
Approximation Algorithms under the

Worst-case Analysis and the Smoothed

Analysis

by

Weitian Tong

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c©Weitian Tong, 2015

https://www.cs.ualberta.ca/
http://www.ualberta.ca/

Abstract

How to evaluate the performance of an algorithm is a very important subject in com-

puter science, for understanding its applicability, for understanding the problem which

it is applied to, and for the development of new ideas that help to improve the ex-

isting algorithms. There are two main factors, i.e. the performance measure and the

analysis model, that affect the evaluation of an algorithm. In this thesis, we analyse

algorithms with approximation ratio as a measure under the worst-case analysis and

the smoothed analysis. In particular, several interesting discrete optimization problems

from bioinformatics, networking and graph theory are investigated, and currently the

best approximation algorithms are designed for them under the classic analysis model

— the worst-case analysis and the more “realistic” model — the smoothed analysis.

ii

Acknowledgements

It would not have been possible to write this thesis without the support and encourage-

ment of many people, to whom I wish to express my sincere appreciation.

Most of all, I thank my supervisor, Dr. Guohui Lin, for his invaluable guidance and

support. It is difficult to summarize how many ways I am grateful to Dr. Lin, who

is more like a close friend than a supervisor. Of course, I thank him mostly for his

enthusiasm and for always leading my research into the right direction while leaving me

a lot of freedom at the same time. I also thank him for his patience, understanding and

advice as I balanced my research with other aspects of my life.

I would like to express my appreciation to my committee members, Dr. Randy Goebel,

Dr. Russell Greiner, Dr. Guohui Lin, Dr. Mohammad R. Salavatipour, Dr. Csaba

Szepesvári and Dr. Qianping Gu for their time, effort, and precious suggestions that

helped my research to a great extend. Additionally, I would like to thank my collabo-

rators, Dr. Randy Goebel, Dr. Guohui Lin, Dr. Tian Liu, Dr. Taibo Luo, Dr. Huili

Zhang, Dr. Binhai Zhu for their help in my research.

I would also like to thank my references Dr. Randy Geobel, Dr. Guohui Lin, Dr. Tian

Liu, Dr. Liang Zhao and Dr. Binhai Zhu for supporting me when I was applying for

jobs. For personal funding and research grants, I thank the Department of Computing

Science at the University of Alberta and Alberta Innovates Technology Futures (AITF)

Graduate Studentship. And I also thank Dr. Randy Goebel and Dr. Guohui Lin for

their generous funding support from the NSERC Discovery Grants.

Moreover, my appreciation goes to my friends and colleagues for their generous support

and great companionship, especially the members in the Lin group. Last but not least,

I want to express my gratitude and deepest appreciation to my family, especially my

parents and my grandparents, for their continuous encouragement and wholehearted

support. No matter where I am and how far away from them, they are always there for

me. It is my great fortune in life to have them as my source of strength, happiness and

love.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vii

1 Introduction 1

1.1 Roadmap . 1

1.2 Notations and preliminaries . 3

1.3 Approximation algorithms . 6

1.4 Three analysis methods . 8

1.4.1 Worst-case analysis . 9

1.4.2 Average-case analysis . 10

1.4.3 Smoothed analysis . 10

1.4.3.1 Approximability smoothed analysis 12

1.4.3.2 Approximability based algorithm design 13

1.4.3.3 Perturbation models . 14

2 Bandpass Problem1 17

2.1 Introduction . 17

2.2 Preliminary . 19

2.2.1 Algorithm template . 20

2.2.2 Key structure of bandpass . 21

2.3 19
36 -approximation algorithm BP1 . 23

2.3.1 Algorithm description . 23

2.3.2 Performance analysis . 23

2.4 227
426 -approximation algorithm BP2 . 25

2.4.1 Algorithm description . 25

2.4.2 Performance analysis . 26

2.5 70−
√

2
128 -approximation algorithm BP3 . 34

2.5.1 Algorithm description . 34

2.5.2 Performance analysis . 34

2.6 Conclusions and future work . 42

3 Multiple RNA Interaction (MRIP) Problem2 — An Extension of the
Bandpass Problem 44

3.1 Introduction . 44

3.2 MRIP with a known RNA interaction order 46

1This chapter is based on [53, 98, 99].
2This chapter is based on [103, 104].

iv

Contents

3.3 The general MRIP . 47

3.3.1 NP-hardness . 47

3.3.2 A 0.5-approximation algorithm . 47

3.4 The general MRIP with transitivity . 49

3.4.1 A 0.5328-approximation for disallowing pseudoknots 49

3.4.2 A 0.5333-approximation for allowing pseudoknots 53

3.5 Conclusions and future work . 55

4 Exemplar Non-Breakpoint Similarity (ENBS) Problem3 56

4.1 Introduction . 56

4.2 Preliminaries . 58

4.3 Inapproximability result . 59

4.4 An O(n0.5)-approximation algorithm . 61

4.4.1 Algorithm description . 61

4.4.2 Performance analysis . 63

4.5 Conclusions and future work . 64

5 Minimum Common Integer Partition (MCIP) Problem4 66

5.1 Introduction . 66

5.1.1 Known results . 67

5.1.2 Our contributions . 68

5.2 A 6/5-approximation algorithm for 2-MCIP 68

5.2.1 Preliminaries . 68

5.2.2 Algorithm description . 70

5.2.3 Performance analysis . 71

5.3 Proof of Lemma 5.4 . 74

5.4 A 0.6k-approximation algorithm for k-MCIP 84

5.5 Conclusions and future work . 84

6 Minimum Independent Dominating Set (MIDS) Problem5 86

6.1 Introduction . 86

6.2 A.a.s. bounds on the independent domination number 88

6.2.1 An a.a.s. lower bound . 89

6.2.2 An a.a.s. upper bound . 91

6.3 A tail bound on the independent domination number 94

6.4 Approximating the independent domination number 95

6.5 Conclusions and future work . 96

7 Trie and Patricia Index Trees6 97

7.1 Introduction . 97

7.2 The smoothed height of Trie . 99

7.2.1 An a.a.s. upper bound . 100

7.2.2 An a.a.s. lower bound . 100

7.3 The smoothed height of Patricia . 104

3This chapter is based on [25].
4This chapter is based on [105].
5This chapter is based on [100, 101].
6This chapter is based on [102].

v

Contents

7.3.1 An a.a.s. upper bound . 104

7.3.2 An a.a.s. lower bound . 105

7.4 Conclusions and future work . 106

8 Conclusions and Future Work 107

8.1 Summary . 107

8.2 Future work . 108

Bibliography 109

vi

List of Figures

2.1 An illustration of the bandpasses of S2(π∗) (in ovals) and the bandpasses
of M1 (in boxes) for grouping purpose. A horizontal line in the figure
represents a row, led by its index. Rows that are adjacent in π∗ and/or
row pairs ofM1 are intentionally ordered adjacently. In this figure, rows ra
and rb are adjacent in π∗, denoted as (ra, rb) ∈ π∗, and edge (ra, rb) ∈M1

as well; the bandpasses between these two rows in S2(π∗) thus belong to
B1. Edges (rt, ri), (rj , rk), (r`, ru) ∈ M1, while (ri, rj), (rk, r`) ∈ π∗; the
bandpasses between rows ri and rj and between rows rk and r` in S2(π∗)
shown in the figure have their group memberships indicated beside them
respectively. 21

2.2 An illustration of moving (vj−1, vj) from Yb to Yb′′ and adding (vj , vj+1) to
Yb, where (1) the dashed lines indicate edges in M1, (2) the thin solid lines
indicate edges of P that have not been processed, (3) the lines labeled
with b (respectively, b′, or b′′) indicate edges in Yb (respectively, Yb′ , or
Yb′′), and (4) the two curves may contain edges of M1. 32

2.3 Each color represents a matching and dashed line means the given match-
ing. This 4-matching needs to be colored with at least 6 colors. 43

3.1 An illustration of free base, basepair-like structure and pseudoknot-like
structure, where the two pairs connected by crossing red dashed lines form
to be a pseudoknot-like structure. 45

3.2 An illustration of transitivity property, where the pair connected by green
dashed line is the possible interaction induced by the transitivity property. 46

3.3 A high-level description of Approx I. 48

3.4 A high-level description of Approx II. 50

3.5 A high-level description of Approx III. 53

4.1 An illustration of a simple graph for the reduction. 61

4.2 A high-level description of the approximation algorithm AENBS 62

5.1 A high-level description of algorithm Apx65. 71

5.2 The definitions of sub-collections of P3 and Q41∗ using the set intersecting
configurations, where a solid (dashed, respectively) line indicates a firm
(possible, respectively) set intersection. 75

5.3 The configuration of the shortest path connecting a, b ∈ P4 ∪ P5. 76

5.4 The configuration of the shortest path connecting a, b ∈ Q∗31 ∪Q∗41. 80

5.5 The configuration of the overlapping shortest paths connecting a, b ∈ Q∗241

and connecting a, b′ ∈ Q∗241. 81

7.1 The Trie constructed for {s1 = 00001 . . ., s2 = 00111 . . ., s3 = 01100 . . .,
s4 = 01111 . . ., s5 = 11010 . . ., s6 = 11111 . . .}. 97

7.2 The Patricia constructed for {s1 = 00001 . . ., s2 = 00111 . . ., s3 = 01100 . . .,
s4 = 01111 . . ., s5 = 11010 . . ., s6 = 11111 . . .}. 98

vii

Chapter 1

Introduction

1.1 Roadmap

In this chapter, we will first introduce some basic definitions and notations that are

extensively used in the thesis. Then we will briefly introduce the background about the

approximation algorithm and analysis models.

In the following chapters, we will introduce several interesting problems and the ap-

proximation algorithms we designed. First we focus on the some interesting discrete

optimization problems from bioinformatics, networking and graph theory, and design

currently the best approximation algorithms for them under the classic analysis model

— the worst-case analysis. In particular, we will introduce our worst-case analysis re-

sults on the bandpass problem from networks, and the multiple RNA interaction (MRIP)

problem, the maximum exemplar non-breakpoint similarity (ENBS) problem and the

minimum integer partition (MCIP) problem from bioinformatics. Then we will inves-

tigate the classic NP-hard problem, the minimum independent dominating set (MIDS)

problem, under the smoothed analysis model. In order to look deep into the smoothed

analysis model, we will finally show our smoothed analysis results on two classic data

structures — Trie and Patricia index tree. All the results included in this thesis are

from the collaborative papers to which I made significant contributions.

The bandpass-2 problem arises from optical communication networks using wavelength

division multiplexing technology, and so it can be treated as a variant of the maximum

travelling salesman problem. The difference between the bandpass-2 problem and the

maximum travelling salesman problem is that, in former problem’s setting, the edge

weights are dynamic rather than fixed, which makes this problem much harder to solve

than the maximum travelling salesman problem. We designed the first approximation

algorithm with a performance ratio 19/36 [99], improving the previous best approxima-

tion ratio 1/2 [11, 64], dated back to 2004. Afterwards, another research group made

a progress [28], but soon after we designed two more improved algorithms [53, 98] with

some fascinating new combinatorial techniques on the b-matching. Our first algorithm

and its theoretical analysis methods were presented on the joint conference of the 6th

1

Chapter 1. Introduction

International Frontiers of Algorithmics Workshop and the 8th International Conference

on Algorithmic Aspects of Information and Management (FAW-AAIM 2012) [99]. One

of the improved algorithms was submitted to the CoRR [98], and the other improved

algorithm was accepted by the Journal of Combinatorial Optimization [53].

For the MRIP problem, RNA interactions are fundamental in many cellular processes,

where two or multiple RNA molecules can be involved in the interactions. Multiple

RNA interactions are believed much more complex than pairwise interactions. Recently,

multiple RNA interaction prediction was formulated as a maximization problem. We

extensively examined this optimization problem under several biologically meaningful

interaction models. In particular, we presented a polynomial time algorithm for the

problem when the order of interacting RNAs is known and pseudoknot interactions

are allowed; for the general problem without an assumed RNA order, we proved the

NP-hardness for both variants allowing and disallowing pseudoknot interactions, and

presented a constant ratio approximation algorithm for each of them. These results were

presented on the 7th Annual International Conference on Combinatorial Optimization

and Applications (COCOA 2013) [103], and the extended version was accepted by the

Theoretical Computer Science [104].

For the ENBS problem, the genomic similarity measure, called non-breakpoint similar-

ity, is the complement of the well-studied breakpoint distance between genomes (or in

general, between any two sequences drawn from the same alphabet). For two genomes

G and H drawn from the same set of n gene families and containing gene repetitions, we

considered the corresponding ENBS problem, in which we deleted duplicated genes from

G and H such that the resultant genomes G and H have the maximum non-breakpoint

similarity. We obtained the following results. First, we proved that the one-sided 2-

repetitive ENBS problem, i.e. when one of G and H is given exemplar and each gene

occurs in the other genome at most twice, can be reduced from the maximum independent

set problem with the instance size becomes squared. This implies that the ENBS prob-

lem does not admit any O(n0.5−ε)-approximation algorithm, for any ε > 0, unless NP =

ZPP. This hardness result also implies that the ENBS problem is W [1]-hard. Secondly,

we showed that the two-sided 2-repetitive ENBS problem has an O(n0.5)-approximation

algorithm. These results were from the collaborative work of several research groups,

which was published on the Theoretical Computer Science [25].

For the MCIP problem, we are given a collection of multisets {X1, X2, . . . , Xk} (k ≥ 2)

of positive integers, a multiset S is a common integer partition (CIP) for them if S is

an integer partition of every multiset Xi, 1 ≤ i ≤ k. The minimum common integer

partition (k-MCIP) problem is defined as finding a CIP for {X1, X2, . . . , Xk} with the

minimum cardinality. By some interesting combinatorial techniques, we presented a

2

Chapter 1. Introduction

6
5 -approximation algorithm for the 2-MCIP problem, breaking an 8-year old record, as

the previous best algorithm of ratio 5
4 was designed in 2006 [21]. We then extended

it to obtain a deterministic 3k/5-approximation algorithm for the k-MCIP problem

when k is even (when k is odd, the approximation ratio is (3k + 2)/5). These results

were presented on the 25th International Symposium on Algorithms and Computation

(ISAAC 2014) [105].

For the MIDS problem, it is well known that this problem does not admit a polynomial

time approximation algorithm with worst-case performance ratio of |V |1−ε for any ε > 0

given the input graph G = (V,E) [47]. We investigated it under the smoothed analysis

model. In particular, we first studied the size of the minimum independent dominating

set, denoted as i(g(G, p)), in perturbed graphs g(G, p) and showed that i(g(G, p)) is

asymptotically almost surely 1 in Θ(log |V |). Furthermore, we proved that the proba-

bility of i(g(G, p)) ≥
√

4|V |/p is no more than 2−|V |, and presented a simple greedy

algorithm of worst-case performance ratio
√

4|V |/p and with polynomial expected run-

ning time. These results were presented on the 19th Annual International Computing

and Combinatorics Conference (COCOON 2013) [100], and the extended version was

accepted by the Theoretical Computer Science [101].

Trie and Patracia index tree are two classic data structures for storing strings. Let

Hn denote the height of the Trie (the Patricia, respectively) on a set of n strings.

It is well known that under the uniform distribution model on the strings, for Trie

Hn/ log n → 2 [36, 40, 41, 69, 80, 81, 83, 95, 96] and for Patricia Hn/ log n → 1 [80],

when n approaches infinity. Nevertheless, in the worst case, the height of the Trie on

n strings is unbounded, and the height of the Patricia on n strings is in Θ(n). To

better understand the practical performance of both the Trie and Patricia index trees,

we investigated these two data structures in a smoothed analysis model. Given a set

S = {s1, s2, . . . , sn} of n binary strings, we perturb the set by adding an i.i.d Bernoulli

random noise to each bit of every string. We showed that the resulting smoothed heights

of Trie and Patricia trees are both Θ(log n). These results were presented on the 20th

Annual International Computing and Combinatorics Conference (COCOON 2014) [102],

and the extended version will be published on the Theoretical Computer Science.

1.2 Notations and preliminaries

In this section, some basic notations and concepts are introduced.

1In asymptotic analysis, one says that a property of the graph holds asymptotically almost surely
(a.a.s.) if the property holds with the probability which converges to 1 as the size of the graph tends to
∞.

3

Chapter 1. Introduction

• Family of Bachmann–Landau notations:

– f(n) ∈ O(g(n)): ∃ c > 0, ∃ n0, ∀ n > n0, f(n) ≤ c · g(n).

– f(n) ∈ Ω(g(n)): ∃ c > 0, ∃ n0, ∀ n > n0, f(n) ≥ c · g(n).

– f(n) ∈ Θ(g(n)): ∃ c1 > 0, ∃ c2 > 0, ∃ n0, ∀ n > n0, c1 · g(n) ≤ f(n) ≤
c2 · g(n).

– f(n) ∈ o(g(n)): ∀ c > 0, ∃ n0, ∀ n > n0, f(n) ≤ c · g(n).

– f(n) ∈ ω(g(n)): ∀ c > 0, ∃ n0, ∀ n > n0, f(n) ≥ c · g(n).

• (one-tape) Turing machine: A Turing machine can be formally defined as a

7-tuple M = 〈Q, q0, F,Γ, b,Σ, δ〉 where

1. Q is a finite, non-empty set of states;

2. q0 ∈ Q is the initial state;

3. F ⊆ Q is the set of final or accepting states;

4. Γ is a finite, non-empty set of tape alphabet symbols;

5. b ∈ Γ is the blank symbol (the only symbol allowed to occur on the tape

infinitely often at any step during the computation);

6. Σ ⊆ Γ \ {b} is the set of input symbols;

7. δ : (Q \ F)× Γ 9 Q× Γ× {L,R} is a partial function 2 called the transition

function, where L is left shift, R is right shift.

Anything that operates according to these specifications is a Turing machine.

Roughly, a Turing machine can be imagined as a simple computer that reads

and writes symbols one at a time on an endless tape by strictly following a set of

rules.

• Deterministic Turing machine (DTM): A deterministic Turing machine is a

Turing machine whose set of rules prescribes at most one action to be performed

for any given situation.

• Non-deterministic Turing machine (NTM): A non-deterministic Turing ma-

chine is a Turing machine that may have a set of rules that prescribes more than

one action for a given situation. For example, in a non-deterministic Turing ma-

chine, there may have both the following rules in its rule set.

– If you are in state 2 and you see an ‘A’, change it to a ‘B’ and move right;

– If you are in state 2 and you see an ‘A’, change it to a ‘C’ and move left.

2A partial function from X to Y (written as f : X 9 Y) is a function f : X ′ → Y , for some subset
X ′ of X. It generalizes the concept of a function f : X → Y by not forcing f to map every element of
X to an element of Y (only some subset X ′ of X).

4

Chapter 1. Introduction

• Probabilistic Turing machine: A probabilistic Turing machine is a non-deterministic

Turing machine which randomly chooses between the available transitions at each

point according to some probability distribution.

• Decision problem: Decision problem is a special type of computational problem

whose answer is either YES or NO.

• P: P is a class of decision problems that can be solved by a deterministic Turing

machine using a polynomial amount of computation time. Following the conven-

tion, the time complexity of an algorithm quantifies the amount of time taken by

an algorithm to run as a function of the length of the string representing the input.

• NP: NP is a class of decision problems for which a given solution can be verified in

polynomial time by a deterministic Turing machine. An equivalent definition for

NP is the following characterization: NP is the set of decision problems solvable

by a non-deterministic Turing machine that runs in polynomial time.

• NP-complete: NP-complete is a class of problems which contains the hardest

problems in NP. That is, every NP problem can be reduced to a NP-complete

problem in polynomial time. Note that each element of NP-complete has to be an

element of NP.

• NP-hard: NP-hard is a class of problems which are at least as hard as the hardest

problems in NP. Problems in NP-hard do not have to be elements of NP, indeed,

they may not even be decision problems.

• Optimization problem: Optimization problem is a class of problems of finding

the best solution from all feasible solutions. Formally, a combinatorial optimization

problem Π is a triple (I,F , f), where I is a set of instances, F is the set of feasible

solutions, f is the objective function mapping each feasible solution to some real

(non-negative) value. The goal is to find a feasible solution such that its objective

function is either minimized or maximized.

• NP optimization problem (NPO): NP optimization problem is a class of com-

binatorial optimization problems with the following additional conditions:

– the size of every feasible solution s ∈ F is polynomially bounded in the size

of the given instance I;

– the languages {I | I ∈ I} and {(I, s) | s ∈ F} 3 can be recognized in

polynomial time;

– f(x) is polynomial-time computable.

3A formal language L over an alphabet Σ is a subset of Σ∗, that is, a set of words over that alphabet.
Here these events are expressed into formal languages.

5

Chapter 1. Introduction

This implies that the corresponding decision problem is in NP.

• ZPP: ZPP is the complexity class of problems for which a probabilistic Turing

machine exists with these properties:

– it always returns the correct YES or NO answer.

– the running time is polynomial in expectation for every input.

• DTIME: DTIME (or TIME) is the computational resource of computation time

for a deterministic Turing machine. If a problem of input size n can require

f(n) computation time to solve, we have a complexity class DTIME(f(n)) (or

TIME(f(n))).

1.3 Approximation algorithms

With our current information technology development, there are an increasing number

of optimization problems that need to be solved. An algorithm that solves a problem

optimally while the time and space consumption are appropriately bounded is the ideal

case. Unfortunately, many of the most interesting optimization problems are NP-hard,

in other words, unless P = NP, we do not have efficient algorithms to compute the exact

optimums for such problems. A classic NP-hard optimization problem is the maximum

independent set problem: given a graph G = (V,E), find a maximum size independent

set VI ⊂ V , where a subset of vertices is independent if no two vertices in the subset are

connected by an edge.

One way to deal with these hard problems is to design algorithms by looking for trade-offs

between the quality of the solution and the running time (or space consumption) of the

algorithms. In this thesis, we address these hard problems by relaxing the requirement

of finding an optimal solution. But we aim to compute a solution whose value is as close

as possible to the value of the optimal solution. That is, we consider approximation

algorithms for these hard optimization problems. We call a polynomial time algorithm

A for an optimization problem Π a ρ-approximation algorithm if for all instances of the

problem, A produces a solution whose value is within a factor of ρ of the value of an

optimal solution. We would like to get ρ as close to 1 as possible.

More formally, consider an optimization problem Π = (I,F , f), where I is a set of

instances, F is the set of feasible solutions, f is the objective function mapping each

feasible solution to some real (non-negative) value. Let I ∈ I be some instance of

the problem Π. An optimal solution OPT(I) to I is the one that either maximizes or

minimizes the value of the objective function f . And we call Π is a maximization or

6

Chapter 1. Introduction

minimization problem, respectively. Define the performance ratio of A on the instance

I as

RA = A(I)/OPT(I). (1.1)

Definition 1.1. (Performance ratio or Performance factor) A function ρ : Z+ →
R+ is called a performance ratio of the algorithm A if RA ≥ ρ(n) (or RA ≤ ρ(n)) for all

instances I of size n for the maximization (or minimization) problem Π. In this case, we

refer to A as a ρ(n)-approximation algorithm if A is polynomial in the instance size n.

In the special case where ρ(n) is a constant, say ρ, we just say A is a ρ-approximation

algorithm.

In this thesis, we will follow the convention that (1) the size of the instance is taken

to be the size of the input in bits; (2) ρ > 1 for minimization problems while ρ < 1

for maximization problems. Since we want to obtain extremely good approximation

algorithms such that the approximation ratio ρ is as close to 1 as possible, we are most

interested in the polynomial-time approximation schemes (PTAS) and fully polynomial-

time approximation schemes (FPTAS).

Definition 1.2. (PTAS) For any ε > 0, suppose there is a (1 + ε)-approximation

((1− ε)-approximation) algorithm Aε for the minimization (maximization) Π, such that

Aε’s running time is a polynomial of the instance size n. We call this family of algorithms

as a polynomial time approximation scheme (PTAS) for Π.

Definition 1.3. (FPTAS) A PTAS is called a fully polynomial time approximation

scheme (FPTAS) if the running time of Aε is a polynomial in 1
ε and the instance size n.

Then we introduce three important concepts for the NP optimization problems.

Definition 1.4. (APX) APX is a class of NP optimization problems that allow polynomial-

time approximation algorithms with approximation ratio bounded by a constant. The

class APX is also sometimes known as Max-SNP.

Definition 1.5. (APX-hard) A problem is said to be APX-hard if there is a PTAS

reduction 4 from every problem in APX to that problem.

Definition 1.6. (APX-complete) A problem is said to be APX-complete if the prob-

lem is APX-hard and also in APX.

There are many reasons forcing us to study the approximation algorithms. First of all,

as we previously introduced, there are plenty optimization problems that hardly admit

4 A PTAS reduction is an approximation-preserving reduction that preserves the property that a
problem has a polynomial time approximation scheme (PTAS).

7

Chapter 1. Introduction

exact polynomial-time algorithms, for which approximation algorithms are increasingly

being used. A typical example is the classic NP-hard problem — the minimum vertex

cover problem. In the minimum vertex cover problem, given a graph G = (V,E), we are

required to find a vertex subset of the minimum cardinality such that each edge e in the

given graph has at least one endpoint in this subset. Finding the optimum vertex cover

is very time-consuming, which needs exponential running time even for planar graphs of

degree at most 3 [44]. However, there is a simple and fast algorithm by keeping finding

an uncovered edge and adding both endpoints to the vertex cover until no uncovered

edges remain. It is clear that the running time is O(|E|) and the resulting cover has

size at most twice as large as the optimal one’s, which implies this simple algorithm is

a 2-approximation algorithm.

In some situations it is desirable to run an approximation algorithm even when there

exists a polynomial-time algorithm for computing an exactly optimal solution. Because

the approximation algorithm may have the benefit of faster running time, less space con-

sumption, a much easier implementation, or it may lend itself more easily to a parallel

or distributed implementation. These considerations become especially important when

the input size is so astronomical that an exact polynomial-time algorithm with impracti-

cal running time, say Θ(n100000), would provide extremely bad performance in practice.

Finally, studying approximation algorithms provides a mathematically rigorous basis on

which to look deep into the problems, helps to figure out the problems’ structures, and

then may lead to a new algorithmic approach.

1.4 Three analysis methods

The analysis of an algorithm aims at providing measurement for the performance of

the algorithm. The most commonly used theoretical approaches to understanding the

behaviour of algorithms are the worst-case analysis and the average-case analysis. How-

ever, some of the well-known theoreticians, including Condon, Edelsbrunner, Emerson,

Fortnow, Haber, Karp, Leivant, Lipton, Lynch, Parberry, Papadimitriou, Rabin, Rosen-

berg, Royer, Savage, Selman, Smith, Tardos, and Vitter, wrote (Challenges for Theory

of Computing: Report of an NSF-Sponsored Workshop on Research in Theoretical Com-

puter Science SIGACT News, 1999)

While theoretical work on models of computation and methods for ana-

lyzing algorithms has had enormous payoffs, we are not done. In many sit-

uations, simple algorithms do well. Take for example the Simplex algorithm

for linear programming, or the success of simulated annealing on certain

8

Chapter 1. Introduction

supposedly intractable problems. We don’t understand why! It is apparent

that worst-case analysis does not provide useful insights on the performance

of many algorithms on real data. Our methods for measuring the perfor-

mance of algorithms and heuristics and our models of computation need to

be further developed and refined. Theoreticians are investing increasingly in

careful experimental work leading to identification of important new ques-

tions in algorithms area. Developing means for predicting the performance

of algorithms and heuristics on real data and on real computers is a grand

challenge in algorithms.

In this section, we will introduce the two classic analysis models, i.e. the worst-case and

average-case analyses. Then a relatively new analysis model, named as the smoothed

analysis, is also introduced, and a simple comparison is made among the three analysis

models.

1.4.1 Worst-case analysis

The most common analysis toward understanding the performance of an algorithm is the

worst-case analysis. The worst-case analysis requires to bound the worst possible per-

formance an algorithm could achieve. In other words, this analysis is input independent

and it provides a strong guarantee for the performance of an algorithm.

However, the worst-case analysis provides only one point of view on an algorithm’s be-

haviour. In fact, under this point of view, the behaviour is often quite different from

the typical behaviour, which the users are usually more interested in. Indeed, there are

many computational or optimization problems in the real world, ranging from bioinfor-

matics to social science, which can be solved by some heuristics or simple algorithms

efficiently or effectively in most cases while these heuristics or algorithms have very poor

worst-case performance either the running time or the approximation ratio taken as the

performance measure.

A classic example is the simplex method, which is a kind of practical algorithms to

solve linear programs and remains widely used today. Though almost all the simplex

algorithms cost exponential time in the worst case, they often outperform many other

polynomial time algorithms for linear programs, such as the ellipsoid algorithm [60] and

the interior-point method [58], in the real applications [89–91]. Another example is the

well-known algorithm Greedy for the shortest common superstring problem in bioinfor-

matics. The shortest common superstring problem finds a shortest string s that contains

every si as a substring for any given n strings s1, s2, . . . , sn. And it has been extensively

9

Chapter 1. Introduction

studied for its applications in string compression and DNA sequence assembly. There

is a very simple algorithm Greedy, which repeatedly merges two maximum overlap-

ping strings into one until there is only one string left. This greedy algorithm works

extremely well and it was reported that the average approximation ratio is below 1.014

for simulated data [84]. However, its approximation ratio under the worst-case analysis

model is 3.5 [57].

1.4.2 Average-case analysis

To overcome the discrepancy between the poor worst-case performance and the practical

performance, average-case analysis was introduced as an alternate. Under average-case

analysis, a distribution of instances is first assumed and then the expected performance

of the algorithm is measured. Ideally, we are given a mathematically analysable distribu-

tion which is the same or close to the real distribution. However, it is generally difficult

to determine such a distribution because the distribution varies from area to area ac-

cording to where the target algorithm is applied to. Furthermore, in most cases it is

mathematically challenging to express the distribution using a small number of parame-

ters. In most existing average-case analytical work, researchers have to use distributions

with concise description, such as uniform distribution and Gaussian distribution, etc.,

instead of the true but unknown distribution of the real-world instances. One can imag-

ine that these commonly used special distributions may be far from the real ones and

make the analysed instances bear very little resemblance to the real-world instances. In

this sense, though a good average-case performance provides evidence that an algorithm

may perform well in practice, it rarely fills up the gap between the practical world and

theoretical world.

1.4.3 Smoothed analysis

Considering the drawbacks of both worst-case analysis and average-case analysis, Spiel-

man and Teng [89] introduced the smoothed analysis to explain the performance of

algorithms. The basic idea of smoothed analysis is to identify some typical properties of

a given real-world instance, and can be regarded as a hybrid of worst-case analysis and

average-case analysis. More formally, it measures the worst-case expected performance

of an algorithm under slight random perturbation of an instance.

We next see how this analysis method relates to the worst-case and the average-case

analysis methods. In the following content, to distinguish a matrix or a vector from a

scalar, let notations with bold font represent matrices or vectors, if there is no extra

10

Chapter 1. Introduction

explanation. Besides, a constant with bold font means a matrix or a vector with each

component equal to this constant, say 1 denotes a matrix or a vector consisting of 1’s.

Formally, let Q be a quality measurement, and without loss of generality, assume Q has a

property that the larger the worse, such as the running time. Suppose A is the algorithm

we want to analyse, x is (the string representation of) an input instance, Q(A,x) is the

instance based quality measurement, D is the universe of instances, Dn is the subset of

all size n instances in D. The smoothed measure of A under Q is

Qsmooth(n, σ) = sup
x̄∈Dn

Er{Q(A, x̄+ σ · r)},

where σ ∈ R+, called the perturbation parameter, measures the strength of noise, and r

is some noise vector, which has the same dimension as x̄’s.

Then we have the following observations. When the perturbation parameter σ is ex-

tremely small, x̄+σ ·r ≈ x̄, which means the smoothed analysis becomes the worst-case

analysis; when σ becomes larger, the perturbed instances would have more randomness

and extremely the smoothed analysis would become the average-case analysis. Therefore,

by varying the perturbation parameter σ, the smoothed analysis interpolates between

these two extreme cases. Usually we are more interested in the case where σ is relatively

small, because real-world instances are often subject to a slight amount of noise. For

example, when input parameters are obtained from physical measurements of real-world

phenomena, the measurements usually have some random uncertainty of low magni-

tudes; besides, if the input parameters are the output of some computer programs, the

numerical calculation of computer programs may also add some uncertainty due to the

numerical imprecision. An example for noise in discrete application is that building

a complicate transportation network is governed by some blueprint of the government

or contractor but the blueprint may still be “perturbed” due to some unpredictable

uncertainty, such as fluctuation of funding budget, some nail household that refuses

uncompromisingly to move when the land is requisitioned for the construction project,

etc..

An algorithm with a good worst-case analysis will perform well on all instances, as the

worst possible performance of the algorithm is bounded under this analysis model. If

the smoothed measure of A under Q is good with some relatively small σ and some

reasonable random model for r, the hard instances are “isolated” in the instance space

and it is unlikely the measure of A under Q will be every bad in real world application.

11

Chapter 1. Introduction

1.4.3.1 Approximability smoothed analysis

Spielman and Teng [89] first introduced the smoothed analysis to explain the success of

the simplex algorithm with the shadow-vertex pivoting rule in real applications. They

considered the running time as the performance measure and proposed the concept of

polynomial smoothed complexity.

Definition 1.7 (Polynomial Smoothed Complexity [89]). Given a problem Π with

input domain D = ∪nDn where Dn represents all size n instances. Let R = ∪n,σRn,σ be

a family of perturbations where Rn,σ defines for each x̄ ∈ Dn a perturbation distribution

of x̄ with magnitude σ. Let A be an algorithm for solving Π and TA(x) be the time for

solving an instance x ∈ D. Then algorithm A has polynomial smoothed complexity if

there exist constants n0, σ0, c, k1 and k2 such that for all n > n0 and 0 ≤ σ ≤ σ0,

max
x̄∈Dn

{Ex∼Rn,σ(x̄)[TA(x)]} ≤ c · σ−k1 · nk2 ,

where x ∼ Rn,σ(x̄) means x follows the distribution Rn,σ(x̄).

The problem Π has smoothed polynomial time complexity with some perturbation model

R if it admits an algorithm with a polynomial smoothed complexity.

Spielman and Teng [89] proved that the simplex algorithm with the shadow-vertex pivot-

ing rule is smoothed polynomial under the Gaussian perturbation, that is, the maximum

over Ā and ȳ of expected running time of the above simplex algorithm on the following

inputs is bounded by a polynomial in m, d, σ.

Maximize zTx

subject to (Ā+G) · x ≤ (ȳ + h),

where Ām×d and ȳm×1 are arbitrary given matrix and vector respectively; G and h are a

matrix and a vector, respectively, consisting of independent Gaussian random variables

of mean 0 and standard deviation σ′ with σ′ = σ ·maxi ||(ȳi, āi)||, here āi is the ith row

of Ā.

Since then, smoothed analysis has been applied successfully to a variety of different al-

gorithms and problems: mathematical programming, scientific computing, game theory,

graph theory, AI related problems and discrete combinatorial optimization problems

etc.. For more detailed surveys of the smoothed analysis, one may refer to [13, 68, 90–

92]. Originally, smoothed analysis was introduced to evaluate the performance of an

algorithm by its running time. There are many other performance measures that are

also very important and reveal some typical properties of an algorithm. For example,

12

Chapter 1. Introduction

the amount of storage occupied during execution of the algorithm, the number of bits of

precision required to achieve a given output accuracy, the number of cache misses, the

error probability of a decision problem, the number of random bits needed in a random-

ized algorithm, the number of calls to a particular subroutine, the number of iterations

of an iterative algorithm [92].

For an approximation algorithm, we usually concentrate on the quality of the solution

it returns, that is, how well the solution could approximate the optimal one. Therefore

the approximation ratio is regarded as the major performance measure instead of the

running time because an approximation algorithm has polynomial time complexity under

the worst-case analysis model and time complexity based analysis seems to be less of

interest in some sense. In most of the existing work, the performance measures of the

algorithms are usually running time or space consumes. On the other hand, in real

world applications, lots of approximation algorithms perform very well in practice but

have poor approximation ratios under the worst-case analysis, such as the Greedy for

the shortest common superstring problem as introduced in Section 1.4.1. Therefore,

smoothed analysis on the performance ratio of approximation algorithms would help us

to understand these algorithms better. Besides, for a certain problem, there may exist

some quantity that reveals some essential properties of the problem itself, which in turn

may help us to better understand the problem or to design new more efficient and/or

more effective algorithms. Thus measuring such quantities under a reasonable model,

say smoothed analysis, would be of great significance.

1.4.3.2 Approximability based algorithm design

Smoothed analysis helps us to understand the behaviour of an algorithm better by

revealing its typical properties. Moreover, it helps us to look deep into the problem

itself. In turn, the insight gained from the smoothed analysis results may inspire us

with new ideas in algorithm design for real applications.

For example, inspired by the smoothed analysis for simplex method [35, 89, 106], Kelner

and Spielman [59] proposed the first randomized polynomial-time simplex algorithm for

linear programs. Here is another simple example. Sankar [86] first investigated the

Gaussian Elimination by smoothed analysis. This idea was exploited by Spielman and

Teng [92], who suggested a more stable solver for linear systems. Suppose we are given a

linear system Ax = b and with error tolerance δ. Consider the following algorithm [92].

13

Chapter 1. Introduction

1. Use the standard Gaussian Elimination with partial pivoting rule 5 to solve Ax =

b. Suppose x∗ is the solution returned.

2. If ||b−Ax∗|| < δ, return x∗.

3. Otherwise, add a small noise and generate a new linear system (A+ ε ·G)y = b,

where ε is a small positive number and G is a Gaussian matrix with mean 0 and

variance 1.

4. Solve the perturbed linear system with Gaussian Elimination without pivoting and

return the solution.

Sankar [86] proved that if ε is sufficiently smaller than A’s condition number κ(A), the

solution to the perturbed linear system can well approximate the original one. He also

proved that the quality of the growth factor cannot be too large with high probability.

Thus, the Gaussian Elimination with partial pivoting on the original linear system may

fail due to the large growth factor, but the success of the new algorithm only depends

on the machine precision and condition number of A. 6

Recently, this smoothed analysis based algorithm design method was generalized from

the time complexity smoothed analysis to approximability smoothed analysis by Man-

they and Plociennik [67]. After studying independent number under the smoothed anal-

ysis with a p-Boolean perturbation model (as introduced in Section 1.4.3.3), they pre-

sented an algorithm approximating the independence number α(g(G, p)) with a worst-

case approximation ratio O(
√
|V | · p) and with polynomial expected running time for

sufficiently large p, where G = (V,E) is the given graph, g(G, p) is the perturbed graph

of G 7 and the independent number is the size of the maximum independent set.

1.4.3.3 Perturbation models

As we discussed above, the perturbation model would be very important to the whole

smoothed analysis model. The perturbation model that captures the randomness and

imprecision of the input parameters can vary from application to application. The

following perturbation models are commonly used in existing work on the smoothed

analysis.

Continuous perturbations:

5In partial pivoting, the algorithm selects the entry with largest absolute value from the column of
the matrix that is currently being considered as the pivot element.

6There is a simple Matlab experiment for this new algorithm in [92].
7The perturbed graph of the input graph G = (V,E) is obtained by negating the existence of edges

independently with a probability p > 0.

14

Chapter 1. Introduction

Definition 1.8 (Gaussian Perturbation). Let x̄ ∈ Dn. A σ-Gaussian perturbation

of x̄ is x = x̄+g, where g is a Gaussian random vector of mean 0 and variance σ2 with

σ ∈ R+.

Definition 1.9 (Relative Gaussian Perturbation). Let x̄ ∈ Dn. A relative σ-

Gaussian perturbation of x̄ is x = x̄ · (1 + g), where g is a Gaussian random variable of

mean 0 and variance σ2 with σ ∈ R+.

Definition 1.10 (Uniform Ball Perturbation). Let x̄ ∈ Dn. A uniform ball pertur-

bation of radius σ of x̄ is a random vector x drawn uniformly from the ball of radius σ

centered at x̄.

Discrete perturbations:

Definition 1.11 (Boolean Perturbation). Let x̄ = (x̄1, · · · , x̄n) ∈ {0, 1}n or {−1, 1}n.

A p-Boolean perturbation of x̄ is a random string x = (x1, . . . , xn) ∈ {0, 1}n or {−1, 1}n,

with Pr{xi = x̄i} = 1− p.

Definition 1.12 (Partial Bit Randomization). Let x̄ be an integer withK-bit binary

representation and k ≤ K be a positive integer. A k-partial bit randomization of x̄ is

an integer x obtained by replacing x̄’s k least significant bits (also referred to as the

right-most bits) by the binary expression of a random integer from [0, 2k−1] according

to some specific distribution, say uniform distribution, over [0, 2k−1] ∩ Z.

Definition 1.13 (Partial Permutation). Let s̄ be a sequence of n elements and

p ∈ [0, 1]. A p-partial permutation of s̄ is a random sequence s by first creating a set

S by selecting independently with Pr{i ∈ S} = p, i = 1, . . . , n, and then uniformly

permuting elements of s̄ in position S while all other elements remaining unchanged.

In the above perturbation models, inputs are perturbed at random, which may be un-

natural for some problems. Thus, it might be necessary to add some constraints on the

perturbation by requiring that inputs should have some typical properties. For example,

a person’s body temperature can neither be too high nor too low, and we should not

allow perturbations of the temperature of human body that violate this constraint to

enter our probability space. In general, the perturbations should make sure that any

perturbed instance carries some certain significant aspects. Spielman and Teng [90] pro-

posed the concept named property-preserving perturbation, which is defined by restricting

a natural perturbation model to preserve certain properties of the original input. More

details about the property-preserving perturbation model can be found in the survey by

Spielman and Teng [90].

Here, we need to mention another very powerful smoothed analysis model, named as

one-step model, due to Beier and Vöcking [10]. In this model, an adversary is allowed

15

Chapter 1. Introduction

to specify the probability density function for each input value in the input instance.

To prevent the adversary from modelling a worst-case instance too closely, we bound

the density functions from above by a smoothing parameter φ. Roughly speaking, a

large φ forces the algorithm to perform almost as bad as on worst-case instances while a

relatively small φ makes the adversary to choose the uniform distribution on the input

space, which mimics an average-case analysis. For example, suppose each input instance

of some problem contains a value vector v = (v1, . . . , vn), vi ∈ [0, 1], i ∈ {1, . . . , n}.
The adversary does not fix the value of each vi, instead he specifies probability density

functions fi : [0, 1] → [0, φ] according to which the value vi are randomly drawn inde-

pendently of each other. If φ = 1, then the adversary has no choice but to specify a

uniform distribution on the interval [0, 1] for each value vi. In this case, our analysis

becomes an average-case analysis. On the other hand, if φ becomes large, then the anal-

ysis approaches a worst-case analysis since the adversary can specify small interval Ii of

length 1
φ (that contains the values in a worst-case instance) for each value vi from which

the value vi is drawn uniformly. Thus, the adversarial smoothing parameter φ serves as

an interpolation parameter between the worst-case and average-case analyses.

16

Chapter 2

Bandpass Problem1

2.1 Introduction

The bandpass-2 problem is a variant of the maximum travelling salesman problem arising

from optical communication networks. In optical communication networks, a sending

point uses a binary matrix An×m to send n information packages to m different desti-

nation points, in which the entry aij = 1 if information package i is not destined for

point j, or aij = 0 otherwise. To achieve the highest cost reduction via wavelength

division multiplexing technology, an optimal packing of information flows on different

wavelengths into groups is necessary [8]. Under this binary matrix representation, ev-

ery B consecutive 1’s in a column indicates an opportunity for merging information to

reduce the communication cost, where B is a pre-specified positive integer called the

bandpass number. Such a set of B consecutive 1’s in a column of the matrix is said to

form a bandpass. When counting the number of bandpasses in the matrix, no two of

them in the same column are allowed to share any common rows. The computational

problem, the bandpass-B problem, is to find an optimal permutation of rows of the input

matrix An×m such that the total number of extracted bandpasses in the resultant matrix

is maximized [9, 11, 64]. Note that though multiple bandpass numbers can be used in

practice, for the sake of complexities and costs, usually only one fixed bandpass number

is considered [9].

The general bandpass-B problem, for any fixed B ≥ 2, has been proven to be NP-

hard [64]. In fact, the NP-hardness of the bandpass-2 problem can be proven by a

reduction from the well-known Hamiltonian path problem [44], where in the constructed

binary matrix An×m, a row maps to a vertex, a column maps to an edge, and aij = 1 if

and only if edge ej is incident to vertex vi. It follows that there is a row permutation

achieving n− 1 bandpasses if and only if there is a Hamiltonian path in the graph.

On the approximability, the bandpass-B problem has a close connection to the weighted

B-set packing problem [44]. By taking advantages of the approximation algorithms de-

signed for the weighted B-set packing problem [8, 18], the bandpass-B problem can be

1This chapter is based on [53, 98, 99].

17

Chapter 2. Bandpass Problem

approximated within O(B2) [64]. Moreover, since the maximum weight matching prob-

lem is solvable in cubic time, the bandpass-2 problem admits a simple maximum weight

matching based 2-approximation algorithm [64]. In the sequel, we call the bandpass-2

problem simply the bandpass problem.

Recently in 2012, Tong et al. [99] first presented an intrinsic structural property for

the optimal row permutation. That is, with respect to a maximum weight matching

between the rows, the isolated bandpasses (meaning a 0 above and a 0 below each such

bandpass) in the optimal row permutation can be classified into four disjoint groups;

after extracting bandpasses of the matching out of the instance, certain fractions of these

four groups of isolated bandpasses remain in the residual instance. They proposed to

compute another maximum weight matching in the residual instance, and from which

to extract a sub-matching to extend the first maximum weight matching into an acyclic

2-matching. The acyclic 2-matching is then formed into a row permutation, which leads

to an approximation algorithm with a worst-case performance ratio of 19/36 ≈ 0.5277.

As we can see, this performance analysis is essentially based on breaking cycles that are

formed in the union of two matchings [99]; this can be equivalently deemed as partition-

ing (the edge set of) the second matching into two sub-matchings, such that the union of

each of them and the first maximum weight matching is acyclic. Subsequently, Chen and

Wang [28] presented an alternative to compute the target sub-matching (to extend the

first maximum weight matching into an acyclic 2-matching). They showed that a maxi-

mum weight 2-matching (acyclic 2-matching, respectively) can be partitioned into 4 (3,

respectively) candidate sub-matchings. Using the best of these candidate sub-matchings

in their algorithm to extend the first maximum weight matching guarantees a solution

row permutation that contains at least a fraction 117/220 ≈ 0.5318 of the bandpasses

in the optimum [28]. Soon afterwards, Tong et al. [98] proposed an improvement to

compute a maximum weight 4-matching in the residual instance, and to show how to

partition it into 7.5 candidate sub-matchings. The improved approximation algorithm

has a worst-case performance ratio of 227/426 ≈ 0.5328.

Later, Tong et al. [53] presented another novel scheme to partition a 4-matching into

a number of candidate sub-matchings, each of which can be used to extend the first

maximum weight matching into an acyclic 2-matching. They showed that among these

sub-matchings the maximum weight can be guaranteed to a better extent, and thus

proved a new approximation algorithm of worst-case performance ratio 70−
√

2
128 ≈ 0.5358.

At the end, Tong et al. [53] concluded that this 0.5358-approximation algorithm seems

to have taken full advantage of the structural property of the optimal row permutation.

18

Chapter 2. Bandpass Problem

In the next section, we introduce some basic concepts and some important lemmas. In

Section 2.3, 2.4, 2.5, we will introduce three main algorithms for the bandpass problem,

denoted as BP1, BP2, BP3, respectively.

2.2 Preliminary

The NP-hardness of the bandpass problem is confirmed via a reduction from the Hamil-

tonian path problem [64]. However, the bandpass problem does not readily reduce to

the maximum traveling salesman (Max-TSP) problem [44] for the approximation algo-

rithm design. As pointed out in [98], an instance graph of Max-TSP is fixed, in that all

(non-negative) edge weights are given at the beginning, while in the bandpass problem

the number of bandpasses extracted between two consecutive rows in a row permutation

is permutation dependent. Nevertheless, as shown in the sequel, the algorithm design

is still based on maximum weight b-matchings for b = 1, 2, 4, similarly as in approxi-

mating the Max-TSP [27, 50, 78, 88]. Formally, in the Max-TSP problem, a complete

edge-weighted graph is given, where the edge weights are non-negative integers, and the

goal is to compute a Hamiltonian cycle with the maximum weight. Note that there are

several variants of the Max-TSP problem studied in the literature. In our case, the input

graph is undirected (or symmetric) and the edge weights do not necessarily satisfy the

triangle inequality.

In our bandpass problem, since we can always add a row of all 0’s if necessary, we assume,

without loss of generality, that the number of rows, n, is even. A b-matching of a graph

is a subgraph in which the degree of each vertex is at most b. A maximum weight b-

matching of an edge weighted graph can be computed in O(n2m) time [7, 43, 71], where

n is the number of vertices and m is the number of edges in the graph. Note that a

2-matching is a collection of vertex-disjoint cycles and paths. A 2-matching is acyclic if

it does not contain any cycle (i.e., it is a collection of vertex-disjoint paths). A matching

M extends another matching M ′ into an acyclic 2-matching if and only if the union of

these two matchings is acyclic.

Given the input binary matrix An×m, let ri denote the i-th row. We first construct a

graph G of which the vertex set is exactly the row set {r1, r2, . . . , rn}. Between rows ri

and rj , the fixed edge weight is defined as the maximum number of bandpasses that can

be formed between the two rows (i.e., the number of columns both rows have 1 in) and

is denoted as w(i, j). In the sequel we use row (of the matrix) and vertex (of the graph)

interchangeably.

19

Chapter 2. Bandpass Problem

For a row permutation π = (π1, π2, . . . , πn), its i-th row is the πi-th row in the input

matrix. We call a maximal segment of consecutive 1’s in a column of π a strip of π. The

length of a strip is defined to be the number of 1’s therein. A length-` strip contributes

exactly
⌊
`
2

⌋
bandpasses to the permutation π. We use S`(π) to denote the set of all

length-` strips of π, and s`(π) = |S`(π)|. Let b(π) denote the number of bandpasses

extracted from the permutation π, and p(π) denote the number of pairs of consecutive

1’s in the permutation π. Notice that a length-` strip contributes exactly ` − 1 pairs

to the permutation π. Based on the previous definition, we have the following two

equations.

b(π) =
n∑
`=2

s`(π)

⌊
`

2

⌋
= s2(π) +

n∑
`=3

s`(π)

⌊
`

2

⌋
, (2.1)

p(π) =
n∑
`=2

s`(π)(`− 1) = s2(π) +
n∑
`=3

s`(π)(`− 1). (2.2)

2.2.1 Algorithm template

For the three approximation algorithms BP1, BP2 and BP3, the rough ideas are the

same. The first step is to compute a maximum weight matching M1 in graph G. Recall

that there are an even number of rows. Therefore, M1 is a perfect matching (even though

some edge weights could be 0). Let w(M1) denote the sum of its edge weights, indicating

that exactly w(M1) bandpasses can be extracted from the row pairings suggested by M1.

These bandpasses are called the bandpasses of M1.

Next, every 1 involved in a bandpass of M1 is changed to 0. Let the resultant matrix be

denoted as A′m×n, the resultant edge weight between rows ri and rj be w′(i, j) — which

is the maximum number of bandpasses that can be formed between the two revised rows

— and the corresponding resultant graph be denoted as G′. One can see that if an edge

(ri, rj) belongs to M1, then the new edge weight w′(i, j) = 0. In the second step, we

compute a matching M2 in graph G′. Let w′(M2) denote its weight or its number of

bandpasses. It is noted that no bandpass of M1 shares a 1 with any bandpass of M2.

The last step is based on whether G[M1 ∪M2] is acyclic or not. If G[M1 ∪M2] is cyclic,

we need to break cycles first, by removing for each cycle the least weight edge of M2.

Otherwise, we do nothing. Finally we stack these paths arbitrarily in the remaining

acyclic graph to give a row permutation π. It is not hard to see that the number of

bandpasses extracted from π is w(M1) + 1
2w
′(M2) and w(M1) +w′(M2), respectively for

the case G[M1 ∪M2] is acyclic and acyclic, respectively. The main differences and the

beauty of the algorithms lie in how we calculate the second matching M2.

20

Chapter 2. Bandpass Problem

2.2.2 Key structure of bandpass

Let π∗ denote the optimal row permutation such that its b(π∗) is maximized over all row

permutations. Correspondingly, S2(π∗) denotes the set of length-2 strips in π∗, which

contributes exactly s2(π∗) bandpasses towards b(π∗). The key part in the performance

analysis for the algorithms BP1, BP2, BP3 is to estimate w′(M2), as done in the

following.

First, we partition the bandpasses of S2(π∗) into four groups: B1, B2, B3, B4. Note that

bandpasses of S2(π∗) do not share any 1 with each other. B1 consists of the bandpasses

of S2(π∗) that also belong to matching M1 (such as the one between rows ra and rb in

Figure 2.1); B2 consists of the bandpasses of S2(π∗), each of which shares (exactly)

a 1 with exactly one bandpass of M1, and the other 1 of the involved bandpass of M1

is shared by another bandpass in B2; B3 consists of the bandpasses of S2(π∗), each of

which shares (exactly) a 1 with at least one bandpass of M1, and if it shares a 1 with

exactly one bandpass of M1 then the other 1 of the involved bandpass of M1 is not

shared by any other bandpass of B2; B4 consists of the remaining bandpasses of S2(π∗).

Figure 2.1 illustrates some examples of these bandpasses.

...

a : 1
b : 1

�

�
	B1

...
t : 0
i : 1
j : 1

�

�
	

k : 1
` : 1

�

�
	

u : 0 0
1
1

1
1

B3

0
1
1
1

�

�
	

B2

0

0

1
1

�

�
	B4

...

Figure 2.1: An illustration of the bandpasses of S2(π∗) (in ovals) and the bandpasses
of M1 (in boxes) for grouping purpose. A horizontal line in the figure represents a row,
led by its index. Rows that are adjacent in π∗ and/or row pairs of M1 are intentionally
ordered adjacently. In this figure, rows ra and rb are adjacent in π∗, denoted as (ra, rb) ∈
π∗, and edge (ra, rb) ∈ M1 as well; the bandpasses between these two rows in S2(π∗)
thus belong to B1. Edges (rt, ri), (rj , rk), (r`, ru) ∈M1, while (ri, rj), (rk, r`) ∈ π∗; the
bandpasses between rows ri and rj and between rows rk and r` in S2(π∗) shown in the
figure have their group memberships indicated beside them respectively.

By the definition of partition, we have

s2(π∗) = |B1|+ |B2|+ |B3|+ |B4|. (2.3)

21

Chapter 2. Bandpass Problem

From these “group” definitions, we know all bandpasses of B1 are in M1. Also, one pair

of bandpasses of B2 correspond to a distinct bandpass of M1. Bandpasses of B3 can be

further partitioned into subgroups such that a subgroup of bandpasses together with a

distinct maximal subset of bandpasses of M1 form into an alternating cycle or path of

length at least 2. Moreover, 1) when the path length is even, the number of bandpasses

of this subgroup of B3 is equal to the number of bandpasses of this subset of bandpasses

of M1; 2) when the path length is odd, 2a) either the number of bandpasses of this

subgroup of B3 is 1 greater than the number of bandpasses of this subset of bandpasses

of M1, 2b) or the path length has to be at least 5 and so the number of bandpasses of this

subgroup of B3 is at least 2
3 of the number of bandpasses of this subset of bandpasses of

M1. It follows from 1), 2a) and 2b) that with respect to B3, M1 contains at least 2
3 |B3|

corresponding bandpasses. That is,

w(M1) ≥ |B1|+
1

2
|B2|+

2

3
|B3|. (2.4)

Apparently, all bandpasses of B4 are in graph G′, while none of B1∪B2∪B3 is in graph

G′.

Note that the bandpasses of B2 are paired up such that each pair of the two bandpasses

share a 1 with a bandpass of M1. Assume without loss of generality that these two

bandpasses of B2 are formed between rows ri and rj and between rows rk and r`,

respectively, and that the involved bandpass of M1 is formed between rows rj and rk

(see Figure 2.1). That is, in the optimal row permutation π∗, rows ri and rj are

adjacent, and rows rk and r` are adjacent; while edge (rj , rk) ∈ M1. We remark that

these four rows are distinct. We conclude that edge (ri, r`) /∈M1. The proof is simple as

otherwise in the particular column a bandpass would be formed between rows ri and r`,

making the two bandpasses of B2 lose their group memberships (i.e., they would belong

to B3).

Lemma 2.1. Assume edge (rj , rk) ∈M1, and that one bandpass of (rj , rk) shares 1 with

(two) bandpasses of B2. Then in G edge (rj , rk) is adjacent to at most four edges in the

optimal row permutation π∗, at most two of which are incident at row rj and at most

two of which are incident at row rk.

Proof. The lemma is straightforward from the above discussion, and the fact that edge

(rj , rk) does not belong to π∗.

Continuing with the above discussion, assuming that edge (rj , rk) ∈ M1, and that one

bandpass of (rj , rk) shares 1 with two bandpasses of B2, which are formed between rows

ri and rj and between rows rk and r`, respectively (see Figure 2.1). We know that

22

Chapter 2. Bandpass Problem

in graph G′, between rows ri and r`, in the same column there is a bandpass (which

contributes 1 towards the edge weight w′(i, `)). We call bandpasses constructed in this

way the induced bandpasses. From Lemma 2.1, edge (rj , rk) is adjacent to at most two

edges of π∗ incident at row rj . It follows that in graph G′, row r` can form induced

bandpasses with at most four other rows. In the other words, the subgraph of G′ induced

by the edges containing induced bandpasses, denoted as G′s, is a degree-4 graph.

Lemma 2.2. G′s is a degree-4 graph, and its weight w′(G′s) ≥ 1
2 |B2|.

Proof. The first half of the lemma is a result of the above discussion. Since every pair

of bandpasses of B2 leads to an induced bandpass, all the edge weights in G′s sum up to

at least 1
2 |B2|, which is the number of bandpass pairs in B2.

2.3 19
36-approximation algorithm BP1

In this section, we will introduce our first improved approximation algorithm BP1 for

the bandpass problem.

2.3.1 Algorithm description

As introduced in the Section 2.2, the first step of BP1 is as same as the algorithm

template described in Section 2.2.1. In the second step of BP1, we compute a maximum

weight matching M2 in graph G′. If an edge (ri, rj) belongs to both M1 and M2, then it

is removed from M2. Such a removal does not decrease the weight of M2 as w′(i, j) = 0.

Consider the union of M1 and M2, denoted as G[M1∪M2]. Note that every cycle of this

union, if any, must be an even cycle with alternating edges of M1 and M2. The third

step of BP1 is to break cycles, by removing for each cycle the least weight edge of M2.

Let M denote the final set of edges of the union, which form into disjoint paths. In the

last step, we arbitrarily stack these paths to give a row permutation π. The number of

bandpasses extracted from π, b(π), is at least the weight of M , which is greater than or

equal to w(M1) + 1
2w
′(M2).

2.3.2 Performance analysis

Lemma 2.3. The weight of matching M2 is w′(M2) ≥ max{ 1
10 |B2|, 1

2 |B4|} ≥ x 1
10 |B2|+

(1− x)1
2 |B4|, for any x ∈ [0, 1].

23

Chapter 2. Bandpass Problem

Proof. Vizing’s Theorem [107] states that the edge coloring (chromatic) number of a

graph is either the maximum degree ∆ or ∆ + 1. Note that all edges of the same color

form a matching in the graph. We conclude from Lemma 2.2 that, even in graph G′s
there is a matching of weight at least 1

5w
′(G′s) ≥ 1

10 |B2|. As G′s is a subgraph of G′ and

M2 is the maximum weight matching of G′, w′(M2) ≥ 1
10 |B2|.

On the other hand, graph G′ contains all bandpasses of B4. Therefore, w′(M2) ≥ 1
2 |B4|

as well. The last inequality in the lemma then follows trivially,

max

{
1

10
|B2|,

1

2
|B4|

}
≥ x 1

10
|B2|+ (1− x)

1

2
|B4|,

for any x ∈ [0, 1].

Theorem 2.4. Algorithm BP1 is a cubic time 19
36 -approximation for the bandpass prob-

lem.

Proof. The running time of algorithm BP1 is dominated by the computing for two

maximum weight matchings, which can be done in cubic time. Since M1 is the maximum

weight matching in graph G, from Eq. (2.2) we have

w(M1) ≥ 1

2
p(π∗) ≥ 1

2

(
s2(π∗) +

m∑
`=3

s`(π
∗)(`− 1)

)
. (2.5)

Combining Eqs. (2.4) and (2.5), we have for any y ∈ [0, 1],

w(M1) ≥ y1

2

(
s2(π∗) +

m∑
`=3

s`(π
∗)(`− 1)

)
+ (1− y)

(
|B1|+

1

2
|B2|+

2

3
|B3|

)
. (2.6)

The permutation π produced by algorithm BP1 contains b(π) ≥ w(M1) + 1
2w
′(M2)

bandpasses, as indicated at the end of Section 2.3.1. From Lemma 2.3, we have for any

x ∈ [0, 1],

b(π) ≥ w(M1) + x
1

20
|B2|+ (1− x)

1

4
|B4|. (2.7)

Together with Eqs. (2.3) and (2.6), the above Eq. (2.7) becomes,

b(π) ≥ w(M1) + x
1

20
|B2|+ (1− x)

1

4
|B4|

≥ y
1

2

(
s2(π∗) +

m∑
`=3

s`(π
∗)(`− 1)

)

+(1− y)

(
|B1|+

1

2
|B2|+

2

3
|B3|

)
+ x

1

20
|B2|+ (1− x)

1

4
|B4|

24

Chapter 2. Bandpass Problem

=
y

2

(
s2(π∗) +

m∑
`=3

s`(π
∗)(`− 1)

)

+(1− y)|B1|+
(

1− y
2

+
x

20

)
|B2|+

2(1− y)

3
|B3|+

1− x
4
|B4|

≥ 5

12

(
s2(π∗) +

m∑
`=3

s`(π
∗)(`− 1)

)
+

1

18
|B1|+

1

9
s2(π∗), (2.8)

where the last inequality is achieved by setting x = 5
9 and y = 5

6 . Note that for all ` ≥ 3,

(`− 1) ≥ 3
2b `2c. It then follows from Eqs. (2.8) and (2.1) that

b(π) ≥ 19

36

(
s2(π∗) +

15

19
× 3

2

m∑
`=3

s`(π
∗)
⌊
`

2

⌋)
≥ 19

36
b(π∗). (2.9)

That is, the worst-case performance ratio of algorithm BP1 is at most 19
36 .

2.4 227
426-approximation algorithm BP2

In this section, we introduce our second improved approximation algorithm BP2 for

the bandpass problem.

2.4.1 Algorithm description

Again, the first step is to compute a maximum weight matching M1 in graph G, every 1

involved in a bandpass of M1 is changed to 0 and then construct a new graph G′, which

is the same as we described in the previous algorithm template in section 2.2.1.

In the second step of BP2, we compute a maximum weight 4-matching C in graph G′,

which is further decomposed in O(n2.5) time into two 2-matchings denoted as C1 and

C2 [37, 49]. Let w′(C) denote the weight (the number of bandpasses) of C in the residual

graph G′. Note that no bandpass of C shares a 1 with any bandpass of M1. Using M1

and C1 and C2, by Lemma 2.6, we can compute a matching M2 from C of weight at least
1

7.5w
′(C) such that G[M1 ∪M2] is guaranteed acyclic.

In the third step, we use the 7
9 -approximation algorithm described in [78] to compute

a Hamiltonian path P in G′ whose weight is at least 7
9 of the maximum weight of a

Hamiltonian path. Then, using M1 and P, by Lemma 2.7, we can compute another

matching M2 from P of weight at least 1
3w
′(P) such that G[M1 ∪M2] is guaranteed

acyclic.

25

Chapter 2. Bandpass Problem

In the last step, we choose the larger one between the two M2’s found in the last two

steps, and arbitrarily stack the paths in G[M1 ∪ M2] to give a row permutation π.

Note that the number of bandpasses extracted from π, b(π), is greater than or equal to

w(M1) + w′(M2).

2.4.2 Performance analysis

In O(n2.5) time, a 4-matching such as G′s can be decomposed into two 2-matchings [37,

49], each of which is a collection of vertex-disjoint cycles or paths.

Lemma 2.5. Let C be a 2-matching of graph G such that no edge of M1 is also an

edge of C. Then, we can partition the edge set of C into four matchings X0, X1, X2, X3

such that G[M1 ∪ Xj] is an acyclic 2-matching for all j ∈ {0, 1, 2, 3}. Moreover, the

partitioning takes O(nα(n)) time, where α(·) is the inverse Ackerman function.

Proof. Hassin and Rubinstein [50] have shown that we can compute two disjoint match-

ings X0 and X1 in C such that the following two conditions hold:

• Both G[M1 ∪X0] and G[M1 ∪X1] are acyclic 2-matchings of G.

• Each vertex of C is incident to at least one edge of X0 ∪X1.

For convenience, let Y be the set of edges in C but not in X0 ∪ X1. By the second

condition, Y is a matching. Consider the graph H = (V,M1 ∪ Y). Obviously, H is a

collection of vertex-disjoint paths and cycles, and each cycle of H contains at least two

edges of Y . For each cycle C of H, we mark an arbitrary edge of C that also belongs to

Y . Let X3 be the set of marked edges, and X2 = Y \X3. Then, both G[M1 ∪X2] and

G[M1 ∪X3] are acyclic 2-matchings of G.

It is not hard to see that with the famous union-find data structure [97], the computation

of X0 and X1 described in [50] can be done in O (nα(n)) time. Once knowing X0 and

X1, we can obtain X2 and X3 in O(n) time.

In general, Lemma 2.5 cannot be improved by partitioning the edge set of C into three

matchings instead of four matchings. To see this, it suffices to consider a concrete

example, where C is just a cycle of length 4 and M1 consists of the two edges connecting

nonadjacent vertices in C.

Let C1 and C2 denote the two 2-matchings constituting to the maximum weight 4-

matching C of residual graph G′. Using Lemma 2.5 alone, C1 can be partitioned into four

26

Chapter 2. Bandpass Problem

matchings X0, X1, X2, X3 and C2 can be partitioned into four matchings Y0, Y1, Y2, Y3,

such that G[M1 ∪ Zj] is an acyclic 2-matching for all Z ∈ {X,Y } and j ∈ {0, 1, 2, 3}.
The following lemma states a slightly better partition when we consider C1 and C2 si-

multaneously.

Lemma 2.6. The weight of matching M2 is w′(M2) ≥ 1
15 |B2|.

Proof. Let C1 and C2 denote the two 2-matchings constituting to the maximum weight

4-matching C of residual graph G′. Based on the discussion in the last paragraph, we

firstly use Lemma 2.5 to partition the edge set of C1 into four matchings X0, X1, X2, X3

and the edge set of C2 into four matchings Y0, Y1, Y2, Y3, such that G[M1 ∪ Zj] is an

acyclic 2-matching for all Z ∈ {X,Y } and j ∈ {0, 1, 2, 3}.

Note that by Lemma 2.5, X2∪X3 is a matching and that X3 contains the marked edges,

each of which, say e = (u, v), is the lightest edge of the corresponding cycle, say C,

formed in G[M1 ∪ X2 ∪ X3]. C is an even cycle. If C contains at least 6 edges, then

w′(X3 ∩ C) = w′(e) ≤ 1
2w
′(X2 ∩ C). The following process is to swap certain edges

among X0, X1, X2, X3 and Y0, Y1, Y2, Y3 to guarantee the property

(P) that each of G[M1 ∪Xi] for i = 0, 1 and G[M1 ∪Yj] for j ∈ {0, 1, 2, 3} is an acyclic

2-matching, and that X2 ∪ X3 is a matching and G[M1 ∪ X2 ∪ X3] contains no

length-4 cycles.

Let C = (u, v, x, y) be a length-4 cycle in G[M1 ∪X2 ∪X3], and assume that X2 ∪X3 =

{(u, v), (x, y)}. Then, we call edges (u, v) and (x, y) a problematic pair. Our swapping

process is to resolve such problematic pairs. We distinguish three cases.

In the first case, edges (u, x) /∈ C1 and (v, y) /∈ C1.

Assume the other edges of C1 incident at u, v, x, y are (u, 1), (v, 2), (x, 3), (y, 4), respec-

tively. These four edges thus all belong to G[M1 ∪X0] and G[M1 ∪X1]. If at least three

of them belong to G[M1 ∪X0], then in G[M1 ∪X1] three vertices among u, v, x, y have

degree 1 and thus they cannot be in the same connected component of G[M1 ∪X1]. We

can move (exactly) one of edges (u, v) and (x, y) to X1, while maintaining property (P).

We examine next where exactly two of the four edges belong to G[M1 ∪ X0]. Assume

without loss of generality that (u, 1) ∈ G[M1 ∪ X0]. If (y, 4) ∈ G[M1 ∪ X0], then the

connected component in G[M1∪X1] containing u has only one edge (u, y), which belongs

to M1. Thus, if the other edge of C1 incident at vertex 1 belongs to X1, we can move

edge (u, 1) from X0 to X2 ∪X3, and move edge (u, v) from X2 ∪X3 to X0; if the other

edge of C1 incident at vertex 1 does not belong to X1 (and thus it must be in X2 ∪X3),

27

Chapter 2. Bandpass Problem

we can move edge (u, 1) from X0 to X1, and move edge (u, v) from X2 ∪ X3 to X0.

Either way, we maintain property (P) while resolving a problematic pair of X2 ∪X3.

If (v, 2) ∈ G[M1 ∪X0], then vertices u and v have degree 1 in G[M1 ∪X1]. Thus, if the

other edge of C1 incident at vertex 1 does not belong to X1, then vertex 1 has degree

1 in G[M1 ∪ X1] as well. We conclude that vertices u, v, 1 cannot reside in the same

connected component of G[M1 ∪ X1]. When u and v are not connected, we can move

edge (u, v) from X2 ∪ X3 to X1; when u and 1 are not connected, we can move edge

(u, 1) from X0 to X1, and move edge (x, y) from X2 ∪ X3 to X0. Again, either way,

we maintain property (P) while resolving a problematic pair of X2 ∪ X3. Symmetric

scenarios can be argued in the same way for vertices 2, 3, 4. In the remaining scenario,

the other edges of C1 incident at vertices 1, 2, 3, 4 all belong to X0 ∪X1. We then move

edges (u, 1), (v, 2), (x, 3), (y, 4) from X0 ∪X1 to X2 ∪X3, and move edges (u, v) ((x, y),

respectively) from X2 ∪X2 to X0 (X3, respectively). Note that none of these four edges

would form with any other edge into a problematic pair.

Lastly, if (x, 3) ∈ G[M1 ∪X0], then vertices u and x have degree 1 in G[M1 ∪X1]. Thus,

if the other edge of C1 incident at vertex 1 belongs to X1, then vertex 1 has degree 1 in

G[M1 ∪X2 ∪X3]. We can move edge (u, 1) from X0 to X2 ∪X3, and move edge (u, v)

from X2 ∪ X3 to X0. If the other edge of C1 incident at vertex 1 does not belong to

X1, then vertex 1 has degree 1 in G[M1 ∪X1] as well. We conclude that vertices u, x, 1

cannot reside in the same connected component of G[M1 ∪X1]. When u and 1 are not

connected, we can move edge (u, 1) from X0 to X1, and move edge (u, v) from X2 ∪X3

to X0. Symmetric scenarios can be argued in the same way for vertices 2, 3, 4. In the

remaining scenario, none of the other edges of C1 incident at vertices 1, 2, 3, 4 belongs

to X0 ∪ X1, and that vertices u and 1 (v and 2, x and 3, y and 4, respectively) are

connected in G[M1∪X1] (G[M1∪X0], G[M1∪X1], G[M1∪X0], respectively). It follows

that we may move edge (u, 1) from X0 to X1, move edge (y, 4) from X1 to X0, and move

edge (u, v) from X2 ∪X3 to X0, to resolve the problematic pair.

In the second case, edges (u, x) /∈ C1 but (v, y) ∈ C1.

Assume the other edges of C1 incident at u, x are (u, 1), (x, 3), respectively. These two

edges and edge (v, y) all belong to G[M1∪X0] and G[M1∪X1]. Without loss of generality,

assume (v, y) ∈ X1; it follows that vertices v and y have degree 1 in G[M1 ∪X0]. If one

of edges (u, 1) and (x, 3) does not belong to G[M1 ∪X0], say (u, 1), then we can move

(u, v) from X2 ∪X3 to X0, while maintaining property (P).

If both edges (u, 1) and (x, 3) belong to G[M1 ∪X0], then vertices u and x have degree

1 in G[M1 ∪ X1]. When the other edge of C1 incident at vertex 1 does not belong to

X1 (but X2 ∪X3), we can move edge (u, 1) from X0 to X1, and move edge (u, v) from

28

Chapter 2. Bandpass Problem

X2 ∪ X3 to X0; the symmetric scenario can be argued in the same way for vertex 3;

When the other edge of C1 incident at vertex 1 and the other edge of C1 incident at

vertex 3 both belong to X1, we can move edges (u, 1) and (v, 3) from X0 to X2 ∪ X3,

move edge (v, y) from X1 to X2 ∪X3, move edge (u, v) from X2 ∪X3 to X0, and move

edge (x, y) from X2 ∪X3 to X1. Note that none of these three edges (u, 1), (v, 3) and

(v, y) would form with any other edge into a problematic pair.

In the last case, edges (u, x) ∈ C1 and (v, y) ∈ C1.

Assume without loss of generality that (u, x) ∈ X0 and (v, y) ∈ X1. Since C2 do not

share any edge with C1, we consider the degrees of vertices u, v, x, y in G[M1 ∪ Yi] for

i = 0, 1, 2, 3. If in one of these four acyclic 2-matchings, say G[M1 ∪ Y0], at least three

of the four vertices have degree 1, say u, v, x, then we can move edge (u, v) from C1 to

Y0, and thus the problematic pair of X2 ∪ X3 is resolved. In the other cases, in each

G[M1 ∪ Yi] for i = 0, 1, 2, 3, exactly two of the four vertices have degree 1.

Let the two edges of C2 incident at u (v, x, y, respectively) be (u, 1) and (u, 1′) ((v, 2)

and (v, 2′), (x, 3) and (x, 3′), (y, 4) and (y, 4′), respectively).

If (u, 1), (y, 4) ∈ Y0, then u and y both have degree 1 in one of G[M1 ∪ Yi] for i = 1, 2, 3,

say in G[M1 ∪ Y3]. It follows that if the other edge of C2 incident at vertex 1 does not

belong to Y3, then we can move edge (u, 1) from Y0 to Y3, and move edge (u, v) from C1

to Y0 to resolve the problematic pair of X2 ∪X3; or if the other edge of C2 incident at

vertex 4 does not belong to Y3, then we can move edge (y, 4) from Y0 to Y3, and move

edge (x, y) from C1 to Y0 to resolve the problematic pair of X2 ∪X3. In the remaining

scenario, the other edge of C2 incident at vertex 1 (vertex 4, respectively) belongs to Y3.

Note that in either G[M1 ∪ Y1] or G[M1 ∪ Y2], vertex u has degree 1, and we assume

without loss of generality that vertex u has degree 1 in G[M1∪Y1]. Note also that vertex

1 has degree 1 in G[M1 ∪ Y1]. If edge (y, 4′) /∈ Y1, then vertex y has degree 1 as well,

and thus we can move edge (u, 1) from Y0 to Y1, and move edge (u, v) from C1 to Y0

to resolve the problematic pair of X2 ∪ X3; if edge (y, 4′) ∈ Y1 but the other edge of

C2 incident at vertex 4′ does not belong to Y3, then we can move edge (y, 4′) from Y1

to Y3, move edge (u, 1) from Y0 to Y1, and move edge (u, v) from C1 to Y0 to resolve

the problematic pair of X2 ∪X3. Therefore, we only need to argue the scenario where

the other edge of C2 incident at vertex 4′ belongs to Y3. Symmetrically considering Y2,

we may assume without loss of generality that the other edge of C2 incident at vertex

1′ belongs to Y3. Consequently, vertices u, 1, 1′ all have degree 1 in G[M1 ∪ Y1], and

thus u and at least one of 1 and 1′ are not connected. If u and 1 are not connected, we

can move edge (u, 1) from Y0 to Y1, and move edge (u, v) from C1 to Y0 to resolve the

problematic pair of X2 ∪ X3; if u and 1′ are not connected, we can move edge (u, 1′)

29

Chapter 2. Bandpass Problem

from Y2 to Y1, move edge (u, 1) from Y0 to Y2, and move edge (u, v) from C1 to Y0 to

resolve the problematic pair of X2 ∪X3.

If (u, 1), (v, 2) ∈ Y0, then u and v both have degree 1 in one of G[M1 ∪ Yi] for i = 1, 2, 3,

say in G[M1 ∪ Y3]. The following discussion is very similar to the above paragraph,

though slightly simpler. Firstly, if x and y are not connected in G[M1 ∪ Y0] (u and v

are not connected in G[M1 ∪ Y3], respectively), then we can move edge (x, y) ((u, v),

respectively) from C1 to Y0 (Y3, respectively) to directly resolve the problematic pair

of X2 ∪ X3. Secondly, if the other edge of C2 incident at vertex 1 does not belong to

Y3, then we can move edge (u, 1) from Y0 to Y3, and move edge (x, y) from C1 to Y0 to

resolve the problematic pair of X2 ∪X3; or if the other edge of C2 incident at vertex 2

does not belong to Y3, then we can move edge (v, 2) from Y0 to Y3, and move edge (x, y)

from C1 to Y0 to resolve the problematic pair of X2 ∪ X3. Symmetrically and without

loss of generality that (x, 3), (y, 4) ∈ Y3, if either of the other edges of C2 incident at

vertices 3 and 4 does not belong to Y3, the problematic pair can be resolved. In the

remaining scenario, we assume that vertices u and x have degree 1 in G[M1 ∪ Y1] (and

(v, 2′), (y, 4′) ∈ Y1). Note that vertices 1, 2, 3, 4 all have degree 1 in G[M1 ∪ Y1] too.

If u and x are not connected in G[M1 ∪ Y1], then we can swap edges of X0 ∪ X1 and

of X2 ∪X3, and move edge (u, x) from X2 ∪X3 to Y1, to resolve the problematic pair

of X2 ∪ X3. Otherwise, u and 1 should not be connected in G[M1 ∪ Y1], and we can

move edge (u, 1) from Y0 to Y1, and move edge (x, y) from X2 ∪X3 to Y0, to resolve the

problematic pair of X2 ∪X3.

All the other pairs of edges occurring in C2∩Y0 can be analogously discussed as in either

of the above two paragraphs. Repeatedly applying the above process to resolve the

problematic pairs of X2∪X3, if any, we achieve the Property (P) that each of G[M1∪Xi]

for i = 0, 1 and G[M1∪Yj] for j ∈ {0, 1, 2, 3} is an acyclic 2-matching, and that X2∪X3

is a matching and G[M1 ∪ X2 ∪ X3] contains no length-4 cycles. Subsequently, we let

X3 denote the set of marked edges, guaranteeing that w′(X3) ≤ 1
2w
′(X2).

It follows that at least one of X0, X1, X2, Y0, Y1, Y2, Y3 has its weight greater than or

equal to
1

7.5

(
w′(C1) + w′(C2)

)
≥ 1

7.5
× 1

2
|B2| =

1

15
|B2|,

where the last inequality follows from Lemma 2.2 and the fact that w′(C) ≥ w′(G′s).

The next lemma says that Lemma 2.5 can be improved if the input 2-matching is acyclic.

Lemma 2.7. Let P be an acyclic 2-matching of G such that no edge of M1 is also an

edge of P. Then, we can partition the edge set of P into three matchings Y0, Y1, Y2 such

that G[M1 ∪Yj] is an acyclic 2-matching for all j ∈ {0, 1, 2}. Moreover, the partitioning

takes O(nα(n)) time.

30

Chapter 2. Bandpass Problem

Proof. Note that P is a collection of vertex-disjoint paths. We claim that if P has two or

more connected components, then we can connect the connected components of P into

a single path by adding edges not in M1 to P. To see this claim, suppose that P has two

or more connected components. Obviously, we can connect the connected components

of P into a single path by adding edges to P. Unfortunately, some edges of M1 may

have been added to P. To remove edges of M1 from P, we start at one endpoint of P
and process the edges of P in order as follows:

• Let s and t be the current endpoints of P, and (u, v) be the current edge we want

to process. Without loss of generality, we may assume that the removal of (u, v)

from P yields a path Pu from s to u and another path Pv from v to t, and further

assume that the edges of Pu have been processed. Note that at most one of s = u

and v = t is possible because n ≥ 3. If (u, v) 6∈M1, then we proceed to process the

other edge incident to v than (u, v). Otherwise, (v, s) 6∈M1 or (u, t) 6∈M1 because

M1 is a matching and at most one of s = u and v = t is possible. If (v, s) 6∈ M1,

then we modify P by deleting edge (u, v) and adding edge (v, s) and proceed to

process the other edge incident to v than (v, s). On the other hand, if (u, t) 6∈M1,

then we modify P by deleting edge (u, v) and adding edge (u, t) and proceed to

process the other edge incident to t than (u, t).

By the above claim, we may assume that P is a single path P = (v1, v2, . . . , v`+1), and

denote ej = (vj , vj+1) for j = 1, 2, . . . , `.

We next detail how to partition the edge set of P into three required matchings Y0, Y1,

and Y2. Initially, we set Y0 = {e1}, Y1 = {e2}, and Y2 = {e3}. Then, for j = 4, 5, . . . , `

(in this order), we try to find a k ∈ {0, 1, 2} such that Yk ∪ {ej} is a matching and

G[M1∪Yk ∪{ej}] is an acyclic 2-matching of G. To explain how to find k, fix an integer

j ∈ {4, 5, . . . , `}. Let b be the integer in {0, 1, 2} with ej−1 ∈ Yb, and b′ and b′′ be the

two integers in {0, 1, 2}\{b}. If G[M1∪Yb′] (respectively, G[M1∪Yb′′]) contains no path

between vj and vj+1, then we can set k = b′ (respectively, k = b′′) and we are done.

So, we may also assume that G[M1 ∪ Yb′] contains a path P ′ between vj and vj+1 and

G[M1 ∪ Yb′′] contains a path P ′′ between vj and vj+1. See Figure 2.2.

Let vi′ (respectively, vi′′) be the neighbor of vj in P ′ (respectively, P ′′), and vh′ (re-

spectively, vh′′) be the neighbor of vj+1 in P ′ (respectively, P ′′). Then, none of edges

(vj−1, vj), (vj , vj+1), and (vj+1, vj+2) can appear in P ′ (respectively, P ′′), because (vj−1, vj) ∈
Yb and neither (vj , vj+1) nor (vj+1, vj+2) has been processed. So, all of (vj , vi′), (vj+1, vh′),

(vj , vi′′), and (vj+1, vh′′) belong to M1. Thus, i′ = i′′ and h′ = h′′ because M1 is a match-

ing. Consequently, one edge incident to vi′ (respectively, vh′) in P belongs to Yb′ and

the other belongs to Yb′′ . Hence, i′ < j − 1 and h′ < j − 1.

31

Chapter 2. Bandpass Problem

Since ej−1 ∈ Yb, either ej−2 ∈ Yb′ or ej−2 ∈ Yb′′ . We assume that ej−2 ∈ Yb′ ; the case

where ej−2 ∈ Yb′′ is similar. Since P ′′ is a path between vj and vj+1 in G[M1 ∪ Yb′′],
G[M1 ∪ Yb′′] contains no path between vj and vj−1. Thus, G[M1 ∪ Yb′′ ∪ {ej−1}] is an

acyclic 2-matching of G. Hence, we move ej−1 from Yb to Yb′′ . A crucial point is that

the degree of vi′ in G[M1 ∪ Yb] is 1. This is true, because vi′ appears in both P ′ and P ′′

and in turn cannot be incident to an edge in Yb. By this crucial point and the fact that

vi′ and vj belong to the same connected component in G[M1 ∪ Yb ∪ {ej}], we know that

G[M1 ∪ Yb ∪ {ej}] is an acyclic 2-matching of G. Therefore, we can set k = b.

P”
b” b”

vj

vi

vj-1vj-2 vj+1

vh
P’

P”

bb’

b’

b” b”

b’

vj

vi

vj-1vj-2 vj+1

vh
P’

bb’

b’ b’

b”

’ ’ ’’

Figure 2.2: An illustration of moving (vj−1, vj) from Yb to Yb′′ and adding (vj , vj+1)
to Yb, where (1) the dashed lines indicate edges in M1, (2) the thin solid lines indicate
edges of P that have not been processed, (3) the lines labeled with b (respectively, b′, or
b′′) indicate edges in Yb (respectively, Yb′ , or Yb′′), and (4) the two curves may contain
edges of M1.

Obviously, with the famous union-find data structure [97], the above partitioning of the

edge set P into Y0, Y1, Y2 can be done in O (nα(n)) time.

In general, Lemma 2.7 cannot be improved by partitioning the edge set of P into two

matchings instead of three matchings. To see this, it suffices to consider a concrete

example, where P is just a path with edges (v1, v2), (v2, v3), (v3, v4) and M1 consists of

edges (v1, v3) and (v2, v4).

Lemma 2.8. The weight of matching M2 is w′(M2) ≥ 7
27 |B4|.

Proof. Note that graph G′ contains all bandpasses of B4, which is an acyclic 2-matching.

By the 7/9-approximation algorithm for the Max-TSP [78], we can compute a Hamil-

tonian path P in G′ of weight at least 7
9 of the optimum, and thus of weight at least

7
9 |B4|. The above Lemma 2.7 guarantees that

w′(M2) ≥ 1

3
w′(P) ≥ 7

27
|B4|.

Theorem 2.9. Algorithm BP2 is an O(n4)-time 227
426 -approximation for the bandpass

problem.

Proof. The running time of algorithm BP2 is dominated by the computing for those

maximum weight b-matchings, for b = 1, 2, 4, which can be done in O(n4) time. Since

32

Chapter 2. Bandpass Problem

M1 is the maximum weight matching in graph G, from Eq. (2.1) we have

w(M1) ≥ 1

2
p(π∗) ≥ 1

2

(
s2(π∗) +

n∑
`=3

s`(π
∗)(`− 1)

)
. (2.10)

Combining Eqs. (2.4) and (2.10), we have for any real number y ∈ [0, 1],

w(M1) ≥ y1

2

(
s2(π∗) +

n∑
`=3

s`(π
∗)(`− 1)

)
+ (1− y)

(
|B1|+

1

2
|B2|+

2

3
|B3|

)
. (2.11)

The permutation π produced by algorithm BP2 contains b(π) ≥ w(M1) +w′(M2) band-

passes, as indicated at the end of Section 2.4.1. From Lemmas 2.6 and 2.8, we have for

any real number x ∈ [0, 1],

b(π) ≥ w(M1) + x
1

15
|B2|+ (1− x)

7

27
|B4|. (2.12)

Together with Eqs. (2.3) and (2.11), the above Eq. (2.12) becomes,

b(π) ≥ w(M1) + x
1

15
|B2|+ (1− x)

7

27
|B4|

≥ y
1

2

(
s2(π∗) +

n∑
`=3

s`(π
∗)(`− 1)

)

+(1− y)

(
|B1|+

1

2
|B2|+

2

3
|B3|

)
+ x

1

15
|B2|+ (1− x)

7

27
|B4|

=
y

2

(
s2(π∗) +

n∑
`=3

s`(π
∗)(`− 1)

)

+(1− y)|B1|+
(

1− y
2

+
x

15

)
|B2|+

2(1− y)

3
|B3|+

7(1− x)

27
|B4|

≥ 57

142

(
s2(π∗) +

n∑
`=3

s`(π
∗)(`− 1)

)
+

14

213
|B1|+

28

213
s2(π∗), (2.13)

where the last inequality is achieved by setting x = 35
71 and y = 57

71 . Note that for all

` ≥ 3, (`− 1) ≥ 3
2b `2c. It then follows from Eqs. (2.13) and (2.1) that

b(π) ≥ 227

426

(
s2(π∗) +

171

227
× 3

2

n∑
`=3

s`(π
∗)
⌊
`

2

⌋)
≥ 227

426
b(π∗). (2.14)

That is, the worst-case performance ratio of algorithm BP2 is at most 227
426 .

33

Chapter 2. Bandpass Problem

2.5 70−
√

2
128 -approximation algorithm BP3

In this section, we will introduce our third approximation algorithm for the bandpass

problem, which is also the currently best approximation algorithm for the the bandpass

problem.

2.5.1 Algorithm description

BP3 is very similar to the algorithm BP2. The main difference is that BP3 presents

another scheme to partition a 4-matching into a number of candidate submatchings,

each of which can be used to extend the first maximum weight matching. Again, the

first step of BP3 is the same as the first step of the algorithm template described in the

Section 2.2.1.

In the second step of BP3, we compute a maximum weight 4-matching C in graph

G′, which is then decomposed in O(n2.5) time into two 2-matchings denoted as C1 and

C2 [37, 49]. Let w′(C) denote the total residual weight of all the edges in C. Using M1

and the two 2-matchings C1 and C2, by Lemma 2.16, we can compute a matching M2

out of C, of weight at least 6−
√

2
32 w′(C) > 0.1433w′(C), to extend M1 into an acyclic

2-matching.

We then arbitrarily stack the paths in G[M1 ∪M2] to give a solution row permutation

π. Note that the number of bandpasses extracted from π, b(π), is greater than or equal

to w(M1) + w′(M2).

2.5.2 Performance analysis

The following lemma is a restatement of Lemma 2.5.

Lemma 2.10. Let C be a 2-matching of graph G such that M1 ∩ C = ∅. Then, we can

partition the edge set of C into four matchings X0, X1, X2, X3 such that

i) G[M1 ∪Xj] is an acyclic 2-matching for all j ∈ {0, 1, 2, 3};

ii) each vertex of C is incident to at least one edge of X0 ∪X1 (and thus X2 ∪X3 is

a matching);

iii) X3 contains exactly the lightest edge of X2∪X3 in every cycle of G[M1∪X2∪X3].

Moreover, the partitioning takes O(nα(n)) time, where α(·) is the inverse Ackerman

function.

34

Chapter 2. Bandpass Problem

The correctness of Lemma 2.10 follows from the proof of the Lemma 2.5.

Lemma 2.11. Let X ′3 denote the subset of X3 of which each edge comes from a length-4

cycle of G[M1 ∪X2 ∪X3], and let X ′′3 = X3 −X ′3. Then each edge of X ′′3 comes from a

cycle of G[M1 ∪X2 ∪X3] of length at least 6.

Proof. Since X2 ∪ X3 is a matching, every cycle of G[M1 ∪ X2 ∪ X3] is an even cycle.

The lemma follows clearly, since there are no multiple edges in G[M1 ∪X2 ∪X3].

Lemma 2.12. Let X ′2 denote the subset of X2 of which each edge comes from a length-

4 cycle of G[M1 ∪ X2 ∪ X3], and let X ′′2 = X2 − X ′2. Then w′(X ′3) ≤ w′(X ′2) and

w′(X ′′3) ≤ 1
2w
′(X ′′2).

Proof. The lemma follows clearly, since every edge of X3 is the lightest edge of X2 ∪X3

in some cycle of G[M1 ∪X2 ∪X3].

The following Lemmas 2.13 and 2.15 state slightly better partition results than Lemma 2.10.

Lemma 2.13. If C1 contains no length-4 cycle, then we can partition C1 into four

matchings X0, X1, X2 and X3 as described in Lemma 2.10, and such that X ′3 = ∅ (i.e.,

G[M1∪X2∪X3] contains no length-4 cycle). Moreover, the partitioning takes O(nα(n))

time.

Proof. We firstly use Lemma 2.10 to partition the edge set of C1 into four matchings

X0, X1, X2, X3. The following process is to swap certain edges among X0, X1, X2, X3

to guarantee all three properties stated in Lemma 2.10, plus a novel property that

G[M1 ∪X2 ∪X3] contains no length-4 cycles.

Let C = (u, v, x, y) be a length-4 cycle in G[M1 ∪ X2 ∪ X3], and assume that edges

(u, v), (x, y) ∈ X2 ∪ X3 and edges (u, y), (v, x) ∈ M1. We call edges (u, v) and (x, y)

a problematic pair. Our swapping process is to resolve such problematic pairs. We

distinguish two cases.

In the first case, edges (u, x) /∈ C1 and (v, y) /∈ C1.

Assume the other edges of C1 incident at u, v, x, y are (u, 1), (v, 2), (x, 3), (y, 4), respec-

tively. These four edges thus all belong to G[M1 ∪X0] and G[M1 ∪X1]. If at least three

of them belong to G[M1 ∪X0], then in G[M1 ∪X1] three vertices among u, v, x, y have

degree 1 and thus they cannot be in the same connected component of G[M1 ∪X1]. We

can move (exactly) one of edges (u, v) and (x, y) from X2 ∪ X3 to X1, while resolving

this problematic pair.

35

Chapter 2. Bandpass Problem

We examine next where exactly two of the four edges belong to G[M1 ∪ X0]. Assume

without loss of generality that (u, 1) ∈ G[M1 ∪ X0]. If (y, 4) ∈ G[M1 ∪ X0], then the

connected component in G[M1∪X1] containing u has only one edge (u, y), which belongs

to M1. Thus, if the other edge of C1 incident at vertex 1 belongs to X1, we can move

edge (u, 1) from X0 to X2 ∪X3, and move edge (u, v) from X2 ∪X3 to X0; if the other

edge of C1 incident at vertex 1 does not belong to X1 (and thus it must be in X2 ∪X3),

we can move edge (u, 1) from X0 to X1, and move edge (u, v) from X2 ∪ X3 to X0.

Either way, we maintain all three properties stated in Lemma 2.10 while resolving this

problematic pair.

If (v, 2) ∈ G[M1 ∪X0], then both vertices u and v have degree 1 in G[M1 ∪X1]. Thus, if

the other edge of C1 incident at vertex 1 does not belong to X1, then vertex 1 has degree

1 in G[M1 ∪ X1] as well. We conclude that vertices u, v, 1 cannot reside in the same

connected component of G[M1 ∪ X1]. When u and v are not connected, we can move

edge (u, v) from X2 ∪ X3 to X1; when u and 1 are not connected, we can move edge

(u, 1) from X0 to X1, and move edge (x, y) from X2 ∪X3 to X0. Again, either way, we

maintain all three properties stated in Lemma 2.10 while resolving this problematic pair.

Symmetric scenarios can be argued in the same way for vertices 2, 3, 4. In the remaining

scenario, the other edges of C1 incident at vertices 1, 2, 3, 4 all belong to X0 ∪ X1. We

then move edges (u, 1), (v, 2), (x, 3), (y, 4) from X0 ∪ X1 to X2 ∪ X3, and move edges

(u, v) ((x, y), respectively) from X2 ∪ X3 to X0 (X1, respectively). Note that none of

these four edges would form with any other edge into a problematic pair.

Lastly, if (x, 3) ∈ G[M1 ∪X0], then vertices u and x have degree 1 in G[M1 ∪X1]. Thus,

if the other edge of C1 incident at vertex 1 belongs to X1, then vertex 1 has degree 1 in

G[M1 ∪X2 ∪X3]. We can move edge (u, 1) from X0 to X2 ∪X3, and move edge (u, v)

from X2 ∪ X3 to X0. If the other edge of C1 incident at vertex 1 does not belong to

X1, then vertex 1 has degree 1 in G[M1 ∪X1] as well. We conclude that vertices u, x, 1

cannot reside in the same connected component of G[M1 ∪X1]. When u and 1 are not

connected, we can move edge (u, 1) from X0 to X1, and move edge (u, v) from X2 ∪X3

to X0. Symmetric scenarios can be argued in the same way for vertices 2, 3, 4. In the

remaining scenario, none of the other edges of C1 incident at vertices 1, 2, 3, 4 belongs

to X0 ∪ X1, and that vertices u and 1 (v and 2, x and 3, y and 4, respectively) are

connected in G[M1∪X1] (G[M1∪X0], G[M1∪X1], G[M1∪X0], respectively). It follows

that we may move edge (u, 1) from X0 to X1, move edge (y, 4) from X1 to X0, and move

edge (u, v) from X2 ∪X3 to X0, to resolve the problematic pair.

In the second case, edges (u, x) /∈ C1 but (v, y) ∈ C1.

Assume the other edges of C1 incident at u, x are (u, 1), (x, 3), respectively. These two

edges and edge (v, y) all belong to G[M1∪X0] and G[M1∪X1]. Without loss of generality,

36

Chapter 2. Bandpass Problem

assume (v, y) ∈ X1; it follows that both vertices v and y have degree 1 in G[M1∪X0]. If

edge (u, 1) (edge (x, 3), respectively) does not belong to G[M1 ∪X0], then we can move

(u, v) ((x, y), respectively) from X2 ∪X3 to X0 to resolve the problematic pair.

If both edges (u, 1) and (x, 3) belong to G[M1 ∪ X0], then both vertices u and x have

degree 1 in G[M1 ∪X1]. When the other edge of C1 incident at vertex 1 does not belong

to X1 (but X2 ∪ X3), we can move edge (u, 1) from X0 to X1, and move edge (u, v)

from X2 ∪X3 to X0; the symmetric scenario can be argued in the same way for vertex

3; When the other edge of C1 incident at vertex 1 and the other edge of C1 incident at

vertex 3 both belong to X1, we can move edges (u, 1) and (v, 3) from X0 to X2 ∪ X3,

move edge (v, y) from X1 to X2 ∪X3, move edge (u, v) from X2 ∪X3 to X0, and move

edge (x, y) from X2 ∪X3 to X1. These movings maintain all three properties stated in

Lemma 2.10 while resolving the problematic pair. Note that none of these three edges

(u, 1), (v, 3) and (v, y) would form with any other edge into a problematic pair.

Note that it is impossible to have both edges (u, x) ∈ C1 and (v, y) ∈ C1, as they imply a

length-4 cycle (u, v, x, y) in C1 contains. Repeatedly applying the above process to resolve

the problematic pairs of X2 ∪ X3, if any, we achieve the desired partitioning stated in

Lemma 2.10, with the extra property that G[M1 ∪X2 ∪X3] contains no length-4 cycles.

Therefore, X ′3 = ∅.

Lemma 2.14. Let C be a length-4 cycle in a 2-matching C such that M1 ∩C = ∅. Then

we can partition C into four matchings X0, X1, X2 and X3 as described in Lemma 2.10,

and such that the lightest edge of C is assigned to X2 ∪X3.

Proof. The lemma follows trivially from the observation that exactly two non-adjacent

edges of C have to be assigned to X2 ∪X3, and either way is feasible.

Lemma 2.15. Let C1 and C2 be two disjoint 2-matchings of graph G such that M1∩(C1∪
C2) = ∅. Then, we can partition C1 into four matchings X0, X1, X2, X3 and partition

C2 into four matchings Y0, Y1, Y2, Y3 such that the partition of C1 satisfies all the desired

properties described in Lemma 2.10 plus X ′3 = ∅ (i.e., G[M1 ∪ X2 ∪ X3] contains no

length-4 cycle), the partition of C2 satisfies that G[M1 ∪ Yi] is an acyclic 2-matching for

all i ∈ {0, 1, 2, 3}. Moreover, the partitioning takes O(nα(n)) time.

Proof. We firstly partition C1 (C2, respectively) into four matchings X0, X1, X2, X3

(Y0, Y1, Y2, Y3, respectively) to satisfies all the desired properties described in Lemma 2.10.

If there is no length-4 cycle in C1, then Lemma 2.13 implies the current lemma. Other-

wise, for each problematic pair of edges in a length-4 cycle of G[M1 ∪X2 ∪X3], we can

resolve it as in the proof of Lemma 2.13 as long as the pair of edges do not belong to a

length-4 cycle of C1.

37

Chapter 2. Bandpass Problem

In the following we address the remaining scenario, by moving one edge of the problem-

atic pair to one of the four matchings Y0, Y1, Y2, Y3. Let C = (u, v, x, y) be a length-

4 cycle in G[M1 ∪ X2 ∪ X3], and assume that edges (u, v), (x, y) ∈ X2 ∪ X3, edges

(u, y), (v, x) ∈M1, and edges (u, x) ∈ X0 and (v, y) ∈ X1.

Since C2 do not share any edge with C1, we consider the degrees of vertices u, v, x, y in

G[M1 ∪ Yi] for i = 0, 1, 2, 3. If in one of these four acyclic 2-matchings, say G[M1 ∪ Y0],

at least three of the four vertices have degree 1, say u, v, x, then we can move edge (u, v)

from X2 ∪ X3 to Y0, and thus the problematic pair is resolved. In the other cases, in

each G[M1 ∪ Yi] for i = 0, 1, 2, 3, exactly two of the four vertices have degree 1.

Let the two edges of C2 incident at u (v, x, y, respectively) be (u, 1) and (u, 1′) ((v, 2)

and (v, 2′), (x, 3) and (x, 3′), (y, 4) and (y, 4′), respectively).

If (u, 1), (y, 4) ∈ Y0, then u and y both have degree 1 in one of G[M1 ∪ Yi] for i = 1, 2, 3,

say in G[M1 ∪ Y3]. It follows that if the other edge of C2 incident at vertex 1 does not

belong to Y3, then we can move edge (u, 1) from Y0 to Y3, and move edge (u, v) from

X2∪X3 to Y0 to resolve the problematic pair; or if the other edge of C2 incident at vertex

4 does not belong to Y3, then we can move edge (y, 4) from Y0 to Y3, and move edge

(x, y) from X2∪X3 to Y0 to resolve the problematic pair. In the remaining scenario, the

other edge of C2 incident at vertex 1 (vertex 4, respectively) belongs to Y3. Note that in

either G[M1 ∪ Y1] or G[M1 ∪ Y2], vertex u has degree 1, and we assume without loss of

generality that vertex u has degree 1 in G[M1 ∪ Y1]. Note also that vertex 1 has degree

1 in G[M1 ∪ Y1]. If edge (y, 4′) /∈ Y1, then vertex y has degree 1 as well, and thus we

can move edge (u, 1) from Y0 to Y1, and move edge (u, v) from X2 ∪X3 to Y0 to resolve

the problematic pair; if edge (y, 4′) ∈ Y1 but the other edge of C2 incident at vertex 4′

does not belong to Y3, then we can move edge (y, 4′) from Y1 to Y3, move edge (u, 1)

from Y0 to Y1, and move edge (u, v) from X2 ∪X3 to Y0 to resolve the problematic pair.

Therefore, we only need to argue the scenario where the other edge of C2 incident at

vertex 4′ belongs to Y3. Symmetrically considering Y2, we may assume without loss of

generality that the other edge of C2 incident at vertex 1′ belongs to Y3. Consequently,

vertices u, 1, 1′ all have degree 1 in G[M1 ∪ Y1], and thus u and at least one of 1 and 1′

are not connected. If u and 1 are not connected, we can move edge (u, 1) from Y0 to Y1,

and move edge (u, v) from X2 ∪X3 to Y0 to resolve the problematic pair; if u and 1′ are

not connected, we can move edge (u, 1′) from Y2 to Y1, move edge (u, 1) from Y0 to Y2,

and move edge (u, v) from X2 ∪X3 to Y0 to resolve the problematic pair.

If (u, 1), (v, 2) ∈ Y0, then u and v both have degree 1 in one of G[M1 ∪ Yi] for i = 1, 2, 3,

say in G[M1 ∪ Y3]. The following discussion is very similar to the above paragraph,

though slightly simpler. Firstly, if x and y are not connected in G[M1 ∪ Y0] (u and v

are not connected in G[M1 ∪ Y3], respectively), then we can move edge (x, y) ((u, v),

38

Chapter 2. Bandpass Problem

respectively) from X2 ∪X3 to Y0 (Y3, respectively) to directly resolve the problematic

pair. Secondly, if the other edge of C2 incident at vertex 1 does not belong to Y3, then we

can move edge (u, 1) from Y0 to Y3, and move edge (x, y) from X2 ∪X3 to Y0 to resolve

the problematic pair; or if the other edge of C2 incident at vertex 2 does not belong to

Y3, then we can move edge (v, 2) from Y0 to Y3, and move edge (x, y) from X2 ∪X3 to

Y0 to resolve the problematic pair. Symmetrically and without loss of generality that

(x, 3), (y, 4) ∈ Y3, if either of the other edges of C2 incident at vertices 3 and 4 does

not belong to Y3, the problematic pair can be resolved. In the remaining scenario, we

assume that vertices u and x have degree 1 in G[M1∪Y1] (and (v, 2′), (y, 4′) ∈ Y1). Note

that vertices 1, 2, 3, 4 all have degree 1 in G[M1 ∪ Y1] too. If u and x are not connected

in G[M1 ∪Y1], then we can swap edges of X0 ∪X1 and of X2 ∪X3, and move edge (u, x)

from X2 ∪X3 to Y1, to resolve the problematic pair. Otherwise, u and 1 should not be

connected in G[M1 ∪ Y1], and we can move edge (u, 1) from Y0 to Y1, and move edge

(x, y) from X2 ∪X3 to Y0, to resolve the problematic pair.

All the other pairs of edges occurring in C2 ∩ Y0 can be analogously discussed as in

either of the above two paragraphs. Repeatedly applying the above process to resolve

the problematic pairs of X2 ∪ X3 that reside in a length-4 cycle of C1, if any. The

process moves exactly one edge of the pair from X2∪X3 to either of Y0, Y1, Y2, Y3, while

maintaining G[M1 ∪ Yj] acyclic for all j ∈ {0, 1, 2, 3}. At the end, G[M1 ∪ X2 ∪ X3]

contains no length-4 cycles and therefore X ′3 = ∅.

Lemma 2.16. The weight of matching M2 is w′(M2) ≥ 6−
√

2
32 w′(C).

Proof. Let C1 and C2 denote the two 2-matchings constituting to the maximum weight 4-

matching C of residual graphG′ (these two 2-matchings can be obtained from C inO(n2.5)

time [37, 49]). Using Lemma 2.10 alone, C1 can be partitioned into four matchings

X0, X1, X2, X3, and C2 can be partitioned into four matchings Y0, Y1, Y2, Y3, respectively,

with the desired properties stated in Lemma 2.10. Separately for each partition, we

apply Lemmas 2.13 and 2.14 to ensure that it maintains all the the desired properties

stated in Lemma 2.10, and it has an extra property that if there is a length-4 cycle in

G[M1 ∪X2 ∪X3] (in G[M1 ∪ Y2 ∪ Y3], respectively), then the two edges of X2 ∪X3 (of

Y2 ∪ Y3, respectively) are from and one is the lightest edge of a length-4 cycle of C1 (of

C2, respectively).

Recall from Lemmas 2.11 and 2.12 that X ′3 denotes the subset of X3 of which each edge

comes from a length-4 cycle of G[M1 ∪ X2 ∪ X3] and X ′′3 = X3 − X ′3, and X ′2 denotes

the subset of X2 of which each edge comes from a length-4 cycle of G[M1 ∪ X2 ∪ X3]

and X ′′2 = X2−X ′2. We similarly define Y ′3 , Y
′′

3 , Y
′

2 , Y
′′

2 , respectively. From Lemma 2.12,

39

Chapter 2. Bandpass Problem

w′(X ′3) ≤ w′(X ′2) and w′(X ′′3) ≤ 1
2w
′(X ′′2). Let

δ = max

{
w′(X ′3)

w′(X ′′3)
,
w′(Y ′3)

w′(Y ′′3)

}
. (2.15)

So we have

w′(X3) = w′(X ′3) + w′(X ′′3) ≤ (1 + δ)w′(X ′′3) ≤ 1 + δ

2
w′(X ′′2) ≤ 1 + δ

2
w′(X2),

and similarly

w′(Y3) ≤ 1 + δ

2
w′(Y2).

It follows that if δ ≤
√

2−1, we can set M2 to be the maximum weight matching among

the six matchings {X0, X1, X2, Y0, Y1, Y2}:

w′(M2) ≥ 1

6 + (1 + δ)
w′(C) ≥ 6−

√
2

32
w′(C). (2.16)

Otherwise, assume without loss of generality that
w′(X′3)
w′(X′′3)

= δ >
√

2 − 1. We can apply

Lemma 2.15 to move exactly one edge from every length-4 cycle of C1 to either of the

four matchings of C2 such that the new partition of C1, denoted as W0,W1,W2,W3, still

has all the desired properties described in Lemma 2.10 and has an extra property that

W ′3 = ∅. Note that W ′′3 = X ′′3 , and thus

w′(X ′′3) = w′(W ′′3) ≤ 1

2
w′(W ′′2);

W ′′2 = X ′′2 and thus

w′(X ′′2) = w′(W ′′2);

|W ′2| = |X ′2| and thus by Lemma 2.14

w′(X ′3) ≤ w′(W ′2).

It follows from w′(X ′3) = δw′(X ′′3) and W ′3 = ∅ that

w′(W3) = w′(W ′′3) =
1

2 + δ

(
w′(X ′3) + 2w′(X ′′3)

)
≤ 1

2 + δ

(
w′(W ′2) + w′(W ′′2)

)
=

1

2 + δ
w′(W2).

Therefore, when δ >
√

2−1, we can set M2 to be the maximum weight matching among

the seven matchings {W0,W1,W2, Y0, Y1, Y2, Y3}:

w′(M2) ≥ 1

7 + 1
2+δ

w′(C) ≥ 6−
√

2

32
w′(C). (2.17)

Equations (2.16) and (2.17) tell that in either case, one matching M2 can be extracted

40

Chapter 2. Bandpass Problem

from the maximum weight 4-matching C to extend the first maximum weight matching

M1, and the weight of M2 is guaranteed to be at least 6−
√

2
32 w′(C) > 0.1433w′(C).

Lemma 2.17. The weight of the maximum weight 4-matching C is

w′(C) ≥ max

{
1

2
|B2|,

1

4
|B2|+ |B4|

}
.

Proof. Lemma 2.2 states that the subgraph of induced edges, G′s, is a 4-matching in

graph G′ with weight w′(G′s) ≥ 1
2 |B2|. Therefore, w′(C) ≥ w′(G′s) ≥ 1

2 |B2|.

On the other hand, graph G′ contains all bandpasses of group B4, and all the edges

containing such kind of bandpasses are in the optimal row permutation π∗, which is an

acyclic 2-matching in graph G′. Let w′(π∗) denote the weight of π∗ in graph G′, then

we have w′(π∗) ≥ |B4|. From the partitioning scheme for the bandpasses of S2(π∗), we

know that no edge in G′s belongs to π∗. That is, G′s∩π∗ = ∅. Therefore, in O(n2.5) time

one can decompose the 4-matching G′s into two disjoint 2-matchings [37, 49], C1 and C2;

the unions C1 ∪ π∗ and C2 ∪ π∗ are both 4-matchings in graph G′. It follows that

w′(C) ≥ 1

2
(w′(C1 ∪ π∗) + w′(C2 ∪ π∗)) =

1

2
w′(G′s) + w′(π∗)) ≥ 1

4
|B2|+ |B4|.

This proves the lemma.

Theorem 2.18. Algorithm BP3 is an O(n4)-time 0.5358-approximation for the band-

pass problem.

Proof. The running time of algorithm BP3 is dominated by the computing for those

maximum weight b-matchings, for b = 1, 2, 4, which can be done in O(n4) time. Since

M1 is the maximum weight matching in graph G, from Eq. (2.2) we have

w(M1) ≥ 1

2
p(π∗) ≥ 1

2

(
s2(π∗) +

n∑
`=3

s`(π
∗)(`− 1)

)
. (2.18)

Combining Eqs. (2.4) and (2.18), we have for any real number y ∈ [0, 1],

w(M1) ≥ y

2

(
s2(π∗) +

n∑
`=3

s`(π
∗)(`− 1)

)
+ (1− y)

(
|B1|+

1

2
|B2|+

2

3
|B3|

)
. (2.19)

The permutation π produced by algorithm BP3 contains b(π) ≥ w(M1) +w′(M2) band-

passes, as indicated at the end of Section 2.2.1. From Lemmas 2.16 and 2.17, we have

b(π) ≥ w(M1) + w′(M2) ≥ w(M1) +
6−
√

2

32

(
1

4
|B2|+ |B4|

)
. (2.20)

41

Chapter 2. Bandpass Problem

Together with Eqs. (2.3) and (2.19), the above Eq. (2.20) becomes,

b(π) ≥ w(M1) +
6−
√

2

32

(
1

4
|B2|+ |B4|

)
≥ y

1

2

(
s2(π∗) +

n∑
`=3

s`(π
∗)(`− 1)

)

+(1− y)

(
|B1|+

1

2
|B2|+

2

3
|B3|

)
+

6−
√

2

128
|B2|+

6−
√

2

32
|B4|

=
y

2

(
s2(π∗) +

n∑
`=3

s`(π
∗)(`− 1)

)

+(1− y)|B1|+
(

1− y
2

+
6−
√

2

128

)
|B2|+

2(1− y)

3
|B3|+

6−
√

2

32
|B4|

≥ 46 + 3
√

2

128

(
s2(π∗) +

n∑
`=3

s`(π
∗)(`− 1)

)
+

6−
√

2

32

(
s2(π∗) +

1

2
|B1|

)
, (2.21)

where the last inequality is achieved by setting y = 46+3
√

2
64 . Note that for all ` ≥ 3,

(`− 1) ≥ 3
2b `2c. It then follows from Eqs. (2.21) and (2.1) that

b(π) ≥ 70−
√

2

128

(
s2(π∗) +

46 + 3
√

2

70−
√

2
× 3

2

n∑
`=3

s`(π
∗)
⌊
`

2

⌋)

≥ 70−
√

2

128
b(π∗), (2.22)

where the last inequality holds because 46+3
√

2
70−
√

2
× 3

2 = 138+9
√

2
140−2

√
2
> 1. That is, the worst-

case performance ratio of algorithm BP3 is at least 70−
√

2
128 > 0.5358.

2.6 Conclusions and future work

We have presented a series of approximation algorithms BP1, BP2, BP3 for the band-

pass problem. Currently, the algorithm BP3 achieves the best approximation ratio
70−
√

2
128 ≈ 0.5358. Our algorithms are based on maximum weight b-matchings, for b = 1, 2

and 4, similar to an approach to the closely related Max-TSP. The intrinsic structural

property proven for the optimal row permutation and the maximum weight matching is

fundamental, without which no better lower bound on the optimum can be built. The

partition schemes developed in the literature and our scheme on b-matchings could po-

tentially be further improved. When estimating the performance ratio, the best balance

between |B2| and |B4| in the second matching M2 is 1 : 4, which has been achieved in

Lemma 2.17. This suggests that future improvements along this line are possible only

if one can increase both fractions of |B2| and |B4| in the second matching M2.

42

Chapter 2. Bandpass Problem

Our 4-matching partition scheme produces at least 8 matchings, each of which extends

the given matching into an acyclic 2-matching. We also came up with an example (see

Figure 2.3), where the 4-matching needs to be partitioned into at least 6 matchings

such that each matching extends the given matching into an acyclic 2-matching. We

c3

c4

c5

c6

c6

c1

c2

c4

c1

c5

c2
c3

Figure 2.3: Each color represents a matching and dashed line means the given match-
ing. This 4-matching needs to be colored with at least 6 colors.

conjecture that the number 6 is “tight”, that is, any 4-matching can be partitioned

into 6 matchings such that each matching extends the given matching into an acyclic

2-matching. If this is true, we can improve Lemma 2.3, Lemma 2.6, inequality 2.17

immediately and thus there exists an improved approximation algorithm for the bandpass

problem.

For the Max-TSP problem, Serdyukov presented a 3
4 -approximation algorithm based on

the maximum weight assignment (called cycle cover) and the maximum weight match-

ing [88], which has been improved to the currently best 7
9 -approximation algorithm [78].

We believe that the bandpass problem can be better approximated by introducing new

structural properties and/or new techniques; yet we also believe that there will be a gap

from 7
9 , due to the “dynamic” edge weights. The novel 4-matching partitioning scheme is

seemingly better than a similar partition result which is the key to the 7
9 -approximation

for the Max-TSP problem. We strongly believe that a better approximation for the

Max-TSP problem is possible.

On the other hand, Hassin and Rubinstein gave a randomized approximation algorithm

for the Max-TSP problem with expected performance ratio 25
33 [50] (which was subse-

quently de-randomized in [27]). It would be interesting to design a randomized approx-

imation for the bandpass problem too, with a better-than-0.5358 expected performance

ratio.

43

Chapter 3

Multiple RNA Interaction

(MRIP) Problem1 — An

Extension of the Bandpass

Problem

3.1 Introduction

RNA interaction is one of the fundamental mechanisms underlying many cellular pro-

cesses, in particular the genome regulatory code, such as mRNA translation, editing,

gene silencing, and synthetic self-assemble RNA design. In the literature, pairwise RNA

interaction prediction has been independently formulated as a computational problem,

in several works including [3, 66, 79]. While these variants are all motivated by certain

biological considerations, the general formulation is usually NP-hard and many special

scenarios have been extensively studied [29, 30, 52, 63, 73, 85].

In more complex instances, biologists found multiple small nucleolar RNAs (snoRNAs)

interact with ribosomal RNAs (rRNAs) in guiding the methylation of the rRNAs [70],

and multiple small nuclear RNAs (snRNA) interact with an mRNA in the splicing of

introns [94]. Multiple RNA interactions are believed much more complex than pairwise

RNA interactions, where only two RNA molecules are involved. In fact, even if we have a

perfect computational framework for pairwise RNA interactions, it might still be difficult

to deal with multiple RNA interactions since for a given pool of RNA molecules it is

non-trivial to predict their interaction order without sufficient prior biological knowledge.

Motivated by the real needs, Ahmed et al. presented in COCOON 2013 their work

on multiple RNA interaction prediction, denoted as MRIP [1]. We give some basic

definitions to introduce the MRIP problem formally. An RNA molecule is a sequence

of nucleotides (A, C, G, and U). A basepair in the RNA is presented as (i, j), where

i < j, indicating that the i-th nucleotide and the j-th nucleotide form a canonical

1This chapter is based on [103, 104].

44

Chapter 3. Multiple RNA Interaction Problem (MRIP)

pairing (i.e., the two nucleotides are either A and U or C and G). The molecule folds

into a structure which is described as a set of basepairs. In general every nucleotide

can participate in at most one basepair, and if not, it is a free base (or nucleotide).

The set of basepairs is nested (a.k.a. secondary structure), if for any two basepairs

(i1, j1) and (i2, j2) with i1 < i2, either j1 < i2 or j2 < j1; otherwise the set is crossing

(a.k.a. tertiary structure) containing pseudoknots. An interaction between two RNAs

is a basepair which consists of one free base from each RNA. In the sequel, we use

interaction and basepair interchangeably.

R
R1 R2 R3 R4 R5

free base
R1

R2

R21 R22 R23 R24

R11 R12 R13 R14

Figure 3.1: An illustration of free base, basepair-like structure and pseudoknot-like
structure, where the two pairs connected by crossing red dashed lines form to be a
pseudoknot-like structure.

In the MRIP problem, we are given a pool of RNAs denoted as R = {R1, R2, . . . , Rm}.
Without loss of generality, we assume m is even and these RNAs have the same length n.

We use Ri` to denote the `-th base of Ri. Following the formulation by Ahmed et al. [1],

the possible interactions between every pair of RNAs are assumed known. In fact,

these possible interactions can be predicted using existing pairwise RNA interaction

predictors [29, 30, 52, 63, 73, 85]. For a possible interaction (Ri1`1 , Ri2`2), its weight

w(Ri1`1 , Ri2`2) can be set using a probabilistic model or using an energy model or simply

at 1 to indicate its contribution to the structure stability. The problem goal is to find

out the order of RNAs in which they interact, that the first RNA interacts with the

second RNA, which in turn interacts with the third RNA, and so on, and how every

two consecutive RNAs interact, so as to maximize the total weight of the interactions

(to achieve the most structure stability). Throughout this section, we consider the uni-

weight case, that is to maximize the total number of interactions. Two interactions

(Ri1`1 , Ri2`2) and (Ri1k1 , Ri2k2) are pseudoknot-like if `1 < `2 but k1 > k2. The MRIP

problem can allow or disallow pseudoknot-like interactions, depending on application

details similar to RNA structure prediction.

For a very special case of MRIP (the Pegs and Rubber Bands problem in [1]), where the

order of interacting RNAs is assumed and pseudoknot-like interactions are disallowed,

Ahmed at al. proved its NP-hardness and presented a polynomial-time approximation

scheme [1]. Given that predicting the interaction order is nontrivial, they also proposed

a heuristic for the more general case with unknown interacting order but still disallowing

pseudoknot-like interactions.

45

Chapter 3. Multiple RNA Interaction Problem (MRIP)

In this section, we first show that the MRIP allowing pseudoknot-like interactions

and with an assumed RNA interaction order can be solved in polynomial time. Sec-

ondly, notice that the interactions are basepairs and thus follow the Watson-Crick base-

pairing rule. For four RNAs Ri1 , Ri2 , Ri3 , Ri4 , when there are possible interactions

(Ri1`1 , Ri2`2), (Ri2`2 , Ri3`3), (Ri3`3 , Ri4`4) (for example, they are basepairs (A, U), (U,

A), (A, U), respectively), then it is naturally to assume another possible interaction

(Ri1`1 , Ri4`4) between RNAs Ri1 and Ri4 . If the given interactions satisfy the above

property then the MRIP problem is said to have “transitivity” property. By looking

deep into the MRIP problem which allows transitivity, it is similar to the bandpass-2

problem we introduced in the last Chapter. However unlike the bandpass problem, the

interactions caused by the transitivity are not column-wise in the MRIP problem. We

show that the MRIP problem without an assumed RNA interaction order, either allow-

ing or disallowing pseudoknot-like interactions, is NP-hard, and present a constant ratio

approximation algorithm for each variant.

R1

R2

R3

R4

A

U

A

U

Figure 3.2: An illustration of transitivity property, where the pair connected by green
dashed line is the possible interaction induced by the transitivity property.

3.2 MRIP with a known RNA interaction order

Within this section, the MRIP problem has a known RNA interaction order, and we

assume the order is (R1, R2, . . . , Rm). When disallowing pseudoknot-like interactions,

Ahmed et al. [1] showed that the problem is NP-hard via a reduction from the longest

common subsequence problem.

Theorem 3.1. [1] The MRIP problem disallowing pseudoknot-like interactions is NP-

hard.

When allowing pseudoknot-like interactions, we firstly construct a graph H = (U,F)

where every vertex ui` corresponds to nucleotide Ri` and two vertices are connected

by an edge if there is a given possible interaction between them. Clearly, one can see

46

Chapter 3. Multiple RNA Interaction Problem (MRIP)

that a matching M of graph H gives a feasible solution to the MRIP problem allowing

pseudoknot-like interactions, and vice versa. Therefore, we have the following theorem.

Theorem 3.2. The MRIP problem allowing pseudoknot-like interactions can be solved

in polynomial time.

3.3 The general MRIP

In the general MRIP problem, the RNA interaction order is not assumed. Instead, the

possible interactions are given for every pair of RNAs and the problem goal is to find

an interaction order achieving the maximum number of interactions.

3.3.1 NP-hardness

Theorem 3.3. The general MRIP problem, either allowing or disallowing pseudoknot-

like interactions, is NP-hard.

Proof. Given a 0-1 matrix Am×n, two consecutive 1’s in a column of the matrix is said

to form a bandpass. When counting the total number of bandpasses in the matrix, no

two bandpasses in the same column are allowed to share any common 1. The Bandpass

problem is to find a row permutation for the input matrix to achieve the maximum

total number of bandpasses. Lin proved that the Bandpass problem is NP-hard via a

reduction from the Hamiltonian path problem [64].

Let the i-th RNA be the i-th row of matrix A, and there is a possible interaction between

Ri1`1 andRi2`2 if and only if both positions have a 1. Though such constructed RNAs and

interactions are not necessarily biologically meaningful, this reduction shows the general

MRIP problem is NP-hard. Furthermore, no two possible interactions between a pair of

RNAs are crossing each other, and thus there are no pseudoknot-like interactions. Hence,

the general MRIP problem, either allowing or disallowing pseudoknot-like interactions,

is NP-hard.

3.3.2 A 0.5-approximation algorithm

Using the possible interactions between the pair of RNAs Ri and Rj , we construct a

bipartite graph BG(i, j) = (Vi∪Vj , E(i, j)), where the vertex subset Vi (Vj , respectively)

corresponds to the set of nucleotides in Ri (Rj , respectively) and the edge set E(i, j)

corresponds to the set of given possible interactions between Ri and Rj . That is, if

47

Chapter 3. Multiple RNA Interaction Problem (MRIP)

(Ri`1 , Rj`2) is a possible interaction, then there is an edge between Ri`1 and Rj`j in

BG(i, j). One clearly sees that when allowing pseudoknot-like interactions, the size of

the maximum matching in BG(i, j) is exactly the maximum total number of interactions

between RNAs Ri and Rj ; when disallowing pseudoknot-like interactions, the maximum

total number of interactions between RNAs Ri and Rj can be computed by a dynamic

programming algorithm similar to one for computing the longest common subsequence

between two given sequences. Either way, this maximum number of interactions is set

as the weight between RNAs Ri and Rj , denoted as w(Ri, Rj).

We next construct an edge weighted complete graph G, in which a vertex corresponds to

an RNA and the weight between two vertices (RNAs) Ri and Rj is w(Ri, Rj) computed

above. Since the optimal solution to the MRIP problem, either allowing or disallowing

pseudoknot-like interactions, can be decomposed into two matchings by including alter-

nate edges in the solution, the maximum weight matching M∗ of graph G has a weight

that is at least half of the total number of interactions in the optimal solution. It follows

that this maximum weight matching based algorithm, of which a high-level description

is depicted in Figure 3.3, is a 0.5-approximation to the MRIP problem.

Input: m RNAs Ri, i = 1, 2, . . . ,m;
Output: a permutation π of [m] and interactions between RNAs Rπ(i) and Rπ(i+1),

for i = 1, 2, . . . ,m− 1

1. for each RNA pair Ri and Rj ,
1.1. construct bipartite graph BG(i, j);
1.2. compute w(Ri, Rj);

2. construct edge-weighted complete graph G;
3. compute the maximum weight matching M∗ of G;
4. stack RNA pairs in M∗ arbitrarily to form a permutation π;
5. output π and the interactions in w(Rπ(i), Rπ(i+1)).

Figure 3.3: A high-level description of Approx I.

Theorem 3.4. Approx I is a 0.5-approximation algorithm for the general MRIP prob-

lem, either allowing or disallowing pseudoknot-like interactions.

Proof. When allowing pseudoknot-like interactions, w(Ri, Rj) can be computed by a

maximum matching algorithm in O(n3) time, where n is the (common) length of the

given RNAs; When disallowing pseudoknot-like interactions, w(Ri, Rj) can be com-

puted by a dynamic programming algorithm in O(n2) time. It follows that the time

for constructing graph G is O(m2n3). Graph G contains m vertices, and the maxi-

mum weight matching M∗ can be computed in O(m3) time. Afterwards, construct-

ing the solution permutation π takes trivially linear time. Therefore, Approx I is

48

Chapter 3. Multiple RNA Interaction Problem (MRIP)

an O(max{m3,m2n3})-time 0.5-approximation algorithm for the MRIP problem al-

lowing pseudoknot-like interactions. For the MRIP problem disallowing pseudoknot-

like interactions, its worst-case performance ratio remains 0.5, but its running time is

O(max{m3,m2n2}).

3.4 The general MRIP with transitivity

In the last section we proved the NP-hardness for the general MRIP problem, and

presented a 0.5-approximation algorithm. One can imagine that the analysis for the 0.5-

approximation algorithm must be tight, if the given possible interactions are arbitrary. In

this section, we consider a biologically meaningful spectral case where the given possible

interactions are transitive, that is, for any four RNAs Ri1 , Ri2 , Ri3 , Ri4 , when there

are possible interactions (Ri1`1 , Ri2`2), (Ri2`2 , Ri3`3), (Ri3`3 , Ri4`4) (for example, they are

basepairs (A, U), (U, A), (A, U), respectively), then (Ri1`1 , Ri4`4) is also a possible

interaction between RNAs Ri1 and Ri4 . We call it the general MRIP problem with

transitivity. Note that in the proof of NP-hardness in Theorem 3.3, the constructed

instance of the MRIP problem satisfies the transitivity property. Thus, the general MRIP

problem with transitivity, either allowing or disallowing pseudoknot-like interactions, is

NP-hard too. We next show that transitivity property can be taken advantage of to

design approximation algorithms with performance ratios better than 0.5.

3.4.1 A 0.5328-approximation for disallowing pseudoknots

The improved approximation algorithm for the general MRIP with transitivity and

disallowing pseudoknot-like interactions is denoted as Approx II, and its high-level

description in provided in Figure 3.4.

Note that in Step 1.2 to compute the maximum number of interactions between two

RNAs Ri and Rj while disallowing pseudoknot-like interactions, we can use the same

dynamic programming algorithm as used in Approx I, which runs in O(n2)-time. In

Step 4.2, the best approximation algorithm for the Maximum-TSP (which has a per-

formance ratio of 7
9 [78]) is called to compute an acyclic 2-matching; In Step 4.3. to

compute a matching M to extend M∗, the union of the edge sets of M and M∗, i.e.

G[M ∪M∗], is an acyclic 2-matching (sub-tour is another terminology often used in the

literature). So basically algorithm Approx II adds to the maximum weight matching

M∗ of graph G a subset of edges that contains a proven fraction of interactions.

Let I denote the set of interactions in the optimal solution. Let J be set of interactions

extracted from the weights of the edges in the maximum weight matching M∗ of graph

49

Chapter 3. Multiple RNA Interaction Problem (MRIP)

Input: m RNAs Ri, i = 1, 2, . . . ,m, with transitivity;
Output: a permutation π of [m] and interactions between RNAs Rπ(i) and Rπ(i+1),

for i = 1, 2, . . . ,m− 1

1. for each RNA pair Ri and Rj ,
1.1. construct bipartite graph BG(i, j);
1.2. compute w(Ri, Rj) disallowing pseudoknot-like interactions;

2. construct edge-weighted complete graph G using edge weight function w;
3. compute the maximum weight matching M∗ of G;

3.1. delete nucleotides involved in the interactions of M∗;
3.2. reconstruct bipartite graph BG(i, j);
3.3. compute w′(Ri, Rj) disallowing pseudoknot-like interactions;

4. construct edge-weighted complete graph G′ using edge weight function w′;
4.1. compute the maximum weight 4-matching C of G′;
4.2. compute an approximate acyclic 2-matching P of G′;
4.3. compute a matching M out of C and P to extend M∗;

5. stack RNA paths in G[M∗ ∪M] arbitrarily to form a permutation π;
6. output π and the interactions in w(Rπ(i), Rπ(i+1)) + w′(Rπ(i), Rπ(i+1)).

Figure 3.4: A high-level description of Approx II.

G. Note that neither I or J contains crossing interactions. Similarly as in the MRIP

problem with a known RNA interaction order (Section 3.2), we construct another graph

H = (U,F) for the instance where every vertex ui` corresponds to nucleotide Ri` and

two vertices are connected by an edge if there is a given possible interaction between

them. With respect to graph H, both I and J are non-crossing matchings. Therefore,

the subgraph of H induced by the interactions of I and J , H[I ∪ J], is a 2-matching

of graph H, denoted by T . Using this 2-matching T , we partition I into 4 subsets of

interactions, I = I1 ∪ I2 ∪ I3 ∪ I4, and at the same time partition J into 4 subsets of

interactions, J = J1 ∪ J2 ∪ J3 ∪ J4.

Since T is a 2-matching, there are only alternating paths and cycles in T . First we

consider paths. For a path of length 1, say P = 〈u1, u2〉, if its only edge/interaction is

in I ∩ J , then the edge belongs to I1 and belongs to J1; if the edge is in I − J , then

the edge belongs to I4; if the edge is in J − I, then the edge belongs to J4. For a path

of length 3, say P = 〈u1, u2, u3, u4〉, if (u1, u2), (u3, u4) ∈ I, then they belong to I2 and

edge (u2, u3) belongs to J2. For a path other than the above cases, the edges of I all

belong to I3 and the edges of J all belong to J3. Afterwards, we consider cycles. For

each cycle, the edges of I all belong to I3 and the edges of J all belong to J3.

Lemma 3.5. Let |Xi| denote the size of, that is the number of interactions in, set Xi,

for X = I, J and i = 1, 2, 3, 4. We have |J1| = |I1|, |J2| = 1
2 |I2|, and |J3| ≥ 2

3 |I3|.

Proof. By the definition of I1, J1, I2, J2, we can easily see |J1| = |I1| and |J2| = 1
2 |I2|.

For I3 and J3, from each path or cycle, the number of edges assigned to J3 is either

50

Chapter 3. Multiple RNA Interaction Problem (MRIP)

greater than or equal to the number of edges assigned to I3, or 1 less but in this case

the length of the path must be at least 5. Therefore, the worst case happens when two

and three edges are assigned to J3 and I3 respectively, which implies |J3| ≥ 2
3 |I3|.

Corollary 3.6. We have

|I| = |I1|+ |I2|+ |I3|+ |I4|, (3.1)

w(M∗) = |J1|+ |J2|+ |J3|+ |J4|, (3.2)

w(M∗) ≥ |I1|+
1

2
|I2|+

2

3
|I3|, (3.3)

w(M∗) ≥ 1

2
|I| = 1

2
(|I1|+ |I2|+ |I3|+ |I4|) . (3.4)

Proof. The first two equations are straightforward, following the description of parti-

tioning process and that w(M∗) = |J |. The last two inequalities follow from Lemma 3.5

and Theorem 3.4, respectively.

After deleting bases involved in the interactions of the maximum weight matching M∗,

graph G′ is constructed the same as graph G except using weight function w′. For a path

of length 3 P = 〈u1, u2, u3, u4〉, such that (u1, u2), (u3, u4) ∈ I2, the transitivity property

ensures that there is a possible interaction between u1 and u4. Clearly, this interaction

is left in graph G′, and such an interaction is called an induced interaction. Let G′s be

the subgraph of G′ that contains exactly those edges each of which is contributed by at

least one induced interaction.

Lemma 3.7. G′s is a 4-matching in G′, and its weight w′(G′s) ≥ 1
2 |I2|

Proof. To prove the first part, we only need to prove that every RNA can have induced

interactions with at most 4 other RNAs. By the definition of I2, there is an induced

interaction (u1, u4) if and only if there is an alternating length-3 path P = 〈u1, u2, u3, u4〉,
such that (u1, u2), (u3, u4) ∈ I and (u2, u3) ∈ J . Suppose uk ∈ Rik , for k = 1, 2, 3, 4.

It follows that Ri1 , Ri2 (Ri3 , Ri4 , respectively) are adjacent in the optimal permutation

and Ri2 , Ri3 are matched in M∗. Since each RNA can be adjacent to at most two other

RNAs in the optimal solution, Ri1 and every RNA can have induced interactions with

at most 4 other RNAs.

The second part of the lemma follows directly from the definition of an induced inter-

action, which corresponds to a distinct pair of interactions of I2.

It is known that inO(n2.5) time, a 4-matching can be decomposed into two 2-matchings [37,

49], and a 2-matching can be further decomposed for our purpose in the next few lemmas.

51

Chapter 3. Multiple RNA Interaction Problem (MRIP)

Lemma 3.8. [28, 98] Let C be a 2-matching of graph G such that M∗∩C = ∅. Then, we

can partition the edge set of C into 4 matchings X0, X1, X2, X3 each of which extends M∗.

Moreover, the partitioning takes O(nα(n)) time, where α(n) is the inverse Ackerman

function.

The maximum weight 4-matching C of graph G′ can be decomposed into two 2-matchings

C1 and C2. By Lemma 3.8, C1 can be partitioned into 4 matchings X0, X1, X2, X3 and

C2 can be partitioned into 4 matchings Y0, Y1, Y2, Y3, each of which extends M∗.

Lemma 3.9. [98] Let C be a 4-matching of graph G such that M∗ ∩ C = ∅. Then, we

can partition the edge set of C into 8 matchings such that each of them extends M∗ and

the maximum weight among them is at least 2
15w

′(C). Moreover, the partitioning takes

O(n2.5) time.

Lemma 3.10. The maximum weight acyclic 2-matching D of graph G′ has weight

w′(D) ≥ |I4|.

Proof. Note that graph G′ contains all interactions of I4 because only bases involved in

the interactions of M∗ are deleted. The subgraph of graph G′ containing exactly the

edges contributed by at least one interaction of I4 is a subgraph of the optimal solution,

and thus it is an acyclic 2-matching in graph G′. Therefore,

w′(D) ≥ |I4|.

This proves the lemma.

Lemma 3.11. [28, 98] Let P be an acyclic 2-matching of G such that M∗ ∩ P = ∅.
Then, we can partition the edge set of P into three matchings Y0, Y1, Y2 each of which

extends M∗. Moreover, the partitioning takes O(nα(n)) time.

Lemma 3.12. [78] The Max-TSP admits an O(n3)-time 7
9 -approximation algorithm,

where n is the number of vertices in the graph.

Corollary 3.13. The weight of the second matching M to extend M∗ has weight w′(M) ≥
max

{
1
15 |I2|, 7

27 |I4|
}

.

Proof. Using Lemmas 3.7 and 3.9, we have

w′(M) ≥ 2

15
w′(C) ≥ 1

15
|I2|.

Using Lemmas 3.10–3.12, we have

w′(M) ≥ 1

3
w′(P) ≥ 7

27
w′(D) ≥ 7

27
|I4|.

52

Chapter 3. Multiple RNA Interaction Problem (MRIP)

The corollary holds.

Theorem 3.14. Algorithm Approx II is a 0.5328-approximation for the general MRIP

problem with transitivity and disallowing pseudoknot-like interactions.

Proof. Combining Corollaries 3.6 and 3.13, we have for any real x, y ∈ [0, 1],

w(π) = w(M∗) + w′(M)

≥ x(|I1|+
1

2
|I2|+

2

3
|I3|) + (1− x)

1

2
(|I1|+ |I2|+ |I3|+ |I4|)

+y
1

15
|I2|+ (1− y)

7

27
|I4|

=
1 + x

2
|I1|+

15 + 2y

30
|I2|+

3 + x

6
|I3|+

41− 27x− 14y

54
|I4|

≥ 255

426
|I1|+

227

426
|I2|+

227

426
|I3|+

227

426
|I4|

≥ 227

426
|I|,

where the second last inequality holds by setting x = 14
71 and y = 35

71 .

3.4.2 A 0.5333-approximation for allowing pseudoknots

The improved approximation algorithm for the general MRIP with transitivity and

allowing pseudoknot-like interactions is denoted as Approx III, and its high-level de-

scription in provided in Figure 3.5.

Input: m RNAs Ri, i = 1, 2, . . . ,m, with transitivity;
Output: a permutation π of [m] and interactions between RNAs Rπ(i) and Rπ(i+1),

for i = 1, 2, . . . ,m− 1

1. for each RNA pair Ri and Rj ,
1.1. construct bipartite graph BG(i, j);
1.2. compute w(Ri, Rj) allowing pseudoknot-like interactions;

2. construct edge-weighted complete graph G using edge weight function w;
3. compute the maximum weight matching M∗ of G;

3.1. delete nucleotides involved in the interactions of M∗;
3.2. reconstruct bipartite graph BG(i, j);
3.3. compute w′(Ri, Rj) allowing pseudoknot-like interactions;

4. construct edge-weighted complete graph G′ using edge weight function w′;
4.1. compute the maximum weight 4-matching C of G′;
4.2. compute a matching M out of C to extend M∗;

5. stack RNA paths in G[M∗ ∪M] arbitrarily to form a permutation π;
6. output π and the interactions in w(Rπ(i), Rπ(i+1)) + w′(Rπ(i), Rπ(i+1)).

Figure 3.5: A high-level description of Approx III.

53

Chapter 3. Multiple RNA Interaction Problem (MRIP)

Approx III is very similar to Approx II, and only differs at two places. Firstly, since

the problem allows pseudoknot-like interactions, we run a maximum weight bipartite

matching algorithm to compute those edge weights, in Steps 1.2 and 3.3. Secondly,

computing a matching M to extend M∗ is now based only on the maximum weight 4-

matching C, of which the weight has a better estimation due to allowing pseudoknot-like

interactions.

The analysis of the algorithm flows also very similarly as in the last section. Again

we do the exactly the same interaction partitioning for the optimal solution and the

maximum weight matching M∗. One can easily verify that Lemma 3.5, Corollary 3.6,

and Lemma 3.7 hold. The following lemma is key to the improvement, which estimates

a better lower bound on the weight of the maximum weight 4-matching.

Lemma 3.15. The weight of the maximum weight 4-matching C of graph G′ is

w′(C) ≥ max{1

2
|I2|,

1

4
|I2|+ |I4|}. (3.5)

Proof. The first component straightly follows from Lemma 3.7 since G′s is a 4-matching

in graph G′. Note also that graph G′ contains all the edges of the optimal solution,

each of which is contributed by at least one interaction of I4. This remainder optimal

solution, denoted as P, is an acyclic 2-matching in G′, and has weight w′(P) ≥ |I4|.

Since G′s is a 4-matching, it can be decomposed into two 2-matchings denoted as D1 and

D2. One clearly see that both P ∪ D1 and P ∪ D2 are 4-matchings in graph G′. The

interactions of I4 counted towards P are not counted towards G′s. Therefore, we have

w′((C)) ≥ max{w′(P ∪ D1), w′(P ∪ D2)}
≥ 1

2
(w′(D1) + w′(D2)) + w′(P)

=
1

2
w′(G′s) + |I4|

≥ 1

4
|I2|+ |I4|.

This proves the lemma.

Theorem 3.16. Algorithm Approx III is a 0.5333-approximation for the general MRIP

problem with transitivity and allowing pseudoknot-like interactions.

Proof. The estimation of the performance ratio of 0.5333 is very similar to that of ratio

0.5328 in Theorem 3.14, and is omitted from here.

54

Chapter 3. Multiple RNA Interaction Problem (MRIP)

3.5 Conclusions and future work

We studied the multiple RNA interaction problem. For the general version, we proved

its NP-hardness and also proposed a simple 0.5-approximation algorithm. We tend to

believe that the general MRIP could be difficult to solve. Thus any inapproximablity

proof would be interesting. Based on the conditions whether the transitivity is allowed,

whether the pseudoknot-like interactions are allowed and whether the RNA interac-

tion order are assumed, we investigated several biologically meaningful variants of the

MRIP. By looking deep into the variants which allow transitivity, they are similar to

the bandpass-2 problem we introduced in the last Chapter. However unlike the band-

pass problem, the interactions caused by the transitivity are not column-wise in these

variants. We designed several approximation algorithms for these variants. Motivated

by the real applications, it would be interesting to study other variants of the multiple

RNA interaction problem under other biologically meaningful assumptions.

55

Chapter 4

Exemplar Non-Breakpoint

Similarity (ENBS) Problem1

4.1 Introduction

In genome comparison and rearrangement studies, the breakpoint distance is one of the

most well-known distance measures [109]. The implicit idea of breakpoints was initiated

as early as in 1936 by Sturtevant and Dobzhansky [93]. But until only a few years

ago, it had always been assumed that every gene appears in a genome exactly once.

Under this assumption, the genome rearrangement problem is essentially the problem

of comparing and sorting unsigned (or signed) permutations [45, 48]. Computing the

breakpoint distance between two perfect genomes, in which every gene appears exactly

once, can be done in linear time.

Perfect genomes are hard to obtain and so far, can only be obtained in several small virus

genomes. In fact, perfect genomes do not occur on eukaryotic genomes where paralogous

genes are common [76, 87]. In practice, it is important to compute genomic distances

between perfect genomes, such as is done by using Hannenhalli and Pevzner method

[48]. However, one might have to handle the gene duplication problem. In 1999, Sankoff

proposed a way to select, from the duplicated copies of a gene, the common ancestral gene

such that the distance between the reduced perfect genomes (called exemplar genomes)

is minimized. For this case, Sankoff produced a branch-and-bound algorithm [87]. In

a subsequent work, Nguyen, Tay and Zhang proposed a divide-and-conquer method to

compute the exemplar breakpoint distance empirically [76].

From the algorithm complexity research viewpoint, it has been shown that computing

the exemplar signed reversal distance and computing the exemplar breakpoint distance

between two imperfect genomes are both NP-hard [17]. A few years ago, Blin and

Rizzi further proved that computing the exemplar conserved interval distance between

two imperfect genomes is NP-hard [14]; furthermore, it is NP-hard to compute the

minimum conserved interval matching, that is, without deleting the duplicated copies

1This chapter is based on [25].

56

Chapter 4. Exemplar Non-Breakpoint Similarity Problem (ENBS)

of genes. On the approximability, for any exemplar genomic distance measure d(·, ·)
satisfying coincidence axiom (i.e., d(G,H) = 0 if and only if G = H or the reversal of

H), it was shown that the problem does not admit any approximation algorithms, even

when each gene appears at most three time in each input genome [26, 112] unless P = NP.

Slightly later, this bound was tightened, as deciding when d(G,H) = 0 is NP-complete

even if each gene appears in the input genomes G and H at most twice [6, 55]. It follows

that for the exemplar breakpoint distance and the exemplar conserved interval distance

problems, there are no polynomial time approximation algorithms. Furthermore, even

under a weaker definition of polynomial time approximation algorithms, the exemplar

breakpoint distance problem is shown not to admit any weak O(n1−ε)-approximation

algorithm, for any 0 < ε < 1, where n is the maximum length of the two input genomes

[26]. The exemplar conserved interval distance problem is also shown not to admit any

weak O(n1.5)-approximation algorithm [24, 112].

Complementary to the genomic distances, computing certain genomic similarities be-

tween two genomes has also been studied in [19]. In general, genomic similarity measures

do not satisfy coincidence axiom. Among others, Chauve et al. proved that computing

the maximum exemplar common interval similarity between two imperfect genomes is

NP-hard, while leaving open the problem approximability [19].

Here we study the non-breakpoint similarity between two imperfect genomes, which

complements the breakpoint distance measure. Formally, given an alphabet Σ of n

genes and two imperfect genomes G and H drawn from Σ, the exemplar non-breakpoint

similarity (ENBS) problem is to delete duplicated genes from G and H such that the

number of non-breakpoints between the two resultant exemplar genomes, G and H, is

maximized. The ENBS problem is NP-hard, and here we study the approximability.

When one of the input genomes is already exemplar, the problem is called one-sided

ENBS; the general case is called two-sided ENBS. We first present a linear reduction

from the maximum independent set (MIS) problem to the one-sided 2-repetitive ENBS

problem. This reduction implies that the one-sided ENBS problem is W [1]-hard, and

that it does not admit an O(n0.5−ε)-approximation algorithm, for any ε > 0, unless

NP = ZPP. The W[1]-hardness (see [38] for details) and the recent lower bound results

[20] imply that, if k is the optimal solution value to the one-sided ENBS problem, then

barring an unlikely collapse in the parameterized complexity theory, the problem is not

solvable in time f(k)no(k), for any function f . Our second positive result is an O(n0.5)-

approximation for the two-sided 2-repetitive ENBS problem. Ignoring constants, the

negative hardness result and the positive algorithmic result match perfectly.

57

Chapter 4. Exemplar Non-Breakpoint Similarity Problem (ENBS)

4.2 Preliminaries

In the (pairwise) genome comparison and rearrangement problems, we are given two

genomes, each of which is a sequence of signed (or unsigned) genes. Note that in general

a genome can be a set of such sequences; we focus on such one-sequence genomes,

often called singletons. The order of the genes in one genome corresponds to their

physical positions on the genome, and the sign of a gene indicates which one of the

two DNA strands the gene is located. In the literature, most of the research assumes

that each gene occurs exactly once in a genome; such an assumption is problematic in

reality for eukaryotic genomes and the like where duplications of genes exist [87]. For

such an imperfect genome, Sankoff proposed to select an exemplar genome, by deleting

redundant copies of each gene, in which every gene appears exactly once. The deletion

is to minimize certain genomic distance between the resultant exemplar genomes [87].

The following definitions are very much the same as those in [17, 26]. Here, we consider

only unsigned genomes, though our results can be applied to signed genomes. We

assume a gene alphabet Σ that consists of n distinct genes. A genome G is a sequence

of elements of Σ, under the constraint that each element occurs at least once in G. We

allow repetitions of every gene in any genome. Specifically, if each gene occurs exactly

once in a genome, then the genome is called perfect or exemplar; otherwise imperfect. A

genome G is called r-repetitive if each gene occurs at most r times in G. For example, if

Σ = {a, b, c}, then genome G = abcbaa is 3-repetitive.

Given an imperfect genome G, one can delete the redundant copies of all genes to obtain

an exemplar sub-genome G, in which each gene from Σ occurs exactly once. For example,

if Σ = {a, b, c} and genome G = abcbaa, then there are four distinct exemplar genomes

for G by deleting two copies of a and one copy of b: G1 = abc, G2 = acb, G3 = bca, and

G4 = cba.

For two exemplar genomes G and H drawn from a common n-gene alphabet Σ, a break-

point in G is a two-gene substring gigi+1 that, and its reverse gi+1gi, do not occur

as a substring in H. The number of breakpoints in G (symmetrically the number of

breakpoints in H) is called the breakpoint distance between G and H, and denoted

as bd(G,H). For two imperfect genomes G and H, their exemplar breakpoint distance

ebd(G,H) is the minimum bd(G,H), where G and H are exemplar genomes of G and

H, respectively.

For two exemplar genomes G and H drawn from a common n-gene alphabet Σ, a non-

breakpoint (or adjacency) in G is a two-gene substring gigi+1 that, or its reverse gi+1gi,

also occurs as a substring in H. Likewise, the number of non-breakpoints in G (sym-

metrically the number of non-breakpoints in H) is called the non-breakpoint similarity

58

Chapter 4. Exemplar Non-Breakpoint Similarity Problem (ENBS)

between G and H, and denoted as nbs(G,H). Mutatis mutandis, for two imperfect

genomes G and H, their exemplar non-breakpoint similarity enbs(G,H) is the maximum

nbs(G,H), where G and H are exemplar genomes of G and H, respectively. Clearly, (ex-

emplar, respectively) breakpoint distance and (exemplar, respectively) non-breakpoint

similarity are complement to each other, and they sum to exactly n− 1.

Formally, in the exemplar non-breakpoint similarity (ENBS) problem, we are given two

genomes G and H drawn from a common n-gene alphabet Σ, and the goal is to compute

enbs(G,H) and the associated exemplar genomes G and H of G and H respectively.

4.3 Inapproximability result

For (any instance of) the ENBS problem, OPT denotes the optimal solution value. We

first have the following lemma.

Lemma 4.1. 0 ≤ OPT ≤ n− 1, where n (≥ 4) is the size of the gene alphabet.

Proof. Let the n (≥ 4) distinct genes be denoted as 1, 2, 3, . . . , n. We only consider the

exemplar genomes. The upper bound of OPT is achieved by setting G = H; the lower

bound of OPT is achieved by setting G = 123 . . . (n − 1)n (the identity permutation)

and H as follows:

H =

{
(n− 1)(n− 3) . . . 531n(n− 2) . . . 642, if n is even,

(n− 1)(n− 3) . . . 642n135 . . . (n− 4)(n− 2), otherwise.

It can be easily confirmed that between this pair of G and H there is no non-breakpoint.

It is interesting to note that, given G and H, whether or not OPT = 0 can be easily

confirmed in polynomial time. For instance, one can use a brute-force method on each

pair of distinct genes to check whether it is possible to make them into a non-breakpoint.

Such an observation implies that there is a trivial O(n)-approximation algorithm for the

ENBS problem. Note that the complement exemplar breakpoint distance problem is

different, which does not admit any polynomial time approximation at all since deciding

whether its optimal solution value is zero is NP-complete [6, 26, 55]. The next theorem

shows that the one-sided ENBS problem does not admit any O(n0.5−ε)-approximation

algorithm, for any ε > 0.

Theorem 4.2. Even if one of G and H is exemplar and the other is 2-repetitive, the

ENBS problem does not admit any O(n0.5−ε)-approximation algorithm, for any ε > 0,

unless NP = ZPP, where n is the size of the gene alphabet.

59

Chapter 4. Exemplar Non-Breakpoint Similarity Problem (ENBS)

Proof. It is easy to see that the decision version of the ENBS problem is in NP. We next

present a reduction from the maximum independent set (MIS) problem to the ENBS

problem in which the optimal solution value is preserved. The MIS problem is a well

known NP-hard problem that cannot be approximated within a factor of |V |1−ε, for any

ε > 0, unless NP = ZPP, where V is the vertex set of the input graph [51].

Let (V,E) be an instance of the MIS problem, where V is the vertex set and E is the

edge set. Let N = |V | and M = |E|, and the vertices of V are v1, v2, v3, . . . , vN , the

edges of E are e1, e2, e3, . . . , eM . We construct a gene alphabet Σ and two genomes G
and H as follows. For each vertex vi, two distinct genes vi and v′i are created; for each

edge ej , three distinct genes ej , xj and x′j are created. The alphabet Σ contains in total

2N + 3M distinct genes. Let Ai denote the sequence of all edges incident at vertex

vi, sorted by their indices. Let Yi = viAiv
′
i, for i = 1, 2, . . . , N , and YN+j = xjx

′
j , for

j = 1, 2, . . . ,M .

Let

G = v1v
′
1v2v

′
2 . . . vNv

′
Nx1e1x

′
1x2e2x

′
2 . . . xMeMx

′
M .

Clearly, G is exemplar. We distinguish two cases to construct H (as in the proof of

Lemma 4.1):

H =

{
YN+M−1YN+M−3 . . . Y1YN+MYN+M−2 . . . Y2, if N +M is even,

YN+M−1YN+M−3 . . . Y2YN+MY1Y3 . . . YN+M−2, otherwise.

Clearly, in either case, H is 2-repetitive. The remaining argument is identical for both

cases.

We claim that graph (V,E) has a maximum independent set of size k iff enbs(G,H) = k.

First of all, since G is exemplar, G = G. If graph (V,E) has an independent set of

size k, then the claim is trivial. To see this, we construct the exemplar genome H as

follows. For all i, if vi is in the independent set, then we delete Ai from Yi = viAiv
′
i.

Next, all other redundant edges can be arbitrarily deleted to form H. This way, viv
′
i is

a non-breakpoint between G and H, and thus enbs(G,H) = k. On the other hand, if

enbs(G,H) = k, the first thing to notice is that Yj = xjx
′
j (N + 1 ≤ j ≤ N +M) cannot

give us any non-breakpoint; so the non-breakpoints between G and H must all come

from Yi = viAiv
′
i (1 ≤ i ≤ N), with Ai being deleted to create a non-breakpoint viv

′
i.

It follows that there are exactly k such Ai’s being deleted. For any two such deleted Ai

and Aj , there is no edge between vi and vj , for otherwise both copies of the edge would

be deleted and consequently H would not be exemplar. Therefore, these vertices form

into an independent set in graph (V,E).

60

Chapter 4. Exemplar Non-Breakpoint Similarity Problem (ENBS)

The above reduction takes polynomial time. Since n = |Σ| = 2N + 3M ∈ O(N2) and

the MIS problem does not admit any O(N1−ε)-approximation algorithm, for any ε > 0,

unless NP = ZPP, our ENBS problem does not admit any O(n0.5−ε)-approximation

algorithm.

v v

vv

1 2

3
v
54

e

e e

e

e

1

2

3

5

4

Figure 4.1: An illustration of a simple graph for the reduction.

In the example shown in Figure 4.1, we have

G : v1v
′
1v2v

′
2v3v

′
3v4v

′
4v5v

′
5x1e1x

′
1x2e2x

′
2x3e3x

′
3x4e4x

′
4x5e5x

′
5 and

H : x4x
′
4x2x

′
2v5e4e5v

′
5v3e1v

′
3v1e1e2v

′
1x5x

′
5x3x

′
3x1x

′
1v4e3e5v

′
4v2e2e3e4v

′
2.

Corresponding to the optimal independent set {v3, v4}, we have

H : x4x
′
4x2x

′
2v5e5v

′
5v3v

′
3v1e1e2v

′
1x5x

′
5x3x

′
3x1x

′
1v4v

′
4v2e3e4v

′
2. The two non-breaking points

are [v3v
′
3] and [v4v

′
4].

4.4 An O(n0.5)-approximation algorithm

Here we consider the two-sided 2-repetitive ENBS problem in this section. Let Σ =

{1, 2, . . . , n} be the gene alphabet, and G = (g1g2 . . . gp) and H = (h1h2 . . . hq) be the

two 2-repetitive genomes. For ease of presentation, for each gene i ∈ Σ, an occurrence

in G or its exemplar sub-genomes is denoted by i+, while an occurrence in H or its

exemplar sub-genomes is denoted by i−. To implement our algorithm, we construct an

interval element y+
i between gi and gi+1 for i = 1, ..., p − 1; likewise, we construct an

interval element y−j between hj and hj+1 for j = 1, ..., q − 1. Moreover, for each gene i

we construct a gene element xi.

4.4.1 Algorithm description

Between any two exemplar genomes G and H derived from G and H respectively, a non-

breakpoint ij un-ambiguously points to two positions i1 and j1 in G and two positions

i2 and j2 in H such that {gi1 , gj1} = {i+, j+} and {hi2 , hj2} = {i−, j−}; furthermore,

to obtain G from G, the substring G[i1 + 1..j1 − 1] is deleted (similarly, to obtain H

61

Chapter 4. Exemplar Non-Breakpoint Similarity Problem (ENBS)

from H, the substring H[i2 + 1..j2 − 1] is deleted). Motivated by this observation, we

create a set S(i1, j1; i2, j2) when {gi1 , gj1} = {i+, j+} and {hi2 , hj2} = {i−, j−} for some

pair of distinct genes i and j (i < j), for all possible quadruples 1 ≤ i1 < j1 ≤ p and

1 ≤ i2 < j2 ≤ q. Set S(i1, j1; i2, j2) contains those genes in G[i1 + 1..j1 − 1] and those

genes in H[i2 + 1..j2 − 1], and additionally j1 − i1 interval elements y+
i1
, y+
i1+1, . . . , y

+
j1−1,

j2 − i2 interval elements y−i2 , y
−
i2+1, . . . , y

−
j2−1, and two gene elements xi and xj . Clearly,

the total number of such constructed sets is O(n2).

We next remove some of these constructed sets from further consideration, since they

do not correspond to feasible non-breakpoints. There are two cases: In one case, G[i1 +

1..j1− 1] contains a gene which occurs only once in G; in the other case, G[i1 + 1..j1− 1]

contains both copies of a gene. Since deleting the whole substring G[i1+1..j1−1] of genes

leads to no exemplar sub-genomes of G, gi1gj1 is not a feasible non-breakpoint. The same

procedure applies to H, that if H[i2 +1..j2−1] contains a gene which occurs only once in

H or contains both copies of a gene, then hi2hj2 is not a feasible non-breakpoint either.

Let S denote the collection of the constructed sets after the above removing procedure,

where each set corresponds to a feasible non-breakpoint.

Let Σ+ = {1+, 2+, . . . , n+}, Σ− = {1−, 2−, . . . , n−}, X = {x1, x2, . . . , xn}, Y + =

{y+
1 , y

+
2 , . . . , y

+
p−1}, and Y − = {y−1 , y−2 , . . . , y−q−1}. We construct an instance I of set

packing using the ground set U = Σ+ ∪ Σ− ∪ X ∪ Y + ∪ Y − and the collection S of

subsets of U . Then, the linear time (in |U |) approximation algorithm in [46] for the set

packing problem can be applied on I to produce an approximate solution, which is a sub-

collection Approx(I) of S containing mutually disjoint sets. By the following Lemma 4.4,

the set of non-breakpoints extracted from Approx(I) can be extended into an exemplar

genome G of G and an exemplar genome H of H, such that nbs(G,H) ≥ |Approx(I)|.
We return the pair G and H as the final solution to the ENBS problem. A high-level

description of the approximation algorithm A is in Figure 4.2.

Input: Σ = {1, 2, . . . , n} and two 2-repetitive genomes G and H
Output: Two exemplar genomes G and H of G and H respectively

1. Construct set S(i1, j1; i2, j2) for all possible quadruples;
2. Remove infeasible sets and form set collection S;
3. Construct an instance I of set packing:

ground set U = Σ+ ∪ Σ− ∪X ∪ Y + ∪ Y − and collection S;
4. Run the linear time set packing approximation algorithm on I:

obtain a solution Approx(I);
5. Extend Approx(I) into exemplar genomes G and H.

Figure 4.2: A high-level description of the approximation algorithm AENBS .

62

Chapter 4. Exemplar Non-Breakpoint Similarity Problem (ENBS)

4.4.2 Performance analysis

We first have the following result for the Set Packing problem:

Lemma 4.3. [46] The set packing problem admits an O(|U |+|S|)-time |U |0.5-approximation

algorithm, where U is the ground set and S is the collection of subsets.

Next, we exploit relationships between feasible solutions of the ENBS and the set packing

problem.

Lemma 4.4. If there is a set packing S ′ ⊆ S of size k, then there is a pair of exemplar

genomes G and H, derived from G and H respectively, such that nbs(G,H) ≥ k.

Proof. Let S1, S2, . . . , Sk be the sets in the set packing S ′. Note that these k sets are

mutually disjoint, i.e., no two of them contain a common element from U = Σ+ ∪Σ− ∪
X ∪ Y + ∪ Y −.

From the construction process of the sets of S, we know each Si is associated with an

interval of G and an interval of H, and Si contains all the associated interval elements.

Two disjoint sets Si and Sj are thus associated with two non-overlapping intervals of

G (and of H, respectively). Therefore, all the non-breakpoints corresponding to sets

S1, S2, . . . , Sk can be formed by deleting all genes from the intervals associated with

sets S1, S2, . . . , Sk. Moreover, if a gene i occurs only once in G (in H, respectively),

then i+ (i−, respectively) does not belong to any of S1, S2, . . . , Sk; likewise, if a gene i

occurs twice in G (in H, respectively), then i+ (i−, respectively) belongs to at most one

of S1, S2, . . . , Sk. Equivalently, gene i either forms into a non-breakpoint together with

some other gene, or there is still a copy of it in each of the two genomes after deleting

all genes from the intervals associated with sets S1, S2, . . . , Sk.

In the former case, element xi is covered by exactly one of S1, S2, . . . , Sk and thus gene i

is in a unique non-breakpoint. In the latter case, we may keep an arbitrary copy of i+ in

G and an arbitrary copy of i− in H, while deleting the others if any. This way, we obtain

an exemplar genome G from G and an exemplar genome H from H, for which all the

non-breakpoints corresponding to sets S1, S2, . . . , Sk are kept. That is, nbs(G,H) ≥ k.

This proves the lemma. In addition, we see that such a pair of exemplar genomes can

be obtained from S ′ in a linear scan through the genomes G and H.

Lemma 4.5. If enbs(G,H) = k, then the optimal set packing has size at least k
2 .

Proof. Let G∗ and H∗ denote the exemplar genomes of G and H respectively such

that nbs(G∗, H∗) = enbs(G,H). Clearly, non-breakpoints between G∗ and H∗, when

63

Chapter 4. Exemplar Non-Breakpoint Similarity Problem (ENBS)

regarded as edges connecting the two involved genes, form non-disjoint paths. For each

such path containing ` non-breakpoints, a maximum of d `2e disjoint non-breakpoints

can be obtained; here two non-breakpoints are disjoint if they do not share any common

gene. It follows from the proof of Lemma 4.4 that the optimal set packing has size at

least k
2 .

Theorem 4.6. The two-sided 2-repetitive ENBS problem admits an O(n3)-time O(n0.5)-

approximation algorithm, where n is size of the gene alphabet.

Proof. Let the two 2-repetitive genomes be G and H. Their lengths are thus bounded

above by 2n. For each position pair (i1, j1) in G, we only need to look up at most 4

possibilities to construct sets, each of which contains O(n) elements. Therefore, the

instance I of Set Packing can be constructed in O(n3) time, with |U | ≤ 7n and |S| ∈
O(n2). Running the approximation algorithm for set packing on I takes O(n2) time,

with the returned solution |Approx(I)| ≤ n. Finally, a pair of exemplar genomes G and

H can be extended from Approx(I) in O(n) time. Therefore, the overall running time

is O(n3).

From Lemmas 4.3–4.5,

nbs(G,H) ≥ |Approx(I)| ≥ enbs(G,H)

2
/|U |0.5 =

enbs(G,H)

2
√

7n0.5
.

Therefore, our approximation algorithm has a performance ratio in O(n0.5).

4.5 Conclusions and future work

We studied the exemplar non-breakpoint similarity, complement to the exemplar break-

point distance, between two imperfect genomes. We proved that the ENBS problem

cannot be approximated within O(n0.5−ε) for any positive ε, even in the one-sided 2-

repetitive case, where n is the size of the gene alphabet. On the positive side, we presented

a cubic time O(n0.5)-approximation algorithm for the two-sided 2-repetitive ENBS prob-

lem. Therefore, within the context of 2-repetitiveness, our negative inapproximability

and positive algorithmic results merge perfectly. We believe that our design and analysis

techniques could extend the approximation algorithm for r-repetitive, for any fixed r;

but we are not sure whether the general ENBS problem admits an (n0.5)-approximation

algorithm, even in the one-sided case. On the other hand, the approximability for

the (complement) one-sided exemplar minimum breakpoint distance problem, even when

each gene appears in the imperfect genome at most twice, is still open. The only known

64

Chapter 4. Exemplar Non-Breakpoint Similarity Problem (ENBS)

negative result is APX-hardness [6], and the only positive result is the trivial O(n)-factor

approximation.

65

Chapter 5

Minimum Common Integer

Partition (MCIP) Problem1

5.1 Introduction

The minimum common integer partition (MCIP) problem was introduced to the com-

putational biology community by Chen et al. [23], formulated from their work on or-

tholog assignment and DNA fingerprint assembly. Mathematically, a partition of a

positive integer x is a multiset σ(x) = {a1, a2, . . . , at} of positive integers such that

a1 + a2 + . . . + at = x, where each ai is called a part of the partition of x [4, 5]. For

example, {3, 2, 2, 1} is a partition of x = 8; so is {6, 1, 1}. A partition of a multiset

X of positive integers is the multiset union of the partition σ(x) for all x of X, i.e.,

σ(X) =]x∈Xσ(x). For example, as {3, 2, 2, 1} is a partition of x1 = 8 and {3, 2} is a

partition of x2 = 5, {3, 3, 2, 2, 2, 1} is a partition for X = {8, 5}.

Given a collection of multisets {X1, X2, . . . , Xk} (k ≥ 2), a multiset S is a common

integer partition (CIP) for them if S is an integer partition of every multiset Xi, 1 ≤ i ≤
k. For example, when k = 2 and X1 = {8, 5} and X2 = {6, 4, 3}, {3, 3, 2, 2, 2, 1} is a CIP

for them since {3, 3, 2, 2, 2, 1} is also a partition for X2 = {6, 4, 3}: 3 + 3 = 6, 2 + 2 = 4,

and 2 + 1 = 3. The minimum common integer partition (MCIP) problem is defined as

to find a CIP for {X1, X2, . . . , Xk} with the minimum cardinality. For example, one

can verify that, for the above X1 = {8, 5} and X2 = {6, 4, 3}, {6, 3, 2, 2} is a minimum

cardinality CIP. We use k-MCIP to denote the restricted version of the MCIP problem

when the number of input multisets is fixed to be k.

For simplicity, we denote the optimal, i.e. a minimum cardinality, CIP for {X1, X2, . . . , Xk}
as OPT(X1, X2, . . . , Xk), or simply OPT when the input multisets are clear from the

context; analogously, we denote the CIP for {X1, X2, . . . , Xk} produced by an algorithm

A as CIPA(X1, X2, . . . , Xk), or simply CIPA; without the algorithm subscript, we use

CIP to denote any feasible common integer partition.

1This chapter is based on [105].

66

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

We mentioned earlier that the MCIP problem was introduced by Chen et al. [23], formu-

lated out of ortholog assignment and DNA fingerprint assembly. The interested readers

may refer to their paper for more detailed descriptions and the mappings between the

problems. More recently, another application of the MCIP problem in similarity com-

parison between two unlabeled pedigrees was presented in [54]. Pedigrees, or commonly

known as family trees, record the occurrence and appearance (or phenotypes) of a par-

ticular gene or organism and its ancestors from one generation to the next. They are

important to geneticists for linkage analysis, as with a valid pedigree the recombination

events can be deduced more accurately [33], or disease loci can be mapped consis-

tently [74, 75]. Jiang et al. [54] considered the isomorphism and similarity comparison

problems for two-generation pedigrees, and formulated them as the minimum common

integer pair partition (MCIPP) problem, which generalizes the MCIP problem. By ex-

ploiting certain structural properties of the optimal solutions for the 2-MCIP problem,

they were able to show that their MCIPP problem is also fixed-parameter tractable [54].

5.1.1 Known results

For integer x ∈ Z+, its number of integer partitions increases very rapidly with x. For

example, integer 3 has three partitions, namely {3}, {2, 1}, and {1, 1, 1}; integer 4 has

five partitions, namely {4}, {3, 1}, {2, 2}, {2, 1, 1}, and {1, 1, 1, 1}; while integer 10 has

190,569,292 partitions according to [4].

Given a collection of multisets {X1, X2, . . . , Xk} (k ≥ 2), they have a CIP if and only

if they have the same summation over their elements. Multisets with this property are

called related [22], and we assume throughout this section that the multisets in any

instance of MCIP are related, as the verification takes only linear time.

One can see that the 2-MCIP problem generalizes the well-known subset sum prob-

lem [34], based on the following observation: given a positive integer number x and a

set of positive integers X = {a1, a2, . . . , am}, there exists a subset of X summing to x

if and only if for the two multisets X = {a1, a2, . . . , am} and Y = {x,∑m
i=1 ai − x},

|OPT(X,Y)| = m. Thus 2-MCIP is NP-hard [22]. Chen et al. showed that 2-MCIP is

APX-hard [22], via a linear reduction (also called an approximation preserving reduc-

tion) from the maximum bounded 3-dimensional matching problem [56].

Let M = |X1| + |X2| + . . . + |Xk| denote the total number of integers in the k-MCIP

problem. For the positive algorithmic results, Chen et al. presented a linear time

2-approximation algorithm and an O(M9)-time 5/4-approximation algorithm for 2-

MCIP [22], based on a heuristic for the maximum weighted set packing problem [56].

The 5/4-approximation can be taken as a subroutine to design a 0.625k-approximation

67

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

algorithm for k-MCIP (when k is even; when k is odd, the approximation ratio is 0.625k+

0.375) [111]. Woodruff developed a framework for capturing the frequencies of the inte-

gers across the input multisets and presented a randomized O(M log k)-time approxima-

tion algorithm for k-MCIP, with worst-case performance ratio 0.6139k(1 + o(1)) [111].

The basic idea is, when there are not too many distinct integers in the input multisets,

most of the low frequency integers will have to be split into at least two parts in any

common partition. Inspired by this idea, Zhao et. al. [113] formulated the k-MCIP

problem into a flow decomposition problem in an acyclic k-layer network with the goal

to find a minimum number of directed simple paths from the source to the sink. Since

this minimum number can be bounded by the number of arcs in the network according

to the well-known flow decomposition theorem [2], Zhao et. al. presented a scheme to

reduce the number of arcs in the network, resulting in a de-randomized approximation

algorithm with performance ratio 0.5625k(1 + o(1)), which is the currently best.

5.1.2 Our contributions

We present a polynomial-time 6/5-approximation algorithm for 2-MCIP. Subsequently,

we obtain a 0.6k-approximation algorithm for k-MCIP when k is even (when k is odd,

the approximation ratio is 0.6k+ 0.4). It is worth pointing out that the ratio of 0.5625k

in [113] is asymptotic, that it holds for only sufficiently large k; while our ratio of 0.6k

is absolute, that it holds for all k ≥ 2.

5.2 A 6/5-approximation algorithm for 2-MCIP

In this section, we deal with the 2-MCIP problem. For ease of presentation, we denote

the two multisets of positive integers in an instance as X = {x1, x2, . . . , xm} and Y =

{y1, y2, . . . , yn}, and assume without loss of generality that they are related. Recall that,

OPT(X,Y) denotes the optimal solution — the minimum cardinality CIP for {X,Y },
and CIPA(X,Y) denotes the solution CIP produced by algorithm A.

5.2.1 Preliminaries

Chen et al. presented a simple linear time 2-approximation algorithm for 2-MCIP [21,

22], denoted as Apx21. Each iteration of Apx21 chooses an (arbitrary) element x ∈
X and an (arbitrary) element y ∈ Y , and adds min{x, y} to the solution CIPApx21;

subsequently, if x = y then x is removed from X and y is removed from Y ; otherwise

min{x, y} is removed from the multiset it appears in and max{x, y} is replaced with

68

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

max{x, y}−min{x, y} in the other multiset. Its performance ratio of 2 is seen from the

fact that |OPT(X,Y)| ≥ max{m,n} and that the solution CIPApx21 contains no more

than m+ n− 1 integers. Consequently, we have the following lemma.

Lemma 5.1. [21, 22] max{m,n} ≤ |OPT(X,Y)| ≤ |CIPApx21| ≤ m+ n− 1.

Given an instance {X,Y } of 2-MCIP and an arbitrary CIP that specifies the integer

partitions for all elements of X and Y , we say that xi ∈ X is mapped to yj ∈ Y if

there exists an element of CIP that is a part of the partition for xi and is also a part of

the partition for yj . This mapping relationship gives rise naturally to a bipartite graph

G(X,Y), in which the two disjoint subsets of vertices are X and Y , respectively, and

vertex xi and vertex yj are adjacent if and only if xi is mapped to yj according to the

CIP. Note that an edge of the bipartite graph G one-to-one corresponds to an element of

CIP, and in general there could be multiple edges between a pair of vertices in G(X,Y).

In the sequel, we use integer xi and vertex xi interchangeably, and use an edge of G and

an element of CIP interchangeably.

For a connected component of the bipartite graph G(X,Y), let X ′ denote its subset of

vertices in X and Y ′ denote its subset of vertices in Y , respectively; then X ′ and Y ′ are

related and they are called a pair of related sub-multisets of X and Y ; furthermore, the

edges in this connected component form a common integer partition for X ′ and Y ′ and

denoted as CIP(X ′, Y ′), with |CIP(X ′, Y ′)| ≥ |X ′|+ |Y ′| − 1.

It might happen that the induced bipartite graph G(X,Y) by any CIP of {X,Y } is

connected, or equivalently speaking X and Y has no pair of related proper sub-multisets.

In this case X and Y are basic related multisets. For example, X = {3, 3, 4} and

Y = {6, 2, 2} are not basic since {3, 3} and {6} is a pair of related proper sub-multisets;

while X = {1, 4} and Y = {2, 3} are basic. Define the size of a pair of related multisets

X and Y to be the total number of elements in the two multisets, i.e. |X|+ |Y |.

Lemma 5.2. [21, 22] If X and Y are a pair of basic related multisets, then |OPT(X,Y)| =
|X|+ |Y | − 1.

If the minimum size of any pair of related sub-multisets of X and Y is c, then |OPT(X,Y)| ≥
c−1
c (|X|+ |Y |).

It is not hard to see that for any instance of 2-MCIP, the bipartite graph corresponding

to the optimal solution is a forest of the maximum number of trees, each of which

corresponds to a pair of basic related multisets. The main idea in our algorithm is to

produce a solution containing as many trees as possible, via packing as many pairs of

(basic) related multisets as possible. In the sequel, a set containing a single element

69

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

is also denoted by the element, when there is no ambiguity, and X − X ′ is the set

minus/subtraction operation. The next lemma handles size-2 related sub-multisets.

Lemma 5.3. [21, 22] For an instance {X,Y } of 2-MCIP, if xi = yj for some xi ∈ X
and yj ∈ Y , then xi] OPT(X − xi, Y − yj) is a minimum CIP for X and Y , i.e.,

|OPT(X,Y)| = |OPT(X − xi, Y − yj)|+ 1.

5.2.2 Algorithm description

In this section we present a new approximation algorithm, denoted as Apx65, for com-

puting a CIP for the given two related multisets X and Y . The running time and

worst-case performance analyses are done in the next section. Essentially, algorithm

Apx65 extends the set packing idea in the 5/4-approximation algorithm [21, 22], to

pack well the pairs of basic related sub-multisets of sizes 3, 4, and 5. Nonetheless, our

set packing process is different from the process in the 5/4-approximation algorithm,

and the performance analysis is built on several new properties we uncover between

OPT(X,Y) and our CIPApx65.

Let Z = X∩Y denote the sub-multiset of common elements of X and Y . By Lemma 5.3

we know that OPT(X − Z, Y − Z)] Z is an optimal CIP for X and Y . Therefore, in

the sequel we assume without loss of generality that X and Y do not share any common

integer. In the first step of algorithm Apx65, all pairs of basic related sub-multisets of

X and Y of sizes 3, 4, and 5 are identified. A pair of basic related sub-multisets of size

i is called an i-set, for i = 3, 4, 5; the weight w(·) of a 3-set (4, 5-set, respectively) is set

to 3 (2, 1, respectively). We use C to denote this collection of i-sets for i = 3, 4, 5.

Let the ground multiset U contain all elements of X and Y that appear in the i-sets

of C. In the second step, the algorithm is to find a set packing of large weight for the

Weighted Set Packing [12] instance (U, C). To do so, a graph H is constructed in which

a vertex one-to-one corresponds to an i-set of C and two vertices are adjacent if and only

if the two corresponding i-sets intersect. This step of computing a heavy set packing is

iterative [12], denoted by Greedy: suppose P is the current set packing (equivalently

an independent set in H, which was initialized to contain all isolated vertices of H),

and let w2(P) =
∑

p∈P w
2(p) be the sum of squared weights of all i-sets of P ; an

independent set T of H (equivalently a sub-collection of disjoint i-sets of C) improves

w2(P) if w2(T) > w2(N(T, P)), where N(T, P) denotes the closed neighborhood of T

in P ; finally, if there is an independent set T of size ≤ 37 which improves w2(P), then

P is replaced by (P −N(T, P)) ∪ T ; otherwise, the process terminates and returns the

current P as the solution set packing.

70

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

Input: Related multisets X and Y .
Output: A common integer partition CIPApx65 of X and Y .

1. 1.1. Let Z = X ∩ Y ;
1.2. X ← X − Z, Y ← Y − Z;
1.3. Identify C of all basic related sub-multisets of sizes 3, 4, 5;

2. 2.1. Let U be the ground multiset;
2.2. Compute a heavy set packing P for instance (U, C) by Greedy;

3. 3.1. Let X ′ and Y ′ be the sub-multisets of elements covered by P ;
3.2. Run Apx21 to compute CIPApx21(X −X ′, Y − Y ′);
3.3. Return Z]

(⊎
X0]Y0∈P OPT(X0, Y0)

)
] CIPApx21(X −X ′, Y − Y ′).

Figure 5.1: A high-level description of algorithm Apx65.

Let P denote the set packing computed in the second step, and X ′ and Y ′ denote the

sub-multisets of X and Y , respectively, of which the elements are “covered” by the i-sets

of P . Note that P is maximal, in the sense that no more i-set of C can be appended

to P . Therefore, in the remainder 2-MCIP instance (X − X ′, Y − Y ′), the minimum

size of any pair of related sub-multisets of X − X ′ and Y − Y ′ is at least 6. In the

last step, algorithm Apx21 is run on instance (X − X ′, Y − Y ′) to output a solution

CIPApx21(X −X ′, Y − Y ′); the final solution CIPApx65(X,Y) is

Z]

 ⊎
X0]Y0∈P

OPT(X0, Y0)

] CIPApx21(X −X ′, Y − Y ′), (5.1)

where X0] Y0 ∈ P is an i-set in the computed set packing P . A high-level description

of algorithm Apx65 is depicted in Figure 5.1.

5.2.3 Performance analysis

The key to the performance guarantee is to analyze the quality of the computed set

packing P in the second step of the algorithm. Let Pi denote the collection of i-sets in

P , for i = 3, 4, 5, respectively. For the weighted set packing instance (U, C), we consider

one optimal set packing Q∗ and let Q∗i denote the sub-collection of i-sets in Q∗, for

i = 3, 4, 5, respectively. Let pi = |Pi| and q∗i = |Q∗i |, for i = 3, 4, 5.

We further let Q∗ij be the sub-collection of Q∗i , each i-set of which intersects with exactly

j sets of the computed set packing P , for i = 3, 4, 5 and j = 1, 2, . . . , i. Let q∗ij = |Q∗ij |.
Because the set packing P is maximal, each set of Q∗ must intersect with certain set(s)

in P . This implies

q∗i =

i∑
j=1

q∗ij , i = 3, 4, 5. (5.2)

71

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

On the other hand, every i-set of Q∗ij intersects with exactly j sets of P ; therefore

5∑
i=3

i∑
j=1

(j × q∗ij) ≤ |X ′|+ |Y ′| =
5∑
i=3

(i× pi). (5.3)

Eq. (5.2) and Eq. (5.3) together give

3q∗3 + 2q∗4 + q∗5

= 3

3∑
j=1

q∗3j + 2

4∑
j=1

q∗4j +

5∑
j=1

q∗5j

≤

 3∑
j=1

jq∗3j + 2q∗31 + q∗32

+

 4∑
j=1

jq∗4j + q∗41

+

 5∑
j=1

jq∗5j

=

 5∑
i=3

i∑
j=1

jq∗ij

+ 2q∗31 + q∗32 + q∗41

≤ (3p3 + 4p4 + 5p5) + 2q∗31 + q∗32 + q∗41. (5.4)

The following Lemma 5.4 states a key structural relationship between the computed set

packing P and the optimal set packing Q∗. Section 3 is devoted to the proof of this

lemma.

Lemma 5.4. 3q∗3 + 2q∗4 + q∗5 ≤ 5(p3 + p4 + p5).

By Lemma 5.3, we assume that there are no common integer elements between the two

input multisets X and Y . Lemma 5.5 presents a quality guarantee on the computed

solution CIPApx65(X,Y), in terms of the set packing P .

Lemma 5.5. |CIPApx65(X,Y)| ≤ m+ n− (p3 + p4 + p5 + 1).

Proof. Note from the description of algorithm Apx65 in Figure 5.1 that, for every i-set

of the computed set packing P , its common integer partition has the minimum size i−1,

for i = 3, 4, 5. That is, ∣∣∣∣∣∣
⊎

X0]Y0∈P
OPT(X0, Y0)

∣∣∣∣∣∣ = 2p3 + 3p4 + 4p5, (5.5)

where X0] Y0 ∈ P is an i-set in the computed set packing P . On the other hand, on

the remainder instance (X −X ′, Y − Y ′), algorithm Apx21 returns a solution

|CIPApx21(X −X ′, Y − Y ′)| ≤ m+ n− (3p3 + 4p4 + 5p5)− 1. (5.6)

The lemma immediately follows from Eqs. (5.5, 5.6).

72

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

We now estimate OPT(X,Y). Let Q′i, for i = 3, 4, 5 be the collection of pairs of basic

related multisets of size i induced by OPT(X,Y), and let q′i = |Q′i|. It is clear that

3q′3 + 2q′4 + q′5 ≤ 3q∗3 + 2q∗4 + q∗5 (5.7)

because Q∗ is the maximum weight set packing of the instance (U, C) and certainly

Q = Q′3 ∪Q′4 ∪Q′5 is also a set packing.

Lemma 5.6. |OPT(X,Y)| ≥ 5
6(m+ n)− 1

6(3q∗3 + 2q∗4 + q∗5).

Proof. Note that for every i-set of the set packing Q, its common integer partition has

the minimum size i − 1, for i = 3, 4, 5. Every other connected component in graph

G(X,Y) induced by OPT(X,Y) has size at least 6. Therefore, by Lemma 5.2 we have

|OPT(X,Y)| ≥ 2q′3 + 3q′4 + 4q′5 +
5

6

(
m+ n− 3q′3 − 4q′4 − 5q′5

)
=

5

6
(m+ n)− 1

6
(3q′3 + 2q′4 + q′5)

≥ 5

6
(m+ n)− 1

6
(3q∗3 + 2q∗4 + q∗5).

This proves the lemma.

Theorem 5.7. Algorithm Apx65 is a 6
5 -approximation for 2-MCIP.

Proof. We first examine the time complexity of algorithm Apx65. From the description

of algorithm Apx65 in Fig 5.1, steps 1.1 and 1.2 can be done in O(m+ n) and step 1.3

takes O((m+n)5) time as there are at most O((m+n)5) sets in C. Our weighting scheme

ensures that each iteration of Greedy increases the sum of squared weights by at least 1.

Note that the sum of squared weights of any set packing is upper bounded by 3(m+n).

We conclude that the total number of iterations in Greedy is O(m + n). In each

iteration, we check every sub-collection of C of size ≤ 37, which takes O((m+n)5×37) =

O((m+ n)185) time. That is, step 2 costs O((m+ n)186) time. Step 3 takes linear time

as algorithm Apx21 runs in linear time. In summary, the total running time of our

algorithm Apx65 is O((m+ n)186).

For its worst case performance ratio, by Lemmas 5.4, 5.5 and 5.6, we have

CIPApx65(X,Y)

OPT(X,Y)
≤ m+ n− (p3 + p4 + p5 + 1)

5
6(m+ n)− 1

6(3q∗3 + 2q∗4 + q∗5)

≤ 6

5
× m+ n− (p3 + p4 + p5 + 1)

m+ n− 1
5(3q∗3 + 2q∗4 + q∗5)

≤ 6

5
× m+ n− (p3 + p4 + p5 + 1)

m+ n− (p3 + p4 + p5)

73

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

<
6

5
,

where m = |X| and n = |Y |. Therefore, Apx65 is a 6
5 -approximation.

5.3 Proof of Lemma 5.4

Recall the termination condition of algorithm Greedy for computing the heavy set

packing P , that is, there is no independent set T such that |T | ≤ 37 and T improves

w2(P). Also recall the weighting scheme (w3, w4, w5) = (3, 2, 1), where wi is the weight

of an i-set of C. We summarize in the following Lemma 5.8 some useful properties of the

sets in Q∗31, Q∗41, and Q∗32, see also Figure 5.2. Their proofs are straightforward using

the termination condition and the weight scheme, and we skip them.

Lemma 5.8. (a) Every set of Q∗31 intersects with a set of P3, and no other set of

Q∗31 ∪ Q∗41 can intersect with this set of P3; such sets of P3 form a sub-collection

denoted as P 1
3 .

(b) Every set of Q∗41 intersects with a set of P3 ∪ P4.

(b1) If two sets of Q∗41 intersect with a common set of P , then this set belongs to P3,

and no other set of Q∗41 can intersect with this set of P3; such sets of P3 form

a sub-collection denoted as P 2
3 , and such sets of Q∗41 form a sub-collection

denoted as Q∗141.

(b2) If only one set of Q∗41 intersects with a set of P3, then no other set of Q∗31∪Q∗41

can intersect with this set of P3; such sets of P3 form a sub-collection denoted

as P 3
3 , and such sets of Q∗41 form a sub-collection denoted as Q∗241.

(b3) Otherwise, a set of Q∗41 intersects with a set of P4, and no other set of Q∗31 ∪
Q∗41 can intersect with this set of P4; such sets of Q∗41 form a sub-collection

denoted as Q∗341.

Let P 4
3 = P3 − P 1

3 − P 2
3 − P 3

3 . Clearly, {P 1
3 , P

2
3 , P

3
3 , P

4
3 } is a partition of P3; so is

{Q∗141, Q
∗2
41, Q

∗3
41} a partition of Q∗41.

(c) Every set of Q∗32 must intersect a set of P3.

Let pj3 = |P j3 | for j = 1, 2, 3, 4, and q∗j41 = |Q∗j41| for j = 1, 2, 3.

Lemma 5.9. We have the following relationships: p3 = p1
3 + p2

3 + p3
3 + p4

3, q∗41 =

q∗141 + q∗241 + q∗341, p1
3 = q∗31, p2

3 = 1
2q
∗1
41, and p3

3 = q∗241.

74

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

Q∗
31 Q∗1

41 Q∗1
41 Q∗2

41 Q∗3
41

P 1
3 P 2

3 P 3
3 P4

Figure 5.2: The definitions of sub-collections of P3 and Q41∗ using the set intersect-
ing configurations, where a solid (dashed, respectively) line indicates a firm (possible,
respectively) set intersection.

Proof. The first two equalities hold since, by Lemma 5.8(b), {P 1
3 , P

2
3 , P

3
3 , P

4
3 } is a par-

tition of P3, and {Q∗141, Q
∗2
41, Q

∗3
41} is a partition of Q∗41.

The third equality holds by Lemma 5.8(a) that the sets of Q∗31 and the sets of P 1
3

one-to-one correspond to each other. Analogously, the fourth equality holds due to

Lemma 5.8(b1) that the sets of Q∗141 are paired up, and these pairs and the sets of P 2
3

one-to-one correspond to each other; the fifth equality holds by Lemma 5.8(b2) that the

sets of Q∗241 and the sets of P 3
3 one-to-one correspond to each other.

We next construct a bipartite graph H ′, which is an induced subgraph of graph H that

we constructed for the Weighted Set Packing instance (U, C), as follows: One subset of

vertices of H ′ is Q∗31 ∪ Q∗32 ∪ Q∗41 (which is a sub-collection of the optimal set packing

Q∗), and the other subset of vertices of H ′ is P (which is the computed set packing),

and again two vertices are adjacent if and only if the corresponding two sets intersect.

In the sequel, we use the set of C and the vertex of graph H (or H ′) interchangeably;

we also abuse the sub-collection, such as Q∗31, of sets to denote the corresponding vertex

subset in graph H (or H ′). Once again recall that the termination condition of Greedy

tells that there is no improving sub-collection of Q∗31 ∪Q∗32 ∪Q∗41 of size ≤ 37.

We prove Lemma 5.4 by showing that the inequality holds in every connected com-

ponent of graph H ′, followed by a straightforward linear summation over all connected

components. We therefore assume without loss of generality that graph H ′ is connected.

The following lemma says that the set packing algorithm Greedy packs a lot more

3-sets into P than 4-sets and 5-sets.

Lemma 5.10. If p4 + p5 ≥ 2, then in graph H ′ the length of the shortest path between

any two vertices a, b ∈ P4∪P5 is d(a, b) ≥ 76; consequently, p3 ≥ 37 and p4 +p5 ≤ 1
18p3.

Proof. Let a and b be two vertices of P4 ∪ P5 such that there is no other vertex from

P4∪P5 on a shortest path connecting them in graph H ′. Since H ′ is bipartite, this path

75

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

has an even length and is denoted as

〈a = a0, c0, a1, c1, . . . , a`, c`, a`+1 = b〉,

for some ` ≥ 0 (see Figure 5.3). Since every vertex ci on the path has degree at

least 2, it has to belong to Q∗32 and consequently it has degree exactly 2 in graph

H ′. It follows that for the independent set T = {c0, c1, . . . , c`}, w2(T) = 9(` + 1) and

w2(N(T, P)) = w2({a0, a1, . . . , a`+1}) ≤ 9` + 8. We conclude that ` ≥ 37 as otherwise

T would be an improving subset of vertices. Therefore, the length of the above shortest

path is d(a, b) ≥ 76 and it contains at least ` ≥ 37 vertices of P3.

a = a0 a1 · · · · · · aℓ aℓ+1 = b

c0 c1 · · · · · · cℓ

P

Q∗
31 ∪Q∗

32 ∪Q∗
41

Figure 5.3: The configuration of the shortest path connecting a, b ∈ P4 ∪ P5.

To prove the second half of the lemma, we notice that graph H ′ is connected. For every

vertex a ∈ P4∪P5, we pick arbitrarily another vertex b ∈ P4∪P5 and consider a shortest

path connecting them in graph H ′ that does not contain any other vertex from P4 ∪P5:

〈a = a0, c0, a1, c1, . . . , a`, c`, a`+1 = b〉,

for some ` ≥ 37. Initially every vertex of P4 ∪ P5 is worth 1 token; through this path,

vertex a distributes its 1 token evenly to vertices a1, a2, . . . , a18, which are all vertices

of P3. After every vertex of P4 ∪ P5 has distributed its token, from ` ≥ 37 we conclude

that every vertex of P3 receives no more than 1
18 token. Therefore,

p4 + p5 ≤
1

18
p3.

This proves the lemma.

From Lemma 5.10, we see that the number of 4-sets and 5-sets in the computed set pack-

ing P is very small compared against the number of 3-sets. In the following Lemma 5.11

76

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

we prove that 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4 through an amortized analysis. By Eq. (5.4),

Lemma 5.11 is sufficient to prove Lemma 5.4.

Lemma 5.11. 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4.

Proof. The proof of the lemma is through an amortized analysis, and is done via five

distinct cases. In the following five lemmas (Lemmas 5.12, 5.13, 5.14, 5.15, 5.18), we

assign 2 tokens for each vertex of Q∗31 and 1 token for each vertex of Q∗32 ∪Q∗41. So we

have a total of 2q∗31 + q∗32 + q∗41 tokens. We will prove that 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4 by

distributing these tokens to the vertices of P .

We consider the following five distinct cases of graph H ′, which are separately dealt with

in Lemmas 5.12, 5.13, 5.14, 5.15 and 5.18:

Case 1. q∗31 = q∗41 = 0,

Case 2. q∗31 = 1 and q∗41 = 0,

Case 3. q∗31 = 0 and q∗41 = 1,

Case 4. q∗31 = 0 and q∗41 = 2 with either q∗141 = 2 or q∗241 = 2,

Case 5. q∗31 + q∗41 ≥ 2 excluding Case 4.

(Proof of Lemma 5.11 to be continued)

Lemma 5.12. (Case 1) If q∗31 = q∗41 = 0, then 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4.

Proof. From Lemma 5.8(c), every set of Q∗32 must intersect a set of P3. If p4 + p5 ≤ 1,

then we have 2q∗32 ≤ 3p3 + 5. It follows that when p3 ≥ 5, 2q∗32 ≤ 3p3 + 5 ≤ 4p3 and thus

2q∗31+q∗32+q∗41 ≤ 2p3+p4. When p3 = 4 (3, 2, 1, 0, respectively), w2(P) ≤ 40 (31, 22, 13, 4,

respectively) and thus q∗32 ≤ 4 (3, 2, 1, 0, respectively) by algorithm Greedy; that is,

q∗32 ≤ p3, and consequently 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4.

If p4 + p5 > 1, every set of Q∗32 distributes 1
2 token to each adjacent set of P . Note that

every i-set of P receives at most i
2 token, by Lemma 5.10,

q∗32 ≤
5∑
i=3

i

2
pi ≤

3

2
p3 +

5

2
(p4 + p5) ≤ 3

2
p3 +

5

2
× 1

18
p3 =

59

36
p3,

and consequently 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4.

Lemma 5.13. (Case 2) If q∗31 = 1, q∗41 = 0, then 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4.

77

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

Proof. From Lemma 5.8(a, c), the unique set of Q∗31 must intersect a set of P3 and every

set of Q∗32 must intersect a set of P3. If p4 + p5 ≤ 1, then we have 1 + 2q∗32 ≤ 3p3 + 5,

or 2q∗31 + q∗32 ≤ 3
2p3 + 4. It follows that when p3 ≥ 8, 2q∗31 + q∗32 ≤ 2p3 and thus

2q∗31 +q∗32 +q∗41 ≤ 2p3 +p4; when 2 ≤ p3 ≤ 7, 9(q∗31 +q∗32) ≤ w2(P) ≤ 9p3 +4 by algorithm

Greedy, and consequently 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4; when p3 = 1, w2(P) ≤ 13 and

thus q∗32 = 0 by algorithm Greedy, and consequently 2q∗31 + q∗32 + q∗41 = 2 ≤ 2p3 + p4.

If p4 + p5 > 1, the unique set of Q∗31 distributes its 2 tokens to the adjacent set of P3,

and every set of Q∗32 distributes 1
2 token to each adjacent set of P . Note that every

i-set of P receives at most i
2 token, except the one adjacent to the unique set of Q∗31, by

Lemma 5.10 we have,

2q∗31 + q∗32 ≤
5∑
i=3

i

2
pi +

3

2
≤ 3

2
p3 +

5

2
(p4 + p5) +

3

2
≤ 59

36
p3 +

3

2
< 2p3,

and consequently 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4.

Lemma 5.14. (Case 3) If q∗31 = 0, q∗41 = 1, then 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4.

Proof. From Lemma 5.8(b, c), the unique set of Q∗41 must intersect a set of P3 ∪P4 and

every set of Q∗32 must intersect a set of P3. If p4 + p5 ≤ 1, then we have 2q∗32 + 1 ≤
3p3 + 5, or q∗32 + q∗41 ≤ 3

2p3 + 3. It follows that when p3 ≥ 6, q∗32 + q∗41 ≤ 2p3 and

thus 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4; when 1 ≤ p3 ≤ 5, 9q∗32 + 4 ≤ w2(P) ≤ 9p3 + 4

by algorithm Greedy, and consequently 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4; when p3 = 0,

p4 = 1 and w2(P) = 4 and thus q∗32 = 0 by algorithm Greedy, and consequently

2q∗31 + q∗32 + q∗41 = 1 ≤ 2p3 + p4.

If p4 +p5 > 1, the unique set of Q∗41 distributes its 1 token to the adjacent set of P3∪P4,

and every set of Q∗32 distributes 1
2 token to each adjacent set of P . Note that every

i-set of P receives at most i
2 token, except the one adjacent to the unique set of Q∗41, by

Lemma 5.10 we have,

q∗32 + q∗41 ≤
5∑
i=3

i

2
pi +

1

2
≤ 59

36
p3 +

1

2
< 2p3,

and consequently 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4.

Lemma 5.15. (Case 4) If q∗31 = 0 and q∗41 = 2 with either q∗141 = 2 or q∗241 = 2, then

2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4.

Proof. From Lemma 5.8(b1, b2, c), each of these two sets of Q∗41 must intersect a set

of P3 and every set of Q∗32 must intersect a set of P3. If p4 + p5 ≤ 1, then we have

78

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

2q∗32 + 2 ≤ 3p3 + 5, or q∗32 + q∗41 ≤ 3
2p3 + 7

2 . It follows that when p3 ≥ 7, q∗32 + q∗41 ≤ 2p3

and thus 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4; when 2 ≤ p3 ≤ 6, 9q∗32 + 8 ≤ w2(P) ≤ 9p3 + 4

by algorithm Greedy, and consequently 2q∗31 + q∗32 + q∗41 ≤ p3 + 14
9 ≤ 2p3 + p4; when

p3 = 1, q∗32 = 0 by algorithm Greedy, and consequently 2q∗31 + q∗32 + q∗41 = 2 ≤ 2p3 +p4.

If p4 + p5 > 1, each of the two sets of Q∗41 distributes its 1 token to the adjacent set of

P3, and every set of Q∗32 distributes 1
2 token to each adjacent set of P . Note that every

i-set of P receives at most i
2 token, except the one(s) adjacent to the two sets of Q∗41,

by Lemma 5.10 we have,

q∗32 + q∗41 ≤
5∑
i=3

i

2
pi + 1 ≤ 59

36
p3 + 1 < 2p3,

and consequently 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4.

Note that in Case 5 we have q∗31 + q∗41 ≥ 2, but if q∗31 = 0 and q∗41 = 2 then we should

have q∗141 6= 2 and q∗241 6= 2. Note that we do not have the scenario where q∗41 = 2 but

q∗141 = 1, because sets of Q∗141 always come in pairs by definition. That is, if q∗31 = 0 and

q∗41 = 2 then we should have q∗341 ≥ 1.

Lemma 5.16. In Case 5, q∗32 ≥ 35 and for any set a ∈ Q∗31 ∪Q∗41 in graph H ′,

(a) if a ∈ Q∗31∪Q∗341, then for any other set b ∈ Q∗31∪Q∗41 we have distance d(a, b) ≥ 74;

(b) if a ∈ Q∗141, then there is exactly one other set b ∈ Q∗41 such that distance d(a, b) <

74; furthermore, b ∈ Q∗141 too and they come as a pair defining their memberships

of Q∗141;

(c) if a ∈ Q∗241, then there is at most one other set b ∈ Q∗41 such that distance d(a, b) <

38; furthermore, if such a set b exists, then b ∈ Q∗241 too.

Proof. The proof is similar to the proof of Lemma 5.10. We first notice that the scenario

where there are only two sets in Q∗31 ∪Q∗41 and they are adjacent to the same set of P is

included in Case 4. That is, in Case 5, we always have (at least) two sets of Q∗31 ∪Q∗41

not adjacent to the same set of P . Let a and b denote these two sets of Q∗31 ∪Q∗41.

Since H ′ is bipartite, the shortest path connecting a and b has an even length and is

denoted as

〈a = a0, c0, a1, c1, . . . , a`, c`, a`+1 = b〉,

for some ` ≥ 1. Since every vertex ai (i = 1, 2, . . . , `) on the path has degree at least

2, it has to belong to Q∗32 and consequently it has degree exactly 2 in graph H ′ (see

Figure 5.4).

79

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

a = a0 a1 · · · · · · aℓ aℓ+1 = b

c0 c1 · · · · · · cℓ

P

Q∗
31 ∪Q∗

41 Q∗
31 ∪Q∗

41Q∗
32

Figure 5.4: The configuration of the shortest path connecting a, b ∈ Q∗31 ∪Q∗41.

Let T = {a0, a1, . . . , a`+1}. Clearly, N(T, P) = {c0, c1, . . . , c`}. If a ∈ Q∗31, we have

w2(T) ≥ 9(` + 1) + 4 and w2(N(T, P)) ≤ 9(` + 1). The termination condition of

algorithm Greedy implies that the size |T | = ` + 2 > 37, and thus d(a, b) ≥ 74. One

part of Item (a) is proved.

Consider the remaining case where both a and b are in Q∗41. If at least one of N(T, P) =

{c0, c1, . . . , c`} is in P4 ∪ P5, then we have w2(T) = 9` + 8 and w2(N(T, P)) ≤ 9` + 4.

Again the termination condition of algorithm Greedy implies that |T | = ` + 2 > 37,

and thus d(a, b) ≥ 74. The other part of Item (a) is proved.

If none of N(T, P) = {c0, c1, . . . , c`} is in P4 ∪ P5, that is, all of them are in P3, then

we have w2(T) = 9` + 8 and w2(N(T, P)) = 9` + 9. Consider first a ∈ Q∗141, and let a′

denote the other set of Q∗141 which comes together with a as a pair (see Lemma 5.8(b1)),

and let T ′ = T ∪ {a′}. One clearly sees that N(T ′, P) = N(T, P), w2(T ′) = 9` + 12 >

w2(N(T ′, P)) = 9`+9. Therefore, again the termination condition of algorithm Greedy

implies that |T | = `+2 > 37, and thus d(a, b) ≥ 74. This proves Item (b), as d(a, a′) = 2.

We next consider both a and b are in Q∗241. Note that if |Q∗241| = 2, that is, Q∗241 contains

only two sets a and b, then Item (c) is proved. We therefore let b′ denote any set of Q∗241

other than a and b. Using the same argument as in the last paragraph, if b′ is adjacent to

any of N(T, P) = {c0, c1, . . . , c`}, then |T | = `+2 > 37, and thus d(a, b) ≥ 74; otherwise

we let the shortest path connecting a and b′ be

〈a = a′0, c
′
0, a
′
1, c
′
1, . . . , a

′
`′ , c
′
`′ , a

′
`′+1 = b′〉

for some `′ ≥ 1, which has the maximum overlap with the shortest path connecting a

and b. This maximum overlap means the induced subgraph by these two paths does not

contain a cycle. Let T ′ = {a′0, a′1, . . . , a′`′+1} and N(T ′, P) = {c′0, c′1, . . . , c′`′} ⊂ P3, and

we have w2(T ′) = 9`′ + 8 and w2(N(T ′, P)) = 9`′ + 9. Let the overlapping sub-path be

〈a = a0, c0, a1, c1, . . . , ao, co〉 (see Figure 5.5).

80

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

c0 c1 · · · co co+1 · · · · · · cℓ

c′
o+1 · · · · · · c′

ℓ′

a = a0 a1 · · · ao ao+1 · · · · · · aℓ aℓ+1 = b

a′o+1 a′o+2
· · · a′

ℓ′ a′
ℓ′+1

= b′

Figure 5.5: The configuration of the overlapping shortest paths connecting a, b ∈ Q∗241
and connecting a, b′ ∈ Q∗241.

We then have

T ∪ T ′ = {a0, a1, . . . , ao, ao+1, . . . , a`+1, a
′
o+1, . . . , a

′
`′+1},

N(T ∪ T ′, P) = {c0, c1, . . . , co, co+1, . . . , c`, c
′
o+1, . . . , c

′
`′},

and thus

w2(T ∪ T ′) = 9(`+ `′ − o) + 12,

w2(N(T ∪ T ′, P)) = 9(`+ `′ − o) + 9.

Therefore, again the termination condition of algorithm Greedy implies that |T ∪
T ′| = ` + `′ − o + 3 > 37, or ` + `′ − o > 34. Thus max{`, `′} ≥ 18, implying that

max{d(a, b), d(a, b′)} ≥ 38. This proves Item (c) of the lemma.

Lastly, to estimate the quantity q∗32, we know from all the above proof that, either there

is a pair of sets of Q∗31 ∪Q∗41 at distance ≥ 74, and thus q∗32 ≥ 36, or otherwise q∗241 ≥ 3

and from the last paragraph we have q∗32 ≥ `+`′−o ≥ 35. This completes the proof.

Lemma 5.17. In Case 5, q∗31 + 1
2q
∗1
41 + 1

2q
∗2
41 + q∗341 ≤ 1

9q
∗
32.

Proof. The proof is similar to the proof of Lemma 5.10.

For every vertex a ∈ Q∗31 ∪ Q∗341, by Lemma 5.16(a) we pick arbitrarily another vertex

b ∈ Q∗31 ∪Q∗41 and consider a shortest path connecting them in graph H ′ that does not

81

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

contain any other vertex from Q∗31 ∪Q∗41:

〈a = a0, c0, a1, c1, . . . , a`, c`, a`+1 = b〉,

for some ` ≥ 36.

For any two vertices a, a′ ∈ Q∗141 that come as a pair to define their memberships, by

Lemma 5.16(b) use exactly one of them say a (and mark a′) and pick arbitrarily another

vertex b ∈ Q∗31 ∪Q∗41 (b 6= a′) to consider their shortest path in graph H ′ that does not

contain any other vertex from Q∗31 ∪Q∗41:

〈a = a0, c0, a1, c1, . . . , a`, c`, a`+1 = b〉,

for some ` ≥ 36.

For any vertex a ∈ Q∗241, if there is another vertex a′ ∈ Q∗241 such that d(a, a′) < 38, by

Lemma 5.16(c) use the one of them say a (and mark a′) for which there is another vertex

b ∈ Q∗31 ∪Q∗41 such that d(a, b) ≥ 38 and consider the shortest path connecting a and b

that does not contain any other vertex from Q∗31 ∪Q∗41:

〈a = a0, c0, a1, c1, . . . , a`, c`, a`+1 = b〉,

for some ` ≥ 18.

Initially every vertex of Q∗31∪Q∗41 is worth 1 token, except those marked vertices; through

the picked path, vertex a distributes its 1 token evenly to vertices a1, a2, . . . , a9, which

are all vertices of Q∗32. After every vertex of Q∗31 ∪ Q∗41 has distributed its token, from

` ≥ 18 we conclude that every vertex of Q∗32 receives no more than 1
9 token. Therefore,

q∗31 +
1

2
q∗141 +

1

2
q∗241 + q∗341 ≤

1

9
q∗32.

This proves the lemma.

Lemma 5.18. (Case 5) If q∗31 ≥ 1 and q∗41 ≥ 1, or if q∗31 = 0 and q∗41 ≥ 3, or if q∗31 = 0

and q∗41 = 2 with q∗341 ≥ 1, then 2q∗31 + q∗32 + q∗41 ≤ 2p3 + p4.

Proof. Recall that we assign 2 tokens for each vertex of Q∗31 and 1 token for each vertex

of Q∗32 ∪Q∗41. So we have a total of 2q∗31 + q∗32 + q∗41 tokens. These tokens are distributed

to the vertices of P in the same way as before, that each vertex of Q∗31 distributes its

2 tokens to the adjacent vertex of P , each vertex of Q∗41 distributes its 1 token to the

adjacent vertex of P , and each vertex of Q∗32 distributes its 1
2 token to every adjacent

82

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

vertex of P . Let t(a) denote the total tokens received by a vertex a ∈ P ; we have

t(a) ≤

3, a ∈ P 1
3 ;

5
2 , a ∈ P 2

3 ;

2, a ∈ P 3
3 ;

3
2 , a ∈ P 4

3 ;

5
2 , a ∈ P4;

5
2 , a ∈ P5.

(5.8)

It follows that

2q∗31 + q∗32 + q∗41

≤
(

3p1
3 +

5

2
p2

3 + 2p3
3 +

3

2
p4

3

)
+

5

2
p4 +

5

2
p5

=

(
3p1

3 +
5

2
p2

3 + 2p3
3 +

3

2

(
p3 − p1

3 − p2
3 − p3

3

))
+

5

2
p4 +

5

2
p5

=

(
3

2
p3 +

3

2
p1

3 + p2
3 +

1

2
p3

3

)
+

5

2
p4 +

5

2
p5

=
3

2
p3 +

(
3

2
q∗31 +

1

2
q∗141 +

1

2
q∗241

)
+

5

2
p4 +

5

2
p5 (by Lemma 5.9)

=
3

2
p3 +

3

2

(
q∗31 +

1

3
q∗141 +

1

3
q∗241

)
+

5

2
p4 +

5

2
p5 (by manipulation)

≤ 3

2
p3 +

3

2
× 1

9
q∗32 +

5

2
p4 +

5

2
p5 (by Lemma 5.17)

≤ 6

5

(
3

2
p3 +

5

2
p4 +

5

2
p5

)
(by manipulation)

=
9

5
p3 + 3 (p4 + p5) . (5.9)

If p4 + p5 ≤ 1, Eq.(5.9) becomes 2q∗31 + q∗32 + q∗41 ≤ 9
5p3 + 3. From Lemma 5.16 we

know that there is a shortest path of length at least 38 in graph H ′ connecting two

vertices of Q∗31 ∪ Q∗41. Therefore, p3 + p4 + p5 ≥ 19. It follows that p3 ≥ 18, and thus

2q∗31 + q∗32 + q∗41 < 2p3 ≤ 2p3 + p4.

If p4 + p5 > 1, by Lemma 5.10, Eq. (5.9) becomes

2q∗31 + q∗32 + q∗41 ≤
9

5
p3 + 3× 1

18
p3 ≤ 2p3 ≤ 2p3 + p4.

This proves the lemma.

Proof (of Lemma 5.11, continued). The five distinct cases of graph H ′, separately dealt

with in Lemmas 5.12, 5.13, 5.14, 5.15 and 5.18, are complete by considering all possible

83

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

values of quantity q∗31 + q∗41. And in each case we have proved that 2q∗31 + q∗32 + q∗41 ≤
2p3 + p4. �

5.4 A 0.6k-approximation algorithm for k-MCIP

Given an instance of the k-MCIP problem {X1, X2, . . . , Xk}, we first divide these k

multisets into bk/2c pairs {X2i−1, X2i}, i = 1, 2, . . . , bk/2c, plus the last multiset Xk if

k is odd. Next, we run algorithm Apx65 on each pair {X2i−1, X2i} to obtain a solution

Zi = CIPApx65(X2i−1, X2i), for i = 1, 2, . . . , bk/2c, plus Z(k+1)/2 = Xk if k is odd. We

continue this dividing and running Apx65 on {Z1, Z2, . . . , Zd(k+1)/2e} if d(k+1)/2e ≥ 2,

and repeat until we have only one multiset left, denoted as CIPfinal. Clearly, CIPfinal is

a common integer partition of the given multisets X1, X2, . . . , Xk.

Theorem 5.19. k-MCIP admits a 0.6k-approximation algorithm when k is even, or a

(0.6k + 0.4)-approximation algorithm when k is odd.

Proof. The algorithm in the last paragraph producing a feasible solution CIPfinal runs

in polynomial time. We next estimate its performance, and assume that k is even.

By Theorem 5.7, we have |Zi| < 6
5 |OPT(X2i−1, X2i)|, for i = 1, 2, . . . , k/2. Let OPT

denote the minimum common integer partition for X1, X2, . . . , Xk. One clearly sees that

|OPT(X2i−1, X2i)| ≤ |OPT|, and from Lemma 5.1 we have

|CIPfinal| <
k/2∑
i=1

|Zi| <
k/2∑
i=1

6

5
|OPT| = 3k

5
|OPT|.

When k is odd,

|CIPfinal| <
(k−1)/2∑
i=1

|Zi|+ |Xk| <
(k−1)/2∑
i=1

6

5
|OPT|+ |OPT| = 3k + 2

5
|OPT|,

using |Xk| ≤ |OPT| from Lemma 5.1. This completes the proof.

5.5 Conclusions and future work

We studied the minimum common integer partition problem (k-MCIP) and improved

the previous best approximation ratio for the 2-MCIP. The main idea is that we applied

a novel local search method inspired by the local structure of the 2-MCIP and the

similarity between the 2-MCIP and the weighted t-set packing problem. There are many

directions for the future work for the k-MCIP. One way is to find more specific local

84

Chapter 5. Minimum Common Integer Partition Problem (MCIP)

structure of the 2-MCIP. The second way is to look deep into the relation of the 2-MCIP

and the unweighted t-set packing problem or even the hypergraph matching problem and

then to design new local search strategy. The third way is to investigate the k-MCIP

with larger k > 2 to see whether our current method is still available. Another way

is to design efficient heuristics for the real application because the k-MCIP has some

biological meanings as we introduced in the first section. Here we need to mention that

our approximation algorithm for the 2-MCIP has been modified to an online toy game.

2 Amazingly, our algorithm is quite fast and returns the almost optimal solution in

most cases. So it would be interesting to investigate our algorithm under the smoothed

analysis model to see its “real” theoretical performance.

2This game was implemented in summer 2014 by Yifan Song, a summer student from the University
of Waterloo. Here is the link for the game: http://beiseker.cs.ualberta.ca:8080/MCIP/.

85

http://beiseker.cs.ualberta.ca:8080/MCIP/

Chapter 6

Minimum Independent

Dominating Set (MIDS)

Problem1

6.1 Introduction

An independent set in a graph G = (V,E) is a subset of vertices that are pair-wise

non-adjacent to each other. The independence number of G, denoted by α(G), is the

size of a maximum independent set in G. One close notion to independent set is the

dominating set, which refers to a subset of vertices such that every vertex of the graph is

either in the subset or is adjacent to some vertex in the subset. In fact, an independent

set becomes a dominating set if and only if it is maximal. The size of a minimum

independent dominating set of G is denoted by i(G), while the domination number of

G, or the size of a minimum dominating set of G, is denoted by γ(G). It follows that

γ(G) ≤ i(G) ≤ α(G).

Another related notion is the (vertex) coloring of G, in which two adjacent vertices must

be colored differently. Note that any subset of vertices colored the same in a coloring of

G is necessarily an independent set. The chromatic number χ(G) of G is the minimum

number of colors in a coloring of G. Clearly, α(G) · χ(G) ≥ |V |.

The independence number α(G) and the domination number γ(G) (and the chromatic

number χ(G)) have received numerous studies due to their central roles in graph theory

and theoretical computer science. Their exact values are NP-hard to compute [44], and

hard to approximate. Raz and Safra showed that the domination number cannot be ap-

proximated within (1−ε) log |V | for any fixed ε > 0, unless NP⊂DTIME(|V |log log |V |) [39,

82]; Zuckerman showed that neither the independence number nor the chromatic num-

ber can be approximated within |V |1−ε for any fixed ε > 0, unless P = NP [114]; for

i(G), Halldórsson proved that it is also hard to approximate within |V |1−ε for any fixed

ε > 0, unless NP ⊂ DTIME(2o(|V |)) [47].

1This chapter is based on [100, 101].

86

Chapter 6. Minimum Independent Dominating Set Problem (MIDS)

The above inapproximability results are for the worst case. For analyzing the average

case performance of approximation algorithms, a probability distribution of the input

graphs must be assumed and the most widely used distribution of graphs on n vertices

is the random graph G(n, p), which is a graph on n vertices, and each edge is chosen to

be an edge of G independently with a probability p, where 0 ≤ p = p(n) ≤ 1. A graph

property holds asymptotically almost surely (a.a.s.) in G(n, p) if the probability that a

graph drawn according to the distribution G(n, p) has the property tends to 1 as n tends

to infinity [16].

Let Ln = log1/(1−p) n. Bollobás [15] and Luczak [65] showed that a.a.s. χ(G(n, p)) =

(1 + o(1))n/Ln for a constant p and χ(G(n, p)) = (1 + o(1))np/(2 ln(np)) for c/n ≤
p(n) ≤ o(1) where c is a constant. It follows from these results that a.a.s. α(G(n, p)) =

(1− o(1))Ln for a constant p and α(G(n, p)) = (1− o(1))2 ln(np)/p for C/n ≤ p ≤ o(1).

The greedy algorithm, which colors vertices of G(n, p) one by one and picks each time

the first available color for a current vertex, is known to produce a.a.s. in G(n, p) with

p ≥ nε−1 a coloring whose number of colors is larger than the χ(G(n, p)) by only a

constant factor (see Chapter 11 of the monograph of Bollobás [16]). Hence the largest

color class produced by the greedy algorithm is a.a.s. smaller than α(G(n, p)) only by a

constant factor.

For the domination number γ(G(n, p)), Wieland and Godbole showed that a.a.s. it

is equal to either bLn− L((Ln)(lnn))c + 1 or bLn− L((Ln)(lnn))c + 2, for a con-

stant p or a suitable function p = p(n) [110]. It follows that a.a.s. i(G(n, p)) ≥
bLn− L((Ln)(lnn))c + 1. Recently, Wang proved for i(G(n, p)) an a.a.s. upper bound

of bLn− L((Ln)(lnn))c+ k + 1, where k = max{1,L2} [108].

Average case performance analysis of an approximation algorithm over random instances

could be inconclusive, because the random instances usually have very special properties

that distinguish them from real-world instances. For instance, for a constant p, the

random graph G(n, p) is expected to be dense. On the other hand, an approximation

algorithm performs very well on most random instances can fail miserably on some

“hard” instances. For instance, it has been shown by Kučera [62] that for any fixed

ε > 0 there exists a graph G on n vertices for which, even after a random permutation of

vertices, the greedy algorithm produces a.a.s. a coloring using at least n/ log2 n colors,

while χ(G) ≤ nε.

We study the approximability of the minimum independent dominating set (MIDS)

problem under the smoothed analysis, and we present a simple deterministic greedy al-

gorithm beating the strong inapproximability bound of n1−ε, with polynomial expected

running time. The MIDS problem, and the closely related independent set and domi-

nating set problems, have important applications in wireless networks, and have been

87

Chapter 6. Minimum Independent Dominating Set Problem (MIDS)

studied extensively in the literature. Our probabilistic model is the smoothed extension

of random graph G(n, p) (also called semi-random graphs in [67]), proposed by Spiel-

man and Teng [92]: given a graph G = (V,E), we define its perturbed graph g(G, p)

by negating the existence of edges independently with a probability of p > 0. That is,

g(G, p) has the same vertex set V as G but it contains edge e with probability pe, where

pe = 1− p if e ∈ E or otherwise pe = p. For sufficiently large p, Manthey and Plocien-

nik presented an algorithm approximating the independence number α(g(G, p)) with a

worst-case performance ratio O(
√
np) and with polynomial expected running time [67].

Re-define Ln = log1/p n. We first prove on γ(g(G, p)), and thus on i(g(G, p)) as well, an

a.a.s. lower bound of Ln − L((Ln)(lnn)) if p > 1
n . We then prove on α(g(G, p)), and

thus on i(g(G, p)) as well, an a.a.s. upper bound of 2 lnn/p if p < 1
2 or 2 lnn/(1 − p)

otherwise. Given the a.a.s. values of α(G(n, p)) and i(G(n, p)) in random graph G(n, p),

our upper bound comes with no big surprise; nevertheless, our upper bound is derived by

a direct counting process which might be interesting by itself. Furthermore, we extend

our counting techniques to prove on i(g(G, p)) a tail bound that, when 4 ln2 n/n <

p ≤ 1
2 , Pr[i(g(G, p)) ≥

√
4n/p] ≤ 2−n. We then present a simple greedy algorithm to

approximate i(g(G, p)), and prove that its worst case performance ratio is
√

4n/p and

its expected running time is polynomial.

6.2 A.a.s. bounds on the independent domination number

We need the following several facts.

Fact 6.1. e
x

1+x ≤ 1 + x ≤ ex holds for all x ∈ [−1, 1].

Fact 6.2.
(
n
r

)r ≤ (nr) ≤ (ner)r holds for all r = 0, 1, 2, . . . , n.

Fact 6.3. (Jensen’s Inequality) For a real convex function f(x), numbers x1, x2, . . ., xn

in its domain, and positive weights ai, f
(∑

aixi∑
ai

)
≤
∑
aif(xi)∑
ai

; the inequality is reversed

if f(x) is concave.

Given any graph G = (V,E), let g(G, p) denote its perturbed graph, which has the same

vertex set V as G and contains edge e with a probability of

pe =

1− p, if e ∈ E,

p, otherwise.

88

Chapter 6. Minimum Independent Dominating Set Problem (MIDS)

6.2.1 An a.a.s. lower bound

Recall that γ(g(G, p)) and i(g(G, p)) are the domination number and the independent

domination number of g(G, p), respectively. Also, Ln = log1/p n.

Theorem 6.4. For any graph G = (V,E) of large enough size, say n > 30, and 2 lnn
n <

p < 1− 2 lnn
n , a.a.s.

γ(g(G, p)) ≥ Ln− L((Ln)(lnn)).

Proof. Let Sr be the collection of all r-subsets of vertices in g(G, p), and these
(
n
r

)
sets

of Sr are ordered in some way. Define Irj as a boolean variable to indicate whether or

not the j-th r-subset of Sr, Vj , is a dominating set; set Xr =
∑

j I
r
j .

Clearly, γ(g(G, p)) < r implies that there are size-r dominating sets. Therefore,

Pr[γ(g(G, p)) < r] ≤ Pr[Xr ≥ 1] ≤ E(Xr),

where E(Xr) is the expected value of Xr. (We abuse the notation E a little, but its

meaning should be clear at every occurrence.)

For the j-th r-subset Vj , let Ej be the subset of induced edges on Vj from the original

graph G = (V,E); let V c
j = V − Vj , the complement subset of vertices. Also, for each

vertex u ∈ V c
j , define E(u, Vj) = {(u, v) ∈ E | v ∈ Vj}, and its size nuj = |E(u, Vj)|.

Using Fact 6.1, we can estimate E(Xr) as follows:

E(Xr) =

(nr)∑
j=1

E(Irj) =

(nr)∑
j=1

∏
u∈V cj

1−
∏
v∈Vj

(
1− p(u,v)

)
≤

(nr)∑
j=1

∏
u∈V cj

exp

− ∏
v∈Vj

(
1− p(u,v)

)
=

(nr)∑
j=1

exp

−∑
u∈V cj

∏
v∈Vj

(
1− p(u,v)

)
=

(nr)∑
j=1

exp

−∑
u∈V cj

pnuj (1− p)r−nuj

=

(nr)∑
j=1

exp

−∑
u∈V cj

(
p

1− p

)nuj
(1− p)r

 .

89

Chapter 6. Minimum Independent Dominating Set Problem (MIDS)

Since function f(x) = (p
1−p)x is convex in the domain [0, n], by Jensen’s Inequality, the

above becomes

E(Xr) ≤
(nr)∑
j=1

exp

−
(

p

1− p

) 1

n− r
∑
u∈V cj

nuj

(n− r)(1− p)r

 .

Since function g(x) = e−a
xb with a = (p

1−p)
1

n−r and b = (n− r)(1− p)r is concave in the

domain [0, n2], again by Jensen’s Inequality, we further have

E(Xr) ≤
(
n

r

)
exp

−
(

p

1− p

) 1

(n− r)
(
n
r

) (nr)∑
j=1

∑
u∈V cj

nuj

(n− r)(1− p)r

 . (6.1)

Recall that nuj is number of edges in the original graph G = (V,E) between u and

vertices of Vj . Each edge e ∈ E is thus counted towards the quantity

 (nr)∑
j=1

∑
u∈V cj

nuj

exactly 2

(
n− 2

r − 1

)
times. That is,

(nr)∑
j=1

∑
u∈V cj

nuj = 2

(
n− 2

r − 1

)
|E| =

(
n
r

)
r(n− r)|E|(

n
2

) . (6.2)

Using Eq. (6.2), Fact 6.2 and r = Ln− L((Ln)(lnn)), Eq. (6.1) becomes

E(Xr) ≤
(
n

r

)
exp

−(p

1− p

) r|E|
(n2) (n− r)(1− p)r

≤

(
n

r

)
exp

(
−
(

p

1− p

)r
(n− r)(1− p)r

)
≤

(
ne

r

)r
exp

(
− pr(n− r)

)
≤ exp

(
r lnn+ r − r ln r − (Ln)(lnn)

n
(n− r)

)
= exp((Ln)(lnn)− L((Ln)(lnn)) lnn+ r − r ln r − (Ln)(lnn) + r(Ln)(lnn)/n)

= exp (−L((Ln)(lnn)) lnn− r (ln r − (Ln)(lnn)/n− 1))

≤ exp (−L((Ln)(lnn)) lnn− r (ln r − 2)) . (6.3)

The right hand side in Eq. (6.3) approaches 0 when n→ +∞. Since 2 lnn
n < p < 1− 2 lnn

n

90

Chapter 6. Minimum Independent Dominating Set Problem (MIDS)

with large enough n, n > 30, guarantees r ≥ 1, Ln − L((Ln)(lnn)) is an a.a.s. lower

bound on γ(g(G, p)). This proves the theorem.

Since Pr[i(g(G, p)) < r] ≤ Pr[γ(g(G, p)) < r], we have the following corollary:

Corollary 6.5. For any graph G = (V,E) of large enough size, say n > 30, and
2 lnn
n < p < 1− 2 lnn

n , a.a.s.

i(g(G, p)) ≥ Ln− L((Ln)(lnn)).

6.2.2 An a.a.s. upper bound

Recall that α(g(G, p)) is the independence number of g(G, p).

Theorem 6.6. For any graph G = (V,E), a.a.s.

α(g(G, p)) ≤

2 lnn
p , if p ∈ (2 lnn

n , 1
2],

2 lnn
1−p , if p ∈ [1

2 , 1− 2 lnn
n).

Proof. Let Sr be the collection of all r-subsets of vertices in g(G, p), and these
(
n
r

)
sets

of Sr are ordered in some way. Define Irj as a boolean variable to indicate whether or

not the j-th r-subset of Sr is an independent set; set Xr =
∑

j I
r
j . Since α(g(G, p)) > r

implies that there is at least one independent r-subset, i.e. Xr > 0, the probability of

the event α(g(G, p)) > r is less than or equal to the probability of the event Xr > 0, i.e.

Pr[α(g(G, p)) > r] ≤ Pr[Xr > 0].

On the other hand, let Arj denote the event Irj = 0, i.e. the j-th r-subset is not indepen-

dent. It follows that Xr = 0 is equivalent to the joint event ∩jArj , i.e.

Pr[Xr = 0] = Pr[∩jArj] ≥
∏
j

Pr[Arj] =
∏
j

(1− Pr[Irj = 1]).

Therefore, we have

Pr[α(g(G, p)) > r] ≤ 1−
∏
j

(1− Pr[Irj = 1]). (6.4)

Let Erj denote the subset of edges of g(G, p), each of which connects two vertices in the

j-th r-subset of Sr. Note that |Erj | ∈ [0,
(
r
2

)
]. Among all the edges of Erj , assume there

91

Chapter 6. Minimum Independent Dominating Set Problem (MIDS)

are nrj of them coming from the original edge set E of G. It follows that

Pr[Irj = 1] =
∏
e∈Erj

(1− pe) =

(
p

1− p

)nrj
(1− p)(r2).

Using this and Fact 6.1 in Eq. (6.4) gives us

Pr[α(g(G, p)) > r] ≤ 1−
∏
j

(1− Pr[Irj = 1])

≤ 1−
(nr)∏
j=1

exp

(
−

Pr[Irj = 1]

1− Pr[Irj = 1]

)

= 1− exp

− (nr)∑
j=1

Pr[Irj = 1]

1− Pr[Irj = 1]

= 1− exp

− (nr)∑
j=1

(
p

1−p

)nrj
(1− p)(r2)

1−
(

p
1−p

)nrj
(1− p)(r2)

 . (6.5)

Consider the function f(x) = axb
1−axb in Eq. (6.5), where a = p

1−p > 0, b = (1 − p)(r2) ∈
(0, 1), and 0 ≤ x ≤

(
r
2

)
. Since its derivative

f ′(x) =
axb ln a

(1− axb)2

< 0, if a < 1,

= 0, if a = 1,

> 0, if a > 1,

f(x) is strictly decreasing if a < 1, or strictly increasing if a > 1. Therefore, the

maximum value of function f(x) is achieved at x = 0 if a ≤ 1, or at x =
(
r
2

)
if a ≥ 1.

When p ≤ 1
2 , that is a = p

1−p ≤ 1, Eq. (6.5) becomes

Pr[α(g(G, p)) > r] ≤ 1− exp

− (nr)∑
j=1

(1− p)(r2)

1− (1− p)(r2)

= 1− exp

(
−
(
n

r

)
(1− p)(r2)

1− (1− p)(r2)

)
. (6.6)

92

Chapter 6. Minimum Independent Dominating Set Problem (MIDS)

To prove Pr[α(g(G, p)) > r]→ 0 as n→ +∞, we only need to prove that
(
n
r

) (1−p)(
r
2)

1−(1−p)(
r
2)
→

0 as n→ +∞. Using Fact 6.2, we have

(
n

r

)
(1− p)(r2)

1− (1− p)(r2)
=

(
n
r

)
(

1
1−p

)(r2) − 1

≤
(
ne
r

)r(
1

1−p

)(r2) − 1

. (6.7)

Setting r = 2 lnn/p. We see that r → +∞ as n → +∞. On the other hand, when r is

large enough, we have

(
1

1− p

)(r2)
− 1 =

(
1

1− p

)(r2)
(1− o(1)). (6.8)

Using Eq. (6.8) and Fact 6.1, when n is sufficiently large, Eq. (6.7) becomes

(
n

r

)
(1− p)(r2)

1− (1− p)(r2)
≤

(
ne
r

)r(
1

1−p

)(r2)
(1 + o(1)) =

 ne

r
(

1
1−p

) r−1
2

r

(1 + o(1))

=

 ne

r
(

1 + p
1−p

) r−1
2

r

(1 + o(1))

≤

 ne

r exp

(
p

1−p
1+ p

1−p
· r−1

2

)

r

(1 + o(1))

=

(
ne

r exp
(
p · r−1

2

))r (1 + o(1))

=

(
ne1+ p

2

re
rp
2

)r
(1 + o(1)) (6.9)

=

(
e1+ p

2

r

)r
(1 + o(1))

≤
(
e

5
4

r

)r
(1 + o(1)). (6.10)

The quantity

(
e
5
4

r

)r
in Eq. (6.10) is less than 0.5r when n is sufficiently large, the latter

approaches 0 when n → +∞. This proves that when p ≤ 1
2 , Pr[α(g(G, p)) > r] → 0 as

n→ +∞. That is, when p ≤ 1
2 , a.a.s. α(g(G, p)) ≤ 2 lnn/p.

When p ≥ 1
2 , that is a = p

1−p ≥ 1, q = 1 − p ≤ 1
2 and exactly the same argument as

when p ≤ 1
2 applies by replacing p with 1 − q, which shows that a.a.s. α(g(G, p)) ≤

2 lnn/(1− p). This proves the theorem.

93

Chapter 6. Minimum Independent Dominating Set Problem (MIDS)

Since α(g(G, p)) ≥ i(g(G, p)), Pr[i(g(G, p)) > r] ≤ Pr[α(g(G, p)) > r] and thus we have

the following corollary:

Corollary 6.7. For any graph G = (V,E), a.a.s.

i(g(G, p)) ≤

2 lnn
p , if p ∈ (2 lnn

n , 1
2],

2 lnn
1−p , if p ∈ [1

2 , 1− 2 lnn
n).

6.3 A tail bound on the independent domination number

Theorem 6.8. For any graph G = (V,E) and p ∈ (4 ln2 n
n , 1

2],

Pr[i(g(G, p)) ≥
√

4n

p
] ≤ Pr[α(g(G, p)) ≥

√
4n

p
] ≤ 2−n.

Proof. The proof of this theorem flows exactly the same as the proof of Theorem 6.6.

In fact, with p ≤ 1
2 , we have both Eq. (6.6) and Eq. (6.7) hold. Different from the proof

of Theorem 6.6 where r = 2 lnn/p, we have now r =
√

4n
p ≥ 2 lnn/p and therefore

Eq. (6.8) holds as well. Again, using Eq. (6.8) and Fact 6.1, when n is sufficiently large,

Eq. (6.9) still holds. It then follows from Fact 6.1 that Eq. (6.6) becomes

Pr[i(g(G, p)) ≥ r] ≤ Pr[α(g(G, p)) ≥ r]

≤ 1− exp

(
−
(
ne1+ p

2

re
rp
2

)r
(1 + o(1))

)
. (6.11)

Using r =
√

4n
p , we prove in the following that

(
ne1+

p
2

re
rp
2

)r
(1 + o(1)) = o(1). And

consequently by Fact 6.1 again and r =
√

4n
p ≥

√
8n, Eq. (6.11) becomes

Pr[i(g(G, p)) ≥ r] ≤
(
ne1+ p

2

re
rp
2

)r
(1 + o(1))

≤ e

2

(
ne1+ p

2

re
rp
2

)r
=

e

2
exp

(
−r
(

ln r +
1

2
rp− lnn− 1− p

2

))
=

e

2
exp

(
−r
(

ln r +
1

4
rp− lnn− 1− p

2

)
− 1

4
r2p

)
=

e

2
exp

(
−r
(

ln r +
1

4
rp− lnn− 1− p

2

)
− n

)
. (6.12)

94

Chapter 6. Minimum Independent Dominating Set Problem (MIDS)

The quantity
(
ln r + 1

4rp− lnn− 1− p
2

)
in Eq. (6.12) is non-negative when n ≥ 2, since

ln r +
1

4
rp− lnn− 1− p

2
≥ 1

2
ln(8n) +

1

4

√
4np− lnn− 1− 1

4

≥ 1

2
ln(8n) +

1

4

√
4n · 4 ln2 n

n
− lnn− 1− 1

4

=
1

2

(
ln(8n)− 5

2

)
≥ 0.

It follows that Eq. (6.12) becomes

Pr[i(g(G, p)) ≥ r] ≤ e

2
exp

(
−r
(

ln r +
1

4
rp− lnn− 1− p

2

)
− n

)
≤ e

2
e−n

< 2−n.

This proves the theorem.

6.4 Approximating the independent domination number

We present next a simple algorithm, denoted as Approx-IDS, for computing an inde-

pendent dominating set in g(G, p). In the first phase, algorithm Approx-IDS repeatedly

picks a maximum degree vertex and updates the graph by deleting the picked vertex and

all its neighbors; it terminates when there is no more vertex and returns a subset I of V .

If |I| ≤
√

4n
p , algorithm Approx-IDS terminates and outputs I; otherwise it moves into

the second phase. In the second phase, algorithm Approx-IDS performs an exhaustive

search over all subsets of V , and returns the minimum independent dominating set I∗.

Theorem 6.9. For any graph G = (V,E) and p ∈ (4 ln2 n
n , 1

2], algorithm Approx-IDS is

a
√

4n
p -approximation to the MIDS problem on the perturbed graph g(G, p), and it has

polynomial expected running time.

Proof. Note that i(g(G, p)) ≥ 1. The subset I of V computed by algorithm Approx-IDS

is a dominating set, since every vertex of V is either in I, or is a neighbor of some vertex

in I. Also, no two vertices of I can be adjacent, since otherwise one would be removed

in the iteration its neighbor was picked by the algorithm. Therefore, I is an independent

dominating set of g(G, p). It follows that if algorithm Approx-IDS terminates after the

first phase, |I| ≤
√

4n
p · i(g(G, p)). Also clearly the first phase takes O(n3) time.

95

Chapter 6. Minimum Independent Dominating Set Problem (MIDS)

In the second phase, a maximum of 2n subsets of V are examined by the algorithm. Since

checking each of them to be an independent dominating set or not takes no more than

O(n2) time, the overall running time is O(2nn2). Note that this phase returns I∗ with

|I∗| = i(g(G, p)). As α(g(G, p)) ≥ |I| >
√

4n
p , Theorem 6.8 tells that the probability of

executing this second phase is no more than 2−n. Therefore, the expected running time

of the second phase is O(n2). This proves the theorem.

6.5 Conclusions and future work

We performed a probabilistic analysis of the approximability of the minimum indepen-

dent dominating set problem and proposed an O(
√

4n
p)-approximation algorithm with

polynomial expected running time. Our version of the minimum independent dominat-

ing set problem is a classic version, where each vertex has an unit weight. It would

be interesting to conduct a smoothed analysis for the weighted minimum independent

dominating set problem under the perturbation model which perturbs the weight of each

vertex.

96

Chapter 7

Trie and Patricia Index Trees1

7.1 Introduction

A Trie, also known as a digital tree, is an ordered tree data structure for storing strings

over an alphabet Σ. It was initially developed and analyzed by Fredkin [42] in 1960

and Knuth [61] in 1973. Such a data structure is used for storing a dynamic set to be

exploited as an associative array, where keys are strings. There has been much recent

exploitation of such index trees for processing genomic data.

In the simplest form, let the alphabet be Σ = {0, 1} and consider a set S = {s1, s2, . . . , sn}
of n binary strings over Σ, where each si can be infinitely long. The Trie for storing

these n binary strings is an ordered binary tree TS : first, each si defines a path (infinite

if its length |si| is infinite) in the tree, starting from the root, such that a 0 forces a

move to the left and a 1 indicates a move to the right; if one node is the highest in the

tree that is passed through by only one string si ∈ S, then the path defined by si is

truncated at this node, which becomes a leaf in the tree and is associated (i.e., labelled)

with si. The height of the Trie TS built over S is defined as the number of edges on the

longest root-to-leaf path. Figure 7.1 shows the Trie constructed for a set of six strings.

(These strings can be long or even infinite, but only the first 5 bits are shown, which

are those used in the example construction.)

0 1

0 1 1

0 1 1 0 1

0 1s1 s2

s3 s4

s5 s6

Figure 7.1: The Trie constructed for {s1 = 00001 . . ., s2 = 00111 . . ., s3 = 01100 . . .,
s4 = 01111 . . ., s5 = 11010 . . ., s6 = 11111 . . .}.

1This chapter is based on [102].

97

Chapter 7. Trie and Patricia Index Trees

Let Hn denote the height of the Trie on a set of n binary strings. It is not hard to

see that in the worst case Hn is unbounded, due to the existence of two of the strings

sharing an arbitrary long common prefix. In the uniform distribution model, bits of

si are independent and identically distributed (i.i.d.) Bernoulli random variables each

of which takes 1 with probability p = 0.5. The asymptotic behavior of Trie height Hn

under the uniform distribution model had been well studied in the 1980s [36, 40, 41, 69,

80, 81, 83, 95, 96], and it is known that asymptotically almost surely (a.a.s.)

Hn/ log2 n→ 2, when n→∞.

s1 s2 s3 s4

s5 s6

0 11

0 11 0 1

0 1 0 1

Figure 7.2: The Patricia constructed for {s1 = 00001 . . ., s2 = 00111 . . ., s3 =
01100 . . ., s4 = 01111 . . ., s5 = 11010 . . ., s6 = 11111 . . .}.

A Patricia index tree is a space-optimized variant of the Trie data structure, in which

every node with only one child is merged with its child. Such a data structure was firstly

discovered by Morrison [72] in 1968, and then well analyzed in “The art of computer

programming” by Knuth [61] in 1973. Figure 7.2 shows the Patricia tree constructed

for the same set of six strings used in Figure 7.1. Again let Hn denote the height of

the Patricia tree on a set of n binary strings. In the worst case, Hn = n− 1, where si is

in the form 1 . . . 100 . . . with a prefix consisting of i− 1 consecutive 1’s. Under the same

uniform distribution model assumed for an average case analysis on Trie height, Pittel

showed that a.a.s. the height of Patricia is only 50% of the height of Trie [80], that is,

Hn/ log2 n→ 1, when n→∞.

The average case analysis is intended to provide insight on the practical performance as a

string indexing structure. In 2002, Nilsson and Tikkanen [77] experimentally investigated

the height of Patricia trees and other search structures. In particular, they showed that

the heights of the Patricia trees on sets of 50, 000 random uniformly distributed strings

are 15.9 on average and 20 at most. For real datasets consisting of 19, 461 strings from

geometric data on drill holes, 16, 542 ASCII character strings from a book, and 38, 367

strings from Internet routing tables, the heights of the Patricia trees are on average 20.8,

20.2, 18.6, respectively, and at most 30, 41, 24, respectively.

98

Chapter 7. Trie and Patricia Index Trees

Theoretically speaking, these experimental results suggest that worst-case instances are

perhaps only isolated peaks in the instance space. This hypothesis is partially supported

by the average case analysis on the heights of Trie and Patricia structures, under the

uniform distribution model, that suggests the heights are a.a.s. logarithmic. Never-

theless, these average case analysis results on the specific random instances generated

under the uniform distribution model could be inconclusive, because the specific ran-

dom instances have very special properties inherited from the model, and thus would

distinguish themselves from real-world instances.

We conduct the smoothed analysis on the heights of Trie and Patricia index trees, to

reveal certain essential properties of these two data structures. We first introduce the

string perturbation model, and show an a.a.s. upper bound O(log n) and an a.a.s.

lower bound Ω(log n) on the Trie height Hn. The consequence is that the smoothed

height of the Trie on n strings is in Θ(log n). Then, we achieve similar results for

the smoothed height of the Patricia tree on n strings, that is, Hn = Θ(log n), which

explains the practical performance of Patricia in the experiments conducted by Nilsson

and Tikkanen [77].

7.2 The smoothed height of Trie

We consider an arbitrary set S = {s1, s2, . . . , sn} of n strings over alphabet {0, 1},
where each string may be infinitely long. Let si(`) denote the `-th bit in string si, for

i = 1, 2, . . . , n and ` = 1, 2, 3, Every string si is perturbed by adding a noise string

νi, giving rise to the perturbed string s̃i = si + νi, where s̃i(`) = si(`) if and only if

νi(`) = 0. The noise string νi is independently generated by a memoryless source, which

assigns 1 to every bit of string νi independently and with a small probability ε ∈ [0, 0.5].

More formally,

Pr{νi(`) = 1} = ε for each ` = 1, 2, 3,

Essentially the perturbation flips each bit of every string independently and with a

probability ε. Let S̃ = {s̃1, s̃2, . . . , s̃n} denote the set of perturbed strings.

Let p`ij be the probability of the event {s̃i(`) = s̃j(`)}. We have

p`ij =

2ε(1− ε) 4= p, if si(`) 6= sj(`),

ε2 + (1− ε)2 = 1− p 4= q, if si(`) = sj(`).
(7.1)

We can clearly note that q ≥ p, since ε ≤ 0.5. Let Cij denote the length of the

longest common prefix between s̃i and s̃j . Since Cij = k if and only if s̃i(`) = s̃j(`)

99

Chapter 7. Trie and Patricia Index Trees

for ` = 1, 2, . . . , k but not for ` = k + 1, the probability of {Cij = k} for any k ≥ 0 is

Pr{Cij = k} =

(
k∏
`=1

p`ij

)
(1− pk+1

ij).

From the fact that {Cij = k} and {Cij = m} are disjoint events when k 6= m, we have

for any k ≥ 1

Pr{Cij < k} =
k−1∑
m=0

(
m∏
`=1

p`ij −
m+1∏
`=1

p`ij

)
= 1−

k∏
`=1

p`ij .

Consequently, the probability that the longest common prefix between s̃i and s̃j is at

least k long is

Pr{Cij ≥ k} = 1− Pr{Cij < k} =

k∏
`=1

p`ij . (7.2)

7.2.1 An a.a.s. upper bound

We use a slight abuse of notation Hn to also denote the height of the Trie constructed

for S̃. We can express Hn in terms of Cij as

Hn = max
1≤i<j≤n

Cij + 1.

By Boole inequality [32], we have

Pr{Hn > k} = Pr{ max
1≤i<j≤n

Cij ≥ k}

≤
(
n

2

) k∏
`=1

p`ij ≤
(
n

2

)
qk,

where the last equality holds when all the n strings {s1, s2, . . . , sn} have the same prefix

of length k. By setting k = 2(1 + δ) log1/q n for a constant δ > 0, we have

Pr{Hn > k} ≤
(
n

2

)
q2(1+δ) log1/q n ≤ n−2δ → 0,

as n→∞. Therefore, Hn ≤ 2 log1/q n with high probability, when n approaches infinity.

7.2.2 An a.a.s. lower bound

To estimate a lower bound, we will use the following Chunge-Erdös formulation of the

second moment method on a set of events:

100

Chapter 7. Trie and Patricia Index Trees

Lemma 7.1. (Chunge-Erdös) [31] For any set of events E1, E2, . . . , En,

Pr{∪ni=1Ei} ≥
(
∑n

i=1 Pr{Ei})
2∑n

i=1 Pr{Ei}+
∑

i6=j Pr{Ei ∩ Ej}
.

Let Aij denote the event {Cij ≥ k}, for every pair {i, j} such that 1 ≤ i < j ≤ n; also

define the following two sums:

S1
4
=
∑

1≤i<j≤n Pr{Aij}, and

S2
4
=
∑
{i,j}6={s,t} Pr{Aij ∩Ast}.

Then by Chunge-Erdös formulation (Lemma 7.1), we have

Pr{Hn > k} = Pr{∪1≤i<j≤nAij} ≥
S2

1

S1 + S2
. (7.3)

Let’s first estimate S1. From Eq. (7.2), one clearly sees that

S1 =
∑

1≤i<j≤n
Pr{Aij} =

∑
1≤i<j≤n

k∏
`=1

p`ij . (7.4)

Recall the definition of p`ij and its value in Eq. (7.1). The following Lemma 7.2 is then

straight-forward:

Lemma 7.2. For any ` ≥ 1 and any three perturbed strings s̃i, s̃j , s̃t, if p`ij = p`it, then

p`jt = q.

Lemma 7.3. For any three perturbed strings s̃i, s̃j , s̃t,

S0
4
=

k∏
`=1

p`ij +

k∏
`=1

p`it +

k∏
`=1

p`jt ≥ 3p
2
3
kq

1
3
k.

Proof. For the string pair (si, sj), let Zij denote the number of (0, 1)-pairs and (1, 0)-

pairs in {(si(`), sj(`)), 1 ≤ ` ≤ k}, that is, the number of bits where si and sj have

different values among the first k bits. Clearly from Eq. (7.1),

k∏
`=1

p`ij = pZijqk−Zij .

For the string triple (si, sj , st), let xij denote the number of (0, 0, 1)-triples and (1, 1, 0)-

triples in {(si(`), sj(`), st(`)), 1 ≤ ` ≤ k}; likewise, xit and xjt are similarly defined. Also

101

Chapter 7. Trie and Patricia Index Trees

let y denote the number of (0, 0, 0)-triples and (1, 1, 1)-triples in {(si(`), sj(`), st(`)), 1 ≤
` ≤ k}. The following relationships are direct consequences of the definitions:

Zij = xit + xjt,

Zit = xij + xjt,

Zjt = xij + xit,

k = xij + xit + xjt + y.

It follows that

S0
4
=

k∏
`=1

p`ij +
k∏
`=1

p`it +
k∏
`=1

p`jt

= pxit+xjtqxij+y + pxij+xjtqxit+y + pxij+xitqxjt+y

= pk

[(
q

p

)xij+y
+

(
q

p

)xit+y
+

(
q

p

)xjt+y]
.

One can check that, since q ≥ p, the quantity in the last line reaches the minimum when

xij = xit = xjt = k/3 and y = 0. That is,

S0
4
=

k∏
`=1

p`ij +
k∏
`=1

p`it +
k∏
`=1

p`jt ≥ 3p
2
3
kq

1
3
k.

This proves the lemma.

Note that each string pair (si, sj) is involved in exactly n − 2 string triples (si, sj , st),

for t 6= i, j. By Lemma 7.3, Eq. (7.4) becomes

S1 =
∑

1≤i<j≤n

k∏
`=1

p`ij

≥ 1

n− 2

(
n

3

)
3p

2
3
kq

1
3
k

=

(
n

2

)
p

2
3
kq

1
3
k. (7.5)

We next estimate S2, which is a bit harder because two events Aij and Ast may not be

independent. We split S2 into two parts: S2 = S′2 + S′′2 , where

S′2
4
=

∑
{i,j}∩{s,t}=∅

Pr{Aij ∩Ast}, and

S′′2
4
=

∑
{i,j}∩{s,t}6=∅

Pr{Aij ∩Ast}.

102

Chapter 7. Trie and Patricia Index Trees

Since two events Cij and Cst are independent when {i, j} ∩ {s, t} = ∅, we can estimate

S′2 as follows:

S′2 =
∑

{i,j}∩{s,t}=∅

(
Pr{Aij}Pr{Ast}

)

≤

∑
{i,j}

Pr{Aij}

2

= S2
1 .

Event {Aij∩Ait} is equivalent to the event in which the first k bits of all three perturbed

strings s̃i, s̃j , and s̃t are identical. Using ε ≤ 0.5, we have

Pr{Aij ∩Ait} = Pr{s̃i(`) = s̃j(`) = s̃t(`), 1 ≤ ` ≤ k}

≤
(
ε3 + (1− ε)3

)k
.

It follows that

S′′2 =
∑

{i,j}∩{s,t}6=∅
Pr{Aij ∩Ast}

≤ 3

(
n

3

)(
ε3 + (1− ε)3

)k
≤ 3

(
n

3

)
,

where the factor 3 arises because a string triple {s̃i, s̃j , s̃t} gives rise to three events

{Aij ∩Ait}, {Aij ∩Ajt}, and {Ait ∩Ajt}.

Putting S′2 and S′′2 together, we can upper bound S2 by

S2 = S′2 + S′′2 ≤ S2
1 + 3

(
n

3

)
. (7.6)

Using the estimates of S1 and S2 in Eqs. (7.5) and (7.6) respectively, Eq. (7.3) becomes

Pr{Hn > k} ≥ S2
1

S1 + S2

=
1

1/S1 + (S′2 + S′′2)/S2
1

≥ 1

1/S1 + 1 + S′′2/S
2
1

≥ 1

1 + 1

(n2)p
2
3 kq

1
3 k

+
3(n3)(

(n2)p
2
3 kq

1
3 k
)2

≥ 1

1 + 4n−2p−
2
3
kq−

1
3
k + 2n−1p−

4
3
kq−

2
3
k

103

Chapter 7. Trie and Patricia Index Trees

≥ 1

1 + 4n−2n2(1−δ) + 2n−1n1−δ (7.7)

=
1

1 + 4n−2δ + 2n−δ

≥ 1−O(n−δ)→ 1,

where the inequality Eq. (7.7) is achieved by setting

k = 2(1− δ) logp−2/3q−1/3 n, that is, p−
2
3
kq−

1
3
k = n2(1−δ),

for a constant δ > 0. Therefore, Hn is larger than 2 logp−2/3q−1/3 n with a high probability

when n approaches infinity.

Theorem 7.4. The smoothed height of the Trie on n strings is in Θ(log n), where the

bit perturbation model is i.i.d. Bernoulli distribution.

7.3 The smoothed height of Patricia

Here we briefly do the smoothed analysis on the height of the Patricia tree on a set of

n binary strings. We adopt the same i.i.d. Bernoulli bit perturbation model as in the

last section. Again, we present an a.a.s. upper bound and an a.a.s. lower bound for

the smoothed height.

7.3.1 An a.a.s. upper bound

Following Pittel [80], on the set of n perturbed strings S̃ = {s̃1, s̃2, . . . , s̃n}, we claim

that for any fixed integers k ≥ 0 and b ≥ 2, the event {Hn ≥ k + b − 1} implies the

event that there exist b strings s̃i1 , s̃i2 , . . . , s̃ib such that their common prefix is of length

at least k (denoted as Ci1i2...ib ≥ k). The correctness of the above claim follows from

because, in Patricia trees, there are no degree-2 nodes (except for the root), and thus

a path of length k + b − 1 hints at least b leaves in the subtree rooted at the node at

distance k from the Patricia root.

Similar to the definition of p`ij in Eq. (7.1), p`i1i2...ib denotes the probability of the event

{s̃`i1 = s̃`i2 = . . . = s̃`ib}, for any b ≥ 2, which is calculated as follows:

p`i1i2...ib = (1− ε)k0εk1 + (1− ε)k1εk0 ,

104

Chapter 7. Trie and Patricia Index Trees

where k0 and k1 are the number of 0’s and 1’s among the b bit values s̃i1(`), s̃i2(`), . . . , s̃ib(`),

respectively. By a similar argument as presented for Pr{Aij} in Section 2, we have

Pr{Ci1i2...ib ≥ k} =

k∏
`=1

p`i1i2...ib .

For a fixed b ≥ 2, let qb = εb + (1− ε)b and k = kb = b(1 + δ/2) log1/qb
n. We have

k = b(1 + δ/2) log1/qb
n

= (1 + δ/2)
lnn

ln q
−1/b
b

= (1 + δ/2)
lnn

ln (εb + (1− ε)b)−1/b

≤ (1 + δ/2)
lnn

ln (ε2 + (1− ε)2)−1/2
(7.8)

= 2(1 + δ/2) log1/q n,

where the inequality in Eq. (7.8) holds for any b ≥ 2. Setting b = δ log1/q n, it follows

that

Pr{Hn ≥ 2(1 + δ) log1/q n} ≤ Pr{Hn ≥ k + b− 1}
≤ Pr{ max

i1,i2,...,ib
Ci1i2...ib ≥ k}

≤ nb
k∏
`=1

p`i1i2...ib

≤ nbqkb

∈ O(n−bδ)→ 0,

when n→∞.

In summary, for any δ > 0, we have

Pr{Hn ≥ 2(1 + δ) log1/q n} ∈ O(n−bδ)→ 0,

when n approaches infinity, and thus a.a.s. Hn ≤ 2(1 + δ) log1/q n.

7.3.2 An a.a.s. lower bound

Let Di be the depth of node labelled s̃i in the Patricia tree.

105

Chapter 7. Trie and Patricia Index Trees

Clearly, Hn = maxni=1Di and the s̃i∗ reaching the maximum depth must be a leaf node.

It follows that if Hn < k, then at least one of the 2k possible length-k strings does not

appear as a prefix of any perturbed strings s̃1, s̃2, . . . , s̃n.

Let Ln = log1/ε n and k = L n
L lnn . We have

Pr{Hn < k} ≤ 2kPr{no s̃i starts with k 0’s}
≤ 2k(1− εk)n

≤ 2ke−ε
kn

= exp{k ln 2− εkn}
= exp{ln 2 · L n

L lnn
− L lnn} → 0,

when n approaches infinity, and thus a.a.s. Hn ≥ L n
L lnn .

In summary, we have the following theorem.

Theorem 7.5. The smoothed height of the Patricia on n strings is in Θ(log n), where

the bit perturbation model is i.i.d. Bernoulli distribution.

7.4 Conclusions and future work

We conduct the smoothed analysis on the heights of Trie and Patricia index trees, to

reveal certain essential properties of these two data structures. We showed that the

smoothed height of the Trie on n strings is in Θ(log n). And we achieved a similar result

for the smoothed height of the Patricia tree on n strings, that is, Hn = Θ(log n), which

explains the practical performance of Patricia in the experiments conducted by Nilsson

and Tikkanen [77]. In our string perturbation model, we assume the perturbation for

each position is independent. It would be interesting to investigate these two data

structures under a new string perturbation model, which considers the dependence of

the noise added to every pair of positions.

106

Chapter 8

Conclusions and Future Work

8.1 Summary

How to evaluate the performance of an algorithm is a very important subject in computer

science, for understanding its applicability, for understanding the problem to which it

is applied, and for the development of new ideas that help to improve the existing

algorithms. There are two main factors, i.e. the performance measure and the analysis

model, that affect the evaluation of an algorithm.

The performance of an algorithm can be evaluated by many performance measures. Usu-

ally, these measures are time-related or space-related. The ideal case is that an algorithm

can always return an optimal solution to a problem while the time and space consumed

are within an appropriate tolerance. Unfortunately, most interesting optimization prob-

lems raising from the real world applications are NP-hard. For these problems, we need

to look for trade-offs between the qualities of the solution and the running time (or space

consumption) of the algorithm, and thus approximation algorithms would attract more

interests.

For the analysis models, there are two classic analysis approaches, i.e. the worst-case

and the average-case analyses. An algorithm with good worst-case performance is very

desirable because it performs well on all possible inputs. However, a bad worst-case

performance does not necessarily imply that the algorithm performs also badly in prac-

tice. It might be the case that the “hard” instances are relatively “isolated” in the

instance space. This motivates to study the average-case performance rather than the

worst-case performance. But the average-case analysis is often problematic because it is

not clear how to choose a “reasonable” probability distribution on the set of inputs and

thus most average-case analyses assume simple distributions instead, which make the

analysed instances do not reflect typical instances. The smoothed analysis circumvents

the drawbacks of worst-case and average-case analyses. It can not only rule out artificial

worst-case instances by the random perturbation, but also prevent the analysed instances

dominated by completely random instances since the adversary can approximately de-

termine the structure of the instance. By defining the perturbation appropriately, the

107

Chapter 8. Conclusions and Future Work

smoothed performance would be more “realistic”. Since the smoothed analysis was in-

troduced by Spielman and Teng in 2001, it has achieved a series of successes on running

time analysis for many the most interested algorithms.

In this thesis, we concentrated on the analysis of approximation ratios for the approxima-

tion algorithms under the worst-case analysis and the smoothed analysis. In particular,

we designed currently the best approximation algorithms for several interesting NP-hard

problems from bioinformatics, networking and graph theory.

8.2 Future work

Though there are several commonly used perturbation models as we introduced in Chap-

ter 1, it is hard to define a reasonable one for most discrete combinatorial optimization

problems. For example, for the minimum independent dominating set problem in Chap-

ter 6, the perturbed graph is defined based on a simple extension of the Erdös–Rényi

model. Such a perturbation model indeed introduces a small amount of randomness (or

noise) by the intuition that an edge will be presented in the perturbed graph with high

(low, respectively) probability if it is (isn’t, respectively) originally in the given graph.

Nevertheless, in real application this might be unreasonable as the perturbation for

each edge might not be independent. Therefore to define more reasonable perturbation

models are quite challenging for the future work.

For an approximation algorithm, we usually concentrate on the quality of the solution it

returns. As far as we know, there are very few papers studying the smoothed analysis on

approximation ratio. We guess it is mainly due to the difficulty to estimate the optimal

solution, given that it is already very challenging to estimate an optimal solution under

the average-case analysis model, which is much “weaker” than the smoothed analysis.

However, in real world applications, lots of approximation algorithms perform very well

in practice but have poor approximation ratios under the worst-case analysis. Therefore,

smoothed analysis on the performance ratio of approximation algorithms is of great

significance and would help us to understand these algorithms better. Besides, for a

certain problem, there may exist some quantity that reveals some essential properties of

the problem itself, which in turn may help us to better understand the problem or to

design new more efficient and more effective algorithms. Thus measuring such quantities

under the smoothed analysis would also be of great significance. What’s more, it would

be interesting to use these smoothed measures to depict the instance space in the future

research work.

108

Bibliography

[1] S. Ahmed, S. Mneimneh, and N. Greenbaum. A combinatorial approach for multi-

ple RNA interaction: formulations, approximations, and heuristics. In COCOON,

LNCS 7936, pages 421–433, 2013.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithm,

and Applications. China Machine Press, 2005.

[3] C. Alkan, E. Karakoç, J. H. Nadeau, S. C. Sahinalp, and K. Zhang. RNA-RNA

interaction prediction and antisense RNA target search. Journal of Computational

Biology, 13:267–282, 2006.

[4] G. E. Andrews. The Theory of Partitions. Addison-Wesley, 1976.

[5] G. E Andrews and K. Eriksson. Integer Partitions. Cambridge University Press,

2004.

[6] S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. On the approxima-

bility of comparing genomes with duplicates. Journal of Graph Algorithms and

Applications, 13:19–53, 2009.

[7] Richard P. Anstee. A polynomial algorithm for b-matchings: an alternative ap-

proach. Information Processing Letters, 24:153–157, 1987.

[8] E. M. Arkin and R. Hassin. On local search for weighted k-set packing. Mathe-

matics of Operations Research, 23:640–648, 1998.

[9] D. A. Babayev, G. I. Bell, and U. G. Nuriyev. The Bandpass problem: combinato-

rial optimization and library of problems. Journal of Combinatorial Optimization,

18:151–172, 2009.

[10] R. Beier and B. Vöcking. Random knapsack in expected polynomial time. In

STOC, pages 232–241, 2003.

[11] G. I. Bell and D. A. Babayev. Bandpass problem. In Annual INFORMS meeting,

Denver, CO, USA, 2004.

[12] P. Berman. A d/2 approximation for maximum weight independent set in d-claw

free graphs. In SWAT, LNCS 1851, pages 214–219, 2000.

[13] M. Bläser and B. Manthey. Smoothed complexity theory. In MFCS, LNCS 7464,

pages 198–209, 2012.

109

Bibliography

[14] G. Blin and R. Rizzi. Conserved interval distance computation between non-trivial

genomes. In COCOON, LNCS 3595, pages 22–31, 2005.

[15] B. Bollobás. The chromatic number of random graphs. Combinatorica, 8:49–55,

1988.

[16] B. Bollobás. Random Graphs. Cambridge University Press, second edition, 2001.

[17] D. Bryant. The complexity of calculating exemplar distances. In D. Sankoff and

J. H. Nadeau, editors, Comparative Genomics, volume 1 of Computational Biology,

pages 207–211. 2000.

[18] B. Chandra and M. Halldórsson. Greedy local improvement and weighted set

packing approximation. In SODA, pages 169–176, 1999.

[19] C. Chauve, G. Fertin, R. Rizzi, and S. Vialette. Genomes containing duplicates

are hard to compare. In ICCS, pages 783–790, 2006.

[20] J. Chen, X. Huang, I.A. Kanj, and G. Xia. Linear FPT reductions and computa-

tional lower bounds. In STOC, pages 212–221, 2004.

[21] X. Chen, L. Liu, Z. Liu, and T. Jiang. On the minimum common integer partition

problem. In CIAC, LNCS 3998, pages 236–247, 2006.

[22] X. Chen, L. Liu, Z. Liu, and T. Jiang. On the minimum common integer partition

problem. ACM Transactions on Algorithms, 5:1–18, 2008.

[23] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment

of orthologous genes via genome rearrangement. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 2:302–315, 2005.

[24] Z. Chen, R. H. Fowler, B. Fu, and B. Zhu. On the inapproximability of the ex-

emplar conserved interval distance problem of genomes. Journal of Combinatorial

Optimization, 15:201–221, 2008.

[25] Z. Chen, B. Fu, R. Goebel, G. Lin, W. Tong, J. Xu, B. Yang, Z. Zhao, and B. Zhu.

On the approximability of the exemplar adjacency number problem for genomes

with gene repetitions. Theoretical Computer Science, 550:59–65, 2014.

[26] Z. Chen, B. Fu, and B. Zhu. The approximability of the exemplar breakpoint

distance problem. In AAIM, LNCS 4041, pages 291–302, 2006.

[27] Z.-Z. Chen, Y. Okamoto, and L. Wang. Improved deterministic approximation

algorithms for max TSP. Information Processing Letters, 95:333–342, 2005.

110

Bibliography

[28] Z.-Z. Chen and L. Wang. An improved approximation algorithm for the Bandpass-

2 problem. In COCOA, LNCS 7402, pages 188–199, 2012.

[29] H. Chitsaz, R. Backofen, and S. C. Sahinalp. biRNA: fast RNA-RNA binding sites

prediction. In WABI, pages 25–36, 2009.

[30] H. Chitsaz, R. Salari, S. C. Sahinalp, and R. Backofen. A partition function

algorithm for interacting nucleic acid strands. Bioinformatics, 25:365–373, 2009.

[31] K.L. Chung and P. Erdös. On the application of the Borel-Cantelli Lemma. Trans-

actions of the American Mathematical Society, 72:179––186, 1952.

[32] L. Comtet. Advanced Combinatorics: the Art of Finite and Infinite Expansions.

Springer, 1974.

[33] G. Coop, X. Wen, C. Ober, J. K. Pritchard, and M. Przeworski. High-resolution

mapping of crossovers reveals extensive variation in fine-scale recombination pat-

terns among humans. Science, 319:1395–1398, 2008.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. The MIT Press, 2001.

[35] A. Deshpande and D. A. Spielman. Improved smoothed analysis of the shadow

vertex simplex method. In FOCS, pages 349–356, 2005.

[36] L. Devroye. A probabilistic analysis of the height of tries and of the complexity of

triesort. Acta Informatica, 21:229–237, 1984.

[37] R. Diestel. Graph Theory. Springer, third edition, 2005.

[38] R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

[39] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM,

45:634–652, 1998.

[40] P. Flajolet. On the performance evaluation of extendible hashing and trie search.

Acta Informatica, 20:345–369, 1983.

[41] P. Flajolet and J. M. Steyaert. A branching process arising in dynamic hashing,

trie searching and polynomial factorization. In ICALP, LNCS 140, pages 239–251,

1982.

[42] E. Fredkin. Trie memory. Communications of the ACM, 3:490–499, 1960.

[43] H. N. Gabow. An efficient reduction technique for degree-constrained subgraph

and bidirected network flow problems. In STOC, pages 448–456, 1983.

111

Bibliography

[44] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, first edition, 1979.

[45] O. Gascuel. Mathematics of Evolution and Phylogeny. Oxford University Press,

2007.

[46] M. M. Halldórsson, J. Kratochv́il, and J. A. Telle. Independent sets with domina-

tion constraints. Discrete Applied Mathematics, 99:39–54, 2000.

[47] M. Halldórsson. Approximating the minimum maximal independence number.

Information Processing Letters, 46:169–172, 1993.

[48] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: polynomial

algorithm for sorting signed permutations by reversals. Journal of the ACM, 46:1–

27, 1999.

[49] F. Harary. Graph Theory. Addison-Wesley, 1969.

[50] R. Hassin and S. Rubinstein. Better approximations for max TSP. Information

Processing Letters, 75:181–186, 2000.

[51] J. H̊astad. Clique is hard to approximate within n1−ε. In FOCS, pages 627–636,

1996.

[52] F. W. D. Huang, J. Qin, C. M. Reidys, and P. F. Stadler. Partition function and

base pairing probabilities for RNA-RNA interaction prediction. Bioinformatics,

25:2646–2654, 2009.

[53] L. Huang, W. Tong, R. Goebel, T. Liu, and G. Lin. A 0.5358-approximation for

Bandpass-2. Journal of Combinatorial Optimization, pages 1–15, 2013.

[54] H. Jiang, G. Lin, W. Tong, B. Zhu, and D. Zhu. Isomorphism and similarity for

2-generation pedigrees. In ISBRA 2014, LNCS/LNBI 8492, pages 396–396, 2014.

[55] M. Jiang. The zero exemplar distance problem. Journal of Computational Biology,

18:1077–1086, 2011.

[56] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete.

Information Processing Letters, 37:27–35, 1991.

[57] H. Kaplan and N. Shafrir. The greedy algorithm for shortest superstrings. Infor-

mation Processing Letters, 93:13–17, 2005.

[58] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-

binatorica, 4:373–395, 1984.

112

Bibliography

[59] J. A. Kelner and D. A. Spielman. A randomized polynomial-time simplex algo-

rithm for linear programming. In STOC, pages 51–60, 2006.

[60] L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Compu-

tational Mathematics and Mathematical Physics, 20:53–72, 1980.

[61] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and Search-

ing. Addison-Wesley, 1973.

[62] L. Kuc̆era. The greedy coloring is a bad probabilistic algorithm. Journal of Algo-

rithms, 12:674–684, 1991.

[63] A. X. Li, M. Marz, J. Qin, and C. M. Reidys. RNA-RNA interaction prediction

based on multiple sequence alignments. Bioinformatics, 27:456–463, 2011.

[64] G. Lin. On the Bandpass problem. Journal of Combinatorial Optimization, 22:71–

77, 2011.

[65] T. Luczak. The chromatic number of random graphs. Combinatorica, 11:45–54,

1991.

[66] Saad M. On the approximation of optimal structures for RNA-RNA interaction.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6:682–

688, 2009.

[67] B. Manthey and K. Plociennik. Approximating independent set in perturbed

graphs. Discrete Applied Mathematics, 161:1761–1768, 2013.

[68] B. Manthey and H. Röglin. Smoothed analysis: analysis of algorithms beyond

worst case. it - Information Technology, 53:280–286, 2011.

[69] H. Mendelson. Analysis of extendible hashing. IEEE Transactions on Software

Engineering, 8:611–619, 1982.

[70] I. M. Meyer. Predicting novel RNA-RNA interactions. Current Opinion in Struc-

tural Biology, 18:387–393, 2008.

[71] D. L. Miller and J. F. Pekny. A staged primal-dual algorithm for perfect b-matching

with edge capacities. ORSA Journal on Computing, 7:298–320, 1995.

[72] D. R. Morrison. Patricia—practical algorithm to retrieve information coded in

alphanumeric. Journal of the ACM, 15:514–534, 1968.

[73] U. Mückstein, H. Tafer, J. Hackermüller, S. H. Bernhart, P. F. Stadler, and I. L.

Hofacker. Thermodynamics of RNA-RNA binding. Bioinformatics, 22:1177–1182,

2006.

113

Bibliography

[74] M. Ng, D. Levinson, and S. Faraone et al. Meta-analysis of 32 genome-wide linkage

studies of schizopherenia. Mol Psychiatry, 14:774–785, 2009.

[75] S. Ng, K. Buckingham, and C. Lee et al. Exome sequencing identifies the cause of

a mendelian disorder. Nature Genetics, 42:30–35, 2010.

[76] C. T. Nguyen, Y. C. Tay, and L. Zhang. Divide-and-conquer approach for the

exemplar breakpoint distance. Bioinformatics, 21:2171–2176, 2005.

[77] S. Nilsson and M. Tikkanen. An experimental study of compression methods for

dynamic tries. Algorithmica, 33:19–33, 2002.

[78] K. Paluch, M. Mucha, and A. Madry. A 7/9-approximation algorithm for the

maximum traveling salesman problem. In APPROX-RANDOM, LNCS 5687, pages

298–311, 2009.

[79] D. D. Pervouchine. Iris: intermolecular RNA interaction search. Genome Inform,

15:92–101, 2004.

[80] B. Pittel. Asymptotical growth of a class of random trees. Annals of Probability,

13:414–427, 1985.

[81] B. Pittel. Path in a random digital tree: limiting distributions. Advances in

Applied Probability, 18:139–155, 1986.

[82] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. In STOC, pages 475–484,

1997.

[83] M. Régnier. On the average height of trees in digital searching and dynamic

hashing. Information Processing Letters, 13:64–66, 1981.

[84] H. J. Romero, C. A. Brizuela, and A. Tchernykh. An experimental comparison

of two approximation algorithms for the common superstring problem. In ENC,

pages 27–34, 2004.

[85] R. Salari, R. Backofen, and S. C. Sahinalp. Fast prediction of RNA-RNA interac-

tion. Algorithms for Molecular Biology, 5:5–5, 2010.

[86] A. Sankar. Smoothed analysis of Gaussian elimination. PhD thesis, Massachusetts

Institute of Technology, Deptartment of Mathematics, 2004.

[87] D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15:909–

917, 1999.

114

Bibliography

[88] A. I. Serdyukov. An algorithm with an estimate for the traveling salesman problem

of the maximum. Upravlyaemye Sistemy, 25:80–86, 1984.

[89] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: why the simplex

algorithm usually takes polynomial time. In STOC, pages 296–305, 2001.

[90] D. A. Spielman and S.-H. Teng. Smoothed analysis (motivation and discrete mod-

els). In WADS, LNCS 2748, pages 256–270, 2003.

[91] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms and heuristics.

In L. M. Pardo, A. Pinkus, E. Suli, and M. J. Todd, editors, Foundations of Com-

putational Mathematics, Santander 2005, pages 274–342. Cambridge University

Press, 2006.

[92] D. A. Spielman and S.-H. Teng. Smoothed analysis: An attempt to explain the

behavior of algorithms in practice. Communications of the ACM, 52:76–84, 2009.

[93] A. H. Sturtevant and T. G. Dobzhansky. Inversions in the third chromosome of

wild races of drosophila pseudoobscura and their use in the study of the history

of the species. Proceedings of National Academy of Sciences (United States of

America), 22:448–450, 1936.

[94] J. S. Sun and J. L. Manley. A novel U2-U6 snRNA structure is necessary for

mammalian mRNA splicing. Genes & Development, 9:843–854, 1995.

[95] W. Szpankowski. Some results on v-ary asymmetric tries. Journal of Algorithms,

9:224–244, 1988.

[96] W. Szpankowski. Digital data structures and order statistics. In WADS, LNCS

382, pages 206–217, 1989.

[97] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm.

Journal of the ACM, 22:215–225, 1975.

[98] W. Tong, Z.-Z. Chen, L. Wang, Y. Xu, J. Xu, R. Goebel, and G. Lin. An approx-

imation algorithm for the Bandpass-2 problem. CoRR, abs/1307.7089, 2013.

[99] W. Tong, R. Goebel, W. Ding, and G. Lin. An improved approximation algorithm

for the Bandpass problem. In FAW-AAIM, LNCS 7285, pages 351–358, 2012.

[100] W. Tong, R. Goebel, and G. Lin. Approximating the minimum independent dom-

inating set in perturbed graphs. In COCOON, LNCS 7936, pages 257–267, 2013.

[101] W. Tong, R. Goebel, and G. Lin. Approximating the minimum independent domi-

nating set in perturbed graphs. Theoretical Computer Science, 554:275–282, 2014.

115

Bibliography

[102] W. Tong, R. Goebel, and G. Lin. On the smoothed heights of Trie and Patricia

index trees. In COCOON, pages 94–103, 2014.

[103] W. Tong, R. Goebel, T. Liu, and G. Lin. Approximation algorithms for the

maximum multiple RNA interaction problem. In COCOA, LNCS 8287, pages

49–59, 2013.

[104] W. Tong, R. Goebel, T. Liu, and G. Lin. Approximating the maximum multiple

RNA interaction problem. Theoretical Computer Science, 556:63–70, 2014.

[105] W. Tong and G. Lin. An improved approximation algorithm for the minimum

common integer partition problem. In ISAAC, pages 353–364, 2014.

[106] R. Vershynin. Beyond hirsch conjecture: Walks on random polytopes and

smoothed complexity of the simplex method. In FOCS, pages 133–142, 2006.

[107] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz

Novosibirsk, 3:25–30, 1964.

[108] C. Wang. The independent domination number of random graph. Utilitas Math-

ematica, 82:161–166, 2010.

[109] G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome

inversion problem. Journal of Theoretical Biology, 99:1–7, 1982.

[110] B. Wieland and A. P. Godbole. On the domination number of a random graph.

The Electronic Journal of Combinatorics, 8(1), 2001.

[111] D. P. Woodruff. Better approximations for the minimum common integer partition

problem. In APPROX-RANDOM, LNCS 4110, pages 248–259, 2006.

[112] R. Fowler Z. Chen, B. Fu and B. Zhu. Lower bounds on the approximation of the

exemplar conserved interval distance problem of genomes. In COCOON, LNCS

4112, pages 245–254, 2006.

[113] W. Zhao, P. Zhang, and T. Jiang. A network flow approach to the minimum

common integer partition problem. Theoretical Computuing Science, 369:456–462,

2006.

[114] D. Zuckerman. Linear degree extractors and the inapproximability of max clique

and chromatic number. In STOC, pages 681–690, 2006.

116

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 Roadmap
	1.2 Notations and preliminaries
	1.3 Approximation algorithms
	1.4 Three analysis methods
	1.4.1 Worst-case analysis
	1.4.2 Average-case analysis
	1.4.3 Smoothed analysis
	1.4.3.1 Approximability smoothed analysis
	1.4.3.2 Approximability based algorithm design
	1.4.3.3 Perturbation models

	2 Bandpass ProblemThis chapter is based on TGDL12,TCWXXGL13,HTGLL13.
	2.1 Introduction
	2.2 Preliminary
	2.2.1 Algorithm template
	2.2.2 Key structure of bandpass

	2.3 1936-approximation algorithm BP1
	2.3.1 Algorithm description
	2.3.2 Performance analysis

	2.4 227426-approximation algorithm BP2
	2.4.1 Algorithm description
	2.4.2 Performance analysis

	2.5 70-2128-approximation algorithm BP3
	2.5.1 Algorithm description
	2.5.2 Performance analysis

	2.6 Conclusions and future work

	3 Multiple RNA Interaction (MRIP) ProblemThis chapter is based on TGLL13,TGLL14. — An Extension of the Bandpass Problem
	3.1 Introduction
	3.2 MRIP with a known RNA interaction order
	3.3 The general MRIP
	3.3.1 NP-hardness
	3.3.2 A 0.5-approximation algorithm

	3.4 The general MRIP with transitivity
	3.4.1 A 0.5328-approximation for disallowing pseudoknots
	3.4.2 A 0.5333-approximation for allowing pseudoknots

	3.5 Conclusions and future work

	4 Exemplar Non-Breakpoint Similarity (ENBS) ProblemThis chapter is based on CFGLTXYZZ14.
	4.1 Introduction
	4.2 Preliminaries
	4.3 Inapproximability result
	4.4 An O(n0.5)-approximation algorithm
	4.4.1 Algorithm description
	4.4.2 Performance analysis

	4.5 Conclusions and future work

	5 Minimum Common Integer Partition (MCIP) ProblemThis chapter is based on TL14.
	5.1 Introduction
	5.1.1 Known results
	5.1.2 Our contributions

	5.2 A 6/5-approximation algorithm for 2-MCIP
	5.2.1 Preliminaries
	5.2.2 Algorithm description
	5.2.3 Performance analysis

	5.3 Proof of Lemma 5.4
	5.4 A 0.6k-approximation algorithm for k-MCIP
	5.5 Conclusions and future work

	6 Minimum Independent Dominating Set (MIDS) ProblemThis chapter is based on TGL13,TGL14.
	6.1 Introduction
	6.2 A.a.s. bounds on the independent domination number
	6.2.1 An a.a.s. lower bound
	6.2.2 An a.a.s. upper bound

	6.3 A tail bound on the independent domination number
	6.4 Approximating the independent domination number
	6.5 Conclusions and future work

	7 Trie and Patricia Index TreesThis chapter is based on TGL14Trie.
	7.1 Introduction
	7.2 The smoothed height of Trie
	7.2.1 An a.a.s. upper bound
	7.2.2 An a.a.s. lower bound

	7.3 The smoothed height of Patricia
	7.3.1 An a.a.s. upper bound
	7.3.2 An a.a.s. lower bound

	7.4 Conclusions and future work

	8 Conclusions and Future Work
	8.1 Summary
	8.2 Future work

	Bibliography

