to indicate whether or

not the j-th r-subset of S, Vj, is a dominating set; set X, = Zj I7

Clearly, v(g(G,p)) < r implies that there are size-r dominating sets. Therefore,
Prly(g(G,p)) <r] < Pr[X, > 1] < E(X,),

where E(X,) is the expected value of X,. (We abuse the notation E a little, but its

meaning should be clear at every occurrence.)

For the j-th r-subset Vj, let E; be the subset of induced edges on V; from the original
graph G = (V, E); let Vi =V —Vj, the complement subset of vertices. Also, for each
vertex u € VY, define E(u,V;) = {(u,v) € E | v € V;}, and its size ny; = |E(u, Vj)|.

Using Fact 6.1, we can estimate E(X,) as follows:

EX)=>B1) = S I] (t-I] @ -ruw)
7j=1

ueVy veV;

H eXp | — — DP(u,w)

ueVy UEV] )

VAN
1M

= Zexp - Z H p(uv
j=1

uEVc veVj

= Zexp — Zp"uj(l_ 7" nw)
j=1

c
uEVj

— exp —Z( ) (1—p)

j=1 uevy
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Since function f(z) = (7£;) is convex in the domain [0, n], by Jensen’s Inequality, the

above becomes

Z N

B(X,) <> exp —( pp>n_ S =) (1 - p)

. 1
Since function g(z) = e~*"? with a = (ﬁ)wr and b= (n—r)(1—p)" is concave in the

domain [0,72], again by Jensen’s Inequality, we further have

G
PP
E(X»s(n)exp ‘<p>(n_T()] DT ey | 6

Recall that n,; is number of edges in the original graph G = (V, E) between u and
(7)

vertices of V;. Each edge e € E is thus counted towards the quantity Z Z Nuj
j=1 uEVjC

-2
exactly 2<n 1) times. That is,
r —

0 N
33 = (ff_f)rE\:(’”)((n))‘E'- (62)

— c 2
j=1ue fi

Using Eq. (6.2), Fact 6.2 and r = Ln — L((Ln)(Inn)), Eq. (6.1) becomes

B(X,)

IN
Y
N———

@

"

ol

|
/N

—_
|

i
N———

—~

N3

~—|

—~

S
|

N

—

—_
|

i

~—

3

< (e (- (%) w-na-»)
() e~ -»)
< exp (rlnn—i—r—rlnr—7(Ln)(lnn)(n—r))
= exp((Ln)(Inn) — L((Ln)(Inn))Inn+r —rinr — (Ln)(Inn) + r(Ln)(Inn)/n)
= exp(—L((Ln)(Inn))Inn —r (Inr — (Ln)(Inn)/n — 1))
< exp(—L((Ln)(Inn))Inn —r (Inr — 2)). (6.3)

The right hand side in Eq. (6.3) approaches 0 when n — +oo. Since 21“” <p<l1l-— 21“”
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with large enough n, n > 30, guarantees » > 1, Ln — L((Ln)(Inn)) is an a.a.s. lower

bound on (g(G,p)). This proves the theorem. O

Since Pri(g(G,p)) < r] < Pr[y(g(G,p)) < r|, we have the following corollary:

Corollary 6.5. For any graph G = (V,E) of large enough size, say n > 30, and

2Inn 2lnn
=SS <p<l-—=7", aas.

i(a(G, p)) > Ln — L((Ln)(lnn)).

6.2.2 An a.a.s. upper bound

Recall that a(g(G,p)) is the independence number of g(G, p).

Theorem 6.6. For any graph G = (V, E), a.a.s.

21nn7 ipr(ann,%],

n
fou, fpef1-2en)

S

a(g(G,p)) <

=}

Proof. Let S, be the collection of all r-subsets of vertices in g(G,p), and these (’;) sets
of S, are ordered in some way. Define I7 as a boolean variable to indicate whether or
not the j-th r-subset of S, is an independent set; set X, = 3, I7. Since a(g(G,p)) >
implies that there is at least one independent r-subset, i.e. X, > 0, the probability of
the event a(g(G,p)) > r is less than or equal to the probability of the event X, > 0, i.e.

Pria(g(G,p)) > r] < Pr[X, > 0].

On the other hand, let A; denote the event I7 = 0, i.e. the j-th r-subset is not indepen-
dent. It follows that X, = 0 is equivalent to the joint event ﬂjAg, ie.

Pr[X, = 0] = Pr[n;A7] > [[ Pr(4}] = [J(1 - PrI} =1]).

Therefore, we have

Prla(g(G,p)) > 7] <1— H(1 — Pr[I] =1)). (6.4)

Let E7 denote the subset of edges of g(G, p), each of which connects two vertices in the
j-th r-subset of S,. Note that |E7| € [0, (5)]. Among all the edges of E7, assume there
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are ny of them coming from the original edge set I of G. It follows that

T

Prilf =1]= [[ (1 -pe) = (ﬂ) T1—pB).

p
eEEJT

Using this and Fact 6.1 in Eq. (6.4) gives us

Prla(a(G.p) > 7] < 1= [[=Prlry = 1)

Pr[l} = 1]

(7)
= 1_11“p<_1—P¢q:10

= l—exp| —

= l—exp|— . (6.5)

Consider the function f(z) = t2t- in Eq. (6.5), where a = 5 >0,b=(1 —p)(2) €

1—a®

(0,1), and 0 < z < (3). Since its derivative

<0, ifa<l,
/, «_ a®blna - o
f (J}) - (1 _ CLzb>2 = O, ifa= 1,

>0, ifa>1,

f(x) is strictly decreasing if a < 1, or strictly increasing if a > 1. Therefore, the

maximum value of function f(z) is achieved at z =0 if a <1, or at = = (g) ifa>1.

When p < 3, that is a = £ < 1, Eq. (6.5) becomes

p
() NG
Prla(g(G,p)) >r] < 1—exp| — 4 El(l ﬁ)p)(z)
- o (n (1 — p)(z)
=1 I« &%_@_m@> o0
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(n) (1—117)(£>

To prove Pr[a(g(G, p)) > 7] = 0asn — +o00, we only need to prove that (’ A —
1-(1-p)*?
0 as n — 4o00. Using Fact 6.2, we have
W a-p® )y
o TR & RN O RN (&-9)
()" -1 (&) -

Setting r = 2Inn/p. We see that r — 400 as n — +00. On the other hand, when r is

large enough, we have

(ORI

Using Eq. (6.8) and Fact 6.1, when n is sufficiently large, Eq. (6.7) becomes

(”E)T ne

<n> (1-p)&
r)1-(1-p)B) <1>(£) T(ﬁ>2

IN

IN
Y Y Y —~
3
©]
>
ke}
N
T
S
*@’w‘ﬁ ®
5
w‘l
—
N———
.
—
+
2
—_
N

< (e:) (1 +o(1)). (6.10)

5 T
The quantity <e:) in Eq. (6.10) is less than 0.5" when n is sufficiently large, the latter

approaches 0 when n — +o0o. This proves that when p < %, Pr[a(g(G,p)) > r] — 0 as
n — +oo. That is, when p < 1, a.a.s. a(g(G,p)) < 2Inn/p.

When p > 3, that is a = 1%; >1,¢g=1-p < 3 and exactly the same argument as

1
2

2Inn/(1 — p). This proves the theorem. O

when p < 5 applies by replacing p with 1 — ¢, which shows that a.a.s. a(g(G,p)) <
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Since a(g(G,p)) > i(g(G,p)), Prli(g(G,p)) > r] < Prla(g(G,p)) > r] and thus we have

the following corollary:

Corollary 6.7. For any graph G = (V, E), a.a.s.

i(g(G,p)) < S dpe ()

n
21 . 1 21n
e pp e (11— 2oy,

6.3 A tail bound on the independent domination number

Theorem 6.8. For any graph G = (V,E) and p € (41212", 31,

Pri(a(G.p) > |/ ] < Pria(a(@p) 2 [ 2] <27

Proof. The proof of this theorem flows exactly the same as the proof of Theorem 6.6.
In fact, with p < 1, we have both Eq. (6.6) and Eq. (6.7) hold. Different from the proof

of Theorem 6.6 where r = 2lnn/p, we have now r = % > 2Inn/p and therefore

Eq. (6.8) holds as well. Again, using Eq. (6.8) and Fact 6.1, when n is sufficiently large,
Eq. (6.9) still holds. It then follows from Fact 6.1 that Eq. (6.6) becomes

Prli(g(G,p)) =] < Prla(g(G,p)) = 7]

nelt5 "
< 1—exp <— ( . > (1 +0(1))> . (6.11)

P T
Using r = %”, we prove in the following that (”61;1,2) (I +o0(1)) = o(1). And

consequently by Fact 6.1 again and r = ,/ 4?" > 1/8n, Eq. (6.11) becomes

nelt5 )"
Pri(g(G,p)) = 7] < ( rp> (1+0(1))

TP
e

IN
/\
=
3

r(lnr—i—;rp Inn—-1-72

Il
NN L\:\m w\ro
’U
/\/\/—\
%

1 1
lnr+4rp lnn—l—p> —4r2p>

1
lnr+4rp Inn—1-=
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The quantity (lnr + irp —Inn—-1- g) in Eq. (6.12) is non-negative when n > 2, since
1 1 1 1
lnr—l—zrp—lnn—l—g > Eln(Sn)—l—Z 4np—1nn—l—1
1 1 [ 4 1
> 5111(871)—{-1 4n - I;n—lnn—l—z
1 )
> 0.

It follows that Eq. (6.12) becomes

1
Pr[z(g(G,p)) 2 7"] S g(BXp <—T‘ <h’17" + Z?"p —Inn—1-— g) _ n)
< g e "
< 27"
This proves the theorem. 0

6.4 Approximating the independent domination number

We present next a simple algorithm, denoted as Approx-IDS, for computing an inde-
pendent dominating set in g(G, p). In the first phase, algorithm Approx-IDS repeatedly
picks a maximum degree vertex and updates the graph by deleting the picked vertex and
all its neighbors; it terminates when there is no more vertex and returns a subset I of V.
If 1] < \/% , algorithm Approx-IDS terminates and outputs I; otherwise it moves into
the second phase. In the second phase, algorithm Approx-IDS performs an exhaustive

search over all subsets of V', and returns the minimum independent dominating set I*.

Theorem 6.9. For any graph G = (V,E) and p € (4ln2” 11, algorithm Approx-IDS is

n 2

a 1/4?"—appmazimation to the MIDS problem on the perturbed graph g(G,p), and it has

polynomial expected running time.

Proof. Note that i(g(G,p)) > 1. The subset I of V' computed by algorithm Approx-IDS
is a dominating set, since every vertex of V is either in I, or is a neighbor of some vertex
in I. Also, no two vertices of I can be adjacent, since otherwise one would be removed
in the iteration its neighbor was picked by the algorithm. Therefore, I is an independent
dominating set of g(G,p). It follows that if algorithm Approx-IDS terminates after the
first phase, |I]| < \/% -i(g(G, p)). Also clearly the first phase takes O(n3) time.
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In the second phase, a maximum of 2" subsets of V' are examined by the algorithm. Since
checking each of them to be an independent dominating set or not takes no more than
O(n?) time, the overall running time is O(2"n?). Note that this phase returns I* with
|[I*| = i(g(G,p)). As a(g(G,p)) > |I| > 4?”, Theorem 6.8 tells that the probability of
executing this second phase is no more than 27". Therefore, the expected running time

of the second phase is O(n?). This proves the theorem. O

6.5 Conclusions and future work

We performed a probabilistic analysis of the approximability of the minimum indepen-
dent dominating set problem and proposed an O(\/%)—approximation algorithm with
polynomial expected running time. Our version of the minimum independent dominat-
ing set problem is a classic version, where each vertex has an unit weight. It would
be interesting to conduct a smoothed analysis for the weighted minimum independent
dominating set problem under the perturbation model which perturbs the weight of each

vertex.
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Chapter 7

Trie and Patricia Index Trees!

7.1 Introduction

A Trie, also known as a digital tree, is an ordered tree data structure for storing strings
over an alphabet ¥. It was initially developed and analyzed by Fredkin [42] in 1960
and Knuth [61] in 1973. Such a data structure is used for storing a dynamic set to be
exploited as an associative array, where keys are strings. There has been much recent

exploitation of such index trees for processing genomic data.

In the simplest form, let the alphabet be ¥ = {0, 1} and consider aset S = {s1, S2,...,5n}
of n binary strings over X, where each s; can be infinitely long. The Trie for storing
these n binary strings is an ordered binary tree T’s: first, each s; defines a path (infinite
if its length |s;| is infinite) in the tree, starting from the root, such that a 0 forces a
move to the left and a 1 indicates a move to the right; if one node is the highest in the
tree that is passed through by only one string s; € S, then the path defined by s; is
truncated at this node, which becomes a leaf in the tree and is associated (i.e., labelled)
with s;. The height of the Trie Ts built over S is defined as the number of edges on the
longest root-to-leaf path. FIGURE 7.1 shows the Trie constructed for a set of six strings.
(These strings can be long or even infinite, but only the first 5 bits are shown, which

are those used in the example construction.)

FIGURE 7.1: The Trie constructed for {s; = 00001..., s, = 00111..., s3 = 01100.. .,
84 =01111..., s5 =11010..., sg = 11111...}.

'This chapter is based on [102].
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Let H,, denote the height of the Trie on a set of n binary strings. It is not hard to
see that in the worst case H,, is unbounded, due to the existence of two of the strings
sharing an arbitrary long common prefix. In the uniform distribution model, bits of
s; are independent and identically distributed (i.i.d.) Bernoulli random variables each
of which takes 1 with probability p = 0.5. The asymptotic behavior of Trie height H,
under the uniform distribution model had been well studied in the 1980s [36, 40, 41, 69,
80, 81, 83, 95, 96], and it is known that asymptotically almost surely (a.a.s.)

H,/logon — 2, when n — oo.

S1 S92 83 54

FIGURE 7.2: The Patricia constructed for {s; = 00001..., s = 00111..., s3 =
01100..., s4 =01111..., s5 = 11010..., sg = 11111...}.

A Patricia index tree is a space-optimized variant of the Trie data structure, in which
every node with only one child is merged with its child. Such a data structure was firstly
discovered by Morrison [72] in 1968, and then well analyzed in “The art of computer
programming” by Knuth [61] in 1973. FIGURE 7.2 shows the Patricia tree constructed
for the same set of six strings used in FIGURE 7.1. Again let H, denote the height of
the Patricia tree on a set of n binary strings. In the worst case, H, = n — 1, where s; is
in the form 1...100... with a prefix consisting of ¢ — 1 consecutive 1’s. Under the same
uniform distribution model assumed for an average case analysis on Trie height, Pittel

showed that a.a.s. the height of Patricia is only 50% of the height of Trie [80], that is,

H,/logon — 1, when n — oc.

The average case analysis is intended to provide insight on the practical performance as a
string indexing structure. In 2002, Nilsson and Tikkanen [77] experimentally investigated
the height of Patricia trees and other search structures. In particular, they showed that
the heights of the Patricia trees on sets of 50,000 random uniformly distributed strings
are 15.9 on average and 20 at most. For real datasets consisting of 19,461 strings from
geometric data on drill holes, 16,542 ASCII character strings from a book, and 38, 367
strings from Internet routing tables, the heights of the Patricia trees are on average 20.8,

20.2, 18.6, respectively, and at most 30, 41, 24, respectively.
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Theoretically speaking, these experimental results suggest that worst-case instances are
perhaps only isolated peaks in the instance space. This hypothesis is partially supported
by the average case analysis on the heights of Trie and Patricia structures, under the
uniform distribution model, that suggests the heights are a.a.s. logarithmic. Never-
theless, these average case analysis results on the specific random instances generated
under the uniform distribution model could be inconclusive, because the specific ran-
dom instances have very special properties inherited from the model, and thus would

distinguish themselves from real-world instances.

We conduct the smoothed analysis on the heights of Trie and Patricia index trees, to
reveal certain essential properties of these two data structures. We first introduce the
string perturbation model, and show an a.a.s. upper bound O(logn) and an a.a.s.
lower bound Q(logn) on the Trie height H,. The consequence is that the smoothed
height of the Trie on n strings is in ©(logn). Then, we achieve similar results for
the smoothed height of the Patricia tree on n strings, that is, H, = ©(logn), which
explains the practical performance of Patricia in the experiments conducted by Nilsson
and Tikkanen [77].

7.2 The smoothed height of Trie

We consider an arbitrary set S = {s1,$2,...,8,} of n strings over alphabet {0, 1},
where each string may be infinitely long. Let s;(¢) denote the ¢-th bit in string s;, for
1=1,2,...,nand £ =1,2,3,.... Every string s; is perturbed by adding a noise string
v;, giving rise to the perturbed string §; = s; + 4, where §;(¢) = s;(¢) if and only if
v;(£) = 0. The noise string v; is independently generated by a memoryless source, which
assigns 1 to every bit of string v; independently and with a small probability e € [0, 0.5].
More formally,

Pr{v;(¢) =1} =eforeach £ =1,2,3,....

Essentially the perturbation flips each bit of every string independently and with a
probability e. Let S = {31, 32,...,5,} denote the set of perturbed strings.

Let pfj be the probability of the event {3;(¢) = 5;(¢)}. We have

A :
pfj _ 2¢(1 —¢€) = p, X if s;(0) # s5(¢), (7.1)
Ee+(1—e?=1-p=gq, ifs;(t)=s;(0).

We can clearly note that ¢ > p, since ¢ < 0.5. Let Cj; denote the length of the

longest common prefix between §; and §;. Since Cj; = k if and only if 5;(¢) = 5;(¢)
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for £ =1,2,...,k but not for £ = k + 1, the probability of {C;; = k} for any k > 0 is

k
Pr{Ci; =k} = (prj> (1 =)
(=1

From the fact that {C;; = k} and {C;; = m} are disjoint events when k # m, we have
for any k£ > 1

k-1 m m+1 k
pricy <0 = 3 (T~ 0 ) =1 T
m=0 \/=1 /=1 =1

Consequently, the probability that the longest common prefix between 5; and §; is at

least k long is
k
Pr{Ci; > k} =1 - Pr{Ci; < k} = [ [ »};- (7.2)
=1

7.2.1 An a.a.s. upper bound

We use a slight abuse of notation H,, to also denote the height of the Trie constructed

for S. We can express H,, in terms of Cj; as

By Boole inequality [32], we have

Pr{H, >k} = Pr{ max Cj; >k}

IN
A/
N3
~_
e

A
)
oS
IN
A/~
o
N
<
“??‘

where the last equality holds when all the n strings {s1, s2,. .., s,} have the same prefix

of length k. By setting k = 2(1 + §)log; /,n for a constant § > 0, we have
PT’{Hn > k} < (g) q2(1+6) logl/qn < n—2(5 N 0’

as n — co. Therefore, H,, < 2log; /, n with high probability, when n approaches infinity.

7.2.2 An a.a.s. lower bound

To estimate a lower bound, we will use the following Chunge-Erdés formulation of the

second moment method on a set of events:
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Lemma 7.1. (Chunge-Erdés) [31] For any set of events E1, Ea, ..., Ey,

(Ci, Pr{E})”

Pr{u®* Bl > .
WS ES = S bl + Yy, PriBiNE)

Let A;; denote the event {Cj; > k}, for every pair {7, j} such that 1 <i < j < n; also

define the following two sums:

A
S1=2 1<icjen Pr{dij}, and
A
2 = i gypteny Pridi N Ast

Then by Chunge-Erdés formulation (Lemma 7.1), we have

St

PT{Hn > k} = PT{U1§i<j§nAij} > S+ SQ.

(7.3)

Let’s first estimate S1. From Eq. (7.2), one clearly sees that

k
Si= > Pr{d}= > ]} (7.4)

1<i<j<n 1<i<j<n £=1

Recall the definition of pfj and its value in Eq. (7.1). The following Lemma 7.2 is then

straight-forward:

Lemma 7.2. For any £ > 1 and any three perturbed strings 5;,5;, 5¢, if pfj = pft, then

Pl =q.

Lemma 7.3. For any three perturbed strings s;, 5;, 5¢,
A k k k s
So = []05 + [ [ ol + [ [ 7 = 305" a5".
=1 r=1 =1

Proof. For the string pair (s;,s;), let Z;; denote the number of (0,1)-pairs and (1,0)-
pairs in {(s;(¢),s;(¢)),1 < ¢ < k}, that is, the number of bits where s; and s; have
different values among the first & bits. Clearly from Eq. (7.1),

k

{ Zii k—Z;j
Hp”:p Jq 7,
/=1

For the string triple (s;, s, 5¢), let ;; denote the number of (0,0, 1)-triples and (1, 1, 0)-
triples in {(s;(¢), s;(£),s¢(¢)),1 < £ < k}; likewise, x;; and z;; are similarly defined. Also
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let y denote the number of (0,0, 0)-triples and (1,1, 1)-triples in {(s;(£), 5;(£), s¢(¢)),1 <

¢ < k}. The following relationships are direct consequences of the definitions:

Zij = Tit + Tjt,
Zig = Tij + Tjt,
Zjt = xij + Tit,

k=xij+ i+ x50 +y.

It follows that

So

k k k
prj + prt + Hpﬁt
/=1 /=1 /=1

_ pxit+$jt qxij-i-y 4 p:cij-i-xjt qxit-&-y + pxij-i-rit qxjt"!‘y

Tij+y Tit+y Tit+Y
DR
p p p

One can check that, since ¢ > p, the quantity in the last line reaches the minimum when

xij = Ty = xj = k/3 and y = 0. That is,
AT i b .
So = [ 1p5 + 11 p% + [ ] #5 = 3p3%¢5".
=1 (=1 (=1
This proves the lemma. 0

Note that each string pair (s;, s;) is involved in exactly n — 2 string triples (s;, 55, 5¢),

for t #4,j. By Lemma 7.3, Eq. (7.4) becomes

k

¢

sio= > [I#
1<i<j<n =1

1 n 2 1p
> 3p3Tg3
> (5wt

_ <g>p§kq;k, (7.5)

We next estimate Sp, which is a bit harder because two events A;; and Ay may not be

independent. We split Sy into two parts: So = S} 4+ S%, where

Sy2 3 Pr{A;n Ay}, and
(1.4} {s.t=0

SyE 3 Pr{AynAg).
(1.4} (.t} 20
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Since two events Cj; and Cg are independent when {7, 5} N {s,t} = (), we can estimate

SY as follows:

$o= Y (Pr{dg)Pr{Aa})
(1) {s:t}=0
2
(i3}

IA

Event {A;;NA;:} is equivalent to the event in which the first & bits of all three perturbed

strings §;, 5;, and §; are identical. Using € < 0.5, we have

PT{AU‘ N Azt} = PT’{§Z(€) = 5](@ = §t(€), 1</i< k}

k
< (63 +(1- 6)3) .
It follows that
Sé/ = Z PT{A,;J' N Ast}
{330 {st}#0

< o5) (a0 <3(),

where the factor 3 arises because a string triple {3;,5;,5;} gives rise to three events

{Aij N Ait}7 {Azg N Ajt}7 and {Azt N Ajt}-

Putting S5 and SJ together, we can upper bound Sz by

So =S, + 8! <S2+3 <§> (7.6)

Using the estimates of S and Sy in Egs. (7.5) and (7.6) respectively, Eq. (7.3) becomes

St
pPr{H, >k} > S 15,
B 1
181+ (Sh+ 85)/5%
- 1
T 1/S1+1+85/5%
. 1
- 3(3)
I+ — + -
(3)p3Fqb" ((Z)Ja%ktﬁl?k>2
1
>

1+ 4n‘2p_%kq_%k + 2n_1p_%kq_%k
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1

= 1 4+ 4n—2n2(1-9) 4 2p—1pl-d (77)
1

 144n"20 4 2n—°

> 1-0(n7% =1,

where the inequality Eq. (7.7) is achieved by setting

k=2(1-9) log/pﬁ/sqﬂ/s n, that is, p’%kq*%k — n2(1’5),
for a constant 6 > 0. Therefore, H, is larger than 21og, /3,-1/s n with a high probability

when n approaches infinity.

Theorem 7.4. The smoothed height of the Trie on n strings is in ©(logn), where the

bit perturbation model is i.i.d. Bernoulli distribution.

7.3 The smoothed height of Patricia

Here we briefly do the smoothed analysis on the height of the Patricia tree on a set of
n binary strings. We adopt the same ¢.7.d. Bernoulli bit perturbation model as in the
last section. Again, we present an a.a.s. upper bound and an a.a.s. lower bound for

the smoothed height.

7.3.1 An a.a.s. upper bound

Following Pittel [80], on the set of n perturbed strings S = {51, 82,...,8,}, we claim
that for any fixed integers k > 0 and b > 2, the event {H,, > k + b — 1} implies the
event that there exist b strings s;,, §;,, . . ., §;, such that their common prefix is of length
at least k (denoted as Cj,4,. 5, > k). The correctness of the above claim follows from
because, in Patricia trees, there are no degree-2 nodes (except for the root), and thus
a path of length k£ + b — 1 hints at least b leaves in the subtree rooted at the node at

distance k from the Patricia root.

Similar to the definition of pfj in Eq. (7.1), pfﬂz..‘z’b denotes the probability of the event

{551 = ~§2 =...= .§fb}, for any b > 2, which is calculated as follows:

pflig...ib = (1 —e)koehr (1 — e)freho,
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where ko and k; are the number of 0’s and 1’s among the b bit values §;, (¢), 5, (¢), .. ., 5;,(¢),

respectively. By a similar argument as presented for Pr{4;;} in Section 2, we have

k
¢
Pr{Ciiy..ip > k} = Hpilig...ib'
=1

For a fixed b > 2, let g, = ¢® + (1 — €)® and k = ky = b(1 + §/2) log /g, n. We have

k= b(1+6/2)logy/q n

= (1+4/2)

Inn

g 1/

Inn
In (e + (1 — e)b) "/
Inn
In (€2 + (1 —€)2) /2
= 2(1+44/2)logyqn,

= (1+6/2)

< (1+0/2) (7.8)

where the inequality in Eq. (7.8) holds for any b > 2. Setting b = dlog; /,n, it follows
that

Pr{H, > 2(1 + §)logy /,n}

IN

Pr{H, > k+b—1}

IN

PT{. max. Cilig...ib Z k}

11,82,-++,0p

k
b Y
n Hpilig...ib
=1

b k
n-qy

IN

€ O(n ) —=o,

when n — oo.

In summary, for any é > 0, we have
Pr{H, > 2(1 + §)log; ), n} € O(n~%) = 0,

when n approaches infinity, and thus a.a.s. H, < 2(1+ ) logy /¢ 1.

7.3.2 An a.a.s. lower bound

Let D; be the depth of node labelled §; in the Patricia tree.
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Clearly, H,, = max}"; D; and the §;+ reaching the maximum depth must be a leaf node.
It follows that if H, < k, then at least one of the 2 possible length-k strings does not

appear as a prefix of any perturbed strings §1, §o, ..., §y.

Let Ln =log; /. n and k = Lgy.,. We have

Pr{H, <k} < 2¥Pr{no 3; starts with k 0’s}
< 2k(1 . ek)n
< 2k676kn

exp{kIn2 — €*n}
_n
Llnn

exp{ln2-L —Llnn} — 0,

n
Llnn-*

when n approaches infinity, and thus a.a.s. H, > L
In summary, we have the following theorem.

Theorem 7.5. The smoothed height of the Patricia on n strings is in ©(logn), where

the bit perturbation model is i.i.d. Bernoulli distribution.

7.4 Conclusions and future work

We conduct the smoothed analysis on the heights of Trie and Patricia index trees, to
reveal certain essential properties of these two data structures. We showed that the
smoothed height of the Trie on n strings is in ©(logn). And we achieved a similar result
for the smoothed height of the Patricia tree on n strings, that is, H,, = O(logn), which
explains the practical performance of Patricia in the experiments conducted by Nilsson
and Tikkanen [77]. In our string perturbation model, we assume the perturbation for
each position is independent. It would be interesting to investigate these two data
structures under a new string perturbation model, which considers the dependence of

the noise added to every pair of positions.
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Chapter 8

Conclusions and Future Work

8.1 Summary

How to evaluate the performance of an algorithm is a very important subject in computer
science, for understanding its applicability, for understanding the problem to which it
is applied, and for the development of new ideas that help to improve the existing
algorithms. There are two main factors, i.e. the performance measure and the analysis

model, that affect the evaluation of an algorithm.

The performance of an algorithm can be evaluated by many performance measures. Usu-
ally, these measures are time-related or space-related. The ideal case is that an algorithm
can always return an optimal solution to a problem while the time and space consumed
are within an appropriate tolerance. Unfortunately, most interesting optimization prob-
lems raising from the real world applications are NP-hard. For these problems, we need
to look for trade-offs between the qualities of the solution and the running time (or space
consumption) of the algorithm, and thus approximation algorithms would attract more

interests.

For the analysis models, there are two classic analysis approaches, i.e. the worst-case
and the average-case analyses. An algorithm with good worst-case performance is very
desirable because it performs well on all possible inputs. However, a bad worst-case
performance does not necessarily imply that the algorithm performs also badly in prac-
tice. It might be the case that the “hard” instances are relatively “isolated” in the
instance space. This motivates to study the average-case performance rather than the
worst-case performance. But the average-case analysis is often problematic because it is
not clear how to choose a “reasonable” probability distribution on the set of inputs and
thus most average-case analyses assume simple distributions instead, which make the
analysed instances do not reflect typical instances. The smoothed analysis circumvents
the drawbacks of worst-case and average-case analyses. It can not only rule out artificial
worst-case instances by the random perturbation, but also prevent the analysed instances
dominated by completely random instances since the adversary can approximately de-

termine the structure of the instance. By defining the perturbation appropriately, the
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smoothed performance would be more “realistic”. Since the smoothed analysis was in-
troduced by Spielman and Teng in 2001, it has achieved a series of successes on running

time analysis for many the most interested algorithms.

In this thesis, we concentrated on the analysis of approximation ratios for the approxima-
tion algorithms under the worst-case analysis and the smoothed analysis. In particular,
we designed currently the best approximation algorithms for several interesting NP-hard

problems from bioinformatics, networking and graph theory.

8.2 Future work

Though there are several commonly used perturbation models as we introduced in Chap-
ter 1, it is hard to define a reasonable one for most discrete combinatorial optimization
problems. For example, for the minimum independent dominating set problem in Chap-
ter 6, the perturbed graph is defined based on a simple extension of the Erdos—Rényi
model. Such a perturbation model indeed introduces a small amount of randomness (or
noise) by the intuition that an edge will be presented in the perturbed graph with high
(low, respectively) probability if it is (isn’t, respectively) originally in the given graph.
Nevertheless, in real application this might be unreasonable as the perturbation for
each edge might not be independent. Therefore to define more reasonable perturbation

models are quite challenging for the future work.

For an approximation algorithm, we usually concentrate on the quality of the solution it
returns. As far as we know, there are very few papers studying the smoothed analysis on
approximation ratio. We guess it is mainly due to the difficulty to estimate the optimal
solution, given that it is already very challenging to estimate an optimal solution under
the average-case analysis model, which is much “weaker” than the smoothed analysis.
However, in real world applications, lots of approximation algorithms perform very well
in practice but have poor approximation ratios under the worst-case analysis. Therefore,
smoothed analysis on the performance ratio of approximation algorithms is of great
significance and would help us to understand these algorithms better. Besides, for a
certain problem, there may exist some quantity that reveals some essential properties of
the problem itself, which in turn may help us to better understand the problem or to
design new more efficient and more effective algorithms. Thus measuring such quantities
under the smoothed analysis would also be of great significance. What’s more, it would
be interesting to use these smoothed measures to depict the instance space in the future

research work.
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