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Abstract  The use of payment tokens, based on EMV® 
specifications and the Payment Card Industry token standard, 
both propels the spread of mobile payment technologies and 
improves the security of Mobile Payments including protection of 
the original payment information and primary account numbers. 
However, some researchers have demonstrated that attacks on 
payment tokens through decoding the magnetic secure 
transmission or near field communication signal allows an 
attacker to use stolen tokens to complete malicious transactions 
or to guess new tokens through analysis of the token format.  The 
stolen tokens are then used to make fraudulent transactions. 

In this research we examined Samsung Pay in order to design 
a novel theoretical security model using a fingerprint-based 
master key for unlock phone authentication, and transaction 
authentication and encryption.  Samsung Pay is an application 
installed in a Secure Element in a Samsung Android device. In 
our theoretical security model presented, this master key can be 
created using one biometric fingerprint pattern or two merged 
patterns. Sub-keys can then be generated from this master key 
that can be applied to transaction encryption, payment token 
encryption and to protect the payment token in the Secure 
Element in the phone where the mobile EMV® customer 
information is stored.  

Keywords  Mobile Payment, Tokenization, Samsung Pay, 
Payment Token, NFC, MST, Key Encryption, Fingerprint feature, 
Biometric Key generation PKI certificate.  

I. INTRODUCTION 

This research examines payment tokens used in mobile 
payment systems, such as Apple Pay, Android Pay and 
Samsung Pay.  Current research on mobile payments show 
vulnerabilities and this includes tokenized systems used in 
mobile payments. Recent attacks on payment tokens on 
Samsung Pay, for example, illustrate the ease of carrying out 
some of these attacks. This research will analyze these 
vulnerabilities using a systematic literature survey and 
summarize the findings using standard modeling diagrams. 
This research will then propose a secure design of token based 
transaction protection for Samsung Pay using an additional 

biometric scheme to strengthen the mobile payment process.  It 
is hoped this proposed scheme can be implemented by EMV® 
(EMV® specifications are used by several vendors including 
Europay, Mastercard and Visa) participants using mobile pay 
platforms.  

In 1992 MasterCard company launched the first 
international payment card and since then physical payment 
cards have been widely adopted by consumers. With the 
development of telecommunication technologies, mobile phone 
payment has started to replace traditional payment card 
methods. Mobile payment has been almost 20 years in 
development since 1999 when two mobile operators in the 
Philippines launched the first commercial mobile payments [1]. 

Compared to conventional physical payment cards, mobile 
payment is based on the mobile phone as a payment platform 
through the loading payment cards, into a virtual device which 
uses Near Field Communication (NFC) technology or 
Magnetic Secure Transmission (MST) technology to 
communicate with point-of-sale (POS) terminals without 
inserting a payment card into the terminal [2]. In the current 
mobile pay industry, there are three main competitors; Apple 
Pay, Samsung Pay and Google Pay. Apple Pay and Samsung 
Pay use a chip called Secure Element (SE) embedded into 
phones to complete key protection of sensitive information and 
data. Unlike Apple Pay and Samsung Pay, Google Pay uses a 
Host Card Emulator (HCM) application simulating physical 
payment cards, and deploys cloud servers on remote-site for 
the protection of information and data.  More details will be 
presented in Section III on all three types of mobile payment 
systems.  

Unlike traditional payment cards, mobile payment 
technology can allow many virtual payment cards so that 
customers can add, delete, or update virtual cards much more 
conveniently. This creates a convenient portable approach to 
payment card use and management.  

 

Using mobile payments also has the potential to combine 
online bank applications and payment cards allowing 



customers to track transaction records much easier. In addition, 
banks in the future may develop more useful monitoring and 
control methods which use the mobile payment platform to 
better protect customer financial information and tailor the 
bank service to the customer.   All of the benefits cannot be 
offered by physical payment cards and mobile payment 
technology can provide enhanced security and enhanced 
customer service.   

The EMV®is global payment industry specification for 
payment systems. This organization published the first EMV 
specification in 1996. It describes the requirements for the 
interoperability between the chip based on the physical 
payment cards and the payment terminal sale machine. EMV® 
also provides standards and requirements for mobile payments 
and this includes payment tokenization to protect customer 
payment card information [3].  EMV® participants publishes 
these standards at emvco.com. 

II. BACKGROUND 

A. Theory of Tokenization  

 
Tokenization is the process of replacing the Primary 

Account Number (PAN) with non-sensitive values called 
tokens. Thus, tokens become the most important value used in 
mobile payment transactions rather than the PAN [3]. Tokens 
used by EMV® participants are of two types: security tokens 
and payment tokens, although most of payment companies use 
payment tokens. Payment tokens are random values that 

transaction. In the EMV® specification [4], payment tokens 
map to the real PANs to provide additional security. Payment 
tokens are mostly generated by a token service provider (TSP) 
or the bank which issued the payment card. They can be 
dynamic, static, or a combination of both. Dynamic tokens are 
valid either for a single transaction or for a limited number of 
transactions within a very short duration. Dynamic tokens 
currently are not used very often for mobile payments because 
they use additional resources to manage the related TSP token 
mapping. Compared to dynamic tokens, static tokens are 
utilized by most mobile payments following EMV® 
specifications. They combine one static token with a dynamic 
component (the uniquely generated cryptogram used to 
complete the transaction) for additional security. In summary, 
the reasons for using static tokens are: they can be easily to 
deployed by card issuers; they use Bank Identification 
Numbers (BINs) to assign to different services and domains; 
and, merchants can easily link payment credentials to 
customers and discover fraudulent transactions (without 
having to store the underlying PAN) [4].   

 
The Payment Card Industry Data Security Standard (PCI 

DSS) is a set of specifications for securing PCI data in 
systems using EMV® payment cards to complete transactions.  
Merchants have to comply to this standard through routine 
audits.  Since tokens do not contain the PAN, tokens may be 

stored in a less secure manner and are not in scope for PCI 
DSS compliance. 
 

B.  Format of Tokenization 

 
The PCI DSS Tokenization Guideline [5] shows the basic 
format of tokenization. There are three main types of tokens 
used by different payment network companies: American 
Express, where the first number starts with 3, and uses 
alphabetic and numeric value combinations; Visa, which starts 
with 4, and only uses numeric values; and Mastercard, which 
starts with 5 and uses a truncated PAN where the last four 

 
 

C. Workflow of Tokenization 

 
Token generation includes three main approaches: 

 a mathematic reversible function with a known 
strong cryptographic key; 

 a one-way hash function; or 
 an index function, sequence number or a randomly 

generated number. 
No matter which method is used, a token cannot be calculated 
by a simple mathematical calculation [6]. In the Samsung Pay 
official website, Samsung explains the traditional workflow of 
tokenization (Fig.1). However, no matter which mobile 
payment company a customer uses, a mobile phone has one 
token that is mapped to one real PAN. A token request must 
be sent to a TSP or a bank when a real credit card number gets 
enrolled.  
 
    When a credit card number is verified by the card issuer, the 
TSP will respond with a generated token sent to the mobile 
device. The sequence diagram in Figure.1 demonstrates the 
entire tokenization flow. In addition, following the EMV® 
payment tokenization specifications, the TSP also generates 
the Payment Account Reference (PAR) including a registered 
BIN controller. The BIN is used as a linkage and routing 
mechanism for processing token based transactions to ensure 
the correct bank receives the transaction token for processing. 
 
    PAR has 29 characters, containing PAR field, PAR data, 
PAR data generation method, PAR delivery mechanism and 
PAR enquiry method [6,7]. The first four characters show a 
tokenized BIN identifier assigned by EMV®, while the 
remaining 25 characters are based on each PAN. The 29-
random characters cannot be reversed to reveal the real PAN 
number. The PAR just acts as a reference list, recording all 
necessary transaction information for the token based 
transaction. Moreover, PAR cannot be used by itself for any 
financial transaction [7,8]. Each PAN may have many 

which map to the single customer PAN and PAR. [8]. While 
PAR is not a mandatory requirement that must be used in 
payment token transaction in PCI payment token security, the 
PAR mechanism proposed by EMV® solves the issue of 



different client tokens used in different devices while all of the tokens refer to the single PAN and PAR [9]. 

 

Fig.1. Overview of Tokenization 
 

     Figure 1 presents our synthesis of the tokenization 
workflow. The user downloads a virtual card application from 
Google Store or an online payment network which contains 
official EMV® authorized certificates, public keys, and 
private keys to be used with the trusted application in step (1a, 
1b). Once the application is installed, the user enters card 
numbers (PAN) into the virtual card application in step (2) at 
which point the card application software will send them into 
the payment network and all card information will be verified 
by an issuer bank in step (3a) using the issuing banks 
procedures. If the card information is not correct, a failure 
message is sent back to the mobile phone and the user is 
prompted to enter the information again. Otherwise if 
successful, in step (4), a token request will be sent to the TSP.  
The TSP generates a new token matching the unique card 
number (PAN) and PAR token, and this is stored in the TSP 
vault. Upon first use a PAR token is also created. The 
payment token and PAR token are then sent back to the 
mobile phone along with a customer-specific EMV® 
certificates and keys used in processing transactions. 
 
    When a transaction is ready to complete and the 
authentication is done successfully, the PAR token 
accompanied with the payment token [7] is transmitted into 
the POS, and the POS will start to complete the rest of the 
steps [10] including routing the request to the appropriate 
bank based on the registered BIN range of the issuing bank 
shown in the PAR.  Following the EMV® specification, a 
static token is used with a strong transaction cryptogram 
which is normally generated by the digital payment token, an 
application transaction counter and a secret key (known only 
by the issuing bank and the EMV® payment card downloaded 
to the). The cryptogram is a fully random and varied value to 
anyone without the secret key to decrypt it [11].   
 
 

III. RELATED WORKS 

 
Although Apple Pay, Android Pay and Samsung Pay use a 
similar process of tokenization, they opt for different 
approaches to store the tokens. Apple Pay [12,13] stores the 
Device Account Number (DAN) in Secure Element (SE). 
DAN (core payment data) is created by the payment network 
and it is encrypted in SE with either Elliptic Curve 
Cryptography (ECC) or Rivest Shamir Adleman (RSA) 
encryption. When users request a payment user authentication 
is checked in the Secure Enclave, which communicates with 
the SE. Then the payment token is generated by a SE 
including the transaction ID, payment network and payment 
token data.  
 
    Samsung Pay [10] works like Apple Pay although 

significant difference is that Samsung Pay uses an embedded 
chip as a SE working in a TEE, which is discussed in Section 
V. The Samsung Pay token and cryptogram is be put into the 
SE. When the payment is triggered, it creates a payment token 
with a cryptogram including token data, timestamps, and an 
application transaction counter.  
Android Pay [14] uses a cloud technology to store payment 
tokens through isolating the physical device. Here, any 
payment token is sent to a Google cloud. In an Android phone, 
only Host Card Emulator (HCE) is used to connect to POS. 
So, although Android Pay and Samsung Pay use similar 
platforms, there is no SE in Android phones.   
 
     Salvarda [15] comprehensively analyzed Samsung token 
numbers that he collected from Samsung Pay and found that 
patterns existing in the token structure. The author explained 
one collected token in detail in Table 1. 
 
Table 1. Collected Token from Samsung Pay [13] 



 

 
 
The format follows Visa token characteristics which have a 
20-digit number. The first four numbers represent the token 
expiration date. The next three numbers represent the service 
mode. The remaining numbers represent other transaction 
related elements. Table 1 also shows that the number 064702 
handles the transaction range and CVV (Card Verification 
Value) role, which is followed by 0079 which changes with 
each transaction.  The last three numbers 616 are generated 
randomly.  The CVV is the number printed on the back of a 
physical payment card and is normally used for card not 
present transactions. 
 
    After explaining the format of the collected token, the 
author describes how the collected tokens can be obtained 

which was illustrated at a Black Hat Conference [16]. 

Although the author explained the meaning of each number, 
he did not give a better solution to protect all token numbers. 
The main reason that the author can obtain the plaintext token 
is because all tokens stored in the mobile phone are not 
encrypted. Once any database file is leaked or decrypted or in 
transit, the clear text token number can be obtained and 
analyzed, and then used for future attacks [17].  
     Daeseon Choi and Younho Lee. [17] demonstrated how 
malicious users could use a magnetic card reader to obtain 
magnetic signals, decode signals and use refreshed stolen 
tokens to make a remote payment. In this paper, the author 
demonstrated exploits to other vulnerabilities existing in 
Samsung Pay.  He showed that very strong MST signals can 
be stolen from a relatively long distance of about two meters. 
An attacker can decode stolen signals and obtain tokens 
transmitted in the signal. Although this paper did not talk 
about the stolen token in detail, an obvious issue of the 
transmitted token is that the token is visible in the 
communication stream. Due to the lack of connection between 
payment authentication and payment transaction, the stolen 
token can be used by malicious users simultaneously.     
   We created Table 2 to provide a summary of three mobile 
pay platforms and the main differences between the mobile 
platforms, their applications, storage payment tokens, token 
formats, transaction routing and the potential vulnerabilities. 

 
 

Table 2. Evaluation Form of Three Mobile Pay Applications 
 

Mobile Phone  
Platforms 

Apple iOS Android OS 

Mobile Payment  
Applications 

Apple Pay Google/Android Pay                     Samsing Pay 

Units sold in 2Q2016 
[22] 

44395(iOS) 296,912(Android) 

Market Shares % [22] 12.9 % 86.2 % 

Mobile Phone units sold 
in 2Q2016 [22] 

44395 (12.9%) (iPhone) 76743(22.3%) (Samsung) 

Storage Location of  

Payment Tokens 

An Embedded chip in phone  

(Secure Element) 

Online Cloud  
(Google server) 

An Embedded chip in phone 
(Secure Element). 

Payment Token Format 

Payment token includes:  
Transaction ID, 

Payment network, 
Payment token Data (signature, 

header, and payment data). 

Payment token 
includes: 
DPAN,  

ExpirationMonth, 
ExpirationDay, 

Authmethod (3D 
secure) 

3dsCryptogram etc. 
[18] 

Payment token includes: 

Payment Data from DPAN, 
Timestamps, 

Account Transaction Counter. 



Transaction Routing 
Token BIN or BIN range (part 
of token, first six digitals) used 

to find payment network. 

Token BIN or BIN 
range (part of token, 
first six digitals) used 

to find payment 
network. 

Token BIN or BIN range (part of 
token, first six digitals) used to 

find payment network 

Payment Token  

Encryption 

Only payment data (amount, 
card name, process data etc.) 

using either elliptic curve 
cryptography (ECC) or RSA 

encryption in SE.  

When transaction starts, new 
token will be created  

Payment token stored 
in Cloud. And in 
transaction, it is 

encrypted by Elliptic 
Curve Integrated 

Encryption Scheme 
[19] 

Payment Data from DPAN 
encrypted. But the entire payment 

token is stored in SE as a 
plaintext, when transaction starts, 
cryptogram used to alter last 4-6 
digitals to make a new token for 

each payment 

Relationship between 
Authentication and 

Transaction 

Step1. PIN or Fingerprint used 
as an unlock authentication.  

Step2. Before transaction 
starts, (in most cases), same 

fingerprint (recommended) or 
PIN authentication is requested 

again.  

Step1. PIN, Passcode, 
Pattern or fingerprint 

used as an unlock 
authentication.  

Step2. No 
authentication 

requested before 
transaction. 

Step1. PIN, Passcode or 
fingerprint used as an unlock 

authentication. 

Step2. Before transaction starts, 
(in most cases), same fingerprint 

(recommended) or PIN 
authentication is requested again. 

Payment Token Invoke 
methods 

Step1. Secure Enclave 
responsible for Touch ID 

authentication 

Step2. Apple API connects 
Secure Enclave and Secure 

Element to create plain 
payment token. 

Step1. Trusted Auth 
Apps charge in unlock 

authentication. 

Step2. NFC controller 
directly talks to HCE 
(payment application) 
to request a payment 

token in cloud (Google 
server).  

Step1. Trusted Auth Apps charge 
in unlock authentication. 

Step2. Trusted Auth Apps talks to 
SE via Trusted internal API to 

obtain an payment token.   

Potential Vulnerabilities 
of payment applications 

1. To intercept traffic to an 
Apple server, when payment 

data is added into device 
phone, hacker can push 

malware into phone to steal 
data.  

2. V
WiFi hotspot, to request users 
to create a profile, and hacker 

can steal Apple pay 
cryptogram, and decode 

cryptogram. 

3. Run out of available of 
Token BIN 

4. Hacker can use stolen card 
numbers to register and finish 

payment. etc. [20,21]  

5. entire payment token is in 
plaintext, it can be reused or 

analyzed when payment traffic 
is jammed. 

1. Due to the use of 
payment card 

emulation applications, 
so rogue HCE apps can 

be installed.  

2. NFC controller 
directly talks to host 

CPU that can cause big 
pressure of CPU and 

consume lots of 
resources.  

3. Run out of available 
of Token BIN 

4. Malicious 
applications can attack 

Host OS and steal 
payment data on HCE 

app.  

5. DoS attacks to the 
cloud. [21].  

1. Secure storage is encrypted 
with static password, once it is 
compromised, Payment Token 
can be obtained and analyzed.  

2. NFC and MST encode plaint 
payment token, once MST 
decoded, payment token. 

cryptogram and other information 
can be gained and be used again.  

3. Run out of available of Token 
BIN.  

 



 

IV. DESCRIPTION OF PROPOSED SOLUTION 

 
      After analysis of the vulnerabilities existing in the main 
three mobile payments methods listed above in Table 2, we 
examined Samsung Pay in order to propose the following 
solution to further secure payment transactions [23].    
 
     Our proposed model is based on several assumptions 
including: 

 The payment network and all network protocols are 
sound, secure and efficient and that the https protocol 
and encryption is secure during the communication 
between the mobile phone and issuers.  

 The mobile phone, POS machine, the bank, payment 
network providers, and TSP are secure and genuine. 
All certificates, tokens, encryption keys are secure and 
genuine when issued. 

 The underlying software used in the mobile phone is 
safe without viruses and worms. All software is 
certified by merchants and no malicious software 
which might affect the SE is downloaded into the 
phone.  

 
     Our solution involves creating a fingerprint pattern-based 
value which will further secure specific transactions and is not 
based on the unlock key of the mobile device.  How this could 
be embedded into the deployment of mobile payments is 
described below: 
 

A. Initial Credit Card Application 

 
     A user needs to apply for a credit card in a bank or on a 

plication process, in addition to 
providing necessary personal identification information (PII) 
and security questions to the bank, they must enroll a 
fingerprint pattern using the bank device or their own device 
embedded in their mobile device.  In our solution we will call 
this fingerprint pattern 1.  (Note: this fingerprint pattern 
should not be the same as the fingerprint pattern enrolled for 
unlocking the user phone or mobile device.) This enrolled 
fingerprint will be applied not only to first Virtual Payment 
Card verification on the mobile phone, but also to fingerprint-
based key generation.  
 

B. Mobile phone unlock authentication  

 
     When a user starts to use their own mobile phone or 
device, the unlock authentication needs to be enrolled for the 
first-time use. In a standard Samsung mobile device there are 
two ways to unlock it: 
     i. The user uses PIN as an unlock phone method. When the 
PIN is entered into the phone via a mobile authentication 
application, the phone will generate an encrypted file 

(password.key) using SHA-1 and compare this to the file 
stored in the phone. 
     ii. The user uses fingerprint pattern named pattern as an 
unlock phone method. In our solution we will call this 
fingerprint pattern 2. When the fingerprint pattern is entered 
into the phone via a mobile authentication application, the 
phone will also generate an encrypted file in the Android 
phone by invoking  and  

function to obtain a key and then using  function 

to input the fingerprint pattern to finish the encryption process. 
This pattern is stored into a file named unlock. 
 

C. Fingerprint pattern and PAN enrollment  

      
     i. Fingerprint based binary value matrix created 
     
     When a user downloads Samsung Pay and enters or scans 
their payment card numbers to create the SE virtual machine 
for the payment card.  In this research we will use Toronto 
Dominion (TD) Bank Visa as an example of an issuing bank. 
After the Visa card numbers are entered, the user needs to 
login to their online bank with their username, password and 
fingerprint pattern 1 in (1) to verify user identification. Here, 
Samsung Pay requests the user to confirm this enrolled 
fingerprint pattern 1 for the use of transaction authentication 
and this pattern is stored into a file named transaction. This 
fingerprint pattern 1 must be different from fingerprint pattern 
2 used to unlock the phone. In case they are the same, the 
fingerprint pattern 2 in the unlock file will be deleted, and the 
user is asked to choose another pattern or to use PIN for 
unlock authentication. Samsung phone will send all 
information to the bank for the Virtual Visa Card registration.  
     This enrollment phase includes the following two cases 
based on the unlock mechanism in (1) (i.e. steps to unlock the 
phone):  
     i.1 If the user used a PIN for the phone unlock protection, 
the fingerprint Pattern 1 for the transaction will be extracted 
and binarized to create a binary stream and add a PIN and a 
hardware key to get a fingerprint binary value matrix file in 
the SE.    
     i.2 OR: If the user used the fingerprint pattern 2 for phone 
unlock protection, both fingerprint patterns will be merged to 
form a new cancellable pattern, and then minutiae will be 
extracted and binarized to create a binary stream.  After this a 
hardware key (mobile device number) is added to get a 
fingerprint binary value matrix file in the SE specific to the 
customer and the mobile device hardware.  
       
     ii. PAN enrollment  
      
     The user can scan or enter the PAN into the card Virtual 
Machine (VM) application in the SE.  The user then logs on to 
their secure online bank with username, password and 
fingerprint pattern 1 enrolled at the bank. Then the phone 
sends all information (PAN number, username, password and 



fingerprint pattern 1) and the fingerprint binary value matrix 
file created above to the bank in order to confirm who the user 
is in the web interface. If the verification is passed, the 
fingerprint binary value 
symmetric key for the cardholder. All the information will be 

(Note: all 
fingerprint patterns will be binarized and the original pattern is 
never stored in the phone.)  
     After matching all card number information, the issuer 
sends a request to the TSP to generate a payment token. The 
TSP will send the payment token back to the bank. The 
issuing bank and TSP encrypt all communication using the 
bank/TSP previously configured interface. 
 

D. Fingerprint based transaction key generated    

 
     i. Fingerprint based symmetric key created 
 
     TD bank uses the fingerprint binary value matrix file to 
extract a random binary stream and then the tokenized BIN 
value is added to create a symmetric key. 
      The bank then encrypts the token with a sub-key generated 
by a master key and puts the encrypted token object into the 
certificate issued to the user which contains a freshly created 
public key of the  payment card (CusPuK) and 
corresponding private key (CusPrK). (Note that the resulting 
value encrypts the token which was already encrypted or 
hashed by the TSP as described in the workflow of 
tokenization above.)  The TSP can map the token back to the 
real PAN of the customer at any time. 
 
     ii. User stores all information in SE 
 
     The user downloads all of Fingerprint pattern and PAN 
enrollment i.e. C (i) above to the SE: 

a. Issuing bank s certificate (including PuK of bank 
signed by a CA).  

b. PAR token which includes the registered BIN 
controller.  

c. Certificate of cardholder (with PuK signed by 
the bank).  Note the doubly encrypted token is in 
a data field of the certificate.  

d. CusPk, CusPuk.  
e. Tokenized BIN.   
f. Encrypted Payment Token 
g. PIN file or fingerprint pattern 2 matrix value file 

used to unlock the phone (if PIN is not used). 
Once this is completed the SE can then ask the 
user for fingerprint pattern 1 which will allow 
the SE to generate the binary value matrix and 
then sub-keys based on this. Sub-keys can be 
used in the SE to encrypt all files and to add 
Message Authentication Code on all transaction 
elements when is data is transmitted (i.e KEnc and 
KMAC) to the payment network. All information 

above will be stored in the SE which only the 
authorized user can access.  

E. Completion of a purchase 

 
     When the phone is used to purchase something: 

i. The user opens a card VM application. 
ii. The user is required to enter a second fingerprint 

for the transaction beginning by pressing the 
fingerprint scanner on the phone with the 
appropriate finger previously enrolled.  

iii. During this process, the POS terminal validates 
the VM EMV® certificate issued to the customer 
(checking the signatures of the certificates on the 
card to verify the chain of trust from the 
cardholder certificate up to the CA which the 
POS terminal must have installed on the POS). 

iv. After that, the POS uses a challenge question 
encrypted by CA CusPuk sent to the SE, and if 
the SE responds to the question correctly using 
the CusPrK which matches the certificate public 
key, then EMV® card authentication is 
completed.  The challenge used is a known 
challenge and completed without user interaction 
by the SE and the Samsung Pay application. 

v. During this whole transaction process, 
fingerprint pattern 1 will get enrolled again and 
the binary value matrix file will be generated 
again. Then the SE can extract random the 
binary stream and combine the tokenized BIN to 
generate a symmetric key based on the known 
algorithm used by bank to create the same key. If 
the new generated key can decrypt the encrypted 
payment Token in the SE, then EMV® customer 
authentication is complete and the phone will 
derive the same key to encrypt the transaction. If 
the match is unsuccessful, the phone will show 
the unmatched message, and one will be added 
to a retry counter stored in the SE and the user is 
asked to try again (i.e. the same as if the 
customer was using a PIN and a physical EMV® 
card). Finally, after four unsuccessful attempts, 
the transaction will be cancelled. In SE, having 
reached the maximum retry number, the virtual 
payment card will be locked. Once the VM 
tokenized card is locked, this action taken by the 
VM will be communicated to the issuing bank. 
(Note: although the tokenized card is locked in 
the VM, the physical payment card would not be 
locked and may still be used.  

vi. The transaction processing can then be 
completed by using KEnc (symmetric key) to 
encrypt the transaction details and KMAC 
(symmetric key hash value) to verify the 
integrity of the transaction. This step is 
mandatory.  All keys are based on the master key 
known by the SE and the bank. 



vii. The above is routed to the issuing bank (through 
the payment gateways the merchant uses to 
process transactions) and the issuing bank uses 
its similarly calculated keys to decrypt the 
transaction, verify its MAC, and decrypt the 
encrypted token to obtain the real token.  The 
token is then sent to the TSP and a PAN is 
returned to the issuing bank. 

viii. The bank either approves or rejects the 
transaction and sends the appropriate message 
back using the reference number for the 
transaction as the doubly encrypted token (i.e the 
one matching the token field in the certificate in 
the SE).   

F. Unlocking a locked VM tokenized card 
 

To unlock a locked VM payment card: 
i. The user uses the same bank enrollment web 

interface to first prove identity and then request 
the VM tokenized card to be unlocked.  
Normally, the bank would automatically unlock 
the card using an automated response unless 
there was account activity which flagged that the 
cardholder must call the issuing bank. The bank 
might also provide the option to re-enroll the 

 
ii. If re-enrolling and after answering several 

security questions, a new fingerprint-based key 
is recreated either in the bank or using the bank 
enrollment web interface. The user is the told to 
register the same card again. In registry process, 
the user has to enroll the second fingerprint 
pattern or PIN verification value (if PIN was 
used) again, and the matrix file and all necessary 
information are sent to the bank again. The bank 
verifies all information and sends new keys and 
certificates back to the user for storage in the SE. 
this the retry counter is set to zero. 

     
     There are two possible issues that can cause a VM card to 
be locked:  
     1. A ruined fingerprint enrollment by the user may cause 
information extracted to fail repeatedly.  
     2. The matrix file may be compromised by attackers.  In 
either of the above cases, the user can request a new 
fingerprint enrollment, and revoke a previous one by either 
going to the bank or calling the bank or using a web interface 
if the issuing bank has enabled this.  
     False rejection rate (FRR) for biometric devices is 
published by each device manufacturer.  FRR is the rate at 
which a genuine fingerprint is rejected. A common fingerprint 
FRR for many devices is 2% or 0.02.  Using this value and a 
retry counter of 4 means that 0.024 or 0.00000016 times a user 
will need to re-enroll a fingerprint pattern.  For many users 
with 10 or so transactions per day this will take several years 
before the fingerprint retry counter reaches four.  Any 

successful match completes the transaction and the retry 
counter in the VM card is returned to zero. 
     False acceptance rate (FAR) is the rate at which a random 
user would be accepted.  The rate of FAR is often the same 
rate as FRR. However, in our proposed model, two biometric 
fingerprints are used and this means that the chance of a 
malicious user first accessing the phone and then the SE with 
Fingerprint Numbe1 1 is remote (0.022 or 0.0004).  A 
malicious user attempting to make a payment with a stolen 
phone would cause the retry counter to quickly reach four. 

V. NEW PAYMENT FLOW MODEL  

A.  The selection of fingerprint key generation model         

      
     To establish a direct connection between the payment 
authentication and the authorized payment transaction, the 
first concern, is to decide which feasible fingerprint key 
generation model can be applied to our solution. The article 
[24] proposed a new robust multimodal biometric system by 
enrolling two different biometric features; iris and fingerprint 
using a look-up table to store both hash values and biometric 
feature information. 
  
     B. Chen and V. Chandran [25] proposes a transform 
employed by the system as an iterative, chaotic, bispectral, 
one-way transform that accepts a one-dimensional vector 
input and is used to produce a magnitude and angle pair per 
iteration.  
 
     In our solution, we choose a novel fingerprint-based key 
generation model, proposed by Subhas Barman, Debasis 
Samanta and Samiran Chattopadhyay [26], using the Cartesian 
coordinates system transformation to extract different 
coordinates (x, y) to create a data matrix file extracted from 
fingerprint patterns. All the data will be edited via the define 
of (int) Array[] function, which can be developed with basic 
programming language (C++ or JAVA). 
  

B. Analysis of Samsung Phone framework and Development 
of New Payment Flow Model 

  
     Apple iOS platform and the Android platform are the two 
popular development environments that most mobile phone 
companies use to develop their own smart phones. Like 
Samsung Phone, it employs the Samsung Knox hardware 
platform and keeps using the Secure Element Chip like Apple 
Pay, which is based on the Android development environment 
with ARM TrustZone Technology.  
 
     A system-on-chip (SoC) security architecture establishes 
two hardware-based zones; an external communication area 

 (REE), and an internal 
ion Environment       

From the perspective of information technology security, all 
sensitive operations in the mobile phone, including storage, 
exchange, transmission, transaction and execution, must be 



implemented into TEE. For the highest level of security, a 
TEE deployment must meet requirements of TEE protection 
profile (TEE PP), which contains execution authentication, 
transit cryptography, application isolation, and untrusted 
applications. Therefore, any data or information exchange or 
transmission referring to a mobile payment must be processed 
in the TEE. [27,28]. 
 
     The TEE software architecture is illustrated in Figure. 2 
[29].   

 

 
 

Fig.2. TEE software architecture [29] 

 
     This diagram basically elaborates an entire software 
deployment structure and relationship between REE and TEE. 
Any software a user installs must be checked with a whitelist, 
which is stored into the TEE service library containing all 
secure related drivers. All untrusted software must be installed 
into the REE and this includes all client payment applications, 
such as Google Pay, Android Pay or Samsung Pay. Otherwise, 
trusted applications (TAs) get deployed into the TEE directly, 
like Visa, Mastercard, and American Express payment 
applications, on a trusted operating system.  
    The only way to establish a connection between two zones 
is a TEE Application Programming Interface (TEE API). In 
the TEE structure, it includes six main APIs, in which TEE 
client API connects client apps in REE with trusted apps in 
TEE. The TEE internal API concentrates on the various 
interfaces and this enables a Trusted Application to make best 
use of the standard TEE capabilities. The TEE socket API 
provides a common modular interface for the TA to 
communicate to other network nodes, acting as a network 
client. The TEE secure element API supports communication 
to the SE.  
     A SE (one embedded chip with tamper resistance) serves as 
a platform existing in the TEE on the mobile phone and it 
stores all sensitive data, files and information, and can 
implement cryptogram calculation for payment tokens. After 
user authentication, any data or information can be extracted 
from the SE via the TEE SE APIs to finish all communication 
between TAs and SE in Figure.3 created by us.  

 

 
 

Fig.3 TEE SE API  
 

     While the TEE Internal Core API provides an interaction to 
execute all sensitive operations within a Trusted Application 
(TA) or between TAs running in the Trusted Execution 
Environment (TEE), certain applications need to display 
sensitive information to the user for validation or to obtain 
sensitive information from the user, such as input of payment 
card information, display of transaction information, etc. All 
operations must be implemented in TEE rather than in REE. 
So, TEE Trusted User Interface offers three main security 
objectives: security display, security input and security 
indicator.  
 

F 
Fig.4. TEE Trusted UI  

 

     The diagram in Figure. 4 demonstrates a basic architecture 
of the Trusted User Interface. It consists of either a touch 
screen or keyboard peripheral and a display controller 
peripheral. When one of peripherals works, others must not be 
accessible to reading, writing or executing in REE. [29].  
     TEE APIs provide important functionality to build bridges 
for communication among different components not only 
between TEE and REE zones, but in each isolated zone. 
Therefore, mobile payment data and information can be 
obtained from REE (outside of TEE), and securely enter the 
TEE via TEE client API and TEE user API. The payment data 
and information can finish any invokes or operations between 
TAs or TAs and SE with TEE internal APIs and TEE internal 
core APIs. 
     Figure 5 demonstrates the current payment flow on 
Samsung Phone based on our earlier discussion. The new 
payment flow is developed in Figure 6 and the 
locked/unlocked VM process in Figure 7.   
     In Figure 5 and 6, the full details about how the POS 
machine communicates through the payment gateway to the 
issuing bank is not illustrated.  The payment gateway may 



include the merchant bank, acquirers and other outsourced 
payment services.  In our solution, once the payment 
transaction is encrypted and sent by MST or NFC signal to the 

used to prove customer authentication, then to decrypt the 
payment token, and after this to create the transaction which is 

encrypted and routed to the issuing bank indicated by the BIN 
controller value. This process can prove the user is the 
genuine user and only the issuing bank can properly decrypt 
the transaction details to provide the transaction verification 
and response. 

 
  
 

 
Fig.5. Current Payment Flow on Samsung Phone 

 
 
 

 
 
 

Fig.6. Process of PAN Enrollment, Fingerprint based key generation and Transaction on Samsung Phone 
 



 
 
 

Fig. 7. Part 6: locked VM Process 

 

VI. BENEFITS AND FEASIBILITY OF OUR SOLUTION 

 

A. Benefits  

 
i. The payment token is encrypted using one key from 

the TSP and the other key from the fingerprint 
created by the bank. The original (encrypted, derived 
hashed or random value) token is never visible during 
the transaction nor is it present in the cardholder VM 
certificate. 

ii. The fingerprint symmetric key can be a master key to 
generate sub-keys, which can be used to protect files 
in the SE.   

iii. During each transaction, a symmetric key must be 
created by the transaction fingerprint authentication 
process described in this research.  Moreover, sub-
keys are created to decrypt encrypted files in the SE.  

iv. During the transaction, the symmetric key must 
match the key from the bank to verify that: (1.) the 
original source to create this key is not compromised; 
(2.) the symmetric key is not compromised; and, (3.) 
the bank is the genuine bank.  

v. The symmetric key must be used for the transaction 
otherwise the transaction rejected by the issuing bank.  

vi. Non-repudiation security is an integral component of 
the payment transaction. 

    
   

B. Feasibility 

 
1)      Customer perspective  

      
     From the customer perspective our solution will create 
minimal change to what they are accustomed to in mobile 
payments.  For example, in making the payment customers 

unlock the phone and then use a fingerprint to approve the 
transaction.  This should take little time and is as easy as 
entering a PIN.  Enrolling the fingerprints with the bank in 
initial setup of the mobile payment app in the phone with the 
bank will take longer but can be minimized by allowing the 
customer to do this step online as part of the issuing bank card 
web application process. 
 

2)  
   
     Banks will have a real cost in deploying this since they will 
need to generate additional code to facilitate our proposed 
system.  If issuing banks further decide to use online bank 
access to load required fingerprints, then the system created 
would be largely a self-service system. However, once the 
proposed system is deployed and the addition code costs 
incurred, the bank will have a stronger means to combat fraud 
through the use of a PIN and a fingerprint or two fingerprints 
together with an encrypted token.  
 

3)      EMV® perspective 
  
     Our proposed solution will result in some implementation 
costs for EMV®; such as: 
 

 Creating new specifications for handling tokens (i.e. 
encrypting the token obtained from a TSP through 
the use of fingerprint pattern 1in addition to the 
phone fingerprint pattern 2 or PIN). 

 Implementing this proposal with industry participants 
and gaining their support. 

 
     In summary, after computer code costs are incurred in 
producing, testing and implementing our solution, much of the 
system can be self-serve from the customer perspective and 
the bank perspective.  Our solution might also have 
unforeseen benefits as the customer might come to appreciate 
the increase in security around their mobile payments as they 



interact with the issuing bank and the self-serve tools for 
enrollment and re-enrollment.  Customers might well be more 
inclined to use mobile payment systems and this could benefit 
both industry participants and customers alike by reduced 
payment card fraud. 

   

VII. CONCLUSION 

 
     Through our study, research and analysis of the current 
mobile payment infrastructure and related payment 
vulnerabilities, we developed a method to enhance security in 
the mobile payment and transactions process in Samsung Pay 
by using multiple authentication and fingerprint based 
encryption keys. Further research can be constructed to test 
the industrial feasibility of the proposed model.  
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