

A Survey of Payment Token Vulnerabilities Towards
Stronger Security with Fingerprint based Encryption

on Samsung Pay

Yiming Sun
Information Security and Assurance
Concordia University of Edmonton

Alberta, Canada
yimingsun100@gmail.com

Ron Ruhl
Information Security and Assurance
Concordia University of Edmonton

Alberta, Canada
ron.ruhl@concordia.ab.ca

Hamman Samuel
Information Security and Assurance
Concordia University of Edmonton

Alberta, Canada
hamman.samuel @concordia.ab.ca

Abstract The use of payment tokens, based on EMV®
specifications and the Payment Card Industry token standard,
both propels the spread of mobile payment technologies and
improves the security of Mobile Payments including protection of
the original payment information and primary account numbers.
However, some researchers have demonstrated that attacks on
payment tokens through decoding the magnetic secure
transmission or near field communication signal allows an
attacker to use stolen tokens to complete malicious transactions
or to guess new tokens through analysis of the token format. The
stolen tokens are then used to make fraudulent transactions.

In this research we examined Samsung Pay in order to design
a novel theoretical security model using a fingerprint-based
master key for unlock phone authentication, and transaction
authentication and encryption. Samsung Pay is an application
installed in a Secure Element in a Samsung Android device. In
our theoretical security model presented, this master key can be
created using one biometric fingerprint pattern or two merged
patterns. Sub-keys can then be generated from this master key
that can be applied to transaction encryption, payment token
encryption and to protect the payment token in the Secure
Element in the phone where the mobile EMV® customer
information is stored.

Keywords Mobile Payment, Tokenization, Samsung Pay,
Payment Token, NFC, MST, Key Encryption, Fingerprint feature,
Biometric Key generation PKI certificate.

I. INTRODUCTION

This research examines payment tokens used in mobile
payment systems, such as Apple Pay, Android Pay and
Samsung Pay. Current research on mobile payments show
vulnerabilities and this includes tokenized systems used in
mobile payments. Recent attacks on payment tokens on
Samsung Pay, for example, illustrate the ease of carrying out
some of these attacks. This research will analyze these
vulnerabilities using a systematic literature survey and
summarize the findings using standard modeling diagrams.
This research will then propose a secure design of token based
transaction protection for Samsung Pay using an additional

biometric scheme to strengthen the mobile payment process. It
is hoped this proposed scheme can be implemented by EMV®
(EMV® specifications are used by several vendors including
Europay, Mastercard and Visa) participants using mobile pay
platforms.

In 1992 MasterCard company launched the first
international payment card and since then physical payment
cards have been widely adopted by consumers. With the
development of telecommunication technologies, mobile phone
payment has started to replace traditional payment card
methods. Mobile payment has been almost 20 years in
development since 1999 when two mobile operators in the
Philippines launched the first commercial mobile payments [1].

Compared to conventional physical payment cards, mobile
payment is based on the mobile phone as a payment platform
through the loading payment cards, into a virtual device which
uses Near Field Communication (NFC) technology or
Magnetic Secure Transmission (MST) technology to
communicate with point-of-sale (POS) terminals without
inserting a payment card into the terminal [2]. In the current
mobile pay industry, there are three main competitors; Apple
Pay, Samsung Pay and Google Pay. Apple Pay and Samsung
Pay use a chip called Secure Element (SE) embedded into
phones to complete key protection of sensitive information and
data. Unlike Apple Pay and Samsung Pay, Google Pay uses a
Host Card Emulator (HCM) application simulating physical
payment cards, and deploys cloud servers on remote-site for
the protection of information and data. More details will be
presented in Section III on all three types of mobile payment
systems.

Unlike traditional payment cards, mobile payment
technology can allow many virtual payment cards so that
customers can add, delete, or update virtual cards much more
conveniently. This creates a convenient portable approach to
payment card use and management.

Using mobile payments also has the potential to combine
online bank applications and payment cards allowing

customers to track transaction records much easier. In addition,
banks in the future may develop more useful monitoring and
control methods which use the mobile payment platform to
better protect customer financial information and tailor the
bank service to the customer. All of the benefits cannot be
offered by physical payment cards and mobile payment
technology can provide enhanced security and enhanced
customer service.

The EMV®is global payment industry specification for
payment systems. This organization published the first EMV
specification in 1996. It describes the requirements for the
interoperability between the chip based on the physical
payment cards and the payment terminal sale machine. EMV®
also provides standards and requirements for mobile payments
and this includes payment tokenization to protect customer
payment card information [3]. EMV® participants publishes
these standards at emvco.com.

II. BACKGROUND

A. Theory of Tokenization

Tokenization is the process of replacing the Primary

Account Number (PAN) with non-sensitive values called
tokens. Thus, tokens become the most important value used in
mobile payment transactions rather than the PAN [3]. Tokens
used by EMV® participants are of two types: security tokens
and payment tokens, although most of payment companies use
payment tokens. Payment tokens are random values that

transaction. In the EMV® specification [4], payment tokens
map to the real PANs to provide additional security. Payment
tokens are mostly generated by a token service provider (TSP)
or the bank which issued the payment card. They can be
dynamic, static, or a combination of both. Dynamic tokens are
valid either for a single transaction or for a limited number of
transactions within a very short duration. Dynamic tokens
currently are not used very often for mobile payments because
they use additional resources to manage the related TSP token
mapping. Compared to dynamic tokens, static tokens are
utilized by most mobile payments following EMV®
specifications. They combine one static token with a dynamic
component (the uniquely generated cryptogram used to
complete the transaction) for additional security. In summary,
the reasons for using static tokens are: they can be easily to
deployed by card issuers; they use Bank Identification
Numbers (BINs) to assign to different services and domains;
and, merchants can easily link payment credentials to
customers and discover fraudulent transactions (without
having to store the underlying PAN) [4].

The Payment Card Industry Data Security Standard (PCI

DSS) is a set of specifications for securing PCI data in
systems using EMV® payment cards to complete transactions.
Merchants have to comply to this standard through routine
audits. Since tokens do not contain the PAN, tokens may be

stored in a less secure manner and are not in scope for PCI
DSS compliance.

B. Format of Tokenization

The PCI DSS Tokenization Guideline [5] shows the basic
format of tokenization. There are three main types of tokens
used by different payment network companies: American
Express, where the first number starts with 3, and uses
alphabetic and numeric value combinations; Visa, which starts
with 4, and only uses numeric values; and Mastercard, which
starts with 5 and uses a truncated PAN where the last four

C. Workflow of Tokenization

Token generation includes three main approaches:

 a mathematic reversible function with a known
strong cryptographic key;

 a one-way hash function; or
 an index function, sequence number or a randomly

generated number.
No matter which method is used, a token cannot be calculated
by a simple mathematical calculation [6]. In the Samsung Pay
official website, Samsung explains the traditional workflow of
tokenization (Fig.1). However, no matter which mobile
payment company a customer uses, a mobile phone has one
token that is mapped to one real PAN. A token request must
be sent to a TSP or a bank when a real credit card number gets
enrolled.

 When a credit card number is verified by the card issuer, the
TSP will respond with a generated token sent to the mobile
device. The sequence diagram in Figure.1 demonstrates the
entire tokenization flow. In addition, following the EMV®
payment tokenization specifications, the TSP also generates
the Payment Account Reference (PAR) including a registered
BIN controller. The BIN is used as a linkage and routing
mechanism for processing token based transactions to ensure
the correct bank receives the transaction token for processing.

 PAR has 29 characters, containing PAR field, PAR data,
PAR data generation method, PAR delivery mechanism and
PAR enquiry method [6,7]. The first four characters show a
tokenized BIN identifier assigned by EMV®, while the
remaining 25 characters are based on each PAN. The 29-
random characters cannot be reversed to reveal the real PAN
number. The PAR just acts as a reference list, recording all
necessary transaction information for the token based
transaction. Moreover, PAR cannot be used by itself for any
financial transaction [7,8]. Each PAN may have many

which map to the single customer PAN and PAR. [8]. While
PAR is not a mandatory requirement that must be used in
payment token transaction in PCI payment token security, the
PAR mechanism proposed by EMV® solves the issue of

different client tokens used in different devices while all of the tokens refer to the single PAN and PAR [9].

Fig.1. Overview of Tokenization

 Figure 1 presents our synthesis of the tokenization
workflow. The user downloads a virtual card application from
Google Store or an online payment network which contains
official EMV® authorized certificates, public keys, and
private keys to be used with the trusted application in step (1a,
1b). Once the application is installed, the user enters card
numbers (PAN) into the virtual card application in step (2) at
which point the card application software will send them into
the payment network and all card information will be verified
by an issuer bank in step (3a) using the issuing banks
procedures. If the card information is not correct, a failure
message is sent back to the mobile phone and the user is
prompted to enter the information again. Otherwise if
successful, in step (4), a token request will be sent to the TSP.
The TSP generates a new token matching the unique card
number (PAN) and PAR token, and this is stored in the TSP
vault. Upon first use a PAR token is also created. The
payment token and PAR token are then sent back to the
mobile phone along with a customer-specific EMV®
certificates and keys used in processing transactions.

 When a transaction is ready to complete and the
authentication is done successfully, the PAR token
accompanied with the payment token [7] is transmitted into
the POS, and the POS will start to complete the rest of the
steps [10] including routing the request to the appropriate
bank based on the registered BIN range of the issuing bank
shown in the PAR. Following the EMV® specification, a
static token is used with a strong transaction cryptogram
which is normally generated by the digital payment token, an
application transaction counter and a secret key (known only
by the issuing bank and the EMV® payment card downloaded
to the). The cryptogram is a fully random and varied value to
anyone without the secret key to decrypt it [11].

III. RELATED WORKS

Although Apple Pay, Android Pay and Samsung Pay use a
similar process of tokenization, they opt for different
approaches to store the tokens. Apple Pay [12,13] stores the
Device Account Number (DAN) in Secure Element (SE).
DAN (core payment data) is created by the payment network
and it is encrypted in SE with either Elliptic Curve
Cryptography (ECC) or Rivest Shamir Adleman (RSA)
encryption. When users request a payment user authentication
is checked in the Secure Enclave, which communicates with
the SE. Then the payment token is generated by a SE
including the transaction ID, payment network and payment
token data.

 Samsung Pay [10] works like Apple Pay although

significant difference is that Samsung Pay uses an embedded
chip as a SE working in a TEE, which is discussed in Section
V. The Samsung Pay token and cryptogram is be put into the
SE. When the payment is triggered, it creates a payment token
with a cryptogram including token data, timestamps, and an
application transaction counter.
Android Pay [14] uses a cloud technology to store payment
tokens through isolating the physical device. Here, any
payment token is sent to a Google cloud. In an Android phone,
only Host Card Emulator (HCE) is used to connect to POS.
So, although Android Pay and Samsung Pay use similar
platforms, there is no SE in Android phones.

 Salvarda [15] comprehensively analyzed Samsung token
numbers that he collected from Samsung Pay and found that
patterns existing in the token structure. The author explained
one collected token in detail in Table 1.

Table 1. Collected Token from Samsung Pay [13]

The format follows Visa token characteristics which have a
20-digit number. The first four numbers represent the token
expiration date. The next three numbers represent the service
mode. The remaining numbers represent other transaction
related elements. Table 1 also shows that the number 064702
handles the transaction range and CVV (Card Verification
Value) role, which is followed by 0079 which changes with
each transaction. The last three numbers 616 are generated
randomly. The CVV is the number printed on the back of a
physical payment card and is normally used for card not
present transactions.

 After explaining the format of the collected token, the
author describes how the collected tokens can be obtained

which was illustrated at a Black Hat Conference [16].

Although the author explained the meaning of each number,
he did not give a better solution to protect all token numbers.
The main reason that the author can obtain the plaintext token
is because all tokens stored in the mobile phone are not
encrypted. Once any database file is leaked or decrypted or in
transit, the clear text token number can be obtained and
analyzed, and then used for future attacks [17].
 Daeseon Choi and Younho Lee. [17] demonstrated how
malicious users could use a magnetic card reader to obtain
magnetic signals, decode signals and use refreshed stolen
tokens to make a remote payment. In this paper, the author
demonstrated exploits to other vulnerabilities existing in
Samsung Pay. He showed that very strong MST signals can
be stolen from a relatively long distance of about two meters.
An attacker can decode stolen signals and obtain tokens
transmitted in the signal. Although this paper did not talk
about the stolen token in detail, an obvious issue of the
transmitted token is that the token is visible in the
communication stream. Due to the lack of connection between
payment authentication and payment transaction, the stolen
token can be used by malicious users simultaneously.
 We created Table 2 to provide a summary of three mobile
pay platforms and the main differences between the mobile
platforms, their applications, storage payment tokens, token
formats, transaction routing and the potential vulnerabilities.

Table 2. Evaluation Form of Three Mobile Pay Applications

Mobile Phone
Platforms

Apple iOS Android OS

Mobile Payment
Applications

Apple Pay Google/Android Pay Samsing Pay

Units sold in 2Q2016
[22]

44395(iOS) 296,912(Android)

Market Shares % [22] 12.9 % 86.2 %

Mobile Phone units sold
in 2Q2016 [22]

44395 (12.9%) (iPhone) 76743(22.3%) (Samsung)

Storage Location of

Payment Tokens

An Embedded chip in phone

(Secure Element)

Online Cloud
(Google server)

An Embedded chip in phone
(Secure Element).

Payment Token Format

Payment token includes:
Transaction ID,

Payment network,
Payment token Data (signature,

header, and payment data).

Payment token
includes:
DPAN,

ExpirationMonth,
ExpirationDay,

Authmethod (3D
secure)

3dsCryptogram etc.
[18]

Payment token includes:

Payment Data from DPAN,
Timestamps,

Account Transaction Counter.

Transaction Routing
Token BIN or BIN range (part
of token, first six digitals) used

to find payment network.

Token BIN or BIN
range (part of token,
first six digitals) used

to find payment
network.

Token BIN or BIN range (part of
token, first six digitals) used to

find payment network

Payment Token

Encryption

Only payment data (amount,
card name, process data etc.)

using either elliptic curve
cryptography (ECC) or RSA

encryption in SE.

When transaction starts, new
token will be created

Payment token stored
in Cloud. And in
transaction, it is

encrypted by Elliptic
Curve Integrated

Encryption Scheme
[19]

Payment Data from DPAN
encrypted. But the entire payment

token is stored in SE as a
plaintext, when transaction starts,
cryptogram used to alter last 4-6
digitals to make a new token for

each payment

Relationship between
Authentication and

Transaction

Step1. PIN or Fingerprint used
as an unlock authentication.

Step2. Before transaction
starts, (in most cases), same

fingerprint (recommended) or
PIN authentication is requested

again.

Step1. PIN, Passcode,
Pattern or fingerprint

used as an unlock
authentication.

Step2. No
authentication

requested before
transaction.

Step1. PIN, Passcode or
fingerprint used as an unlock

authentication.

Step2. Before transaction starts,
(in most cases), same fingerprint

(recommended) or PIN
authentication is requested again.

Payment Token Invoke
methods

Step1. Secure Enclave
responsible for Touch ID

authentication

Step2. Apple API connects
Secure Enclave and Secure

Element to create plain
payment token.

Step1. Trusted Auth
Apps charge in unlock

authentication.

Step2. NFC controller
directly talks to HCE
(payment application)
to request a payment

token in cloud (Google
server).

Step1. Trusted Auth Apps charge
in unlock authentication.

Step2. Trusted Auth Apps talks to
SE via Trusted internal API to

obtain an payment token.

Potential Vulnerabilities
of payment applications

1. To intercept traffic to an
Apple server, when payment

data is added into device
phone, hacker can push

malware into phone to steal
data.

2. V
WiFi hotspot, to request users
to create a profile, and hacker

can steal Apple pay
cryptogram, and decode

cryptogram.

3. Run out of available of
Token BIN

4. Hacker can use stolen card
numbers to register and finish

payment. etc. [20,21]

5. entire payment token is in
plaintext, it can be reused or

analyzed when payment traffic
is jammed.

1. Due to the use of
payment card

emulation applications,
so rogue HCE apps can

be installed.

2. NFC controller
directly talks to host

CPU that can cause big
pressure of CPU and

consume lots of
resources.

3. Run out of available
of Token BIN

4. Malicious
applications can attack

Host OS and steal
payment data on HCE

app.

5. DoS attacks to the
cloud. [21].

1. Secure storage is encrypted
with static password, once it is
compromised, Payment Token
can be obtained and analyzed.

2. NFC and MST encode plaint
payment token, once MST
decoded, payment token.

cryptogram and other information
can be gained and be used again.

3. Run out of available of Token
BIN.

IV. DESCRIPTION OF PROPOSED SOLUTION

 After analysis of the vulnerabilities existing in the main
three mobile payments methods listed above in Table 2, we
examined Samsung Pay in order to propose the following
solution to further secure payment transactions [23].

 Our proposed model is based on several assumptions
including:

 The payment network and all network protocols are
sound, secure and efficient and that the https protocol
and encryption is secure during the communication
between the mobile phone and issuers.

 The mobile phone, POS machine, the bank, payment
network providers, and TSP are secure and genuine.
All certificates, tokens, encryption keys are secure and
genuine when issued.

 The underlying software used in the mobile phone is
safe without viruses and worms. All software is
certified by merchants and no malicious software
which might affect the SE is downloaded into the
phone.

 Our solution involves creating a fingerprint pattern-based
value which will further secure specific transactions and is not
based on the unlock key of the mobile device. How this could
be embedded into the deployment of mobile payments is
described below:

A. Initial Credit Card Application

 A user needs to apply for a credit card in a bank or on a

plication process, in addition to
providing necessary personal identification information (PII)
and security questions to the bank, they must enroll a
fingerprint pattern using the bank device or their own device
embedded in their mobile device. In our solution we will call
this fingerprint pattern 1. (Note: this fingerprint pattern
should not be the same as the fingerprint pattern enrolled for
unlocking the user phone or mobile device.) This enrolled
fingerprint will be applied not only to first Virtual Payment
Card verification on the mobile phone, but also to fingerprint-
based key generation.

B. Mobile phone unlock authentication

 When a user starts to use their own mobile phone or
device, the unlock authentication needs to be enrolled for the
first-time use. In a standard Samsung mobile device there are
two ways to unlock it:
 i. The user uses PIN as an unlock phone method. When the
PIN is entered into the phone via a mobile authentication
application, the phone will generate an encrypted file

(password.key) using SHA-1 and compare this to the file
stored in the phone.
 ii. The user uses fingerprint pattern named pattern as an
unlock phone method. In our solution we will call this
fingerprint pattern 2. When the fingerprint pattern is entered
into the phone via a mobile authentication application, the
phone will also generate an encrypted file in the Android
phone by invoking and

function to obtain a key and then using function

to input the fingerprint pattern to finish the encryption process.
This pattern is stored into a file named unlock.

C. Fingerprint pattern and PAN enrollment

 i. Fingerprint based binary value matrix created

 When a user downloads Samsung Pay and enters or scans
their payment card numbers to create the SE virtual machine
for the payment card. In this research we will use Toronto
Dominion (TD) Bank Visa as an example of an issuing bank.
After the Visa card numbers are entered, the user needs to
login to their online bank with their username, password and
fingerprint pattern 1 in (1) to verify user identification. Here,
Samsung Pay requests the user to confirm this enrolled
fingerprint pattern 1 for the use of transaction authentication
and this pattern is stored into a file named transaction. This
fingerprint pattern 1 must be different from fingerprint pattern
2 used to unlock the phone. In case they are the same, the
fingerprint pattern 2 in the unlock file will be deleted, and the
user is asked to choose another pattern or to use PIN for
unlock authentication. Samsung phone will send all
information to the bank for the Virtual Visa Card registration.
 This enrollment phase includes the following two cases
based on the unlock mechanism in (1) (i.e. steps to unlock the
phone):
 i.1 If the user used a PIN for the phone unlock protection,
the fingerprint Pattern 1 for the transaction will be extracted
and binarized to create a binary stream and add a PIN and a
hardware key to get a fingerprint binary value matrix file in
the SE.
 i.2 OR: If the user used the fingerprint pattern 2 for phone
unlock protection, both fingerprint patterns will be merged to
form a new cancellable pattern, and then minutiae will be
extracted and binarized to create a binary stream. After this a
hardware key (mobile device number) is added to get a
fingerprint binary value matrix file in the SE specific to the
customer and the mobile device hardware.

 ii. PAN enrollment

 The user can scan or enter the PAN into the card Virtual
Machine (VM) application in the SE. The user then logs on to
their secure online bank with username, password and
fingerprint pattern 1 enrolled at the bank. Then the phone
sends all information (PAN number, username, password and

fingerprint pattern 1) and the fingerprint binary value matrix
file created above to the bank in order to confirm who the user
is in the web interface. If the verification is passed, the
fingerprint binary value
symmetric key for the cardholder. All the information will be

(Note: all
fingerprint patterns will be binarized and the original pattern is
never stored in the phone.)
 After matching all card number information, the issuer
sends a request to the TSP to generate a payment token. The
TSP will send the payment token back to the bank. The
issuing bank and TSP encrypt all communication using the
bank/TSP previously configured interface.

D. Fingerprint based transaction key generated

 i. Fingerprint based symmetric key created

 TD bank uses the fingerprint binary value matrix file to
extract a random binary stream and then the tokenized BIN
value is added to create a symmetric key.
 The bank then encrypts the token with a sub-key generated
by a master key and puts the encrypted token object into the
certificate issued to the user which contains a freshly created
public key of the payment card (CusPuK) and
corresponding private key (CusPrK). (Note that the resulting
value encrypts the token which was already encrypted or
hashed by the TSP as described in the workflow of
tokenization above.) The TSP can map the token back to the
real PAN of the customer at any time.

 ii. User stores all information in SE

 The user downloads all of Fingerprint pattern and PAN
enrollment i.e. C (i) above to the SE:

a. Issuing bank s certificate (including PuK of bank
signed by a CA).

b. PAR token which includes the registered BIN
controller.

c. Certificate of cardholder (with PuK signed by
the bank). Note the doubly encrypted token is in
a data field of the certificate.

d. CusPk, CusPuk.
e. Tokenized BIN.
f. Encrypted Payment Token
g. PIN file or fingerprint pattern 2 matrix value file

used to unlock the phone (if PIN is not used).
Once this is completed the SE can then ask the
user for fingerprint pattern 1 which will allow
the SE to generate the binary value matrix and
then sub-keys based on this. Sub-keys can be
used in the SE to encrypt all files and to add
Message Authentication Code on all transaction
elements when is data is transmitted (i.e KEnc and
KMAC) to the payment network. All information

above will be stored in the SE which only the
authorized user can access.

E. Completion of a purchase

 When the phone is used to purchase something:

i. The user opens a card VM application.
ii. The user is required to enter a second fingerprint

for the transaction beginning by pressing the
fingerprint scanner on the phone with the
appropriate finger previously enrolled.

iii. During this process, the POS terminal validates
the VM EMV® certificate issued to the customer
(checking the signatures of the certificates on the
card to verify the chain of trust from the
cardholder certificate up to the CA which the
POS terminal must have installed on the POS).

iv. After that, the POS uses a challenge question
encrypted by CA CusPuk sent to the SE, and if
the SE responds to the question correctly using
the CusPrK which matches the certificate public
key, then EMV® card authentication is
completed. The challenge used is a known
challenge and completed without user interaction
by the SE and the Samsung Pay application.

v. During this whole transaction process,
fingerprint pattern 1 will get enrolled again and
the binary value matrix file will be generated
again. Then the SE can extract random the
binary stream and combine the tokenized BIN to
generate a symmetric key based on the known
algorithm used by bank to create the same key. If
the new generated key can decrypt the encrypted
payment Token in the SE, then EMV® customer
authentication is complete and the phone will
derive the same key to encrypt the transaction. If
the match is unsuccessful, the phone will show
the unmatched message, and one will be added
to a retry counter stored in the SE and the user is
asked to try again (i.e. the same as if the
customer was using a PIN and a physical EMV®
card). Finally, after four unsuccessful attempts,
the transaction will be cancelled. In SE, having
reached the maximum retry number, the virtual
payment card will be locked. Once the VM
tokenized card is locked, this action taken by the
VM will be communicated to the issuing bank.
(Note: although the tokenized card is locked in
the VM, the physical payment card would not be
locked and may still be used.

vi. The transaction processing can then be
completed by using KEnc (symmetric key) to
encrypt the transaction details and KMAC
(symmetric key hash value) to verify the
integrity of the transaction. This step is
mandatory. All keys are based on the master key
known by the SE and the bank.

vii. The above is routed to the issuing bank (through
the payment gateways the merchant uses to
process transactions) and the issuing bank uses
its similarly calculated keys to decrypt the
transaction, verify its MAC, and decrypt the
encrypted token to obtain the real token. The
token is then sent to the TSP and a PAN is
returned to the issuing bank.

viii. The bank either approves or rejects the
transaction and sends the appropriate message
back using the reference number for the
transaction as the doubly encrypted token (i.e the
one matching the token field in the certificate in
the SE).

F. Unlocking a locked VM tokenized card

To unlock a locked VM payment card:
i. The user uses the same bank enrollment web

interface to first prove identity and then request
the VM tokenized card to be unlocked.
Normally, the bank would automatically unlock
the card using an automated response unless
there was account activity which flagged that the
cardholder must call the issuing bank. The bank
might also provide the option to re-enroll the

ii. If re-enrolling and after answering several

security questions, a new fingerprint-based key
is recreated either in the bank or using the bank
enrollment web interface. The user is the told to
register the same card again. In registry process,
the user has to enroll the second fingerprint
pattern or PIN verification value (if PIN was
used) again, and the matrix file and all necessary
information are sent to the bank again. The bank
verifies all information and sends new keys and
certificates back to the user for storage in the SE.
this the retry counter is set to zero.

 There are two possible issues that can cause a VM card to
be locked:
 1. A ruined fingerprint enrollment by the user may cause
information extracted to fail repeatedly.
 2. The matrix file may be compromised by attackers. In
either of the above cases, the user can request a new
fingerprint enrollment, and revoke a previous one by either
going to the bank or calling the bank or using a web interface
if the issuing bank has enabled this.
 False rejection rate (FRR) for biometric devices is
published by each device manufacturer. FRR is the rate at
which a genuine fingerprint is rejected. A common fingerprint
FRR for many devices is 2% or 0.02. Using this value and a
retry counter of 4 means that 0.024 or 0.00000016 times a user
will need to re-enroll a fingerprint pattern. For many users
with 10 or so transactions per day this will take several years
before the fingerprint retry counter reaches four. Any

successful match completes the transaction and the retry
counter in the VM card is returned to zero.
 False acceptance rate (FAR) is the rate at which a random
user would be accepted. The rate of FAR is often the same
rate as FRR. However, in our proposed model, two biometric
fingerprints are used and this means that the chance of a
malicious user first accessing the phone and then the SE with
Fingerprint Numbe1 1 is remote (0.022 or 0.0004). A
malicious user attempting to make a payment with a stolen
phone would cause the retry counter to quickly reach four.

V. NEW PAYMENT FLOW MODEL

A. The selection of fingerprint key generation model

 To establish a direct connection between the payment
authentication and the authorized payment transaction, the
first concern, is to decide which feasible fingerprint key
generation model can be applied to our solution. The article
[24] proposed a new robust multimodal biometric system by
enrolling two different biometric features; iris and fingerprint
using a look-up table to store both hash values and biometric
feature information.

 B. Chen and V. Chandran [25] proposes a transform
employed by the system as an iterative, chaotic, bispectral,
one-way transform that accepts a one-dimensional vector
input and is used to produce a magnitude and angle pair per
iteration.

 In our solution, we choose a novel fingerprint-based key
generation model, proposed by Subhas Barman, Debasis
Samanta and Samiran Chattopadhyay [26], using the Cartesian
coordinates system transformation to extract different
coordinates (x, y) to create a data matrix file extracted from
fingerprint patterns. All the data will be edited via the define
of (int) Array[] function, which can be developed with basic
programming language (C++ or JAVA).

B. Analysis of Samsung Phone framework and Development
of New Payment Flow Model

 Apple iOS platform and the Android platform are the two
popular development environments that most mobile phone
companies use to develop their own smart phones. Like
Samsung Phone, it employs the Samsung Knox hardware
platform and keeps using the Secure Element Chip like Apple
Pay, which is based on the Android development environment
with ARM TrustZone Technology.

 A system-on-chip (SoC) security architecture establishes
two hardware-based zones; an external communication area

 (REE), and an internal
ion Environment

From the perspective of information technology security, all
sensitive operations in the mobile phone, including storage,
exchange, transmission, transaction and execution, must be

implemented into TEE. For the highest level of security, a
TEE deployment must meet requirements of TEE protection
profile (TEE PP), which contains execution authentication,
transit cryptography, application isolation, and untrusted
applications. Therefore, any data or information exchange or
transmission referring to a mobile payment must be processed
in the TEE. [27,28].

 The TEE software architecture is illustrated in Figure. 2
[29].

Fig.2. TEE software architecture [29]

 This diagram basically elaborates an entire software
deployment structure and relationship between REE and TEE.
Any software a user installs must be checked with a whitelist,
which is stored into the TEE service library containing all
secure related drivers. All untrusted software must be installed
into the REE and this includes all client payment applications,
such as Google Pay, Android Pay or Samsung Pay. Otherwise,
trusted applications (TAs) get deployed into the TEE directly,
like Visa, Mastercard, and American Express payment
applications, on a trusted operating system.
 The only way to establish a connection between two zones
is a TEE Application Programming Interface (TEE API). In
the TEE structure, it includes six main APIs, in which TEE
client API connects client apps in REE with trusted apps in
TEE. The TEE internal API concentrates on the various
interfaces and this enables a Trusted Application to make best
use of the standard TEE capabilities. The TEE socket API
provides a common modular interface for the TA to
communicate to other network nodes, acting as a network
client. The TEE secure element API supports communication
to the SE.
 A SE (one embedded chip with tamper resistance) serves as
a platform existing in the TEE on the mobile phone and it
stores all sensitive data, files and information, and can
implement cryptogram calculation for payment tokens. After
user authentication, any data or information can be extracted
from the SE via the TEE SE APIs to finish all communication
between TAs and SE in Figure.3 created by us.

Fig.3 TEE SE API

 While the TEE Internal Core API provides an interaction to
execute all sensitive operations within a Trusted Application
(TA) or between TAs running in the Trusted Execution
Environment (TEE), certain applications need to display
sensitive information to the user for validation or to obtain
sensitive information from the user, such as input of payment
card information, display of transaction information, etc. All
operations must be implemented in TEE rather than in REE.
So, TEE Trusted User Interface offers three main security
objectives: security display, security input and security
indicator.

F
Fig.4. TEE Trusted UI

 The diagram in Figure. 4 demonstrates a basic architecture
of the Trusted User Interface. It consists of either a touch
screen or keyboard peripheral and a display controller
peripheral. When one of peripherals works, others must not be
accessible to reading, writing or executing in REE. [29].
 TEE APIs provide important functionality to build bridges
for communication among different components not only
between TEE and REE zones, but in each isolated zone.
Therefore, mobile payment data and information can be
obtained from REE (outside of TEE), and securely enter the
TEE via TEE client API and TEE user API. The payment data
and information can finish any invokes or operations between
TAs or TAs and SE with TEE internal APIs and TEE internal
core APIs.
 Figure 5 demonstrates the current payment flow on
Samsung Phone based on our earlier discussion. The new
payment flow is developed in Figure 6 and the
locked/unlocked VM process in Figure 7.
 In Figure 5 and 6, the full details about how the POS
machine communicates through the payment gateway to the
issuing bank is not illustrated. The payment gateway may

include the merchant bank, acquirers and other outsourced
payment services. In our solution, once the payment
transaction is encrypted and sent by MST or NFC signal to the

used to prove customer authentication, then to decrypt the
payment token, and after this to create the transaction which is

encrypted and routed to the issuing bank indicated by the BIN
controller value. This process can prove the user is the
genuine user and only the issuing bank can properly decrypt
the transaction details to provide the transaction verification
and response.

Fig.5. Current Payment Flow on Samsung Phone

Fig.6. Process of PAN Enrollment, Fingerprint based key generation and Transaction on Samsung Phone

Fig. 7. Part 6: locked VM Process

VI. BENEFITS AND FEASIBILITY OF OUR SOLUTION

A. Benefits

i. The payment token is encrypted using one key from

the TSP and the other key from the fingerprint
created by the bank. The original (encrypted, derived
hashed or random value) token is never visible during
the transaction nor is it present in the cardholder VM
certificate.

ii. The fingerprint symmetric key can be a master key to
generate sub-keys, which can be used to protect files
in the SE.

iii. During each transaction, a symmetric key must be
created by the transaction fingerprint authentication
process described in this research. Moreover, sub-
keys are created to decrypt encrypted files in the SE.

iv. During the transaction, the symmetric key must
match the key from the bank to verify that: (1.) the
original source to create this key is not compromised;
(2.) the symmetric key is not compromised; and, (3.)
the bank is the genuine bank.

v. The symmetric key must be used for the transaction
otherwise the transaction rejected by the issuing bank.

vi. Non-repudiation security is an integral component of
the payment transaction.

B. Feasibility

1) Customer perspective

 From the customer perspective our solution will create
minimal change to what they are accustomed to in mobile
payments. For example, in making the payment customers

unlock the phone and then use a fingerprint to approve the
transaction. This should take little time and is as easy as
entering a PIN. Enrolling the fingerprints with the bank in
initial setup of the mobile payment app in the phone with the
bank will take longer but can be minimized by allowing the
customer to do this step online as part of the issuing bank card
web application process.

2)

 Banks will have a real cost in deploying this since they will
need to generate additional code to facilitate our proposed
system. If issuing banks further decide to use online bank
access to load required fingerprints, then the system created
would be largely a self-service system. However, once the
proposed system is deployed and the addition code costs
incurred, the bank will have a stronger means to combat fraud
through the use of a PIN and a fingerprint or two fingerprints
together with an encrypted token.

3) EMV® perspective

 Our proposed solution will result in some implementation
costs for EMV®; such as:

 Creating new specifications for handling tokens (i.e.
encrypting the token obtained from a TSP through
the use of fingerprint pattern 1in addition to the
phone fingerprint pattern 2 or PIN).

 Implementing this proposal with industry participants
and gaining their support.

 In summary, after computer code costs are incurred in
producing, testing and implementing our solution, much of the
system can be self-serve from the customer perspective and
the bank perspective. Our solution might also have
unforeseen benefits as the customer might come to appreciate
the increase in security around their mobile payments as they

interact with the issuing bank and the self-serve tools for
enrollment and re-enrollment. Customers might well be more
inclined to use mobile payment systems and this could benefit
both industry participants and customers alike by reduced
payment card fraud.

VII. CONCLUSION

 Through our study, research and analysis of the current
mobile payment infrastructure and related payment
vulnerabilities, we developed a method to enhance security in
the mobile payment and transactions process in Samsung Pay
by using multiple authentication and fingerprint based
encryption keys. Further research can be constructed to test
the industrial feasibility of the proposed model.

VIII. REFERENCES

[1] Polymathconsulting.com 2015.
[2] Vibha Raina Overview of Mobile Payment: Technologies and

Security Electronic Payment Systems for Competative Advantage in
E-Commerce. February 2014. pp 31.

[3] A Guide to EMV. Version 1.0 May 2011. Marianne Crowe and Susan
Pandy.

[4] ®, Payment Tokenisation Specification.
EMVCo, LLC. ber 2017.

[5] Scoping SIG, Tokenization Taskforce PCI Security Standards Council.
PCI Data Security Standard (PCI DSS) DSS Tokenization
Guideline

[6] EMV® EMV®Co Publishes Version 2 of the EMV® Payment
To mber 2017.

[7]
at Smart Card Alliance Payments Summit April 2016. Available:
https://www.securetechalliance.org/secure/events/20160404/CORAL-
SEA-1-2_WED_1045_SRIVASTAVA_SCA-Payment-Summit-
Tokenization-PAR-presentation-April-6-Chandra-Srivastava-Visa.pdf

[8] EMV® Version 1.0.
September 2015.

[9] David Bakker
May 2016. [Online]. Available:
https://blog.ul-ts.com/posts/tokenization-ticketing-5-take-aways/

[10] Mobile Tech Insights. Samsung Pay, Tokenization. Samsung Developer
Website. [Online]. Available: http://developer.samsung.com/tech-
insights/pay/tokenization

[11] Press_Guidance_Samsung_Pay. August 2016. [Online]. Available:
http://security.samsungmobile.com/doc/Press_Guidance_Samsung_Pay.
pdf

[12] iOS Security 2018.
[13] Apple Inc. [US]. [Online].

Available:
https://developer.apple.com/library/content/documentation/PassKit/Refe
rence/PaymentTokenJSON/PaymentTokenJSON.html

[14] Ganeshji Marwaha. Sept 2014.
[Online]. Available:
http://www.gmarwaha.com/blog/2014/09/20/mobile-payments-what-is-
hce/

[15] Salva
ugust 2016. [Online]. Available:

https://www.blackhat.com/docs/us-16/materials/us-16-Mendoza-
Samsung-Pay-Tokenized-Numbers-Flaws-And-Issues-wp.pdf

[16] hackers wirelessly skim
August 2016. [Online].

Available:
http://www.zdnet.com/article/flaw-in-samsung-pay-lets-hackers-
wirelessly-skim-credit-cards/

[17] -time tokens over
June 2016. [Online].

Available:
https://www.usenix.org/system/files/conference/woot16/woot16-paper-
choi.pdf

[18]
https: developers.google.com/android-pay/integration/payment-token-
cryptography

[19] John Leyden -snatch hack: ApplePay 'vulnerable to attack',
claim re
https://www.theregister.co.uk/2017/07/28/applepay_vuln/

[20] Thomas Fox-Brewster ,
People
https://www.forbes.com/sites/thomasbrewster/2016/03/01/apple-pay-
fraud-test/#7b1cfaec46c6

[21] Sdog-mitre -based NFC
Mobile Payment for code tampering and cryptographic key lifting
at
https://github.com/usnistgov/mobile-threat-catalogue/issues/52

[22] Chance Miler.
up much like Mac v
https://9to5mac.com/2016/08/18/android-ios-smartphone-market-share/

[23] PCI Security Standards Council.
Guidelines

[24]

Nov 2015. [Online]. Available:
http://www.uniobuda.hu/journal/Macek_Dordevic_Gavrilovic_Lalovic_
64.pdf

[25] yptographic Key

http://eprints.qut.edu.au/10642/1/B._Chen_DICTA_2007_-
_Crypto_Key.pdf

[26] Subhas Barman, Debasis Samanta and Samiran Chattopadhyay.
Fingerprint based crypto-

December 2015. [Online]. Available:
https://link.springer.com/article/10.1186/s13635-015-0020-1

[27] Mobile Tech Insight, Samsung Pay, Device-side Security: Samsung Pay,
TrustZone, and the TEE. [Online]. Available:
http://developer.samsung.com/tech-insights/pay/device-side-
security#token-handling

[28] GPD_TEE_SystemArch_v1.1_Public_Release. [Online]. Available:
https://www.globalplatform.org/specificationsdevice.asp

[29] Global Platform_Trusted_User_Interface_API_v1.0. [Online].
Available: https://www.globalplatform.org/specificationsdevice.asp

