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Abstract

Radiation therapy is an important component of cancer treatment. It consists

of applying ionizing radiation to kill cells by damaging their DNA and reducing

their ability to reproduce and survive. It is reasonable to think that more radiation

causes more damage and kills more cells. However, in the low-dose range (less

than 1 Gy radiation dose), some cell lines experience counter-intuitive experimental

behaviour: at about 0.3 Gy, more radiation less cells. This phenomenon, known

as hyper radio-sensitivity and increased radioresistance (HRS/IRR), has intrigued

radiobiologists for the last two decades. Below 0.3 Gy, cells are very sensitive to

radiation; but above 0.3 Gy, they gain some resistance to radiation. Eventually, for

higher dose, radiation damage becomes too much for the cell to bear. In the search

for an effective radiation therapy that maximizes the damage on cancer cells and

minimizes the damage on normal cells, the understanding of this phenomenon may

improve the efficiency of radiation therapy.

One hypothesis that explains the HRS/IRR phenomenon is that activation of the

G2 checkpoint, a mechanism that controls cell cycle progression to mitosis, occurs

around the 0.3 Gy threshold. The G2 checkpoint activation provides extra time to

repair DNA damage instead of carrying it to mitosis and compromising the integrity

of daughter cells. However, testing this hypothesis experimentally is challenging.

Mathematical modelling can provide insight into the validity of this hypothesis and

the improve understanding of the underlying mechanisms governing HRS/IRR.

The effect of radiation on cells is commonly assessed through the cell survival

fraction, which measures the ability of a culture of cells to reproduce several days

after ionizing radiation application. The Linear Quadratic (LQ) model is the simplest
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model to describe survival fraction data. However, the LQ model fails to describe

HRS/IRR data, which is better described by the Induced Repair (IR) model, a

variation of the LQ model. Although these are widely acceptable models, they fail

to explain why HRS/IRR occurs. In recent years, attempts to explain HRS/IRR with

survival fraction models have included more details of the molecular and cellular

networks governing the cell dynamics. However, the question as to what is the

involvement of the G2 checkpoint on the HRS/IRR phenomenon remains open.

In this thesis, I study the effect of radiation on the cell cycle and the survival

fraction. For this purpose, I model the problem at two levels, the effect of radiation

on the cell cycle at the individual level, and the effect of radiation on cells at the

population level. At the individual level, I model the kinetic pathway triggered by

radiation, namely, the activation of ATM and Chk2 proteins by radiation-induced

Double Strand Breaks (DSBs); and the cell cycle, characterized by proteins MPF,

Wee1, and Cdc25 and the G2-phase. The model for the cell cycle and radiation

pathway consists of a system of differential equations, which involve Law of Mass

Action and Goldbeter-Koshland kinetics. At the population level, I model lethal

lesions for the cells based on the count of DSBs remaining during mitosis (obtained

at the individual level), a distribution of a cell population over the cell cycle, and

Poisson’s Law for lethal events.

I use this mathematical modelling to study the role of the G2-phase in the survival

fraction. I establish numerical and theoretical arguments to support the hypothesis

that the G2/M transition plays a major role in the HRS/IRR phenomenon. Moreover,

I provide a biological and mechanistic interpretation of the parameters in the IR

model. The methodology presented in this thesis provides meaningful insights into

the understanding of the effect of radiation on the G2/M transition and can be used to

study the role that other radiation-induced pathways play in the cell cycle dynamics.
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Preface
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Chapter 1

Introduction

1.1 Motivation

Hyper-radiosensitivity and increased radioresistance (HRS/IRR) is a phenomenon

in radiation biology in which cells are very sensitive to low-dose radiation and

become resistant as radiation increases (see Figure 1.1) [39]. This phenomenon is

mostly observed in laboratory experiments using tumour cells but has a great poten-

tial for clinical applications [92]. Although there have been significant advances in

the understanding of the HRS/IRR phenomenon in the recent years, the underlying

mechanisms behind HRS/IRR are still unclear [39, 3]. Marples et al. [58] hypothe-

size that the G2/M checkpoint of the cell cycle is responsible for the HRS/IRR effect

observed in some cell lines. The G2/M checkpoint is a cell regulatory mechanism

which prevents cell cycle progression in the presence of DNA damage [65].

The cell survival curve reflects the ability of cells to reproduce after a given

dose of radiation [1]. Many models have been developed to describe survival curves

[51, 52, 19, 12, 18, 30, 93], but the Linear Quadratic (LQ) model [40, 41] remains

the most popular and simple cell survival model [101]. The LQ model is defined in
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Figure 1.1: Survival curve as a function dose showing hyper-radiosensitivity (HRS)
and increased radioresistance (IRR). Below 0.25 Gy, the survival fraction decreases
fast with dose. Between 0.25 Gy and 1 Gy, cells become resistant to radiation
and increase their survival probability. Both Linear-Quadratic (dotted) and Induced
Repair (solid) models are fit to data. Taken from Marples et al. [58].

terms of the yield of lesions (terminology adopted from Rossi and Zaider [82])

λLQ(D) = − ln(SLQ(D)) = αD + βD2, (1.1)

where D is the total dose delivered, and α and β are constants. Despite many

attempts to interpret the LQ model [12, 91, 14, 76, 7, 35], there is not a clear

mechanistic interpretation for the parameters in this model [29, 6]. The LQ model

is widely used in clinical studies[103, 23, 101]; however, some concerns have been

raised with this regard [43, 9]. Ultimately, the LQ model fails to describe cell

survival data exhibiting HRS/IRR due to its non-monotonic shape at low dose.

The Induced Repaired (IR) model [49] is suitable for cell survival data exhibiting

HRS/IRR [92]. The yield of lesions of the model reads

λIR(D) = − ln(SIR(D)) =
(
αr + (αs − αr)e

− D
dc

)
D + βD2, (1.2)
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where αs describes the slope for low dose, αr describes the slope for high dose,

and dc is the dose at which radio resistance is induced (see Figure 1.1). As in the

LQ model, there is no clear mechanistic interpretation for the parameters in the IR

model [60, 6].

In the recent years, there has been a modern approach to model the cell survival

with regulatory and organizational components of the cell [6]. Bodgi and Foray [5]

developed a cell survival model based on nucleo-shuttling of ATM (protein kinase

involved in the repair of DNA damage) that provides a biological explanation of

HRS/IRR and an interpretation of the IR model. However, this approach does not

explain the participation of the G2/M checkpoint of the cell cycle on the HRS/IRR

phenomenon [59]. Olobatuyi et al. [78] developed a compartmental model for the

population of cells in G2-phase to provide a biological interpretation of the IR model

in terms of the cell cycle. However, they do not investigate how radiation affects the

cell cycle or why it is the G2/M checkpoint in particular that produces the HRS/IRR

phenomenon.

In this thesis, I explore the involvement of the G2/M checkpoint in the HRS/IRR

phenomenon by adding a radiation pathway to the mathematical model of the cell

cycle developed by Novák and Tyson Novák and Tyson [71]. Over two decades,

they built a framework to model regulatory and signalling pathways in the cell using

Law of Mass Action, Michaelis-Menten kinetics, and Goldbeter-Koshland kinetics

[99, 86]. In their extensive research, they have been able to explain characteristics

of the cell cycle from a mathematical perspective, such as checkpoints, cell cycle

progression, growth and division [95]. Based on the hypothesis that the G2/M

checkpoint is the determinant component of the HRS/IRR phenomenon [58], I am

interested in modelling the G2/M transition of the cell cycle.
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1.2 Outline of the thesis

In this thesis, I study the effect of radiation on the G2/M transition and survival

fraction using mathematical modelling. Several questions arise from this approach:

1. What is the signalling pathway between radiation and the cell cycle, and how

to model it?

2. Would modelling the radiation pathway in the cell cycle result in a significant

influence on the G2/M transition?

3. How to extend this study to obtain a model for the survival fraction?

4. Can the radiation pathway modelling result in a survival fraction exhibiting

HRS/IRR?

In Chapter 2, I study the effect of radiation on the G2/M transition and address

questions 1 and 2. I use Novák and Tyson’s mathematical framework to model the

cell cycle with focus on the G2/M transition, and model the signalling pathway of

Double Strand Breaks (DSBs) and kinases ATM and Chk2 in connection with the

cell cycle model. I show that radiation triggers the G2/M checkpoint under dose and

temporal conditions, and that the checkpoint is governed by a saddle-node on an

invariant circle (SNIC) bifurcation. Moreover, I identify an interesting relationship

between the SNIC bifurcation studied here, and a different SNIC bifurcation studied

by Novák et al. [74]. The latter motivates the theoretical study in Chapters 4 and 5.

Chapter 2 has been published as [13].

In Chapter 3, I study the effect of radiation on the survival fraction. I develop a

model for the survival fraction based on the number of DSBs reaching mitosis and

on the cell cycle model and radiation pathway studied in Chapter 2. I use numerical
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simulations to show that this approach results is an HRS/IRR effect in the survival

fraction. In this chapter, I partially address questions 3 and 4. This motives a further

theoretical study on the effect of radiation of the survival fraction via the ATM-Chk2

pathway, which is done in Chapter 6 using the calculations carried out in Chapter 5.

In Chapter 4, I introduce and study a theoretical problem in dynamical systems:

the manifestation of a saddle-node bifurcation after transforming the bifurcation

parameter into a variable. We call this problem the carryover of a saddle-node bi-

furcation. I show that this is possible under additional singularity and transversality

conditions. This result is used in Chapter 5.

In Chapter 5, I reduce the cell cycle model used in Chapter 2 to the normal

form for the saddle-node bifurcation. This normal form is used to define the G2/M

transition in mathematical terms and is used as well later in Chapter 6.

In Chapter 6, I study the effect of radiation on the survival fraction via the ATM-

Chk2 pathway, following the framework in Chapter 3, but now on a theoretical basis.

I show that, under certain simplifications, our formulation of the survival fraction

is equivalent to the IR model (1.2). This provides a novel kinetic and mechanistic

interpretation of the IR model .

In Chapter 7, I summarize and discuss the results, and propose future work.
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Chapter 2

Effect of low-dose radiation on the

G2 checkpoint through the

ATM-Chk2 pathway

Abstract

We develop a mathematical model to study the immediate effect of low-dose radia-

tion on the G2 checkpoint and the G2/M transition of the cell cycle via a radiation

pathway (the ATM–Chk2 pathway) of an individual mammalian cell. The model

consists of a system of nonlinear differential equations describing the dynamics of a

network of regulatory proteins that play key roles in the G2/M transition, cell cycle

oscillations, and the radiation pathway. We simulate the application of a single pulse

of low-dose radiation at different intensities (∼ 0–0.4 Gy) and timing during the

latter part of the G2-phase. We use bifurcation analysis to characterize the effect of

radiation on the G2/M transition via the ATM-Chk2 pathway. We show that radia-

tion between 0.1–0.3 Gy can delay the G2/M transition, and radiation higher than 0.3
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Gy can fully activate the G2 checkpoint. Also, our results show that radiation can

be low enough to neither delay the G2/M transition nor activate the G2 checkpoint

(∼0.1 Gy). Our model supports the idea that the cell response to radiation during

G2-phase explains hyper-radiosensitivity and increased radioresistance (HRS/IRR)

observed at low dose.

2.1 Introduction

The cell cycle is the essential process for cell growth and reproduction. The elaborate

control mechanisms that regulate the cell cycle can be easily compromised by

ionizing radiation. One such control mechanism is the G2 checkpoint, a protective

mechanism that ensures that the transition from G2-phase to M-phase is carried out

with healthy DNA (see Fig. 2.1) [34]. Low-dose radiation can cause DNA lesions

that may not fully trigger G2 checkpoint activation [39]. Failure to activate the

G2 checkpoint in the presence of DNA damage can result in a variety of outcomes

affecting cell survival, including cell cycle arrest, apoptosis and mitotic catastrophe

[36, 102, 62]. A better understanding of the mechanisms underlying the effect of

low-dose radiation on cells is key to improving radiation therapy on cancer cells

[68]. To help understand the effect of low-dose radiation on mammalian cells, we

model the dynamics of the proteins involved in the regulation of the cell cycle. The

starting point for this work is the modelling regulatory networks of Tyson et al. [99].

The effect of radiation is closely connected to how it affects the cell cycle

and checkpoint control mechanisms [62]. For instance, it has been shown that

the G2-phase and the G2 checkpoint of the cell cycle play a significant role in

the hyper-radiosensitivity and increased radioresistance (HRS/IRR) phenomenon

observed at low-dose [60]. HRS/IRR is characterized by a first range of radiation
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dose (between 0 and 0.3 Gy) where cells are very sensitive (a small increase in the

dose greatly decreases cell survival), and a second range of radiation dose (between

0.3 and 0.6 Gy) where cells gain radioresistance to radiation (cells are no longer

hypersensitive and rather increase their survival as radiation dose increases) [60].

Understanding the hyper-radiosensitivity part of HRS/IRR may greatly improve

radiation therapy. For instance, the application of multiple pulses of low-dose

radiation (tipically < 1 Gy) has already shown positive in-vivo and clinical results

[104, 64]. However, the molecular mechanisms behind the HRS/IRR phenomenon

remains unclear. Although cancer cells differ from normal cells in various aspects,

understanding the HRS/IRR phenomenon in the latter is a first step in discovering

the potential use of HRS/IRR in radiation therapy. In this study, we focus on low-

dose radiation (∼ 0–0.4 Gy) to understand its effect on the G2 checkpoint and the

G2/M transition of normal mammalian cells.

Unfortunately, observing the cell response to radiation in experiments is partic-

ularly difficult. For this reason, mathematical modelling becomes a powerful tool

to simulate experiments, make predictions, and gain insight into the mechanisms

underlying the effect of radiation on the cell cycle. We assume that the cell response

to radiation determines the fate of the cell and that of future generations. Under this

assumption, we show that understanding of the mechanisms that affect the G2/M

transition has implications for the understanding of the HRS/IRR phenomenon.

The G2 checkpoint activation after radiation is mediated by DSB sensor kinase

ATM and checkpoint kinase Chk2 [56]. However, it is unclear how this ATM-

Chk2 pathway can cause HRS/IRR in the survival fraction. The aim of this work

is to explore the effect of the ATM-Chk2 pathway on the G2/M transition on

normal mammalian cells. For this purpose, we propose a mathematical model that

incorporates the effect of radiation on the cell cycle. In Section 2.2, we introduce

8



Figure 2.1: Schematic diagram of the cell cycle. Interphase (I) (which consists of
the G1-phase, Synthesis (S) and G2-phase) and M-phase (M), with G1 (start), G2,
and M (spindle) checkpoints. Adapted from image by Zephyris.

the two components of the mathematical model, namely, the cell cycle module and

the radiation pathway. In Section 2.3, we simulate numerically the application of a

radiation pulse at different intensities (0–0.4 Gy) and times during the latter part of

the G2-phase, and study the effect of the pulse on the G2/M transition. We also apply

bifurcation analysis to understand the simulation results in terms of the dynamical

changes in the system. We show that there are dose- and time-dependent thresholds,

arising from the radiation pathway, that affect the G2/M transition. More precisely,

the G2 checkpoint requires sufficiently high dose (> 0.2 Gy) and appropriate timing

for mitotic entry to be triggered successfully. In Section 2.4, we analyze the G2

checkpoint further using two-parameter bifurcation analysis and explore the reasons

behind our findings. In Section 2.5, we conclude with a discussion of our results.

9
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2.2 Model for the cell cycle and radiation pathway in

mammalian cells

The foundation of the proposed mathematical model is Novák and Tyson’s work

on the regulation of the cell cycle [71, 98, 96]. We extend a basic version of their

model for the cell cycle with the ATM-Chk2 pathway. Although most of Novák

and Tyson’s research has been conducted on frog eggs extracts, fission yeast and

budding yeast, the similarities in the G2/M transition between yeast and mammalian

cells allow us to use their modelling approach for mammalian cells with confidence.

Our model consists of three interconnected modules, namely the interphase, the

M-phase, and the radiation pathway, as shown in Fig. 2.2. The model accounts for the

G2/M transition, cell division, and radiation. Each module captures the interactions

between the proteins playing an essential role. The interphase module describes

the G2/M transition, the M-phase module closes the cell cycle, and the radiation

pathway module keeps track of the number of Double Strand Breaks (DSBs). The

model variables are listed in Table 2.1. The resulting biological network is modelled

with the following system of differential equations:

dMPF

dt
= km0Mass− (km2 + km2aWee1)MPF

+ (km1 + km1aCdc25)MPFP − (km3 + km3aAPC)MPF, (2.1a)
dMPFP

dt
= (km2 + km2aWee1)MPF − (km1 + km1aCdc25)MPFP

− (km3 + km3aAPC)MPFP , (2.1b)
dWee1

dt
= Vw1

Wee1T −Wee1

Jw1 + (Wee1T −Wee1)
−kw2(MPF + αMPFP )

Wee1

Jw2 +Wee1
,

(2.1c)

10



dCdc25

dt
= kc1(MPF + αMPFP )

Cdc25T − Cdc25
Jc1 + (Cdc25T − Cdc25)

− (Vc2 + kc2aChk2)
Cdc25

Jc2 + Cdc25
, (2.1d)

dIE

dt
= ki1(MPF + αMPFP )

IET − IE
Ji1 + (IET − IE)

− Vi2
IE

Ji2 + IE
, (2.1e)

dAPC

dt
= ka1IE

APCT − APC
Ja1 + (APCT − APC)

− Va2
APC

Ja2 + APC
, (2.1f)

dMass

dt
= µMass

(
1− Mass

KMass

)
, (2.1g)

dChk2

dt
= kh1ATM DSB

Chk2T − Chk2
Jh1 + (Chk2T − Chk2)

− Vh2
Chk2

Jh2 + Chk2
, (2.1h)

dATM

dt
= kt1DSB

ATMT − ATM
Jt1 + (ATMT − ATM)

− Vt2
ATM

Jt2 + ATM
, (2.1i)

dDSB

dt
= kd1Ḋ(t)− kd2ATM DSB, (2.1j)

subject to the resetting condition

if MPF (t) = θM and
dMPF

dt
(t) < 0 =⇒ Mass(t)← Mass(t)

2
, (2.2)

where parameters are described in Table 2.2 in the Appendix. The model is fully

explained below. In Section 2.2.1, we explain Eqs. (2.1a)–(2.2) pertaining to the

interphase and M-phase modules in Fig. 2.2, which together comprise the cell cycle

module. The cell cycle module has been taken from Novák and Tyson’s work [96].

In Section 2.2.2, we explain Eqs. (2.1h)–(2.1j) pertaining to the radiation pathway,

which is newly introduced in this work. In Section 2.2.3, we describe the choice of

the parameters values that we use in our simulations.
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Figure 2.2: Diagram of the cell cycle and radiation pathway. The model for the
cell cycle and radiation pathway consists of three modules: interphase, M-phase,
and radiation. The interphase and M-phase modules together make the cell cycle
module. The Mitotic Promoting Factor (MPF) is central for the progression of the
cell cycle. The interphase module (in orange) is characterized by MPF and the
two positive feedback loops with Wee1 and Cdc25 that control MPF activity. The
M-phase (in purple) is mainly characterized by MPF, a hypothetical intermediary
enzyme (IE), Anaphase Promoting Complex (APC), and the negative feedback
loop that degrades MPF. The radiation pathway is characterized by DSBs, ATM,
and Chk2 after a radiation input. Solid arrows represent activation, inactivation,
synthesis, and degradation depending on the case. Dashed arrows represent catalytic
activity. Labels in the small white boxes refer to the parameter subscripts appearing
in the corresponding equations. Shapes with a dashed boundary represent degraded
proteins; shapes with an orange boundary represent the active state. Based on Fig.3
in [96].
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Table 2.1: Name and description of variables in Eqs. (2.1a)–(2.1j). All variables
represent concentration, except DSB, which represents a number.

Symbol Description

MPF Active Cdk1-cyclin B complex (Mitotic Promoting Factor)
MPFP Inactive, phosphorylated form of MPF
Wee1 Active dephosphorylated form of kinase Wee1 (MPF inactivator)
Cdc25 Active phosphorylated form of the phosphatase Cdc25C (MPF activator)

IE Active form of an intermediate enzyme [94]
APC Active phosphorylated form of APC (Anaphase Promoting Complex)
Chk2 Active phosphorylated form of Chk2 (Checkpoint kinase 2)
ATM Active phosphorylated, monomerized and recruited form of ATM
DSB Recognized Double Strand Brakes formed by Ionizing Radiation
Mass Mass of the cell

2.2.1 Cell cycle module

The interphase and M-phase modules represented in the diagram in Fig. 2.2 are

sufficient to explain cell cycle dynamics with emphasis on mitotic entry and exit.

This module is developed and explained in detail by Novák and Tyson [71] and

in their subsequent publications (see Tyson and Novák [96] for a review). The

radiation module is excluded from this section by simply setting the variable Chk2

(Checkpoint kinase 2) to zero in Eq. (2.1d). The Mitotic Promoting Factor (MPF)

(also known as Maturation or M-phase Promoting Factor) is the central protein

necessary for both G2/M and M/G1 transitions. MPF is a complex formed by the

Cyclin-dependent kinase 1 (Cdk1) and the M-phase promoting Cyclin B protein

(CycB). In eukaryotic cells, and particularly in mammals, there are other cyclin-

CDK complexes involved in the cell cycle progression [65]. However, these are not

involved in the G2/M transition and we therefore do not consider their role in this

work for the sake of simplicity.

Note that we consider two forms of MPF depending on its phosphorylation on
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the Thr-15 residue. The MPF variable in Eq. (2.1a) represents the more active

form when it is unphosphorylated, and the MPFP variable in Eq. (2.1b) represents

the less active form when it is phosphorylated. Whenever we mention the activity

of MPF, we refer to the concentration of the active form of MPF, that is, the MPF

variable. The MPF reactions are modelled with mass action kinetics. MPF is

formed when cell mass promotes synthesis of CycB subunit and this binds to free

Cdk1 at rate km0 (first term of Eq. 2.1a). MPF is always formed unphosphorylated,

but both the phosphorylated and unphosphorylated forms of MPF can be destroyed

by degradation of CycB, at rate km3. Phosphorylation of MPF is controlled by the

regulatory enzymes Wee1 and Cdc25 through two positive feedback loops (as shown

in the interphase module in Fig. 2.2). The active form of MPF deactivates Wee1,

which in turn deactivates MPF. Similarly, the active form of MPF activates Cdc25,

which in turn activates MPF. These interactions are positive feedback loops since

the net effect on MPF is favourable for its activation. In each case, the activity of the

catalytic enzyme (either Wee1 or Cdc25) is added to a basal value of phosphorylation

(km2) or dephosphorylation (km1).

The Wee1 and Cdc25 reactions are modelled with Goldbeter-Koshland kinetics

in Eqs. (2.1c) and (2.1d), respectively [27]. Under these kinetics, the first and second

terms on the right-hand side of the equations are the activation and inactivation

rate, respectively, while the total concentration remains constant. For example,

denoting the total concentration of Wee1 as Wee1T , the term Wee1T −Wee1 is

the concentration of inactive Wee1. Note that MPFP also plays a minor role

(encoded in the 5% value of the parameter α) in the inactivation of Wee1 and the

activation of Cdc25.

MPF activity fluctuates throughout the cell cycle between low and high activity.

During the interphase, MPF activity stays low due to Wee1 inactivation, until the
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two positive feedback loops quickly increase MPF activity. High MPF activity

determines the end of the G2-phase and the start of mitosis. At high concentration,

MPF is responsible for the assembly of mitotic spindles, chromosomes alignment,

and phosphorylation and activation of Anaphase Promoting Complex (APC) through

its activating subunit Cdc20. Active APC degradates MPF by targeting its cyclin B

subunit (with rate km3a; see Eqs. (2.1a) and (2.1b)) [65]. In Eqs. (2.1e) and (2.1f),

delayed APC activation is modelled through a hypothetical ‘intermediary enzyme’

(IE) (possibly Plk1). Both APC and IE are modelled with Goldbeter-Koshland

kinetics (see Fig. 2.2) [94]. The negative feedback loop for MPF (activation of its

inactivator) and the delayed APC activation cause the subsequent decay in MPF

activity after mitotic entry. Low concentration of MPF marks the end of cytokinesis

and the start of another round of the cell cycle.

In the model, cell division is defined as an event that divides mass in half, and

occurs when the concentration of MPF falls below a threshold value for mitosis,

θM (see Eq. (2.2)). Moreover, mass is modelled with logistic growth in Eq. (2.1g),

where µ is the growth rate, andKMass is the maximum mass. The use of the logistic

equation has two advantages: it prevents cells from growing unrealistically in the

case of a prolonged checkpoint, and it describes cell growth with both exponential

and linear profiles. This last point reconciles the debate on linear versus exponential

cell growth [26].

2.2.2 Radiation pathway module

The radiation pathway involves two main proteins called ATM and Checkpoint

kinase 2 (Chk2), as shown in Fig. 2.2 [61, 17]. Following radiation, monomerized

ATM is recruited inside the cell nucleus around Double Strand Breaks (DSBs)
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and autophosphorylated to become active [45]. ATM activates Chk2 in a catalytic

manner, and Chk2 in turn inhibits Cdc25 [2]. Thus, in the presence of active Chk2,

the inactivation rate of Cdc25 increases. Since Cdc25 is involved in a positive

feedback loop with MPF, its inactivation affects the G2/M transition.

Formation and repair of DSBs are modelled in Eq. (2.1j). In response to

radiation, the rate of DSBs formation is linearly dependent on the dose rate [83].

We denote the external dose rate applied to the cell as Ḋ(t). Notice that the total

radiation applied during the radiation treatment is

D =

∫ tf

0

Ḋ(t)dt, (2.3)

where tf is the time at the end of the treatment.

After formation of DSBs, ATM foci are formed around the DSBs to promote

their repair. The product term ATM · DSB in Eq. (2.1j) is the number of ATM

foci, i.e., the proportion of DSBs that are recognized and being repaired. Activation

of ATM is important for DSBs repair during late interphase [28]. Provided ATM is

active, we model repair of DSBs to depend linearly on DSBs. This linear dependence

has been validated by Taleei and Nikjoo [90]. Since we focus on the G2-phase, the

repair mechanism in Eq. 2.1j accounts primarily for homologous recombination

(HR), which is known to be slower than non-homologous end joining (NHEJ) [89].

We consider ATM to be active after it has been monomerized, recruited inside

the cell nucleus around DSBs, and phosphorylated. We assume that ATM activation

and inactivation are fast and very sensitive to a few DSBs [10, 83, 45]. We model

ATM fast activity into one kinetic equation, Eq. (2.1i), with Golbeter-Koshland

kinetics, where ATM activation is promoted by the presence of DSBs. Active ATM

in turn catalyzes Chk2 activation by phosphorylation, which we also model with
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Goldbeter-Koshland kinetics in Eq. (2.1h). In both ATM and Chk2 equations, we use

Goldbeter-Koshland kinetics as it models ultrasensitive activation. As mentioned

in Section 2.2.1, the radiation pathway module connects with the cell cycle module

through the catalytic effect of Chk2 on Cdc25 inactivation (see Eq. (2.1d)).

As mentioned before, we focus on the effect of radiation on the G2/M transition,

i.e., how radiation triggers the G2 checkpoint and to what extent DNA damage

is carried into M-phase. DSBs carried into M-phase can result in a variety of un-

favourable outcomes during cell division, including mitotic catastrophe, senescence,

and aneuploid/polyploid cells [102]. To avoid this complexity, the current form of

the radiation pathway in the model does not keep track of DSBs after M-phase.

Thus, when considering a radiation input, the model is limited to the next mitotic

entry.

2.2.3 Model parameter values

Most of the parameters values in the radiation pathway are taken from the literature,

when available, from similar cell lines. When not available in the literature, parame-

ter values are chosen to accommodate the cell cycle dynamics, cell cycle length and

radiation response. For example, the parameter values for the Goldbeter-Koshland

kinetics of Chk2 and ATM in Eqs. (2.1h)–(2.1i) are chosen to reproduce the results

related to the dose threshold for DSBs recognition observed by Rothkamm and

Löbrich [83] (this dose threshold is presented in Section 2.3.3) and the threshold for

unrepaired DSBs observed by Deckbar et al. [16] for G2 checkpoint activation and

maintenance (this threshold is presented in Section 2.3.4). Similarly, the parameter

values of µ and km0 in Eqs. (2.1g) and (2.1a), respectively, have been chosen to

accommodate a cell cycle length of approximately 24 hr. Parameter values are
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summarized in Table 2.2.

Given the size (ten variables and over forty parameters) and the complex non-

linearity of the model, numerical methods become a powerful tool to analyze the

system. In the next section, we use numerical simulations and bifurcations to study

and explain the effect of radiation on the G2 checkpoint. All numerical simulations

are performed in Julia language and the Differential Equations suite [4, 81].

2.3 Results

When no radiation is applied, the model exhibits a stable oscillation (limit cycle).

The numerical solution for this control case is shown in Fig. 2.3a. We observe the

most important features of the cell cycle explained in the previous section, namely

low MPF activity during interphase followed by a quick increase and decrease in

its activity during M-phase, Wee1 activation during interphase, and APC activation

during M-phase. MPF determines M-phase entry (exit) when its concentration

increases above (decreases below) the threshold for mitosis, θM [25]. In the model,

the cell mass divides in half on M-phase exit when MPF activity falls below θM .

Having a threshold for mitosis is important to obtain some of our conclusions, but

one should note the specific value (θM = 0.2) is not important to describe the

qualitative behaviour of the system in response to radiation.

Since the radiation pathway affects cell cycle dynamics through the inactivation

of Cdc25, our analysis is focused on the total inactivation rate in Eq. (2.1d),

Ṽc2 = Vc2 + kc2aChk2. (2.4)

This value is constant and equal to the basal value Vc2 when radiation is not present
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Figure 2.3: Numerical solutions (left) and one-parameter bifurcation diagrams with
respect to Ṽc2 as the bifurcation parameter (right). a) Plot of the dynamics of MPF,
Wee1, APC and cell mass for one full cell cycle. The top bar indicates the phase
of the cell cycle, either interphase or M-phase. G2/M transition is indicated with
a green arrow. b) The SNICVc2 bifurcation point (Ṽ ∗

c2 = 3.47) divides the diagram
into two parts: cell cycle oscillation to the left (the blue curves are the maximum

(continued)
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Figure 2.3 (continued): and minimum values of MPF) and G2 checkpoint to the
right (the solid black and dot-dashed curves represent a stable node and saddle,
respectively). For the basal value of Ṽc2, the superimposed full trajectory of MPF
from a) shows the cell cycle oscillations, and the green arrow indicates the G2/M
transition as the concentration of MPF crosses the threshold for M-phase θM = 0.2.
The inset shows the period of the oscillation (length of the cell cycle) as the parameter
changes; the period becomes infinity at the SNICVc2 bifurcation point. c–h) Similar
to a) and b), when a single pulse of radiation is applied (total dose and time of
application are indicated in the top left corners). Note that c), e), and g) include
curves representing the number of DSBs and the activity of Chk2. The total dose
D is computed using Eq. (2.3).

and Chk2 remains fully inactive.

In Fig. 2.3b, we plot the one-parameter bifurcation diagram using Ṽc2 as the

bifurcation parameter. The bifurcation diagram shows how the dynamics of the

system changes as the parameter Ṽc2 increases. To the left of Ṽ ∗
c2 ≈ 3.47, the system

exhibits a stable limit cycle (the cell cycle). The maximum and minimum values of

the concentration of MPF on the limit cycle are represented with the blue curves,

and are found numerically by collecting the minimum and maximum values of MPF

in the limit cycle solution for each value of Ṽc2 < V ∗
c2. To the right of Ṽ ∗

c2, there are

a saddle and a stable node, represented with dot-dashed red and solid black curves,

respectively. These were generated by using numerical continuation from a stable

steady state for some Ṽc2 > V ∗
c2, and where the limit point V ∗

c2 ≈ 3.47 was identified

numerically. At Ṽ ∗
c2, there is a saddle-node on an invariant circle bifurcation point

(SNICVc2 , with subscript Vc2 to distinguish it from another SNIC encountered later),

which divides the bifurcation diagram into an oscillatory region to the left and a

non-oscillatory region to the right [22]. The SNICVc2 bifurcation is associated with

an infinite-period limit cycle. The period of the limit cycle as a function of the

bifurcation parameter Ṽc2 is shown in the inset.

In Fig. 2.3b, the solution shown in Fig. 2.3a has been superimposed (green
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curve). Note that this trajectory corresponds to the control case where no radiation

is applied and the bifurcation parameter Ṽc2 is equal the basal value Vc2. The G2/M

transition (green arrow) occurs when MPF crosses the threshold for mitosis θM

(horizontal dashed red line) from below.

When radiation is applied, Chk2 activity increases, thereby increasing the value

of the bifurcation parameter Ṽc2. This forces the trajectory to move to the right on

the bifurcation diagram, that is, towards the SNICVc2 bifurcation. When the value

of Ṽc2 is greater than Ṽ ∗
c2, the limit cycle is lost and trajectories are attracted to the

stable node.

Under certain conditions (depending on radiation dose and time, explored in

the subsections below), the detour of the trajectory to the right corresponds with

an effect on the G2/M transition. We understand that the G2/M transition can be

affected in one of two ways. On the one hand, the M-phase can be delayed if

the trajectory remains in the oscillatory region. Because the dynamics still are

oscillatory, the G2/M transition is inevitable. On the other hand, the G2 checkpoint

can be activated if the trajectory detours into the non-oscillatory region (a refined

definition of G2 checkpoint in the context of our mathematical model is provided

in Section 2.4). In such case, the G2 checkpoint is inactivated when the trajectory

comes back to the oscillatory region. Further understanding of the M-phase delay

and G2 checkpoint activation is presented in Section 2.4. The overall message for

now is that G2 checkpoint activation is possible via an increase in Ṽc2, that is, via

an increase in the total inactivation rate of Cdc25.

The radiation scheme in our simulations is a single radiation pulse applied for

one minute (tf − t0 = 1 min) at a constant radiation dose rate and at different

times during the G2-phase. In the sections below, we illustrate that both the total

radiation dose and the radiation timing are important when it comes to characterize
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the effect of radiation on the G2/M transition. In Section 2.3.1, we vary the intensity

of radiation and show that there is a Chk2-activation threshold that determines G2

checkpoint activation. In Section 2.3.2, we vary the timing of the radiation pulse,

and show that there is a time-dependent threshold that determines the ability of the

cell to postpone entry to M-phase. In Section 2.3.3, we show that there is no effect

on the G2/M transition for extremely low doses of radiation. In Section 2.3.4, we

synthesize the results obtained in the previous sections to characterize the overall

effect of radiation on the G2/M transition.

Our study focuses on the simple case of a single radiation pulse. Studying

the effect of a radiation pulse suffices to show how the cell cycle network changes

dynamically in a short period of time. If we wanted to study the effect of fractionation

and protraction on the G2 checkpoint activation, it would be necessary to consider

explicitly other response pathways in the model, as there could be a cross response

effect between the pathways. This is beyond the scope of this paper, therefore we

do not study applications of such radiation schemes.

2.3.1 Effect of radiation pulse intensity on the G2/M transition

To illustrate the importance of the intensity of the radiation pulse, we simulate the

application of two different intensities of low-dose radiation (0.4 and 0.2 Gy) about

one hour before mitotic entry. For a radiation dose of 0.4 Gy (Fig. 2.3c), the cell

is arrested in the G2 checkpoint until most of the DNA damage is repaired (only a

couple DSBs remain). In this particular case, the oscillations are temporarily lost for

few hours. This happens because Chk2 becomes active and the total inactivation rate

of Cdc25, Ṽc2, is high enough to compromise the two positive feedback loops with

MPF and block MPF activation. When Chk2 becomes inactive again, Ṽc2 returns
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to its basal value and the cell exits the G2 checkpoint to resume its cycle. In the

bifurcation diagram of Fig. 2.3d, we observe that the solution makes an excursion

into the non-oscillatory region as a result of the dynamic changes in Ṽc2.

For a lower radiation dose of 0.2 Gy, mitotic entry is not affected by DNA

damage (see Fig. 2.3e), and most DSBs are able to pass through mitosis without

being repaired. In the bifurcation diagram in Fig. 2.3f, we observe that the solution

trajectory remains in the oscillatory region and the concentration of MPF continues

to increase. Note that mitotic entry is not delayed even though we observe that the

superimposed solution from Fig. 2.3e makes an excursion to the right. Thus, when

radiation is applied close to mitotic entry, the number of DSBs caused by radiation

has to be sufficiently high to successfully activate Chk2 and the G2 checkpoint,

otherwise DSBs will be carried to the next M-phase.

2.3.2 Effect of radiation pulse timing on the G2/M transition

To illustrate the importance of timing of the radiation pulse, we use the application

of 0.2 Gy in the previous section as a reference and simulate its application at an

earlier time (Fig. 2.3g). In this case, mitotic entry is delayed until most DNA damage

is repaired (only a couple DSBs remain). Compare Figs. 2.3e–2.3f, where there is

not enough time for the response to delay mitosis, to Figs. 2.3g–2.3h (radiation pulse

applied twelve minutes (0.2 hr) earlier), where there is enough time for the response

to delay M-phase. We conclude that the ATM-Chk2 pathway requires some time

for the G2/M transition to be affected successfully.
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2.3.3 No effect of radiation pulse on the G2/M transition

In this section, we examine the model for radiation doses of 0.1 Gy and below.

We show that there is no evidence of delayed G2/M transition or G2 checkpoint

activation after a radiation pulse of 0.1 Gy or lower. This observation matches

experimental results reported by Deckbar et al. [15]. We also demonstrate that the

model exhibits an ATM-activation threshold of DSB at extremely low radiation.

This threshold has been observed experimentally by Rothkamm and Löbrich [83] at

approximately 2 mGy. The purpose of this section is to validate our modelling of

the radiation pathway and parameter values therein independently of the cell cycle

model.

Fig. 2.4a shows that Chk2 is completely inactive with the application of a

radiation pulse of 0.1 Gy a few hours before mitosis. This observation is independent

of the timing of radiation in terms of the cell cycle. Chk2 is not active because there

are not enough ATM foci, which in turn is due to the low number of DSBs. Since

Chk2 activation is necessary for G2 checkpoint activation or delay in the G2/M

transition, we can conclude that there is no effect of radiation on the G2/M transition

for doses below 0.1 Gy. Note that ATM is still active at this dose and targets DSBs

for repair.

In Figs. 2.4b–2.4d, we simulate the application of a radiation pulse at extremely

low dose (20, 5.0 and 1.2 mGy) with fixed dose rate of 50 mGy per minute and track

the formation and repair of DSBs. ATM activation is necessary for the formation

of ATM foci, given by the product ATM · DSB, where DSBs are repaired. In

Figs. 2.4b and 2.4c, we show that DSB repair follows minutes after the application of

radiation at doses of 20 and 5 mGy, respectively, but stops when the average number

of DSBs reaches approximately 0.1 (1 DSB every 10 cells). DSBs are no longer
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Figure 2.4: Effect of a radiation pulse at very low dose. a) Radiation pulse of
0.1 Gy. Chk2 is not activated below this dose, thus the cell cycle is not affected by
radiation. b–d) ATM foci formation following radiation pulses of 20, 5 and 1.2 mGy,
respectively. The product ATM ·DSB is the number ATM foci, i.e., the number
of recognized DSBs. Whenever the number of DSBs is below 0.1 (on average),
ATM becomes inactive and the DSBs are no longer targeted for repair and remain
unrepaired. At dose 1.2 mGy (d), the number of DSBs is too small to activate ATM.
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repaired because there are too few of them to maintain activation of ATM. At 1.2

mGy, there is no evidence of ATM activation or DSB repair, as shown in Fig. 2.4d.

We conclude that there is an ATM-activation threshold around 1-5 mGy. This

ATM-activation threshold is governed by the Goldbeter-Koshland kinetics included

in Eq. (2.1h).

Note that the application of radiation in Figs. 2.4b–d, where dose rate is fixed

and duration varies, is different from that in Figs. 2.3 and 2.4a, where duration is

fixed and dose rate varies. We have fixed the dose rate in Figs. 2.4b–2.4d in order to

match the experimental set-up used by Rothkamm and Löbrich [83] in their Figure

3 (our model does not include their reported background level of ≈0.05 DSBs per

cell). Results do not change if we fix the duration instead.

2.3.4 Overall effect of radiation pulse on the G2 checkpoint ac-

tivation

The examples in the previous sections show how the G2/M transition can remain

unaffected, be delayed, or blocked in response to a radiation pulse. The outcome

depends on the radiation intensity and the moment of the cell cycle when the radiation

is applied. Note that the moment and time of the cell cycle are ambiguous terms,

for example, when cell cycle progression has been delayed. Thus, we prefer to use

the phase of the cell to refer to the cell cycle progression relative to the control cell

[54]. That is, phase of the cell is equivalent to time for the control cell when time

t = 0 is at the start of the cell cycle (immediately after cell division).

The Chk2-activation dependent threshold occurs between 0.1 and 0.2 Gy, and

is caused primarily by the activation of Chk2. At 0.1 Gy (see Fig. 2.4a), Chk2 is

completely inactive and the G2/M transition remains unaffected. At 0.2 Gy (see
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Fig. 2.3g), Chk2 is partially active and able to delay the G2/M transition. At 0.4 Gy

(see Fig. 2.3c), Chk2 is fully active and the G2 checkpoint is active for a short period

of time while DSBs are repaired. The difference between the delay of the G2/M

transition at 0.2 Gy and the full G2 checkpoint activation at 0.4 Gy can be seen

in the corresponding bifurcation diagrams. In the first case, the solution trajectory

remains in the oscillatory region (see Figs. 2.3h) so that the G2/M transition is still

possible. In the second case, the solution trajectory moves into the non-oscillatory

region (see Fig. 2.3d) so that G2/M transition is not possible.

The phase-dependent threshold occurs some time before M-phase, and deter-

mines when radiation should be applied in order to affect the G2/M transition

(compare Fig. 2.3e to Figs. 2.3c and 2.3g). This suggests that the closer the radi-

ation pulse is to the mitotic entry, the higher the radiation intensity needs to be in

order to affect the G2/M transition. Therefore, G2 checkpoint activation is the result

of sufficiently high radiation applied enough time before M-phase.

The Chk2-activation and phase-dependent thresholds are summarized in Fig. 2.5.

The four regions in the dose-phase plane determine the effectiveness of the radiation

response that ultimately affects the collective cell survival. Radiation in region

I is sufficiently high and early enough to trigger a G2 checkpoint activation that

prevents damage from progressing to the M-phase. Radiation in region II is early

enough to trigger a response but only high enough to cause a delay in the G2/M

transition. Both regions I and II are beneficial for the cell and contribute to cell

survival. Radiation in region III is too late to prevent damage from progressing into

the M-phase. Radiation in region IV is too low to trigger any response. Both region

III and IV are unfavourable for the cell and contribute to cell death and anomalies.

This shows that G2 checkpoint activation is a fast mechanism but sensitive to dose

and phase conditions to be triggered and maintained (region I) or partially induced
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(region II). Recall from Fig. 2.3d that G2 checkpoint activation is deactivated when

the value of Ṽc2 decreases below the critical value V ∗
c2. We can observe in Fig. 2.3c

that this happens when the number of DSBs falls below 6 to 12 breaks and Chk2

becomes inactive. The number of DSBs at which the G2 checkpoint is deactivated

agrees with experimental observations made by Deckbar et al. [16]. The location of

the Chk2-activation threshold in Fig. 2.5 was obtained from the steady-state value

of Chk2 in Eq. (2.1h) given by the Goldbeter-Koshland function. The shape and the

location of the phase-dependent threshold are approximate and qualitative, based

on numerical experimentation with several values of intensity and time of radiation

pulse (details are not provided in this manuscript).

In the context of the HRS/IRR phenomenon reported by Marples and Joiner

[57], we identify HRS with region IV and IRR with region II, respectively. That is,

cells are hypersensitive to very low doses of radiation due to lack of response, but

increasingly gain resistance to radiation when the response becomes active above

the Chk2-activation threshold. For higher radiation (∼0.3 Gy), cell cycle delay is

replaced by successful G2 checkpoint activation. For radiation higher than 0.6 Gy,

other pathways that affect cell survival would play a more significant role, such as

pro-apoptotic signals and necrosis [68].

2.4 Analysis of the G2/M transition and definition of

G2 checkpoint

In Section 2.3, we showed how radiation intensity and timing can result in G2

checkpoint activation. In this section, we analyze the G2/M transition in terms of

the model using bifurcation theory. In particular, we show the relation between the
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Figure 2.5: Diagram of the overall effect of radiation, as a function of the dose and
timing of the radiation pulse, on the G2/M transition by the ATM-Chk2 pathway.
Only a portion of the cell cycle, focusing on the G2-phase, is shown on the horizontal
axis. ‘Phase indicates the moment at which the radiation pulse is applied relative to
the control cell. The intensity and timing of the radiation pulse applied in Figs. 2.3c,
2.3e, 2.3g, and 2.4a are indicated in the diagram with a dot symbol. The diagram
is divided into four regions: region I, G2 checkpoint activation; region II, delay of
mitotic entry; region III, G2 checkpoint is not possible and delay is very limited;
and region IV, DSBs have no effect on the cell cycle.
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SNICVc2 bifurcation in Fig. 2.3 and a different SNIC bifurcation responsible for the

G2/M transition and driven by mass as presented by Novák et al. [74]. This relation

is determined by the ability of the radiation pathway to counteract the influence that

cell mass has on the G2/M transition. To further explore this idea, we consider

in this section only Eqs. (2.1a)–(2.1f), and treat both cell mass (variable Mass

in Eq. (2.1a)) and total inactivation rate of Cdc25 (Ṽc2 in Eq. 2.4 and thereby in

Eq. 2.1d) as bifurcation parameters.

First, we consider the bifurcation diagram with cell mass as a parameter under

default conditions (no radiation), shown in Fig. 2.6a. The diagram is divided into

a non-oscillatory region and an oscillatory region by a SNIC bifurcation, which

we label as SNICMass to distinguish it from the already mentioned SNICVc2 . The

non-oscillatory region is to the left of SNICMass; the oscillatory region is to the

right. The stable node in the non-oscillatory region, represented by the black curve,

corresponds to the action of Wee1 blocking MPF activity. Therefore, the non-

oscillatory region is identified with the interphase of the cell cycle. As cell mass

increases, the stable node disappears at the SNICMass bifurcation when it coalesces

with the saddle, represented by the lower branch of the red curve. To the right

of SNICMass, the concentration of active MPF is oscillatory. This oscillation is a

consequence of the negative feedback loop of MPF with APC and is responsible for

the increase and decrease of MPF during M-phase [73]. Therefore, the oscillatory

region of the bifurcation diagram is identified with the M-phase of the cell cycle.

In essence then, it is when the cell mass passes through the SNICMass bifurcation

point that the G2/M transition is triggered [71]. The superimposed trajectory from

Fig. 2.3a (green curve) shows the evolution of active MPF during the cell cycle in

relation to the bifurcation structure of the model. Note that the concentration of

active MPF first increases as the cell enters M-phase, followed by a decrease in
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concentration that eventually determines cell division (mass splits in two).

When Chk2 is fully active (Chk2∼ 1), Ṽc2 reaches a maximum value of 3.8 (see

Table 2.2 in the Appendix) and the bifurcation diagram in Fig. 2.6a transforms into

that of Fig. 2.6b. Note that the original bifurcation diagram is included in transparent

colour, for reference. As Ṽc2 changes dynamically, so does the bifurcation diagram.

In particular, as Ṽc2 increases, the SNICMass bifurcation point moves to the right.

At the maximum value of Ṽc2, note that the SNICMass bifurcation point has moved

just to the right of the KMass value, indicated by the dashed grey vertical line.

In Fig. 2.6b, we have superimposed a portion of the solution from Fig. 2.3c

(from time 2.3 hr to 15.0 hr, shown in green) obtained in the presence of a radiation

pulse (administered at 2.3 hr). At first, the phase point is in the oscillatory region,

and both cell mass and active MPF are increasing. Also, the radiation pathway

is activated causing an increase in Ṽc2, in turn causing the SNICMass bifurcation

point to move to the right. A little while later, the SNICMass bifurcation point

overtakes the phase point such that the trajectory is caught in the basin of attraction

of the stable node. For this particular simulation, this is associated with a decrease

in active MPF. Eventually, due to repair of damaged DNA, the radiation pathway

becomes inactive, causing the SNICMass bifurcation point to move back to the left

of the phase point. At this point, the G2/M transition proceeds and the cell cycle

resumes.

Now, keeping track of the SNICMass bifurcation point while varying the total

inactivation rate of Cdc25, Ṽc2, we obtain the two-parameter bifurcation curve shown

in red in Fig. 2.6c. Note that this curve separates the interphase (non-oscillatory

region) from the M-phase (oscillatory region), and crossing it from left to right

describes the G2/M transition. The cell cycle oscillation shown in Fig. 2.6a (green

curve) corresponds to the green horizontal line that crosses back and forth between

31



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Cell mass

10 4

10 3

10 2

10 1

100

101

M
P
F

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Cell mass

10 4

10 3

10 2

10 1

100

101

M
P
F

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Cell mass

0

1

2

3

4

5

6

V
c2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Cell mass

0

1

2

3

4

5

6

V
c2

M-phase

interphase

SNICmass
 c

ur
ve

M
a
x
im

u
m

 m
a
ss

G2-M transition

Vc2=1.4

Vc2=3.47   oscillations threshold SNICVc2
*~

Vc2=1.4
~

~

Vc2=3.8
~

a b

c d

SNICmass

M-phaseinterphase

G-M tra
ns

it
io

n

H

SN

Figure 2.6: Bifurcation diagrams. a) One-parameter bifurcation diagram with
respect to cell mass when Chk2 is inactive (Ṽc2 = Vc2 = 1.4). The SNICMass

divides the diagram into interphase to the left and M-phase to the right. The
interphase is governed by steady states, with the stable branch of the SNICMass

(solid black) determining the concentration of MPF. The Hopf (H) and saddle-node
(SN) bifurcation points that appear on the left side do not affect the dynamics of
the cell cycle. The M-phase is governed by oscillations (minimum and maximum
in solid blue) that make possible an increase and a decrease of the concentration of
MPF. The MPF solution trajectory (solid green) from Fig. 2.3a is superimposed on
the diagram to show how the SNICMass point determines the bistable switch from
G2-phase to M-phase (G2/M transition). b) One-parameter bifurcation diagram
with respect to cell mass when Chk2 is fully active (Ṽc2 = Vc2 + kc2a = 3.8). The
bifurcation diagram in A is shown in transparent colour, for reference. The portion
of the MPF trajectory from Fig. 2.3c representing the first 14 hours after radiation
is superimposed to show how the saddle node is relocated in front of the trajectory,
which will be now attracted to the stable node. When Chk2 becomes inactive again,
the bifurcation diagram returns to the original state (shown as transparent) and the
cell cycle resumes. This allows the cell to enter the first M-phase shown in Fig. 2.3c.
c) Two-parameter bifurcation diagram with respect to cell mass and total inactivation

(continued)
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Figure 2.6 (continued): rate of Cdc25, Ṽc2. The SNICMass curve (dot-dashed red)
is the continuation of the SNICMass point found in a, and divides the diagram
into interphase and M-phase. The solution trajectory (solid green) from Fig. 2.3a
superimposes as a horizontal line and shows that the G2/M transition occurs when it
crosses the SNICMass curve from left to right. For a fixed value of Ṽc2, the segment
of possible values of cell mass (dashed black) determines the range (between 0
and KMass) in which a solution oscillates back and forth between interphase and
M-phase. Cell cycle oscillations are lost at ṼC2 = Ṽ ∗

c2 = 3.47 when the cell mass
segment no longer intersects the SNICMass curve. d) Similar to c, but with the
trajectory solution from B superimposed. The green arrow indicates the detour the
solution trajectory has taken after the radiation pulse.

the interphase region and the M-phase region in Fig. 2.6c (note that it corresponds

to the green vertical line shown in Fig. 2.3b).

Due to the logistic growth in Eq. (2.1g), the possible values for the cell mass

are between 0 and KMass = 2.7. The KMass value is indicated in the diagram with

a vertical dashed gray line. The mass range for the default value of Ṽc2 (control

conditions; no radiation) is represented in Fig. 2.6c with the lower horizontal dashed

line segment. As Ṽc2 increases, the segment moves upwards. There is a value of Ṽc2

for which the mass-range-segment first lies entirely in the interphase region. This

value of Ṽc2 corresponds to the value Ṽ ∗
c2 ≈ 3.47 where the SNICVc2 takes place in

Fig. 2.3b. Thus, if Ṽc2 is larger than the bifurcation value Ṽ ∗
c2, the G2/M transition

is no longer possible. The cell cycle oscillations are lost and the cell remains in the

interphase. In other words, the SNICVc2 bifurcation point shown in Fig. 2.3b is the

loss of the SNICMass bifurcation point shown in Fig. 2.6a within the cell mass range

values.

The solution superimposed in Fig. 2.6b appears in the two-parameter bifurcation

diagram as shown in Fig. 2.6d. After the radiation pulse, the value of Ṽc2 increases

and the solution trajectory moves upwards in this diagram. This motion is associated

with the decrease in MPF in Fig. 2.6b. Note that the solution trajectory crosses the
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upper mass-range-segment where cell cycle oscillations are lost. With DNA repair,

the value of Ṽc2 decreases back to the basal value and the trajectory resumes the cell

cycle oscillations.

In the context of the mathematical model, we view delay on the G2/M transition

as any detour of the solution trajectory either to the right in the one-parameter

bifurcation diagram in Fig. 2.3b or upwards in the two-parameter bifurcation diagram

in Fig. 2.6c (provided there is enough time before M-phase for a proper response).

Moreover, we view G2 checkpoint activation to take place when the trajectory crosses

the SNICVc2 bifurcation point in Fig. 2.3b or, equivalently, when the trajectory

crosses the mass-range oscillations in Fig. 2.6c. The G2 checkpoint can be sustained

as long as the phase point remains in the non-oscillatory region.

We illustrate the appearance of the G2/M transition in control conditions (no

radiation) on the familiar schematic diagram of the cell cycle in Fig. 2.7a. The figure

shows six snapshots of a cell as it progresses through the cell cycle. We represent

the G2 checkpoint with the black U-shaped curve. The fourth snapshot, where

the U-shaped curve touches the schematic diagram of the cell cycle, represents the

SNICMass bifurcation. The G2 checkpoint controls the transition in an irreversible

switch-like manner as cell mass increases. The G2 checkpoint can be seen as a

control ‘gate’ that is lifted (indicated by the movement of the U-shaped curve in the

direction of the arrow) to enable the G2/M transition as cell mass increases.

The interplay between the effects of cell growth and radiation is illustrated in

Figs. 2.7b–2.7d. Radiation counteracts the effect of cell growth by activating the

G2 checkpoint (moving the U-shaped curve in the opposite direction) and blocking

the G2/M transition towards the end of the interphase. G2 checkpoint activation

is possible as long as the saddle node can be dynamically positioned ahead of the

current state of the cell, as shown in Fig. 2.7b where the checkpoint is activated.
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Figure 2.7: Cell cycle progression and G2 checkpoint activation. a) A control
cell (represented in green with purple nucleus) progresses trough the cell cycle and
makes the G2/M transition as cell mass increases. The saddle and node branches
of the SNICMass in Fig. 2.6a are represented with open and solid circles on the
U-shape curve, respectively. b-d) Closeup of the G2/M transition showing the effect
of radiation on the U-shape curve for different G2 checkpoint scenarios: b) effective
activation, c) late activation, and d) no activation.

If the cell already committed to enter mitosis, G2 checkpoint activation fails, as

shown in Fig. 2.7c, where the cell skips the checkpoint. Finally, if Chk2 is not fully

activated, the G2/M transition is not blocked; however, delay is still possible, as

shown in Fig. 2.7d. The three cases correspond to regions I, II, and III presented in

Fig. 2.5. Using the gate analogy, radiation lowers down the gate, but the position of

the cell (relative to the gate) determines if it passes through before the gate closes. If

radiation is not high enough to fully close the gate, the cell slows down but eventually

passes towards mitosis.

2.5 Discussion

The effect of radiation on cells is far more complex than simply stating ‘radiation

causes DNA damage and kills cells’. Several events that follow radiation influence

the fate of cells and future generations, including repair mechanisms, checkpoint
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failure, apoptosis, mitotic catastrophe, etc. Although the final effect of radiation

is a decrease in the survival fraction, investigating the immediate effect and the

cascade of numerous pathways that follow is critical to understand the overall effect

of radiation. This is not an easy task given the difficulty in tracking intracellular

protein dynamics in radiation experiments. After decades of research, we have clues

on the mechanisms that follow radiation, yet the exact mechanisms remain unclear.

In this work, we have studied one of these mechanisms from a kinetic perspective.

Specifically, we studied the effect of radiation on the G2/M transition through the

ATM-Chk2 pathway.

We extended a mathematical model of the cell cycle, based on the work of

Tyson and Novák [96], by including the radiation pathway. Our resulting model,

given by Eqs. (2.1a)–(2.1j), consists of modules for the interphase, M-phase, and the

radiation pathway, describing the interactions between the main proteins involved.

The radiation module, characterized by the ATM–Chk2 pathway, becomes active

after formation of DSBs. The parameter values in the model were taken and adapted

from different sources to represent observed values for the cell cycle length, cell mass

growth, DSBs formation/repair rates, and threshold of activation for mammalian

cells.

By considering single radiation pulses, we were able to analyze the effect of the

radiation intensity and timing on the G2/M transition. Our results show that the effect

depends on the ability of cells to delay the G2/M transition so that DNA damage

can be repaired before mitosis. In particular, we identified a qualitative change in

the dynamics of the cell cycle as radiation dose varies. Below 0.1 Gy, the G2/M

transition is not affected by radiation; between 0.1 and 0.3 Gy, the G2/M transition is

delayed; and above 0.3 Gy, the G2 checkpoint is fully activated. We conjecture that

the first and second ranges are responsible for the hyper-radiosensitivity (HRS) and
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increased radioresistance (IRR), respectively, which supports the hypothesis that

the trade-off between increasing DNA damage and G2 checkpoint failure/success

is responsible for the HRS/IRR phenomenon [60]. It is worthwhile to mention that

these dynamical changes are the result of incorporating the ‘fast but insensitive’

activation of Chk2 observed in experiments [16] into our model.

We also identified a phase-dependent threshold, describing the time when the

application of a radiation pulse does not leave enough time to delay or arrest the

cell. In other words, the phase-dependent threshold refers to the time when the cell

has already committed to enter M-phase. Thus, DSBs initiated after this threshold

will enter mitosis and potentially affect the cell or future generations. This threshold

may contribute to HRS/IRR as well as mitotic catastrophe.

Other mathematical modelling approaches and signalling pathways have been

used to explain HRS/IRR. The Induced-Repair model is the simplest model to

capture HRS/IRR [88]. The model is phenomenological; it does not provide a

mechanistic explanation for it. Other models capturing the underlying mechanisms

for the HRS/IRR with alternate pathways include a kinetic model for the interaction

between nucleo-shuttling of ATM and DSBs [5], and a reaction-diffusion model for

bystander effect [77]. However, these models do not explain the relationship between

the HRS/IRR and the G2-phase. Olobatuyi et al. [78] use a population-based model

with the cell phases as compartments to capture HRS/IRR and classify cell lines

by their HRS profile. It would be interesting to derive a survival fraction model

from our kinetic and cell cycle approach, and relate it to the previously mentioned

models. However, this derivation is beyond the scope of this paper and is left for

future research.

There are other radiation pathways not included in the model (such as those

mediated by p53) that could have an effect after the ATM pathway. These different
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pathways may result in the two different G2 checkpoints discussed by Marples

[59]: one dose and ATM dependent (presented here), and one slow and ATM

independent (presumably p53 dependent). Also, there are aspects in the radiation

pathway not considered in our model that could play an important role in the

G2/M transition, such as ATM nucleo-shuttling [6], ATM phosphorylation and

signalling [32, 20], different repair mechanisms (non-homologous end joining, for

example) [28], repairable/irreparable DSBs rates, DSB types [90], and ATR-Chk1-

p53 pathway [2]. It would be interesting as well to extend the model to incorporate

these aspects.

The qualitative analysis of our model not only reveals the effect of radiation on

the cell cycle dynamics, but also has the potential to provide insight on the dynamical

differences between healthy and cancer cells. For example, one of the characteristics

of cancer cells is their insensitivity to anti-growth signals [33], which can be thought

of as causing cancer cells to increase their mass uncontrollably beyond their carrying

capacity. In the context of the bifurcation diagram in Fig. 2.6b, this would result

in the loss of the SNICVc2 bifurcation in Fig. 2.3b, and thereby compromise proper

G2 checkpoint activation in response to radiation. Similarly, changes in the values

of other parameters could also be used to describe dynamical differences between

healthy and cancer cells.

In conclusion, incorporating the ATM-Chk2 pathway in a model of the cell

cycle and carrying out a detailed bifurcation analysis have allowed us to describe

the G2/M transition and the nature of its delay caused by radiation. We distinguish

mathematically between a delay that does not compromise the oscillatory behaviour

of the cell dynamics but may (or may not) be sufficient for a successful repair

of DNA damage, and a larger delay that is associated with the temporary loss of

oscillatory behaviour of the cell dynamics due to the increased inactivation rate of
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Cdc25. It is this latter delay that we identify with activation of the G2 checkpoint.

Our theoretical work, based on the effect of radiation on the control mechanisms that

regulate the cell cycle, contributes to a more detailed understanding of the G2/M

transition and G2 checkpoint activation after radiation.

2.A Appendix: parameters values

The Goldbeter-Koshland kinetics model for protein activation is given by

dx

dt
= v1

1− x
J1 + 1− x

− v2
x

J2 + x
,

where x is the normalized concentration of the active form of the protein, 1 − x is

the concentration of the inactive form of the protein, v1 is the maximum activation

rate, v2 is the maximum inactivation rate, and J1 and J2 are the Michaelis constants.

The smaller the Michaelis constants the faster the activation/inactivation switch is.

It can be shown that the activation of x is obtained when

v1
v2
> 1.

Ultrasensitivity refers to a fast switch in activity when v1 is close to v2 and the

Michaelis constants are small. Parameter values in the radiation pathway module,

such as activation/inactivation rate and Michaelis constants, are carefully chosen so

that our simulations match experimental results (see Table 2.2).
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Table 2.2: Parameter values. Most parameter values have been taken from Gérard
et al. [25] or adapted to match cell cycle length in mammalian cells. Parameters
related to the radiation pathway come from different sources or were cautiously cho-
sen on the basis of numerical simulations. Details are provided in the footnotes that
are referenced in the Source column. Parameters with no units are dimensionless.

Symbol Definition Value Units Source

km0

Rate of synthesis of Cdk-cyclin fusion pro-

tein, MPF
0.2 hr−1

1

km1

Rate constant for the dephosphorylation of

MPF
0.4 hr−1

2

km1a

Rate constant for the dephosphorylation of

MPF by Cdc25
20.0 hr−1

2

km2 Rate constant for the phosphorylation of MPF 0.4 hr−1
2

km2a

Rate constant for the phosphorylation of MPF

by Wee1
50.0 hr−1

1

km3

Rate constant for the degradation of MPF and

MPFP

0.2 hr−1
2

km3a

Rate constant for the degradation of MPF and

MPFP by APC
6.35 hr−1

2

Vw1

Maximum activation rate, by dephosphoryla-

tion, of Wee1
1.0 hr−1

2

kw2 Rate constant for activation of Wee1 by MPF 5.3 hr−1
2

Jw1 Michaelis constant for Wee1 activation 0.01 3

continued...

1Taken from Gérard et al. [25]; slightly modified to accommodate the correct G2/M transition
dynamics.

2Taken from Gérard et al. [25]; scaling factor of 8.5 needed to rescale the length of the cell cycle
to approximately 24 hrs.

3Taken from Gérard et al. [25].
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...continued

Symbol Definition Value Units Source

Jw2 Michaelis constant for Wee1 inactivation 0.01 3

kc1
Rate constant for Cdc25 phosphorylation by

MPF
8.5 hr−1

2

Vc2

Maximum inactivation rate, by dephosphory-

lation, of Cdc25
1.4 hr−1

1

kc2a
Rate constant for the inactivation of Cdc25 by

Chk2
2.4 hr−1

4

Jc1 Michaelis constant for Cdc25 activation 0.01 3

Jc2 Michaelis constant for Cdc25 inactivation 0.01 3

ki1 Rate constant for the activation of IE by MPF 1.7 hr−1
2

Vi2 Maximum inactivation rate of IE 0.4 hr−1
2

Ji1 Michaelis constant for IE activation 0.001 3

Ji2 Michaelis constant for IE inactivation 0.001 3

ka1
Rate constant for the activation, by phospho-

rylation, of APC by IE
6.8 hr−1

2

Va2

Maximum inactivation rate, by phosphoryla-

tion, of APC
1.7 hr−1

2

Ja1 Michaelis constant for APC activation 0.001 3

Ja2 Michaelis constant for APC inactivation 0.001 3

kh1
Rate constant for the activation, by phospho-

rylation, of Chk2 by ATM
0.32 hr−1

5

continued...

4Educated guess.
5Chosen to fit activation time presented by Buscemi et al. [11].
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...continued

Symbol Definition Value Units Source

Vh2

Maximum inactivation rate, by dephosphory-

lation, of Chk2
1.9 hr−1

6

Jh1 Michaelis constant for Chk2 activation 0.01 4

Jh2 Michaelis constant for Chk2 inactivation 0.01 4

kt1

Rate constant for the activation (recruitment

and autophosphorylation) of ATM around

DSB repair foci

30 dsb−1hr−1
7

Vt2 Maximum inactivation rate of ATM 3.8 hr−1
2

Jt1
Michaelis constant for ATM auto-

phosphorylation
0.01 4

Jt2 Michaelis constant for ATM deactivation 0.01 4

kd1 Rate constant for DSBs damage formation 35.0 dsb · Gy−1
8

kd2 Rate constant for DSBs repair 0.4 hr−1
9

α Partial activity of MPFP 0.05 2

µ Growth rate of the cell 0.07 hr−1
10

KMass Maximum cell mass 2.7 4

Wee1T Total concentration of kinase Wee1 1.0 2

Cdc25T Total concentration of phosphatase Cdc25 1.0 2

IET

Total concentration of intermediate enzyme

IE
1.0 2

continued...
6Chosen to fit Chk2 activation threshold after radiation [37].
7Taken from Kozlov et al. [45].
8Taken from Rothkamm and Löbrich [83].
9Taken from Scott [85].
10Informed by Park et al. [80].
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...continued

Symbol Definition Value Units Source

APCT Total concentration of protein APC 1.0 2

Chk2T Total concentration of Checkpoint kinase 2 1.0 4

ATMT Total concentration of ATM 1.0 4
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Chapter 3

Effect of low-dose radiation on the

survival fraction through the

ATM-Chk2 pathway: a numerical

approach

In Chapter 2, we studied the effect of radiation on the G2/M transition through the

ATM-Chk2 pathway. In this chapter, we extend our study by investigating the effect

of radiation on the cell survival of a population of cells. We show that including the

dynamics of the ATM/Chk2 pathway with the cell cycle, as modelled in Chapter 2,

can produce the hyper-radiosensitivity and increased radioresistance (HRS/IRR)

phenomenon observed in the cell survival fraction at low doses of radiation [58].

The cell survival curve is one of the most important tools to study the effect of

radiation on a population of cells. It shows the relationship between the absorbed

dose of radiation and the ability of cells to reproduce. HRS/IRR is a phenomenon

observed in survival fraction curves at low dose of radiation (< 0.1 Gy) in which
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Figure 3.1: Survival fraction showing HRS/IRR. Hyper-radiosensitive (HRS) is
observed for low radiation dose until approximately 0.2 Gy, and increased radiore-
sistance (IRR) is observed for radiation ranging 0.2 to 0.5 Gy. Figure taken from
Marples et al. [58]

cells can be hypersensitive to radiation at low dose but surprisingly gain resistance

for higher dose (see Figure 3.1) [57]. This counterintuitive phenomenon can be used

to make radiation therapy more effective [64].

In Chapter 2, we conjectured that the hyper-radiosensitive portion of the survival

fraction curve is caused by the inability of cells to activate the G2 checkpoint while

the increased radioresistance portion is caused by increased activation of the G2

checkpoint. This conjecture is made on the basis of the ATM and Chk2 pathways

activated by radiation and resulting in changes in the G2/M transition. These ideas

are consistent with the hypothesis of Marples [59] that the G2 checkpoint plays

a mayor role in HRS/IRR based on experimental evidence that HRS/IRR is more

pronounced when cells are synchronized in G2-phase. The question left to answer

is how the effect of radiation on the G2/M transition studied in the previous chapter
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translates to the HRS/IRR phenomenon in the survival fraction curve. The goal for

this chapter is to establish the connection between radiation and survival fraction,

using numerical simulations on the cell cycle and radiation pathway model studied

in Chapter 2.

This chapter is structured as follows. In Section 3.1, we focus on single cells

and introduce the concept of lethal Double Strand Breaks (DSBs) caused by the

effect of radiation on the G2/M transition, which we assume are crucial to determine

the fate of a cell and future generations. In Section 3.2, we extend our study to

a population of cells and propose a model for the cell survival fraction based on

lethal DSBs. In Section 3.3, we simulate the proposed survival fraction model for

asynchronous cells and synchronous cells enriched in G1-, G2-, and M-phase. Our

simulated cell survival curves show an HRS/IRR response more observable in G2

cells. In Section 3.4, we investigate ways to derive a theoretical expression for the

proposed survival fraction model. In Section 3.5, we discuss our preliminary results

and the limitations of our numerical procedure to fit survival fraction curve data.

This discussion opens the opportunity to investigate a more practical theoretical

formulation which will be introduced in Chapter 6.

3.1 Lethal DSBs

In Chapter 2, we studied the effect of radiation on the G2/M transition via the ATM-

Chk2 pathway. We used a regulatory network consisting of the following system of

differential equations:

dMPF

dt
= km0Mass− (km2 + km2aWee1)MPF
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+ (km1 + km1aCdc25)MPFP − (km3 + km3aAPC)MPF, (3.1a)
dMPFP

dt
= (km2 + km2aWee1)MPF − (km1 + km1aCdc25)MPFP

− (km3 + km3aAPC)MPFP , (3.1b)
dWee1

dt
= Vw1

Wee1T −Wee1

Jw1 + (Wee1T −Wee1)
−kw2(MPF + αMPFP )

Wee1

Jw2 +Wee1
,

(3.1c)
dCdc25

dt
= kc1(MPF + αMPFP )

Cdc25T − Cdc25
Jc1 + (Cdc25T − Cdc25)

− (Vc2 + kc2aChk2)
Cdc25

Jc2 + Cdc25
, (3.1d)

dIE

dt
= ki1(MPF + αMPFP )

IET − IE
Ji1 + (IET − IE)

− Vi2
IE

Ji2 + IE
, (3.1e)

dAPC

dt
= ka1IE

APCT − APC
Ja1 + (APCT − APC)

− Va2
APC

Ja2 + APC
, (3.1f)

dMass

dt
= µMass

(
1− Mass

KMass

)
, (3.1g)

dChk2

dt
= kh1ATM DSB

Chk2T − Chk2
Jh1 + (Chk2T − Chk2)

− Vh2
Chk2

Jh2 + Chk2
, (3.1h)

dATM

dt
= kt1DSB

ATMT − ATM
Jt1 + (ATMT − ATM)

− Vt2
ATM

Jt2 + ATM
, (3.1i)

dDSB

dt
= kd1Ḋ(t)− kd2ATM DSB, (3.1j)

subject to the resetting condition

if MPF (t) = θM and
dMPF

dt
(t) < 0 =⇒ Mass(t)← Mass(t)

2
, (3.2)

where the variables denote the concentration of the most important proteins involved

in the G2/M transition and the ATM-Chk2 pathway, the number of DSBs, and the

mass of the cell (see Table 3.1). The parameters denote the average rate of reactions

between given proteins, cell growth, carrying capacity, and other average rates (see

Table 3.3).
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Table 3.1: Name and description of variables in Eqs. (3.1a)–(3.1j). All variables
represent concentration, except Mass and DSB.

Symbol Description

MPF Active Cdk1-cyclin B complex (Mitotic Promoting Factor)
MPFP Inactive, phosphorylated form of MPF
Wee1 Active dephosphorylated form of kinase Wee1 (MPF inactivator)
Cdc25 Active phosphorylated form of the phosphatase Cdc25C (MPF activator)

IE Active form of an intermediate enzyme [94]
APC Active phosphorylated form of APC (Anaphase Promoting Complex)
Chk2 Active phosphorylated form of Chk2 (Checkpoint kinase 2)
ATM Active phosphorylated, monomerized and recruited form of ATM
DSB Recognized Double Strand Brakes formed by Ionizing Radiation
Mass Mass of the cell

We showed that radiation affects the G2/M transition by triggering the G2

checkpoint in coordination with two thresholds:

• Radiation needs to be above a dose-dependent threshold to affect the G2/M

transition, either by delaying entry to mitosis or activating the checkpoint. In

other words, sufficient radiation is necessary to cause sufficient DNA damage

that signals changes in the cell cycle progression during the G2-phase.

• Above the dose-dependent threshold, the G2 checkpoint can be activated

depending on how much the cell has progressed in the cell cycle by the moment

of the radiation. With sufficient time before M-phase, the cell can activate the

G2 checkpoint to repair the DNA damage. However, there is phase-dependent

threshold after which it is too late to activate the G2 checkpoint.

The combination of these two thresholds determines a region in the dose-phase plane

where cells cannot repair DNA damage before entering M-phase. DNA damage is

not repaired either because radiation is too low to affect the G2/M transition or

because the damage happened too late to activate the G2 checkpoint. We can
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visualize such region and the thresholds if we count the number of DSB at M-phase

entry. For that purpose, we first define a few concepts.

We assume that the radiation scheme Ḋ(t) in Eq (3.1j) starts at time t0 and ends

at time tf . Thus, the total dose is defined as

D =

∫ tf

t0

Ḋ(u)du.

Choices for Ḋ that match experiments are single or successive copies of the Dirac

delta and window functions. In either case, we can use the time of radiation t0 and

the total doseD to characterize the radiation scheme. In this chapter, we use a single

radiation pulse at time t0 for the simulations, which we approximate with the Dirac

delta function at time t0, i.e.,

Ḋ(t) = Dδ(t− t0).

The start of the radiation scheme can happen at any moment of the cell cycle

[0, T ], where T is the length of the cell cycle and t = 0 is the exact time after cell

division. However, in simulations, we apply a pulse of radiation anytime during the

interphase [0, tM ], where tM is the moment when MPF reaches the threshold for

mitosis θM = 0.2 from below in the no-radiation case, that is,MPF (tM) = θM and
d
dt
MPF (tM) > 0. As shown in Section 2.3, the time of M-phase entry tM varies

depending on the radiation start time t0 and the radiation scheme Ḋ. Thus, when

there is radiation, we write tM(t0, D); and when there is no radiation we simply

have tM = tM(0, 0).

We are interested in the number of lethal DSBs at M-phase entry tM(t0, D),

49



which we define as

DSBlethal(t0, D) = DSB(tM(t0, D)), (3.3)

provided t0 ∈ [0, tM ] and D ≥ 0. We can compute the number of lethal DSBs

by evaluating the solution to equation (3.1j) at the time of M-phase entry. This is

plotted in Figure 3.2 as a function of time of radiation t0 during the interphase and

low-dose of radiation D (< 1 Gy). In this figure, we observe the region mentioned

above in which cells cannot repair DNA damage before entering M-phase. DSBs

during cell division lead to a loss in the reproductivity and therefore reduce the

survival probability.

The definition of lethal DSBs above applies to a single average cell in a popu-

lation of cells, i.e., an average number of DSB remain at M-phase entry (given by

DSBlethal(t0, D)) when one cell is irradiated t0 hours after the start of the cell cycle

with total dose D. However, survival fraction curves take place at the population

level and with the sole dependence on radiation dose D. We address these points

in the next section, where we introduce the population of cells and remove the time

dependence in the lethal DSBs.

3.2 Survival fraction

We assume that the population of cells has a distribution f(t) of cells over the cell

cycle. That is, a synchronous population of cells corresponds to a distribution f(t)

with modes, and an asynchronous population of cells corresponds to a constant

f(t). Cells synchronized in G2-phase could be described with a distribution with

mean value and mode in the G2-phase, for example, with a Gaussian distribution
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Figure 3.2: Colour map for the number of lethal DSBs at M-phase (3.3). Every
point in the plot is the number of DSBs remaining at the exact moment of M-
phase entry after a pulse of D Gy of radiation was applied at phase time t0. This
figure was obtained numerically by discretizing time ([0, tM ]) and dose ([0, 1] Gy)
domains, simulating the cell cycle model with the radiation scheme at each point,
and stopping at M-phase entry to measure the number of DSBs. The radiation
scheme used here is a radiation pulse with dose rate D (Gy/min) for one minute,
starting at t0. Left: colour map for the full interphase. Right: focus on the last 0.8
hours of the interphase.

wrapped around the cell cycle, also known as von Mises distribution. Choices of

f(t) are developed further in Section 3.3. Introducing a distribution of cell allows

us to investigate the strong HRS/IRR phenomenon observed in cells synchronized

in G2-phase [57].

Given a distribution f(t), we define the average number of lethal DSBs in a

population of cells in interphase , D̂SBlethal, as the weighted average of DSBlethal

over t0

D̂SBlethal(D) =
1

tM

∫ tM

0

DSBlethal(t0, D)
f(t0)

cM
dt0, (3.4)
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where tM is the length of the interphase of a control cell and

cM =

∫ tM

0

f(t)dt < 1.

is the fraction of the population in interphase. Note that by integrating over t0, we

have that D̂SBlethal does not depend on t0. Examining Figure 3.2, we expect the

average number of lethal DSBs to be higher when f(t) has a higher density towards

the end of the G2-phase.

DSBs during the M-phase (between tM and T ) are much more difficult to study

because it is not clear how DSBs are passed after cell division to daughter cells

or affect the G2/M transition in the next generation. In any case, we assume the

DSBs during M-phase have no significant contribution to the survival fraction via

the G2/M checkpoint.

Survival fractions curves are usually collected several generations after irradia-

tion (6–12 generations) [1, 49]. It is also known that DSBs during M-phase produce

subsequent events that affect the survival fraction several generations after radiation,

such as polyploid nucleus, aneuploid cells, and mitotic death [102]. Thus, we take

into account the effect of several generations by assuming that the average number

of lethal events due to G2 checkpoint failure is proportional to the weighted average

number of lethal DSBs in the first generation, i.e.,

λG2/M(D) = γD̂SBlethal(D) =
α0

tM

∫ tM

0

DSBlethal(t0, D)f(t0)dt0, (3.5)

where γ is a proportionality constant, and α0 = γ
cM

. This means that one lethal

DSB can cause more than one lethal event downstream. We expect that the average

number of lethal DSBs in equation (3.4) underestimates the average number of lethal
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events in equation (3.5), i.e., γ ≥ 1 thus α0 ≥ 1. Therefore, γ accounts for both the

population of cell in interphase and the effect that the affected first generation has

on subsequent generations.

Now we consider all other lethal events that are not related to G2 checkpoint

failure (such as radiation-induced apoptotic signals) but decrease the survival frac-

tion. We assume that the the average number of such lethal events, which we denote

as the average number of other lethal events, has a linear-quadratic from

λother(D) = α̂D + β̂D2, (3.6)

for positive constants α̂ and β̂. This assumption is reasonable since the Linear-

Quadratic (LQ) model (1.1) is an appropriate model for most survival fraction

curves [8].

The above definitions of average number of lethal events is consistent in the

sense that equations (3.5) and (3.6) do not count a lethal events twice. Thus, we can

define the total average number of lethal events as

λ(D) = λother(D) + λG2/M(D)

= α̂D + β̂D2 +
α0

tM

∫ tM

0

DSBlethal(t0, D)f(t0)dt0.
(3.7)

Note that the term λG2/M(D) might also include linear and quadratic terms. There-

fore, the notation α̂ and β̂ is to indicate that these parameter might be underestimation

of the corresponding parameters in the LQ model.

Having expression (3.7) and assuming Poisson’s Law for the number of lethal

lesions k, we can now find the survival fraction given by the probability that there
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are no lethal lesions in the cell

S(D) = P (k = 0;λ(D)) = e−λ(D) = e−λG2/M (D)e−λother(D), (3.8)

whereP is the probability density function of the Poisson distribution with parameter

λ(D).

We believe that the most general model for the survival fraction S(D) is based

on the “yield of lesions”

λ(D) = − ln(S(D)) = αD + βD2  
λother and λG2/M

+ o(D2)  
λG2/M

, (3.9)

and that modelling specific phenomena might lead to higher other terms not present

in the LQ model. In particular, the average number of lethal lesions due to G2

checkpoint failure might lead to higher other terms not present in the LQ model but

necessary for the the HRS/IRR phenomenon (see Figure 3.1).

In the next section, we use numerical simulations of the cell cycle model (3.1)

to explore the potential of the survival fraction (3.8) with total average number of

lethal events (3.7) to produce the HRS/IRR phenomenon.

3.3 Results

In this section, we simulate cell survival fraction curves according to equation (3.8).

In all our simulations, we use the start of the cell cycle as initial condition and the

parameter values in Table 3.3. The radiation scheme consists of a pulse of radiation

of intensityD at the time of radiation t0. This is done numerically by redefining the

value of DSBs at t0 to DSB(t0) = kd1D (see (3.1j)) and continue the simulation
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untilMPF reaches the threshold for mitosis θM = 0.2 from below. The simulations

are carried out in three steps.

1. We solve the system of equations corresponding to the cell cycle and radiation

pathway (3.1) using parameter values in Table 3.3 and save the state immedi-

ately after the resetting condition (3.2), which corresponds to the start of the

cell cycle. This is the initial condition used in the next step. Note that the

simulation has to run long enough in order to guarantee that the stable limit

cycle has been reached.

2. We discretize the radiation domain D ∈ [0, 2] and time of radiation domain

t0 ∈ [0, tM ], with finer resolution at the end of the time domain. Then, we

solve the cell cycle and radiation pathway from the start of the cell cycle and

find the number of lethal DSBs in equation (3.3) for the different values of

radiation dose D and start of radiation t0. This is illustrated in Figure 3.2.

Note that the finer resolution at the end of the time domain is necessary to

obtain the graph on the right of this figure.

3. We use these values of lethal DSBs and a given distribution f(t) to calcu-

late numerically the average number of lethal events due to G2 checkpoint

failure (3.5) using the trapezoidal rule. Then, we compute the cell survival

fraction (3.8) based on the total average number of lethal events (3.7). This

step is applied for four distributions of cells f(t) over the cell cycle to show

the importance of G2-phase cells on the cell survival fraction curve.

Marples showed that cells synchronized in G2-phase have a more prominent

HRS/IRR effect while asynchronous cells have a small HRS/IRR effect (see Fig-

ure 3.3) [59]. Cells synchronized in G1- and S-phase, on the other hand, do not
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Figure 3.3: Survival curve data from asynchronous (G1=70%, S=15%, and
G2=15%) and synchronous cells in G1- (~90%), S- (~60%), and G2-phase (~80%)
of V79 cells. Taken from Marples [59].

have an evident HRS/IRR response. To account for the importance of the syn-

chronization component of these experiments, we choose four distributions f(t) in

(3.7), corresponding to the four distributions of cells over the cell cycle shown in

Figure 3.3: uniform distribution, and cell populations enriched in G1-, S-, and G2-

phase. We use the uniform distribution on the [0, T ] domain for the asynchronous

case, and the Von Mises distribution for the synchronous cases. In the following

numerical experiments, we replicate the survival fraction curves in Figure 3.3 using

the distributions mentioned above.

For the values of α̂ and β̂ in equation (3.6), we use the values estimated in Tables

II and III in Marples and Joiner [57], α̂ = 0.17 and β̂ = 0.04. These values were

chosen to have referential order of magnitude and α/β-ratio. For the α0 value in

equation (3.5), we use α0 = 15. This value was chosen to obtain similar survival

fraction curves to those in Figure 3.3.
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3.3.1 Uniform distribution

The probability density function for the uniform distribution (see Figure 3.4a) is

given by

f(t|T ) = 1

T
,

where T is the length of the cell cycle.

Using the uniform distribution and the number of lethal DSBs obtained numer-

ically (see Figure 3.2), we compute the average number of lethal events due to G2

checkpoint failure λG2/M(D) in Figure 3.4b, according to equation (3.5). Each

horizontal cross section of the graph of Figure 3.2 produces a point in Figure 3.4b.

The survival fraction S(D) in Figure 3.4c is then computed according to equation

(3.8). In this figure, we can observe a moderate HRS/IRR effect in the survival

fraction. Our results show a less pronounced effect, compared to the experimental

results (Figure 3.3).

The spike observed at very low-dose in Figure 3.4 is caused by the dynamics

of ATM activation at very low dose. According to the quasi-steady state of the

Goldbeter-Koshland kinetics (refer to Appendix 2.A), ATM is activated when

kt1DSB

Vt2
> 1, =⇒ DSB >

Vt2
kt1

=
3.8

30
= 0.127,

that is, when the number of DSBs is larger than 0.127. In terms of the radiation

pulse, this is equivalent to

kd1D = DSB > 0.127 =⇒ D >
0.127

kd1
=

0.127

35
= 0.003619,

or 3 mGy. Therefore, for radiation dose less than 3 mGy, DSBs are not recognized

and therefore not repaired; for radiation dose equal to 3 mGy, ATM becomes
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Figure 3.4: Numerical survival fraction with uniform distribution. a) Probability
density function for the uniform distribution. The colours represent each phase of
the cell cycle: G1 (blue), S (red), and G2 (green). Refer to Section 3.3.2 for details
on the colouring. b) Average number of lethal events (3.5). c) Survival fraction
curves: effect of radiation of the G2/M transition e−λG2/M (D) (green), and combined
effect of radiation of the G2/M transition with the linear and quadratic terms as
expressed in equation (3.8) (blue).

partially active and the average number of lethal events reaches a peak; and for

radiation dose larger than 3 mGy, ATM becomes fully active which activates DSB

repair mechanisms. We conjecture that ATM dynamics at very low dose causes the

ultra-sensitive initial slope (αs in Figure 3.1). We postpone a further discussion of

the effect of ATM dynamics to Section 3.3.3.

3.3.2 Von Mises distribution

The probability density function for the Von Mises distribution is given by

f(t|µ, κ) = eκ cos(2π(t−µ)/T )

TI0(κ)
,
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where µ is the mean value (location parameter) and peak of the distribution, κ is

a measure of the concentration (1/κ is analogous to dispersion σ in the Gaussian

distribution), and I0(κ) is the modified Bessel function of order 0. We assume that

the Von Mises distribution replicates the distribution of synchronized population of

cells.

To determine the value of the location parameter µ, we first find the maximum

concentration thresholds of MPF for G1- and S-phases so that percentage of each

phase under the uniform distribution matches the experimental percentages for the

asynchronous case presented in Figure 3.3. The resulting values for the concentration

threshold, time, and percentage for each phase are summarized in Table 3.2. These

values are used to colour the different stages in Figure 3.4a. Second, we modify

the value of the location parameter µ to resemble the experimental percentages in

Figure 3.3 for the asynchronous cases. The resulting values for location parameter

and percentage for each phase are summarized in Table 3.2. We use a relatively

high value for the scale parameter κ = 8 (small dispersion).

Case 1: Von Mises distribution with mean in the G1 phase.

To account for a population of cells enriched in G1-phase, we use the Von Mises

distribution with µ = 14.3 hrs. The percentage of cells in each stage in shown in

Table 3.2, and the probability density function is shown in Figure 3.5a. The average

number of lethal events due to G2 checkpoint failure in Figure 3.5b is small, resulting

in a survival fraction in Figure3.5c with no HRS/IRR effect. This is consistent with

the results of Marples in Figure 3.3.

Case 2: Von Mises distribution with mean in the S phase.

To account for a population of cells enriched in S-phase, we use the Von Mises

distribution with µ = 16.4 hrs. The percentage of cells in each stage in shown in

59



Table 3.2: Concentrations, times, and percentages. MPF maximum concentration
thresholds refer to the MPF values that characterize each stage. These values were
selected to match the percentage of asynchronous cells reported in Figure 3.3. More
specifically, the MPF maximum thresholds for G1 and S where chosen to reach 70%
and 15% in the asynchronous cells to match these values reported by Marples [59],
while the MPF maximum thresholds for G2 is taken from Gérard et al. [25]. Using
the same MPF concentration threshold found in the previous step, the value of the
parameter µ in the Von Mises distribution was selected to match the percentage of
synchronous cells mentioned in Figure 3.3.

G1 S G2

MPF maximum threshold 0.0274 0.0363 0.2
Duration of phase (hrs) 15.9985 3.437 3.381

Asynchronous cells 70 % 15 % 15 %
Synchronous G1-phase (µ = 14.3 hr) 90 % 10 % 0 %
Synchronous S-phase (µ = 16.4 hr) 38 % 60 % 2 %

Synchronous G2-phase (µ = 21.1 hr) 10 % 10 % 80 %

Table 3.2, and the probability density function is shown in Figure 3.6a. As in the

previous case, the average number of lethal events due to G2 checkpoint failure in

Figure 3.6b is small, resulting in a survival fraction in Figure3.6c with no HRS/IRR

effect. This is also consistent with the results of Marples in Figure 3.3.

Case 3: Von Mises distribution with mean in the G2 phase.

To account for a population of cells enriched in G2-phase, we use the Von Mises

distribution with µ = 21.1 hrs. as shown in Figure 3.7a. The percentage of cells

in each stage in shown in Table 3.2, and the probability density function is shown

in Figure 3.7a. As opposed to the previous two cases, the average number of lethal

events due to G2 checkpoint failure in Figure 3.7b is more pronounced (with a

particular bump) around 0.2 Gy, resulting in a survival fraction in Figure3.7c with

a distinct HRS/IRR effect. This is also consistent with the results of Marples in

Figure 3.3.

60



0 5 10 15 20

phase

0.0

0.1

0.2

0.3

D
is

tr
ib

u
ti

o
n

d
e
n
si

ty

0.00 0.25 0.50 0.75 1.00

Dose (Gy)

0.0

0.1

0.2

0.3

G
2

/M
(D

)

0.00 0.25 0.50 0.75 1.00

Dose (Gy)

0.6

0.7

0.8

0.9

1.0

S
u
rv

iv
a
l 
fr

a
ct

io
n

a)

b)

c)

Figure 3.5: Numerical survival fraction with Von Mises distribution for cells en-
riched in G1-phase. a) Probability density function for the Von Mises distribution
with µ = 14.3. The colours represent the each phase of the cell cycle: G1 (blue), S
(red), and G2 (green). b) Average number of lethal events (3.5). c) Survival fraction
curves: effect of radiation of the G2/M transition e−λG2/M (D) (green), and combined
effect of radiation of the G2/M transition with the linear and quadratic terms as
expressed in equation (3.8) (blue).

3.3.3 Effect at very low-dose caused by ATM dynamics

In Figures 3.4–3.7, we observe a “hump” or “spike” in the average number of lethal

events and survival fraction curves at very low-dose (< 1 cGy). We already stated

that this is caused by the effect of ATM activation in the model (see equation (3.1i))

at very low-dose (refer to Section 2.3.3 for more details about the activation pathway

of ATM). A minimum of number DSBs is required for ATM activation, which in

turn is necessary for DSBs repair. Consequently, when ATM is inactive, there is no

repair of DSBs and the average number of DSBs during M-phase entry is maximal.

This causes a steep slope in the average number of lethal events and the survival

fraction.

We predict that ATM activation causes a similar hyper-radiosensitive effect at
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Figure 3.6: Numerical survival fraction with Von Mises distribution for cells en-
riched in S-phase. a) Probability density function for the Von Mises distribution
with µ = 16.4. The colours represent the each phase of the cell cycle: G1 (blue), S
(red), and G2 (green). b) Average number of lethal events (3.5). c) Survival fraction
curves: effect of radiation of the G2/M transition e−λG2/M (D) (green), and combined
effect of radiation of the G2/M transition with the linear and quadratic terms as
expressed in equation (3.8) (blue).

very low-dose (< 1 mGy) to that of Chk2 activation at low-dose (∼ 0.1 Gy).

However, the former is not enough to activate the G2 checkpoint since Chk2 is

necessary to inhibit Cdc25 activity [16]. HRS/IRR response at very low-dose has

already been reported in by [92] and Joiner et al. [39].

To show that the spiking effect at very low-dose observed in Figures 3.4–3.7 is

caused by the activation ATM, we reproduce Figure 3.7 without the dynamics of

ATM. To eliminate ATM activation dynamics, we remove equation (3.1i) from the

cell cycle and radiation pathway model and set ATM to be active (ATM = 1). The

resulting average number of lethal events and survival fraction curve is shown in

Figure 3.8. Here, we observe that there is no spiking effect at very low-dose, yet

the HRS/IRR at low-dose remains. The same result, no spike at very low-dose, is
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Figure 3.7: Numerical survival fraction with Von Mises distribution for cells en-
riched in G2-phase. a) Probability density function for the Von Mises distribution
with µ = 21.1. The colours represent the each phase of the cell cycle: G1 (blue), S
(red), and G2 (green). b) Average number of lethal events (3.5). c) Survival fraction
curves: effect of radiation of the G2/M transition e−λG2/M (D) (green), and combined
effect of radiation of the G2/M transition with the linear and quadratic terms as
expressed in equation (3.8) (blue).
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Figure 3.8: Numerical survival fraction with Von Mises distribution for cells en-
riched in G2-phase and fixed ATM concentration. a) Probability density function
for the Von Mises distribution with µ = 21.1. The colours represent the each phase
of the cell cycle: G1 (blue), S (red), and G2 (green). b) Average number of lethal
events (3.5). c) Survival fraction curves: effect of radiation of the G2/M transition
e−λG2/M (D) (green), and combined effect of radiation of the G2/M transition with
the linear and quadratic terms as expressed in equation (3.8) (blue).

obtained in the asynchronous cells and synchronous cells in G1 and S cases (results

not shown here).

3.4 Lethal DSBs and time available for repair

We have shown with numerical simulations that DSBs at the moment of M-phase,

defined as lethal DSBs in equation (3.3), produce a HRS/IRR phenomenon in the

survival fraction (defined by equation (3.8)). However, we should note that the

equation for DSBs (3.1j) can be explicitly solved if we assume that ATM is always

active (ATM = 1). Recall from Figure 2.4 that ATM is active for radiation dose

above 5 mGy and that this activation is maintained above 0.1 DSBs (in average).
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Thus, the assumption of active ATM is valid for relevant low-dose radiation above

0.05 Gy. In such case, equation (3.1j) becomes

dDSB

dt
= kd1Ḋ(t)− kd2DSB.

For a radiation pulse of intensity D at time t0

Ḋ(t) = Dδ(t− t0),

and zero DSBs at t0 (initial condition), the equation above has solution

DSB(t) = kd1De
−kd2(t−t0), t ≥ t0.

Using the definition of lethal DSBs (3.3), we get

DSBlethal(t0, D) = kd1De
−kd2(tM (t0,D)−t0), (3.10)

where tM(t0, D) is the time of M-phase entry. Although the number of DSB can be

found explicitly without the cell cycle model, the number of lethal DSBs is highly

dependent on the cell cycle through tM(t0, D).

In the exponent in equation (3.10), we identify a time difference with a very

important biological meaning, namely the length of time between the moment of

radiation t0 and the M-phase entry tM(t0, D). We define this value as the time

available for repair,

tR(t0, D) = tM(t0, D)− t0. (3.11)

Figure 3.9, shows the time available for repair tR(t0, D) using the cell cycle model

and radiation pathway, in the same way that the number of lethal DSBs in Figure 3.2
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Figure 3.9: Colour map for the time available for repair of DSBs (3.11). The
colour bar represents the time available for repair. Left: colour map for the full
cell cycle [0, T ]. Right: zoom in the last 0.8 hours of the cell cycle. This figure
was obtained numerically by discretizing the time ([0, T ]) and dose domains ([0, 1]
Gy), simulating the cell cycle model with the radiation scheme at each point, and
stopping at M-phase entry to measure the number of DSBs. The radiation scheme
used here is a radiation pulse with dose rate D (Gy/min) for one minute, starting at
t0.

was obtained. Note that, alternatively, we can obtain Figure 3.2 by evaluating

tR(t0, D) in Figure 3.9 into the expression of DSBlethal (3.10).

In Figure 3.9, we observe two regions, one region away from the G2/M transition

(before approximately 17 hrs and indicated within a blue box) where the time

available for repair is primarily constant with respect to t0 (vertical cross sections),

and one region around the G2/M transition (after approximately 17 hrs and indicated

with a green box) where the time available for repair is more complex. We conjecture

that this second region is dictated by the SNICVc2 bifurcation studied in Chapter 2.
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Moreover, we hypothesize that we should be able to approximate the time available

for repair with an explicit formula if we approximate the cell cycle model around

the G2/M transition with the SNIC bifurcation normal form. Characterization of

tR in these two regions could allow us to find an explicit expression for the average

number of lethal events due to G2 checkpoint failure (3.5). This is the subject of

Chapter 6.

3.5 Discussion

We defined a survival fraction model (3.8) considering the effect of radiation on

the G2/M transition in a population of cells. This survival fraction model accounts

for the average number of lethal events due to G2 checkpoint failure (3.5) based

on average number of DSBs entering M-phase (3.4). Other lethal events affecting

the survival fraction that are not related to the G2/M transition, such as radiation-

induced apoptosis and necrosis [69], are lumped into linear and quadratic terms in

(3.6), inspired by the Linear-Quadratic model. Investigating lethal event accounting

explicitly for mechanisms like apoptosis and necrosis is part of future work.

To show that the effect of radiation of the G2/M transition produces an HRS/IRR

effect on the survival fraction curve, we simulated the survival fraction model using

the cell cycle and radiation pathway model and assumed different distribution of

population of cells over the cell cycle. First, we simulated the cell cycle and radiation

pathway model for a pulse of radiation starting at different moments of the cell cycle

and different values of total dose, and recorded the number of DSB at the moment of

M-phase. Then, we used four distributions that replicate experiments on a population

of cells—uniform distribution (asynchronous cells), Von Mises distribution with

mean in the G1-phase (cells enriched in G1), Von Mises distribution with mean
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in the S-phase (cells enriched in S), and Von Mises distribution with mean in the

G2-phase (cells enriched in G2)—to produce cell survival curves.

Since DSBs during M-phase affect the fate of cells and their ability to reproduce

[102], we assumed that DSBs become lethal entering M-phase. In our simulations,

we assumed that this happens when the MPF concentration reaches the threshold

θM = 0.2, which initiates mitosis. For a control cell, this happens tM hours after

cell division, but for an irradiated cell this happens at a later time.

In our results, G1- and S-enriched cells do not show an HRS/IRR effect, asyn-

chronous cells show little to no HRS/IRR effect, and G2-enriched cells show a

pronounced HRS/IRR effect in the cell survival fraction curve. This is consistent

with experimental results [59].

Moreover, we identify that ATM threshold activation causes a similar hyper-

radiosensitivity effect at very low-dose. This effect causes a steep slope in the

survival fraction at very low-dose. We hypothesize that inactivity of ATM is

responsible for the initial slope of hyper-radioresistance, and that Chk2 activation

during late G2 combined with the SNIC driven by Vc2 are responsible for the

HRS/IRR phenomenon. HRS/IRR response to very low-dose radiation has been

reported and attributed to exposure time to radiation in connection to ATM-mediated

recognition of DSBs [92]. Their results are consistent with ours, although we do

not include exposure time to radiation in our experiments.

We also identified the time available for repair (3.11) as an important quantity

to compute the number of lethal DSBs (3.3) explicitly. The subject of Chapter 6 is

to compute theoretically the time available for repair based on a one-dimensional

reduction of the cell cycle model around the SNICVc2 bifurcation discussed in

Chapter 2. Such reduction to one-dimension is the goal of Chapter 5, and is based

on a theoretical general result presented in Chapter 4.
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3.A Table of parameter values

Table 3.3: Parameter values. Most parameter values have been taken from Gérard
et al. [25] or adapted to match the cell cycle length in mammalian cells. Parameters
related to the radiation pathway come from different sources or were cautiously cho-
sen on the basis of numerical simulations. Details are provided in the footnotes that
are referenced in the Source column. Parameters with no units are dimensionless.

Symbol Definition Value Units Source

km0

Rate of synthesis of Cdk-cyclin fusion pro-

tein, MPF
0.2 hr−1

1

km1

Rate constant for the dephosphorylation of

MPF
0.4 hr−1

2

km1a

Rate constant for the dephosphorylation of

MPF by Cdc25
20.0 hr−1

2

km2 Rate constant for the phosphorylation of MPF 0.4 hr−1
2

km2a

Rate constant for the phosphorylation of MPF

by Wee1
50.0 hr−1

1

km3

Rate constant for the degradation of MPF and

MPFP

0.2 hr−1
2

km3a

Rate constant for the degradation of MPF and

MPFP by APC
6.35 hr−1

2

Vw1

Maximum activation rate, by dephosphoryla-

tion, of Wee1
1.0 hr−1

2

kw2 Rate constant for activation of Wee1 by MPF 5.3 hr−1
2

continued...

1Taken from Gérard et al. [25]; slightly modified to accommodate the correct G2/M transition
dynamics.

2Taken from Gérard et al. [25]; scaling factor of 8.5 needed to rescale the length of the cell cycle
to approximately 24 hrs.
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...continued

Symbol Definition Value Units Source

Jw1 Michaelis constant for Wee1 activation 0.01 3

Jw2 Michaelis constant for Wee1 inactivation 0.01 3

kc1
Rate constant for Cdc25 phosphorylation by

MPF
8.5 hr−1

2

Vc2

Maximum inactivation rate, by dephosphory-

lation, of Cdc25
1.4 hr−1

1

kc2a
Rate constant for the inactivation of Cdc25 by

Chk2
2.4 hr−1

4

Jc1 Michaelis constant for Cdc25 activation 0.01 3

Jc2 Michaelis constant for Cdc25 inactivation 0.01 3

ki1 Rate constant for the activation of IE by MPF 1.7 hr−1
2

Vi2 Maximum inactivation rate of IE 0.4 hr−1
2

Ji1 Michaelis constant for IE activation 0.001 3

Ji2 Michaelis constant for IE inactivation 0.001 3

ka1
Rate constant for the activation, by phospho-

rylation, of APC by IE
6.8 hr−1

2

Va2

Maximum inactivation rate, by phosphoryla-

tion, of APC
1.7 hr−1

2

Ja1 Michaelis constant for APC activation 0.001 3

Ja2 Michaelis constant for APC inactivation 0.001 3

continued...

3Taken from Gérard et al. [25].
4Educated guess.
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...continued

Symbol Definition Value Units Source

kh1
Rate constant for the activation, by phospho-

rylation, of Chk2 by ATM
0.32 hr−1

5

Vh2

Maximum inactivation rate, by dephosphory-

lation, of Chk2
1.9 hr−1

6

Jh1 Michaelis constant for Chk2 activation 0.01 4

Jh2 Michaelis constant for Chk2 inactivation 0.01 4

kt1

Rate constant for the activation (recruitment

and autophosphorylation) of ATM around

DSB repair foci

30 dsb−1hr−1
7

Vt2 Maximum inactivation rate of ATM 3.8 hr−1
2

Jt1
Michaelis constant for ATM auto-

phosphorylation
0.01 4

Jt2 Michaelis constant for ATM deactivation 0.01 4

kd1 Rate constant for DSBs damage formation 35.0 dsb · Gy−1
8

kd2 Rate constant for DSBs repair 0.4 hr−1
9

α Partial activity of MPFP 0.05 2

µ Growth rate of the cell 0.07 hr−1
10

KMass Maximum cell mass 2.7 4

Wee1T Total concentration of kinase Wee1 1.0 2

continued...

5Chosen to fit activation time presented by Buscemi et al. [11].
6Chosen to fit Chk2 activation threshold after radiation [37].
7Taken from Kozlov et al. [45].
8Taken from Rothkamm and Löbrich [83].
9Taken from Scott [85].
10Informed by Park et al. [80].
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...continued

Symbol Definition Value Units Source

Cdc25T Total concentration of phosphatase gCdc25 1.0 2

IET

Total concentration of intermediate enzyme

IE
1.0 2

APCT Total concentration of protein APC 1.0 2

Chk2T Total concentration of Checkpoint kinase 2 1.0 4

ATMT Total concentration of ATM 1.0 4
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Chapter 4

Carryover of a saddle-node

bifurcation after transformation of a

parameter into a variable

In this chapter, we are interested in the conditions such that a saddle-node bifurcation

for the system

ż = f(z;µ1, µ2), (4.1)

where z ∈ Rn and µ1, µ2 ∈ R, manifests itself after we extend the system by

transforming one of the parameters, for example, µ1, into a variable. This defines

the extended system

ż = f(z, µ1;µ2),

µ̇1 = g(µ1;µ2),

(4.2)

where a saddle-node bifurcation occurs and g(µ1;µ2) is the vector field of the new

variable µ1. We call this saddle-node the carryover of a saddle-node bifurcation in

the original system (4.1) to the extended system (4.2). Note that the function g does
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not depend on z. The case where g depends on z is beyond the scope of this chapter,

but we briefly discuss this case in Section 4.3.

Saddle-node bifurcations in Rn are characterized by three conditions: singular-

ity, nondegeneracy, and transversality conditions. They guarantee the creation (or

destruction) of two equilibria as one parameter crosses the bifurcation value. This

is summarized in the following results taken from Meiss [63, Ch. 8].

Theorem 4.0.1 (saddle node). Let f ∈ C2(Rn ×Rk,Rn), and suppose that f(z;µ)

satisfies

f(0; 0) = 0, spec(Dzf(0; 0)) = {0, λ2, λ3, . . . , λn : λk ̸= 0, k ̸= 1}. (4.3)

Choose coordinates so that Dzf(0; 0) is diagonal in the zero eigenvalue and set

z = (x, y) where x ∈ R1 corresponds to the zero eigenvalue and y ∈ Rn−1 are the

remaining coordinates. Then

ẋ = f1(x, y;µ),

ẏ =My + f2(x, y;µ),

(4.4)

where f1(0, 0; 0) = 0, f2(0, 0; 0) = 0, Dzf1(0, 0; 0) = 0, Dzf2(0, 0; 0) = 0, and M

is an invertible matrix. Suppose that

Dxxf1(0, 0; 0) = c ̸= 0. (4.5)

Then there exists an interval I(µ) containing 0, functions y = η(x;µ) and extremal

value m(µ) = Extx∈I(µ)[f1(x; η(µ);µ)], and a neighborhood of µ = 0 such that if

m(µ)c > 0 there are no equilibria and ifm(µ)c < 0 there are two. Suppose thatM

has a u-dimensional unstable space and an (n− u− 1)-dimensional stable space.
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Then, when there are two equilibria, one has a u-dimensional unstable manifold and

an (n − u)-dimensional stable manifold and the other has a (u + 1)-dimensional

unstable manifold and an (n− u− 1)-dimensional stable manifold.

Equations (4.3) and (4.5) are the singularity and nondegeneracy conditions,

respectively. They are necessary conditions for the function f1 to be zero up to

the zero- and first-order approximations about the bifurcation point, but nonzero in

the second-order approximation. The function y = η(x;µ) allows us to reduce the

dynamics in a neighborhood of the bifurcation point to one-dimension, i.e.,

ẋ = f1(x, η(x;µ);µ).

The extremal value function m(µ) determines a single condition on the parame-

ters, m(µ) = 0, along which two equilibria are created (or destroyed). Having

one condition on the parameters means that the bifurcation that takes place has

codimension-one. In order to be a saddle-node bifurcation, the equilibria need to

be created as a some combination of the parameters crosses the bifurcation point.

This can be guaranteed with a simple condition.

Corollary 4.0.1. If µ1 is a single parameter such that

Dµ1f1(0, 0; 0) ̸= 0, (4.6)

then a saddle-node bifurcation takes place when µ1 crosses zero.

Equation (4.6) is the transversality condition that guarantees that m(µ) = 0 is

crossed transversally as µ1 crosses zero. Note that µ1 is an arbitrary parameter, and

that the transversality condition can hold for several parameters at the same time.
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We only consider saddle-node bifurcations that take place as a single parameter

crosses the bifurcation point.

In the context of this chapter, we only consider two parameters for the sake

of simplicity, i.e., µ = (µ1, µ2) ∈ R2. We show that as long as a saddle-node

bifurcation takes place in system (4.1) for at least one of the parameters, the extended

system (4.2) also has a saddle-node bifurcation for the other parameter (the extended

variable does not have to be a bifurcation parameter in the original system) under

some singularity and transversality conditions.

The Implicit Function Theorem is an essential tool in this chapter and in the

study of saddle-node bifurcations in general. For example, the function y = η(x;µ)

in Theorem 4.0.1 is consequence of this theorem. The following form of the Implicit

Function Theorem is taken from Meiss [63, Ch. 8].

Theorem 4.0.2 (implicit function). Let U be an open set in Rn × Rk and F ∈

Cr(U,Rn)with r ≥ 1. Suppose there is a point (x0, µ0) ∈ U such thatF (x0;µ0) = c

and DxF (x0;µ0) is a nonsingular matrix. Then there are open sets V ⊂ Rn and

W ⊂ Rk and a unique Cr function ξ(µ) : W ↦→ V for which x0 = ξ(µ0) and

F (ξ(µ);µ) = c.

This chapter is structured as follows. In Section 4.1, we look at the case

where system (4.1) is one dimensional, in which case we replace z ∈ Rn with

x ∈ R1. We find conditions such that the two-dimensional extended system (4.2)

has a saddle-node bifurcation. Moreover, we provide a graphical way to easily

verify such conditions: the nullcline of the new equation (g = 0 in the extended

system (4.2)) has to intersect transversally the two-parameter bifurcation curve of

the original system (4.1). Then, we apply our results to a few illustrative examples.

In Section 4.2, we expand our results to the n-dimensional case and apply our results
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to one illustrative example. Finally, in Section 4.3, we discuss our results and further

research.

4.1 One-dimensional case

In this section, we focus on the case where the variable z in the system (4.1) is

one-dimensional, i.e., the system

ẋ = f(x;µ1, µ2), (4.7)

where x ∈ R, µ1, µ2 ∈ R, and f is a sufficiently smooth function on (x, µ1, µ2).

This system is extended by transforming one of the parameters, for example, µ1,

into a variable to define the extended system

ẋ = f(x, µ1;µ2),

µ̇1 = g(µ1;µ2),

(4.8)

where g(µ1;µ2) is the sufficiently smooth vector field of the new variable µ1. We

want to find conditions for the carryover of a saddle-node bifurcation in the original

(4.7) to the extended system (4.8).

Suppose, without loss of generality, that the saddle-node bifurcation for (4.7)

occurs at the origin as one parameter, µ1, crosses zero. That is, f at (x, µ1, µ2) =

(0, 0, 0) satisfies the singularity conditions

⎧⎪⎨⎪⎩
f(x;µ1, µ2) = 0,

Dxf(x;µ1,µ2) = 0,

(4.9)
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and the nondegeneracy and transversality conditions

⎧⎪⎨⎪⎩
Dxxf(x;µ1, µ2) ̸= 0,

Dµ1f(x;µ1, µ2) ̸= 0.

(4.10)

Note that system (4.9) has two equations in R3 with coordinates (x, µ1, µ2) and

Jacobian

J =

⎛⎜⎝Dxf Dµ1f Dµ2f

Dxxf Dxµ1f Dxµ2f

⎞⎟⎠ =

⎛⎜⎝ 0 Dµ1f Dµ2f

Dxxf Dxµ1f Dxµ2f

⎞⎟⎠ .

This matrix has full rank since

det

⎛⎜⎝Dxf Dµ1f

Dxxf Dxµi
f

⎞⎟⎠ = det

⎛⎜⎝ 0 Dµ1f

Dxxf Dxµ1f

⎞⎟⎠ = −Dµ1fDxxf ̸= 0,

by conditions (4.9) and (4.10). The Implicit Function Theorems 4.0.2 guarantees

the existence of an interval I and unique functions

x = X (µ2),

µ1 =M(µ2),

(4.11)

for µ2 ∈ I , such that

X (0) = 0, M(0) = 0,

and the singularity condition (4.9) is satisfied. This defines a smooth one-dimensional

curve Γ that follows the bifurcation point (x, µ1, µ2) = (0, 0, 0) and is parameterized
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by µ2, i.e.,

Γ = {(x, µ1, µ2) : x = X (µ2), µ1 =M(µ2), µ2 ∈ I}, (4.12)

and points in Γ satisfy (4.9).

By continuity, we can start from (x, µ1, µ2) = (0, 0, 0) and follow the points

that satisfy the singularity conditions (4.9) and the nondegeneracy and transversality

conditions (4.10) to extendΓ. If the transversality condition is violated at some point,

Dµ1f = 0, but the same condition is satisfied for the other parameter, Dµ2f ̸= 0,

we apply similar arguments to parameterize Γ by µ1 in that section. Hence, we

can extend Γ from the bifurcation point (x, µ1, µ2) = (0, 0, 0) beyond the interval I

as long as the transversality condition is satisfied for at least one of the parameters

(see Figure 4.1). The projection of the extended Γ onto the (µ1, µ2)-plane, given by

π : (x, µ1, µ2) ↦→ (µ1, µ2), defines an implicit function

h(µ1, µ2) = 0,

known as bifurcation boundary, commonly found numerically using continuation

(for example, the curve in Figure 2.6c that follows the SNICMass bifurcation). Note

that, although Γ is a smooth curve, h(µ1, µ2) = 0 is not necessarily smooth at every

point. For more details on two-parameter bifurcations see Kuznetsov [48].

If the extended system (4.8) has a saddle-node bifurcation that is the carryover of

the saddle-node bifurcation of interest in original system (4.7), then this bifurcation

must take place on Γ as it is the set of points satisfying the conditions for a saddle-

node bifurcation.

Proposition 4.1.1. Consider the system (4.7). Suppose f(x;µ1, µ2) ∈ C2(R ×

79



Figure 4.1: A bifurcation curve Γ and its corresponding bifurcation boundary
h(µ1, µ2) = 0 (projection onto the (µ1, µ2)-plane). Modified from Figure 8.1 in
Kuznetsov [48].

R2,R)with a nonhyperbolic equilibrium at the origin, f(0; 0, 0) = 0,Dxf(0; 0, 0) =

0, and satisfying the nondegeneracy condition

Dxxf(0; 0, 0) ̸= 0,

and transversality condition for either µ1 or µ2

Dµ1f(0; 0, 0) ̸= 0 or Dµ2f(0; 0, 0) ̸= 0,

i.e., the system (4.7) has a saddle-node bifurcation where either µ1 or µ2 is the

bifurcation parameter. This defines a one-dimensional smooth curve Γ ⊂ R3 in

a neighbourhood of (x, µ1, µ2) = (0, 0, 0) in which f satisfies the singularity and

nondegeneracy conditions.
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Consider the extended system (4.8) by transforming parameterµ1 into a variable,

where f ∈ C2(R2 × R,R) and g ∈ C2(R× R,R). If there is a point (x, µ1, µ2) =

(x∗, µ∗
1, µ

∗
2) ∈ Γ such that g(µ1;µ2) satisfies the singularity conditions

g(µ∗
1;µ

∗
2) = 0, Dµ1g(µ

∗
1;µ

∗
2) = b ̸= 0, (4.13)

and the transversality condition

det

⎛⎜⎝Dµ1f Dµ1g

Dµ2f Dµ2g

⎞⎟⎠ = Dµ1fDµ2g −Dµ1gDµ2f ̸= 0, (4.14)

at (x, µ1, µ2) = (x∗, µ∗
1, µ

∗
2), then the extended system (4.8) has a saddle-node

bifurcation at (x, µ1) = (x∗, µ∗
1) as µ2 crosses µ∗

2.

Moreover, there exists a unique function µ1 = ν(µ2) such that µ∗
1 = ν(µ∗

2), and

the extended system is reduced to one dimension around (x∗, µ∗
1)

ξ̇ = f(ξ + a
b
(ν(µ2)− µ∗

1) + x∗, ν(µ2);µ2)− a
b
g(ν(µ2);µ2),

where ξ = x− x∗ − a
b
(µ1 − µ∗

1) and a = Dµ1f(x
∗, µ∗

1;µ
∗
2).

Proof. Let z = (x, µ1)
T and F (z;µ2) = F (x, µ1;µ2) = (f(x, µ1;µ2), g(µ1;µ2))

T .

By definition of Γ, the singularity conditions (f = 0 and Dxf = 0), the nondegen-

eracy condition (Dxxf ̸= 0), and one of the transversality conditions (Dµ1f ̸= 0

or Dµ2f ̸= 0) are satisfied at the point (z∗, µ∗
2) = (x∗, µ∗

1, µ
∗
2) ∈ Γ. Since

g(µ∗
1;µ

∗
2) = 0, we also have F (x∗, µ∗

1;µ
∗
2) = 0 (first singularity condition for
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F ). The Jacobian of F evaluated at z∗ is

A = DzF (x
∗, µ∗

1;µ
∗
2) =

⎛⎜⎝Dxf Dµ1f

Dxg Dµ1g

⎞⎟⎠
⏐⏐⏐⏐⏐⏐⏐
z=z∗

=

⎛⎜⎝0 a

0 b

⎞⎟⎠ ,

where a = Dµ1f(x
∗, µ∗

1;µ
∗
2) and b = Dµ1g(µ

∗
1;µ

∗
2) ̸= 0, by assumption (4.13).

Since det(A) = 0 and tr(A) = b ̸= 0, the eigenvalues of A are λ1 = 0 and

λ2 = b ̸= 0 with corresponding eigenvectors

vλ1 =

⎛⎜⎝1

0

⎞⎟⎠ , vλ2 =

⎛⎜⎝a
b

⎞⎟⎠ .

Note that condition Dµ1g ̸= 0 is needed to guarantee only one zero eigenvalue.

Thus, DzF is singular with only one zero eigenvalue (second singularity condition

for F ).

The diagonalization matrix P and its inverse are given by

P =

⎛⎜⎝1 a

0 b

⎞⎟⎠ , P−1 =
1

b

⎛⎜⎝b −a
0 1

⎞⎟⎠ .

Let the new shifted coordinates be defined by

⎛⎜⎝ξ
υ

⎞⎟⎠ = P−1

⎛⎜⎝ x− x∗

µ1 − µ∗
1

⎞⎟⎠ =

⎛⎜⎝x− x∗ − a
b
(µ1 − µ∗

1)

1
b
(µ1 − µ∗

1)

⎞⎟⎠ .

Then the corresponding extended system is given by

ξ̇ = f(ξ + aυ + x∗, bυ + µ∗
1;µ2)− a

b
g(bυ + µ∗

1;µ
∗
2),

υ̇ = 1
b
g(bυ + µ∗

1;µ
∗
2).
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Define

f1(ξ, υ;µ2) = f(ξ + aυ + x∗, bυ + µ∗
1;µ2)− a

b
g(bυ + µ∗

1;µ
∗
2), (4.15)

and define f2(υ;µ2) such that

1
b
g(bυ + µ∗

1;µ
∗
2) = bυ + f2(υ;µ2).

Then,
ξ̇ = f1(ξ, υ;µ2),

υ̇ = bυ + f2(υ;µ2).

(4.16)

Note that the singularity conditions are satisfied by construction,

f1(0, 0;µ
∗
2) = f2(0;µ

∗
2) = 0,

Dξf1(0, 0;µ
∗
2) = Dυf1(0, 0;µ

∗
2) = Dξf2(0;µ

∗
2) = Dυf2(0;µ

∗
2) = 0.

(4.17)

The nondegeneracy condition for f1 is satisfied since

Dξξf1(0, 0;µ
∗
2) = Dxxf(x

∗, µ∗
1;µ

∗
2)) ̸= 0.

The transversality condition for f1 follows from dividing the determinant in (4.14)

by −b ̸= 0 and the definition of f1 (4.15)

(
���������⁓a
Dµ1f(x

∗, µ∗
1;µ

∗
2)Dµ2g(µ

∗
1;µ

∗
2)−�������⁓b

Dµ1g(µ
∗
1;µ2)Dµ2f(x

∗, µ∗
1;µ

∗
2)) ̸= 0,

=⇒ Dµ2f(x
∗, µ∗

1;µ
∗
2)− a

b
Dµ2g(µ

∗
1;µ

∗
2) = Dµ2f1(0, 0;µ

∗
2) ̸= 0.

Then, by Theorem 4.0.1 and Corollary 4.0.1, the transformed system (4.16) has a
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saddle-node bifurcation point at (0, 0) as µ2 crosses µ∗
2.

Transforming back to the variable z, we have that the extended system (4.8) has

a saddle-node bifurcation point at (x∗, µ∗
1) as µ2 crosses µ∗

2.

Now, denote

F2(υ;µ2) = bυ + f2(υ;µ2) = 0.

Note that DvF2(0;µ
∗
2) = b ̸= 0, by equation (4.17). By the Implicit Function

Theorem 4.0.2, there is a neighbourhood of µ2 = µ∗
2 where there exists a unique

function υ = ν̂(µ2) such that ν̂(µ∗
2) = 0 and F2(η(µ2), µ2) = 0. Then, equation

(4.16) reduces to

ξ̇ = f1(ξ, ν̂(µ2);µ2).

Changing back to µ1, we have

υ = 1
b
(µ1 − µ∗

1)

=⇒ µ1 = bυ + µ∗
1 = bν̂(µ2) + µ∗

1.

Define µ1 = ν(µ2) = bν̂(µ2) + µ∗
1, then ν(µ∗

2) = bν̂(µ∗
2) + µ∗

1 = µ∗
1. Finally, using

the definition of f1(ξ, ν, µ2), we have

ξ̇ = f1(ξ, ν(µ2);µ2)

= f1(ξ,
1
b
(ν(µ2)− µ∗

1);µ2)

= f(ξ + a
b
(ν(µ2)− µ∗

1) + x∗, ν(µ2);µ2)− a
b
g(ν(µ2);µ2)

= f(ξ + a
b
(ν(µ2)− µ∗

1) + x∗, ν(µ2);µ2)− a
b
g(ν(µ2);µ2).

This theorem provides a way to extend the scalar system (4.7) where a saddle-
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node occurs by transforming any parameter, µ1 for convenience, into a variable to

obtain the extended system (4.2) where a saddle-node bifurcation now occurs as

the other parameter, µ2, passes through some bifurcation value µ∗
2. Note that the

transformed parameter, µ1, does not need to be the original bifurcation parameter.

Thus, we say that the saddle-node bifurcation in the extended system is the carryover

of the saddle-node bifurcation in the original system. Also note that Proposition 4.1.1

requires that g(µ1;µ2) does not depend explicitly on x. This makes the conditions

of this proposition easy to verify with graphical and numerical tools.

Proposition 4.1.2. Under the conditions of Proposition (4.1.1), let h(µ1, µ2) = 0 be

the projection of Γ onto the (µ1, µ2)-plane. If h(µ1, µ2) is differentiable at (µ∗
1, µ

∗
2),

then conditions (4.14) and (4.13) are equivalent to

1. g(µ1;µ2) = 0 intersects h(µ1, µ2) = 0 transversally at a point (µ∗
1, µ

∗
2), and

2. the tangent line to g(µ1;µ2) = 0 at (µ∗
1, µ

∗
2) is not parallel to the µ1-axis,

respectively.

This proposition says that in order to find the saddle-node bifurcation points for

the extended system, we plot the two-parameter bifurcation diagram of the smaller

system, superimpose the nullclines of the new equation in the extended system, and

look for transverse intersections between the saddle-node bifurcation curve and the

nullclines. This is enough to verify the singularity and transversality conditions in

the extended system.

Proof of Proposition 4.1.2. Note that (µ∗
1, µ

∗
2) satisfies g = 0. Now, two vectors

u, v ∈ R2 are transverse (parallel) if and only if the determinant of the matrix
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formed by them is non-zero (is zero), i.e.,

det(u, v) = u1v2 − v1u2 = |u||v| sin(θ) ̸= 0 ⇐⇒ θ ̸= 0, π.

Recall that h(µ1, µ2) = 0 is defined by the projection of Γ onto the (µ1, µ2)-

plane, given by (x, µ1, µ2, ) ↦→ (µ1, µ2). Since at least one of Dµ1f or Dµ2f is

non-zero, points on Γ have a unique correspondence to points on h(µ1, µ2) = 0.

Thus, a point (µ∗
1, µ

∗
2) at which g = 0 and h = 0 intersect has a unique corresponding

point (z∗, µ∗
2) = (x∗, µ∗

1, µ
∗
2) ∈ Γ.

Assume Dµ1f ̸= 0 at (z∗;µ∗
2). Then, by the Implicit Function Theorem 4.0.2,

we can parameterize Γ by µ2 with functions x = X (µ2) and µ1 = M(µ2) such

that x∗ = X (µ∗
2) and µ∗

1 =M(µ∗
2) (see equation (4.11)). Implicit differentiation of

f(x, µ1;µ2) = 0 with respect to µ2 gives

DxfX ′ +Dµ1fM′ +Dµ2f = 0.

At z∗, Dxf = 0 and we have

M′ = −Dµ2f

Dµ1f
.

Implicit differentiation of h(µ1, µ2) = 0 with respect to µ2 gives

Dµ1hM′ +Dµ2h = 0.

Evaluating at z∗, substituting theM′ and multiplying by −Dµ1f , we obtain

Dµ1hDµ2f −Dµ2hDµ1f = 0.

This means that vectors (Dµ1f,Dµ2f)
T and (Dµ1h,Dµ2h)

T are multiple of each
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other at z∗. Note that this is also true ifDµ1f = 0 since we must haveDµ2f ̸= 0 and

similar arguments follow. Thus, (Dµ1h,Dµ2h)
T and (Dµ1g,Dµ2g)

T are transverse

if and only if (Dµ1f,Dµ2f)
T and (Dµ1g,Dµ2g)

T are transverse, which is equivalent

to saying that the transversality condition (4.14) holds.

Finally, the condition that the tangent line of g(µ1;µ2) = 0 at (µ∗
1, µ

∗
2) is not

parallel to the µ1-axis is clearly equivalent to Dµ1g(µ
∗
1, µ

∗
2) ̸= 0.

In the previous propositions, it is possible to generalize the arguments of the

new scalar field, g(µ1;µ2), to include dependence on x, i.e., g(x, µ1;µ2), provided

Γ and g = 0 intersect in the (x, µ1, µ2)-space. However, in the case of g(µ1;µ2),

the conditions of Proposition 4.1.1 are easy to verify with graphical and numerical

tools.

In order to illustrate the application of Propositions 4.1.1 and 4.1.2, we introduce

the following examples, where we consider a one-dimensional system with two

parameters, a and b,

ẋ = f(x; a, b),

and transform the parameter a into a variable to obtain the extended system

ẋ = f(x, a; b),

ȧ = g(a; b).

Example 4.1.1. Consider f(x; a, b) = −a − b − x2. Since Dxf = −2x = 0 at

x = 0, Dxxf = −2 ̸= 0, and Daf = −1 ̸= 0, there is a saddle-node bifurcation

at x = 0 as a crosses zero and b = 0. Furthermore, since Dbf = −1 ̸= 0, b could

be also taken as bifurcation parameter when a = 0. The bifurcation boundary is

given by h(a, b) = −a − b = 0. Figure 4.2a shows the two-parameter bifurcation
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diagram along with the following three choices for g(a; b).

1. If g(a; b) = a + b, then g = 0 overlaps h = 0 and they are never transverse.

Indeed, the extended system does not have a saddle-node bifurcation since it

always has a unique steady state at (x, a) = (0,−b), for all values of b.

2. If g(a; b) = −a + b, then g = 0 intersects h = 0 transversally at (a, b) =

(0, 0). According to Proposition 4.1.2, the extended system has a saddle-node

bifurcation at (x, a) = (0, 0) as b crosses b = 0. Indeed, there are two steady

states, (x, a) = (±
√
−2b, b) when b < 0, and they collide and disappear as b

becomes positive. Figure 4.2b shows the bifurcation diagram for the extended

system.

3. If g(a; b) = a2 − b, then g = 0 intersects h = 0 transversally at (a, b) =

(0, 0) and (a, b) = (−1, 1), but the tangent line of g(a; b) = 0 at (a, b) =

(0, 0) is parallel to the a-axis. Proposition 4.1.2 guarantees the saddle-node

bifurcation at (x, a, b) = (0,−1, 1), but not at (x, a, b) = (0, 0, 0). In fact,

at (x, a, b) = (0, 0, 0), there is a Bogdanov-Takens (double-zero) bifurcation

(see Section 8.4 in Kuznetsov [48]), since Dag = 0 implies that there are two

zero eigenvalues. When b = 0, there is a single steady state at (x, a) = (0, 0).

When 0 < b < 1, two steady states emerge from the origin, a stable node

(x, a) = (
√√

b− b,−
√
b), and saddle (x, a) = (−

√√
b− b,−

√
b). When

b = 1 there is a saddle-node bifurcation at (x, a) = (0,−1) as the two steady

states collide and Dag ̸= 0. Figure 4.2c shows the bifurcation diagram for

the extended system.

Example 4.1.2. Consider f(x; a, b) = b2 + 1− a− x2. Since Dxf = −2x = 0 at

x = 0, Dxxf = −1 ̸= 0, and Daf = −1 ̸= 0, there is a saddle-node bifurcation at
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Figure 4.2: Bifurcation diagrams for Example 4.1.1 where f(x; a, b) = −a−b−x2.
a) Two-parameter bifurcation boundary (red dash-dotted line) for f with a and b
as bifurcation parameters, and nullclines for three choices of g(a; b): g(a; b) =
a + b (black) nullcline is never transverse; g(a; b) = −a + b (green) nullcline is
transverse at (a, b) = (0, 0); and g(a; b) = a2 + b (blue) nullcline is transverse at
(a, b) = (−1, 1) and (a, b) = (0, 0) butDag(0; 0) = 0. b) Bifurcation diagram when
g(a; b) = −a + b. A saddle-node bifurcation (SN1) occurs at (x, a, b) = (0, 0, 0).
c) Bifurcation diagram when g(a; b) = a2 − b. A saddle-node bifurcation (SN2)
occurs at (x, a, b) = (0, 1, 1) and a Bogdanov-Takens (double-zero) bifurcation (BT)
occurs at (x, a, b) = (0, 0, 0).
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x = 0 as a crosses 1 and b = 0. However, since Dbf = 2b = 0 at b = 0, there is no

saddle-node bifurcation at (x, a, b) = (0, 1, 0) if b is taken as bifurcation parameter.

The bifurcation boundary is given by h(a, b) = b2 + 1− a = 0. Figure 4.3a shows

the two-parameter bifurcation diagram along with the following three choices for

g(b; a). Moreover, there is a saddle-node bifurcation at x = 0 as a crosses b2 + 1,

for fixed b.

1. If g(a; b) = −a + 2, then g = 0 intersects h = 0 transversally twice, at

(a, b) = (2,±1). Thus, by Proposition 4.1.2, the extended system undergoes

two saddle-node bifurcations at (x, a) = (0, 2), one as b crosses b = −1

from the left where the two steady states, (x, a) = (±
√
b2 − 1, 2), collide and

disappear, and one as b crosses b = 1 from the left where the two steady states,

(x, a) = (±
√
b2 − 1, 2), emerge. Figure 4.3b shows the bifurcation diagram

for the extended system.

2. If g(a; b) = −a + 1, then g = 0 is tangential to h = 0 at (a, b) = (1, 0).

No saddle-node bifurcation occurs since the two steady states (x, a) =

(±
√
b2, 1) = (±|b|, 1) collide and bounce back, as seen in Figure 4.3c.

In fact, at (x, a, b) = (0, 1, 0), the extended system satisfies the singularity

conditions (λ = 0,−1) and nondegeneracy condition (Dxxf = −2 ̸= 0),

but not the transversality condition (DafDbg − DagDbf = −2b|b=0 = 0).

Note that this is not a transcritical bifurcation since the steady states (|b|, 1)

and (−|b|, 1) are a stable node (two negative eigenvalues) and a saddle point

(eigenvalues with opposite sign), respectively, for all b. In other words, they

do not exchange stability when they collide, instead they touch and bounce

back preserving their stability.

3. If g(a; b) = b − a + 1, then g(a; b) = 0 is transverse at (a, b) = (1, 0) and
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(a, b) = (2, 1). Moreover, the tangent line to g(a, b) = 0 at (1, 0) and (2, 1)

is not parallel to the a-axis since Dag(a; b) = −1. Thus, as in the first case

(g(a; b) = −a+2), two saddle-node bifurcations occur, one as b crosses b = 0

from the left where two steady states (x, a) = (±
√
b(b− 1), b + 1) collide

and disappear, and one as b crosses b = 1 where two steady states (x, a) =

(±
√
b(b− 1), b+ 1) emerge. Figure 4.3d shows the bifurcation diagram for

the extended system. This case is interesting because at (a, b) = (1, 0), the

transversality condition is not satisfied for the original system with respect to b,

i.e., Dbf(0; 1, 0) = 0. In other words, even if b is not a bifurcation parameter

in the original system at (x∗, µ∗), b becomes a bifurcation parameter in the

extended system at the same point.

4. If we extend the parameter b instead using ḃ = g(b; a) = b− a+ 1, it follows

from the previous case that two saddle-node bifurcations occur at (x, a, b) =

(0, 1, 0) and (x, a, b) = (0, 2, 1), as seen in Figure 4.3e. However, note that

b is not a bifurcation parameter in the original system at (x, a, b) = (0, 1, 0)

yet transforming b into a variable there is a carryover of the saddle-node

bifurcation that occurs in the original system with a as bifurcation parameter.

4.2 n-dimensional case

In the previous section, we showed the carryover of a saddle-node bifurcation in

the one-dimensional case. In this section, we show that this result also holds in the

n-dimensional case. In short, this is true because the saddle-node bifurcations can

be reduced to one-dimension around the bifurcation point.

Suppose that f in the original system (4.1) satisfies the conditions of Theo-
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Figure 4.3: Bifurcation diagrams for Example 4.1.2 where f(x; a, b) = b2+1−a−
x2. a) Two-parameter bifurcation boundary (red dash-dotted curve) for f with a and
b as bifurcation parameters, and nullclines for three choices of g(a; b): g(a; b) =
−a + 2 (green) nullcline is transverse at (a, b) = (2,−1) and (a, b) = (2, 1);

(continued)
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Figure 4.3 (continued): g(a; b) = −a + 1 (blue) is tangential at (a, b) = (1, 0);
and g(a; b) = b − a + 1 (black) nullcline is transverse at (a, b) = (1, 0) and
(a, b) = (2, 1). b) Bifurcation diagram when g(a; b) = −a + 2. Two saddle-
node bifurcations occur at (x, a, b) = (0, 2,±1). c) Bifurcation diagram when
g(a; b) = −a + 1. No bifurcation occurs because the steady states collide but do
not disappear. d) Bifurcation diagram when g(a; b) = b− a+ 1. Two saddle-node
bifurcations occur at (x, a, b) = (0, 1, 0) and (x, a, b) = (0, 1, 1). e) Bifurcation
diagram when ḃ = g(a; b) = b − a + 1. Two saddle-node bifurcations occur at
(x, a, b) = (0, 1, 0) and (x, a, b) = (0, 2, 1).

rem 4.0.1. Then, we can reduce the system to one-dimensional form

ẋ = f1(x, η(x;µ1, µ2);µ1, µ2),

where functions f1(x, y;µ1, µ2) and y = η(x;µ1, µ2) are given by the theorem, in

a neighbourhood of (x, y, µ) = (0, 0, 0) in regards to the saddle-node bifurcation.

Now, suppose that f1 satisfies the transversality condition of Corollary 4.0.1 for

either µ1 or µ2. Then, in a similar fashion as in the one-dimensional case, the

Implicit Function Theorem 4.0.2 guarantees the existence of an interval I and

unique functions X andM such x and µ1 can be parameterized in terms of µ2 (for

example), i.e.,

x = X (µ2), µ1 =M(µ2), µ2 ∈ I, and X (0) = 0,M(0) = 0.

This defines the smooth one-dimensional bifurcation curve

Γ = {(z, µ1, µ2) : z = (x, y) = (X (µ2), η(X (µ2);M(µ2), µ2)),

µ1 =M(µ2), µ2 ∈ I}. (4.18)

To extend Γ in this case, we take a point in Γ, different from (x, y, µ) = (0, 0, 0),
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and apply again Theorem 4.0.1 (after some appropriate translation) followed by

the Implicit Function Theorem 4.0.2 as shown above. Note that functions f1,

X , and M do not need to be the same as before. By continuity we can apply

this process repetitive times and further extend Γ as long as the transversality

condition holds for either µ1 and µ2 at each step. Finally, the bifurcation boundary,

h(µ1, µ2) = 0, is defined by the projection of extended Γ onto the (µ1, µ2)-plane,

given by π(z, µ1, µ2) ↦→ (µ1, µ2). Thus, the definition of Γ and h(µ1, µ2) = 0 is

similar to the one-dimensional case.

Proposition 4.2.1. Let f(z;µ1, µ2) ∈ C2(Rn × R2,Rn) and suppose that the hy-

potheses of Theorem 4.0.1 are satisfied at (z, µ1, µ2) = (0, 0, 0). Suppose also

that the transversality condition in Corollary 4.0.1 is satisfied for either µ1 or µ2.

Let m(µ1, µ2) be the extremal value defined in Theorem 4.0.1. This defines a one-

dimensional smooth curve Γ ⊂ Rn+2 in a neighbourhood of (z, µ1, µ2) that satisfies

the singularity and nondegeneracy conditions.

Consider the extended system (4.2) by transforming parameterµ1 into a variable,

where f ∈ C2(Rn+1×R,Rn) and g ∈ C2(R×R,R). If there is a point (z, µ1, µ2) =

(z∗, µ∗
1, µ

∗
2) ∈ Γ such that g(µ1;µ2) satisfies

g(µ∗
1;µ

∗
2) = 0, b = Dµ1g(µ

∗
1;µ

∗
2) ̸= 0, (4.19)

and the transversality condition

det

⎛⎜⎝Dµ1m Dµ1g

Dµ2m Dµ2g

⎞⎟⎠ = Dµ1hDµ2g −Dµ1gDµ2h ̸= 0, (4.20)

is satisfied at (z, µ1, µ2) = (z∗, µ∗
1, µ

∗
2), then (4.2) has a saddle-node bifurcation at
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(z, µ1) = (z∗, µ∗
1) as µ2 crosses µ∗

2.

Proof. First, we translate the point z∗ to the origin using a new variable ζ = z − z∗

to obtain the translated system

ζ̇ = f(ζ + z∗;µ1, µ2),

that satisfies all the conditions of Theorem 4.0.1 at ζ = 0. By Theorem 4.0.1, we

choose new translated coordinates x ∈ R and y ∈ Rn−1 such that

ẋ = f1(x, y;µ1, µ2),

ẏ =My + f2(x, y;µ1, µ2),

where f1 = 0, f2 = 0, Dxf1 = 0, Dxf2 = 0, Dyf1 = 0, Dyf2 = 0, and

Dxxf1 ̸= 0 at (x, y;µ1, µ2) = (0, 0;µ∗
1, µ

∗
2), and M is invertible. Moreover, there is

an interval I(µ1, µ2) of 0 and function y = η(x;µ1, µ2) where the extremal value

m(µ1, µ2) = Extx∈I(µ1,µ2)[f1(x, η(x;µ1, µ2);µ1, µ2)] is defined. Therefore, the

system is reduced to one equation ẋ = f3(x;µ1, µ2) = f1(x, η(x;µ1, µ2);µ1, µ2) in

a neighborhood of (ζ, µ1, µ2) = (0, µ∗
1, µ

∗
2)where the singularity and nondegeneracy

conditions are satisfied. Then, the extended system (4.2) can be reduced to

ẋ = f3(x, µ1;µ2) = f1(x, η(x;µ1, µ2);µ1, µ2),

µ̇1 = g(µ1;µ2),

in a neighborhood of (ζ, µ1, µ2) = (0, µ∗
1, µ

∗
2). By assumption, the transversality

condition,Dµi
f1 ̸= 0, is satisfied for either µ1 or µ2. Then, by Proposition 4.1.1, this

system has a saddle-node bifurcation at (x, µ1) = (0, µ∗
1) as µ2 crosses µ∗

2. It follows

that the extended system (4.2) has a saddle-node bifurcation at (z, µ1) = (0, µ∗
1) as
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µ2 crosses µ∗
2.

As we might expect, Proposition 4.1.2 also applies to the n-dimensional case.

The proof follows similar arguments to the one-dimensional case.

Proposition 4.2.2. Under the conditions of Proposition (4.2.1), let h(µ1, µ2) = 0 be

the projection of Γ onto the (µ1, µ2)-plane. If h(µ1, µ2) is differentiable at (µ∗
1, µ

∗
2),

then conditions (4.20) and (4.19) are equivalent to:

1. g(µ1; µ̂, ν) = 0 intersects h(µ1, µ2) = 0 transversally at a point (µ∗
1, µ

∗
2), and

2. the tangent line to g(µ1;µ2) = 0 at (µ∗
1, µ

∗
2) is not parallel to the µ1-axis,

respectively.

Example 4.2.1. Consider the system

ẋ = µ− x2 + xy − xy2,

ẏ = λ− y − x2 + x2y,

taken from Meiss [63, p. 292]. There is a saddle-node bifurcation at the origin as µ

crosses zero. The two-parameter bifurcation diagram starting from this bifurcation

point is shown in Figure 4.4a. Now, consider the extended system

ẋ = µ− x2 + xy − xy2,

ẏ = λ− y − x2 + x2y,

µ̇ = g(µ;λ) = µ− 1
2
.

The µ-nullcline is transverse to the two-parameter bifurcation diagram in two points

near λ = 0.5 and λ = 1.1 (see Figure 4.4a). Since the tangent line of g(µ;λ) is

not parallel to the µ-axis at neither intersection, two saddle-node bifurcations are
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inherited with λ as bifurcation parameter. Indeed, the bifurcation diagrams for

x and y are shown in Figures 4.4b and 4.4c, respectively. The corresponding

bifurcation points are found to be

(x, u, µ;λ) ≈ (−0.6792, 0.0604, 0.5; 0.4940),

(x, u, µ;λ) ≈ (−0.8429, 1.2069, 0.5; 1.0599).

4.3 Discussion

Given a system with a saddle-node bifurcation, we studied the manifestation of the

saddle-node bifurcation when transforming one parameter into a variable. We call

this property the carryover of a saddle-node bifurcation. We focused on the case

where the new differential equation associated with the new variable does not depend

on the rest of the variables. We showed that additional singularity and transversality

conditions are sufficient for the carryover of the saddle-node bifurcation. We also

find that such conditions can be verified graphically with a two-parameter bifurcation

diagram.

In Section 4.1, we studied the scalar case, that is, the scalar system (4.7) has a

saddle-node bifurcation at the origin as eitherµ1 orµ2 cross zero. Such a saddle-node

bifurcation is characterized by singularity and non-degeneracy conditions, and a

transversality condition for either µ1 and µ2 [63]. By the Implicit Function Theorem

4.0.2, there exists a one-dimensional bifurcation curve Γ ∈ R3 in the neighborhood

of zero where the singularity, non-degeneracy, and transversality conditions are

satisfied [48]. If we transform µ1 into a variable, we obtain the two-dimensional

extended system (4.8). Any carryover of the saddle-node bifurcation to the extended

system must take place in Γ. We proved that if 1) the µ1-nullcline intersects Γ
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Figure 4.4: Bifurcation diagrams for Example 4.2.1. a) Two-parameter bifurcation
boundary (red dashed-dotted curve) and nullcline for g(µ;λ) = µ− 1

2
(green). Two

saddle-node bifurcations (SN1 and SN2) occur at the transverse intersection between
the g-nullcline and the bifurcation boundary. Note that there are cups bifurcations
(CP1, CP2, and CP3) associated with the system at the intersection of two saddle-
node bifurcations. b-c) Bifurcation diagrams for the extended system with λ as
bifurcation parameter and variables x and y in the ordinate, respectively. The
dashed lines indicate the unstable node with associated three-dimensional unstable
manifold, while the dot-dashed lines indicate the saddle-node with associated one-
dimensional stable manifold and two-dimensional unstable manifold.
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transversally, and 2) the new equation does not add another zero eigenvalue at

the intersection, then the extended system has a saddle-node bifurcation at the

intersection. These are the additional transversality and singularity conditions for

the extended system, respectively (see Proposition 4.1.1).

Moreover, we showed that the transversality and singularity conditions for the

extended system can be easily verified in the two-parameter bifurcation diagram

with µ1 and µ2 as bifurcation parameters. The two-parameter bifurcation curve

is the projection of Γ onto the µ1µ2-plane. By superimposing the µ1-nullcline on

the two-parameter, we can verify 1) the transversality condition if the µ1-nullcline

intersects the two-parameter bifurcation curve transversally, and 2) the singularity

condition if the µ1-nullcline is not parallel to the µ1-axis at the intersection (see

Proposition 4.1.2). This graphical result is the consequence of the fact that the

new equation does not depend on the other variable (g(µ1;µ2) does not depend

on x). Thus, if the projection of Γ and the µ1-nullcline intersect as seen from the

µ1µ2-plane, then Γ and the µ1-nullcline also intersect in R3.

Note that it is irrelevant which of the two parameters (or both) satisfies the

transversality condition for the original system, we only need to start from a saddle-

node bifurcation point and follow the bifurcation along Γ. In fact, Γ can be extended

as long as the transversality condition is satisfied for at least one of the parameters.

Interestingly, a carryover can happen at a point where either µ1 (the transformed

variable) or µ2 (the remaining parameter) is a bifurcation parameter in the original

system. These cases were illustrated with examples in the text. It is still left to show

that a carryover can happen at a point where the bifurcation happens as both µ1 and

µ2 change simultaneously (but not individually), separately, or when k parameters

change simultaneously.

In Section 4.2, we extended our study to the n-dimensional case, that is, the
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n-dimensional system (4.1) has a saddle-node bifurcation at the origin as either µ1

or µ2 cross zero and µ1 is transformed into a variable. We showed that the same

singularity and transversality conditions apply in the carryover of the saddle-node

bifurcation for the n-dimensional case. To show this, we reduced the original system

in a neighborhood of the bifurcation point to one-dimension and applied our results

for the scalar case. The n-dimensional case is also illustrated with an example.

The case where the new differential equation depends on the other variables,

i.e., µ̇1 = g(z, µ1;µ2), is not covered here. Assuming the bifurcation curve and the

µ1-nullcline intersect in Rn, an extra condition (or conditions) would be required

to guarantee that the matrix A, as defined within the proof of Proposition (4.1.1),

is invertible. We leave this case open for future research. We also leave open the

interesting exploration of the carryover of other types of bifurcation (transcritical,

pitchfork, Hopf, etc) as well as applications of the carryover of bifurcations.

The problem of the carryover of a saddle-node bifurcation was motivated by

our results in Chapter 2, where we found an interesting, yet unclear, relationship

between the SNICMass bifurcation and the SNICVc2 bifurcation. In fact, studying

Figure 2.6 motivated us to conjecture Proposition 4.2.2, which indeed applies to

conclude that the SNICVc2 (locally, saddle-node) bifurcation is the carryover of the

SNICMass (locally, saddle-node) bifurcation after transformingMass into a variable.

Inaddition to clarifying the true origin of the SNICVc2 bifurcation, our results from

this chapter are used in the next chapter.
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Chapter 5

Reduction of the Cell Cycle model to

one-dimension around the SNIC

bifurcation

In Chapter 2, we studied the effect of radiation on the G2/M transition of the cell

cycle through the ATM and Chk2 pathway. We took a model from Novak and

Tyson for the cell cycle and introduced a radiation pathway accounting for ATM and

Chk2. We identified a saddle-node on an invariant circle (SNIC) bifurcation that

arises from the effect of radiation on the G2/M transition through the ATM/Chk2

radiation pathway. We showed that this SNIC bifurcation, driven by the inactivation

rate Vc2, is the loss of the SNIC bifurcation driven by the cell mass implicit in

the system. In Chapter 2, the relationship between the two bifurcation points was

illustrated and explained through bifurcation diagrams. In this chapter, we show

theoretically how these two bifurcations are related using the results obtained in

Chapter 4. In particular, we show that the SNIC bifurcation driven by Vc2 is the

carryover of the SNIC bifurcation driven by cell mass after the mass is transformed
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into a state variable. Moreover, we are able to reduce the cell cycle model to

a one-dimensional form around the SNIC bifurcation driven by Vc2. This from

will be used, in Chapter 6, to approximate the time available for repair discussed

in Chapter 3 and derive a theoretical form for the survival fraction based on the

ATM-Chk2 pathway.

Before describing the structure of this chapter, we first review the results obtained

in Chapter 2.

5.1 Introduction

In Chapters 2 and 3, we focused on the effect of the radiation pathway on the cell

cycle model developed by Tyson and Novák (see Tyson and Novák [96] for a review).

In this chapter, we detach the radiation pathway (variables DSB, ATM, and Chk2)

to focus on the cell cycle dynamics. The cell cycle model is given by the set of

differential equations

dMPF

dt
= km0Mass− (km2 + km2aWee1)MPF

+ (km1 + km1aCdc25)MPFP − (km3 + km3aAPC)MPF, (5.1a)
dMPFP

dt
= (km2 + km2aWee1)MPF − (km1 + km1aCdc25)MPFP

− (km3 + km3aAPC)MPFP , (5.1b)
dWee1

dt
= Vw1

Wee1T −Wee1

Jw1 + (Wee1T −Wee1)

− kw2(MPF + αMPFP )
Wee1

Jw2 +Wee1
, (5.1c)

dCdc25

dt
= kc1(MPF + αMPFP )

Cdc25T − Cdc25
Jc1 + (Cdc25T − Cdc25)

− Vc2
Cdc25

Jc2 + Cdc25
, (5.1d)
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Table 5.1: Name and description of variables in Eqs. (5.1a)–(5.1g). All variables
represent concentration, except for the cell mass.

Symbol Description

MPF Active Cdk1-cyclin B complex (Mitotic Promoting Factor)
MPFP Inactive, phosphorylated form of MPF
Wee1 Active dephosphorylated form of kinase Wee1 (MPF inactivator)
Cdc25 Active phosphorylated form of the phosphatase Cdc25C (MPF

activator)
IE Active form of an intermediate enzyme [94]

APC Active phosphorylated form of APC (Anaphase Promoting Com-
plex)

Mass Mass of the cell

dIE

dt
= ki1(MPF + αMPFP )

IET − IE
Ji1 + (IET − IE)

− Vi2
IE

Ji2 + IE
, (5.1e)

dAPC

dt
= ka1IE

APCT − APC
Ja1 + (APCT − APC)

− Va2
APC

Ja2 + APC
, (5.1f)

dMass

dt
= µMass

(
1− Mass

KMass

)
, (5.1g)

subject to the resetting condition

if MPF (t) = θM and
dMPF

dt
(t) < 0 =⇒ Mass(t)← Mass(t)

2
. (5.2)

The model variables and parameters are listed in Tables 5.1 and 5.2, respectively. A

typical numerical solution for some of the variables of the model that describe the

oscillating behaviour of the cell cycle is shown in Figure 5.1.

As discussed in Section 2.2.1, the cell cycle model (5.1)–(5.2) can be broken

down into two interconnected modules that describe the cell cycle dynamics; namely,

the interphase and M-phase modules (see Figure (5.2)). The interface module is

governed by equations (5.1a)–(5.1d). These equations model the transition from low

to high concentration of MPF, which in turns determines the G2/M transition and the
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Figure 5.1: Numerical solution of the cell cycle model (5.1)–(5.2).

M-phase entry. This can be seen in Figure 5.1 with MPF concentration rising quickly

above the threshold for M-phase (θM = 0.2) at the end of the interphase. We note

that the G1/S and S/G2 transitions in mammalian cells are not considered explicitly

in this version of the cell cycle model, since they would require other proteins

(different from MPF) to be modelled. Instead, the G1- and S-phases are implicitly

accounted for by the parameters of the model to accommodate an interphase length

of approximately 22 hrs. Thus, when we consider the interphase module alone it is

more reasonable to refer to it as the G2 module since it only models the dynamics of

the G2-phase. In this chapter, we focus on the G2 module and the G2/M transition.

The M-phase is mainly governed by equations (5.1a) and (5.1e)–(5.1f). These

equations model the rapid increase and decrease in the concentration of MPF during

the M-phase, as shown in Figure 5.1. The cell cycle oscillations are completed

when the cell mass (governed by equation (5.1g)) is divided in half according to the

resetting condition (5.2). This resetting event places solutions back in the interphase
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Figure 5.2: Cell cycle model diagram.

as explained in Section 2.4 (see Novák et al. [74] for further details).

The resetting event defines a discontinuous jump in the phase space of model

(5.1), which can be viewed as a branched manifold. A branched manifold is a

generalization of a differentiable manifold that allows special types of singularities,

such as resetting conditions. Consider the differentiable manifold M defined by

the phase space of the model given by equations (5.1). The resetting condition

in equation (5.2) maps trajectories reaching a submanifold N (MPF = θM and

decreasing) in the M-phase to a submanifold g(N) (cell mass is divided by two)

in the G2-phase (see Figure 5.3). The branched manifold is given by folding the

manifold and “gluing together” submanifolds N and g(N) such that the resulting

manifold is tangential at the connection [31]. The associated vector field is well-

defined provided trajectories satisfy transversality conditions, which are discussed

in Section 5.3. Thus, the cell cycle oscillation shown in Figure 5.1 belongs to the

branched manifold where the discontinuous jump in the cell mass is well defined.

Moreover, numerical simulations show that such cell cycle oscillation is a locally

asymptotically stable limit cycle on the branched manifold.
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g(N)

Figure 5.3: Construction of the branched manifold. The cell cycle model (5.1)
(without resetting condition (5.2)) defines a manifoldM (left). Resetting condition
(5.2) maps trajectories reaching submanifold N (upper grey curve) in the M-phase
(purple) to submanifold g(N) (lower grey curve) in the interphase (orange). The
branched manifold (right) is constructed by tangentially gluing together submani-
foldsN and g(N) (grey line). The black line separating the interphase and M-phase
represents the threshold θM when MPF is increasing (see equation (5.2)).

If we take Vc2 in Equation 5.1d as a varying parameter and increase its value,

we observe that the cell cycle oscillations are lost in a saddle-node in an invariant

circle (SNIC) bifurcation (see Figure 5.4). This provides and entrance to the G2

checkpoint defined by a stable node and a saddle point. In Section 2.3, we showed

that G2 checkpoint activation can be caused by radiation as it increases the value

of Vc2 beyond the SNICVc2 bifurcation point, V ∗
c2 ≈ 3.47. The SNICVc2 bifurcation

point and corresponding eigenvalues (eigenvalues of the jacobian matrix of the
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vector field evaluated at the steady state) found numerically are given by

V ∗
c2 ≈ 3.471683,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MPF ∗

MPF ∗
P

Wee1∗

Cdc25∗P

IE∗

APC∗

Mass∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.048044

2.650815

0.825999

0.007785

0.003287

0.000013

2.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
−→
λ ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−0.0700

−0.2000

−21.768

−36.960

−115.58

−1655.6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.3)

The SNICVc2 bifurcation is represented in the illustration of the branched manifold

in Figure 5.4.

In Section 2.4, we also showed how this SNICVc2 bifurcation relates to the

SNICMass bifurcation driven by Mass. In particular, we showed that the SNICVc2

bifurcation is the loss of the SNICMass embedded in the cell cycle model. The

SNICMass bifurcation, studied by [98], appears in the version of the cell cycle

model where the cell mass is not a variable but a varying parameter and the bifurca-

tion itself defines the G2/M transition. Besides the observed relationship between

the two SNIC bifurcations, it was not clear what underpins this relationship mathe-

matically. Moreover, the oscillations associated with these SNIC bifurcations have

a completely different nature: the oscillation associated with the SNICMass arises

from the negative feedback loop between MPF and APC in the M-phase module,

while the oscillation associated with the SNICVc2 is the ability to cycle between the

G2- and M-phases. In this Chapter, we unravel the dynamical relationship between

these two SNIC bifurcations. In particular, we show that the SNICVc2 bifurcation

is the carryover of the SNICMass bifurcation after the cell mass is turned into a
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Figure 5.4: a) Bifurcation diagram for Vc2 (top). b) Illustration of the bifurcation
diagram drawn on the branched manifold. The arrows represent the vector field.

variable.

We are able to establish the theoretical connection between the two SNIC bi-

furcations by unfolding the branched manifold and focusing on the saddle-node

component of the SNIC, that is, excluding oscillations. We show, using the re-

sults obtained in Chapter 4, that the saddle-node bifurcation associated with the

SNICVc2 bifurcation is the carryover of the saddle-node bifurcation associated with

the SNICMass bifurcation after the cell mass is transformed into variable.
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In Chapter 3, we used numerical simulations to show that the SNICVc2 bifurcation

can produce a hyper-radiosensitivity and increased radioresistance (HRS/IRR) effect

in the survival fraction. However, we also stated the importance of computing such

survival fraction without extensive numerical calculations. We hypothesize that this

is possible if we reduce the cell cycle model to one-dimensional form around the

SNICVc2 bifurcation. This one-dimensional reduction is the goal of this chapter,

which is organized into the following sections:

5.2 G2 module: saddle-node bifurcation driven by cell mass. In this section,

we decouple the G2 module from the cell cycle model corresponding to

equations (5.1a)–(5.1d). We show that in this module, there is a saddle-

node bifurcation with the cell mass as the bifurcation parameter. Under

appropriate initial conditions, this means that the cell mass forces an abrupt

increase in the concentration of MPF. Such change in the concentration of

MPF determines the G2/M transition. Moreover, we reduce the G2 module to

a one-dimensional system form as follows. First, we start with the G2 module,

which we denote as

z′ = f(z; p),

where z ∈ R4, and p ∈ R18 is the vector of associated parameters. Second,

we translate a given steady state z∗ to the origin using the transformation

ẑ = z − z∗ and write the translated G2 module

ẑ′ = f(ẑ + z∗; p),

with steady state at the origin, ẑ∗ = 0. Third, we nondimensionalize to write
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the G2 module as

z̃′ = f̃(z̃; p).

Nondimensionalization helps us to simplify calculations. Fourth, we find

conditions such that (z̃; p) = (0, p∗) is a saddle-node bifurcation point and,

following Theorem 4.0.1, we find new coordinates (ξ, ϕ) and write

ξ′ = f1(ξ, ϕ; p),

ϕ′ =Mϕ+ f2(ξ, ϕ; p),

where ξ ∈ R1 corresponds to the zero eigenvalue of the saddle-node bifurca-

tion, and ϕ ∈ R3 are the remaining coordinates. Theorem 4.0.1 guarantees

the reduction to one-dimension in the form

ξ′ = f1(ξ, η(ξ); p),

in a neighborhood of the saddle-node bifurcation point (0, p∗) and for some

function ϕ = η(ξ).

5.3 G2 module with variable cell mass: saddle-node bifurcation driven by

Vc2. In this section, we add the cell mass as a dynamical state variable to the

G2 module, and show that there is a saddle-node bifurcation with Vc2 as the

bifurcation parameter. This means that Vc2 can prevent the G2/M transition

forced by the new state variable Mass. Based on the theory deveolped in

Chapter 4, we show that this new saddle-node bifurcation driven by Vc2 is the

carryover of the previous saddle-node bifurcation driven by cell mass, and
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that the one-dimensional reduction in this case remains in the form

ξ′ = f1(ξ; p).

5.4 G2 and M modules combined with variable cell mass and resetting con-

dition: SNIC bifurcation driven by Vc2. In this section, we add the M

module and resetting condition to the G2 module with variable mass to fully

recover the cell cycle model where a SNIC bifurcation driven by Vc2 takes

place. Analogously, we add a resetting condition to the one-dimensional form

found in the in the previous sections to transform the associated saddle-node

bifurcation into a SNIC bifurcation. We show that one-dimensional form

approximates the cell cycle model around the SNIC bifurcation driven by Vc2.

5.2 G2 module: saddle-node bifurcation driven by

cell mass

The G2 module consists of differential equations

dMPF

dt
= km0Mass− (km2 + km2aWee1)MPF

+ (km1 + km1aCdc25)MPFP − (km3 + km3aAPC)MPF, (5.4a)
dMPFP

dt
= (km2 + km2aWee1)MPF − (km1 + km1aCdc25)MPFP

− (km3 + km3aAPC)MPFP , (5.4b)
dWee1

dt
= Vw1

Wee1T −Wee1

Jw1 + (Wee1T −Wee1)

− kw2(MPF + αMPFP )
Wee1

Jw2 +Wee1
, (5.4c)
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dCdc25

dt
= kc1(MPF + αMPFP )

Cdc25T − Cdc25
Jc1 + (Cdc25T − Cdc25)

− Vc2
Cdc25

Jc2 + Cdc25
, (5.4d)

where variables and parameters are listed in Tables 5.1 and 5.2, respectively. Note

that cell mass is a state variable in the cell cycle model (5.1), whereas it is a parameter

in the G2 module. Also, variables IE and APC have been set to constant in the

G2 module equal to their corresponding value at the SNICVc2 bifurcation point (see

equation 5.3), i.e., IE ≈ 0.003287 and APC ≈ 0.000013. This choice of constant

values will become appropriate and relevant in the following sections.

Figure 5.5 shows the bifurcation diagram for (5.4) withMass as the bifurcation

parameter. The G2 module has up to three steady states: one stable state with low

activity of MPF, inactive Cdc25 and active Wee1; one stable steady state with high

activity of MPF, active Cdc25 and inactive Wee1; and one intermediate unstable

steady state. The lower stable steady state corresponds to G2-phase conditions, while

upper the second stable steady state corresponds to M-phase conditions. When

Mass = Mass∗ ≈ 1.74, a saddle-node bifurcation occurs: as mass increases

through Mass∗ the G2-like steady state and the unstable steady state coalesce

and disappear, leaving only the M-like steady state. We denote this saddle-node

bifurcation as SNMass. Using numerical continuation, we find the value of this

bifurcation point and associated eigenvalues to be

Mass∗ ≈ 1.7465,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

MPF ∗

MPF ∗
P

Wee1∗

Cdc25∗P

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≈

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.048606

1.697167

0.976645

0.040495

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
−→
λ ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.000005

−0.200085

−8.896248

−56.244604

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5.5)
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Figure 5.5: Bifurcation diagram of the G2 module (5.4) with mass as varying
parameter.

The other saddle-node bifurcation on the left side of the bifurcation diagram does

not play a significant role in the G2/M transition and is not considered in this chapter.

Novák and Tyson [72] identified the irreversible transition of the SNMass with the

G2/M transition, which they hypothesize would be driven by the cell mass as more

proteins are synthesized and formed, including the cyclin B subunit of MPF. Their

hypothesis that cell mass causes cell cycle progression was later supported with

experimental results on frog egg extracts [87]. Moreover, Tyson et al. [98] explain

that checkpoints in general happen when the associated saddle-node bifurcation no

longer occurs (e.g., if the bifurcation point is moved away in one direction).

In this section we focus on the existence of the SNMass bifurcation found numer-

ically above. In particular, we apply Theorem 4.0.1 and Corollary 4.0.1, regarding

saddle-node bifurcations in Rn, to the G2 module. This allows us to reduce the

4-dimensional system of the G2 module (5.4) into a one-dimensional form in a

neighborhood of the SNMass bifurcation provided the following three conditions

hold:
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C.1 Singularity condition: the bifurcation point of interest, which must be a steady

state, has only one associated zero eigenvalue. We can choose coordinates

such that one of the coordinates corresponds to the zero eigenvalue.

C.2 Nondegeneracy condition: in the new coordinates, the quadratic terms in the

differential equation corresponding to the zero eigenvalue coordinate do not

vanish at the bifurcation point.

C.3 Transversality condition: in the new coordinates, the first derivative of the

differential equation corresponding to the zero eigenvalue with respect to the

parameter of interest does not vanish at the bifurcation point.

If the conditions above are satisfied, then a saddle-node bifurcation takes place and

the differential equation corresponding to the zero eigenvalue can be written in

one-dimensional form

ξ̇ = f1(ξ; p),

where ξ is a linear combination of the variables in the G2 module and function f1

satisfies f1 = Dξf1 = 0 and Dξξf1 ̸= 0 at the bifurcation point.

Our main goal is to verify that the G2 module satisfies each of the conditions

above. First, in Section 5.2.1, we translate the system by placing a generic steady

state at the origin. Second, in Section 5.2.2, we nondimensionalize the system.

Third, in Section 5.2.3, we apply a change of coordinates so that one coordinate

corresponds to the zero eigenvalue. Finally, in Section 5.2.4 we verify the conditions

in Theorem 4.0.1 and Corollary 4.0.1, which allows us to conclude the existence

of the SNMass bifurcation. Due to the nonlinearity of the system (in particular,

equations for Wee1 (5.4c) and Cdc25 (5.4d)) we use a combination of theoretical

and numerical results.
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5.2.1 Translation of a steady state to the origin

Adopting the short notation z′ = f(z; p), where z ∈ R4, p ∈ R20, and f is given by

the right-hand side of system (5.4), we denote an equilibrium point as

z∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

MPF ∗

MPF ∗
P

Wee1∗

Cdc25∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and translate this equilibrium to the origin to write a translated system, i.e.,

ẑ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M̂PF

M̂PFP

Ŵee1

Ĉdc25

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= z − z∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

MPF −MPF ∗

MPFP −MPF ∗
P

Wee1−Wee1∗

Cdc25− Cdc25∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, ⇒ ẑ′ = f(ẑ + z∗, p).

Note that z∗ depends implicitly on the parameters in the system, including Mass.

Due to the nonlinearity of the system (in particular in the equations for Wee (5.4c)

and Cdc25 (5.4d)), we rely on numerical methods to find the steady states. Also, it

is important to mention some relevant properties of the steady states.

Properties of steady states

We look at the intersection of the nullclines (null surfaces) of MPF and MPFP .

Setting d
dt
MPFP = 0 in equation (5.4b), we obtain

MPFP =
km2 + km2aWee1

km1 + km1aCdc25 + km3

MPF. (5.6)
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Similarly, setting d
dt
MPF = 0 in equation (5.4a), we get

(km2+km2aWee1+km3)MPF −(km1+km1aCdc25)MPFP = km0Mass. (5.7)

Substituting equation (5.6) into equation (5.7), and we obtain that

km3(km1 + km1aCdc25 + km2 + km2aWee1 + km3)

km1 + km1aCdc25 + km3

MPF = km0Mass. (5.8)

Using equations (5.6) and (5.8), we can solve for MPF and MPFP in terms of

Wee1 and Cdc25,

MPF =
km0Mass

km3

km1 + km1aCdc25 + km3

km1 + km1aCdc25 + km2 + km2aWee1 + km3

, (5.9)

and

MPFP =
km0Mass

km3

km2 + km2aWee1

km1 + km1aCdc25 + km2 + km2aWee1 + km3

. (5.10)

At any steady state z∗, equations (5.9) and (5.10) satisfy

MPF ∗ +MPF ∗
P =

km0Mass

km3

, (5.11)

and

MPF ∗ + αMPF ∗
P

=
km0Mass

km3

km1 + km1aCdc25
∗ + α(km2 + km2aWee1∗) + km3

km1 + km1aCdc25∗ + km2 + km2aWee1∗ + km3

. (5.12)

The previous two equations will be used later in some calculations.
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System after translation

Now we return to the G2 module 5.4 and rewrite it into its translated form

ẑ′ = f(ẑ + z∗; p)

Using the change of variables ẑ = z − z∗ and equation (5.4a), we have

dM̂PF

dt
= km0Mass− (km2 + km2a(Ŵee1 +Wee1∗))(M̂PF +MPF ∗)

+ (km1 + km1a(Ĉdc25 + Cdc25∗))(M̂PFP +MPF ∗
P )

− km3(M̂PF +MPF ∗)

=������
km0Mass−

˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂

(km2 + km2aWee1∗ + km3)MPF ∗

+
˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂

(km1 + km1aCdc25
∗)MPF ∗

P

− (km2 + km2aWee1∗ + km3)M̂PF + (km1 + km1aCdc25
∗)M̂PFP

− km2aMPF ∗Ŵee1 + km1aMPF ∗
P Ĉdc25

− km2aM̂PFP Ŵee1 + km1aM̂PFP Ĉdc25,

where equation (5.7) has been used to cancel the first three terms. Similarly, using

equation (5.4b), we have

dM̂PFP

dt
= (km2 + km2a(Ŵee1 +Wee1∗))(M̂PF +MPF ∗)

− (km1 + km1a(Ĉdc25 + Cdc25∗))(M̂PFP +MPF ∗
P )

− km3(M̂PFP +MPF ∗
P )

=
˂˂˂˂˂˂˂˂˂˂˂˂˂˂
(km2 + km2aWee1∗)MPF ∗ −

˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂

(km1 + km1aCdc25
∗ + km3)MPF ∗

P

+ (km2 + km2aWee1∗)M̂PF − (km1 + km1aCdc25
∗ + km3)M̂PFP
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km2aMPF ∗Ŵee1− km1aMPF ∗
P Ĉdc25,

where equation (5.7) has been used to cancel the first two terms. The MPF +

αMPFP term in the equations for Wee1 (5.4c) and Cdc25 (5.4d) can be written as

MPF + αMPFP =MPF ∗ + αMPF ∗
P + M̂PF + αM̂PFP .

Thus, the translated G2 module (5.4) becomes

dM̂PF

dt
= −(km2 + km2aWee1∗ + km3)M̂PF + (km1 + km1aCdc25

∗)M̂PFP

− km2aMPF ∗Ŵee1 + km1aMPF ∗
P Ĉdc25

− km2aM̂PFP Ŵee1 + km1aM̂PFP Ĉdc25, (5.13a)

dM̂PFP

dt
= (km2 + km2aWee1∗)M̂PF − (km1 + km1aCdc25

∗ + km3)M̂PFP

km2aMPF ∗Ŵee1− km1aMPF ∗
P Ĉdc25

km2aM̂PFP Ŵee1− km1aM̂PFP Ĉdc25 (5.13b)

dŴee1

dt
= Vw1

Wee1T −Wee1∗ − Ŵee1

Jw1 +Wee1T −Wee1∗ − Ŵee1

− kw2(km + M̂PF + αM̂PFP )
Wee1∗ + Ŵee1

Jw2 +Wee1∗ + Ŵee1
, (5.13c)

dĈdc25

dt
= kc1(km + M̂PF + αM̂PFP )

Cdc25T − Cdc25∗ − Ĉdc25
Jc1 + Cdc25T − Cdc25∗ − Ĉdc25

− Vc2
Cdc25∗ + Ĉdc25

Jc2 + Cdc25∗ + Ĉdc25
. (5.13d)

where

km =MPF ∗ + αMPF ∗
P
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=
km0Mass

km3

km1 + km1aCdc25
∗ + α(km2 + km2aWee1∗) + km3

km1 + km1aCdc25∗ + km2 + km2aWee1∗ + km3

. (5.14)

Note that the last equality comes from equation (5.12) and the origin is now a steady

state, denoted ẑ∗ = 0, for the translated system (5.13).

5.2.2 Nondimensionalization and approximation

To simplify our calculations, we nondimensionalize the translated G2 module (5.13)

using the following transformation

x = M̂PF , y = M̂PFP , w =
Ŵee1

Wee1T
, u =

Ĉdc25

Cdc25T
, τ = km3t. (5.15)

Taking the derivative of x with respect to τ , we obtain

x′ =
dM̂PF

dt

dt

dτ
=

1

km3

dM̂PF

dt
.

Similarly,

y′ =
1

km3

dM̂PFP

dt
, w′ =

1

km3

dŴee1

dt
, u′ =

1

km3

dĈdc25

dt
.

After dividing every equation in (5.13) by km3, the translated and nondimen-

sionalized G2 module becomes

x′ = −(1 + a)x+ by − cw + du− κwxw + κuyu, (5.16a)

y′ = ax− (1 + b)y + cw − du+ κwxw − κuyu, (5.16b)

w′ = βw
1− w∗ − w

ϵ1 + 1− w∗ − w
− γw(km + x+ αy, )

w∗ + w

ϵ2 + w∗ + w
, (5.16c)

u′ = γu(km + x+ αy)
1− u∗ − u

ϵ3 + 1− u∗ − u
− βu

u∗ + u

ϵ4 + u∗ + u
, (5.16d)
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where

km =MPF ∗ + αMPF ∗
P ,

a =
km2 + km2aWee1∗

km3

, b =
km1 + km1aCdc25

∗

km3

,

c =
km2aMPF ∗Wee1T

km3

, d =
km1aMPF ∗

PCdc25T
km3

,

κw =
km2aWee1T

km3

, κu =
km1aCdc25T

km3

,

βw =
Vw1

km3Wee1T
, γw =

kw2

km3Wee1T
, w∗ =

Wee1∗

Wee1T
,

γu =
kc1

km3Cdc25T
, βu =

Vc2
km3Cdc25T

, u∗ =
Cdc25∗

Cdc25T
,

ϵ1 =
Jw1

Wee1T
, ϵ2 =

Jw2

Wee1T
, ϵ3 =

Jc1
Cdc25T

, ϵ4 =
Jc2

Cdc25T
.

(5.17)

The nonlinear functions associated with the Goldbeter-Koshland kinetics (in the

equations for w and u) complicate any theoretical analysis on the system, but now

that we have shifted the coordinates to a steady state, we can write an approximation

of the system for small values of w and u. Using the power series expansion (5.48)

(see Appendix 5.A), we write the second-order approximation of the normalized G2

module (5.16) for small values of x, y, w, and u, given by

x′ = −(1 + a)x+ by − cw + du− κwxw + κuyu, (5.18a)

y′ = ax− (1 + b)y + cw − du+ κwxw − κuyu, (5.18b)

w′ = B0 −Dx− αDy −Bw −D2xw − αD2yw +B2w
2 + h.o.t., (5.18c)

u′ = C0 + Ex+ αEy − Cu− E2xw − αE2yw + C2w
2 + h.o.t., (5.18d)
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where

B0 =
βw(1− w∗)

ϵ1 + 1− w∗ −
γwkmw

∗

ϵ2 + w∗ , B =
βwϵ1

(ϵ1 + 1− w∗)2
+

γwkmϵ2
(ϵ2 + w∗)2

,

B2 = −
βwϵ1

(ϵ1 + 1− w∗)3
+

γwkmϵ2
(ϵ2 + w∗)3

,

D =
γww

∗

ϵ2 + w∗ , D2 =
γww

∗

(ϵ2 + w∗)2
,

C0 =
γukm(1− u∗)
ϵ3 + 1− u∗

− βuu
∗

ϵ4 + u∗
, C =

γukmϵ3
(ϵ3 + 1− u∗)2

+
βuϵ4

(ϵ4 + u∗)2
,

C2 =
γukmϵ3

(ϵ3 + 1− u∗)3
+

βuϵ4
(ϵ4 + u∗)3

,

E =
γu(1− u∗)
ϵ+ 1− u∗

, E2 =
γu(1− u∗)

(ϵ3 + 1− u∗)2
.

(5.19)

Adopting the short notation z̃′ = f̃(z̃; p) for the nondimensionalized G2 module

(5.16), the Jacobian matrix at the steady state z̃ = 0 can be easily found from its

second-order approximation (5.18)

J = Dz̃f̃
⏐⏐⏐
z̃=0

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−(1 + a) b −c d

a −(1 + b) c −d

−D −αD −B 0

E αE 0 −C

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The characteristic polynomial of J is

PJ(λ) = det(λI − J) =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

λ+ 1 + a −b c −d

−a λ+ 1 + b −c d

D αD λ+B 0

−E −αE 0 λ+ C

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
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=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

λ+ 1 + a −b c −d

λ+ 1 λ+ 1 0 0

D αD λ+B 0

−E −αE 0 λ+ C

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

λ+ A −b c −d

0 λ+ 1 0 0

(1− α)D αD λ+B 0

−(1− α)E −αE 0 λ+ C

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
= (λ+ 1) [(λ+ A)(λ+B)(λ+ C)

−(1− α)(cD(λ+ C) + dE(λ+B))] ,

where

A = 1 + a+ b (5.20)

For the zero eigenvalue singularity condition C.1, we require the characteristic

polynomial above to be zero when λ = 0, i.e.,

PJ(0) = 0 ⇐⇒ ABC = (1− α) (cCD + bBE) . (5.21)

We can verify that the singularity condition above holds for the bifurcation point

(z∗SN ; p
∗) found numerically in (5.5). Indeed, using parameter definitions (5.17),

(5.19) and (5.20), we obtain

313361.4433 ≈ ABC = (1− α) (cCD + bBE) ≈ 313362.2906 ,

which reflects a relative error with a magnitude of 10−5. This error is due to the fact
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that (z∗SN ; p∗) is found numerically.

Using the zero eigenvalue singularity condition (5.21), the characteristic poly-

nomial becomes

PJ(λ) = (λ+ 1) [(λ+ A)(λ+B)(λ+ C)

−(1− α)(cD(λ+ C) + dE(λ+B))]

= (λ+ 1)
[
λ3 + (A+B + C)λ2 + (AB +BC + CA)λ+���ABC

−(1− α)(cD + dE)λ−
˂˂˂˂˂˂˂˂˂˂˂˂
(1− α)(cDC + dEB)

]
= λ(λ+ 1)

[
λ2 + (A+B + C)λ

+AB +BC + CA− (1− α)(cD + dE)] ,

Thus, the eigenvalues are given by

λ1 = 0, λ2 = −1, λ± =
−(A+B + C)±

√
F

2
,

where

F = (A+B + C)2 − 4(AB +BC + CA) + 4(1− α)(cD + dE). (5.22)

Using parameter definitions (5.17) and (5.19) and multiplying by the scaling factor
dτ
dt

= km3 = 0.2, we verify that the eigenvalues match the ones found numerically

in (5.5)

km3λ1 = 0,

km3λ2 = km3(−1) = −0.2,

km3λ+ = km3
−(A+B + C) +

√
F

2
= −8.8962,
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km3λ− = km3
−(A+B + C)−

√
F

2
= −56.2445.

For the single zero eigenvalue singularity condition C.1, we require that eigen-

values λ+ and λ− are real. This is true if F , defined in equation 5.22, is greater than

0, i.e.,

(A+B + C)2 + 4(1− α)(cD + dE) > 4(AB +BC + CA) > 0. (5.23)

Note that these eigenvalues are negative if (A+B + C)2 > F , i.e.,

(1− α)(cD + dE) < AB +BC + CA. (5.24)

The previous two equations provide conditions for negative real eigenvalues λ+ and

λ−.

5.2.3 Change of coordinates

In this section, we apply the standard results on a saddle-node bifurcation inRn given

by Theorem 4.0.1 and Corollary 4.0.1 in Chapter 4. These results required a change

of coordinates that places one variable in the single zero eigenvalue. The standard

method to find such change of coordinates is to find the eigenvectors, write the

invertible matrix P of diagonalization, invert it, and define the new coordinates as

ζ = P−1z̃. Unfortunately, the explicit inversion of this matrix P is too complicated.

Instead, we propose the following change of coordinates that is not the canonical

transformation, yet satisfies the conditions of Theorem 4.0.1

ξ = (aBC − cCD − dBE)x+ ((1 + a)BC − cCD − dBE)y
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+ cCw − dBu, (5.25a)

ψ = x+ y, (5.25b)

ω = (aBC − cCD − dBE)Gx+ ((1 + a)BC − cCD − dBE)Gy

+ (1 + cCG)w − dBGu, (5.25c)

υ = (aBC − cCD − dBE)Hx+ ((1 + a)BC − cCD − dBE)Hy

+ cCHw + (1− dBH)u. (5.25d)

where

G =
(1− α)CD

B2C2 − (1− α)(cC2D − dB2E)
,

H =
(1− α)BE

B2C2 − (1− α)(cC2D − dB2E)
,

(5.26)

and the following inequality holds

B2C2 − (1− α)(cC2D − dB2E) ̸= 0. (5.27)

The change of variables (5.25) is motivated from the calculations to obtain the

eigenvectors, i.e., from the elementary row operations necessary to solve (λI −

J)v = v for v ̸= 0 (calculations not shown here).

Constants G and H are the solution to the following equations

(1− α)BC − cCG− dBH
BC

D +BG = 0,

−(1− α)BC − cCG− dBH
BC

E + CH = 0,

(5.28)

assuming (5.27) holds. These equations are the result of forcing the linear terms in

the derviative of (5.25) to have the same structure as the linear terms in equation
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(4.4) in the statement of Theorem 4.0.1, i.e., forcing that the linear terms in the

derivatives of ω and υ do not depend on ξ. In fact, equations (5.25c) and (5.25c)

are the result of choosing ω = Gξ +w and υ = Hξ + u, respectively. At the end of

this section, we will see how enforcing the linear structure mentioned above results

in equation (5.28).

The corresponding inverse transformation of the change of coordinates 5.25 is

x = −BC − cCG− dBH
BC

ξ +
(1 + a)BC − cCD − dBE

BC
ψ

+
c

B
ω − d

C
υ, (5.29a)

y =
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ, (5.29b)

w = −Gξ + ω, (5.29c)

u = −Hξ + υ. (5.29d)

Taking derivatives of equation (5.25b), we have

ψ′ = x′ + y′ = −(1 + a)x+ by − cw + du− κwxw + κuyu

+ ax− (1 + b)y + cw − du+ κwxw − κuyu

= −(x+ y) = −ψ.

Equation (5.25a) can be written as

ξ = BCy + cCw − dBu+ (aBC − cCD − dBE)ψ.

Differentiating and using equations (5.16b) and (5.18), we obtain

ξ′ = BCy′ + cCw′ − dBu′ + (aBC − cCD − dBE)ψ′
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=����aBCx− (1 + b)BCy +����cBCw −����dBCu+ κwBCxw + κuBCyu

+ cCB0 −����cCDx− αcCDy −����cCBw

− cCD2xw − αcCD2yw + cCB2w
2 + h.o.t.

− dBC0 −����dBEx− αdBEy +����dBCu

+ dBE2xu+ αdBEyu− dBC2u
2 + h.o.t.

+ (−���aBC +���cCD +���dBE)x+ (−aBC + cCD + dBE)y

= cCB0 − dBC0

+ (−ABC + (1− α)(cCD − dBE))y

+ (κwBC − cCD2)xw + dBE2xu− αcCD2yw

+ (κuBC + αdBE2)yu+ cCB2w
2 − dBC2u

2 + h.o.t.

Note that, at the bifurcation point SNMass, the constant multiplying y cancels by

the zero eigenvalue condition (5.21). Substituting x, y, w, and u, according to the

inverse transformation (5.29), and discarding all quadratic and higher order terms

except those of the form ξ2, we obtain

ξ′ = cCB0 − dBC0

+ (−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)
+ (κwBC − cCD2)

BC − cCG− dBH
BC

Gξ2

+ dBE2
BC − cCG− dBH

BC
Hξ2

+ αcCD2
BC − cCG− dBH

BC
Gξ2

− (κuBC + αdBE2)
BC − cCG− dBH

BC
Hξ2
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+ cCB2G
2ξ2 − bBC2H

2ξ2 + other quadratic terms + h.o.t.

= cCB0 − dBC0

+ (−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)
+ (κwBC − (1− α)cCD2)

BC − cCG− dBH
BC

Gξ2

− (κuBC − (1− α)dBE2)
BC − cCG− dBH

BC
Hξ2

+ cCB2G
2ξ2 − bBC2H

2ξ2 + other quadratic terms + h.o.t.

From equation (5.29c) we know that

ω = w +Gξ,

whose derivative, using equation (5.18c) up to linear terms, is

ω′ = w′ +Gξ′

= B0 −Dx− αDy −Bw + h.o.t.

+G(cCB0 − dBC0)

+G(−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)
+ h.o.t.

= B0 +G(cCB0 − dBC0)

+G(−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)
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+
BC − cCG− dBH

BC
Dξ − (1 + a)BC − cCD − dBE

BC
Dψ

− cD

B
ω +

dD

C
υ

− αBC − cCG− dBH
BC

Dξ + α
(1 + a)BC − cCD − dBE

BC
Dψ

+ α
cD

B
ω − αdD

C
υ

+BGξ −Bω + h.o.t.

= B0 +G(cCB0 − dBC0)

+G(−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)
+

(
(1− α)BC − cCG− dBH

BC
D +BG

)
ξ

−
(
(1− α)aBC − cCD − dBE

BC
D +D

)
ψ

−
(
(1− α)cD

B
+B

)
ω + (1− α)dD

C
υ + h.o.t.

Finally, from equation (5.29d) we know that

υ = u+Hξ,

whose derivative, using equation (5.18d) and up to linear terms, is

υ′ = u′ +Hξ′

= C0 − Ex− αEy − Cw + h.o.t.

+H(cCB0 − dBC0)

+H(−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)
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+ h.o.t.

= C0 +H(cCB0 − dBC0)

+H(−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)
− BC − cCG− dBH

BC
Eξ +

(1 + a)BC − cCD − dBE
BC

Eψ

− cE

B
ω +

dE

C
υ

+ α
BC − cCG− dBH

BC
Eξ − α(1 + a)BC − cCD − dBE

BC
Eψ

+ α
cE

B
ω − αdE

C
υ

+ CHξ − Cυ + h.o.t.

= C0 +H(cCB0 − dBC0)

+H(−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)
−
(
(1− α)BC − cCG− dBH

BC
E − CH

)
ξ

+

(
(1− α)aBC − cCD − dBE

BC
E + E

)
ψ

− (1− α)cE
B
ω +

(
(1− α)dE

C
− C

)
υ + h.o.t.

Summarizing, the G2 module in the new coordinates becomes

ξ′ = cCB0 − dBC0

+ (−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)
+ (κwBC − (1− α)cCD2)

BC − cCG− dBH
BC

Gξ2
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− (κuBC − (1− α)dBE2)
BC − cCG− dBH

BC
Hξ2

+ cCB2G
2ξ2 − bBC2H

2ξ2 + o.q.t.+ h.o.t., (5.30a)

ψ′ = −ψ, (5.30b)

ω′ = B0 +G(cCB0 − dBC0)

+G(−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)
+

(
(1− α)BC − cCG− dBH

BC
D +BG

)
ξ

−
(
(1− α)aBC − cCD − dBE

BC
D +D

)
ψ

−
(
(1− α)cD

B
+B

)
ω + (1− α)dD

C
υ + h.o.t., (5.30c)

υ′ = C0 +H(cCB0 − dBC0)

+H(−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)
−
(
(1− α)BC − cCG− dBH

BC
E − CH

)
ξ

+

(
(1− α)aBC − cCD − dBE

BC
E + E

)
ψ

− (1− α)cE
B
ω +

(
(1− α)dE

C
− C

)
υ + h.o.t. (5.30d)

Now, referring back to equations (5.28), these equations come from forcing the

fourth term in equations (5.30c) and (5.30d) to vanish. As per the third term in

equations (5.30c) and (5.30d) they must vanish since the zero eigenvalue condition

C.1 (guaranteed by equation (5.21)) implies that the linear term (second term) in

equation (5.30a) vanishes. Thus, all ξ-linear terms in equations (5.30b) and (5.30d)

vanish.
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Equation (5.30a) is almost the one-dimensional form we are looking for. We

still have to apply Theorem 4.0.1 to the whole system (5.30) and rewrite equation

(5.30a) depending only on ξ.

5.2.4 Reduction to one-dimensional form

The original version of G2 module (5.4) has precisely one zero eigenvalue if equation

(5.21),

ABC = (1− α)(cCD + dBE),

and inequality (5.23),

(A+B + C)2 + 4(1− α)(cD + dE) > 4(AB +BC + CA),

hold, where the constants therein are defined by (5.17), (5.19), and (5.20). The

change of coordinates (5.25) transforms the G2 module into system (5.30). The

zero eigenvalue condition implies that the terms of the form

(−ABC + (1− α)(cCD − dBE))

×
(
BC − cCG− dBH

BC
ξ − aBC − cCD − dBE

BC
ψ − c

B
ω +

d

C
υ

)

in system (5.30) vanish. Equations (5.28) imply that the ξ-linear terms in equations

(5.30c) and (5.30d) vanish.

Let ϕ = (ψ, ω, υ), ζ = (ξ, ϕ), g1(ξ, ϕ; p) defined by the right-hand side of

equation (5.30a), M defined by the linear terms in the right-hand side of equations
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(5.30b)–(5.30d)

M =

⎡⎢⎢⎢⎢⎣
−1 0 0

−(1− α)aBC−cCD−dBE
BC

D −D −(1− α) cD
B
−B (1− α)dD

C

(1− α)aBC−cCD−dBE
BC

E + E −(1− α) cE
B

(1− α)dE
C
− C

⎤⎥⎥⎥⎥⎦ ,

g2(ξ, ϕ; p) defined by the remaining terms in the right-hand side of equations

(5.30b)–(5.30d), and g = (g1, g2). Then, the G2 module in the new coordinates

(5.30) is written

ξ′ = g1(ξ, ϕ; p),

ϕ′ =Mϕ+ g2(ξ, ϕ; p).

At (ξ, ϕ; p) = (0, 0; p∗), where Mass = Mass∗ at p∗, we have B0 = C0 = 0 so

that g(0, 0; p∗) = 0, by construction. Also, Dζg(0, 0; p
∗) = 0, by construction. If

inequality (5.27),

B2C2 − (1− α)(cC2D − dB2E) ̸= 0,

holds, then M is invertible. This construction guaranties that singularity condition

C.1 is satisfied.

From equation (5.30a), we have

σ0 = Dξξg1(ξ, ϕ, p
∗) =

BC − cCG− dBH
BC

× ((κwBC − (1− α)cCD2)G− (κuBC − (1− α)dBE2)H)

+ cCB2G
2 − bBC2H

2. (5.31)
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Note that the transversality condition C.3 holds since

DMassg1(0, 0; p
∗) = DMassf(z

∗
SN ; p

∗) = km0 ̸= 0.

If the nondegeneracy conditions C.2 is satisfied, i.e.,

σ0 ̸= 0, (5.32)

then, by Theorem 4.0.1 and Corollary 4.0.1, there is a SNMass bifurcation that

takes place when Mass crosses Mass∗. Moreover, there is a neighbourhood

of (ξ, p) = (0, p∗) where there exists a unique function ϕ = η(ξ; p) such that

0 = η(0; p∗). Function η(ξ; p) must not have constant terms or terms of the form

ξ−n (for n ≥ 0), otherwise the condition 0 = η(0; p∗) is not satisfied. Thus, we can

assume this function has a polynomial form

ϕ = η(ξ; p) =

⎡⎢⎢⎢⎢⎣
η11ξ + η12ξ

2 + . . .

η21ξ + η22ξ
2 + . . .

η31ξ + η32ξ
2 + . . .

⎤⎥⎥⎥⎥⎦ ,

in which case we can collect all the quadratic terms in the right-hand side of (5.30a)

and reduce the G2 module to one-dimensional form

ξ′ = g1(ξ, η(ξ; p); p) = (cCB0 − dBC0) + σξ2, (5.33)

where σ = σ0+σ1 is the sum of the terms of the form ξ2 (i.e., σ0) and other quadratic

terms of the form η(ξ; p)ξ and (η(ξ; p))2.

Although the nondegeneracy (5.32) can be easily verified numerically by com-
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puting

σ0 ≈ 14974232.7882 ̸= 0, (5.34)

it is far more difficult to verify this condition theoretically.

5.3 G2 module with variable cell mass: saddle-node

bifurcation driven by Vc2

In this section, we study the extended G2 module where the parameter Mass is

transformed into a state variable. The equations are

dMPF

dt
= km0Mass− (km2 + km2aWee1)MPF

+ (km1 + km1aCdc25)MPFP − km3MPF, (5.35a)
dMPFP

dt
= (km2 + km2aWee1)MPF − (km1 + km1aCdc25)MPFP

− km3MPFP , (5.35b)
dWee1

dt
= Vw1

Wee1T −Wee1

Jw1 + (Wee1T −Wee1)

− kw2(MPF + αMPFP )
Wee1

Jw2 +Wee1
, (5.35c)

dCdc25

dt
= kc1(MPF + αMPFP )

Cdc25T − Cdc25
Jc1 + (Cdc25T − Cdc25)

− Vc2
Cdc25

Jc2 + Cdc25
, (5.35d)

dMass

dt
= µMass

(
1− Mass

KMass

)
, (5.35e)

According to Proposition 4.2.1, we need to show that the nonsingularity con-

dition (4.19) and the transversality condition (4.20) are satisfied in order to prove

the existence of a saddle-node bifurcation driven by Vc2 in the extended G2 module
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Figure 5.6: Two-parameter bifurcation diagram for the G2 module (5.4) with mass
and Vc2 as bifurcation parameters. The bifurcation curve on the right follows the
SNMass studied in Section 5.2. The nullclines of cell mass (equation (5.35e)) have
been superimposed on the diagram. A saddle-node bifurcation is created when the
nullcline corresponding to Mass = KMass is transverse to the SNMass bifurcation
curve. The bifurcation diagram in Figure 5.5 corresponds to a horizontal cross
section here when Vc2 = 1.4.

(5.35). According to Proposition 4.2.2, these conditions can be verified graphically

by superimposing the nullcline of equation (5.35e) onto the corresponding two-

parameter bifurcation diagram for the G2 module (5.4). This bifurcation diagram

is shown in Figure 5.6, where we verify that 1) the Mass-nullcline of equation

(5.35e) intersects transversally the two-parameter bifurcation curve that follows the

SNMass bifurcation, and 2) the tangent line to the Mass-nullcline of (5.35e) is not

parallel the Mass-axis at the intersection. Thus, the extended G2 module (5.35)

has a saddle-node bifurcation at the intersection as Vc2 crosses the bifurcation value

V ∗
c2. We denote this saddle-node bifurcation as SNVc2 .

Recall from Section 5.2 that the G2 module (5.4) is reduced to a one-dimensional
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form (5.33) around the SNMass bifurcation for a small ξ. Note that this one-

dimensional reduction is valid for a generic SNMass bifurcation point (z∗SN ; p∗),

since the calculations are given implicitly in term of the steady states. In particular,

it is valid at the intersection of the two-parameter bifurcation curve and the nullcline

of g where Mass = KMass. In order to find the normal form for the extended G2

Module (5.35), we still need to consider the contribution of the differential equation

for Mass to the one-dimensional form. This can be done through one of two

methods: 1) applying Theorem 4.0.1 to the G2 module with variable mass (5.35)

analogous to the approach taken in Section 5.2, or 2) taking the one-dimensional

reduction of the G2 module, extending it by transforming Mass into variable, and

applying Proposition 4.2.1 to this extended model to reduce it to a one dimensional

form. Note that the second method is possible because g(Mass) does not depend

on any of the other state variables (MPF , etc.). In order to avoid repeating the long

calculations carried out in Section 5.2, we apply here the second method.

We rewrite the one-dimensional form (5.33) as

f(ξ;Mass, Vc2) = (cCB0 − dBC0) + σξ2,

where only the parameters Mass and Vc2 are considered explicitly for simplicity.

By Proposition 4.1.1, there is a unique function Mass = ν(Vc2) such that we can

reduce the extended G2 module (where mass is a variable) to

ξ′ = f(ξ + a
b
(ν(Vc2)−Mass∗), ν(Vc2);Vc2)− a

b
g(ν(Vc2);Vc2), (5.36)

(recall that the nondimensionalized system has a bifurcation point at (x, y; p) =
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(0, 0; p∗)), where

b = DMassg(KMass;µ,KMass) = −µ,

and

g(Mass;Vc2) = µMass

(
1− Mass

KMass

)
,

from equation (5.35e). Note that the Mass is now a state variable for the function

f in (5.36). Note also that the parametersMass and Vc2 are present implicitly in all

the parameters through the steady state z∗ = (MPF ∗,MPF ∗
P , Cdc22

∗,Wee1∗),

while Mass is explicitly present in µ, C0, and C (see equation (5.14)), and Vc2

is explicitly present in C0 and C (since βu is a multiple of Vc2). Therefore, our

calculation does not allow us to compute a = DVc2f1 explicitly. However, it is easy

to see that

ν(Vc2) = KMass =Mass∗.

Hence, a does not need to be computed because both terms ν(Vc2) −Mass and

g(ν(Vc2);Vc2) in (5.36) vanish. Thus, the one-dimensional reduction of the extended

G2 module (5.35) is

ξ′ = f(ξ,KMass;Vc2) = (cCB0 − dBC0) + σξ2. (5.37)

Note that, the only difference between the one-dimensional forms (5.33) and (5.37)

is that Mass = KMass is constant in the latter.

The bifurcation diagram for the G2 module with variable mass (5.35) with Vc2

taken as bifurcation parameter is shown in Figure 5.7. As expected, there is a

saddle-node bifurcation, denoted, SNVc2 , when Vc2 = V ∗
c2 ≈ 3.49. The upper stable

node (solid black line) in Figure 5.7 corresponds to the upper stable steady state in

Figure 5.5. The SNVc2 bifurcation point and corresponding eigenvalues are found
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Figure 5.7: Bifurcation diagram of the G2 module with variable mass (5.35) with
Vc2 as varying parameter.

numerically to be given by

V ∗
c2 ≈ 3.492928,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MPF ∗

MPF ∗
P

Wee1∗

Cdc25∗P

Mass∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.048031

2.650923

0.826130

0.007779

2.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
−→
λ ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−0.0700

−0.2000

−36.974

−115.67

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.38)

Note that this bifurcation point is approximately equal to that found earlier for the

SNICVc2 bifurcation of the full cell cycle model (see (5.3)), i.e., the G2 module with

variable mass captures very well the dynamics of the full cell cycle model around

the SNICVc2 bifurcation. In the next section, we will see that adding the M module

and resetting condition to the G2 module with variable mass does not affect the

SNVc2 bifurcation point.
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5.4 G2 and M modules combined with variable cell

mass and resetting condition: SNIC bifurcation

driven by Vc2

In the previous section, we showed that the G2 module with variable mass has a

saddle-node bifurcation driven by Vc2. Such saddle-node bifurcation is inherited

from the G2 module when the parameter Mass is transformed into a variable. In

this section, we further extend the G2 module by adding the M module and mass

resetting condition. First, we add the M module, corresponding to equations for

APC and IE. Second, we discuss how the addition of the resetting condition closes

the cell cycle.

Addition of the M module to the G2 module with variables mass (5.35) results

in the model already presented at the beginning of this chapter in equations (5.1)

dMPF

dt
= km0Mass− (km2 + km2aWee1)MPF

+ (km1 + km1aCdc25)MPFP − (km3 + km3aAPC)MPF, (5.39a)
dMPFP

dt
= (km2 + km2aWee1)MPF − (km1 + km1aCdc25)MPFP

− (km3 + km3aAPC)MPFP , (5.39b)
dWee1

dt
= Vw1

Wee1T −Wee1

Jw1 + (Wee1T −Wee1)

− kw2(MPF + αMPFP )
Wee1

Jw2 +Wee1
, (5.39c)

dCdc25

dt
= kc1(MPF + αMPFP )

Cdc25T − Cdc25
Jc1 + (Cdc25T − Cdc25)

− Vc2
Cdc25

Jc2 + Cdc25
, (5.39d)

dIE

dt
= ki1(MPF + αMPFP )

IET − IE
Ji1 + (IET − IE)

− Vi2
IE

Ji2 + IE
, (5.39e)
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dAPC

dt
= ka1IE

APCT − APC
Ja1 + (APCT − APC)

− Va2
APC

Ja2 + APC
, (5.39f)

dMass

dt
= µMass

(
1− Mass

KMass

)
, (5.39g)

where variables and parameters are listed in Tables 5.1 and 5.2, respectively. Note

that APC and IE are variables in this combined module, whereas they are considered

parameters in the G2 module with variable mass.

As in Section 5.3, we consider Vc2, the inactivation rate of Cdc25, a varying

parameter. The bifurcation diagram is shown in Figure 5.8. There is a saddle-

node bifurcation, denoted SNV̄c2
to distinguish it from the previous SNVc2 , when

Vc2 = V̄ ∗
c2 = 3.47. Note that if we compare this SNV̄c2

bifurcation with the SNVc2

bifurcation in Figure 5.7, including the branch, they have not changed after the

addition of the M module. However, the addition of the M module eliminated the

upper stable node (solid black line) in Figure (5.7) and created the upper saddle

point (dot dash black line) in Figure 5.8. In fact, the numerical values of the SNVc2

bifurcation are approximately equal to those of the SNICVc2 shown at the beginning

of this chapter in equation (5.3), i.e.,

V ∗
c2 ≈ 3.471683,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MPF ∗

MPF ∗
P

Wee1∗

Cdc25∗P

IE∗

APC∗

Mass∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.048044

2.650815

0.825999

0.007785

0.003287

0.000013

2.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
−→
λ ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−0.0700

−0.2000

−21.768

−36.960

−115.58

−1655.6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Figure 5.8: Bifurcation diagram of the G2 and M modules with variable mass (5.39)
with Vc2 as varying parameter.

The resetting condition (5.2), i.e.,

if MPF (t) = θM and
dMPF

dt
(t) < 0 =⇒ Mass(t)← Mass(t)

2
,

maps trajectories reaching the upper saddle (dot dashed black line) in Figure 5.8

from the right side (to the right of Mass∗) of Figure 5.5 that defines M-phase to

the left side (to the left of Mass∗) that defines G2-phase. Note that this mapping is

done smoothly with respect to all the variables, exceptMass, since their value does

not change at the reset. This defines a branched manifold that closes the cell cycle

(i.e., the M-phase to interphase transition) and transforms the SN2Vc2 bifurcation

into a SNICVc2 bifurcation.

Since the SNVc2 bifurcation remains unchanged with the addition of the M-phase

and the resetting condition, we conjecture that the one-dimensional reduction of the

SNICVc2 bifurcation is the same as (5.37).
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5.5 Normal form for the SNIC bifurcation driven by

Vc2: describing the G2/M transition

We now rescale back to the original time scale of t, according to equation, (5.15)

τ = km3t =⇒ dτ

dt
= km3. (5.40)

Then,
dξ

dt
=
dξ

dτ

dτ

dt
= km3

dξ

dτ
= km3

(
cCB0 − dBC0 + σξ2

)
,

and equation (5.37) is rewritten as

dξ

dt
= ρ+ γξ2, (5.41)

where

ρ = km3(cCB0 − dBC0), and γ = km3σ. (5.42)

Although the constant γ can be eliminated with non-dimensionalization, we prefer

to keep this ‘almost’ normal form in order to have the same time scale of the cell

cycle. For Vc2 = 1.4, we can estimate

ρ ≈ −371.466, (5.43)

from equations (5.3), (5.17), and (5.19). However, we cannot estimate γ because

we do not have a closed expression for σ = σ0 + σ1 (see equation (5.33)). Since the

cell cycle is in the oscillatory regime when Vc2 = 1.4, the normal form should not

have steady states when Vc2 = 1.4. Thus, given ρ < 0 we can assume that γ < 0.

Equation (5.41) is a normal form for the saddle-node bifurcation that approximates
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Figure 5.9: Bifurcation diagram of the normal form (5.41) of the saddle-node
bifurcation.

locally the SNICVc2 bifurcation of the cell cycle in a neighbourhood of the bifurcation

point (ξ, p) = (0, p∗) (where p is the vector of all parameters in the cell cycle).

We denote the neighbourhood of ξ = 0 where the normal form (5.41) approxi-

mates the cell cycle around the SNICVc2 bifurcation as (ξleft, ξright). Given the initial

condition ξ(0; p) = 0, we have ξ(0; p) ∈ (ξleft, ξright). If Vc2 = V ∗
c2 (i.e., p = p∗),

then (ξ, p) = (ξ(0; p∗), p∗) = (0, p∗) is exactly the bifurcation point.

When ρ < 0, the solution of the normal form (5.41) is always decreasing from

ξleft to ξright. If ρ = 0, there is a saddle-node bifurcation at ξ = 0. If ρ > 0, there

are stable and unstable equilibria at ξ =
√
| ρ
γ
| and ξ = −

√
| ρ
γ
|, respectively. See

Appendix 5.B for more details. Figure 5.9 shows the corresponding bifurcation

diagram.

If we solve the normal form (5.41) for ρ < 0 beyond ξleft and ξright, ξ blows-up in

finite time to positive infinity backwards from ξleft, and to positive infinity forwards

from ξright, respectively (see Appendix 5.B). This extension of the normal form

(5.41) to positive and negative infinity is illustrated in Figure 5.10c. The time from
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a) b) c)

d)

Figure 5.10: Diagram of the one-dimensional approximation of the cell cycle model
around the SNICVc2 bifurcation. a) Representation of the cell cycle with a zoom
into the G2/M transition where the SNICVc2 bifurcation takes place (see Figure 2.1).
b) Representation of the one-dimensional approximation of the cell cycle (5.41)
(blue) in the cell cycle diagram in the neighborhood (ξleft, ξright) of ξ = 0. c)
Representation of the extended normal form (5.41) (blue) by solving it beyond ξleft
and ξright. d) Linear representation of the cell cycle during the G2/M transition with
corresponding times defined in equations (5.44) and (5.46).

negative infinity blow-up to positive infinity blow-up is

TG2/M =
π
√
ργ
, (5.44)

(see equation (5.52) in Appendix 5.B).

Now consider the full cell cycle model (5.1) with initial condition at the start of

the cell cycle and basal value of Vc2 = 1.4. Denote the time of bifurcation tbif
G2/M

as the time such that the concentration of MPF is equal to its concentration at the
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bifurcation point (5.3), i.e.,

MPF (tbif
G2/M) =MPF ∗. (5.45)

If Vc2 is instantaneously set to V ∗
c2 at t = tbif

G2/M , the cell cycle model is exactly at

the bifurcation point. We define a finite time interval around the time of bifurcation

tbif
G2/M as

IG2/M = [tstart
G2/M , t

end
G2/M ] = [tbif

G2/M − 1
2
TG2/M , t

bif
G2/M + 1

2
TG2/M ]. (5.46)

Identifying the G2/M transition with the SNICVc2 bifurcation, we say that tbif
G2/M

is the time of the SNICVc2 bifurcation associated with the G2/M transition, TG2/M

(equation (5.44)) is the length of the G2/M transition, and IG2/M (equation (5.46))

in the interval of the G2/M transition. These values are illustrated in Figure 5.10d.

5.6 Discussion

We reduced the the cell cycle model (5.1) to normal form (5.41) around the SNICVc2

bifurcation. Thus, all seven variables in the cell cycle model are reduced to one

variable, which concentrates the dynamics of the SNICVc2 bifurcation. For this

reduction, we broke down the cell cycle model into sub-modules, the G2 module

and the M module.

In Section 5.2, we considered the G2 module with constantMass (5.4). We used

Theorem 4.0.1 and Corollary 4.0.1 (see Meiss [63] for more details on saddle-node

bifurcations in Rn) to show that this module has a saddle-node bifurcation driven by

Mass and to reduce it to the one-dimensional form (5.33). In particular, we found

conditions on the parameters of the G2 module that guarantee that the hypotheses
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of Theorem 4.0.1 and Corollary 4.0.1 are satisfied.

In Section 5.3, we transformed Mass into a variable to obtain the G2 module

with variable Mass (5.35). We used Proposition 4.2.2, proved in Chapter 4, to

show that the G2 module with variable Mass (5.35) has a saddle-node bifurcation

driven by Vc2, which is the carryover of the saddle-node driven by Mass in the G2

module (5.4). Moreover, we used Proposition 4.2.1 and the one-dimensional form

(5.33) to reduce the G2 module with variable Mass (5.35) to the one-dimensional

form (5.37).

In Section 5.4, we added the M module and resetting condition (5.2) to the

G2 module with variable Mass to construct the cell cycle model (5.39). We used

numerical results to conclude that the M module remains constant around the saddle-

node bifurcation driven by Vc2 and does not affect the variables of the G2 module

or Mass. The resetting condition (5.2) defines a branched manifold that closes

the cell cycle (see Hadeler and Hillen [31] for more details on branched manifolds)

and transforms the saddle-node bifurcation into a SNIC bifurcation. Since the reset

takes place away from the SNIC bifurcation driven by Vc2 , the resetting condition

does not affect the one-dimensional reduction. Thus, the one-dimensional reduction

of the full cell cycle model around SNIC bifurcation driven by Vc2 is locally the

same as the saddle-node reduction (5.37) from the previous section.

In Section 5.5, we standardized our one-dimensional form of the cell cycle model

around the SNIC bifurcation driven by Vc2 to have the same time-scale as the cell

cycle model (see equation (5.41)). Moreover, we provided a mathematical definition

of the G2/M transition of the cell cycle in terms of the SNIC bifurcation driven by

Vc2. Specifically, we define the time interval IG2/M = [tstart
G2/M , t

end
G2/M ] of the G2/M

transition (see equation (5.46)) around the time of bifurcation tbif
G2/M . This implies

that the G2/M transition is a finite time interval defined around the SNIC bifurcation
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(locally, saddle-node bifurcation) driven by Vc2.

We conjecture that the end of the G2/M transition, tend
G2/M , determines the thresh-

old for M-phase entry, θM , defined by Novák et al. [75] and Gérard et al. [25],

and widely used in Chapters 2 and 3. A potential initial approach to support this

conjecture is to estimate tstart
G2/M , tbif

G2/M , and tend
G2/M based on Table 5.2. The results

might be useful to also define the other transitions in the cell cycle in a similar way.

Some of the steps taken in this chapter were justified numerically (such as

providing the nondegeneracy condition (5.34) or showing that the M module remains

constant during the saddle-node bifurcation driven by Vc2) or unfinished (such as

finding the steady states, the unique function η(ξ; p), and constant σ in Section 5.2).

Taking a more rigorous approach to justify these steps is left as future work.

The one-dimensional reduction of the cell cycle around the SNIC bifurcation

driven by Vc2 (5.41) will be used in the next chapter to derive a survival fraction

model based on the ATM-Chk2 pathway.

Appendices

5.A Power series expansions of the Goldbeter-Koshland

kinetics

The Goldbeter-Koshland kinetics is given by

ẋ(t) = v1
1− x

J1 + 1− x
− v2

x

J2 + x
, (5.47)

where v1 and v2 are the maximum reaction velocities and J1 and J2 are the Michaelis

rates. The two non-linear terms in the Goldbeter-Koshland kinetics have a power
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series expansion about x = 0

a+ x

J + a+ x
=

a

J + a
+

∞∑
n=1

(−1)n+1J

(J + a)n+1
xn, |x| < J. (5.48)

That is,

1− x
J + 1− x

=
1

J + 1
− J

(J + 1)2
x− J

(J + 1)3
x2 −O(x3)

and
x

J + x
=

1

J
x− 1

J2
x2 +O(x3).

Thus we can approximate the right-hand side of (5.47) for small values of x with

ẋ(t) ≈ v1

(
1

J1 + 1
− J1

(J1 + 1)2
x− J1

(J1 + 1)3
x2
)
− v2

(
1

J2
x− 1

J2
2

x2
)
.

Combining terms, we obtain

ẋ(t) ≈ v1
J1 + 1

−
(

v1J1
(J1 + 1)2

+
v2
J2

)
x−

(
v2J1

(J1 + 1)3
− v2
J2
2

)
x2. (5.49)

5.B Normal form for the saddle-node bifurcation

Consider the normal form for the saddle-node bifurcation

dx

dt
= −b− cx2, (5.50)

where c > 0. Note that we keep the constant c in order to avoid scaling time. If

b > 0, then dx
dt
< 0 and there are no steady states. If b < 0, then there are two steady
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states
dx

dt
= 0 =⇒ −b− cx2 = 0 =⇒ x± = ±

√⏐⏐⏐⏐bc
⏐⏐⏐⏐.

Denoting f(x) = −b− cx2, we have f ′(x) = −2cx. Since f(x+) < 0, x+ is stable.

Conversely, since f(x−) > 0, x− is unstable.

We are interested on the solution of (5.41) when b > 0 given initial condition

x(0) =∞. Using the method to solve for separable equations, we have

dx

dt
= −b

(
1 +

c

b
x2
)

=⇒
∫

dx

1 +
(√

c
b
x
)2 = −

∫
bdt.

Using the substitution u =
√

c
b
x for the integral in the right hand side, we obtain

√
b

c
atan

(√
c

b
x(t)

)
= −bt+ C.

Using the initial condition x(0) =∞, we find

C =

√
b

c
atan(∞) =

π

2

√
b

c
.

Substituting back and solving for x(t), we obtain

atan

(√
c

b
x(t)

)
=
π

2
−
√
bct,

=⇒
√
c

b
x(t) = tan

(π
2
−
√
bct
)
= cot

(√
bct
)

Thus, the solution to the normal form (5.50) is given by

x(t) =

√
b

c
cot
(√

bct
)
. (5.51)
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This solution blows-up for a finite time Tblow. That is,

x(Tblow) =

√
b

c
cot
(√

bcTblow

)
=∞ ⇐⇒

√
bcTblow = π.

Thus, the time of blow-up is

Tblow =
π√
bc
. (5.52)

5.C Parameters

Table 5.2: Parameter values. Most parameter values have been taken from Gérard
et al. [25] or adapted to match cell cycle length in mammalian cells. Parameters
related to the radiation pathway come from different sources or were cautiously cho-
sen on the basis of numerical simulations. Details are provided in the footnotes that
are referenced in the Source column. Parameters with no units are dimensionless.

Symbol Definition Value Units Source

km0

Rate of synthesis of Cdk-cyclin fusion pro-

tein, MPF
0.2 hr−1

1

km1

Rate constant for the dephosphorylation of

MPF
0.4 hr−1

2

km1a

Rate constant for the dephosphorylation of

MPF by Cdc25
20.0 hr−1

2

km2 Rate constant for the phosphorylation of MPF 0.4 hr−1
2

km3

Rate constant for the degradation of MPF and

MPFP

0.2 hr−1
2

continued...

1Taken from Gérard et al. [25]; slightly modified to accommodate the correct G2/M transition
dynamics.

2Taken from Gérard et al. [25]; scaling factor of 8.5 needed to rescale the length of the cell cycle
to approximately 24 hrs.
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...continued

Symbol Definition Value Units Source

km3a

Rate constant for the degradation of MPF and

MPFP by APC
6.35 hr−1

2

Vw1

Maximum activation rate, by dephosphoryla-

tion, of Wee1
1.0 hr−1

2

kw2 Rate constant for activation of g by MPF 5.3 hr−1
2

Jw1 Michaelis constant for Wee1 activation 0.01 3

Jw2 Michaelis constant for Wee1 inactivation 0.01 3

kc1
Rate constant for Cdc25 phosphorylation by

MPF
8.5 hr−1

2

Vc2

Maximum inactivation rate, by dephosphory-

lation, of Cdc25
1.4 hr−1

1

kc2a
Rate constant for the inactivation of Cdc25 by

Chk2
2.4 hr−1

4

Jc1 Michaelis constant for Cdc25 activation 0.01 3

Jc2 Michaelis constant for Cdc25 inactivation 0.01 3

ki1 Rate constant for the activation of IE by MPF 1.7 hr−1
2

Vi2 Maximum inactivation rate of IE 0.4 hr−1
2

Ji1 Michaelis constant for IE activation 0.001 3

Ji2 Michaelis constant for IE inactivation 0.001 3

ka1
Rate constant for the activation, by phospho-

rylation, of APC by IE
6.8 hr−1

2

continued...

3Taken from Gérard et al. [25].
4Educated guess.
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...continued

Symbol Definition Value Units Source

Va2

Maximum inactivation rate, by phosphoryla-

tion, of APC
1.7 hr−1

2

Ja1 Michaelis constant for APC activation 0.001 3

Ja2 Michaelis constant for APC inactivation 0.001 3

α Partial activity of MPFP 0.05 2

µ Growth rate of the cell 0.07 hr−1
5

KMass Maximum cell mass 2.7 4

Wee1T Total concentration of kinase Wee1 1.0 2

Cdc25T Total concentration of phosphatase Cdc25 1.0 2

IET

Total concentration of intermediate enzyme

IE
1.0 2

APCT Total concentration of protein APC 1.0 2

5Informed by Park et al. [80].
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Chapter 6

Effect of low-dose radiation on the

survival fraction through the

ATM-Chk2 pathway: a theoretical

approach

Throughout Chapters 2 and 3, we analyzed the effect of radiation on the G2/M

transition and the survival fraction via the Chk2-ATM pathway, mostly from a nu-

merical perspective. Our results support Marples and Joiner’s hypothesis that the

G2/M transition plays a major role in the hyper-radiosensitivity and increased ra-

dioresistance (HRS/IRR) phenomenon. In this Chapter, we establish the connection

between radiation and the cell survival fraction from a theoretical perspective. In

order to provide a survival fraction model accounting for our observations, we need

to capture the precise mechanism that causes the HRS/IRR. This mechanism is

the G2/M transition, which is associated with a saddle-node on an invariant circle

(SNIC) bifurcation. The reduction of the cell cycle model to a normal form around
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Figure 6.1: Diagram of the approach taken to find a survival fraction model that
accounts for the effect of radiation on the G2/M transition of the cell cycle. The
diagrams for the cell cycle and radiation pathway are taken from Figure 2.2.

the SNIC bifurcation driven by Vc2 is done in Chapter 5. In this chapter, we use this

normal form to derive an expression for the survival fraction based on the G2/M

transition. Figure 6.1 illustrates how this chapter is a follow-up of the previous

chapters.

This chapter is structred as follows. In Section 6.1, we summarize the results of

previous chapters relevant to the this chapter. In Section 6.2, we motivate the use of

the normal form for the SNICVc2 bifurcation in replacement of the cell cycle model

to describe the progression of the cell cycle. In Section 6.3, we transform the normal

form for the SNICVc2 bifurcation to its corresponding phase model, and provide a

theoretical derivation for the time available for repair and the average number of

lethal lesions. In Section 6.4, we provide a connection between our formulation of

the survival fraction and the Induced Repair model, under certain simplification and

assumptions.
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6.1 Summary of the previous chapters

Recall the cell cycle model with radiation pathway studied in previous chapters

dMPF

dt
= km0Mass− (km2 + km2aWee1)MPF

+ (km1 + km1aCdc25)MPFP − (km3 + km3aAPC)MPF, (6.1a)
dMPFP

dt
= (km2 + km2aWee1)MPF − (km1 + km1aCdc25)MPFP

− (km3 + km3aAPC)MPFP , (6.1b)
dWee1

dt
= Vw1

Wee1T −Wee1

Jw1 + (Wee1T −Wee1)

− kw2(MPF + αMPFP )
Wee1

Jw2 +Wee1
, (6.1c)

dCdc25

dt
= kc1(MPF + αMPFP )

Cdc25T − Cdc25
Jc1 + (Cdc25T − Cdc25)

− (Vc2 + kc2aChk2)
Cdc25

Jc2 + Cdc25
, (6.1d)

dIE

dt
= ki1(MPF + αMPFP )

IET − IE
Ji1 + (IET − IE)

− Vi2
IE

Ji2 + IE
, (6.1e)

dAPC

dt
= ka1IE

APCT − APC
Ja1 + (APCT − APC)

− Va2
APC

Ja2 + APC
, (6.1f)

dMass

dt
= µMass

(
1− Mass

KMass

)
, (6.1g)

dChk2

dt
= kh1ATM DSB

Chk2T − Chk2
Jh1 + (Chk2T − Chk2)

− Vh2
Chk2

Jh2 + Chk2
, (6.1h)

dATM

dt
= kt1DSB

ATMT − ATM
Jt1 + (ATMT − ATM)

− Vt2
ATM

Jt2 + ATM
, (6.1i)

dDSB

dt
= kd1Ḋ(t)− kd2ATM DSB, (6.1j)

subject to the resetting condition

if MPF (t) = θM and
dMPF

dt
(t) < 0 =⇒ Mass(t)← Mass(t)

2
, (6.2)
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Table 6.1: Name and description of variables in Eqs. (6.1a)–(6.1j). All variables
represent concentration, except Mass and DSB.

Symbol Description

MPF Active Cdk1-cyclin B complex (Mitotic Promoting Factor)
MPFP Inactive, phosphorylated form of MPF
Wee1 Active dephosphorylated form of kinase Wee1 (MPF inactivator)
Cdc25 Active phosphorylated form of the phosphatase Cdc25C (MPF activator)

IE Active form of an intermediate enzyme [94]
APC Active phosphorylated form of APC (Anaphase Promoting Complex)
Chk2 Active phosphorylated form of Chk2 (Checkpoint kinase 2)
ATM Active phosphorylated, monomerized and recruited form of ATM
DSB Recognized Double Strand Brakes formed by Ionizing Radiation
Mass Mass of the cell

where the variables denote the concentration of the most important proteins involved

in the G2/M transition and the ATM-Chk2 pathway, the number of DSBs, and the

mass of the cell (see Table 6.1). The parameters denote the average rate of reactions

between given proteins, cell growth, carrying capacity, and other average rates (see

Table 6.3 in Appendix 6.C).

The model has two main components: equations (6.1a)–(6.1g) and (6.2) corre-

spond to cell cycle model, and equations (6.1h)–(6.1j) correspond to the radiation

pathway. In Chapter 2, we showed that radiation can trigger G2 checkpoint activation

by increasing the maximum inactivation rate of Cdc25, which we denoted

Ṽc2 = Vc2 + kc2aChk2, (6.3)

and appears in equation (6.1d). The G2 checkpoint activation is identified with a

SNIC bifurcation, denoted SNICVc2 , driven by Ṽc2. In the absence of radiation,

Chk2 is inactive and Ṽc2 equals the basal inactivation rate Vc2. In the presence of

radiation, Double Strand Breaks (DSBs) are formed, which in turn activates Chk2,
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and increases Ṽc2. The SNICVc2 bifurcation occurs at Ṽc2 = V ∗
c2. When Ṽc2 > V ∗

c2,

the G2 checkpoint can be activated provided that the cell is in late G2-phase. The

corresponding bifurcation diagram is shown in Figure 2.3. Repair mechanisms

decrease the number of DSBs and the value of Ṽc2 until Chk2 becomes inactive

again and the cell cycle resumes. As stated in Chapter 2, this Chk2 activation

mechanism combined with the SNIC bifurcation driven by Vc2 are thought to be

responsible for the HRS/IRR phenomenon.

The radiation scheme used in Chapter 2 is a radiation pulse of intensity D at

time t0

D(t) = Dδ(t− t0), (6.4)

where δ(t) is the Dirac delta function. If initial conditions are set to be at the start

of the cell cycle right after cell division (t = 0), then we define tM (the time of

M-phase entry, which is the same as the length of the interphase) as the time when

the concentration of MPF reaches θM = 0.2 from below (dMPF
dt

> 0), and we define

T (the length of the cell cycle) as the time when MPF reaches θM = 0.2 from above

(dMPF
dt

< 0). Our simulations focus on a radiation pulse applied during interphase

(t0 ∈ [0, tM ]) and low intensity of radiation (D < 1 Gy). When radiation is applied,

the time of M-phase entry is delayed (the extent of the delay depends on the intensity

D and time of radiation t0), defining a new time of M-phase entry tM(t0, D). Thus,

under no radiation, we simply say tM(0, 0) = tM .

In Chapter 3, we used numerical simulations to show that G2 checkpoint acti-

vation driven by radiation can cause the HRS/IRR phenomenon, especially in cells

enriched in G2-phase. Our simulations were consistent with the results of Marples

and Joiner [59]. We used the cell cycle with radiation pathway model for an average

individual cell to develop a survival fraction model based on a population of cells.
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The survival fraction framework, based on the total average number of lethal events,

λ(D), was defined as the sum of the average number of lethal lesions due to G2

checkpoint failure, λG2/M(D), and all other lesions that are not accounted for in our

modelling, λother(D). Thus,

λ(D) = α̂D + β̂D2  
λother(D)

+
α0

tM

∫ tM

0

DSB(tM(t0, D))f(t0)dt0  
λG2/M(D)

. (6.5)

where α̂, β̂, and α0 are a proportionality constants, and f(t) is the distribution of

cells over the cell cycle. Since the Linear Quadratic (LQ) model is a good model

for most survival fraction data, we assume that the linear and quadratic terms are

appropriate to model all other lesions not included in our modelling. Assuming a

Poisson distribution for the average number of lethal events, the survival fraction

becomes

S(D) = e−λ(D). (6.6)

In Chapter3, we also identified that ATM becomes active for radiation higher

than 5 mGy (very low dose of radiation). Since survival fraction experiments are

relevant above this level of radiation, it is reasonable to assume that ATM is always

active in experiments. Thus, we set ATM equal to constant one in equation (6.1j)

and solved for DSB to find an expression for the integrand in (6.5)

DSB(tM(t0, D)) = kd1e
−kd2(tM (t0,D)−t0)D, (6.7)

(see equation (3.10)). Here, we identified the time available for repair

tR(t0, D) = tM(t0, D)− t0, (6.8)
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as an important quantity to compute the survival fraction. Substituting (6.7) and

(6.8) into (6.5), we find that the average number of lethal lesions due to G2 checkpoint

failure becomes

λG2/M(D) =
α0kd1D

tM

∫ tM

0

e−kd2tR(t0,D)f(t0)dt0, (6.9)

where kd1 and kd2 are the rates for formation and repair of DSBs. However, com-

puting tR(t0, D) explicitly from the cell cycle model is difficult given the size and

non-linearity of the model. Instead, our approach is to reduce the cell cycle model

about the SNICVc2 bifurcation in order to simplify the calculation of the time avail-

able for repair.

In Chapter 5, the cell cycle model (corresponding to equations (6.1a)–(6.1g) and

(6.2)) is reduced to a one-dimensional form about the SNICVc2 bifurcation (locally

saddle-node bifurcation)
dξ

dt
= −ρ− γξ2 (6.10)

(see equation (5.41)), where ξ is a linear combination of the variables in the cell

cycle, and ρ > 0 and γ > 0 are constants that depend on the parameters of the cell

cycle. Note that we have flipped the sign of the constants ρ and γ for simplicity.

In this chapter, we refer to equation (6.10) as the normal form of the SNICVc2

bifurcation (locally SNVc2 bifurcation). Using the normal form (6.10), we defined

the G2/M transition as the finite time interval (see Figure 6.2)

IG2/M = [tstart
G2/M , t

end
G2/M ] = [tstart

G2/M , tM ]. (6.11)
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b)

a)

Figure 6.2: Linear representation of the cell cycle. a) Full cell cycle. b) Zoom into
the G2/M transition with corresponding length and start and end times.

Note that the length of this interval determines the duration of the G2/M transition

TG2/M = tend
G2/M − tstart

G2/M =
π
√
ργ
. (6.12)

We will see that the normal form defined on the whole interval IG2/M is a good

representation of the cell cycle model about the SNICVc2 bifurcation.

6.2 Normal form for the cell cycle during the G2/M

transition with the radiation pathway

In this chapter, we assume that ρ, in the normal form (6.10), is proportional to

V ∗
c2 − Vc2, i.e.,

ρ = ν(V ∗
c2 − Vc2), (6.13)

for some proportionality constant ν > 0, and γ is constant. Even though it is not

evident, from the calculations carried out in Chapter 5 (see equation (5.42)), that
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this assumption holds for the normal form (6.10), it is a standard and reasonable

assumption to make when studying the normal form of a saddle-node bifurcation

[38].

In the presence of radiation, the radiation pathway directly affects the cell cycle

model by increasing the basal value of Vc2 (the bifurcation parameter) through Chk2

activation according to the definition of Ṽc2 in equation (6.3). Based on assumption

(6.13), the radiation pathway modifies the value of the bifurcation parameter in a

similar fashion to Ṽc2

ρ̃ = ν(V ∗
c2 − Ṽc2) = ν(V ∗

c2 − (Vc2 + kc2aChk2)). (6.14)

This motivates the combination of the normal form (6.10) with the radiation pathway

(6.1h)-(6.1j) into one model

dξ

dt
= −ν(V ∗

c2 − Vc2 − kc2aChk2)− γξ2, (6.15a)

dChk2

dt
= kh1ATM DSB

Chk2T − Chk2
Jh1 + (Chk2T − Chk2)

− Vh2
Chk2

Jh2 + Chk2
, (6.15b)

dATM

dt
= kt1DSB

ATMT − ATM
Jt1 + (ATMT − ATM)

− Vt2
ATM

Jt2 + ATM
, (6.15c)

dDSB

dt
= kd1Ḋ(t)− kd2ATM DSB. (6.15d)

Figure 6.3 shows the solution of model (6.15) for a radiation pulse given by equation

(6.4) as well as the solution of the same model under no radiation. We observe that,

as expected, radiation introduces a delay in the evolution of ξ(t).

This delay is similar to that observed in the cell cycle when radiation is applied

during the G2/M transition (see, for example, Figure 2.3). In light of this connection,

we want to define an analogous time available for repair, equation (6.8), for the
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Figure 6.3: Solution of the normal form and radiation pathway model (6.15). A
radiation pulse is applied at time t = 0.8. This activates Chk2(t) for a short period
of time, forces ρ̃ (equation (6.14); orange) to become negative temporarily, and
causes a delay in the system (green) compared to the no-radiation case (blue). The
parameter values are found in Table 6.3 in Appendix 6.C and Table 6.2, and the
initial condition is ξ(0) = 104.

normal form and radiation pathway model (6.15). For this purpose, we assume that

the threshold of MPF for M-phase entry in the cell cycle model, θM , occurs at the

end of the G2/M transition, defined by the interval in equation (6.11), i.e., at time

t = tM = tend
G2/M .

Provided that radiation has intensity D and start time t0 ∈ IG2/M , we are

interested in the approximate time available for repair

t̃R(t0, D) = t̃M(t0, D)− t0, (6.16)

where t̃M(t0, D) is the time such that ξ(t̃M(t0, D)) = −∞. Thus, t̃R and t̃M are

analogous quantities to tR and tM (see equation (6.8)), respectively. Note that the

normal form with radiation pathway (6.15) is a representation of the cell cycle with

radiation pathway (6.1) for t0 ∈ IG2/M . That is, if we want to measure the time
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delay to M-phase entry in the cell cycle model for t0 ∈ IG2/M , we can do so using

the normal form with radiation pathway. Then, the state of the cell cycle model at

tstart
G2/M and tM(t0, D) are associated with ξ = −∞ and ξ = ∞, respectively, in the

normal form (see Figure 5.10).

In order to show the equivalence between equations (6.8) and (6.16), we compute

(6.16) numerically using the same radiation scheme used in Chapter 3. In other

words, we compute the time available for repair for the normal form and radiation

pathway (6.15) to compare it with the time available for repair for the cell cycle and

radiation pathway computed in Chapter 3 (see Figure 3.9).

The parameters in the normal form with radiation pathway (6.15) (except for ν,

V ∗
c2 and γ) are described in Table 6.3. The parameter V ∗

c2 ≈ 3.47 is the bifurcation

value of Vc2 estimated in Chapters 2 and 5 (see, for example, equation (5.3)). To

estimate the value of the proportionality constant ν assumed in equation (6.13), we

solve for ν in this equation and use the estimation of ρ in equation (5.43) under no

radiation (Chk2 = 0),

ν =
ρ

V ∗
c2 − Vc2

≈ 179.45. (6.17)

The constant γ = km3σ = km3(σ0 + σ1) is associated with the reduction of the

G2 module to the one-dimensional form in Section 5.2 (see equation (5.33)). The

value of σ0 was computed numerically in equation (5.34), but the value of σ1 cannot

be computed explicitly since it involves the Implicit Function Theorem. However,

for the purpose of carrying out the numerical simulations, we choose the value of

γ so that the period of the normal form matches the length of the G2/M transition

TG2/M , equation (6.12). Using assumption (6.13), the period of equation (6.15a)

164



Table 6.2: Description of variable and parameters new to the normal form with
radiation pathway model (6.15) and other parameter used the simulations.

Symbol Description Value Source

γ
Constant associated with all quadratic terms
in the one-dimensional reduction of the G2
module (see equation (5.33)).

0.012 Eq. (6.18)

ν
Proportionality constant (see equation
(6.13)). 179.45 Eq. (6.17)

V ∗
c2 Bifurcation value of Vc2. 3.47 Eq. (5.3)

under no radiation (Chk2 ≡ 0) is given by

TG2/M =
π√

γν(V ∗
c2 − Vc2)

.

Based on the time-axis of the right plot in Figure 3.9, we estimate that this period

should be about TG2/M = 1.6 hours. Thus, solving for γ in equation (6.2), we obtain

γ =
1

ν(V ∗
c2 − Vc2)

(
π

TG2/M

)2

≈ 0.012. (6.18)

In summary, variables σ, ν, and V ∗
c2 and their values are described in Table 6.2.

For our simulations, we use the initial condition ξ(0) = 105 (the rest of the

variables are set to zero), and integrate until ξ reaches ξ = −105. Then, we apply a

radiation pulse of intensity D at time t0 (see equation (6.4)) and compute t̃R(t0, D)

(see equation (6.16)) for a discretization of the time domain, [0, TG2/M ] (measured in

hours), and dose domain, [0, 1] (measured in Gy). The resulting graph of t̃R(t0, D)

is shown in Figure 6.4a, alongside the corresponding graph of the time available for

repair, tR(t0, D), found in Chapter 3.

In this figure, we observe that time available for repair for the normal form, equa-

tion (6.16) and the time available for repair using the full cell cycle model, equation
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Figure 6.4: Numerical time available for repair for a) the cell cycle and radiation
pathway (6.1) with a zoom in the G2/M transition (t ∈ (tstart

G2/M , tM)), and b) the
normal form with radiation (6.15).

(6.8) have the same qualitative behaviour. That is, the normal form approximation

describes the core behaviour of the cell cycle in response to radiation during the

G2/M transition, namely, the two thresholds described in Chapter 2. These results

support our assumption on the linear dependence of ρ on Vc2, equation (6.13).

6.3 Average number of lethal lesions due to G2 check-

point failure

In the previous section, we showed that the reduction to normal form for the SNIC

bifurcation (6.10) approximates the dynamics of the cell cycle model and describes

the time available for repair (6.8) for a pulse of radiation during the late G2-phase.

Thus, we can compute the average number of lethal lesions due to checkpoint failure

(6.9) by separating the integral into two parts; one prior to the G2/M transition
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(t0 ∈ [0, tstart
G2/M ]), and the other one during the G2/M transition (t0 ∈ IG2/M =

[tstart
G2/M , t

end
G2/M ] = [tstart

G2/M , tM ])

λG2/M(D) =
α0kd1D

tM

⎡⎢⎢⎣∫ tstart
G2/M

0

e−kd2tR(t0,D)f(t0)dt0  
I

+

∫ tM

tstart
G2/M

e−kd2tR(t0,D)f(t0)dt0  
II

⎤⎥⎥⎥⎦ . (6.19)

The integral I in (6.19) captures the effect of radiation on the G2/M transition

prior to it, while the integral II captures the effect of radiation on the G2/M transition

during the G2/M transition itself, as illustrated in Figure 3.9.

The value of tstart
G2/M depends on the time required to repair the number of DSBs

induced by the radiation treatment (kd1D DSBs in the case of the radiation pulse)

and therefore on the dose D.

In Section 6.3.1, we compute I. In Section 6.3.2, we compute II. In Section 6.3.3,

we combine these results to obtain the average number of lethal lesions.

6.3.1 Time available for repair prior to the G2/M transition

DSBs formed prior to the M-phase entry have little or no impact on the G2/M

transition because they get repaired before they affect the transition. This means

that the time of M-phase entry can be approximated with the same time under no

radiation

tM(t0, D) ≈ tM(0, 0) = tM .
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Thus, the time available for repair is independent of the intensity D

tR(t0, D) = tM − t0,

as well as the integral I in (6.19)

I =

∫ tstart
G2/M

0

e−kd2tR(t0,D)f(t0)dt0

≈
∫ tstart

G2/M

0

e−kd2(tM−t0)f(t0)dt0

= e−kd2tM

∫ tstart
G2/M

0

ekd2t0f(t0)dt0. (6.20)

6.3.2 Time available for repair during the G2/M transition

Consider the non-autonomous version of the normal form for the saddle-node bifur-

cation
dξ

dt
= −ρ+ g(t)− γξ2, (6.21)

where ρ and γ are positive constants, g(t) is non-negative with supp(g) ⊆ (t0,∞),

and ξ(0) =∞ is the default initial condition.

In our case, ρ is defined as in equation (6.13) and

g(t) = νkc2aChk2(t), (6.22)

is the input from the radiation pathway (see equation (6.15a)). Note that g(t) =

g(t; t0, D) depends on the intensity of radiation D and the time of radiation t0.

Non-autonomous systems of the form (6.21) have been studied within the theory

of non-autonomous dynamical systems [44]. This theory focuses on the existence of

pullback and forward attractors, terminology used to refer to time-dependent steady
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states for non-autonomous systems analogous to the steady states in autonomous

systems. Moreover, the non-autonomous normal form for the saddle-node bifur-

cation (normal form (6.21) without the resetting condition) has been studied by Li

et al. [55] when g(t) is a linear function of time, and by Langa et al. [50] and Kim

and O [42] for more general functions g(t).

In our study, we are interested in the effect of the external input g(t) on the

evolution of ξ(t). For this purpose, we use an alternative method to analyze the

non-autonomous normal form by transforming it into the corresponding phase model

dϑ

dt
= 1− 1

ρ
sin2 (

√
ργϑ) g(t), ϑ ∈

[
0, TG2/M

]
, (6.23)

where TG2/M = π√
ργ

is the length of the autonomous normal form, and ϑ, called the

phase of ξ, is the parameter in the interval [0, TG2/M ] used for the parameterization

of the solution ξ(t) of equation (6.10) (see Appendix 6.A for details on the phase

model). Note that we identify the interval IG2/M (equation (6.11)) with [0, TG2/M ].

The parameterization is the mapping ϑ ↦→ ξ(ϑ) from the interval [0, TG2/M ] into the

phase space R, which satisfies

ξ(ϑ = 0) =∞, and ξ(ϑ = TG2/M) = −∞. (6.24)

The phase model usually appears in the context of oscillatory systems and SNIC

bifurcations, where ξ = −∞ and ξ = ∞ are glued together to define a reset.

However, here we are only interested in the first phase of ξ without resetting it at

−∞.

In the autonomous case, g(t) ≡ 0, the phase coincides with time dϑ
dt

= 1, i.e.,

ϑ(t) = t. In the non-autonomous case, ϑ(t) changes with g(t), being more sensitive
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Figure 6.5: Solution of the phase model (6.23). Equation (6.15a) was replaced by
(6.23) and the radiation scheme, parameters, and initial conditions match those in
Figure 6.3. The y-axis of ρ̃ has been rescaled for the clarity of the graph.

to g(t) at TG2/M/2 where sin2(·) is maximal, and less sensitive to g(t) at the end

points of [0, TG2/M ] where sin2(·) is minimal. Figure 6.5 shows the solution of the

phase model for g(t) ≡ 0 and g(t) ̸= 0 describing the same profile of the radiation

pathway as in Figure 6.2. The introduction of a non-zero g(t) causes a delay in the

phase in the same way the non-autonomous normal form experiences a delay.

We can use the non-autonomous phase model (6.23) to find an approximation

for the time available for repair tR(t0, D) for cells exposed to radiation close to

the SNICVc2 bifurcation (locally a saddle-node bifurcation), i.e., between tstart
G2/M and

tend
G2/M = tM (see equation (6.19)), as

tR(t0, D) = TG2/M(t0, D)− t0, (6.25)

where TG2/M(t0, D) is defined as the time it takes ϑ to go from 0 to TG2/M . Note

that ϑ(TG2/M(t0, D)) = TG2/M .

If we integrate the phase model (6.23) from t0 to TG2/M(t0, D) with respect to
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t, we obtain

∫ ϑ(TG2/M (t0,D))

ϑ(t0)

dϑ =

∫ TG2/M (t0,D)

t0

(
1− 1

ρ
sin2 (

√
ργϑ) g(t)

)
dt

=⇒ ϑ(TG2/M(t0, D))− ϑ(t0) = TG2/M(t0, D)− t0

−1

ρ

∫ TG2/M (t0,D)

t0

sin2 (
√
ργϑ) g(t)dt.

Therefore,

TG2/M − t0 = TG2/M(t0, D)− t0 −
1

ρ

∫ TG2/M (t0,D)

t0

sin2 (
√
ργϑ) g(t)dt.

Isolating the term TG2/M(t0, D)− t0 and using TG2/M = π√
ργ

, we find an expression

for the time available for repair tR(t0, D) defined in (6.25)

tR(t0, D) = TG2/M(t0, D)− t0

≈ π
√
ργ
− t0  

time with
no radiation

+
1

ρ

∫ TG2/M (t0,D)

t0

sin2 (
√
ργϑ) g(t)dt  

delay due to radiation

. (6.26)

Before we substitute (6.26) into integral II in equation (6.19), we note that the time

available for repair calculated is with respect to the phase model (i.e., is the time

domain of the phase ϑ(t)), whereas the integration time of equation (6.19) is with

respect to the cell cycle time of a control cell. Thus, we approximate the integral

II in equation (6.19) by changing the limits of integration from [tstart
G2/M , tM ] to the

corresponding analogous times with respect to the phase domain [0, TG2/M ], i.e.,

II ≈
∫ TG2/M

0

e−kd2tR(t0,D)f(t0 + tstart
G2/M)dt0
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=

∫ π√
ργ

0

e
−kd2(

π√
ργ

−t0)

× e
− kd2

ρ

(∫ TG2/M (t0,D)

t0
sin2(√ργϑ)g(t)dt

)
f(t0 + tstart

G2/M)dt0. (6.27)

6.3.3 Combined average number of lethal lesions due to G2

checkpoint failure away and during the G2/M transition

Combining equations (6.20) and (6.27), we obtain an approximation for the average

number of lethal lesions due to G2 checkpoint failure (6.19)

λG2/M(D) =
α0kd1D

tM
I +

α0kd1D

tM
II

≈ α0kd1e
−kd2tM

tM

(∫ tstart
G2/M

0

ekd2t0f(t0)dt0

)
D  

prior to the G2/M transition

+
α0kd1
tM

(∫ π√
ργ

0

e
−kd2(

π√
ργ

−t0)

×e
− kd2

ρ

(∫ TG2/M (t0,D)

t0
sin2(√ργϑ)g(t)dt

)
f(t0 + tstart

G2/M)dt0

)
D  

during the G2/M transition

. (6.28)

In the expression above, we see that prior to the G2/M transition, the average number

of lethal lesions is proportional to the dose D, whereas during the G2/M transition

is potentially non-linear in D since the dose affects the integrand.

In the next section, we will see how the explicit expression for the time available

for repair (6.26), obtained through the phase model, allows us to come up with an

approximated theoretical expression for the survival fraction that can explain the

HRS/IRR phenomenon.

172



6.4 Understanding the effect of an impulse g(t) on the

phase model

In this section, we assume a homogeneous distribution of cells over the cell cycle,

f(t) = 1
T

. In such a case, equation (6.20) becomes

I ≈ e−kd2tM

∫ tstart
G2/M

0

ekd2t0
1

T
dt0 =

e−kd2tM

kd2T
(ekd2t

start
G2/M − 1).

and the average number of lethal events due to G2/M checkpoint failure prior to the

G2/M transition, given the first term in equation (6.28), becomes

λG2/M(D) ≈ α0kd1e
−kd2tM (ekd2t

start
G2/M − 1)

kd2tMT
D. (6.29)

Ideally, we would like to solve equation (6.26) with an expression of g(t) as

the solution of the radiation pathway (note the dependence of g(t) on Chk2(t)

in equation (6.22)) or a window function that approximates the solution (see the

dynamical behaviour of Chk2 in Figure 6.4). However, for the sake of simplicity,

we will consider the following pulse function to describe the behaviour of the input

function

g(t) = ρ0(D)δ(t− t0), (6.30)

where ρ0(D) is given by the steady-state solution of Chk2 (obtained by applying

equation (6.45) to equation (6.15b))

ρ0(D) = kc2aGK(kh1kd1D, Vh2, Jh1, Jh2), (6.31)

andGK(·) is the Goldbeter-Koshland function (see Appendix 6.B). Function ρ0(D)
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is a steep sigmoidal function of D with minimum value zero at D = 0, half value

at D = Vh2/(kh1kd1), and maximum asymptotic value kc2a for D ≫ Vh2

kh1kd1
. This

choice of g(t) is only relevant for small values of D.

Using the pulse (6.30) in the time available for repair (6.26) for the phase model,

we obtain

tR(t0, D) =
π
√
ργ
− t0 +

1

ρ

∫ TG2/M (t0,D)

t0

sin2 (
√
ργϑ) ρ0(D)δ(t− t0)dt

=
π
√
ργ
− t0 +

ρ0(D)

ρ

∫ ∞

−∞
sin2 (

√
ργϑ) δ(t− t0)dt

=
π
√
ργ
− t0 +

ρ0(D)

ρ
sin2 (

√
ργϑ(t0)) .

Since ϑ(t0) = t0, the time available for repair simplifies to

tR(t0, D) =
π
√
ργ
− t0 +

ρ0(D)

ρ
sin2 (

√
ργt0) .

Substituting this time available for repair into integral II of equation (6.27), and

assuming a homogeneous distribution of cells over the cell cycle f(t) = 1
T

, we

obtain

II ≈
∫ π√

ργ

0

e
−kd2

(
π√
ργ

−t0
)
e−

kd2ρ0(D)

ρ
sin2(√ργt0) 1

T
dt0

=
1

T

∫ π√
ργ

0

e
−kd2

(
π√
ργ

−t0
)
e−

kd2ρ0(D)

2ρ (1−cos(2√ργt0))dt0

=
1

T
e−

kd2ρ0(D)

2ρ

∫ π√
ργ

0

e
−kd2

(
π√
ργ

−t0
)
e

kd2ρ0(D)

2ρ
cos(2√ργt0)dt0

=
1

2
√
ργT

e−
kd2ρ0(D)

2ρ

∫ 2
√
ργ π√

ργ

0

e
−kd2

(
π√
ργ

− s
2
√
ργ

)
e

kd2ρ0(D)

2ρ
cos(s)ds

=
1

2
√
ργT

e−
kd2ρ0(D)

2ρ

∫ 2π

0

e
− kd2

2
√
ργ

(2π−s)
e

kd2ρ0(D)

2ρ
cos(s)ds,
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after using the substitution s = 2
√
ργt0.

Since

e
− kd2π√

ργ ≤ e
− kd2

2
√
ργ

(2π−s) ≤ 1,

for 0 ≤ s ≤ 2π, we find the following lower and upper bounds for II

1

2
√
ργT

e−
kd2ρ0(D)

2ρ e
− kd2π√

ργ

∫ 2π

0

e
kd2ρ0(D)

2ρ
cos(s)ds ≤ II ≤

1

2
√
ργT

e−
kd2ρ0(D)

2ρ

∫ 2π

0

e
kd2ρ0(D)

2ρ
cos(s)ds.

Given that ∫ 2π

0

ex cos(s)ds = 2πI0(x),

where I0(x) is the modified Bessel function of the first kind (n = 0)

I0(x) =
∞∑
k=0

1

(k!)2

(x
2

)2k
,

the lower and upper bounds for II can be written as

π
√
ργT

e−
kd2ρ0(D)

2ρ e
− kd2π√

ργ I0

(
kd2ρ0(D)

2ρ

)
≤ II ≤

π
√
ργT

e−
kd2ρ0(D)

2ρ I0

(
kd2ρ0(D)

2ρ

)
.

By continuity, there exists an a ∈ [0, 1] such that

II =
π

√
ργT

e
−akd2π√

ργ e−
kd2ρ0(D)

2ρ I0

(
kd2ρ0(D)

2ρ

)
.
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For small D, we can use the linear approximation (see equation (6.46))

ρ0(D) ≈ cD =
kc2aJh2kh1kd1
(1 + Jh1)Vh2

D, (6.32)

to rewrite II as

II ≈ π
√
ργT

e
−akd2π√

ργ e−
ckd2
2ρ

DI0

(
ckd2
2ρ

D

)
=

π
√
ργT

e
−akd2π√

ργ e−
ckd2
2ρ

D

(
1 +

1

16

(
ckd2
ρ

)2

D2 +
1

1024

(
ckd2
ρ

)4

D4 + · · ·

)
.

Multiplying this by the term α0kd1D/tM in equation (6.19), gives us an expression

for the average number of lethal lesions during the G2/M transition that depends on

the inactivation rate of Chk2 (ρ = ν(V ∗
c2− Vc2)) and the DSBs formation and repair

rates

λG2/M(D) ≈ α0kd1
tM

π
√
ργT

e
−akd2π√

ργ e−
ckd2
2ρ

D

(
D+

1

16

(
ckd2
ρ

)2

D3 +
1

1024

(
ckd2
ρ

)4

D5 + · · ·

)
. (6.33)

Combining the average number of lethal lesions prior to the G2/M transition

(6.29) and during the G2/M transition (6.33), we find

λG2/M(D) =
α0kd1e

−kd2tM (ekd2t
start
G2/M − 1)

kd2tMT
D

+
α0kd1
tM

π
√
ργT

e
−akd2π√

ργ e−
ckd2
2ρ

D

(
D

+
1

16

(
ckd2
ρ

)2

D3 +
1

1024

(
ckd2
ρ

)4

D5 + · · ·

)
.
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Ignoring higher order terms, the total average number of lethal lesions (6.5) becomes

λ(D) = λother(D) + λG2/M(D)

≈ α̂D + β̂D2 +
α0kd1e

−kd2tM (ekd2t
start
G2/M − 1)

kd2tMT
D

+
α0kd1
tM

π
√
ργT

e
−akd2π√

ργ e−
ckd2
2ρ

DD. (6.34)

Note that the equations above are valid for a small radiation dose (needed to obtain

approximations (6.30), (6.32), and assumed to have an active ATM in order to

write (6.7) explicitly) and for a uniform distribution of cells over the cell cycle

(f(t) = 1/T ). In Section 3.3, we observed that such assumptions result in a

HRS/IRR effect in the survival fraction.

Moreover, the expression of the total number of lethal lesions (6.34) provides an

underlying kinetic process for the Induced Repair (IR) model (1.2)

− log(SIR(D)) = (αr + (αs − αr)e
− D

dc )D + βD2,

with

αr = α̂ +
α0kd1e

−kd2tM (ekd2t
start
G2/M − 1)

kd2tMT
,

αs − αr =
α0kd1
tM

π√
km3σν(V ∗

c2 − Vc2)T
e
− akd2π√

km3σν(V ∗
c2−Vc2) ,

dc =
2νVh2(V

∗
c2 − Vc2)(1 + Jh1)

kd1kd2kh1kc2aJh2

β = β̂.
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6.5 Discussion

In this chapter, we summarized the results from the previous chapters and used

them to derive a theoretical expression for the survival fraction based on the G2/M

transition. In Section 6.2, we combined the normal form of the cell cycle around the

SNIC bifurcation driven byVc2, derived in Chapter 5, with the radiation pathway. We

showed that the normal form captures the effect of radiation on the G2/M transition

as studied in Chapter 2. In particular, we showed that we can approximate the time

available for repair for the cell cycle model, defined in Chapter 3, using the normal

form. Given that parameters in the normal form depend in a complex way on the

cell cycle model parameters and could not be determined explicitly, we assumed

that the independent term of the normal form depends linearly on the parameter Vc2.

In Section 6.3, we derived a theoretical expression for the average number of

lethal lesions due to G2 checkpoint failure, developed in Chapter 3, and separated it

into two parts. First, a part prior to the G2/M transition where there is enough time to

repair radiation damage and the M-phase entry is not affected. This results in a linear

term with respect to the dose D in the average number of lethal lesions. Second,

a part during the G2/M transition where the moment of M-phase entry is governed

by the normal form. We transformed the normal form into its corresponding phase

model to derive a theoretical expression that captures how the time available for

repair is delayed based on the radiation pathway. This results in a non-linear term

with respect to the dose D.

In Section 6.4, we showed that for a simplified radiation pathway (a pulse) and

a homogeneous distribution of cells over the cell cycle, the total average number

of lethal events, developed in Chapter 3, is equivalent to the yield of lesions of

the Induced Repair (IR) model. We derived a novel explicit expression for the
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non-linear part of the average number of lethal lesions in terms of the parameters of

the cell cycle model and radiation pathway, by considering lethal lesions due to G2

checkpoint failure. Our result provides a biological and mechanistic explanation for

the empirical parameters in the IR model, widely used to describe survival fraction

data with a hyper-radiosensitivity and increased radioresistance (HRS/IRR) effect.

This includes the rates for DSBs formation and repair, the inactivation rate of Cdc25,

the theoretical bifurcation value V ∗
c2, the length of the interphase and the cell cycle,

the rate of degradation of MPF, and the Michaelis-Menten rates associated with

Chk2 activation, among others.

To our knowledge, this is the first time the IR model is explained in terms of

mechanisms regulating the cell cycle and a pathway of kinetic reactions induced

by radiation. Moreover, we showed that the non-linear component of the HRS/IRR

effect is due to the effect of radiation on the G2/M transition governed by a saddle-

node bifurcation driven by Chk2 activation. Olobatuyi et al. [78] provided an

explanation for the IR model in terms of the probability of G2 checkpoint activation,

the damage induced by radiation during the G2-phase, repair rate, and mitotic

catastrophe rate. We believe that our results provide meaningful insights on some

of the components in their model. For instance, we believe the function c(D)

in equation (5) in Olobatuyi et al. [78] is intrinsically related to function ρo(D)

in equation (6.32). To explore this further, it would be necessary to study the

relationship between their compartmental approach and our mechanistic approach.

Bodgi and Foray [5] derived an alternative mechanistic explanation for the IR

model based on the monomerization pathway of ATM. However, this approach does

not provide insights on the participation of the G2 checkpoint on the HRS/IRR

effect. We note that the studying the mechanisms regulating the cell cycle and

the pathway of radiation is not the only way to explain the IR model, since it is
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known that there are exclusive mechanisms that result in the HRS/IRR phenomenon

[66, 67, 47, 45, 104, 77].

For obtaining the average number of lethal lesions due to checkpoint failure,

we considered the time available for repair for lesions caused prior to and during

the G2/M transition (see equation (6.19)). We note that high radiation causes more

damage, which in turn requires more time to repair. Thus, if the time required to

repair damage in larger than the duration of the G2/M transition, then radiation

begins to affect M-phase entry prior to the G2/M transition.

We are aware of some of the limitations in our approach. For example, we did

not account for any other checkpoint that might be triggered by radiation. Also, we

neglected ATM activity in order to simplify our calculations.

We believe that the phase model approach introduced in this chapter could be

used to describe the effect of radiation on other mechanisms that regulate the cell

cycle dynamics and, therefore, to obtain a more general survival fraction model. In

Chapter 7, we propose a general phase model for the cell cycle based on the results

of this chapter and discuss its potential applications to radiobiology.

Appendices

6.A Phase model for the normal form of the SNIC

bifurcation

Consider the normal form for the SNIC bifurcation

dx

dt
= −b− cx2, x(0) =∞, x = −∞ =⇒ x←∞ (reset). (6.35)
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where b > 0, c > 0. Note that this is the normal form for the saddle-node bifurcation,

studied in the Appendix 5.B, with a resetting condition that glues together x = −∞

and x =∞. This causes an oscillatory solution of the form

x(t) =

√
b

c
cot
(√

bct
)
, x = −∞ =⇒ x←∞ (reset), (6.36)

with period

Tblow = π/
√
bc. (6.37)

We can reparametrize this oscillatory solution of period Tblow with respect to a new

parameter ϑ, called the phase of the oscillation, in the circle S1 of circumference

Treset in the following way:

p : S1 → R,

such that ϑ ↦→ x(ϑ), where ϑ = t mod Treset. Using the phase of oscillation ϑ, we

can transform the normal form of (6.35) to the canonical phase model

dϑ

dt
= 1.

Consider now the non-autonomous case of the normal form for the SNIC bifur-

cation

dx

dt
= −b+ g(t)− cx2, x(0) =∞, x = −∞ =⇒ x←∞ (reset), (6.38)

where g(t) is a time-dependent input. This system, which describes bursting of

neurons, is widely studied in neuroscience [38]. For the non-autonomous case, the

phase of oscillation ϑ can also be used to transform the normal form (6.38) to the
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phase model
dϑ

dt
= 1− 1

b
sin2

(√
bcϑ
)
g(t), (6.39)

up to terms of order o(|g(t)|) (see Izhikevich [38, Ch. 10] for details). The second

term in the right hand side of equation (6.39) is the change in the phase caused by

g(t) through the Phase Response Curve (PRC)

PRC(ϑ) =
1

b
sin2

(√
bcϑ
)
.

The PRC measures the shift in the phase caused by g(t) depending on the phase of

x(t). Since the PRC above is always positive (0 ≤ ϑ ≤ Tblow = π√
bc

), a positive

input g(t) would cause a delay in the system due to the negative term in (6.39). The

PRC can be found using, for example, Kuramoto’s approach

PRC(ϑ) =
1

dx
dt
(ϑ)

=
1

−b− cx2(ϑ)
=

−1

b+ c
(√

b
c
cot
(√

bcϑ
))2

=
−1

b+ c b
c
cot2

(√
bcϑ
) =

−1

b
(
1 + cot2

(√
bcϑ
))

=
−1

b csc2
(√

bcϑ
) = −1

b
sin2

(√
bcϑ
)
,

where x(ϑ) is the solution (6.36) to the normal form (6.35) evaluated at ϑ.

Note that the effect of a positive input g(t) is maximal when the phase is half-

period (ϑ = Treset/2) and minimal near the reset where sin2(
√
ργϑ) reaches a

minimum.
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6.B Goldbeter-Koshland kinetics

The Goldbeter-Koshland kinetics model describes the dynamics of a protein R

that is phosphorylated to be transformed into RP , and where phosphorylation and

dephosphorylation are promoted by proteins S1 and S2. The diagram of the reaction

is shown in Fig. 6.6.

RPR

S1

S2

Figure 6.6: Diagram of Goldbeter-Koshland kinetics

The rate of reaction is modelled in a Michaelian form

r1 =
k1S1R

J1 +R
, r2 =

k2S2RP

J2 +RP

,

where k1 and k2 are the rate of phosphorylation by S, and J1 and J2 are the

Michaelis-Menten constants [86].

If we assume that the total concentration of protein R is constant

RT = R +RP ,

then the rate of change of R can be written as

dRP

dt
=

k1S1(RT −RP )

J1 + (RT −RP )  
rate of phosphorylation r1

− k2S2RP

J1 +RP  
rate of dephosphorylation r2

, (6.40)
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or, if the concentration of S1 and S2 are not of interest,

dRP

dt
=

V1(RT −RP )

J1 + (RT −RP )
− V2RP

J1 +RP

, (6.41)

where V1 and V2 are the maximum rate of phosphorylation and dephosphorylation

of R. Equation (6.40) is often written as

ẋ(t) = v1
1− x

J1 + 1− x
− v2

x

J2 + x
. (6.42)

Steady states

The steady states for the Goldbeter-Koshland kinetics are given by setting

Eq. (6.41) equal to zero

0 =
V1(RT −RP )

J1 + (RT −RP )
− V2RP

J1 +RP

⇒ V1(RT −RP )

J1 + (RT −RP )
=

V2RP

J1 +RP

.

Diving both sides by RT and setting z = RP

RT
we obtain

V1(1− z)
J1 + (1− z)

=
V2z

J1 + z
.

Solving this equation we obtain the second degree polynomial on z

(V2 − V1)z2 − (V2 − V1 + V2J1 + V1J2)z + V1J2 = 0. (6.43)

Eq. (6.43) has two roots of the form

z =
B ±

√
B2 − 4(V2 − V1)V1J2
2(V2 − V1)
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where

B = V2 − V1 + V2J1 + V1J2.

After rationalization, we can write

z =
2V1J2

B ∓
√
B2 − 4(V2 − V1)V1J2

.

It can be shown that the positive case gives a root that is always between 0 and 1.

Thus, the steady state value is

RP

RT

∗
= GK(V1, V2, J1, J2) =

2V1J2

B +
√
B2 − 4(V2 − V1)V1J2

. (6.44)

The functionGK(V1, V2, J1, J2) is known as the Goldbeter-Koshland function [94].

If we divide Eq. (6.44) by V2 and use the value of B, we can make explicit the

value of the steady state in terms of the quotient V1

V2
,

RP

RT

∗
= GK(V1, V2, J1, J2) =

2V1

V2
J2(

1− V1

V2

)
+ J1 + J2

V1

V2
+

√[(
1− V1

V2

)
+ J1 + J2

V1

V2

]2
− 4

(
1− V1

V2

)
V1

V2
J2

.

(6.45)

Note that since V1 = k1S1, the quotient V1

V2
gives a measure of the concentration of

the phosphorylating protein S1. A plot of the steady states in terms of the quotient
V1

V2
is shown in Fig. 6.7. Here we observe that the protein R is dephosphorylated

when V1

V2
< 1 (RP

RT
∼ 0 and R

RT
∼ 1) and is phosphorylated when V1

V2
> 1 (RP

RT
∼ 1

and R
RT
∼ 0). If R is dephosphorylated and V1 increases (because S1 increase)

the transition to phosphorylation state happens close to V1

V2
≈ 1, and the smaller
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the values of J1 and J2 are the faster the transition is. Compare the slope when

J1 = J2 = 10−1 with the stepper slope when J1 = J2 = 10−2. This feature is

known as ultra-sensitivity of the phosphorylation of R by S1.

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1 J1 = J2 = 10−2

J1 = J2 = 10−1

V1

V2

RP

RT
, R
RT

Figure 6.7: Goldbeter-Koshland function. The ultrasensitivity is refers to the steep
slope at the inflection point V1/V2 = 1 for small Michaelis-Menten rates J1 and J2.

The asymptotic expansion of (6.45) about V1

V2
= 0 is given by

GK(V1, V2, J1, J2) ∼
J2

1 + J1

V1
V2

+
2(1 + J1 − J1J2)J2

(1 + J1)2

(
V1
V2

)2

. (6.46)

6.C Table of parameter values
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Table 6.3: Parameter values. Most parameter values have been taken from Gérard
et al. [25] or adapted to match the cell cycle length in mammalian cells. Parameters
related to the radiation pathway come from different sources or were cautiously cho-
sen on the basis of numerical simulations. Details are provided in the footnotes that
are referenced in the Source column. Parameters with no units are dimensionless.

Symbol Definition Value Units Source

km0

Rate of synthesis of Cdk-cyclin fusion pro-

tein, MPF
0.2 hr−1

1

km1

Rate constant for the dephosphorylation of

MPF
0.4 hr−1

2

km1a

Rate constant for the dephosphorylation of

MPF by Cdc25
20.0 hr−1

2

km2 Rate constant for the phosphorylation of MPF 0.4 hr−1
2

km2a

Rate constant for the phosphorylation of MPF

by Wee1
50.0 hr−1

1

km3

Rate constant for the degradation of MPF and

MPFP

0.2 hr−1
2

km3a

Rate constant for the degradation of MPF and

MPFP by APC
6.35 hr−1

2

Vw1

Maximum activation rate, by dephosphoryla-

tion, of Wee1
1.0 hr−1

2

kw2 Rate constant for activation of Wee1 by MPF 5.3 hr−1
2

Jw1 Michaelis constant for Wee1 activation 0.01 3

continued...

1Taken from Gérard et al. [25]; slightly modified to accommodate the correct G2/M transition
dynamics.

2Taken from Gérard et al. [25]; scaling factor of 8.5 needed to rescale the length of the cell cycle
to approximately 24 hrs.

3Taken from Gérard et al. [25].
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...continued

Symbol Definition Value Units Source

Jw2 Michaelis constant for Wee1 inactivation 0.01 3

kc1
Rate constant for Cdc25 phosphorylation by

MPF
8.5 hr−1

2

Vc2

Maximum inactivation rate, by dephosphory-

lation, of Cdc25
1.4 hr−1

1

kc2a
Rate constant for the inactivation of Cdc25 by

Chk2
2.4 hr−1

4

Jc1 Michaelis constant for Cdc25 activation 0.01 3

Jc2 Michaelis constant for Cdc25 inactivation 0.01 3

ki1 Rate constant for the activation of IE by MPF 1.7 hr−1
2

Vi2 Maximum inactivation rate of IE 0.4 hr−1
2

Ji1 Michaelis constant for IE activation 0.001 3

Ji2 Michaelis constant for IE inactivation 0.001 3

ka1
Rate constant for the activation, by phospho-

rylation, of APC by IE
6.8 hr−1

2

Va2

Maximum inactivation rate, by phosphoryla-

tion, of APC
1.7 hr−1

2

Ja1 Michaelis constant for APC activation 0.001 3

Ja2 Michaelis constant for APC inactivation 0.001 3

kh1
Rate constant for the activation, by phospho-

rylation, of Chk2 by ATM
0.32 hr−1

5

continued...

4Educated guess.
5Chosen to fit activation time presented by Buscemi et al. [11].
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...continued

Symbol Definition Value Units Source

Vh2

Maximum inactivation rate, by dephosphory-

lation, of Chk2
1.9 hr−1

6

Jh1 Michaelis constant for Chk2 activation 0.01 4

Jh2 Michaelis constant for Chk2 inactivation 0.01 4

kt1

Rate constant for the activation (recruitment

and autophosphorylation) of ATM around

DSB repair foci

30 dsb−1hr−1
7

Vt2 Maximum inactivation rate of ATM 3.8 hr−1
2

Jt1
Michaelis constant for ATM auto-

phosphorylation
0.01 4

Jt2 Michaelis constant for ATM deactivation 0.01 4

kd1 Rate constant for DSBs damage formation 35.0 dsb · Gy−1
8

kd2 Rate constant for DSBs repair 0.4 hr−1
9

α Partial activity of MPFP 0.05 2

µ Growth rate of the cell 0.07 hr−1
10

KMass Maximum cell mass 2.7 4

Wee1T Total concentration of kinase Wee1 1.0 2

Cdc25T Total concentration of phosphatase Cdc25 1.0 2

IET

Total concentration of intermediate enzyme

IE
1.0 2

continued...
6Chosen to fit Chk2 activation threshold after radiation [37].
7Taken from Kozlov et al. [45].
8Taken from Rothkamm and Löbrich [83].
9Taken from Scott [85].
10Informed by Park et al. [80].
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...continued

Symbol Definition Value Units Source

APCT Total concentration of protein APC 1.0 2

Chk2T Total concentration of Checkpoint kinase 2 1.0 4

ATMT Total concentration of ATM 1.0 4
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Chapter 7

Discussion and future work

7.1 Summary and discussion

The mechanisms governing the hyper-radiosensitivity and increased radioresistance

(HRS/IRR) phenomenon remain unclear [57, 92, 3]. There has been important

progress in this area during recent years, which has required advanced mathematical

modelling of the cellular mechanisms affected by radiation [5, 78]. Bodgi et al. [6]

consider that a mathematically sophisticated approach is necessary to understand

the effect of radiation on cells. Despite being widely accepted and used in cell

survival data, the Linear Quadratic (LQ) model [40, 41], suitable for most cell

survival data [8], and the Induced Repair (IR) model, suitable for cell survival data

showing HRS/IRR [92], are empirical models without a clear interpretation of the

parameters therein [6].

In this thesis, we seek a mechanistic explanation for the HRS/IRR phenomenon

based on the the hypothesis that the G2 checkpoint plays a key role in the HRS/IRR

[58]. We consider a multi-level modelling approach. At the individual level, we

modelled the cell cycle and the kinetic pathway triggered by radiation to study the
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effect of radiation on the G2/M transition of the cell cycle. At the population level,

we reduced the dynamics of the cell cycle during the G2/M transition and assumed a

distribution of cells over the cell cycle to study the effect of radiation on a population

of cells. Our approach is broken down into Chapters 2 to 6 as follows:

• In Chapter 2, we modelled the cell cycle and radiation pathway with focus

on the G2/M transition and the ATM-Chk2 pathway. Our cell cycle model

is based on the research of Novák and Tyson on the cell cycle control net-

works for yeast cells [71, 97]. Our proposed model for radiation pathway

describes formation and repair of Double Strand Breaks (DSBs) and fast ac-

tivation/inactivation of the kinases ATM and Chk2 with Goldbeter-Koshland

kinetics [27].

We showed that radiation can trigger the G2 checkpoint via a saddle-node

on an invariant circle (SNIC) bifurcation driven by parameter Vc2 (denoted

SNICVc2). We also showed that radiation must be high enough (> 0.3 Gy)

and long enough before M-phase entry in order to activate the G2 checkpoint.

A few questions arise from our results in Chapter 2. How does failure of

G2 checkpoint activation translate into HRS/IRR? How does our SNICVc2

bifurcation relate to a SNICMass bifurcation studied by Novák et al. [74]?

These questions are addressed in Chapters 3 and 5, respectively.

• In Chapter 3, we modelled the cell survival fraction based on the time available

for repair of DSBs before M-phase entry and lethal events affecting the cell

survival. We assumed a distribution of cells over the cell cycle and Poisson’s

Law for the average number of lethal events. Our model for the survival

fraction is based on the assumption that the first lethal events triggered by

radiation determine the fate of a cell and affect the capability of cells to
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reproduce. In the case of G2 checkpoint failure, it is known that DSBs during

M-phase lead to events that affect future generations [102].

We simulated the cell cycle model and radiation pathway to obtain a numerical

survival fraction curve. We observed that the effect of radiation on the G2/M

transition studied in Chapter 2 produces an HRS/IRR effect in the survival

fraction. Moreover, this effect is more pronounced for synchronous cells in

G2-phase, less pronounced for asynchronous cells, and absent for synchronous

cells in G1- and S-phases. These results are consistent with experimental

observations [59].

Our results support the hypothesis that the HRS/IRR phenomenon is caused

by the ability of cells to respond to DNA damage during the G2/M transition

[59]. This motivates a theoretical exploration of our survival fraction model.

However, that would require a simplification of the cell cycle model about

the SNICVc2 bifurcation that governs the G2/M transition and a theoretical

expression of the time available for repair. Such theoretical derivations are

carried out in Chapters 5 and 6, respectively.

• Chapter 4 is a theoretical interlude to study a generic problem in dynamical

systems introduced by us: the carryover of a saddle-node bifurcation. We

define the carryover of a saddle-node bifurcation as the manifestation of an

existing saddle-node bifurcation after transforming one of the parameters

into a variable. We considered the case where the new differential equation

associated with the parameter transformed into variable does not depend on

the rest of the variables.

We proved that additional singularity and transversality conditions are suffi-

cient for the carryover of the saddle-node bifurcation. Moreover, such con-
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ditions can be verified graphically with a two-parameter bifurcation diagram

involving the parameter of interest.

This study of the carryover of a saddle-node bifurcation originates from the

question posed in Chapter 2 regarding the connection between the SNICVc2

and the SNICMass bifurcations, the former being the carryover of the latter.

This result is used in Chapter 5.

• In Chapter 5, we reduced the cell cycle model to a normal form about the

SNICVc2 bifurcation.

We broke down the cell cycle model into modules, the G2 and M modules.

First, we looked at the G2 module, showed that it has a saddle-node bifurcation

driven by cell mass, and reduced the module to one-dimensional form about the

saddle-node bifurcation. Second, we transformed the cell mass into a variable

and applied our propositions in Chapter 4 to derive a one-dimensional form

about the saddle-node bifurcation, now driven by Vc2. Third, we showed that

adding the M module and resetting condition for cell division transforms the

saddle-node bifurcation into a SNIC bifurcation without the one-dimensional

form. Finally, we used the one-dimensional form (which we now refer to as

normal form) to define the G2/M transition in mathematical terms.

The normal form and the definition of the G2/M transition are used in Chap-

ter 6.

• In Chapter 6, we used the reduction of the cell cycle model to normal form

about the SNICVc2 (locally a saddle-node bifurcation) bifurcation obtained in

Chapter 5 to derive an expression for the cell survival fraction based on the

framework proposed and simulated in Chapter 3. We transformed the normal
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form to a phase model and provided a theoretical form for the average number

of lethal lesions. Assuming low dose of radiation and active ATM, we showed

that our formulation of the survival fraction reproduces the IR model.

It is known that the HRS/IRR effect is produced by different and independent

mechanisms [66, 67, 47, 45, 104, 77]. Here we explore the HRS/IRR phenomenon

associated with the G2/M transition. We established numerical and theoretical

arguments to support the hypothesis that the G2/M transition plays a major role

in the HRS/IRR phenomenon. Moreover, we provided a preliminary theoretical

explanation for the parameters in the IR model.

Our exploration of the involvement of the radiation pathway and the cell cycle

on the survival fraction allows us to summarize two main biological mechanisms:

1) the G2 checkpoint or G2/M transition is identified with a saddle-node (SNIC,

globally) bifurcation driven by the inactivation rate of Cdc25, and 2) the fast switch-

like activation of Chk2 dictates the activation of the G2 checkpoint in response to

radiation. Combining these two mechanisms with the assumption that DSBs during

M-phase affect the ability of cells to reproduce, we provided a biological explanation

for the participation of the G2 phase in the HRS/IRR phenomenon.

Our theoretical and numerical results rely on several simplifications of our mod-

elling. In particular, we modelled the radiation pathway with Goldbeter-Koshland

kinetics for the kinases ATM and Chk2, we only considered one type of DSBs, we

have neglected the dynamics of the G1- and S-phases in our model for the cell cycle,

we set ATM to active form in order to solve for the DSBs, and the radiation pathway

has been simplified to a pulse in the study of the phase model.
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7.2 Future work

In the development of this thesis, we gained insights on the effect of radiation on

the G2/M transition and the survival fraction. We learned that the G2/M transition

is governed by a SNIC bifurcation. We also learned that a combination of temporal

conditions and high kinase activity lead to the proper activation of the G2 checkpoint.

We realized that the phase model becomes convenient to describe the progression of

the cell cycle accounting for the G2/M transition. We also provided a way to define

the survival fraction based of lethal events that explicitly account for the response

of cells to radiation. Based on these insights, we propose the following future work.

Carryover of bifurcations

The study of the carryover of a bifurcation in this thesis was limited to the saddle-

node bifurcation with two parameters and the new equation associated with the

transformed parameter independent of the rest of the variables. This case was

enough for our particular interest. However, it would be interesting to study the

carryover of other types of bifurcations (transcritical, pitchfork, Hopf, etc), k-

dimensional parameters, and general form for the equation associated with the

parameter transformed into a variable.

The phase model of the cell cycle

We believe that the phase model (6.23) should be extended for the whole cell cycle

to account for the G1 (or restriction) and Metaphase (or spindle) checkpoints, in

addition to the G2/M checkpoint. We believe that each checkpoint is identified

with a type of bifurcation driven by a given parameter in the cell cycle network.
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Therefore, we propose a phase model for the cell cycle of the form

dϑ

dt
= 1−

∑
i

PRCi(ϑ)gi(t), ϑ ∈ [0, T ], (7.1)

where i ∈ {G1, G2/M,Meta}, PRCi(ϑ) is the Phase Response Curve (PRC) of

checkpoint i, gi(t) is the output of the corresponding radiation pathway affecting

the bifurcation parameter of checkpoint i, and T is the length of the cell cycle.

In the case of the G2/M checkpoint governed by a SNIC bifurcation, the PRC

has the form

PRCG2/M(ϑ) =
1

b
sin2

(√
bc⟨ϑ⟩IG2/M

)
, (7.2)

where b, c depend on the parameters of the cell cycle (β and γ in equation (5.42)),

IG2/M = [tstart
G2/M , t

end
G2/M ] is the finite interval of the G2/M transition (see equation

(5.46)), and the angle bracket notation ⟨·⟩I is a generalization of Macualay’s brackets

notation given by

⟨x⟩[a,b] =

⎧⎪⎪⎨⎪⎪⎩
x− a, x ∈ [a, b],

0, otherwise.

The angle bracket notation guarantees that the PRC (7.2) only affects the phase during

the G2/M transition. It is still left to investigate the validity of our assumptions on

b and c made in Chapter 6 and to explore their dependence on the parameters of the

cell cycle. In the case where b is proportional to V ∗
c2−Vc2 and c is constant, we have

that

gG2/M(t) = kc2aChk2(t), (7.3)

where kc2a is the inactivation rate of Cdc25 by Chk2. Below we discuss possible

improvements to the DSBs-ATM-Chk2 radiation pathway.

The PRC of the other checkpoints is material for research. We speculate that the
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G1 checkpoint is governed by a saddle-node bifurcation as well, while the Metaphase

checkpoint might be associated with a Hopf bifurcation, based on Tyson et al. [97].

With regards to the “early” and “Sinclair” (also known as G2 accumulation [70])

G2 checkpoints discussed by Marples [59], we believe that they correspond to the

same saddle-node mechanism activated via different radiation pathways. We believe

that the early G2 checkpoint corresponds to the ATM-Chk2 pathway studied here,

which is fast but active above a threshold, while the G2 accumulation checkpoint

corresponds to a different slow but sensitive pathway. It would be necessary to study

these ideas and to identify the corresponding bifurcation parameters.

This general formulation of the phase model has the potential to investigate the

effect of radiation on the cell cycle without explicitly accounting for the complex

network of the cell cycle. One of the challenges we faced in this thesis was the

complexity of the cell cycle model and the identifiability of the parameters within,

even when we neglected other cell cycle regulatory mechanisms other than the

G2/M transition. Reducing the G2/M transition to its corresponding PRC allows

to represent specific cell lines with parameters b and c, although their biological

interpretation is left to explore. If one is interested in the progression of the cell

cycle, the phase model for the cell cycle allows to focus on the radiation pathway

instead.

The DSB-ATM-Chk2 radiation pathway

We consider that the radiation pathway requires further investigation. First, we

have only considered one type of DSBs and only one mechanism of DSBs repair.

However, a distinction between recognized, unrecognized, repairable, unrepairable,

and misrepaired DSBs should be considered [93, 84, 92]. Moreover, a distinction
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between non-homologous end joining (NHEJ) and homologous recombination (HR)

should also be considered as these repair processes have different times and have

different consequences [89].

Second, the ATM pathway should be revised. We have simplified ATM activa-

tion to fast sensitive activation at very low-dose with Goldbeter-Koshland kinetics.

However, it is known that other mechanisms, including monomerization, ubiquiti-

lation, and self-activation are highly involved in ATM activity [45, 20, 5, 79, 53].

Since ATM is key in the distinction between normal and mutant cells, it is imperative

to further explore the modelling of ATM.

Cell Fate Mechanism model

Our main assumption to derive the survival fraction model is that the early response

of a cell to radiation determines the fate of the cell, therefore affecting the ability of

the population of cells to reproduce. More specifically, our model for the survival

fraction follows this logic: radiation triggers a kinetic pathway (the ATM-Chk2

pathway), which affects possible lethal lesions (DSBs during M-phase entry) in an

individual cell and this has an effect on a population of cells (average number of

lethal lesions due to G2 checkpoint failure) that is reflected on the clonogenic survival

(survival fraction). The average number of lethal events due to G2 checkpoint failure

contributes to a form of cell death known as mitotic catastrophe [102]. However,

we believe that our approach should be extended to include all forms of cell death.

Cell death after radiation consists of five main mechanisms: apoptosis, au-

tophagy, mitotic catastrophe, necrosis and senescence [69]. Those mechanisms

differ in their morphological features [for review see 46, 24, 69]. Here, we un-

derstand that mitotic catastrophe occurs as a consequence of mitotic failure and
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deficit of cell cycle checkpoints [21]. Whether or not mitotic catastrophe should be

considered a form of cell death [100, 102], it is a mechanism that affects the fate of

the cell and contributes to clonogenic survival [69]. For this reason, we prefer to

refer to those mechanisms as cell fate mechanisms.

We propose a Cell Fate Mechanism (CFM) model for the cell survival that

accounts explicitly for every form of cell fate. The CFM model is based on lethal

events as the outcome of lethal lesions. Denote λ(D) as the average number of

lethal events in an average cell, where D is the total dose delivered in Grays (Gy).

Assuming Poisson’s Law for lethal events, we find the survival fraction to be

S(D) = P (K = 0;λ(D)) = e−λ(D), (7.4)

where P is the probability density function for the Poisson distribution. We split

the average number of lethal events into the different cell fates, i.e., average number

of lethal events due to apoptosis to be λapop(D), autophagy to be λauto(D), mitotic

catastrophe to be λmito(D), necrosis to be λnecro(D), and senescence to be λsenes(D).

If these quantities are independent, we can write the survival fraction for the CFM

model as

S(D) = e−λ(D) = e−λapop(D)−λauto(D)−λmito(D)−λnecro(D)−λsenes(D). (7.5)

We believe that all of the cell fate mechanisms can be approximated with linear

and quadratic terms for most of survival fraction data, resulting in the LQ model

λ(D) ≈ αD + βD2.

However, in experiments where the LQ model fails to describe the data, we think
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that some of the terms in the CFM model (7.5) deviate from the linear-quadratic

approximation. For instance, is this thesis we defined

λmito(D) =
αmito

T

∫ T

0

DSBlethal(t0, D)f(t0)dt0. (7.6)

where αmito is a proportionality constant and DSBlethal(t0, D) is the solution of the

ATM-Chk2 radiation pathway.

The CMF model has tremendous potential from the numerical point of view.

For instance, if we want to study the effect of Chk2 of the survival fraction, we could

simulate a given radiation pathway and use the phase model (7.1) for the progression

of the cell cycle.

7.3 Final remarks

The study of the effect of radiation on cells is based on the clonogenic experiment

and the survival fraction curve. The analysis of cell survival fraction data has been

done over the last 80 years using the Linear Quadratic model and, more recently,

the Induced Repair model. Despite being excellent models, they fail to provide

meaningful information regarding the underlying mechanisms of cellular response

to radiation. To study underlying mechanisms, we need to incorporate complex

mathematical modelling. The trade-off here is to give away simplicity for biological

understanding. In this thesis, we explored the effect of radiation on the cell cycle

and cell survival fraction via the ATM-Chk2 pathway. This exploration provided

meaningful explanations for the HRS/IRR phenomenon and opened opportunities

to further explore the effect of radiation on cells.
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