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Abstract

A numerical approach based on a diffuse-interface free energy lattice Boltzmann

equation method is developed to gain fundamental insight in liquid-liquid disper-

sions. The approach relies on detailed resolution of the interaction of the dispersed

and continuous phases at the microscopic level, including drop breakup and coales-

cence. Several studies have been performed. A study of the gravity-driven motion

of a single n-butanol drop in water demonstrates that the method handles complex

drop deformations, including shape-oscillating motion of drops. Simulations of a

single liquid drop in simple shear flow were used to assess the impact of numerical

parameters on drop deformation levels. At higher capillary numbers the simula-

tions capture end-pinching and capillary wave breakup mechanisms. The method

handles a range of shearing conditions from near-creeping flow, to drop Reynolds

of 50, also a viscosity ratio range (dispersed phase over continuous phase viscosity)

of 0.1−3.0. The feasibility of direct numerical simulations of turbulently agitated

liquid-liquid dispersions is demonstrated. Three-dimensional simulations are car-

ried out in fully-periodic cubic domains with grids of size 5003 and 10003 and the

resolution of the Kolmogorov length scale in the range 1− 10 lattice units. The

process of dispersion formation is visualized, revealing the details of breakup and

coalescence. However, several numerical issues are encountered: appearance of

spurious currents over liquid-liquid interface, dissolution of small drops, and easy

coalescence of drops. The effects of each drawback on the results are discussed.
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Chapter 1

Introduction

1.1 Motivation

Numerous chemical, petroleum, food, and pharmaceutical engineering processes

involve liquid-liquid dispersions. The dispersion properties, such as apparent vis-

cosity, stability, and interfacial area available for heat and mass transfer, are deter-

mined by the size of the drops in the system. Therefore, knowledge and control of

the drop size distribution (DSD) allow to obtain dispersion products with distinct

functional properties, can help to optimize the performance of industrial equip-

ment, and improve the economy and safety of unit operations. For instance, during

suspension polymerization the final size distribution of the polymer beads is gener-

ally the result of the initial drop size distribution of the monomer-water dispersion

(Kiparissides, 1996). Control of mean drop size and DSD is vital to emulsification

applications (Paul et al., 2004). To efficiently accomplish the mass transfer process

during liquid-liquid extraction, large interfacial area is needed (Treybal, 1951). In

the oil recovery industry, formation damage caused by oil-based emulsions contain-

ing brine droplets can reduce well productivity (Fjelde, 2007). If a monodisperse

emulsion is formed, then damage might occur even at low dispersed phase volume

fractions. Therefore, it is necessary to know the conditions when primarily equal

size drops form.

Significant amounts of experimental research have been performed over decades

to study the different aspects of liquid-liquid dispersions that impact the drop sizes.

Liquid properties, interfacial tension, dispersed phase holdup, the geometry of the
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flow domain and the flow regime, all influence the resultant DSD. Usually the ex-

periments are focused on determination of the mean drop diameters (e.g. the Sauter

mean diameter) and the maximum stable drop diameter, neglecting the details of

the breakup and coalescence events. However, dispersion formation is a complex

process that occurs on multiple length and time scales: topological changes of the

interface due to breakup and coalescence during milliseconds and long-term evo-

lution of the entire system on the scale of industrial equipment, e.g. an extraction

column. In order to better predict and control the DSD it is necessary to under-

stand the dispersion formation on the microscopic level. For instance, capillary

wave breakup produces drops of equal size. Knowledge of the conditions when this

breakup mechanism occurs may improve the efficiency of monodisperse emulsion

production. Interface dynamics can be captured experimentally for systems with

low dispersed phase concentrations (6 1% of dispersed phase) where a variety of

measuring techniques exist (Mavros, 2001). Nevertheless, sizing of drops even in

dilute liquid-liquid dispersion is not an easy task (Maaß et al., 2011). Experimental

investigation of highly concentrated turbulently flowing dispersion (usually 10% of

dispersed phase and up) is even more challenging due to reduced optical accessibil-

ity and small time scales (Derksen and Van den Akker, 2007). In addition, special

care should be given to the cleanliness of the experimental system (the fluids and

the equipment). Even small amount of impurities can affect the interfacial tension,

altering the drop coalescence and, consequently, the DSD.

In order to interpret changes of dispersed system morphology in complex flows,

the experimental data is compared to fundamental analyses of drop behavior in

simple and idealized flow geometry, such as extensional and simple shear. The fun-

damental studies provide more general insight in the dispersion formation process.

Studies using idealized systems allow to isolate different phenomena, and examine

them independent of other effects. For instance, investigation of single drop behav-

ior in simple shear flow allows to define shearing conditions needed to break a drop.

Study of two colliding drops provides details on coalescence conditions that can be

used in phase separation processes. Even though both breakup and coalescence

have been extensively studied, there are still some gaps to fill. Most of the funda-
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mental studies on drop breakup and coalescence consider creeping flows. However

inertial effects change drop deformation and breakup mechanism as well as coales-

cence conditions. Especially there is a lack of data on low viscosity dispersed phase

in highly viscous continuous phase in inertial shear flows.

With the rapid development of computational facilities, numerical simulations

become a valuable addition and in some cases an alternative to experimental studies.

The main goal of the present research is to develop such a numerical approach that

utilizes the details of fundamental investigations and has the possibility to produce

data relevant to industrial applications. Numerical simulations are advantageous

over experiments in several ways: in simulations one can control the external pa-

rameters (e.g. parameters that control operating conditions) in a way that is difficult

or impossible to implement in a laboratory. It is possible to compute quantities that

are difficult to measure in the laboratory (e.g. ‘in-line’ measurement of each drop

diameter in dense dispersion). The entire liquid-liquid mixing can be visualized

revealing drop breakup and coalescence as well as interactions of dispersed and

continuous phases. However, it is necessary to verify and validate the numerical

method, examine accuracy, study stability. Additionally, computational demands

increase significantly as resolution of the flow increases, and in some cases calcu-

lations can become unaffordable.

1.2 Literature review

In chemical process equipment, dealing with liquid-liquid dispersion, such as stirred

tanks, static mixers, extruders, and extraction columns, a vast amount of flow phe-

nomena occur on different length (and time) scales: drop deformation, breakup,

coalescence, suspension against gravity, dispersed phase interactions with carrying

phase, phase inversion that might lead to significant increase in apparent viscosity

of the dispersion and affect the performance of the device. It is computationally un-

feasible to completely resolve the wide spectrum of scales, starting from the micro

(interface-related) level and up to the macro level where the important integral pa-

rameters of the system can be estimated. Therefore, assumptions and simplification
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should be made, and only physics that is relevant for the problem in question should

be considered. A wide variety of numerical approaches to simulate multiphase flow

problems with moving and deforming interfaces has been developed over the last

decades. Depending on what phenomenon and what scale is being investigated,

appropriate numerical methods should be chosen.

If the liquid-liquid interface itself is of interest, the problem can be considered

on the atomistic scale which is the most fundamental level of phase description.

Molecular dynamics (Alder and Wainwright, 1957) is the atomistic scale method

that treats fluids as composed of atoms or molecules. The dynamics of these parti-

cles that obey statistical mechanics is explicitly calculated. The flow velocity and

density field are calculated as averages over the trajectories of the particles. These

methods are computationally demanding, and the computational effort increases

linearly with the number of particles and the physical time scale simulated (Kadau

et al., 2010). An example of molecular dynamics simulations of liquid-liquid inter-

face can be found in (Rivera et al., 2003).

When it is necessary to obtain a representative characteristic of the dispersion,

such as apparent viscosity, based on accurate resolution of microscopic events (in-

terface dynamics and dispersed/continuous phases interaction), the meso-scale ap-

proach can be used. An example of a meso-scale method is the lattice Boltzmann

equation (LBE). LBE allows to perform Direct Numerical Simulations (DNS) of

fluid flow. For turbulent flow simulations DNS means that no turbulence modeling

of small scale dynamics is employed, even the smallest (Kolmogorov) scales of tur-

bulence are resolved. Sufficiently large simulation domains are required to capture

the integral scale. In recent years, the rapidly developing LBE method has chal-

lenged the traditional methods of computational fluid dynamics (Chen and Doolen,

1998). LBE simulates fluid flow based on microscopic models and mesoscopic ki-

netic equations for velocity distribution functions in discrete physical and velocity

space. Hypothetical (fictitious) particles move and collide on lattice sites according

to the discretized Boltzmann equation. The macroscopic quantities (density, veloc-

ity, temperature, etc.) are evaluated through moment integration of the distribution

function. Most of numerical operations are performed locally on each site. This
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gives the important advantages of LBE which are simplicity of programming and

parallelization of the algorithm allowing for very detailed simulations. A disadvan-

tage of LBE methods is that in order to set the macroscopic quantities (for example,

in boundary conditions), the underlying microscopic parameters (the distribution

functions) should be adjusted. In addition, in its basic implementation, the method

is constructed for uniform meshes only, thus, no local refinement near the interface

can be performed.

Within the LBE framework, several models for immiscible fluid flow have been

developed. The multiphase LBE model based on the lattice gas model was proposed

by Gunstensen et al. (1991). Two kinds of particle distribution functions (red and

blue) are utilized to mimic two phases. The algorithm attempts phase separation

and maintenance of interfaces during a ‘recoloring’ step when two sets of popula-

tions are redistributed according to their color. This model was modified by Grunau

et al. (1993) to allow variations of density and viscosity. Another multiphase model

developed by Shan and Chen (1993) uses the concept of intermolecular potential

between particles to simulate phase separation and surface tension. Swift et al.

(1995, 1996) developed the LBE model that utilizes a free energy approach which

relies on a second set of populations describing the fluid fraction by an order pa-

rameter. An isothermal model based on kinetic theory was proposed by He et al.

(1999). A lattice-Boltzmann model for interacting amphiphilic fluids was devel-

oped by Nekovee et al. (2000). Each model has its own peculiarities (several of

them are addressed below). The main advantage of LBE models for multiphase

flows is that no interfaces tracking is required, changes in interface topology are

handled automatically.

The next level of multi-phase flow simulations is macroscopic level which is

covered by continuum methods based on macroscopic conservation laws of mass,

momentum and energy. Generally a solver for Navier-Stokes equation is coupled

with a model for the phase evolution description. Continuum methods are usually

classified based on the way the interface is treated on sharp interface methods (the

interface thickness is zero) and diffuse interface methods (the interface has finite

thickness). In sharp interface methods, the physical properties, such as density and
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viscosity, are discontinuous at the interface. In one group of sharp interface meth-

ods, the interface is resolved by a moving mesh (Quan et al., 2009). Local mesh

adaptations, such as mesh refinement and coarsening, can be performed to achieve

mesh resolution, capture the changing curvature, and improve computational effi-

ciency (Worner, 2012). However, handling topological transitions of fluid particles

such as coalescence, breakup or pinch-off requires rather complex somewhat arbi-

trary ‘cut-and-connect’ algorithms (Quan et al., 2009).

In the second group of sharp interface methods the momentum equation is

solved on a structured grid and an interface representation and advection algorithm

are used to define its evolution across the computational domain. The methods are

classified as front-capturing and front-tracking. In front-capturing methods, the in-

terface is represented implicitly using a scalar function determined on an Eulerian

mesh. Among these methods are the interface reconstruction volume-of-fluid (Ben-

son, 2002; Hirt and Nichols, 1981), level set (Osher and Sethian, 1988; Sussman

et al., 1994) methods, or a combination of them (Lv et al., 2010). In front-tracking

methods, the interface is explicitly represented by Lagrangian particles and its dy-

namics is tracked by the motion of these particles. For example, in the Marker in

Cell method of Harlow and Welch (1965) a fixed number of discrete Lagrangian

particles are advected by the local flow, while the front-tracking method of Unverdi

and Tryggvason (1992) uses surface markers. Even though sharp interface methods

can give a more precise evolution of a deforming interface, they are complex in

implementation and computationally expensive since interface reconstruction and

tracking is required. In addition, in front-tracking methods, the arbitrary ‘cut-and-

connect’ algorithms are also used to carry out topological transitions of the interface

during drop breakage and coalescence events.

In diffuse interface methods (Badalassi et al., 2003; Magaletti et al., 2013; Yue

et al., 2004), the interface is a transition region of a finite thickness where physical

quantities vary continuously. The numerical interface thickness in these methods is

much larger than the actual physical thickness. However, the fact that the interface

has a finite thickness and the physical properties are smoothed over it, gives com-

putational advantages of these methods over sharp interface methods: there is no
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need of any explicit interface treatments, as reconstruction or dynamic remeshing.

Even though the continuum methods with full resolution of the interface are

widely used to investigate systems with a small number of drops (see e.g. (Cristini

and Renardy, 2006; Cristini et al., 2003; Khismatullin et al., 2003; Watanabe and

Ebihara, 2003; Wegener et al., 2009)), combination of these models with DNS of

turbulent flow that involves direct solution of the Navier-Stokes equations are com-

putationally very demanding especially for systems with hundreds of drops due to

interface handling costs.

To obtain information on the global patterns of the flow at the scale of industrial

equipment, the capturing of interfaces can be neglected. The Eulerian-Eulerian ap-

proach is commonly used for two-phase flow simulations for industrial applications.

It gained popularity in implementation due to the fact that while giving the adequate

flow details needed for engineering estimations, the computational power require-

ments are reduced by averaging the conservation equations (mass, momentum, and

energy) (Al Taweel et al., 2006; Portela and Oliemans, 2006). The approach does

not reveal the complex phenomena on the scale of drops; the liquid-liquid interface

is not resolved. The main difficulty of this method is a closure problem: interphase

forces (drag, virtual mass, lift, and turbulent dispersion forces per unit volume)

need to be specified to obtain a closed set of momentum equations. Furthermore,

drop size is an input parameter, not a result of simulations. Thus, two uncertain-

ties arise in this approach: the lack of generally accepted closure relations, and

the lack of generally accepted models to describe drop breakup and coalescence

kernels (Al Taweel et al., 2006). The following examples of Computational Fluid

Dynamics (CFD) implementation using Eulerian-Eulerian approach can be given.

The investigation of two-phase turbulent flow of a dilute liquid-liquid systems (dis-

persion of organics in water) in a stirred tank was performed by Laurenzi et al.

(2009). The authors aimed to assess the capability of a CFD approach to resolve

the patterns of dispersed flow based on the solution of Reynolds averaged Navier-

Stokes (RANS) equations with Eulerian-Eulerian description of the two phases.

Feng et al. (2013) performed numerical simulations of turbulent immiscible liquid-

liquid mixing processes in cylindrical stirred tanks based on an Eulerian-Eulerian
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approach. For flow field simulations, an isotropic standard k− ε turbulence model

and an anisotropic two-phase explicit algebraic stress model (EASM) were utilized.

The authors demonstrated that the key features of the complex liquid-liquid mixing

on the macro scale in stirred tanks were successfully predicted by the EASM.

Finally, drop breakage and coalescence processes in turbulently flowing liquid-

liquid dispersions can be modeled by population balance equations (PBEs). The

PBE model has been widely used to predict the evolution of the particle size distri-

bution for dispersed phase operations (Chen et al., 1998; Raikar et al., 2009, 2010;

Singh et al., 2009; Venneker et al., 2002). The main challenge of the PBE models is

determination and formulation of unknown drop breakage and coalescence kernels.

Coulaloglou and Tavlarides (1977) generalized droplet coalescence and breakage

death and birth terms as functions of the basic hydrodynamics and physical prop-

erties of the system. However, as it is noted by Paul et al. (2004), the breakage

and coalescence kernels are specific to the equipment used to acquire the data: it

is highly scale dependent and all quantities are inclined to be flow dependent. To

take these dependencies into account, the constants embedded in the population

balance equations can be adjusted to specific flow conditions and equipment as

demonstrated, for instance, by Amokrane et al. (2013). Therefore, the ultimate suc-

cess of PBEs relies on its ability to yield realistic and accurate description of the

overall drop breakage and coalescence processes (Azizi and Al Taweel, 2011). Ad-

ditionally, accurate modeling of the flow field is required since the breakage and

coalescence kernels depend on flow details.

In the present research project, the free energy lattice Boltzmann method is

adopted to perform multi-phase simulations. The reasons of this choice and objec-

tives of the project are presented in the next section.

1.3 Research project objectives

A major goal of the present research project is to develop a numerical approach able

to perform direct numerical simulations of liquid-liquid binary systems. Theoret-

ically, the predictive numerical approach should cover micro-, meso-, and macro-
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scales of flow description. However practically, such simulations are computation-

ally unfeasible at the present time, especially for multiphase systems. For that rea-

son, the present numerical approach is limited to micro- and meso-scales. Among

the variety of numerical methods discussed above, the lattice Boltzmann equation

method is the most appropriate for this task since it allows meso-scale simulation

with the resolution of underlying microscopic physics.

The developed numerical approach is applied to carry out fundamental studies

of drops behavior in idealized flow geometries, such as shear flow, and the DNS

of dense turbulently agitated liquid-liquid dispersion with accurate resolution of

microscopic phenomena (evolution of the interface, interaction of dispersed and

continuous phases). Pure liquids are considered, there are no surfactants or con-

taminations in the system.

A free energy lattice Boltzmann equation method (Swift et al., 1996) is used for

two-phase flow modeling. The method refers to a class of diffuse interface meth-

ods. An advantageous characteristic of the method is that no interface treatments or

reconstructions are required. The interface evolves naturally due to the thermody-

namics mechanism employed. This issue allows to simulate binary liquid systems

with hundreds of drops during a reasonable time and affordable computational ef-

forts. However, diffuse interface methods require specification of interface-related

numerical parameters. One of the objectives of the study is to outline these pa-

rameters, and present a guideline on how to specify their values. Additionally, the

diffuse interface methods face the following drawbacks. First, unphysical currents

(spurious velocities) appear close to curved interfaces (Pooley and Furtado, 2008).

Second, the methods suffer from dissolution of small drops (Van der Sman and Van

der Graaf, 2008). Third, the methods exhibit unphysical easy coalescence when

drops are in close proximity (Jia et al., 2008). Every issue is taken into account and

its impact on the results is critically assessed.

If the peculiarities of the method are addressed, the results of such a powerful

approach as DNS would provide very detailed information about the flow since in

DNS the Navier-Stokes equations are solved without any modeling on a fine mesh

to resolve the smallest spatial and temporal scales present in the flow. When disper-
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sion formation in turbulent flow is concerned, high resolution of the Kolmogorov

microscales will result in capturing the liquid interface dynamics and drop interac-

tions with microscopic eddies. Accurate resolution of the microscopic events, as

drop breakup and coalescence, is of great importance since they are closely related

to the DSD of the system. Therefore, detailed resolution of microscopic events

would improve the understanding of the macroscopic system characteristics, help

to reveal the complex flow patterns, and examine the influence of turbulence on two-

phase system behavior. Moreover, DNS can provide useful information on breakup

and coalescence kernels for PBEs and closure correlations for CFD methods.

The proposed research aims to answer major practical and fundamental ques-

tions arising during investigations of the dispersed systems: what is the DSD of the

system for a given set of properties, shearing conditions, or energy input? What is

a drop breakup mechanism in inertial sheared flows? How to resolve coalescence?

What is the influence of turbulence on the DSD? How does the turbulent energy

spectrum change when the second phase is introduced? What is the mechanism of

dispersion formation at high dispersed phase volume fractions? Also it is necessary

to show how a free energy LBE performs, and the ways to resolve the drawbacks of

the method should be demonstrated.

1.4 Outline of the thesis

The developed numerical approach based on the free energy LBE method is applied

to investigated several binary liquid systems. The four studies are the next four

chapters of the thesis.

The first study (Chapter 2) is aimed to test the capabilities of the free energy

LBE method to perform multiphase simulations. A single n-butanol drop rising

in water under the influence of gravity is considered. This problem has reference

experimental data and numerical results using other methods that allows validation

of the LBE results, including interface dynamics, terminal drop velocity and flow

patterns. To verify the developed computer code, simulation parameters such as

computational domain size, mesh resolution, and LBE numerical parameters are

10



tested. The influence of the collision operator choice on stability and accuracy is

investigated. The ability of the method to accurately resolve interface deformation

is assessed. Additionally, the LBE method operates in lattice space, and all sys-

tem parameters are presented in lattice units. A way to match the parameters of

the physical system (in physical units) with the numerical system in lattice units

is outlined. It is shown that the numerical technique can be adopted to perform

multiphase simulations with moving and deforming interfaces.

Capturing of the interface disintegration is tested using numerical simulations of

single liquid drops suspended in another liquid and subjected to simple shear flow.

This study is presented in Chapter 3. Three-dimensional simulations of this binary

systems are performed in order to determine the drop deformation and breakup con-

ditions. It is demonstrated that the diffuse interface method requires specification

of two numerical parameters: an interface-related Peclet number Pe, and the ratio

of interface thickness and drop size (the Cahn number Ch). The influence of Pe, Ch

and mesh resolution on accuracy and stability of the simulations is investigated. A

guideline on how to choose Pe and Ch in order to reveal physically realistic behavior

of the drop at given shearing conditions and physical properties of the liquids is pre-

sented. The numerical approach is verified and validated in a wide range of physical

conditions: from near-creeping flow at drop Reynolds number Re = 0.0625 up to

shearing with inertia at Re = 50, viscosity ratio λ = 1, 2, 3 (dispersed phase viscos-

ity over continuous phase viscosity) and a capillary number range over which drops

deform and break. Additionally, it is shown that even moderately resolved drops

can be used to investigate the physics of drop deformation and breakup. This issue

is important for simulation of turbulent liquid-liquid system which involves a wide

range of drop sizes.

Furthermore, the effect of dispersed phase viscosity on the behavior of a sheared

drop at a drop Reynolds number Re = 10 is investigated over the range of viscosity

ratios λ = 0.1− 2 with a focus on λ < 1 (Chapter 4). Even though dispersion of

low viscosity liquid in highly viscous liquid is frequently encountered in industrial

processes, there is a gap in fundamental results for such systems when they are

exposed to inertial shearing conditions. It is of interest to see how the drops deform

11



under these conditions and what the breakup mechanism is. The guidelines outlined

in Chapter 3 are used to choose the numerical parameters. A validation simulation

of stratified shear flow is conducted to show that the numerical method can handle

viscosity ratios λ = 0.1− 2. It is demonstrated that high-resolution simulations

capture drop breakup by end-pinching and capillary wave breakup mechanisms.

In Chapter 5, the numerical approach is applied to study liquid-liquid mixing in

turbulent flow. The simulations are performed in three-dimensional, fully-periodic

domain. Since simulations are carried out on the meso-scale, an assumption on

turbulence characterization on the macro-scale is made: well-controlled homoge-

neous isotropic turbulence (away from walls) is generated by means of linear forc-

ing (Lundgren, 2003) throughout the domain. With the adopted turbulence gener-

ation method the energy input into the system is known a priori. Therefore, it is

possible to determine if the specified energy is sufficient to obtain a desired disper-

sion.

The dispersed phase volume fraction varies in the range 0.001−0.2. The numer-

ical parameters of the method are specified according to the guidelines and results

presented in Chapters 3 and 4. The drop dissolution effect is addresses here. A

way to mitigate the dissolution by increasing the resolution of Kolmogorov scales

is tested. It is also shown that the increase of dispersed phase concentration slows

down the dissolution. Thus, for the adopted numerical method dense systems are

more preferable than dilute dispersion. The resolved Kolmogorov scales range from

ηK = 1 to 10 lattice units. Two sizes of the domain edge Ld are considered 500 and

1000 lattice units. The scale separation in the turbulent flow is thus in a range

Ld/ηK = 50− 400. Between these scales there is the inertial sub-range of turbu-

lence. The reproduction of this sub-range in turbulent energy spectrum improves as

the ratio Ld/ηK increases. The viscous sub-range is always reproduced. To the au-

thor’s knowledge there are no published results on two-phase flow simulations with

this range of scale separation. However, this resolution is not enough to capture

physical coalescence process, and drops merge if collision occurs.

Finally, Chapter 6 contains conclusions and outlook for the future work.
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Chapter 2

Lattice Boltzmann simulations of a
single n-butanol drop rising in water1

2.1 Introduction

Liquid-liquid extraction is a method for separating the components of a solution

based on mass transfer (Treybal, 1951). The dispersion of one liquid in the form

of small drops in another liquid creates large interfacial surface; thus, enhancing

the mass transfer between the liquids. Even though the motion of swarms of liquid

drops under the influence of net gravity through continuous liquid is frequently en-

countered in extraction processes (Treybal, 1951), a comprehensive study of single

droplet behavior is the essential starting point for analysis of the process. The ob-

tained information can be used to develop engineering models for the full extraction

process (Henschke and Pfennig, 1999). The mass transfer rate, drop terminal veloc-

ity, and related drag coefficient are the crucial parameters that need to be determined

(Henschke and Pfennig, 1999; Wegener et al., 2010).

Experiments and numerical simulations have been utilized to understand the

complex behavior of a buoyancy-driven drop moving through the ambient liquid.

Accurate measurements require considerable effort (Bertakis et al., 2010). As dis-

cussed by Wegener et al. (2010), the comparison of experimental results might be

difficult because different research groups can obtain dramatically different results

while seemingly investigating the same system. The authors attribute the differ-

1A version of this chapter has been published. A.E. Komrakova, D. Eskin, J.J. Derksen. Phys.
Fluids. 25, 042102 (2013)
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ences mainly to the impurities in the systems. In case of numerical studies, one can

fully control the purity of the system: a mathematical description of the problem

can be constructed for pure or contaminated systems. However, the capability of

the numerical method to capture the correct physics of the problem must be care-

fully checked. Only numerical results verified with reliable experimental data can

be used to analyze engineering systems. In this study numerical simulations have

been applied to investigate liquid drop behaviour. A systematic comparison of the

results with experiments has been performed.

Early experimental studies on the motion of single liquid drops falling/rising

through a stationary liquid have been reported (Hu and Kintner, 1955; Johnson and

Hamielec, 1960; Klee and Treybal, 1956; Krishna et al., 1959a,b; Thorsen et al.,

1968). The influence of walls for the settling of single organic drops through an

aqueous phase was examined by Strom and Kintner (1958). The effect of surfactant

on the terminal velocity of drops at small Reynolds numbers was considered by

Griffith (1962). Recent experiments were performed by Dehkordi et al. (2007),

who studied the sedimentation of n-butanol droplets under mass transfer conditions

with and without surfactants. Transient velocity measurements of toluene droplets

rising in water were carried out by Wegener et al. (2010).

Bertakis et al. (2010) investigated the n-butanol/water system via experiments

and numerical simulations. A three-dimensional finite element technique was used.

The interface was captured with the level-set approach. The drop diameters cov-

ered the range relevant to extraction processes. The authors showed spherical, de-

formed, and oscillating drops. Five drops with diameters spanning all mentioned

flow regimes were simulated. Both experimental and numerical results were in

excellent agreement with each other and with semi-empirical correlations.

Bäumler et al. (2011) performed experiments and numerical simulations of three

binary systems: toluene/water, n-butyl acetate/water and n-butanol/water. A numer-

ical approach based on the finite element method was applied. A sharp interface

representation and a mesh moving method were adopted. The simulated drop ter-

minal velocities agreed well with their experimental findings and those reported by

Bertakis et al. (2010) and Wegener et al. (2010): the mean deviation was below 5%.
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A drawback of the applied moving-mesh method was its difficulty to capture the

strong drop deformations in the oscillatory regime and the inability to handle drop

breakup and coalescence.

Petera and Weatherley (2001) presented a two-dimensional axisymmetric method

to determine the mass transfer from a deformable droplet moving in a continu-

ous phase. A modified Lagrange-Galerkin finite element method with automatic

remeshing to track the droplet shape was used. The calculated values of drop ve-

locity and mass transfer rate were compared with experimental data determined

for single drops of ethanol/water mixtures extracting into a continuous phase of

n-decanol. It was shown that the method was capable of predicting the terminal

velocity and the deformed droplet shape.

Watanabe and Ebihara (2003) performed numerical simulations of a rising drop-

let using the two-component two-phase lattice Boltzmann method. The authors out-

lined for the single droplet that the rise velocities were in good agreement with the

empirical correlation proposed by Grace et al. (1976) which is valid for contami-

nated systems only, while the applied numerical technique was not constructed to

take contaminations into account.

The commercial CFD software STAR-CD was used by Wegener et al. (2009) to

simulate the mass transfer across the interface of moving drops with simultaneous

Marangoni convection in a fully three-dimensional problem statement. Simulations

of pure toluene/water systems were performed. The terminal drop rise velocity was

in good agreement with experimental data only up to 3.0 mm droplets. The applied

numerical method was not able to capture deformations of larger drops.

Ohta et al. (2010) presented a sensitivity study of the density and viscosity ratio

on a drop moving through viscous fluid. A two-dimensional axisymmetric formula-

tion of the coupled level-set/volume-of-fluid method with sharp interface treatment

was implemented. The authors demonstrated good correlation of results using their

method with several experimental cases; however, as was noted by the authors, the

axisymmetric assumption might not be applicable for all physical conditions con-

sidered in the work. The essence of complex drop motion was captured, but fully

three-dimensional simulations could reveal additional unstable drop behavior not
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observed in their work especially for oscillatory regimes.

Thus, a broad range of numerical methods has been applied to simulate single

drop motion under gravity. Nevertheless, to our knowledge there are no published

results where the adopted numerical approach could simulate a wide range of drop

diameters handling the regions of spherical, deformed, and oscillating drops with

significant topological deformations, along with the ability to model mass transfer,

surfactant influence, or swarms of droplets. One of the main issues in numerical

simulations of multiphase flow that might limit the method to specific problems

is the description of the interface between the fluids. The interface approximation

methods can be divided in two groups: interface ‘capturing’ and ‘tracking’ methods.

The level-set (Osher and Sethian, 1988; Sussman et al., 1994), volume of fluid

(VOF) (Hirt and Nichols, 1981; Renardy et al., 2002), phase-field (Badalassi et al.,

2003; Jacqmin, 1999) and lattice Boltzmann equation (LBE) (Gunstensen et al.,

1991; He et al., 1999; Shan and Chen, 1993; Spencer et al., 2011; Swift et al.,

1996) models are examples of interface capturing methods. In these methods the

interface is implicitly captured by volume functions that use the data from the same

fixed grid on which the flow is calculated. The front tracking models (Tome and

McKee, 1994; Tryggvason et al., 2001; Unverdi and Tryggvason, 1992) track the

interface explicitly using a Lagrangian mesh, while the flow field is solved on a fixed

Eulerian grid. Interface capturing methods are easier to implement: only one mesh

is needed for the calculations. In contrast, the interface tracking models require an

additional interface mesh that needs to be dynamically remeshed and mapped onto

the Eulerian mesh. The drawback of the interface capturing models is that they

exhibit unphysical coalescence when drops are in close proximity if no additional

preventing treatments are performed, while front tracking models need a sub-grid

model to allow droplets to merge or break (Dijkhuizen et al., 2010).

With special handling, as high mesh resolution, higher order schemes for dis-

cretization, and suppressed artificial coalescence most methods can give accurate

results, but only for a small number of droplets in the system. When the number of

droplets is increased, multiple drop interactions as coalescence and breakup should

be taken into account. This requires significant computational efforts for the inter-
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face reconstruction in interface capturing methods or a proper sub-grid model in

interface tracking methods.

In contrast to all multiphase methods discussed above, a diffuse interface method

does not require any explicit interface treatments, as reconstruction or dynamic

remeshing. The interface evolves naturally based on the thermodynamics of the

model. It is assumed that the interface between two immiscible fluids has a small

but finite width. Exactly this issue gives the advantage of the diffuse interface meth-

ods over the sharp interface methods because calculations are much easier for three-

dimensional flows in which significant topological changes of the interface take

place (Pooley and Furtado, 2008). However, the results obtained using the diffuse

interface method might not be as accurate as they could be with a sharp interface de-

scription. In the diffuse interface methods the width of the interface is deliberately

enlarged to allow easier computations while in real physical systems the interface is

extremely thin. Thus, to properly and accurately model relevant physical phenom-

ena, the interface thickness must be taken as small as possible which is not always

an easy task in terms of numerical stability. On the positive side, diffuse interface

methods provide the possibility to run simulations of large-scale three-dimensional

systems with multiple interacting droplets.

In this study the motion of an organic n-butanol drop in water under the influ-

ence of gravity is simulated using a diffuse interface free energy LBE technique

originally proposed by Swift et al. (1996) (see (Chen and Doolen, 1998) for a gen-

eral LBE description). This method is not widely used for complex flow modeling

yet; thus, one of the major goals of the present work is to investigate its capabili-

ties of liquid-liquid flow simulations. The LBE models operate in so-called lattice

space, where all physical parameters are expressed in lattice units. It is shown in the

current paper that all essential physical parameters of the investigated system can

be matched with the corresponding parameters in the lattice space. The numerical

results obtained in this study are compared in great detail to the experimental and

numerical results reported by Bertakis et al. (2010) and Bäumler et al. (2011). A

wide range of drop diameters is considered to show the ability of the method to

capture the drop shape deformation especially in the oscillating regime. Thus, the

22



application of a trustworthy simulation approach, able to reveal the required flow

details with reasonable computational cost is the aim of the present study.

The rest of the paper is organized as follows: the next section outlines the ex-

act problem statement. The governing equations, the numerical method to solve

these equations, the moving frame implementation and the scaling procedure are

shown in Section 2.3. Section 2.4 contains the verification of the applied numerical

method. The main results and comparison with experimental data are presented in

Section 2.5. Finally, the main findings of this work are summarized in Section 2.6.

2.2 Problem statement

Numerical simulation of a single n-butanol drop moving through water under the

influence of gravity is the focus of the present study. The computational setup mim-

ics the experimental conditions described by Bertakis et al. (2010). A sedimentation

apparatus was used in the experiments: the droplets were generated through a noz-

zle into a cylindrical cell that contained the continuous phase. The dimensions of

the cell (height 500 mm and diameter 40 mm) were significantly larger compared to

the drop diameters (4.0 mm and less) to minimize wall confinement effects. After

generation, the droplets were given about 12 cm of acceleration distance to reach

terminal velocity. Drops positions were monitored using a camera recording 30

frames per second. The droplet travel time for the given distance was calculated as

the number of frames recorded from the time the drop enters the measuring region

to the time of exit. The drop terminal rise velocity was calculated from these data.

As outlined by Bertakis et al. (2010), the organic and aqueous phases were mutu-

ally saturated to avoid mass transfer. A precise cleaning procedure of experimental

equipment was accomplished; deionized and distilled water and only chemicals of

high purity were used. The computational approach applied in the present numer-

ical study is constructed for binary liquid systems only; there are no surfactants or

contaminations. The purity of the experimental system allows comparison of ex-

perimental results to those obtained using our proposed numerical procedure. The

mass transfer between the two liquids was avoided in the experiments; thus, it is

23



not modeled in the present investigation. The physical parameters of the system are

shown in Table 2.1.

The motion of drops in ambient liquid has two effects that distinguish it from

solid particle motion: the mobility of the interface and the ability of a drop to change

its shape. When the drop is driven by gravity the following parameters define the

physics of the flow:

u = f (d, ρc, ρd, µc, µd, σ , g) (2.1)

here the subscripts d and c stand for the dispersed and continuous phase, respec-

tively; d = (6V/π)1/3 is the volume-equivalent diameter of the drop, V is the drop

volume; ρc and ρd are the densities and ∆ρ = ρc−ρd is the density difference; µc

and µd are the dynamic viscosities; σ is the surface tension; g is the gravitational

acceleration.

The system of these parameters gives five independent dimensionless numbers

that fully determine the problem: the Reynolds number Re = udρc/µc (where u is

the drop terminal velocity); the Weber number We = ρcu2d/σ ; the Froude number

Fr = u2/(gd); the density ratio λρ = ρd/ρc and the dynamic viscosity ratio λ =

µd/µc.

Clift et al. (1978) organized the shapes and terminal velocities of the drops and

bubbles based on the Reynolds, Eötvös (Eo) and Morton (Mo) numbers. The two

latter ones are defined as:

Eo =
g∆ρd2

σ
=

We|1−λρ |
Fr

(2.2)

Mo =
g∆ρν4

c ρ2
c

σ3 =
We2Eo

Re4 (2.3)

The Eötvös number is the ratio of the buoyancy over interfacial tension. The Morton

number characterizes the physical properties of the liquids and is constant for the

Table 2.1: Physical parameters of the n-butanol/water binary system (Bertakis et al.,
2010)
Liquids Density, [kg/m3] Dynamic viscosity, [mPa·s] Surface tension, [mN/m]
n-butanol ρd=845.1 µd=3.28 σ=1.63
Water ρc=986.5 µc=1.39
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given binary system. The effect of three dimensionless numbers Re−Eo−Mo on

the shape of a drop/bubble moving through the liquid due to gravity is represented

by a plot of Reynolds number against Eötvös number for different Morton numbers.

This diagram of Clift et al. (1978) is considered a standard reference for predicting

the shape and velocity of fluid particles.

2.3 Numerical method

2.3.1 Governing equations

In diffuse interface (or phase field) models (Ding et al., 2007; Jacqmin, 1999; Yue

et al., 2004) the sharp interface between the fluids is represented by a thin transition

region with finite thickness where fluids may mix. The main idea of the phase field

model is that the state of the system at any given time can be described by the

order parameter of the phase field ϕ which is a function of the position vector rrr

and time t (Penrose and Fife, 1990). Being mostly uniform in the bulk phases, the

ϕ parameter varies continuously over the thin interfacial regions (Badalassi et al.,

2003). If the phase field is used to describe the binary mixture behavior, the order

parameter has a physical meaning: for an isothermal binary fluid (as in this study)

ϕ is the relative concentration of the two components (Badalassi et al., 2003; Cahn

and Hilliard, 1958). To simulate the fluid dynamics of the binary mixture of two

fluids, the continuity and momentum equations are used in conjunction with Cahn

Hilliard convection-diffusion equation for the order parameter (Bray, 1994).

To describe quantitatively the binary system even when it is not in equilibrium

state, a Helmholtz free energy written as a functional of ϕ can be used (Penrose

and Fife, 1990). The following form of the free energy functional is adopted in

the present numerical model (Bray, 1994) (the Einstein summation convention has

been used):

F (ϕ) =
∫ [

V (ϕ)+
κ

2
(
∂αϕ

)2
]

drrr (2.4)

Here, V (ϕ) is the bulk energy density which has a double-well structure with two

minima corresponding to the two stable phases of the fluid. The term
κ

2
(∂αϕ)2

accounts for the surface energy, with κ a positive constant.
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The variation in F for a small local variation in composition is described by the

chemical potential µ:

µ(ϕ)≡ δF (ϕ)

δϕ
=

dV

dϕ
−κ∂

2
ααϕ (2.5)

For a system with fixed volume and temperature, the equilibrium state refers

to the minima of the functional F (ϕ) with respect to variations of the ϕ func-

tion (Jacqmin, 1999), i.e. µ(ϕ) = 0. The evolution equation of ϕ is a non-linear

convection-diffusion equation of the following form (Bray, 1994):

∂tϕ +∂α(ϕuα) = M∂
2
ββ

µ (2.6)

where uα is the velocity field and M is an order parameter mobility that controls

the strength of the diffusion. The order parameter diffuses due to the composition

gradients and is advected by the fluid flow (Kendon et al., 2001).

To simulate the two-phase flow, equation (2.6) has to be coupled with the

Navier-Stokes equation. The non-uniformity of the composition causes a thermo-

dynamic force density −ϕ∂α µ that acts at each point in the fluid (Kendon et al.,

2001) (the chemical potential gradient pulls the two species in opposite directions).

If ϕ = 0 the net force vanishes. As an alternative way this thermodynamic force

density can be introduced as the divergence of a ‘chemical’ pressure tensor:

ϕ∂α µ = ∂αPchem
αβ

(2.7)

where the ‘chemical’ pressure tensor (Kendon et al., 2001) is given by

Pchem
αβ

= δαβ

[
ϕ

δV

δϕ
−V −κ{ϕ∂

2
γγϕ +

1
2
|∂αϕ|2}

]
+κ(∂αϕ)(∂β ϕ) (2.8)

Thus, the order parameter influence can be incorporated into the Navier-Stokes

equation in two ways: either by introduction of the term −∂αPchem
αβ

or by a body

force density −ϕ∂α µ . In the present study, the order parameter was taken into

account using the first approach.

Complex morphological and topological flow transitions such as coalescence

and interface breakup are captured naturally in the free energy based multiphase

models. Moreover, different phenomena can be accounted for in the model by
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a suitable modification of the free energy functional. The main drawback is that

to properly model relevant physics, the interface layers have to be thin (Badalassi

et al., 2003). This issue causes large gradients of the phase field in the interface

region which must be resolved computationally.

Finally, the mathematical description of the binary mixture at constant tem-

perature can be formulated. The evolution of density, velocity and concentration

fields is governed by the continuity, momentum and convection-diffusion equations

(De Groot and Mazur, 1984; Kendon et al., 2001; Swift et al., 1996), respectively:

∂tρ +∂α(ρuα) = 0 (2.9a)

∂t(ρuα)+∂β (ρuαuβ ) =−∂β Pth
αβ

+∂β ν
(
ρ∂αuβ +ρ∂β uα

)
+gα∆ρ−ρaFα

(2.9b)

∂tϕ +∂α(ϕuα) = M∂
2
ββ

µ (2.9c)

where ρ is the density of the mixture; and ν is the shear viscosity. Here Pth
αβ

is the

‘thermodynamic’ pressure tensor. It contains two parts (Kendon et al., 2001): an

isotropic contribution Pδαβ that represents the ideal gas pressure and the ‘chemical’

pressure tensor Pchem
αβ

defined by (2.8). The isotropic contribution to the pressure

tensor as well as the explicit form of V are discussed in Section 2.3.2.

This model can be used only for density-matched fluids. Since the relative den-

sity difference of the considered liquids is 14%, the Boussinesq approximation has

been adopted for determining the net gravity forces. The buoyancy force on the

dispersed drop is taken into account by introduction of the net force acting on the

drop: the term gα∆ρ in momentum equation (2.9b).

With the intent to limit the computational resources while studying the long-

term evolution of the drops, the moving frame technique has been adopted (see

Section 2.3.4 for details). In addition, all drops considered in the present simula-

tions rise vertically; therefore, due to the symmetry of the flow, only a quarter of

the drop is considered. The simulation domain is depicted in Fig. 2.1. Initially a

spherical droplet is placed in the center of the domain. For an external observer,

the drop is at rest while the non-inertial coordinate system is accelerated opposite

to the inlet flow. The acceleration of the reference frame aFα has been accounted
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Figure 2.1: Simulation domain with boundary conditions: x = 0 is the outflow
boundary; x = Ld is the inflow boundary; all the rest side boundaries are the free-
slip walls. The drop is kept in the middle of the simulation domain and has a
spherical shape at t = 0

for in the momentum equation (2.9b) by the term ρaFα .

2.3.2 LBE method implementation

The system of equations (2.9) that governs the binary system behavior can be solved

using different numerical techniques. Swift et al. (1996) developed a lattice Boltz-

mann approach, known as free energy model, to solve the system. This method

is adopted in the present study. Two particle distribution functions are utilized:

one function f (rrr, t) is used to solve the continuity (2.9a) and the Navier-Stokes

(2.9b) equations and the second one g(rrr, t) is used for the convection-diffusion

equation (2.9c). The distribution functions evolve with discrete time steps ∆t. Anal-

ysis of preliminary results showed that with the set of numerical parameters repre-

senting the given physical system, a two-relaxation-time (TRT) collision operator

(Ginzburg et al., 2008) should be used to increase accuracy and improve stability.
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The fully discretized lattice Boltzmann equations have the following form:

fq(rα + cαq∆t, t +∆t) = fq(rα , t)+λ
sf
(

f s
q(rα , t)− f seq

q (rα , t)
)

+λ
af
(

f a
q (rα , t)− f aeq

q (rα , t)
)
+Fq

gq(rα + cαq∆t, t +∆t) = gq(rα , t)+λ
sg
(

gs
q(rα , t)−gseq

q (rα , t)
)

+λ
ag
(

ga
q(rα , t)−gaeq

q (rα , t)
)

(2.10)

where the index q stands for the number of the velocity direction (each velocity

vector has an opposite one); bold symbols stand for vectors; cαq denotes the dis-

crete velocity set, with the magnitude defined as c = ∆x/∆t (∆x is the mesh step);

fq(rα + cαq∆t, t +∆t) and gq(rα + cαq∆t, t +∆t) represent the post-collision par-

ticle distribution function at (rα , t) streamed to the neighboring nodes located at

(rα +cαq∆t) and at time t +∆t along direction q; fq(rα , t) and gq(rα , t) are the pre-

collision particle distribution function; f s
q , gs

q and f seq
q , gseq

q are the symmetric parts

of the particle distribution function and equilibrium distribution function, respec-

tively; f a
q , ga

q and f aeq
q , gaeq

q are the anti-symmetric parts of the particle distribution

function and equilibrium distribution function, respectively; λ sf, λ sg and λ af, λ ag

are the symmetric and anti-symmetric collision rates for f and g populations, re-

spectively; Fq is the forcing term.

In the TRT collision operator, particle distribution functions are relaxed to the

equilibrium state by relaxing their symmetric and anti-symmetric parts separately,

which are given by

f s
q =

fq + fq

2
f a
q =

fq− fq

2

f seq
q =

f eq
q + f eq

q

2
f aeq
q =

f eq
q − f eq

q

2

(2.11)

where f eq
q is Maxwellian-Boltzmann distributions (or equilibrium distributions); fq

and f eq
q are the particle distribution functions and equilibrium distribution function

in the direction opposite of q. The same set of equations can be written for the

particle distribution function g.

The D3Q19 lattice (see Appendix A−1) is adopted here. In this lattice arrange-

ment, each site communicates with six nearest and twelve diagonal neighbors. Only
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a uniform cubic lattice can be used; the mesh step ∆x is taken as unity, as is the time

step ∆t.

The particle distribution functions are defined such that the following summa-

tions over all directions q, at a single lattice point give the local density of the fluid,

local fluid momentum and local order parameter, respectively:

∑
q

fq = ρ ∑
q

cαq fq = ρuα +
∆t
2

Ftα ∑
q

gq = ϕ (2.12)

The forcing term is incorporated as follows:

Fq = wq
(
cαqFtα

)
(2.13)

where Ftα is the macroscopic force and wq are the weight coefficients presented in

Appendix A−1.

The full pressure tensor Pαβ is given by

Pαβ = ∑
q

fqcqαcqβ (2.14)

The equilibrium distributions can be derived from conditions (2.12) along with

the condition that the order parameter is advected by the fluid

∑
q

geq
q cqα = ϕuα , (2.15)

and that the pressure tensor and chemical potential at equilibrium obey

∑
q

f eq
q cqαcqβ = Pth

αβ
+ρuαuβ ,

∑
q

geq
q cqαcqβ = Γ µδαβ +ϕuαuβ

(2.16)

The equilibrium distributions (Kusumaatmaja, 2008) are presented in Appendix

A−1.

The two liquids have different kinematic viscosities. To take this into account,

the kinematic viscosity of the mixture ν is set to be a linear function of the order

parameter ϕ:

ν(ϕ) = νc
1−ϕ

2
+νd

1+ϕ

2
(2.17)
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where νc and νd are the kinematic viscosities of continuous and dispersed phases,

respectively.

Then the relaxation parameter for f is defined using the kinematic viscosity of

the mixture:

τ f =
ν

c2
s ∆t

+
1
2

(2.18)

c2
s = 1/3 is the speed of sound in lattice space.

The mobility M, the coefficient of mobility Γ and the relaxation parameter τg

are connected by the following relation (Swift et al., 1996):

M = ∆tΓ
(

τg−
1
2

)
(2.19)

The symmetric collision rate for the f distribution function λ sf is fixed by the

kinematic viscosity of the fluid using the relation λ sf = −1/τ f . The symmetric

eigenvalue function is calculated as follows:

Λ
sf =−

(
1
2
+

1
λ sf

)
(2.20)

The symmetric and anti-symmetric functions (Ginzburg et al., 2008) are related by

the ‘magic’ parameter Λ
f
eo:

Λ
f
eo = Λ

sf
Λ

af (2.21)

If the ‘magic’ parameter is fixed then the anti-symmetric eigenvalue function can

be calculated as Λaf = Λ
f
eo/Λsf. The anti-symmetric collision rate is then defined

as:

λ
af =− 1

Λaf +
1
2

(2.22)

The parameters for the g distribution function are determined in a similar way.

The symmetric collision rate λ sg is defined using the relaxation time τg as follows

λ sg =−1/τg. All steps for determining λ ag remain the same provided the ‘magic’

parameter for the g distribution function Λ
g
eo is given.

In this study, the following form of the free energy functional is used (Kendon

et al., 2001; Lee, 2002):

F [ϕ,ρ] =
∫ [

c2
s ρ ln ρ +V +

κ

2
(
∂αϕ

)2
]

drrr (2.23)
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The ideal gas pressure pid = ρT is incorporated via the first term in expression

(2.23), and it does not affect the phase behavior. A symmetrical double well poten-

tial is utilized to describe the phase separation:

V =
A
2

ϕ
2 +

B f

4
ϕ

4 (2.24)

where A < 0 and B f determine the properties of the bulk phases.

The chemical potential thus reads

µ(ϕ) = Aϕ +B f ϕ
3−κ∂

2
ααϕ (2.25)

The analytical solution for the planar interface (Van der Sman and Van der

Graaf, 2008) is:

ϕ(x) = ϕ0 tanh (x/ξ ). (2.26)

Here, ϕ =±ϕ0 is the value of order parameter in the bulk phase at either side of the

interface, and follows from equation (2.25)

ϕ0 =

(
− A

B f

)1/2

. (2.27)

It is assumed that A =−B f which means ϕ0 = 1.

The thickness of the diffuse interface ξ is equal to

ξ =

(
− 2κ

A

)1/2

. (2.28)

The surface tension σ follows from:

σ =
4
3

κ
ϕ2

0
ξ
. (2.29)

An important addition to (2.23) is the term dependent on density ρ , here chosen

as an ‘ideal gas’ type contribution. This gives a diagonal term in the thermodynamic

pressure tensor, which becomes:

Pth
αβ

=

[
c2

s ρ +
A
2

ϕ
2 +

3B f

4
ϕ

4−κϕ∂
2
ααϕ− 1

2
|∂αϕ|2

]
δαβ +κ(∂αϕ)(∂β ϕ) (2.30)

so that the thermodynamic stress obeys Pth
αβ

= c2
s ρδαβ +Pchem

αβ
.
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To determine the pressure tensor, the spatial gradients of ϕ have to be calculated.

The stencils for gradients and Laplacian calculations adopted in this study are given

in Appendix A−1.

The discretized equations (2.10) are solved in two steps:

Collision step: f ′q(rα , t) = fq(rα , t)+λ
sf( f s

q− f seq
q )+λ

af( f s
q− f aeq

q )+Fq

g′q(rα , t) = gq(rα , t)+λ
sg(gs

q−gseq
q )+λ

ag(gs
q−gaeq

q )
(2.31)

Streaming step: fq(rα + cαq∆t, t +∆t) = f ′q(rα , t)

gq(rα + cαq∆t, t +∆t) = g′q(rα , t)
(2.32)

To complete the mathematical problem statement, boundary conditions have

to be specified. Since the LBE method deals with particle distribution functions

instead of general hydrodynamic variables, one should apply boundary conditions

for the distribution functions such that boundary conditions for the hydrodynamic

variables are met.

The solution of the problem in the moving reference frame requires inflow and

outflow boundary conditions. At the inlet x = Ld (Fig. 2.1), a uniform velocity is

imposed. At the outlet x = 0, a constant pressure boundary condition corresponding

to ρ = 1 is used. These boundary conditions for velocity uα and pressure p can be

set using the procedures proposed by Mussa et al. (2009). For the second distribu-

tion function g the periodic boundary condition is imposed on the inflow/outflow

faces. On all side walls the free-slip condition for both distribution functions is ap-

plied. This type of boundary treatment can be handled by specular reflection of f

and g (Ahmed and Hecht, 2009).

2.3.3 Scaling procedure

The lattice Boltzmann method operates in so-called lattice space, and all system

parameters are presented in lattice units [lu]. Thus, it is very important to correctly

match the parameters of the physical system (in physical units) with the numer-

ical system in lattice units. The physical system translation into lattice space is

performed using scaling factors. The scaling factor is the ratio of any parameter

value in physical units to the corresponding parameter in lattice units. To obtain the
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values of these scaling factors it is necessary to equate the essential dimensionless

parameters defined in physical and lattice space. Further in this section, the symbols

with a tilde stand for parameters in lattice units.

By definition, the scaling factor for surface tension reads Cσ = σ/σ̃ . Two nu-

merical parameters related to the free energy model and particularly to surface ten-

sion, κ and A, have to be determined. The expression for κ is derived from equation

(2.29) and reads:

κ =
3ξ

4ϕ2
0

σ

Cσ

(2.33)

In this study the interface width ξ was fixed to 1.14 [lu] for all cases (based on the

results reported by Kendon et al. (2001)). Once κ is determined the value of A is

calculated using equation (2.28).

For the adopted LBE model, the value of the density in the incompressible limit

should be equal to unity. Thus, the continuous phase density in lattice space is set

to ρ̃c = 1. The dispersed phase density is defined by the density ratio ρ̃d = λρ ρ̃c.

The Boussinesq approximation states that if the density difference is small com-

pared to the actual density of the liquids, density variations are only important in

the forcing term ∆ρg for the present problem. The proper scaling of forcing should

be performed. Using the definition of the Eötvös number the forcing term reads:

∆̃ρg =
σ̃

d̃2
Eo (2.34)

where d̃ is the drop diameter in lattice units.

Utilizing the definition of the Morton number and given the viscosity ratio λ ,

the dynamic viscosities of continuous µ̃c and dispersed µ̃d phases are calculated:

µ̃c =

(
ρ̃

2
c σ̃

2d̃2 Mo
Eo

)1/4

µ̃d = λ µ̃c (2.35)

The kinematic viscosities of the phases are ν̃c = µ̃c/ρ̃c, ν̃d = µ̃d/ρ̃d .

The relaxation parameters corresponding to both phases are given by:

τc =
ν̃c

c2
s ∆t

+
1
2

τd =
ν̃d

c2
s ∆t

+
1
2

(2.36)
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Therefore, the following scale factors are introduced:

Surface tension scale, N/m: Cσ = σ/σ̃

Density scale, kg/m3: Cρ = ρ/ρ̃

Kinematic viscosity scale, m2/s: Cν = νc/ν̃c

Forcing scale, N/m3: Cforce = ∆ρg/∆̃ρg

(2.37)

Using the definitions of Froude, Reynolds and Weber numbers and utilizing the

scaling factors (2.37) the values of velocity, length, and time scaling factors, are

defined as follows:

Length scale, m: Cd =C2
νCρ/Cσ

Velocity scale, m/s: Cu =Cσ/(CνCρ)

Time scale, s: Ct =C3
νC2

ρ/C2
σ

(2.38)

With the use of scaling factors (2.37) and (2.38) all parameters of the system in

physical space are translated to the lattice space.

The dimensionless numbers that define the problem can be divided in two groups:

the input dimensionless numbers that are based on input parameters and do not con-

tain the resulting terminal drop velocity (Eo, Mo, λρ , λ ), and output dimensionless

numbers (Re, We, Fr) that can be calculated only when the drop velocity is known.

Thus, in the present study for the given binary liquid system (n-butanol/water) with

density ratio λρ = 0.86, dynamic viscosity ratio λ = 2.36 and the Morton num-

ber Mo = 1.23·10−6 the range of Eo numbers that corresponds to different drop

diameters being considered is listed in Table 2.2.

To perform simulations that capture the physics of the problem, the input dimen-

sionless numbers defined in physical and lattice spaces should be matched. With

the proposed scaling procedure, the forcing term (2.34) and phase viscosities (2.35)

depend on the drop diameter d̃. This means that the input parameters in lattice space

are not unique. The simulation results obtained using different sets of input param-

eters all having the same Eo, Mo, λρ , λ will not be precisely the same. There are

three main factors that determine the choice of numerical parameters and, conse-

quently, influence the results: accuracy, stability, and compressibility effects. The

results of several test problems helped to define the proper set of input parameters in
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Table 2.2: Drop diameter d and corresponding Eötvös number Eo considered in the
present simulations

d, [mm] Eo d, [mm] Eo
1.0 0.85 2.26 4.34
1.2 1.22 2.48 5.22
1.4 1.66 2.6 5.74
1.5 1.91 2.8 6.66

1.56 2.07 3.0 7.64
1.79 2.72 3.2 8.69
1.8 2.75 3.48 10.28
1.9 3.06 3.6 11.00
2.0 3.39 3.8 12.26

2.12 3.82 4.0 13.58

lattice space. First of all, the simulation results have to satisfy the incompressibility

limit, i.e. the terminal drop velocity in lattice units should be not more than 0.1cs.

If the resulting velocity of the drop does not fulfill this inequality, then the chosen

set of parameters cannot be used. This criterion was used as the first filter to ‘sort’

the proper numerical parameters.

The choice of the drop diameter in lattice units d̃ defines the spatial resolution

and, thus, has a significant effect on the accuracy of the results and the computa-

tional effort. A proper balance between resolution and simulation time should be

found. A drop diameter of 30− 40 [lu] to represent the smallest drop of 1.0 mm

gives small values of the phase viscosities in lattice space. This leads to relaxation

parameters τc and τd close to 0.5. Such small values of the relaxation times for

the flow field cause numerical instability. Moreover, together with a low surface

tension value, they limit the range of τg values for which the simulation remains

stable. To improve the stability and gain the accuracy the TRT collision operator

has been adopted.

In order to make the proper choice of σ̃ , a benchmark problem is needed to val-

idate the numerical results. This validation gives strong evidence that the numerical

model produces physically correct results.

In the present study, the drop diameter in lattice units d̃ that represents a 1.0

mm drop is fixed to 30 [lu]. Also it was found during test simulations that the
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Figure 2.2: Simulation domain slice (z = 0). Inertial (stationary) reference frame
(x-y); non-inertial (moving) reference frame (x̂-ŷ)

value of the surface tension scaling factor should be Cσ = 1.0 N/m. This choice

of parameters gives a continuous phase kinematic viscosity of ν̃c = 7.67·10−3, the

linear dimension scale factor, or the mesh step, Cd = 3.33·10−5 m and time scale

factor, or the time step, Ct = 6.04·10−6 s. This set of parameters is our base set.

The accuracy of the results obtained using this base set is discussed in Section

2.4.2. The diameters d̃ of the larger drops are determined in a such way as to keep

the kinematic viscosity of the continuous phase constant and equal to 7.67·10−3.

To check the mesh convergence or possibility to coarsen the mesh, it is neces-

sary to rescale the parameters. The idea of mesh refinement is to increase the drop

diameter d̃ fm times (d̃2 = fmd̃1, fm > 1.0) while keeping all dimensionless num-

bers and liquid viscosities the same µ̃c2 = µ̃c1, µ̃d2 = µ̃d1. The same idea applies

to mesh coarsening, but the drop diameter is reduced in 0 < fm < 1 times. The in-

terface thickness remains the same (ξ2 = ξ1). To rescale the simulation parameters

it is necessary to equate the Eötvös and Morton numbers for the fine and coarse

drops. The following relations are obtained:

σ̃2

σ̃1
=

1
fm

(∆̃ρg)2

(∆̃ρg)1
=

1
f 3
m

κ2

κ1
=

1
fm

A2

A1
=

1
fm

(2.39)

The results of the mesh convergence study are discussed in Section 2.4.2.
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2.3.4 Moving reference frame

The larger the droplet diameter the longer distance it should travel to reach steady-

state. Long computational domains can be avoided if the problem is solved in a

moving reference frame. The idea is to move the computational domain along with

the drop and keep the drop centered within the domain by adjusting the velocity

of the frame. The implementation of the moving frame has been done in the same

manner as presented by Rusche (2002).

The drop moves with respect to the stationary (inertial) reference frame (x-y),

but remains centered within the moving (non-inertial) reference frame (x̂-ŷ) (see

Fig. 2.2). Every time step the velocity of the moving reference frame vF is corrected

as follows

vF = vo
F +∆vF (2.40)

where vo
F is the velocity of the reference frame at the previous (old) time step.

The negative value of the moving frame velocity is imposed as the inlet boundary

condition uin =−vF .

The correction for the velocity ∆vF is calculated using the following expression

(Rusche, 2002):

∆vF = λ f
x̂ f

d − x̂d

∆t
−λo

x̂d− x̂o
d

∆t
(2.41)

where ∆t is the time step and x̂d is the center of mass of the drop relative to the

moving reference frame; the superscripts f and o denote values at the first (t = 0)

and the previous time step. The λ f and λo are under-relaxation factors. The center

of mass of the drop relative to the moving frame is calculated as follows:

x̂d =
∑ϕ x̂
∑ϕ

(2.42)

where the summation is performed over all positive ϕ; it is assumed that the drop is

represented only by positive order parameter value (ϕ = 0 represents the interface).

As discussed by Rusche (2002), the first term in equation (2.41) is the velocity

sufficient to translate the drop back to its original position in the moving frame of

reference within a single time step. The second term represents the drop velocity

relative to the moving reference frame. The purpose of the second term is to avoid
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overshoots that appear as a result of the first term’s corrections: these corrections

accumulate until the drop reaches its original position. To damp both terms, under-

relaxation factors λ f and λo are used. It was outlined by Rusche (2002) that λ f =

λo = 0.1 yields good results. In the present study the same values have been used.

To account for the time-dependent motion of the domain an extra acceleration

term is added to the momentum equation (2.9b). To obtain the value of moving

reference frame acceleration, the time derivative of the frame velocity has to be

determined as follows:

aF =−∆vF

∆t
(2.43)

The velocity of the drop in a stationary reference frame u is calculated as the

sum of the volume-averaged drop velocity in the moving reference frame and the

velocity of the moving frame vF .

2.4 Numerical technique verification

A computer code for three-dimensional simulations has been developed using For-

tran 90 in both serial and parallel versions. The parallel code uses domain decom-

position and the MPI (Message Passing Interface) platform. The simulation domain

was decomposed into slabs in the flow direction (x-axis), one for each CPU. The

number of CPUs varied based on the drop diameter starting from 14 for d̃ = 30 [lu]

and up to 20 for d̃ = 60. Depending on the drop diameter the duration of simula-

tions ranged from several hours for the smallest drops to four days for the largest

drops.

The details on the choice of the collision operator and related numerical param-

eters are discussed first. Only two collision operators were considered in the present

study: a BGK (Bhatnagar et al., 1954) or single-relaxaion-time (SRT) and a two-

relaxation-time (TRT) (Ginzburg et al., 2008). The relaxation times (or symmetric

contributions if TRT is used) for the f particle distribution function τc and τd are

fixed by the kinematic viscosity of the liquids (2.36) and will not be changed. The

relaxation time for the g distribution function can be tuned to obtain stable, accu-

rate results. Based on test simulations τg equal to 1/(3−
√

3) was utilized (Van der
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Figure 2.3: The evolution of 2 mm drop rise velocity in time and terminal drop
shape for different cases. —— case 1 (TRT); – – – case 2 (BGK)

Sman and Van der Graaf, 2008; Van der Sman, 2006). This value of τ is called the

optimum value. Two simulations of a 2.0 mm diameter drop were carried out to out-

line the impact of the collision operator. Case 1 utilized TRT for both f and g with

‘magic’ numbers Λ
f
eo = Λ

g
eo = 1/12 and the optimum value of τs

g. Case 2 stands for

BGK for both f and g and optimum τg. It can be noted that when τs
g = 1/(3−

√
3)

and Λ
g
eo = 1/12 the anti-symmetric relaxation time τa

g is also equal to 1/(3−
√

3)

and TRT for g reduces to BGK. Thus, with this choice of parameters the influence

of the collision operator for f is demonstrated.

The evolution of the drop rise velocity for both cases together with terminal

drop shape is shown in Fig. 2.3. The reference value of 2.0 mm drop terminal

velocity (Bäumler et al., 2011) is 56.92 mm/s. The deviation between this reference

velocity and velocities obtained in Cases 1 and 2 is 3% and 15.8%, respectively.

In addition, slight drop shape oscillations are observed in Case 2. It can be seen

from the drop rise velocity graph that drop acceleration undergoes non-monotonic

variations in time. No shape oscillations for a 2.0 mm drop take place during neither
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experiments nor Case 1. Moreover, the terminal drop shape is different in Cases 1

and 2. The reference aspect ratio (see definition below) is E = 0.66 while the values

obtained in Cases 1 and 2 are 0.65 and 0.55, respectively. Based on this comparison

we will be using a TRT scheme in the remainder of this paper.

The influence of ‘magic’ numbers Λeo was also examined. If Λeo = 1/4 or 1/6

are specified for both f and g the simulations are unstable. If Λ
f
eo = 1/12 is kept and

Λ
g
eo = 1/4 or 1/6 the simulations are also unstable. Thus, for the n-butanol/water

system the simulations are accurate and stable for a wide range of drop diame-

ters only when Λ
f
eo = Λ

g
eo = 1/12 and τs

g = 1/(3−
√

3). The analyses of stability

and high-order truncated corrections of physically simpler system performed by

Ginzburg (2012) showed that Λeo = 1/12 with the BGK collision operator removes

the third-order advection error. Additional investigation of the numerical scheme

for the present complex physical system is required to further justify the choice of

‘magic’ numbers. This is beyond the scope of the present paper.

Hence, for the rest of the simulations the following parameters were used: TRT

collision operator with Λ
f
eo =Λ

g
eo = 1/12, τs

g = 1/(3−
√

3), the mobility coefficient

Γ = 8 and the mobility M = 2.31. For this base set of parameters the surface tension

related values were A =−4.3·10−3, κ = 2.8·10−3.

The diffuse interface method adopted here is prone to spurious currents over the

interface due to discretization of the velocity space. However, the velocities related

to spurious currents are several orders of magnitude smaller than the physical ve-

locities. The equilibration of a single stationary drop was simulated with the same

stencils and relaxation times as mentioned before. Spurious velocities over the in-

terface were 10−4−10−5 in lattice units, while the order of the velocity field in the

rising drop simulation is of 10−2 in lattice units.

To verify the newly developed computer code and numerical technique, sensitiv-

ity analyses have been carried out on simulation domain size and mesh resolution.

In addition, the correctness of the moving reference frame implementation has been

checked. The results are presented below.
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2.4.1 Domain size influence

The proper simulation domain size should have such width and length that wall

confinement effects are negligibly small and there is no impact from the outflow

boundary. On the other hand, the size of the domain should be reasonable to avoid

extensive computations. The simulations of 2.0 mm drops were carried out in do-

mains with the width W (see Fig. 2.1) equal to 2, 3 and 4 drop diameters. All com-

putations were performed in a moving reference frame with drop diameter d̃ = 30

[lu] and length of the domain Ld = 14d̃.

The terminal rise velocity was used to assess the wall effects for various domain

sizes. The resulting drop terminal velocities for W = 2d̃, 3d̃ and 4d̃ are 53.81, 55.21

and 55.58 mm/s, respectively. In Fig. 2.4 the velocity evolution in time is shown.

The terminal velocity of the drop obtained in the narrowest domain is within 5% of

the one corresponding to the widest domain. The relative deviation of the steady-

state velocity obtained for W = 3d̃ and W = 4d̃ is less than 1%. Thus, the simulation

domain width was chosen to be W = 3d̃ to limit computational cost. In addition, the

width of the domain caused only minor changes of the drop shape in the steady-state

regime.

The influence of the simulation domain length was checked again using 2.0

mm drop simulations. The moving reference frame implementation requires the

outflow boundary condition. The entire flow is influenced by the outlet boundary

location: it is necessary to make sure that the wake behind the drop becomes fully-

developed and does hardly interfere with the outlet. Several simulation domain

lengths Ld were considered equal to 8, 10, 12, 14 and 16 drop diameters. The

terminal drop velocity for the case with Ld = 8d̃ is 55.04 mm/s, and for the case

Ld = 16d̃ the velocity is 55.22 mm/s. Thus, the influence of simulation domain

length on terminal drop rise velocity is negligibly small. If not specified otherwise,

the simulation domain length was set to 14d̃.
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Figure 2.4: Domain size influence. The evolution of 2.0 mm drop rise velocity
in time for different simulation domain widths. The length of the domain is 14d̃;
– · – · – W = 2d̃; —— W = 3d̃; – – – W = 4d̃

2.4.2 Mesh resolution

The accuracy of the results obtained using the basic set of parameters (discussed

in Section 2.3.3) was examined. Two sensitivity analyses on mesh resolution were

performed: mesh refinement ( fm > 1.0) and mesh coarsening (0.0 < fm < 1.0).

In both procedures the absolute value of the interface thickness was kept constant

(ξ = 1.14).

Mesh refinement was performed for simulations of 1.0 mm drops with domain

size 12d̃× 3d̃× 3d̃. Six drop diameters in lattice units were considered with cor-

responding length scaling factors, or mesh steps, in the range Cd = 1.7·10−5−

2.9·10−5 m. The resulting terminal drop velocities are plotted in Fig. 2.5. The ter-

minal drop velocity of the 1.0 mm drop obtained using the basic set of parameters

with d̃ = 30 [lu] is depicted by the red square. The relative deviation of the velocity

between the basic mesh and the finest mesh is 6.2%. The basic set of parameters

is adopted further for the simulations, since it is a good balance between accuracy

and simulation time.

Mesh coarsening has also been checked for the 1.0 mm drop. Two cases were

simulated with drop diameters 25 and 20 [lu], the corresponding length scaling

43



10 20 30 40 50 60 70
0

10

20

30

40

50

60

d, [lu]

u,
 [m

m
/s

]

 

 

d=1.0 mm
d=2.0 mm

Mesh coarsening

Mesh refinement

Mesh coarsening

Figure 2.5: Mesh resolution. Terminal drop velocity as a function of drop diameter
d̃ in lattice units for 1.0 and 2.0 mm drops obtained

factors are 4.0·10−5 and 5.0·10−5 m. The results are shown in Fig. 2.5: the relative

deviation of terminal velocity between 20 and 30 [lu] drops is 7.5%, while the

deviation between 20 and 60 [lu] drops is 13.2%.

A mesh coarsening procedure has been applied for a 2.0 mm drop. With the

basic set of parameters the drop is represented by a 60 [lu] drop diameters in lattice

space (red circle in Fig. 2.5). Eight smaller drop diameters in lattice space were

considered with the mesh step in the range Cd = 3.33·10−5− 10.0·10−5 m. The

domain size was equal to 14d̃×3d̃×3d̃. The terminal drop velocities for all cases

are shown in Fig. 2.5. The relative deviation between the terminal velocity obtained

with the basic set of parameters (d̃ = 60 [lu] for 2.0 mm drop) and the rescaled

parameters for coarser drops with d̃ = 30 [lu] ( fc = 0.5) is 4%. This value of the

coarsening factor is used for all drops larger than 2.0 mm, since it reduces the

domain size and, subsequently, the simulation time while giving result that are in

good agreement with those obtained using a finer mesh.
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2.4.3 Moving reference frame implementation

In the present study the numerical simulations of a n-butanol drop moving in water

were performed in a moving reference frame. Since the moving frame implemen-

tation involves modification of the governing equations it is important to verify the

results by confronting them to those obtained on a stationary reference frame.

A 2.0 mm drop was simulated both in stationary and moving reference frames.

The diameter of the drop in lattice space was d̃ = 30. The size of the stationary do-

main was 24d̃×3d̃×3d̃. Bounce-back (walls) boundary conditions were imposed

on boundaries of the domain with x = 0 and x = Ld , specular reflection conditions

were applied on all side walls since only a quarter of the domain was considered

(see Fig. 2.1). The initial position of the drop in case of the stationary domain was

at a distance 7.5d̃ from the boundary x = 0.

In the moving reference frame implementation when a velocity inflow boundary

condition is used together with outflow boundary condition, at the beginning of the

simulation a pressure wave appears: it moves back and forth over the domain and

eventually dissipates (Mussa et al., 2009). The cause of the wave is the inconsis-

tency of the initialization: the density (pressure) field does not match the velocity

values set at the inflow boundary (Mei et al., 2006). Since the simulated drop is

initially at rest and smoothly accelerates by the external gravity force, the imposed

velocity at the inlet boundary uin is zero at the first time step and increases slowly

over the time. Thus, the impact of the pressure wave on the flow development

during the initial time steps is small as will be shown below.

The development of the drop rise velocity in time for both test cases carried out

using stationary and moving reference frames is presented in Fig. 2.6. The results

are in excellent agreement. The drop terminal velocity obtained using the moving

reference frame is 55.21 mm/s and 55.35 mm/s using the stationary frame of ref-

erence. The streamlines corresponding to both frames have also been compared.

To enable this comparison between the moving and stationary frames, the velocity

of the moving frame was subtracted from the velocity field computed on stationary

frame. The streamlines together with the x-component of the velocity field for the
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Figure 2.6: Time evolution of terminal rise velocity of 2.0 mm drop calculated in
two test cases: —— stationary reference frame; – – – moving reference frame.

test simulations at time instants 0.05, 0.15 and 0.3 s are shown in Fig. 2.7. The

last moment is during steady-state. The white curve represents the interface. The

external flow is from the right to left, the front of the drop is facing the positive x-

direction. As one can see, the results agree well. The streamlines at time step 0.05 s

are identical, which means there is no impact of the inflow/outflow boundary condi-

tions or inconsistency of the initialization in the moving frame implementation. The

slight difference of streamline behaviour in the wake of the drop is attributed to the

sensitivity of streamlines plotting: there is a significant influence of the exact value

of the subtracted velocity of the moving frame on the streamline pattern. Since the

magnitude of the velocities in that region is small compared to the velocity of the

drop, even slight differences of velocity cause notable changes in streamlines be-

haviour. Since the deviation of terminal velocities in both cases is negligible, the

moving reference frame approach was adopted for the rest of the simulations.

2.5 Analyses of n-butanol drop motion in water

The numerical simulations of n-butanol droplets motion in water have been per-

formed for drops within the diameter range 1.0− 4.0 mm with the aim to observe
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Figure 2.7: Streamlines with x-component of velocity for 2.0 mm drop in two cases:
moving reference frame and stationary reference frame. The white curve represents

the interface

three flow regimes relevant to extraction processes: spherical, deformed, and os-

cillating drops. For each drop the terminal rise velocity and drop deformation

were analyzed. The terminal velocity of non-oscillating droplets was determined

when steady-state had been reached after an acceleration period. The mean termi-

nal velocity for shape oscillating drops was evaluated by averaging the rise velocity

over the time spent on several shape oscillations. Each simulation was run un-

til the steady-state was reached for non-oscillating drops or when the velocity of

oscillating drops reached the steady oscillations. The terminal velocity values ob-

tained in this study were compared to experimental and numerical results reported

by Bertakis et al. (2010), a semi-empirical correlation proposed by Bertakis et al.

(2010) and numerical results obtained by Bäumler et al. (2011). The maximum di-

ameter of the drop considered by Bäumler et al. (2011) was 3.1 mm, Bertakis et al.

(2010) considered the maximum drop diameter of 3.48 mm in experiments and 4.0

mm in simulations.

The terminal velocities as a function of drop diameter are plotted in Fig. 2.8.

The results are in good agreement for drops up to 3.0 mm in diameter. The relative
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deviation of velocity for the 3.0 mm drop compared to simulation results of Bertakis

et al. (2010) is 8% and compared to Bäumler et al. (2011) is 2%. The relative

deviation in the terminal velocity for the 4.0 mm drop calculated here with the result

presented by Bertakis et al. (2010) is 20% which is the largest deviation between

the results of the present study and the existing data. However, several facts should

be taken into account when comparing the results. As is shown later, Bertakis et al.

(2010) performed simulations over a time window that is not long enough for the

drop rise velocity to reach steady-state, and the values of the velocity might be

larger than outlined. In addition, the authors mentioned that the larger the velocity

of the drop, the bigger the relative error of the terminal velocity measurements (up

to 2.1% for the fastest one). Bäumler et al. (2011) obtained the maximum velocity

of the drop at maximum considered drop diameter. A more detailed discussion of

the results is presented below.

In the experimental data by Bertakis et al. (2010) the maximum velocity is

reached at d = 2.48 mm, according to the data fit (Henschke model) the maxi-

mum velocity is found at 2.5 mm, whereas the simulations of Bertakis et al. (2010)

have the maximum at 3.0 mm; just slightly below the simulations of Bäumler et al.

(2011), with 3.1 mm. In present simulation the maximum velocity is reached for

the droplet of 3.8 mm diameter. However, it is difficult to clearly distinguish this

maximum velocity since the drops with diameter d > 3.5 mm have close terminal

drop velocity values (see Fig. 2.8).

To describe the shape deformation quantitatively, the aspect ratio E is used,

which is defined as the ratio of the two principal axes of the drop (Michaelides,

2006). Referring to the simulation domain depicted in Fig. 2.1, the aspect ratio

can be calculated as E = L||/(2L⊥), where L|| is the size of the drop parallel to the

flow direction and L⊥ is the size of the drop perpendicular to the flow direction.

E = 1 means that the droplet has spherical shape (Michaelides, 2006). If E < 1 the

shape of the drop is called ‘oblate’ and if E > 1, then it is a ‘prolate’ shape. In all

simulations presented here only spherical and oblate drop shapes were observed at

steady-state drop motion. The value of E was compared to the results of Bäumler
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Figure 2.8: Simulated drop terminal velocities (∗) of n-butanol drops in water as
a function of drop diameter compared to semi-empirical correlation proposed by
Henschke (solid line), experiments (◦) and simulations (.) by Bertakis et al. (2010),
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et al. (2011) who fitted their simulated data with the following equation:

E = e−a Eob
(2.44)

where a = 0.081 and b = 1.299. The simulated aspect ratio as a function of Eötvös

number Eo is plotted in Fig. 2.9 together with the results obtained by Bäumler et al.

(2011). Good agreement is observed.

According to Michaelides (2006) if E > 0.95 the drop can be regarded as spher-

ical. Among the drop diameters considered in the present simulations only the 1.0

mm drop has a spherical shape at steady-state. Drops with larger diameters are ei-

ther deformed or shape-oscillating. Small drops accelerate monotonously over the

time and, finally attain a steady-state terminal velocity. In Fig. 2.10a one can see

the evolution of the drop rise velocity in time for 1.0, 1.5 and 2.48 mm drops. The

acceleration period for 1.0 mm drop is less than 0.2 s which is in good correlation

with results of Bertakis et al. (2010) and Bäumler et al. (2011). For all drops with

diameter d > 2.0 mm vortices appear in the wake.

When drop diameters exceed 2.6 mm a different behavior of the drop is noticed:

slight oscillations appear over the acceleration period. The possible reason behind

this is the low interfacial tension of the n-butanol/water system compared for ex-

ample to a toluene/water system. In Fig. 2.10b time series of the rise velocity for

drops with diameter 2.6 and 2.8 mm are depicted. The amplitude of oscillations of

2.6 mm drop is so small that they are damped during the acceleration period, and the

drop reaches a steady terminal velocity. The acceleration of the 2.8 mm drop goes

along with more developed oscillations that do not vanish over time. This denotes

the onset of shape oscillations of drops with diameter d > 2.8 mm. The terminal

velocity of the drop oscillates around the mean value at the steady-state regime. Ac-

cording to Bertakis et al. (2010) the onset of oscillations is at approximately 2.86

mm which agrees well with the present results.

The rise velocity of 3.0 mm drop is presented in Fig. 2.10c. The behavior is in

excellent agreement with Bäumler et al. (2011) (see their Fig.12). The following

terminal velocities of the drop are obtained in present simulation, numerical simu-

lation by Bertakis et al. (2010) and Bäumler et al. (2011), respectively: 64.75, 60.0
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and 63.30 mm/s. Even though all results are in good agreement, the lower value

obtained by Bertakis et al. (2010) could be explained by the fact that simulations

were carried out only until 0.4 s after startup, while the velocity of the drop keeps

increasing until t = 0.8 s.

The larger the drop diameter, the longer the acceleration period. The amplitude

of the velocity oscillations also becomes larger, both in accelerating and steady

regimes. A representative result of the rise velocity evolution in time in the oscil-

lating drop regime is shown in Fig. 2.10d that relates to a 3.48 mm drop. A further

increase in drop diameter leads to significant drop deformations at initial times, that

changes the value and oscillations behavior of drop rise velocity. The results of the

3.8 mm drop terminal velocity calculations are shown in Fig. 2.10e. For all pre-

vious oscillating drops (Fig. 2.10c and d), the second peak during the acceleration

period was higher than the first one. In contrast, for the 3.8 mm drop, the value of

the second peak is below the value of the first one. The evolution of rise velocity

for later times has the same trends as discussed earlier. To see the difference in drop

deformations at initial times, the flow streamlines together with the drop shape are

presented in Fig. 2.11 for the 3.48 and 3.8 mm drops. At t = 0.1 s the shape of the

drops and flow streamlines are similar in both cases. However, at t = 0.2 s the 3.8

mm drop deforms in a way (possibly because of the low surface tension and high

velocity compared to the velocity of the 3.48 mm drop at this time instant) that at

later time t = 0.4 s the droplet gets a concave shape. In addition, the size and shape

of the wake behind the drops is different. The concave shaped drop has a wider and

shorter wake compared to the ellipsoidal drop.

Notable differences in the drop rise velocity evolution are observed for the 4.0

mm drop (Fig. 2.10f). After significant velocity oscillations and shape deforma-

tions at initial time steps, the velocity rapidly increases and, finally, the droplet

attains a steady regime with oscillations around a mean value. The 4.0 mm drop

deformation at different times are presented in Fig. 2.12. After significant defor-

mation up to t = 0.6 s the droplet gets a concave shape and with slight oscillations

accelerates while changing it’s shape to ellipsoidal with a flattened surface on top.

Finally, the drop oscillates around the mean terminal velocity and ellipsoidal drop
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Figure 2.10: Drop rise velocity as a function of time for different drop diameters; a

- 1.0 mm drop in spherical regime and 1.5, 2.48 mm drops in deformed regime; b -

2.6 and 2.8 mm drops refer to transition between deformed and oscillating droplets;

c - 3.0 mm drop; d - 3.48 mm drop; e - 3.8 mm drop; f - 4.0 mm drop is the largest

simulated drop in the present study

52



t = 0.1 s t = 0.2 s t = 0.3 s t = 0.4 s t = 0.5 s

Figure 2.11: Streamlines and drop shape for d = 3.48 mm (upper row) and d = 3.8
mm (bottom row) drops at different moments

shape. The mean terminal drop velocity is equal to 66.75 mm/s, while Bertakis et al.

(2010) obtained a value of 55.0 mm/s. It should be mentioned that the simulations

of the 4.0 mm drop were carried out by Bertakis et al. (2010) only until t = 0.7 s.

As can be seen in Fig. 2.10f the velocity keeps increasing until 1.75 s. The drop

velocity value at t = 0.7 s obtained in the present study is 56.25 mm/s which is close

to Bertakis et al. (2010). Also the evolution of the rise velocity in time agrees well

with reference data.

To validate our numerical results of shape deformation the well known diagram

by Clift et al. (1978) is used. The simulated data is plotted in the graphical cor-

relation in Fig. 2.13. The plot shows the Reynolds number versus Eötvös for the

Morton number of n-butanol/water system equal to 1.23·10−6. The simulated data
excellently matches the correlation: the 1.0 mm drop lies exactly on the curve di-

viding the regions of spherical and ellipsoidal drops. The correlation appears to

better predict the behavior of n-butanol water system for larger drop diameters.

In addition, the numerical data was organized using Reynolds and Weber num-

bers. In contrast to the previous correlation, the We number contains the terminal
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Figure 2.12: The n-butanol drop deformation of 4.0 mm diameter at different time
steps
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Figure 2.13: Comparison of simulated Reynolds numbers Re as a function of
Eötvös number Eo for Morton number Mo= 1.23·10−6 to the graphical correla-
tion by (Clift et al., 1978)

drop velocity, and shows the ratio of continuous phase internal fluid stresses (that

cause the deformation of the drop) and surface tension stresses resisting the defor-

mation. The plot is shown in Fig. 2.14, where the steady state shape of the drops

are also depicted (for the shape oscillating drops the shape at the mean terminal

velocity is presented). For We 6 1.0 only negligibly small deviation of the drop

shape from a sphere is observed. With the increase of We number, the drop is more

deformed.

The ratio between Weber and Reynolds numbers gives a capillary number Ca =

uµc/σ . The capillary number measures the balance between two competing effects:

the viscous stress of the continuous liquid that causes the drop deformation, and

capillary stress that resists the deformation. In Fig. 2.15 the simulated capillary

number is plotted as a function of Eötvös number. With the increase of Eo (i.e.

the drop diameter since Eo∼ d2) the Ca number approaches a constant value. The

drop enters the shape oscillation regime when Eo > 7.0. As one can see from the

graph this is the point where Ca gets to a constant value of 0.056. During the shape
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Figure 2.14: Simulated Reynolds number Re versus Weber number We plotted with
drop shapes in steady-state. (Gravitational acceleration is directed from right to left)

oscillations viscous and internal forces balance not letting the drop break or return

to a stable shape. With further increase of drop diameter the surrounding liquid

might cause more significant drop deformations and break the drop.

2.6 Conclusion

In this paper numerical simulations of single n-butanol drops rising in water un-

der the influence of gravity are presented. The free energy LBE model with TRT

collision operator was used to perform three-dimensional simulations of this bi-

nary system in order to determine the drop terminal velocity and its shape. The

drop diameters that were studied 1.0− 4.0 mm spanned the regions of spherical,

deformed, and oscillating droplets, allowing to test the numerical technique under

different conditions relevant to liquid-liquid extraction processes. The simulations

were carried out in a moving reference frame to reduce the domain size, and thus

the computational cost. The computer code was developed in Fortran 90 with MPI

for parallel processing.

The proposed scaling procedure allowed us to determine the parameters in lat-
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Figure 2.15: Capillary number Ca versus Eötvös number Eo; (∗) present simula-
tions; (�) the Ca number value plotted using the terminal velocity obtained with
semi-empirical correlation proposed by (Bäumler et al., 2011)

tice space, where the LBE models operate, that correspond to the real physical

parameters of the given binary system. It was outlined that in order to determine

the proper values of the LBE parameters it is necessary to validate the results with

a benchmark solution. In our case the benchmark data were the experimental re-

sults and the results of simulations obtained using different numerical techniques.

Once the numerical approach is validated, it can be applied for simulations of mul-

tiphase systems in other problem statements, e.g. consideration of n-butanol drop

breakup or coalescence in water, or multiple drops interaction in laminar shear of

fully-developed turbulent flow.

The simulation parameters as computational domain size, mesh resolution, and

LBE numerical parameters were tested to verify the developed computer code. For

negligible effects of boundary walls, the width of the domain should be at least

three drop diameters.

The mesh resolution has a significant effect on the results. It is important to

capture the essential drop deformations and oscillations, circulations inside the drop

and wake development behind the drop. Mesh refinement has been performed to

determine the required mesh resolution: the relative deviation between the terminal

velocity obtained on the coarsest and the finest grids is 13.2% for a 1.0 mm drop.
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For the same drop, the relative deviation in drop velocity obtained on the mesh

resolution with which most of the simulations have been carried out and the finest

mesh is 6.2%.

The simulations captured drop acceleration, shape deformation, steady mo-

tion with constant velocity of non-oscillating drop, and shape-oscillating motion

of drops in the oscillatory regime. The results obtained in the study have been com-

pared to experimental data and numerical simulations using other methods. The

results show that the numerical technique can be adopted to perform multiphase

simulations with moving and deforming interfaces. The results of the simulations

are in good agreement with experimental and numerical data. The deviation in ter-

minal drop velocity for small drop diameters is within 5% and up to 20 % for the

largest one. The capability of the method to capture the drop shape deformation es-

pecially in the oscillating regime is also demonstrated. The results are in excellent

correlation with the standard reference diagram by Clift et al. (1978) for predicting

the shape of fluid particles. In addition, it was outlined that the regime of shape

oscillations of the drop in the considered drop diameter range is characterized by

an almost constant capillary number of Ca = 0.056.

The regimes of drop motion did not cover drop breakup. As future work, the n-

butanol drops in water under simple shear flow will be considered. Such a problem

will allow us to test the capability of the developed numerical technique of interface

disintegration capturing. Also drop coalescence will be considered. This is one of

the most challenging problems to solve since the drawback of the utilized inter-

face capturing technique is artificial merging of the drops even in the cases where

the drops should not coalescence. After the developed numerical tools have been

tested using these benchmark problems, n-butanol drop dispersion in water will be

considered with hundreds of dispersed drops subjected to turbulent flow conditions.
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Chapter 3

Lattice Boltzmann simulations of
drop deformation and breakup in
shear flow1

3.1 Introduction

When drops of one liquid dispersed in another immiscible liquid are subjected to

shear flow, they start to deform. If the local shear rate is sufficiently large, the

drops might break up into fragments. The study of the dynamics and mechanisms

of drop breakup in shear flow is of fundamental importance in dispersion science

and mixing processes. Experimental and theoretical investigations in this area focus

on analyzing how strong the flow should be to break the drop, what the necessary

energy input is to create the required intensity of the flow, and what the resulting

drop size distribution (DSD) and rheology of the mixture are (Rallison, 1984). The

results obtained in such studies can be applied to the formation of dispersion and

emulsions and in particular the design of efficient mixing devices (Rallison, 1984).

The application of shear to a premixed emulsion of various drop sizes is a technique

for the production of monodisperse droplets (Cristini and Renardy, 2006).

Stirred tank reactors are widely used to obtain liquid-liquid dispersion under

turbulent flow conditions. Turbulent flows contain a spectrum of eddies of different

size, intensity, and lifetime (Pope, 2000). Drops continuously interact with these

1A version of this chapter has been published. A.E. Komrakova, Orest Shardt, D. Eskin, J.J.
Derksen. IJMF 59(2014) 24-43
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eddies. Large eddies convect small droplets with little deformation. When the

droplet size is comparable to the eddy size, the drop can be significantly deformed

and subsequently broken. Even though the randomness of turbulent flow implies

complex drop/eddy interactions, simpler interactions can be identified. For exam-

ple, a drop in a simple shear flow represents drop interaction with two co-rotating

eddies in turbulent flow. The investigation of drop behavior in simple shear flow is

more reproducible both experimentally and numerically than behavior in turbulent

flow. The results obtained in such studies are helpful when it comes to engineer-

ing applications. To demonstrate that, consider a water-based turbulently agitated

liquid-liquid system. Let the size of the drop be comparable to the Kolmogorov

length scale. The kinematic viscosity of the continuous phase is of the order of

ν = 10−6 m2/s. The local energy dissipation rate in the impeller region (Davies,

1987) may be up to ε = 100 W/kg. Based on these parameters the Kolmogorov

time scale is τK =
√

ν/ε = 10−4 s. Suppose the resulting distribution of drop radii

is in the range a = (1−100) µm. Assume that turbulent eddies interacting with the

drop create a shear rate of the order of γ̇ = 1/τK . Then the range of drop Reynolds

number defined as Re = γ̇a2/ν is from 0.01 to 100. This implies that even in fully-

developed turbulence, drops experience interactions with eddies at low to moderate

Reynolds numbers. Therefore, a study of binary systems in simple shear flow has

direct relevance to complex turbulently flowing systems. One can, for example,

check if the local energy dissipation rate is high enough to break drops of certain

sizes and eventually obtain liquid-liquid dispersion with desired characteristics.

Starting with experiments performed by Taylor (1932, 1934), a wide range of

studies has been carried out on drop deformation and breakup. These studies have

been reviewed by Rallison (1984), Stone (1994), and Cristini and Renardy (2006).

The “retractive end pinching” breakup mechanism was outlined by Bentley and

Leal (1986). Marks (1998) investigated “elongative end pinching” by applying a

strong shear to a single drop. Recent experiments have been performed by Zhao

(2007) where a dilute emulsion was subjected to a simple shear flow. A map of

drop breakup mechanisms in simple shear flow as a function of viscosity ratio and

capillary number was presented.
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A viscous drop under shear flow has also been intensively investigated by means

of numerical simulations. Most of the numerical studies have been performed with

the boundary integral method (Cristini et al., 2003; Janssen and Anderson, 2007;

Kennedy et al., 1994; Kwak and Pozrikidis, 1998). The method has been success-

fully applied for drop deformation studies. However, the implementation of the

boundary integral method for drop breakup and coalescence poses a major obstacle

because it is very difficult to handle merging and folding interfaces: the interface

points should be reconstructed, which requires significant logical programming and

results in computational overhead (Li et al., 2000). The mathematical implication

of the boundary integral method such as singularity of the free-space Green’s ker-

nels is discussed by Pozrikidis (1992). A way to overcome this issue is suggested

by Bazhlekov et al. (2004): a higher accuracy in the vicinity of the singular point

is gained, however, the performance is about an order of magnitude slower com-

pared to a standard surface integration. An alternative numerical technique widely

used to investigate drop breakup is the volume-of-fluid (VOF) method. Numeri-

cal simulation of breakup of a viscous drop in simple shear flow was carried out

by Li et al. (2000). The same technique has been applied by Renardy and Cristini

(2001a), Renardy et al. (2002), Khismatullin et al. (2003), Cristini and Renardy

(2006). The topological changes of the interface are treated more naturally com-

pared to the boundary integral method. The VOF method has been generalized

to three-dimensional cases. However, the reconstruction of the interface requires

significant computational effort that increases with the number of drops involved.

A droplet in a quiescent fluid was investigated by Van der Sman and Van der

Graaf (2008) using a free energy lattice Boltzmann equation (LBE) method. The

authors further analyzed the numerical criteria for a correct description of emulsions

and applied the model to study drop deformation and breakup. All simulated cases

were two-dimensional.

Three-dimensional numerical simulations of the classical Taylor experiment on

droplet deformation in a simple shear flow have been performed by Xi and Duncan

(1999). The authors applied the lattice Boltzmann method in conjunction with the

interface force model of Shan and Chen (1993). Good agreement with theoretical
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predictions was demonstrated for small deformations. The ability of the method to

capture larger deformations and breakup events was also shown.

In the present study, the free energy lattice Boltzmann method originally pro-

posed by Swift et al. (1996) is adopted to perform three-dimensional simulations of

a single liquid drop suspended in another liquid under simple shear flow. The goal

of the study is to check the capability of the method to capture the physics of drop

deformation and breakup in a wide range of flow conditions: starting from near

Stokes flow up to drop Reynolds numbers of 50 where inertia plays a significant

role. Also the ability of the method to handle liquids with different viscosities is

tested.

Diffuse interface numerical techniques require an explicit specification of the

interface thickness which essentially is a numerical artifact. It is necessary to ex-

amine how this impacts the simulations, what parameters determine this additional

degree of freedom, and what values of these parameters should be set for physically

realistic results. In addition, it is important to outline the resolution that is sufficient

to capture the physics of drop breakup while keeping a reasonable simulation time.

To validate the numerical approach, its results are compared to existing experimen-

tal results and findings of numerical simulations using other methods. The present

study can be considered as a development towards a numerical tool to investigate

the behavior of drops in shear flow and as a verification and validation step for fur-

ther applications in more complex flows. For instance, the developed code would be

extended to perform Direct Numerical Simulations (DNS) of turbulent dispersion

formation with hundreds of breaking and merging droplets.

The rest of the paper is organized as follows. The problem statement is outlined

in Section 3.2. Section 3.3 contains the details of the numerical technique. The

results of simulations are presented in Section 3.4. First, the choice of the numerical

parameters that determine drop behavior in shear flow is discussed in Section 3.4.1,

with additional details in A−2. Drop deformation and breakup in Stokes flow is

presented in Section 3.4.2, the influence of inertia on drop deformation is shown in

Section 3.4.3, and Section 3.4.4 presents the joint influence of viscosity ratio and

inertia on drop deformation and breakup scenarios. Finally, conclusions are drawn
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Figure 3.1: Single drop under simple shear flow

in Section 3.5.

3.2 Problem statement

A liquid drop of dynamic viscosity µd is suspended in another liquid of viscosity µc.

The ratio of drop viscosity to surrounding liquid viscosity is denoted as λ = µd/µc.

The interfacial tension between the liquids is σ . The liquids are of equal density

ρ . At time t = 0, the drop is a sphere with radius a. The entire system undergoes

simple shear flow between two parallel plates located a distance H apart (Fig. 3.1).

The two plates translate in opposite directions with velocity uw so that the shear rate

is γ̇ = 2uw/H.

Drop behavior in simple shear flow is determined by three dimensionless num-

bers which are the Reynolds number Re, the capillary number Ca, and the viscosity

ratio λ :

Re =
γ̇a2

ν
Ca =

aγ̇µc

σ
λ =

µd

µc
(3.1)

In the case of vanishingly small Re (Stokes flow) only viscous and capillary

forces determine the drop behavior. Being deformed under shear flow, the drop

inclines in the direction of the flow, away from the axis of elongation which is

at 45 degrees to the flow direction (Khismatullin et al., 2003). It was shown by

Khismatullin et al. (2003) and is demonstrated later in this paper that the addition
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of inertia changes the drop deformation and also the breakup process. The range of

Reynolds numbers considered here is from 0.0625 to 50.

The ratio of viscous and capillary forces is determined by the capillary number.

For each viscosity ratio λ there is a critical capillary number, Cac, above which the

drop eventually breaks. For capillary numbers below the critical value, a steady

drop shape exists. When the drop is sheared in the Stokes flow regime at Ca∼ Cac

it breaks up by the “end pinching” mechanism into daughter drops separated by

smaller satellite and subsatellite droplets (Marks, 1998; Zhao, 2007). In this study,

simulations close to Stokes flow conditions are performed for capillary numbers in

the range of 0.1−0.42. This range of Ca includes drop deformation and breakup.

Finally, drop deformation and breakup depends on the viscosity ratio. When the

drop is very viscous (λ � 1), the rate of elongation in the drop is small compared

to the rate of circulation in the drop, and the drop cannot break (Cristini and Re-

nardy, 2006). The critical viscosity ratio λc beyond which the drop does not break is

around 3.0 for Stokes flow (Cristini and Renardy, 2006; Khismatullin et al., 2003).

The critical viscosity ratio increases with increasing Reynolds number (Khismat-

ullin et al., 2003). The viscosity ratios λ considered in this paper are 1, 2, and

3.

3.3 Numerical method

In the present study, a diffuse interface method is used to simulate the behavior of a

drop in shear flow. In diffuse interface (or phase field) methods (Ding et al., 2007;

Jacqmin, 1999; Magaletti et al., 2013; Yue et al., 2004) the sharp interface between

fluids is represented by a thin transition region with finite thickness where fluids

may mix. At any given time, the state of the system is described by the order param-

eter of the phase field ϕ which is the relative concentration of the two components

(Badalassi et al., 2003; Cahn and Hilliard, 1958; Penrose and Fife, 1990). To simu-

late the fluid dynamics of a binary mixture of fluids, the continuity and momentum

equations are used in conjunction with Cahn Hilliard convection-diffusion equa-

tion for the order parameter (Bray, 1994). Thus, the evolution of density, velocity
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and order parameter are governed by the continuity, momentum, and convection-

diffusion equations (De Groot and Mazur, 1984; Kendon et al., 2001), respectively:

∂tρ +∂α(ρuα) = 0 (3.2a)

∂t(ρuα)+∂β (ρuαuβ ) =−∂β Pth
αβ

+∂β ν
(
ρ∂αuβ +ρ∂β uα

)
(3.2b)

∂tϕ +∂α(ϕuα) = M∂
2
ββ

µ (3.2c)

where ρ and ν are the density and the kinematic viscosity of the mixture, respec-

tively. Here Pth
αβ

is the ‘thermodynamic’ pressure tensor. It contains two parts

(Kendon et al., 2001): an isotropic contribution Pδαβ that represents the ideal gas

pressure and the ‘chemical’ pressure tensor Pchem
αβ

. The chemical potential in equa-

tion (3.2c) is: µ(ϕ) = Aϕ−Aϕ3−κ∂ 2
ααϕ . Here, A < 0 is a parameter of the free

energy model; κ is a parameter related to the surface tension and interface thick-

ness.

Swift et al. (1996) developed a lattice Boltzmann approach, known as the free

energy model, to solve the system (3.2). Exactly this method is adopted in the

present study. Two particle distribution functions are utilized: one function f (rrr, t)

is used to solve the continuity (3.2a) and Navier-Stokes (3.2b) equations and the

second one g(rrr, t) is used for the convection-diffusion equation (3.2c). The dis-

tribution functions evolve by a time step ∆t. All simulations have been performed

using a single relaxation time collision operator (Bhatnagar-Gross-Krook (BGK)

model (Bhatnagar et al., 1954)). The discrete lattice Boltzmann equations have the

following form:

fq(rα + cαq∆t, t +∆t)− fq(rα , t) =−
fq− f eq

q

τ f
,

gq(rα + cαq∆t, t +∆t)−gq(rα , t) =−
gq−geq

q

τg
,

(3.3)

where the index q stands for the number of the discrete velocity directions; the index

α stands for the Cartesian directions x, y and z; f eq
q , geq

q are discretized Maxwell-

Boltzmann distributions (or equilibrium distributions); cαq denotes the discrete ve-

locity set and τ f , τg are dimensionless relaxation parameters. The D3Q19 lattice
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is adopted here where Q = 19 is the number of velocity directions. In this lat-

tice arrangement, each site communicates with its six nearest and twelve diagonal

neighbors. The lattice Boltzmann method operates in dimensionless lattice units

(lattice space, time step, and lattice density for the length, time and density units,

respectively). For the method described here, only uniform cubic lattices can be

used; the mesh step ∆x is taken as unity, as is the time step ∆t. The discrete velocity

set is defined as follows:

cx
cy
cz

=

 0 c −c 0 0 0 0 c −c c −c 0 0 0 0 c −c c −c
0 0 0 c −c 0 0 c c −c −c c −c c −c 0 0 0 0
0 0 0 0 0 c −c 0 0 0 0 c c −c −c c c −c −c


where c = ∆x/∆t is the lattice speed.

The particle distribution functions are defined such that the following summa-

tions over all directions q at each single lattice point give the local density of the

fluid, the local fluid momentum and the local order parameter, respectively:

∑
q

fq = ρ ∑
q

cαq fq = ρuα ∑
q

gq = ϕ (3.4)

The equilibrium distributions (Kusumaatmaja, 2008) f eq
q , geq

q for populations

16 q6 (Q−1) are calculated using the following relations:

f eq
q =

wq

c2

(
p0−κϕ(∂ 2

xxϕ +∂
2
yyϕ +∂

2
zzϕ)+ cαqρuα +

3
2c2

[
cαqcβq−

c2

3
δαβ

]
ρuαuβ

)
+

κ

c2

(
wxx

q ∂xϕ∂xϕ +wyy
q ∂yϕ∂yϕ +wzz

q ∂zϕ∂zϕ +wxy
q ∂xϕ∂yϕ +wxz

q ∂xϕ∂zϕ +wyz
q ∂yϕ∂zϕ

)
geq

q =
wq

c2

(
Γµ + cαqρuα +

3
2c2

[
cαqcβq−

c2

3
δαβ

]
ϕuαuβ

)
(3.5)

while the distributions for q = 0 are given by:

f eq
0 =ρ−

Q−1

∑
q=1

f eq
q geq

0 = ϕ−
Q−1

∑
q=1

geq
q (3.6)
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And the weights (Kusumaatmaja, 2008) are:

w1−6 =
1
6
, w7−18 =

1
12

,

wxx
1−2 = wyy

3−4 = wzz
5−6 =

5
12

, wxx
3−6 = wyy

1−2,5−6 = wzz
1−4 =−

1
3
,

wxx
7−10 = wxx

15−18 = wyy
7−14 = wzz

11−18 =−
1

24
,

wxx
11−14 = wyy

15−18 = wzz
7−10 =

1
12

,

wxy
1−6 = wyz

1−6 = wzx
1−6 = 0, wxy

7,10 = wyz
11,14 = wzx

15,18 =
1
4
,

wxy
8−9 = wyz

12−13 = wzx
16−17 =−

1
4
, wxy

11−18 = wyz
7−10 = wzx

7−14 = 0.

(3.7)

The bulk pressure in equation (3.5) is defined as p0 = c2
s ρ + A

2 ϕ2− 3A
4 ϕ4. Here

c2
s = 1/3 is the speed of sound in lattice units.

The mobility M, the coefficient of mobility Γ and the relaxation parameter τg

are connected by the following relation:

M = ∆tΓ
(

τg−
1
2

)
(3.8)

i.e. the parameter Γ determines the order parameter mobility M.

The liquids have different kinematic viscosity. To take this into account, the

kinematic viscosity of the mixture ν is set to be a function of the order parameter

ϕ:

ν(ϕ) = νc
ϕ0−ϕ

2ϕ0
+νd

ϕ0 +ϕ

2ϕ0
(3.9)

where νc and νd are the kinematic viscosities of continuous and dispersed phases,

respectively. The relaxation parameter for fq is defined using the kinematic viscos-

ity of the mixture:

τ f (ϕ) =
ν(ϕ)

c2
s ∆t

+
1
2

(3.10)

For a planar interface, an analytical solution (Van der Sman and Van der Graaf,

2008) gives the ϕ profile ϕ(x) = ϕ0 tanh (x/ξ ). Here, ϕ =±ϕ0 =±1 is the value

of order parameter in the bulk phase at either side of the interface. The thickness of

the diffuse interface ξ is equal to

ξ =

(
2κ

−A

)1/2

. (3.11)
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The surface tension σ follows from:

σ =
4
3

κ
ϕ2

0
ξ
. (3.12)

To determine the equilibrium distributions (3.5), the spatial gradients of ϕ have

to be calculated. The stencils for gradients and Laplacian calculations adopted in

this study are (Kusumaatmaja, 2008):

∂x =
1

12∆x

 0 0 0
−1 0 1
0 0 0

 ,

−1 0 1
−2 0 2
−1 0 1

 ,

 0 0 0
−1 0 1
0 0 0

 (3.13)

∇
2 =

1
6∆x2

0 1 0
1 2 1
0 1 0

 ,

1 2 1
2 −24 2
1 2 1

 ,

0 1 0
1 2 1
0 1 0

 (3.14)

where the left, middle and right matrices show slices of the stencil when z = ∆x, 0

and −∆x, respectively.

The discretized equations (3.3) are solved in two steps:

Collision step: f ′q(rα , t) = fq(rα , t)−
1
τ f

[ fq− f eq
q ]

g′q(rα , t) = gq(rα , t)−
1
τg
[gq−geq

q ]

(3.15)

Streaming step: fq(rα + cαq∆t, t +∆t) = f ′q(rα , t)

gq(rα + cαq∆t, t +∆t) = g′q(rα , t)
(3.16)

To complete the mathematical description, boundary conditions have to be spec-

ified. The simulation domain with boundary conditions is depicted in Fig. 3.2. The

no-slip condition is imposed on the bottom y= 0 and top y=H plates for the fq dis-

tribution and a Dirichlet condition of ϕ =−ϕ0 for the gq distribution. The constant

velocities of the walls are applied on those planes using the procedure proposed by

Mussa et al. (2009). The rest of the boundary conditions apply to both fq and gq.

Periodic conditions are imposed on the x = 0 and x = L planes. Because of the

symmetry of the problem, only half of the drop has been considered. Such consid-

eration requires symmetry conditions (Ahmed and Hecht , 2009) of the side planes

z = 0 and z =W . The initial condition at time t = 0 is that the drop has a spherical

shape and the velocity field is zero throughout the domain.
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Figure 3.2: Simulation domain with boundary conditions: x = 0 and x = L are pe-
riodic boundaries; y = 0 and y = H are no-slip walls moving with constant velocity
uw; z = 0 and z = W are the symmetry planes. At t = 0 the drop has a spherical
shape. Due to the symmetry of the problem only half of the drop has been simulated

3.4 Simulations of a single drop under simple shear
flow

A computer code for three-dimensional simulations is developed using Fortran 90

in both serial and parallel versions. The parallel code uses domain decomposition

and MPI (Message Passing Interface). The simulation domain is decomposed into

slabs in the x direction, one for each CPU. The number of CPUs used depends on

the domain size, starting from one for low resolution drops and up to eight CPUs

for the highest resolution drops. Depending on the drop size, the duration of the

simulations ranges from several minutes for the drops with lower resolution to 2−3

weeks for the drops with the highest resolution.

A simulation code for graphics processing units (GPUs) is used to facilitate con-

vergence studies with large droplet radii (32 to 64 lattice nodes). The high memory

bandwidth and parallel processing capabilities of GPUs allow fast LBE simulations

due to the highly-local nature of free energy LBE calculations: only data from

adjacent nodes is required to update each node in the domain. The simulations
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are performed on nine NVIDIA Tesla M2070 GPUs, with three GPUs installed on

each of three computational nodes. Communication between the three GPUs on

one computational node occurs over system buses, while communication between

computational nodes occurs over an InfiniBand interconnect and was implemented

with an MPI library. The domain is split evenly among the nine GPUs along planes

parallel to the sheared wall. A rotational symmetry boundary condition through the

middle of the domain (y = H/2 in Fig. 3.2) is used to further reduce the compu-

tational expense. With this boundary condition, the domain below y = H/2 is not

simulated. Since the GPU code was initially developed to study a different prob-

lem, binary droplet collisions and coalescence (Shardt et al., 2013), the boundary

conditions in the GPU code differ subtly from those in the CPU code. The shear ve-

locity at y = H is imposed using the method of Ladd (1994). A symmetry condition

is used for the phase field ϕ at y = H. The other symmetry and periodic bound-

ary conditions are the same as in the code for CPUs. Two simulations at the same

conditions, with one running on GPUs and the other on CPUs, were compared. As

described in A−3, the difference in the drop elongation L/a (see definition below)

is 0.15%. The difference in boundary conditions is therefore small, and the GPU

and CPU simulations may be used to study the same problem. Processing speeds

for the simulations with droplet radii between 32 and 64 lattice units are 136 to 235

million lattice node updates per second (Mlups), compared to 2 Mlups on 8 CPU

cores in the CPU-based simulation. The performance of both GPU- and CPU-based

simulations is affected by other jobs running on the clusters, causing fluctuations in

the processing speeds.

3.4.1 Choice of numerical parameters

A set of three physical dimensionless numbers (the Reynolds number Re, the cap-

illary number Ca and the fluids viscosity ratio λ , see definitions (3.1)) fully deter-

mines drop behavior under simple shear flow. The lattice Boltzmann free energy

method refers to the class of diffuse interface methods that requires an explicit spec-

ification of the interface thickness ξ and related numerical parameters (κ , A, M, Γ).

Two additional dimensionless numbers need to be introduced to characterize these
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Figure 3.3: Drop elongation L, deformation D = (L−B)/(L+B) and orientation
angle θ measurements

degrees of freedom (Van der Sman and Van der Graaf, 2008): the interface Peclet

number that relates the convection time scale to the interface diffusion time scale

Pe =
γ̇aξ

MA
(3.17)

and the Cahn number which is the ratio between interface thickness and drop radius

Ch =
ξ

a
(3.18)

Thus, the behavior of the same drop in simple shear flow in numerical space is de-

termined by five dimensionless numbers, three of which are physical (Re, Ca, λ )

and two numerical (Pe, Ch). It is necessary to investigate the choice of these numer-

ical numbers to capture the drop behavior at given physical dimensionless numbers.

The verification of the numerical technique involves an investigation of the influ-

ence of the Peclet and Cahn numbers on accuracy and stability. Subsequently the

technique is validated by comparison with available literature data.

When the sheared drop evolves to a steady shape under Stokes flow conditions,

two parameters are used to measure the deformation attained by the drop. The

first parameter is the Taylor deformation parameter (Taylor, 1932, 1934) D = (L−

B)/(L+B), where L and B are the half-length and half-breadth of the drop (see Fig.

3.3), respectively. When the steady shape of the drop is not ellipsoidal any more

(which is the case for shear with higher Re) then the ratio of maximum elongation

to initial undeformed drop radius L/a is used to characterize the deformation. The

second parameter is the orientation angle θ of the drop as defined in Fig. 3.3.

The influence of the proximity of walls was examined first. Three simulations

of a drop with initial radius of a = 20 [lu] at Re = 1, Ca = 0.27, λ = 1, Pe = 1 and

77



Table 3.1: Wall proximity influence (H is a distance between the moving plates).
Elongation L/a and orientation angle θ of a drop with undeformed radius a = 20
[lu] at Ca = 0.27, Re = 1, λ = 1, Pe = 1 and Ch = 0.057.

H = 4a H = 8a H = 16a

L/a (LBE) 1.93 1.87 1.82
θ (LBE) 18.88 22.77 23.12

L/a (VOF) (Renardy and Cristini, 2001b) 1.8
θ (VOF) (Renardy and Cristini, 2001b) 25

Ch = 0.057 were carried out in domains of 8a× 4a× 2a, 8a× 8a× 2a and 8a×

12a×2a. According to the VOF results presented by Renardy and Cristini (2001b)

this capillary number (for given Re and λ ) is right below the Cac which means

that a steady shape of the drop is attained. The results of the present simulations

together with the reference VOF results are presented in Table 3.1. The smallest

distance between the plates H = 4a results in higher deformation of the drop and

significantly smaller inclination angle. The effect of H reduces when H is increased.

The deviation between results obtained in the cases when H = 8a and 16a is less

than 3%. Simulation time increases with domain size. Further benchmark cases

used domains of 8a×8a×2a.

Three benchmark cases have been performed characterized by the following

dimensionless numbers, respectively: Re = 1 and Ca = 0.27, Re = 0.0625 and

Ca = 0.1, Re = 10 and Ca = 0.15. The viscosity ratio for all cases was λ = 1.

Consider the first case: Ca = 0.27, Re = 1, λ = 1. The relaxation times for

both distribution functions are set to τ f = τg = 1. The reference VOF results are

presented in Table 3.1.

Mesh refinement was performed at different Peclet and Cahn numbers. The full

set of dimensionless parameters (Re, Ca, λ , Pe and Ch) remained constant when the

resolution was increased. The simulated Cahn numbers are Ch = 0.1136 and 0.2,

the base-line drop radius is a = 10 [lu]. The mesh is refined by factors of β = 1.5,

2.0, 2.5 and 3.0 times. The resulting drop radii are 15, 20, 25, and 30 [lu]. Peclet

numbers of 1, 5 and 10 are simulated.

The drop elongation and orientation angle for Ch = 0.1136, 0.2 and several
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θ

(a) (b)

Figure 3.4: Drop deformation results at Re= 1, Ca= 0.27, λ = 1 and different Pe
and Ch numbers. The L/a ratio (a) and the orientation angle θ (b) as a function of
drop radius

Pe are presented in Fig. 3.4 (a) and (b), respectively. For the reference points

obtained by Renardy and Cristini (2001b), the initial drop radius spanned eight

dimensionless units (grid spacing). When the grid is refined, the L/a tends to reach

asymptotic values. At Ch = 0.1136 and Pe = 10 the deviation of the elongation

from the reference data is 2% when a = 30 [lu]. The orientation angle is more

sensitive and grid convergence is not clear. The θ values scatter within 20% from

the reference data. The minimum deviation is 0.4% atCh= 0.2, Pe= 10 and a= 30

[lu]. A smaller Peclet number results in smaller deformation and larger inclination

angle of the drop. At Pe = 1 and Ch = 0.2 the simulations of drops with radius

in the range 10− 30 [lu] are unstable. When the drop radius exceeds 20 [lu] the
simulations are unstable at Pe = 1 and 5. The reason for this instability is the

high mobility value M. Mobility enters the governing system of equations via the

mobility coefficient Γ (see equation (3.2c)) and has an impact on stability of the

simulations. For the unstable cases Γ is larger than 15. On the other hand, drops

with a < 15 [lu] break up at Pe = 5 and 10. High Pe means a low mobility M. In

order to maintain local equilibrium, the mobility coefficient Γ (and thus mobility

M) should be large enough to allow diffusion across the interface on a time scale

79



faster than fluid motion (Kendon et al., 2001). Thus, when Γ is low then convection

dominates over diffusion (which tends to equilibrate the interface) and the droplets

break. If a too large mobility value is set (see above), the simulations may become

unstable.

To check if the influence of Pe and Ch is not a result of relatively low resolution

(a6 30 [lu]), an additional study with highly resolved drops was carried out using

the GPU code. A base-line drop radius of a = 32 [lu] is specified. The results

are presented in A−2 (Benchmark case 1). The same trends in the effects of Pe

and Ch on the results as with lower resolution are observed. Even with higher

mesh resolution Pe and Ch should be chosen with care for every simulation. For

instance, the case with Pe = 1, a = 64 [lu] (the Cahn number Ch = 0.0625) is

unstable. While the case with Pe = 1 and higher drop resolution a = 75 [lu] (the

Cahn number Ch = 0.0267) results in L/a = 1.79 and θ = 24.92° that matches the

reference data.

For flows with Re = 1, the shear rate is high enough to avoid long computations

and a wide range of capillary numbers can be investigated due to κ , A and Γ values

that allow stable computations. The Stokes flow regime needs to have very low

shear (which implies small time steps and, thus, lengthy computations). It is also

more challenging because of the narrow parameter ranges for stable simulations.

To obtain capillary numbers in the range of 0.1−0.45, surface tension values in the

range σ = 10−4−10−3 [lu] are necessary. To fulfill this requirement, κ should also

be small (10−4−10−3 [lu]). To get stable simulations, special care should be taken

for the choice of Γ and, consequently, the Peclet number. Simulations of drops in

shear flow at near Stokes flow at Ca = 0.1 and λ = 1 were performed as the second

benchmark case. The specified Reynolds number of Re = 0.0625 is the same as

was taken by Li et al. (2000) in their simulations by the VOF method. The latter are

used as reference data.

The results of the second benchmark case at Re = 0.0625, Ca = 0.1 and λ = 1

are presented in A−2 (Benchmark case 2). The order of magnitude of the Peclet

number for the Stokes flow simulations has changed compared to the one at Re = 1

considered before. Pe is less than unity now. The reason is a decrease of shear
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rates while the rest of the parameters have the same order of magnitude as before.

The same influence of Pe on drop deformation is observed. The higher the Peclet

number the higher the deformation and the smaller the inclination angle of the drop.

To check the ability of the method to handle higher Reynolds numbers, a third

benchmark case was performed. The following physical parameters are specified:

Re = 10, Ca = 0.15 and λ = 1. The results and analysis are presented in A−2

(Benchmark case 3). To sum up the most important findings, the influence of Pe

and Ch on the result for a fixed drop radius of a = 30 lattice units is shown in Fig.

3.5. The data are organized in the following way: the Peclet number increases from

left to right, while the Cahn number increases from top to bottom. An increase in

Pe results in increased drop deformation for every case: the drop becomes more

elongated. The angle of inclination towards the flow direction decreases with the

increase in Pe. The increase of interface thickness apparently limits drop deforma-

tion and the development of internal circulations; the drop shortens and aligns in a

vertical direction. Re = 10 is not high enough to clearly see the loss of symmetry

over the mid-plane of the drop. Nevertheless, it can be noticed for the case with

Pe = 4 and Ch = 0.0379. The tips of the drop are slightly tilted in the vertical direc-

tion. If this deformation is accurately resolved then the maximum elongation of the

drop refers to the line that connects these two points. The angle of inclination will

be accordingly measured between this line and the horizontal axis. On the other

hand, the elongation can be measured based on the mid-plane line. That will give a

smaller value of elongation and a smaller angle of inclination. In the present sim-

ulations, maximum elongation was measured based on the tips of the drop. This

contributes to the deviations from the reference data.

The aim of the benchmark studies is to establish guidelines on how to specify

the numerical parameters related to the interface thickness (Pe and Ch) for a given

set of physical dimensionless numbers (Re, Ca and λ ). The following conclusions

are drawn. For every simulation one has to make a choice for drop resolution (fix

the drop radius a in lattice units). With a set, the interface thickness ξ has to be

specified. In other words, the Cahn number should be chosen. For the present

simulations, the drop resolution can be divided into two regions based on the drop
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Figure 3.5: Drop shape and streamlines at steady-state for drop with radius a = 30
[lu] at Re = 10, Ca = 0.15, λ = 1 and different Pe and Ch numbers
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Figure 3.6: Drop shape (ϕ field) at steady state. The drop radius is a = 30 [lu] and
Pe = 3. (a) ξ = 1.14 [lu], Γ = 4.3; (b) ξ = 2 [lu], Γ = 13.3.

radius: moderately resolved drops with a 6 30 lattice units and highly resolved

drops with radius a> 30 [lu]. The drop radius of 30 lattice units was chosen because

starting from this radius the results are in the mesh independent region (see Fig. 3.4

and A−2). For the drops of moderate resolution a thinner interface is preferable.

In the present study ξ = 1.14 [lu] (see Kendon et al. (2001)) was adopted. For the

highly resolved drops a thicker interface of two lattice units needs to be used.

Thus, the choice of Ch is related to the resolution. Now the Peclet number

should be chosen. This number contains the following parameters: a, ξ , γ̇ , M and

A. The first two (a and ξ ) are already set. The shear rate γ̇ is fixed by the Reynolds

number. The parameter A is related to ξ and κ by equation (3.11). The interface

thickness ξ is specified, while κ is fixed by the capillary number, which means A

has been set as well. The only tunable parameter left is the mobility M that enters

the governing equations as the mobility coefficient Γ (equation (3.8)). The diffusion

over the interface should be faster than the fluid motion. According to Kendon et al.

(2001) the mobility coefficient must be high to allow this. When a thicker interface
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is used, the residual diffusion contaminates more of the area around the drop. The

effect of contamination is shown in Fig. 3.6. The areas inside and outside of the

drop near the tips are more contaminated when higher Γ with thicker interface is

used (Fig. 3.6(b)): one can see the lighter gray area. To clearly show the difference

between these two cases the ϕ distribution along the horizontal lines is plotted on

the graph in Fig. 3.6. The drop edges are sharper in case (a) compared to case (b).

This effect decreases when a higher drop resolution is used (because the ratio of the

interface thickness and the drop size is now smaller). For this reason the smaller

interface thickness is utilized for the lower resolved drops, and a thicker interface

for the higher resolution simulations.

Furthermore, the choice of the mobility coefficient (and consequently Pe) has

influence on stability. In most of the cases the simulations are stable for Γ in the

range 1− 15. Smaller Γ results in more deformation of the drop which can lead

to breakup when a steady shape is expected. On the other hand, too high mobility

can cause instability. Based on the simulation results obtained here, the smaller the

surface tension value (small κ) the higher Γ is needed.

Thus, the results of the benchmark cases show that the simulations are seem-

ingly unpredictable and dependent on Peclet and Cahn numbers. Does it mean

that to obtain a trustworthy physical result one has to perform several verification

simulations and figure out Pe and Ch? To answer this question, different physical

systems are further considered. In most of the simulations the Cahn number is fixed

to Ch = 0.0567. The Peclet number varies from case to case while the mobility

coefficient Γ is set equal to 8 or 10. A wide range of Reynolds and capillary num-

bers and viscosity ratios is examined to cover different physical phenomena. First,

drop deformation and breakup in near-Stokes flow are considered at different cap-

illary numbers. Then inertial effects are investigated at higher Reynolds numbers.

Finally, the combined influence of inertia and viscosity ratio is investigated. Most

of the results are compared to available literature data. Using these simulations, it

is shown that even simulations at moderate resolution can be used to study drop

deformation in shear.
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3.4.2 Stokes flow simulations

To validate the numerical code with existing literature data, near-Stokes flow (Re =

0.0625) simulations of a single drop were performed for capillary numbers of Ca =

0.2, 0.3 and 0.4. The initial drop radius is 20 [lu] in a simulation domain of 8a×

8a× 2a. The Cahn number is fixed to Ch = 0.0567 and the Peclet numbers are

Pe = 0.2, 0.3 and 0.41 for each case, respectively.

The drop deformation D and orientation angle θ in steady state as a function

of the capillary number Ca along with experimental and numerical results from the

literature are depicted in Fig. 3.7 (a) and (b), respectively. Our results agree well

with the reference data. However, as discussed in the previous section, the results

can be adjusted by variation of the Peclet number (or the diffusion coefficient Γ).

Since the reference values of deformation and orientation angles are scattered, it is

demonstrated that choosing Γ from the stable interval (1-15) gives the results that

match reference data. Fig. 3.8 shows cross sections of the drop steady shapes and

velocity fields in the z = 0 plane (see Fig. 3.2) for Ca = 0.1, 0.2, 0.3 and 0.4. The

larger the capillary number, the stronger the drop deformation and the smaller the

inclination angle.

To check the ability of the method to capture the breakup event, the following

situation was simulated: Re = 0.0625, Ca = 0.42 and λ = 1. Based on experiments

and available numerical results the critical capillary number for liquids with equal

viscosities in the Stokes regime (Li et al., 2000) is Cac = 0.41. Thus, for Ca = 0.42

breakup is expected. According to a reference VOF result (Li et al., 2000) (see their

Fig. 11) five fragments are formed: two daughter drops, one satellite droplet and

two sub-satellites. To resolve these fragments a resolution higher than a = 20 [lu]

is required. The initial drop radius is set to 30 [lu] in a simulation domain of size

12a×8a×2a (the same size as in VOF reference data). The Cahn number of Ch =

0.0379 and the Peclet number of Pe = 0.43 are specified. The results are presented

in Fig. 3.9 where the drop shape evolution in time is depicted. The simulated

drop breaks up forming two daughter drops and one satellite droplet between them.

The mesh in this simulation is not sufficiently fine to resolve sub-satellite drops.

85



θ

(a) (b)

Figure 3.7: Deformation (a) and orientation (b) of a drop in simple shear flow

under near Stokes conditions. Present simulation results (at Re = 0.0625) with
free energy LBE ∗; Previous results: � VOF computations of Li et al. (2000); �
boundary integral method of Rallison (1981);× boundary integral method of Kwak
and Pozrikidis (1998); � boundary integral method of Kennedy et al. (1994); ◦
experimental results by Rumscheidt and Mason (1961)

Further refinement (to a = 64 [lu] with Pe = 0.43 and Ch = 0.0177) shows the

formation of sub-satellites after breakup as also reported by Li et al. (2000). The

final stages of the drop shape evolution over time are presented in Fig. 3.10. The

drop deforms sufficiently to reach and wrap around the ends of the periodic domain,

whose size was chosen to be the same as in (Li et al., 2000). Though the domain

is too small to represent the behavior of a single drop in an unbounded domain,

the simulation demonstrates the ability of the method to resolve sub-satellite drops

during the breakup of the thread.

3.4.3 Influence of inertia

In order to capture drop deformation and breakup at higher Reynolds numbers,

three simulations were performed at a capillary number of Ca = 0.3 and Reynolds

numbers Re= 0.1, 0.5 and 0.6 (the Reynolds numbers are taken the same as in the

reference data by Li et al. (2000)). The initial drop radius is a = 20 [lu] in a sim-

ulation domain of 8a× 8a× 2a. The Cahn number is Ch = 0.0568 and the Peclet
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(a) Ca = 0.1 (b) Ca = 0.2

(c) Ca = 0.3 (d) Ca = 0.4

Figure 3.8: Steady state drop shape (black curve stands for the interface), stream-

lines and velocity fields (x− y plane at z = 0). Stokes flow (Re= 0.0625), λ = 1
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t = 0.2 t = 29.2

t = 5.1 t = 29.4

t = 10.0 t = 30.1

t = 20.1 t = 30.6

t = 23.4 t = 31.5

Figure 3.9: Evolution of the drop shape at Re = 0.0625, Ca = 0.42, λ = 1.0 and
initial drop radius a = 30 [lu] (t = t γ̇). The images only show a portion of the full
domain
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t = 35.6

t = 37.6

t = 38.9

Figure 3.10: Evolution of the drop shape at Re = 0.0625, Ca = 0.42, λ = 1.0 and
initial drop radius a = 64 [lu] (t = t γ̇)
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(a) Re = 0.0625 (b) Re = 0.1

(c) Re = 0.5 (d) Re = 0.6

Figure 3.11: Steady-state velocity field and drop shape for Ca = 0.3, λ = 1 and
different Re numbers

numbers are Pe= 0.31, 0.39 and 0.39 for each Re, respectively. The Reynolds num-

ber is increased by increasing the velocity of the wall while keeping the viscosity

of both liquids equal to νd = νc = 1/6 (relaxation time τ f = 1.0).

For a fixed capillary number, an increase in the Reynolds number leads to higher

drop deformation, the drop changes its shape from ellipsoidal to elongated. The

drop shape at steady state together with velocity fields is illustrated in Fig. 3.11

for Re = 0.0625, 0.1, 0.5 and 0.6. The results are in qualitative agreement with

those presented by Li et al. (2000) (see their Fig. 18). The deformation parameter

D, simulated using LBE, is listed in Table 3.2 for different Re together with the

results obtained using the VOF method (Li et al., 2000). The deviation between the

D values is less than 1%.

90



3.4.4 Joint influence of viscosity ratio and inertia

To demonstrate that different liquid viscosities can be handled, a set of simulations

has been performed and the results have been compared to the VOF results reported

by Khismatullin et al. (2003).

The initial drop radius of a = 20 [lu] (at the Cahn number Ch = 0.0567) in a

simulation domain of 12a×4a×2a is considered. The Peclet number varies in the

range from 1 to 5. The relaxation time of the continuous phase is τ f = 0.6, and the

relaxation time for the liquid in the droplet is adjusted based on the viscosity ratio

λ .

The Reynolds numbers were Re= 1, 10 and 50. These are much higher Reynolds

numbers than discussed so far. Khismatullin et al. (2003) reported critical capillary

numbers as a function of viscosity ratio for these Re values. Since the critical cap-

illary number was not known a priori, two capillary values were searched for every

Re number: one for which the droplet attains steady state and the second one for

which the drop breaks up and forms daughter droplets. In Fig. 3.12, Ca is plot-

ted as a function of λ for the three Re numbers. The trends in Cac as a function

of λ and Re found in the present study mimic the ones obtained using the VOF

method (Khismatullin et al., 2003). However, with the increase of Re, the deviation

in Cac values increases compared to the reference results. This can be attributed

to the limited drop resolution. Grid refinement improves the results. For instance,

when Re = 50, λ = 1 the drop with initial radius a = 64 [lu] (Ch = 0.03125) at-

tains a steady shape at Ca = 0.07 and breaks at Ca = 0.08. This result is in a better

agreement with reference data.

To highlight the influence of inertia, the shapes of the drops for different Re

together with internal circulations are shown in Fig. 3.13. Only the results for

Table 3.2: Deformation parameter for different Re numbers, Ca = 0.3, λ = 1.0
Re 0.0625 0.1 0.5 0.6

D (LBE) 0.396 0.399 0.454 0.469
D (VOF (Li et al., 2000)) 0.372 0.3968 0.45 0.4768
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λ

Figure 3.12: Capillary number Ca as a function of viscosity ratio λ . Present simu-
lations with free energy LBE: * Ca for which drop attains steady shape; � Ca for

which drop breaks up; ◦ critical capillary numbers Cac obtained by VOF method

(Khismatullin et al., 2003)

λ = 1 are presented here, but the conclusions are similar for λ = 2 and λ = 3. As

one can see, with the increase of Re the steady shape of the drop is more towards

the vertical direction. In Stokes flow, the drop is more symmetrical over the mid-

plane with one vortex inside the drop. Inertia makes significant changes to the

drop shape and velocity field: with the increase of Re the symmetry across the

mid-plane vanishes and two vortices appear inside the drop (Fig. 3.13(d)). All

these observations are in qualitative agreement with those reported by Renardy and

Cristini (2001b).

The influence of the viscosity ratio can be analyzed using Fig. 3.14 where the

shapes of the drop for Re= 1 and λ = 1, 2 and 3 with internal circulations at the near

critical capillary number are depicted. The increase of the viscosity ratio means the

drop becomes more viscous compared to the matrix liquid. Higher viscosity of the

drop weakens circulation inside the drop: the vortex inside the drop in Fig. 3.14(a)

is more developed compared to that shown in Fig. 3.14(c). The less viscous drop is

more deformable: the symmetry over the mid-plane is lost for the drop with λ = 1

while the drop with λ = 3 is almost symmetric.

An increase of inertia also changes the breakup mechanism. To study the influ-
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Figure 3.13: Drop shape and velocity field inside the drop for different Reynolds
numbers Re and near critical capillary number Ca for each Re (λ = 1); Ch= 0.0568;
(a) Pe = 0.41; (b) Pe = 1.45; (c) Pe = 1; (d) Pe = 4.15

ence of the Reynolds number on breakup, simulations were performed for a system

with viscosity ratio λ = 2, initial drop radius a = 20 [lu] for Re = 1 and 50 and

above the critical capillary numbers for each Re. The evolution of drop shape and

velocity field when Re = 1 is shown in Fig. 3.15. The drop stretches in the flow

direction. Only one vortex is formed inside the drop up to t = 2.5. When the neck

in the middle of the drops begins to form, two symmetric vortices appear. The neck

gradually thins and the drop breaks up forming two daughter droplets.

If inertia is increased up to Re = 50, significant changes in drop breakup take

place (see Fig. 3.16). The tips of the drop are caught by streamlines with higher

velocity that elongate the drop in the vertical direction. Two vortices are formed in

the drop immediately after the start of the shear.

In addition, the influence of resolution was checked for Re = 50. The reso-

lution is increased such that a = 30 [lu]. The results are presented in Fig. 3.17.

This time a satellite drop forms after breakup. Moreover, the critical capillary num-

ber decreased with the increase of resolution which means the results are in better

agreement with reference data if simulated with higher resolution (see Fig. 3.12).
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(a) λ = 1, Ca = 0.28

(b) λ = 2, Ca = 0.29

(c) λ = 3, Ca = 0.32

Figure 3.14: Drop shape and internal circulations at Re= 1 and near critical capil-
lary number for each λ ;Ch = 0.0568; (a) Pe = 1.45; (b) Pe = 1.5; (c) Pe = 1.65
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t = 0.1 t = 42.0

t = 2.5 t = 49.1

t = 16.5 t = 49.4

t = 33.5 t = 50.0

Figure 3.15: Drop shape and velocity field change in time for Re = 1, Ca = 0.3,
λ = 2 (t = t γ̇). Initial drop radius a = 20 [lu]; the Cahn number Ch = 0.0568, the
Peclet number Pe = 1.55
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t = 0.5 t = 64.0

t = 15.3 t = 77.8

t = 25.1 t = 78.3

t = 50.2 t = 83.2

Figure 3.16: Drop shape and velocity field change in time for Re= 50, Ca= 0.09,
λ = 2 (t = t γ̇). Initial drop radius a = 20 [lu]; the Cahn number Ch = 0.0568, the
Peclet number Pe = 3.93
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t = 0.2 t = 82.5

t = 20.0 t = 82.7

t = 50.1 t = 82.9

t = 65.0 t = 84.7

Figure 3.17: Drop shape and velocity field change in time for Re= 50, Ca= 0.085,
λ = 2 (t = t γ̇). Initial drop radius a = 30 [lu]; the Cahn number Ch = 0.0379, the
Peclet number Pe = 3.71
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As one can see in Fig. 3.12, with the increase of inertia in the system even

viscous drops are broken. For Stokes flow conditions, the critical capillary number

significantly increases when λ approaches the value of 3. High Re numbers de-

crease the absolute value of critical capillary numbers and allow viscous drops to

break.

3.5 Conclusions

Numerical simulations of a single liquid drops suspended in another liquid and sub-

jected to simple shear flow have been presented. The free energy lattice Boltzmann

method was used to perform three-dimensional simulations of the binary systems in

order to determine the drop deformation and breakup conditions. During this study

the numerical tool has been implemented, verified and validated with available ref-

erence data.

The full physical description of the problem requires three physical dimension-

less numbers (the Reynolds number, the capillary number and the viscosity ratio).

However, the description of the same problem in numerical space requires two ad-

ditional dimensionless numbers. The adopted diffuse interface method involves the

finite thickness of the interface between the two liquids and related free energy

model parameters. These numerical degrees of freedom are characterized by two

dimensionless numbers: the Peclet and Cahn numbers. The influence of these two

numbers on accuracy and stability was investigated. A guideline on how to choose

Pe and Ch in order to reveal physically realistic behavior of the drop at given Re,

Ca and λ is presented below.

Three benchmark cases were performed to analyze the impact of Pe and Ch. A

range of physical conditions was considered: starting from near Stokes flow and up

to Reynolds of 10. The accuracy and stability are affected by the choice of Pe and

Ch. A smaller Peclet number for a given Cahn number results in less deformation

and smaller inclination angle of the drop. These effects hold for moderately and

highly resolved drops. Correct physical behavior is captured in most of the cases.

For each benchmark case, mesh refinement studies were carried out for different
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sets of Pe and Ch. Two mesh refinement principles were considered. The first prin-

ciple assumes keeping all five dimensionless numbers constant when the mesh is

refined, while in the second mesh refinement principle four dimensionless numbers

(Re, Ca, λ , Pe) and the interface thickness remain the same. This principle follows

the sharp-interface limit of Yue et al. (2010) where it is suggested to maintain the

mobility value M while decreasing the Cahn number Ch. Different choices of the

relationship between M and Ch might be optimal (see (Jacqmin, 2000; Magaletti

et al., 2013)).

Both mesh refinement principles work: the key parameters (drop deformation

and orientation angle) tend to reach asymptotic values. The results tend to mesh

independency when the initial drop radius a > 30 lattice units. This drop size sep-

arates two regions of resolution: a region of moderate resolution when a 6 30 [lu]

and high resolution with a > 30 [lu]. However, for a given set of physical parame-

ters (Re, Ca, λ ) and different numerical parameters (Pe, Ch), the asymptotic values

may differ from each other: at one Peclet number the drop may attain a steady

shape, while at another Peclet number the drop may eventually break at high reso-

lution, or the simulation might be unstable at low resolution.

The accuracy of the results is mostly determined by the mesh resolution and

can only be adjusted by varying Ch and Pe. Drops of moderate resolution require

a thinner interface. The suggested value is 1.14 [lu] (in line with the results of

Kendon et al. (2001)). For highly resolved drops a thicker interface is preferable

(at least two lattice units). Thus, the interface thickness is set based on the re-

searcher’s preferences on mesh resolution. Now the Cahn number is known, the

Peclet number needs to be set. It was shown that a Pe specification actually is the

specification of the mobility M because the rest of the parameters involved in Pe

are already determined by the physical dimensionless numbers and by Ch. The mo-

bility value is determined by the mobility coefficient Γ. The present simulations

and the observations of Kendon et al. (2001) have shown that to allow diffusion

over the interface to occur faster than fluid motion, the mobility coefficient should

be high enough. Based on the present results, the simulations are stable when the

mobility coefficient is in the range 1− 15. The thicker the interface the higher Γ
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values (i.e. smaller Pe) are required. If Pe is high then convection over the interface

dominates diffusion and the interface breaks in cases where a steady state with one

drop should be attained. On the other hand, too high Γ (usually� 20) might cause

instability. If there is reference data then these can be used to find Pe. And then this

Pe value can be used in further simulations. If the reference data is not available, it

is suggested to select the mobility coefficient value from the stability range 1−15,

then the deviation of numerical results will be within 20% for near-Stokes flow and

less for Reynolds numbers of the order of one.

To demonstrate that even moderately resolved drops can be used to investigate

the physics of drop deformation and breakup, further simulations were carried out.

The drops of a = 20 and a = 30 [lu] were chosen with an interface thickness of

1.14 [lu]. These drops were exposed to a wide range of physical conditions (Re =

0.0625−50). The mobility coefficient was equal to 10 in most of the cases.

The results of Stokes flow simulations for deformation and breakup agree well

with the results of other numerical techniques as VOF, boundary integral method

and experiments. The deviation of deformation and orientation angle is within 20%

for the capillary number range 0.1− 0.4. Moderate drop resolution is not enough

to capture sub-satellite drops after breakup at Ca = 0.42. Highly resolved drops

should be used. For relatively low Reynolds numbers (Re = 0.1, 0.5, 0.6) and

capillary numbers less than critical, the obtained drop deformation is in excellent

agreement with VOF results presented by Li et al. (2000): the deviation of the drop

deformation value is less than 1%. The ability of the code to handle different liquid

viscosities at higher Re numbers was also tested. Even though the trend of the

curves of capillary number as a function of viscosity ratio for different Reynolds

numbers was captured, the deviation from VOF results (Khismatullin et al., 2003)

increased for higher Re. It was demonstrated that a way to improve agreement is to

increase the resolution of the LBE simulations.

The impact of the Peclet and Cahn numbers does not outweigh the valuable

advantage of the utilized diffuse interface method over the interface tracking tech-

niques: the feasibility to perform simulations of a system involving a high fraction

of dispersed phase, i.e. large numbers of drops. The verified and validated numer-
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ical tool will be used for industrial applications. For example, for a given binary

system of two liquids under applied shear it is possible to determine the resulting

drop size distribution (DSD). Or if the final product should have a certain DSD

then the proper shearing conditions can be found. The advantage of numerical ex-

periments is the possibility to visualize the entire flow. Moreover, one can modify

and apply the operating conditions that are challenging to implement in a real ex-

perimental set-up. As for further steps, the developed tool will be extended for

the dispersion formation simulations under turbulent flow conditions (Komrakova

et al., 2013).
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Chapter 4

Effects of dispersed phase viscosity
on drop deformation and breakup in
inertial shear flow1

4.1 Introduction

Studies of drop behavior in simple flow geometries have been used to interpret

data on dispersion and emulsion formation due to more complex flow structures

as they occur in process equipment (Rueger and Calabrese, 2013). While most

experimental and simulation research has considered creeping flow (Grace, 1982;

Marks, 1998; Rallison, 1984; Rumscheidt and Mason, 1961; Stone, 1994; Zhao,

2007), drops in complex flows, such as turbulence, can experience drop Reynolds

numbers anywhere in the range 0.01− 100 (Komrakova et al., 2013). To predict

whether drops will break in turbulent flow, it is necessary to understand how the

conditions for breakup at moderate Reynolds numbers differ from those in creeping

flow. While studies have considered the conditions for breakup in simple shear flow

at Reynolds numbers up to 100 in systems with droplets that are as viscous or more

viscous than the continuous phase (Khismatullin and Renardy, 2003; Renardy and

Cristini, 2001), neither experiments nor simulations have been reported for the case

of drops that are less viscous than their surroundings. This case is not unusual: for

example, water droplets may be dispersed in a much more viscous oil (Boxall et al.,

1A version of this chapter has been submitted. A.E. Komrakova, Orest Shardt, D. Eskin, J.J.
Derksen. Phys. Fluids
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2011; Rueger and Calabrese, 2013). In the oil recovery industry, well productivity

can be reduced by formation damages caused by oil-based emulsions that contain

brine droplets (Fjelde, 2007). If a monodisperse emulsion is formed, then damage

might occur even at low dispersed phase volume fractions. An understanding of

deformation and breakup behavior of low-viscosity drops in a more viscous fluid

will therefore fill an important gap in current knowledge with impact on industrial

applications.

In the present work, the deformation and breakup of a single drop suspended

in another liquid under simple shear flow is studied with numerical simulations

using a free energy lattice Boltzmann method (Swift et al., 1996). The details

of the method, its verification and validation can be found in (Komrakova et al.,

2013). The physical problem is determined by three dimensionless numbers: the

drop Reynolds number Re = γ̇a2/νc, the capillary number Ca = aγ̇µc/σ , and the

viscosity ratio λ = µd/µc. Here, a is the undeformed drop radius; γ̇ is the shear

rate; νc is the kinematic viscosity of the continuous phase; µc, µd are the dynamic

viscosities of continuous and dispersed phases, respectively; and σ is the interfacial

tension between the liquids.

The goal of this study is to investigate the behavior of a drop at a fixed Reynolds

number Re = 10 over a range of viscosity ratios λ = 0.1−2, with a focus on λ < 1.

For each λ it is necessary to determine the critical capillary number Cac that must

be exceeded to break a drop. At subcritical capillary numbers, the drop achieves a

steady final shape. The internal circulation patterns and the deformation parameters

(elongation and orientation angle; see definitions below) are used to characterize the

steady shape. When a supercritical capillary number is simulated, the drop breaks,

and the breakup mechanism depends on the values of Ca and λ . Changes in the

drop breakup process are examined as the capillary number increases from 20%

above critical, to 50 and 100%.

The distinct characteristic of numerical simulations is that the entire deforma-

tion and breakup processes can be visualized revealing peculiarities of the events.

However, in order to study physical processes numerically, it is necessary to select

numerical parameters that produce trustworthy physical results. It was shown by
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Komrakova et al. (2013) that in addition to the three physical dimensionless num-

bers mentioned above (the Reynolds number, the capillary number and the viscosity

ratio), two numerical dimensionless numbers have to be specified. In the diffuse

interface method, which is used in this work, the finite thickness of the interface

between the two liquids and related free energy model parameters are involved.

These numerical degrees of freedom are characterized by two dimensionless num-

bers (Van der Sman and Van der Graaf, 2008): the interface Peclet Pe number and

the Cahn Ch number. The interface Peclet number Pe = γ̇aξ/(MA) relates the con-

vection time scale to the interface diffusion time scale. The Cahn number Ch = ξ/a

is the ratio of the interface thickness and drop radius. Here, ξ is the interface thick-

ness, M is the mobility, and A is a free energy model parameter. In the present

study, the guidelines as developed by Komrakova et al. (2013) have been applied to

specify Pe and Ch.

The rest of the paper is organized as follows. In Section 4.2 a brief description

of the numerical method and its implementation are presented. In Section 4.3 the

ability of the method to compute flows over the required range of viscosity ratios is

demonstrated. The results of drop deformation and breakup are presented in Section

4.4. Conclusions are drawn in Section 4.5.

4.2 Numerical method and its implementation

The behavior of a drop in shear flow is studied numerically with the diffuse in-

terface free energy lattice Boltzmann equation (LBE) method developed by Swift

et al. (1996). The details of diffuse interface (or phase field) methods can be found

in (Ding et al., 2007; Jacqmin, 1999; Yue et al., 2004); our implementation of the

method is presented in (Komrakova et al., 2013). In particular, the interface be-

tween the two components is represented by a thin transition region with a finite

thickness in which the composition varies smoothly. The composition of the sys-

tem is described by the order parameter ϕ which is the relative concentration of the

two components (Badalassi et al., 2003; Cahn and Hilliard, 1958; Penrose and Fife,

1990). To simulate the fluid dynamics of the binary mixture of fluids, the continuity
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and momentum equations are solved in conjunction with Cahn Hilliard convection-

diffusion equation for the order parameter (Bray, 1994). Thus, the evolution of

density, velocity and order parameter are governed by the continuity, momentum,

and convection-diffusion equations (Kendon et al., 2001):

∂tρ +∂α(ρuα) = 0 (4.1a)

∂t(ρuα)+∂β (ρuαuβ ) =−∂β Pth
αβ

+∂β ν
(
ρ∂αuβ +ρ∂β uα

)
(4.1b)

∂tϕ +∂α(ϕuα) = M∂
2
ββ

µ (4.1c)

where uα is the velocity; the index α stands for the Cartesian directions x, y and

z; ρ and ν are the density and the kinematic viscosity of the mixture, respectively.

Here Pth
αβ

is the ‘thermodynamic’ pressure tensor. It contains two parts (Kendon

et al., 2001): an isotropic contribution Pδαβ that represents the ideal gas pressure

and the ‘chemical’ pressure tensor Pchem
αβ

. The chemical potential in equation (4.1c)

is: µ(ϕ) = Aϕ − Aϕ3− κ∂ 2
ααϕ . Here, A < 0 and κ are parameters of the free

energy model that are related to the surface tension and interface thickness; M is

the mobility.

In LBE two particle distribution functions are utilized to solve system (4.1):

one function f (rrr, t) is used to solve the continuity (4.1a) and Navier-Stokes (4.1b)

equations and the second one g(rrr, t) is used for the convection-diffusion equation

(4.1c). The distribution functions evolve by a time step ∆t. All simulations have

been performed using a single relaxation time collision operator (Bhatnagar-Gross-

Krook (BGK) model (Bhatnagar et al., 1954)). The discrete lattice Boltzmann equa-

tions for the evolution of f and g have the following form:

fq(rα + cαq∆t, t +∆t)− fq(rα , t) =−
fq− f eq

q

τ f
,

gq(rα + cαq∆t, t +∆t)−gq(rα , t) =−
gq−geq

q

τg
,

(4.2)

where the index q counts over the number of the discrete velocity directions; f eq
q ,

geq
q are the discretized Maxwell-Boltzmann distributions (or equilibrium distribu-

tions); cαq denotes the discrete velocity set and τ f , τg are dimensionless relaxation

parameters. The equilibrium distributions f eq
q , geq

q are given in (Kusumaatmaja,
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2008). The D3Q19 lattice is adopted here where D = 3 denotes three-dimensional

flow and Q = 19 is the number of velocities. In this lattice arrangement, each site

communicates with its six nearest and twelve diagonal neighbors. The lattice Boltz-

mann method operates in dimensionless lattice units (lattice space, time step, and

lattice density for the length, time and density units, respectively). For the method

described here, only uniform cubic lattices can be used; the mesh step ∆x is taken

as unity, as is the time step ∆t.

The distribution functions are defined such that the following summations over

all directions q at each lattice point give the local density of the fluid ρ , the local

fluid momentum ρuα and the local order parameter ϕ , respectively:

∑
q

fq = ρ ∑
q

cαq fq = ρuα ∑
q

gq = ϕ (4.3)

The two liquids have different kinematic viscosities. To implement this, the

kinematic viscosity of the mixture ν is set to be a function of the order parameter

ϕ:

ν(ϕ) = νc
ϕ0−ϕ

2ϕ0
+νd

ϕ0 +ϕ

2ϕ0
(4.4)

where νc and νd are the kinematic viscosities of continuous and dispersed phases,

respectively; and ϕ = ±ϕ0 = ±1 is the value of the order parameter in the bulk

phase on either side of the interface. The relaxation parameter for fq varies with the

composition according to:

τ f (ϕ) =
ν(ϕ)

c2
s

+
1
2

(4.5)

Here c2
s = 1/3 is the speed of sound in lattice units.

The mobility M (see eq. (4.1c)) is determined by the coefficient of mobility Γ

and the relaxation parameter τg according to:

M = Γ

(
τg−

1
2

)
(4.6)

For a planar interface, an analytical solution (Van der Sman and Van der Graaf,

2008) gives the ϕ profile ϕ(x) = ϕ0 tanh (x/ξ ) (x is the coordinated normal to

interface). The thickness of the diffuse interface is characterized by a characteristic
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Figure 4.1: Simulation domain with the following boundary conditions: x = 0 and
x = Ld are periodic boundaries; y = 0 has a rotational symmetry boundary condi-
tion; y = H is a no-slip wall moving with constant velocity uw; z = 0 and z = −W
are symmetry planes. At t = 0 the drop has a spherical shape with initial radius a.
Due to the symmetry of the problem only one quarter of the domain needed to be
simulated

length ξ :

ξ =

(
2κ

−A

)1/2

. (4.7)

The interfacial tension σ follows from:

σ =
4
3

κ
ϕ2

0
ξ
. (4.8)

A simulation code for multiple graphics processing units (GPUs) (Shardt et al.,

2013) was used to perform all simulations. The simulation domain is shown in Fig.

4.1. A symmetry boundary condition through the middle of the domain (z = 0) and

a rotational symmetry boundary condition (y = 0) were used to avoid unnecessary

computations. With these boundary conditions, only a quarter of the full domain

was simulated (the highlighted volume in Fig. 4.1). The shear velocity at y=H was

imposed using the method of Ladd (1994). A symmetry condition was used for the

phase field ϕ at y = H. Periodic boundary conditions were imposed on the x = 0

and x = L planes. Typical processing speeds for the simulations were 200− 480

million lattice node updates per second (Mlups) for the smaller and larger domains,

respectively.
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Figure 4.2: A slice of the simulation domain at z = 0 for validation simulations of
stratified shear flow; h = 64 [lu], H = 4h, λ = µd/µc = 0.1−2.

4.3 Stratified flow benchmark

Validation simulations were performed to assess the numerical method over the

range of viscosity ratios from λ = 0.1 to 2. A stratified sheared flow for which an

analytical solution exists was considered. A slice at z = 0 of a 0.5h×4h×0.5h (x,

y, z) simulation domain (where h = 64 [lu]) is shown in Fig. 4.2. Only a quarter

of the full domain was simulated (rotational symmetry at y = 0). The full domain

therefore represents three sheared liquid layers. The full height of the inner fluid

layer is 128 lattice units [lu]. The boundary conditions are the same as described

above.

The stratified flow simulations require specification of the following parame-

ters: the interface thickness ξ , the parameters A and κ , the mobility M, and the

coefficient of mobility Γ. These parameters were chosen the same as for a sheared

drop (that will be considered later), and then used in the benchmark simulations to

assess the accuracy of simulations with these parameters.

The procedure for selecting the numerical parameters according to the guide-

lines of Komrakova et al. (2013) is as follows. First, the drop resolution is speci-

fied: the drop radius is chosen to be 64 lattice units to perform high-resolution sim-

ulations that can resolve the satellite and sub-satellite drops formed after breakup.

This drop size requires an interface thickness of at least two lattice units (Kom-

rakova et al., 2013), and therefore ξ = 2 [lu] is chosen. Consequently, the Cahn
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number is Ch = 0.03. The second step is to determine the Peclet number, which

requires specifying several parameters. The relaxation time of the continuous fluid

phase is kept constant at τ f = 0.7 which specifies a continuous phase viscosity of

νc = 1/15 [lu]. The shear rate γ̇ follows from the Reynolds number, which is 10

in the present study: γ̇ = Re ·νc/a2. The interfacial tension σ is determined by the

capillary number: σ = aγ̇µc/Ca (where µc = ρνc and the density ρ = 1 in lattice

units). To determine Pe, an estimate of the typical Ca is needed, which is not known

yet, as the critical capillary number is an output of the simulation. For an initial es-

timate, Ca = 0.15 is used, which is the near-critical value for λ = 1 reported by

Khismatullin and Renardy (2003). The interfacial tension σ and interface thickness

ξ give the value of κ (see (4.8)): κ = 3σξ/(4ϕ2
0 ). Finally, with κ and ξ specified,

the value of the parameter A is (see (4.7)): A = 2κ/ξ 2. Thus only one parameter

remains to be specified in the Peclet number − the mobility M which is determined

by the mobility coefficient Γ. Every simulation in the present study was performed

with the relaxation time for the phase field τg = 1 which implies M = Γ/2 (see

(4.6)). Consequently, Pe = 12.0/Γ. As shown in (Komrakova et al., 2013), to

perform stable simulations the mobility coefficient should be chosen in the range

1− 15. Furthermore, it was outlined that for the case at Re = 10, Ca = 0.15 and

λ = 1, Pe > 4 yields results that agree well with reference data. For that reason it

was decided to set the Peclet number to Pe = 6. Therefore, Γ = 2 was used in the

benchmark simulations.

The x-velocity component in the fluid as a function of y (see Fig. 4.2) for dif-

ferent viscosity ratios λ is presented in Fig. 4.3. The relative deviation of velocity

values from the analytical solution (δ = |uanalytical− unumerical|/uanalytical·100%) is

shown in Fig. 4.4. Calculation of δ with uanalytical = 0 was not performed because

the first node in the y-direction is located half a lattice space from the boundary.

As one can see, the overall largest deviation occurs with λ = 2 which is 2.5% and

happens on the interface. For the rest of the λ values, the relative deviation from

the analytical solution is within±1%. It is concluded that the method can deal with

viscosity ratios 0.16 λ 6 2 in a consistent manner.
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λλ λ λ λ λ

Figure 4.3: The x-velocity component as a function of position between the domain
center and the sheared plate for different λ in stratified flow; y/H = 0.25 is the
location of the interface

δ δ

δ δ

δ δ

λ

λ

λ

λ

λ

λ

Figure 4.4: Relative deviation of x-velocity component in the fluid between numer-
ical and analytical solutions as a function of position between the domain center

and the sheared plate for different λ in stratified flow; y/H = 0.25 is the location of
the interface
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Table 4.1: Capillary number Ca as a function of viscosity ratio λ at Re = 10
λ 2.0 1.0 0.5 0.3 0.2 0.15 0.1
Highest subcritical Ca 0.148 0.154 0.163 0.169 0.177 0.183 0.192
Lowest supercritical Ca 0.149 0.155 0.164 0.170 0.178 0.184 0.193
Cac (Khismatullin and Renardy, 2003) 0.139 0.147

4.4 Results

The simulations to determine critical capillary numbers were performed with an

initial drop radius a = 64 lattice units in a 16a× 4a× 2a (x, y, z) domain size

(a quarter of the full domain). The height of the domain is the same as used in

the reference simulations of Khismatullin and Renardy (2003). Additionally, the

influence of the proximity of walls was considered in (Komrakova et al., 2013) and

it was shown that H = 4a is sufficient to avoid confinement effects. The thickness

of the interface was two lattice units so that Ch = 0.03. The diffusion coefficient

Γ was set to 2 (as in the benchmark). This gives Peclet numbers in the range 5−8

depending on the capillary number specified for each simulation. The reference

data presented by Khismatullin and Renardy (2003) for λ = 1 and 2 were used for

validation.

Two capillary numbers were searched for every λ : one for which the droplet

does not break and attains a steady state (highest subcritical Ca) and the second

one for which the drop breaks into fragments (lowest supercritical). The critical

capillary number is determined as the arithmetic average of these two values. The

results are presented in Fig. 4.5 and in Table 4.1. The relative deviation of Cac from

the reference data is 5 and 7% for λ = 1 and 2, respectively. For λ in the range 0.1

to 2, the critical capillary number increases as the viscosity ratio decreases.

In the literature, two parameters are used to measure the deformation of the

drop when a steady shape exists: the Taylor deformation parameter and the orienta-

tion angle (Taylor, 1932, 1934). Inertia (which is relevant for shear with Re = 10)

changes the steady shape of drops from ellipsoidal (at Stokes flow) to elongated.

Moreover, the symmetry over the mid-plane of the drop (see Fig. 4.6) might be

lost. For that reason in this work the ratio of maximum elongation to initial un-
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λ

Figure 4.5: Capillary number Ca as a function of viscosity ratio λ for the Reynolds
number Re = 10. Present simulations with free energy LBE: � Ca for which drop
attains steady shape; ◦ Ca for which drop breaks; * critical capillary numbers Cac
obtained by VOF method (Khismatullin and Renardy, 2003)

Figure 4.6: Drop elongation L and orientation angle θ measurements

deformed drop radius L/a is used to characterize the deformation instead of the

Taylor deformation parameter. The second parameter is the orientation angle θ of

the drop. The maximum elongation of the drop is the length of the line that connects

two points at the tips of the drop located at the maximum distance apart. The angle

of inclination (or orientation angle) is accordingly measured between this line and

the horizontal axis.

The drop deformation at the highest subcritical capillary numbers for different

viscosity ratios is presented in Fig. 4.7. As the viscosity ratio decreases the drop

becomes more elongated (Fig. 4.7 (a)). The inclination angle decreases as λ de-

creases (Fig. 4.7 (b)).

The steady shape of the drop and internal circulations at the highest subcritical
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λ λ

θ

(a) (b)

Figure 4.7: Drop deformation results at Re= 10. The L/a ratio (a) and the orienta-
tion angle θ (b) as a function of viscosity ratio λ at the highest subcritical Ca (the
square symbols in Fig. 4.5)

capillary numbers for each viscosity ratio are depicted in Fig. 4.8. At λ = 2 the

shape of the drop is almost symmetrical over the mid-plane; but the tips of the drop

are slightly tilted away from the mid-plane. The drop has a ‘capsule’ shape. At Re=

10 (unlike Stokes flow) two vortices develop inside the drop over the entire range

of λ . As λ decreases, the drop becomes more elongated and less symmetrical over

the mid-plane. In addition, the drop becomes more deformable, and the internal

circulations follow the pattern of the drop shape. At a viscosity ratio of 0.1, the tips

of the drop are clearly tilted away form the mid-plane. The symmetry across the

mid-plane is lost.

The viscosity ratio λ also significantly affects the breakup process. Consider the

differences in breakup process between λ = 2 (Fig. 4.9) and 0.1 (Fig. 4.11) at the

lowest supercritical capillary numbers. The evolution of drop shape and velocity

field for λ = 2 at Ca = 0.149 is depicted in Fig. 4.9. By the time instant t = 19.9,

the shape of the drop is almost ellipsoidal, and only one vortex has formed inside

the drop. By t = 39.4, the drop becomes elongated. Starting from this time, two

vortices form and they become fully-developed by t = 85.0. The drop starts necking

in the middle at about t = 104.5. The shape of the drop changes from elongated to

dumbbell. The drop continues to stretch while thinning its center portion. Eventu-
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λ = 2, Ca = 0.148 λ = 0.2, Ca = 0.177

λ = 0.5, Ca = 0.163 λ = 0.15, Ca = 0.183

λ = 0.3, Ca = 0.169 λ = 0.1, Ca = 0.192

Figure 4.8: Drop shape and internal circulations at Re = 10 and the highest sub-
critical capillary number for each viscosity ratio λ . The colour of the streamlines
shows the speed based on x− and y−velocity components in the (x−y) section (see
Fig. 4.1) and varies from minimum (dark blue) to maximum (dark red) values
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ally a thin bridge develops that connects two ‘bulbs’ formed at the ends of the drop

(see time instant t = 132.8). Further shearing of the drop leads to the ‘bulbs’ pinch-

ing off, forming two daughter droplets and one satellite between them (t = 134.1).

When the satellite drop retracts at t = 135.1 a tendency to form two sub-satellite

droplets can be seen (see the enlarged image in Fig. 4.10). However, the satellite

drop retracts faster than the two bridges thin. Finally only one satellite drop appears

(t = 135.7). After breakage, the satellite drop stays stationary, while the daughter

droplets move away (t = 137.0). This drop breakup mechanism has been called

end-pinching (Marks, 1998; Stone et al., 1986; Zhao, 2007).

The evolution of drop shape and velocity field when the viscosity ratio is λ = 0.1

at Ca = 0.193 is shown in Fig. 4.11. Two vortices form inside the drop right from

the beginning (t = 18.2). By the time instant t = 65.4, the drop elongates and loses

symmetry over the mid-plane. The direction of the vortices inside the drop slows

down the drop elongation starting at t = 98.0 (see the L/a change in time for λ = 0.1

in Fig. 4.13). At t = 114.3 the drop starts rotating clockwise away from the axis

of elongation. The central part of the drop is completely aligned with the flow at

t = 125.0. After that it continues rotation and thins. By the time instant t = 128.8

a bridge that connects the ‘bulbs’ of the drop is formed. During the thinning of

the bridge, the ‘bulbs’ of the drop move slowly away from each other. Finally, the

bridge breaks. Three fragments are formed: two daughter droplets and one satellite

drop between them (t = 130.2).

For every viscosity ratio λ = 2, 1, 0.5, 0.3, 0.2, 0.15, and 0.1 only three frag-

ments form after breakup at Ca∼ Cac by the end-pinching mechanism: two daugh-

ter droplets and one satellite between them. In general, at higher λ the drop is more

elongated before breakup. However, drop elongation before breakup strongly de-

pends on how close the specified capillary number is to the critical value. Bławzdziewicz

et al. (2002) showed analytically for creeping flow conditions it is difficult to obtain

accurate critical capillary numbers due to the divergence of the time required to

reach stationary state. In experimental studies, there is uncertainty of determining

whether a drop is gradually breaking or gradually attaining a stationary shape at

shear rates very close to the critical value (Cristini et al., 2003). The same difficulty
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t = 0.3 t = 130.5

t = 19.9 t = 132.8

t = 39.4 t = 133.8

t = 85.0 t = 134.1

t = 104.5 t = 135.1

t = 124.0 t = 135.7

t = 127.3 t = 137.0

Figure 4.9: Drop shape and velocity field over time at the lowest supercritical cap-

illary number Ca= 0.149, Re= 10, λ = 2 (t = t γ̇). The images show∼ 40% of the
full domain height. Colour indicates velocity magnitude from lowest (dark blue) to

highest (dark red)
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Figure 4.10: Enlarged image of satellite drop shape and velocity field at Ca= 0.149,
Re = 10, λ = 2 and t = 135.1 showing a tendency to form two sub-satellite drops
due to formation of bridges at the locations indicated be the arrows

applies to numerical computations (Cristini and Renardy, 2006). The L/a ratio at

the moment of breakage as a function of λ is plotted in Fig. 4.12. As one can see,

L/a when λ = 0.15 is larger than L/a when λ = 0.2. This non-monotonic behavior

is related to the time to break the drop which behaves in a complex manner as a

function of λ (see Fig. 4.13 where the L/a ratio is plotted as a function of time

for different λ ). In each case the time needed to break the drop can be related to

the orientation of the bridge under the influence of inertia. Figure 4.14 shows the

drop shape and velocity field for different λ at the time just before breakup. When

λ = 2 the angle between the bridge and x-direction is sharp (see Fig. 4.14). When

λ = 0.5 the bridge is horizontal. For smaller viscosity ratios the bridge forms an

obtuse angle with x-direction. The volume of the bridge decreases as the viscosity

ratio decreases, making smaller satellite drops after breakup. In addition, the prox-

imity of Ca to the critical value Cac also affects the time needed to break the drop.

The rate of drop elongation at early stages of deformation steadily increases as λ

decreases (see Fig. 4.13).

In addition, for every viscosity ratio the initial elongation process (from the

beginning of deformation up to the moment of neck formation) is slow. Once the

neck in the middle of the drop starts to form, the elongation rate increases. The same

observations were reported by Stone et al. (1986) who investigated drop behavior

in a linear two-dimensional flow under creeping flow conditions.

As demonstrated, for instance, by Zhao (2007) for creeping flow, the breakup

process depends on the viscosity ratio and capillary number. Thus it is of interest

to see these dependencies for Re = 10. Therefore the cases with λ = 2 and 0.1
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t = 0.3 t = 120.8

t = 18.2 t = 125.0

t = 32.9 t = 127.9

t = 45.9 t = 128.8

t = 65.4 t = 129.6

t = 98.0 t = 129.9

t = 114.3 t = 130.2

Figure 4.11: Drop shape and velocity field over time at the lowest supercritical

capillary number Ca = 0.193, Re = 10, λ = 0.1. The images show ∼ 40% of the
full domain height. Colour indicates velocity magnitude from lowest (dark blue) to

highest (dark red) values
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λ

Figure 4.12: The L/a ratio at the moment of breakage as a function of viscosity
ratio λ at the lowest supercritical capillary number

λ
λ
λ
λ
λ
λ
λ

Figure 4.13: The L/a ratio as a function of time for different viscosity ratios at the
corresponding lowest supercritical capillary numbers. The time series are stopped

at the time instant just before the breakup event
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λ = 2, Ca = 0.149, t = 133.8 λ = 0.2, Ca = 0.178, t = 127.9

λ = 0.5, Ca = 0.164, t = 111.0 λ = 0.15, Ca = 0.184, t = 117.2

λ = 0.3, Ca = 0.17, t = 113.9 λ = 0.1, Ca = 0.193, t = 129.9

Figure 4.14: Drop shape and velocity field for different viscosity ratios at Ca ∼
Cac (the lowest supercritical value) just before breakup. Colour indicates velocity

magnitude from lowest (dark blue) to highest (dark red) values
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Table 4.2: Effect of mesh resolution
λ = 0.1 λ = 2

Drop radius a, [lu] 48 64 48 64
Highest subcritical Ca 0.191 0.192 0.151 0.148
Lowest supercritical Ca 0.192 0.193 0.152 0.149

have been studied at Ca = 1.2Cac, Ca = 1.5Cac, and Ca = 2Cac (and as before

Re = 10). Based on experimental observations of Zhao (2007) and our results with

Ca∼ Cac at λ = 2, at higher supercritical capillary numbers the drop will elongate

more before breakup. Due to the larger elongation, longer simulation domains are

required. Unless otherwise stated, the simulations were performed in 40a×4a×2a

domains (a quarter of the full domain) with an initial undeformed drop radius a= 48

[lu] and interface thickness ξ = 2 [lu] (the Cahn number Ch = 0.04). The mobility

coefficient Γ varied from 2 to 6 to keep the Peclet number in the range 5 to 7.

To assess the accuracy of the method at the lower mesh resolution (drop radius

a = 48 [lu]; previously it was 64) the critical Ca for λ = 0.1 and 2 were determined

and compared to the higher resolution results. The comparison is presented in Table

4.2. The deviation of Cac obtained at a = 48 and 64 is 0.5% and 2% for λ = 0.1 and

2, respectively. Good agreement is therefore demonstrated, and the lower resolution

was used for further studies. Since the critical capillary numbers determined at

higher mesh resolution are more accurate, their values were used in setting Ca in

the simulations at the higher supercritical capillary numbers.

Drop breakup at Ca= 1.2Cac for λ = 2 and 0.1 is shown in Fig. 4.15 (a) and (b),

respectively. The deformation happens in the same manner as it does at the lowest

supercritical capillary number. The drop breaks by the end-pinching mechanism.

In both cases five fragments are formed after breakup. Two sub-satellites appear

upon retraction of the satellite drop after the bridge breaks. Additionally, the drops

are broken at different angles: compare the location of the sub-satellites for λ = 2

and 0.1 at the last frames in Fig. 4.15.

Zhao (2007) experimentally investigated drop breakup in dilute Newtonian emul-

sions in simple shear creeping flow over a wide range of viscosity ratios (0.0017 <

λ < 3.5). It was demonstrated that a drop at Ca∼ Cac is broken under steady shear
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t = 35.0 t = 38.2

t = 36.7 t = 38.5

t = 37.9 t = 39.4
(a) (b)

Figure 4.15: Drop breakup process at Ca = 1.2Cac: (a) λ = 2; Ca = 0.178 (b)
λ = 0.1; Ca= 0.231

by the end-pinching mechanism into two equal sized daughter drops (and possible

satellite and sub-satellites) for the entire range of viscosity ratio studied. Our re-

sults of drop deformation and breakup at the higher Reynolds number of Re = 10

at Ca∼ Cac and Ca= 1.2Cac are in line with these observations at lower Re. How-

ever, inertia changes the initial stages of drop deformation: it induces two vortices

inside the drop and the drop loses its symmetry across the mid-plane. In contrast to

this, under creeping flow conditions the initially spherical drop is deformed into an

ellipsoid. The rest of the breakup process occurs in the same manner in both cases:

the drop stretches forming a neck in the middle. Eventually the neck breaks after

thinning and the drop disintegrates into two daughter drops separated by smaller

satellite and sub-satellite drops. In addition it was outlined by Zhao (2007) that as

λ decreases, the ends of the deformed drop become more slender and increasingly

pointed. Similar behavior is seen at our higher Reynolds number (compare the drop

ends in Fig. 4.14 for λ = 2 and λ = 0.1).

The drop breakup processes at Ca = 1.5Cac when λ = 2 and 0.1 are presented

in Fig. 4.16 (a) and (b), respectively. The initial drop deformation happens in the

same manner as it does for lower capillary numbers for each viscosity ratio. At

t = 22.6 the drop with λ = 2 starts necking while the drop when λ = 0.1 is still
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elongating. Because of the high viscosity of the dispersed phase (λ = 2), the drop

is significantly stretched. As a result the bridge thins forming two necks (t = 31.5),

and then the drop ends pinch off (t = 33.6). The daughter droplets move away

from each other. The central thread retracts after breakup, forming satellite drops

at both ends (t = 35.9). At later time, the thread is broken by the end-pinching

mechanism. In the end, eight fragments are produced after breakup (t = 39.1).

When λ = 0.1, the drop is less elongated compared to the case with λ = 2. After

the first breakup event (t = 32.7) the fragments move slowly away from each other

while the central portion of the drop retracts. The neck formed in the middle (t =

34.7) is not thin enough to break. Eventually only five fragments are formed. Thus

shear of a more viscous drop at Ca = 1.5Cac produces more drops than shear of a

less viscous drop. In addition, daughter droplets move away faster from each other

when λ = 2 compared to λ = 0.1.

It is necessary to note that small satellite and especially sub-satellite drops dis-

appear almost immediately after formation (e.g. see Fig. 4.16 (a) frames at t = 37.9

and t = 39.1). That means higher mesh resolution, i.e. larger initial drop radius in

lattice units, is required to resolve drops of this size (see (Komrakova et al., 2013)

for details, where it was shown that increasing resolution allows smaller drops rela-

tive to the initial drop size to remain). Additionally, the domain length for the case

with λ = 2 is not enough (the drop wraps around the ends of the periodic domain,

see last frame in Fig. 4.16 (a)). Nevertheless, the drop breakup in the domain center

is not affected by this event.

The drop breakup process at Ca = 2Cac and λ = 0.1 is shown in Fig. 4.17. The

drop is broken into nine fragments by repetition of the end-pinching mechanism.

As noted by Zhao (2007) in Stokes flow, the drops deform into longer threads with

increasing capillary number. The same conclusion holds at Re = 10 for viscosity

ratios of 0.1 and 2.

If a drop with λ = 2 is sheared at Ca = 2Cac, significant elongation is expected

before breakup. Moreover, a thin cylindrical thread is expected to appear. In order

to resolve small fragments and avoid influence of horizontal periodicity, it is nec-

essary to run this simulation in a longer domain and with a higher mesh resolution.
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t = 16.2 t = 16.2

t = 22.6 t = 22.6

t = 31.5 t = 30.4

t = 33.6 t = 32.4

t = 35.9 t = 32.7

t = 36.5 t = 33.6

t = 37.9 t = 34.7

t = 39.1 t = 37.0
(a) (b)

Figure 4.16: Drop breakup process at Ca = 1.5Cac: (a) λ = 2; Ca = 0.223 (b)
λ = 0.1; Ca= 0.289
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t = 9.0 t = 30.4

t = 16.2 t = 32.1

t = 22.6 t = 34.1

t = 26.3 t = 35.6

t = 29.2 t = 37.9

Figure 4.17: Drop breakup process at Ca= 2Cac = 0.385 and λ = 0.1
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t = 39.4

t = 65.8

t = 74.2

t = 89.5

t = 99.0

t = 100.3

t = 105.1

Figure 4.18: Drop breakup process at Ca= 2Cac = 0.297 and λ = 2

Therefore an undeformed drop radius of a = 64 [lu] and a 91.5a×4a×2a simula-
tion domain were chosen. The results are presented in Fig. 4.18. As expected, the

high λ and Ca values cause the formation of a long thin thread that connects the

drop ends (t = 65.8). After the first breakup by end-pinching, two daughter droplets

appear. Next, the thread breaks by the end-pinching mechanism again, producing

drops of almost equal size but slightly smaller compared to the first drops. Eventu-

ally, the cylindrical thread stretches sufficiently that capillary wave breakup occurs

(t = 100.3) due to the growth of axial fluctuations in the thread diameter (Marks,

1998). Moreover, this event produces drops of equal size (t = 105.1). Enlarged

images of the capillary wave breakup event are presented in Fig. 4.19.
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t = 99.3

t = 99.9

t = 100.9

t = 101.6

t = 102.5

Figure 4.19: Capillary wave breakup at Ca= 2Cac and λ = 2 (The images show a
portion of the full domain)

4.5 Conclusions

A free energy lattice Boltzmann method was used to perform three-dimensional

simulations of single liquid drops suspended in another liquid and subjected to sim-

ple shear flow. The guidelines presented by Komrakova et al. (2013) were used

to choose the parameters of the numerical method. In this paper, the influence of

dispersed phase viscosity on the behavior of sheared drops with inertia (Re = 10)

was investigated.

A validation simulation of stratified shear flow was conducted to show that the

numerical method can handle viscosity ratios (dispersed phase viscosity over con-

tinuous phase viscosity) in a range λ = 0.1−2. The results at worst deviated 2.5%
from the analytical solution at λ = 2, and were within 1% for the rest of the λ

values.

High resolution simulations were performed over the range of viscosity ratios

λ = 0.1− 2 at different capillary numbers. The critical capillary number Cac for
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every λ was determined. The Cac value decreases as λ increases. At the highest

subcritical capillary number, the drop becomes less elongated and more oriented

towards the vertical axis with increasing viscosity ratio. Unlike creeping flow, at

Re = 10 two vortices form inside the drop and loss of symmetry across the mid-

plane of the drop is observed.

The results show how the breakup process depends on the viscosity ratio and

the capillary number. High λ values result in significant drop elongation before

breakup. However, the elongation depends on the specified capillary number. Drop

breakup due to end-pinching was observed in every simulation performed: ‘bulbs’

form at the ends of the stretched drop and eventually pinch off. The first breakup

event produces the largest daughter droplets for every viscosity ratio considered.

Depending on the volume of the center portion of the drop, further breakups might

occur. The number of fragments is a function of the viscosity ratio and capillary

number. As Ca increases the number of produced fragments increases. More frag-

ments are formed for higher λ at a given ratio between specified capillary num-

ber and the critical capillary number corresponding to each λ . For λ = 0.1 drops

only break by the end-pinching mechanism at Cac 6 Ca 6 2Cac. When λ = 2 at

Ca = 2Cac the tread becomes sufficiently elongated that capillary wave breakup oc-

curs. Thus the necessary condition for the capillary wave breakup is a sufficiently

high capillary number (for given λ ) to stretch the drop to a sufficient thinness. For

the low viscosity ratio λ = 0.1, Ca = 2Cac is insufficient to break the drop by the

capillary wave breakup mechanism.

At the lowest supercritical capillary number, the rate of drop elongation during

the initial stage of deformation increases as λ decreases. The time needed to break

the drop is related to the orientation of the bridge that connects the ends of the drop.

The bridge volume decreases as λ decreases.

The results of the present study can find industrial applications, such as in pro-

duction and processing of emulsions and liquid-liquid dispersion. In these pro-

cesses, the drop size distribution of the final product is of great importance. The

proposed numerical method could be used to determine the drop size distribution

(DSD) of given liquids and shearing conditions. Alternatively, the shearing condi-
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tions required for a desired DSD can be estimated. For instance, capillary wave

breakup produces drops of equal size. Knowledge of the conditions when this

breakup mechanism occurs may improve the efficiency of monodisperse emulsion

production. Moreover, the sizes of the daughter droplets formed as a result of the

breakage event for λ = 0.1 at Ca = 2Cac are also nearly monodisperse. This phe-

nomenon can be used for production of monodisperse emulsions in a device as

simple as a colloid mill, representing a narrow gap Taylor-Couette device.
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Chapter 5

Numerical study of turbulent
liquid-liquid dispersions1

5.1 Introduction

Turbulently-induced mixing of two immiscible liquids is a common operation in

chemical, petroleum, pharmaceutical, mining, and food industries. Even though

liquid-liquid mixing has been extensively studied experimentally and theoretically

in terms of hydrodynamic and interface science aspects, the process remains as one

of the most difficult and least understood mixing problems (Paul et al., 2004). A

broad range of experimental research has resulted in practical correlations to char-

acterize liquid-liquid dispersions (Berkman and R.V., 1988; Boxall et al., 2011;

Brown and Pitt, 1972; Calabrese et al., 1986; Collins and Knudsen, 1970; Davies,

1987; Ravelet et al., 2007; Rueger and Calabrese, 2013; Sleicher, 1962; Weinstein

and Treybal, 1973). With the rapid development of computational facilities, mod-

elling and numerical simulation became valuable additions to the experiments in

order to study dispersed systems.

Detailed characterization of two liquids mixing and interactions of dispersed

and carrying phases requires a two-phase flow method that resolves the interface.

Interface-tracking (e.g. boundary-integral, finite-element, and immersed boundary)

and interface-capturing (lattice Boltzmann, level-set, volume-of-fluid (VOF), and

phase-field) methods have been used to perform multi-phase simulations (Cristini

1A version of this chapter will be submitted to a journal.
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and Tan, 2004). In interface-tracking methods the interface between the fluids is

sharp and fluid properties vary discontinuously over the interface. These methods

are very accurate for simulating the onset of breakup and coalescence, but do not

work through the transitions: in order to break or merge drops, complex somewhat

arbitrary ‘cut-and-connect’ algorithms have to be employed to change the topology

of the meshes (Cristini and Tan, 2004). In interface-capturing methods, the interface

is implicitly captured by volume functions that use the data from the same fixed

grid on which the flow is calculated. Fluid properties change smoothly over the

diffuse interface between two fluids. These methods do not require any ‘cut-and-

connect’ operations, no interface treatments or reconstructions are needed which

makes them suitable for simulating breakup and coalescence in immiscible two-

fluid systems (Cristini and Tan, 2004). In the present study, a diffuse interface free

energy lattice Boltzmann equation (LBE) method (Swift et al., 1996) is adopted

for turbulent liquid-liquid dispersion simulations. In addition, the physics of drop

interaction on the microscopic level can be naturally incorporated. Moreover, the

important advantages of LBE are simplicity of programming and parallelization of

the algorithm which allows for very detailed simulations.

The first attempt to perform direct numerical simulations (DNSs) of turbu-

lent dispersed liquid-liquid flows using LBE has been done by Derksen and Van

den Akker (2007). An isothermal model based on kinetic theory proposed by He

et al. (1999) was used for two-phase flow modeling. The authors presented a novel

multi-scale approach to model the dynamics of liquid-liquid dispersion in a fully pe-

riodic three-dimensional domain in which homogeneous isotropic turbulence was

generated by means of random forcing. The promising results showed that the pro-

posed numerical approach can contribute to understanding of immiscible liquids

mixing.

Droplet breakup in homogeneous and isotropic turbulence was numerically sim-

ulated by Toschi et al. (2010) using LBE. The authors utilized the multi-component

Shan-Chen model (Shan and Chen, 1993) for two-phase flow modeling, supple-

mented with a large scale force to stir turbulence. The method was validated and

applied for the study of turbulent emulsion flow (Biferale et al., 2011); the proba-
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bility distribution function of droplets’ accelerations was presented.

The droplet size distribution of water-in-oil type emulsions of a moderate vis-

cosity ratio of 0.3 and with oil-soluble amphiphilic surfactant in forced, steady, ho-

mogeneous turbulence was studied using lattice Boltzmann simulations by Skartlien

et al. (2013). The details of the numerical method can be found in (Nekovee et al.,

2000). The authors studied the effect of surfactant on the DSD defined under dif-

ferent levels of turbulent kinetic energy.

In the present study, DNSs are performed to study a turbulently agitated liquid-

liquid dispersion. Large-scale parallel computations are carried out in three-dimen-

sional, fully-periodic cubic domains. In such domains, a stationary homogeneous

isotropic turbulence is generated by means of linear forcing (Lundgren, 2003). The

resolved Kolmogorov scales range from ηK = 1 to 10 dimensionless lattice units

[lu]. Two considered sizes of the domain edge Ld are 500 and 1000 [lu]. To check

that the simulation domain size is sufficiently large to avoid self-correlation, the

single-phase turbulence is examined before introduction of the second phase.

The physical size of a simulation domain is 1.763 mm3 (with Ld = 500 [lu]) and

3.523 mm3 (with Ld = 1000 [lu]) which is much smaller than the volume of any

standard mixing device. The results obtained even in such a domain can be useful

for industrial applications. A wide variety of mixing devices are used to produce

liquid-liquid dispersions. Among them are stirred tanks, static mixers, and rotor-

stator mixers. Each device has different geometry and capacity, creates various flow

structures, and provides a range of agitation rates. The properties of the produced

dispersion, such as stability, apparent viscosity, rheology, and interfacial area avail-

able for transfer processes, are determined by the size of the drops in the system.

The resulting drop size distribution (DSD) and the specified energy input (that is de-

fined by capabilities of a mixing device) are closely related (Rueger and Calabrese,

2013). It was experimentally demonstrated by Cutter (1966) that in stirred tanks

which are widely used for dispersion formation, the dissipation of power is inho-

mogeneous, which causes spatial variations of the DSD. Thus the drop sizes can

be related not to an average power input but to a local value of energy dissipation.

Davies (1987) showed that the relationship between the local power dissipation per
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unit mass of the liquid and the DSD (represented by the maximum stable drop diam-

eter, dmax) is independent of the specifics of the mixer geometry, and can be applied

for different mixing devices. Later Zhou and Kresta (1998) experimentally proved

an idea of Hinze (1955) that the maximum local energy dissipation rate creates the

stresses that eventually break the drops. Therefore, in order to break a drop to a

desired size a certain intensity of the maximum local shear stress is needed which

requires a specified local energy dissipation rate (Rueger and Calabrese, 2013).

Thus energy input per unit mass (or energy dissipation rate) in a domain consid-

ered in the present study can be considered as a local value compared to the size

of industrial equipment. It is possible to relate the local energy dissipation rate and

parameters of the dispersion. In addition, homogeneous isotropic turbulence gener-

ated throughout the domain minimizes the effects of non-homogeneity, allowing to

obtain more fundamental results.

The free energy LBE method for two-phase flow modeling is a diffuse inter-

face method. The interface evolves naturally due to the thermodynamic mechanism

employed. However, diffuse interface methods suffer from numerical dissolution

of small droplets (Van der Sman and Van der Graaf, 2008). Our previous studies

(Komrakova et al., Jeju, Korea, May 26-31) outlined that in order to mitigate the

drop dissolution effect, it is necessary to increase the resolution of the Kolmogorov

scales which are the smallest dynamic scales in the turbulent field, and have the

smallest size of drops in the range 20− 30 [lu]. One of the goals of this study is

to show that the dissolution effect can be mitigated if this condition is satisfied.

In addition, a drawback of the method is that it exhibits unphysically easy coales-

cence when drops are in close proximity (Jia et al., 2008). This issue will also be

addressed in this study.

The numerical method was verified and validated using simulations of drop

deformation and breakup in simple shear flow (Komrakova et al., 2014a,b). The

effects of interface-related numerical parameters on accuracy and stability were

demonstrated by Komrakova et al. (2014a). The authors established guidelines on

how to specify these parameters to reveal physically realistic drop behavior. These

guidelines were successfully applied to investigate the effect of dispersed phase vis-
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cosity on the behavior of a sheared drop at a drop Reynolds number Re = 10 over a

range of viscosity ratios λ = 0.12 (dispersed phase viscosity over continuous phase

viscosity). The guidelines and results obtained in the sheared drop simulations of

(Komrakova et al., 2014a,b) are used in the present study to determine the numer-

ical parameters for turbulently flowing two-phase system. Effects of Kolmogorov

scale resolution and dispersed phase volume fraction (ranging from 0.001 to 0.2)

on dispersion formation are examined. The process of dispersion formation is visu-

alized, capturing drop breakup and coalescence on the microscopic scale. In each

case the drop size distribution and mean diameters are determined and related to

turbulent properties.

The rest of the paper is organized as follows. Section 5.2 contains the details

of the numerical method. The simulation parameters are presented in Section 5.3.

The results of one- and two-phase flow simulations are presented in Sections 5.4

and 5.5, respectively. Finally, conclusions are drawn in Section 5.6.

5.2 Mathematical formulation

A diffuse interface free energy lattice Boltzmann equation method proposed by

Swift et al. (1996) is adopted here to perform the simulations. The details of dif-

fuse interface (or phase field) methods can be found in (Jacqmin, 1999; Magaletti

et al., 2013; Yue et al., 2004). The interface between the two components is repre-

sented by a thin transition region with a finite thickness in which the composition

varies smoothly. The order parameter ϕ which is the relative concentration of the

two components (Badalassi et al., 2003; Cahn and Hilliard, 1958; Penrose and Fife,

1990) describes the composition of the system. To simulate the fluid dynamics of

the binary mixture of fluids, the continuity and momentum equations are solved

in conjunction with Cahn Hilliard convection-diffusion equation for the order pa-

rameter (Bray, 1994). The evolution of density, velocity and order parameter are

governed by the continuity, momentum, and convection-diffusion equations, re-
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spectively (Kendon et al., 2001):

∂tρ +∂α(ρuα) = 0 (5.1a)

∂t(ρuα)+∂β (ρuαuβ ) =−∂β Pth
αβ

+∂β ν
(
ρ∂αuβ +ρ∂β uα

)
+ρFtα (5.1b)

∂tϕ +∂α(ϕuα) = M∂
2
ββ

µ (5.1c)

where uα is the velocity; the index α stands for the Cartesian directions x, y and

z; ρ and ν are the density and the kinematic viscosity of the mixture, respectively.

Here Pth
αβ

is the ‘thermodynamic’ pressure tensor. It contains two parts (Kendon

et al., 2001): an isotropic contribution Pδαβ that represents the ideal gas pressure

and the ‘chemical’ pressure tensor Pchem
αβ

. The chemical potential in equation (5.1c)

is: µ(ϕ) = Aϕ − Aϕ3− κ∂ 2
ααϕ . Here, A < 0 and κ are parameters of the free

energy model that are related to the surface tension and interface thickness; M is

the mobility; Ftα is the forcing term to generate turbulence (discussed below).

Two distribution functions are utilized to solve system (5.1): one function

f (rrr, t) is used to solve the continuity (5.1a) and Navier-Stokes (5.1b) equations

and the second one g(rrr, t) is used for the convection-diffusion equation (5.1c). The

distribution functions evolve by a time step ∆t. All simulations have been per-

formed using a single relaxation time collision operator (Bhatnagar-Gross-Krook

(BGK) model (Bhatnagar et al., 1954)). The discrete lattice Boltzmann equations

for the evolution of f and g have the following form:

fq(rα + cαq∆t, t +∆t)− fq(rα , t) =−
fq− f eq

q

τ f
+Fq,

gq(rα + cαq∆t, t +∆t)−gq(rα , t) =−
gq−geq

q

τg
,

(5.2)

where the index q counts over the number of the discrete velocity directions; f eq
q ,

geq
q are the discretized Maxwell-Boltzmann distributions (or equilibrium distribu-

tions); Fq is the forcing term; cαq denotes the discrete velocity set and τ f and τg

are dimensionless relaxation parameters. The equilibrium distributions f eq
q , geq

q are

given in Kusumaatmaja (2008). The D3Q19 lattice is adopted here where D = 3

denotes three-dimensional flow and Q = 19 is the number of velocities. In this lat-

tice arrangement, each site communicates with its six nearest and twelve diagonal
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neighbors. The lattice Boltzmann method operates in dimensionless lattice units

[lu] (lattice space, time step, and lattice density for the length, time and density

units, respectively). For the method described here, only uniform cubic lattices can

be used; the mesh step ∆x is taken as unity, as is the time step ∆t.

The distribution functions are defined such that the following summations over

all directions q at each lattice point give the local density of the fluid ρ , the local

fluid momentum ρuα and the local order parameter ϕ , respectively:

∑
q

fq = ρ ∑
q

cαq fq = ρuα +
Ftα

2 ∑
q

gq = ϕ (5.3)

The forcing term is incorporated as follows:

Fq = wq(cαqFtα) (5.4)

where Ftα is the macroscopic force embedded in momentum equation (5.1b) and

wq are the weight coefficients (Kusumaatmaja, 2008).

In order to consider two liquids with different kinematic viscosities, the kine-

matic viscosity of the mixture ν is set to be a linear function of the order parameter

ϕ:

ν(ϕ) = νc
ϕ0−ϕ

2ϕ0
+νd

ϕ0 +ϕ

2ϕ0
(5.5)

where νc and νd are the kinematic viscosities of continuous and dispersed phases,

respectively; and ϕ = ±ϕ0 = ±1 is the value of the order parameter in the bulk

phase on either side of the interface. The relaxation parameter for fq varies with the

composition according to:

τ f (ϕ) =
ν(ϕ)

c2
s

+
1
2

(5.6)

Here c2
s = 1/3 is the speed of sound in lattice units.

The mobility M (see eq. (5.1c)) is determined by the coefficient of mobility Γ

and the relaxation parameter τg according to:

M = Γ

(
τg−

1
2

)
(5.7)

For a planar interface, an analytical solution (Van der Sman and Van der Graaf,

2008) gives the ϕ profile ϕ(x) = ϕ0 tanh (x/ξ ) (x is the coordinated normal to the
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interface). The thickness of the diffuse interface is characterized by the character-

istic length ξ :

ξ =

(
2κ

−A

)1/2

. (5.8)

The interfacial tension σ follows from:

σ =
4
3

κ
ϕ2

0
ξ
. (5.9)

Statistically stationary homogeneous isotropic turbulence is generated through-

out the simulation domain. The viscous dissipation extracts energy from the sys-

tem. To sustain a constant turbulence during the simulation, the energy input is

organized on the integral scale by means of forcing. The linear forcing proposed by

(Lundgren, 2003) is adopted here. A local force proportional to the local velocity

is imposed in the liquid. In this case, the momentum equation (5.1b) gets a forcing

term Ftα = A f uα and the parameter A f is determined as

A f =
ε

3u2
rms

(5.10)

where ε is the volume-averaged energy dissipation rate per unit mass which is an

input parameter, urms is the volume-averaged root-mean-square fluid velocity which

is an output parameter calculated every time step.

The detailed exploration of linear forcing has been carried out by (Rosales and

Meneveau, 2005). The authors confirmed that the linear force implementation in

physical space gives the same results as when applied in spectral space. In addition,

this type of forcing was successfully implemented in the context of the LBE method

by several authors (Derksen, 2008; Valino et al., 2010).

The turbulence generation method requires a non-zero velocity field to start

with. Thus, at t = 0 the velocity field was initialized using the following relations

(Derksen, 2008):

ux = uinitsin
(

2π j
λ0

)
uy = uinitsin

(
2πk
λ0

)
uz = uinitsin

(
2πi
λ0

)
(5.11)

where λ0 = 1.01L/4, i = j = k = (1 : L); uinit = 5uK is the maximum velocity in the

initial distribution; Ld is the domain edge size; and uK is the Kolmogorov velocity

scale.
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The code was implemented in Fortran 90 with message passing interface (MPI)

for parallel processing. The fully-periodic three-dimensional domain was divided

into equal cubic sub-domains in every direction, one for each CPU. With 125 CPUs,

the processing time varied from two days for the simulation with the lowest resolu-

tion of the Kolmogorov scales in a 5003 domain and up to 3 months for simulations

in a 10003 domain.

5.3 Simulation parameters

Lattice Boltzmann methods operate in lattice space, therefore, all parameters should

be defined in lattice units. For the adopted LBE method, the density value in the

incompressible limit should be equal to unity. Thus, the density of continuous ρc

and dispersed ρd phases in lattice space is set to ρc = ρd = 1 in lattice units [lu].

The kinematic viscosity of the continuous liquid is related to the relaxation time

for the fq distribution function as follows: νc = c2
s (τ f − 0.5). The relaxation time

corresponding to the continuous phase is set to 0.51 for simulation with the highest

energy input, and 0.53 for the rest of the simulations. These values are specified

to satisfy the incompressibility limit, i.e., the velocity fluctuations in lattice units

should not be greater than 0.1cs. The kinematic viscosity of the dispersed phase

(and the related relaxation time) is determined based on the ratio of dispersed to

continuous phase viscosities λ = µd/µc. The relaxation time for the second distri-

bution function gq is set to unity in each simulation τg = 1.

Special care should be taken when setting up the numerical parameters related

to the interface, which are: the interface thickness ξ , the free energy model param-

eters A and κ , the mobility M, and the coefficient of mobility Γ. The values of these

parameters are related to the drop size which varies during dispersion formation.

Being exposed to continuously changing turbulent flow, drops undergo a variety of

simultaneously occurring events caused by interactions with turbulent eddies that

convect, deform, merge and break them. However, a connection with the flow in a

simpler geometry, such as simple shear flow, can help to determine the interface-

related numerical parameters. For example, a drop in a simple shear flow is akin to
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a drop interacting with two co-rotating eddies in turbulent flow. It was outlined by

Komrakova et al. (2014a) that for a drop in simple shear flows numerical parameters

related to the interface are determined by two dimensionless numbers: the interface

Peclet number Pe = γ̇aξ/(MA) which relates the convection time scale to the inter-

face diffusion time scale, and the Cahn number Ch = ξ/a which is the ratio of the

interface thickness and drop radius. Here, γ̇ is the shear rate, and a is the drop ra-

dius. It was shown that the accuracy of drop deformation and breakup simulations is

determined by mesh resolution and can be adjusted by Pe and Ch. High-resolution

drops with radii larger than 30 [lu] require a thicker interface thickness ξ > 2 [lu],

while drops with a < 30 [lu] need thinner interfaces (Komrakova et al., 2014a).

The goal of the present simulations is to resolve small drops after multiple breakup

processes. Therefore, the interface thickness is set to ξ = 1.14 [lu]. The values of

A and κ are related to the interfacial tension (see equations (5.8) and (5.9)). The

latter one is set to σ = 0.01 [lu]. According to a guideline of Komrakova et al.

(2014a) higher interfacial tension (bigger κ) requires a smaller diffusion coefficient

Γ. Based on their range of κ and Γ values, the diffusion coefficient in the present

simulations is set to Γ = 4.

Simulation parameters are listed in Table 5.1. Each simulation is performed

in a fully-periodic cubic domain with an edge size Ld . Cases with Ld = 500 and

1000 [lu] are examined. Simulation cases cover a wide range of energy dissipation.

The characteristic velocity of turbulent flow u∗ is used to determine the energy

dissipation using the scaling law (Tennekes and Lumley, 1973) ε = (u∗)3/L. It is

necessary to note that increase of the resolution of Kolmogorov length scale ηK

requires decrease of energy dissipation ε in lattice units. These parameters are

related as follows (Pope, 2000):

ηK =

(
ν3

c
ε

)1/4

(5.12)

Since viscosity of the continuous phase νc is constant, ηK can be changed by vari-

ation of ε .

Turbulent flow at high Reynolds numbers is characterized by the energy cas-

cade (Pope, 2000). In the energy cascade there are two main processes: the transfer
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Table 5.1: Simulation parameters: Ld is the cubic simulation domain edge length;
u∗ is the characteristic velocity; νc is the kinematic viscosity of continuous phase;
ηK is the Kolmogorov length scale

u∗, [lu] νc, [lu] ηK , [lu]
Ld = 500 [lu] 0.03 0.003 1

0.02 0.01 2.5
0.01 0.01 5

0.004 0.01 10
Ld = 1000 [lu] 0.03 0.01 2.5

of energy from larger to successively smaller scales determined by the energy dis-

sipation rate ε , and the viscous dissipation determined by the kinematic viscosity

νc. The Kolmogorov length scale ηK separates two sub-ranges of this cascade: the

inertial (length scale is significantly larger than Kolmogorov length scale l� ηK)

and viscous (length scale is of the order of or less than Kolmogorov length scale

l < ηK). Inertial stresses determine the flow in the inertial sub-range while viscous

stresses are negligible. Viscous effects are dominant in the viscous sub-range and

responsible for the energy dissipation. Depending on whether it is the inertial or

the viscous stresses that are dominant when balanced against restoring forces, the

maximum stable droplet size falls in either the inertial sub-range or the viscous

sub-range (Boxall et al., 2011). The restoring forces that counteract external defor-

mation of droplets are due to interfacial tension, and the force associated with the

viscosity of the drop.

The simulations are performed in the following way. Homogeneous isotropic

turbulence with known energy dissipation rate is generated throughout the domain.

Then the second phase is injected. The drop size distribution of the steady state

dispersion is characterized by two representative drop sizes: the Sauter mean di-

ameter d32, and the maximum stable drop diameter, dmax, that can resist breakup.

The dmax is determined as the maximum volume-equivalent drop diameter. The

Sauter mean diameter is the ratio of the third and the second moment of the drop

size distribution:

d32 =
∑

k
i=1 d3

i

∑
k
i=1 d2

i
(5.13)
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Figure 5.1: Volume-averaged root-mean-square fluid velocity urms as a function of
time in one-phase systems for varying resolution of Kolmogorov scales (ηK is the

Kolmogorov length scale). The simulation domain size is 5003. The parameters are

related to the corresponding Kolmogorov scales

where di is the diameter of drop i and k is the number of drops in the system. Drop

sizes are expressed in terms of their volume-equivalent diameter di = (6V/π)1/3.

The d32 is directly related to the interfacial area per unit volume aV in the dispersion

which is an important industrial parameter: d32 = 6φ/aV (where φ is the holdup of

the dispersed phase).

5.4 Single-phase turbulence

Fully-developed turbulence was generated in the simulation domain before injec-

tion of the second phase. In each case, the initial velocity field was specified accord-

ing to equations (5.11). The evolution in time of the volume-averaged root-mean-

square fluid velocity of one-phase systems for different cases of Kolmogorov length

scale resolution ηK is shown in Fig. 5.1. Both velocity and time are scaled with the

corresponding Kolmogorov velocity uK = (νcε)1/4 and time τK = (νc/ε)1/2 scales.

It takes at least 100τK to generate the turbulence.

The velocity magnitude fields in the cross-sections of the 5003 domain when
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(a) (c)

(b) (d)

Figure 5.2: Velocity magnitude fields of fully-developed turbulent flows in the

cross-sections of 500× 500 [lu] for different resolution of Kolmogorov scales. (a)
ηK = 1 [lu]; (b) ηK = 2.5 [lu]; (c) ηK = 5 [lu]; (d) ηK = 10 [lu]

turbulence is fully-developed are presented in Fig. 5.2. Even with ηK = 1 [lu] the

turbulence is resolved. To see the structures of the turbulent flow, the vector plots

are shown in the cross-sections of the 10003 domain in Fig. 5.3.

For the case with the Kolmogorov length scale ηK = 5 [lu] at time instant

t = 199.2τK the longitudinal f (r) and lateral g(r) two-point velocity correlation

functions are determined. These functions give a measure for the velocity correla-

tion for two points at distance r apart in any direction (Batchelor, 1953), and can be

calculated as follows:

f (r) =
up(x)up(x+ r)

u2rms
g(r) =

un(x)un(x+ r)
u2rms

(5.14)

where up and un denote velocity components at a point x parallel and normal, re-

spectively, to the separation vector r.

The calculation of the correlation function has been performed via sampling of
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ηK = 2.5 [lu] ηK = 10 [lu]

Figure 5.3: Velocity fields of fully-developed single-phase turbulent flow in the

cross-sections of a 10003 domain for different resolution of Kolmogorov length

scale ηK

the flow field with a large number (∼ 106) of randomly placed points (the descrip-
tion of the procedure can be found in ten Cate et al. (2006)). The results are pre-

sented in Fig. 5.4 . As one can see both curves exhibit the well-known behavior of

the correlation functions for turbulent flow (e.g. shown in Batchelor (1953)). Since

both functions become zero at large separations, the domain size is sufficiently large

to avoid self-correlations.

5.5 Two-phase flow

5.5.1 Effect of Kolmogorov scale resolution

A simulation with the lowest resolution of Kolmogorov scales (ηK = 1 [lu]) was

performed in a 5003 domain with a dispersed phase volume fraction φ = 0.005 and

viscosity ratio λ = 1. A single droplet with initial undeformed diameter of 106ηK

was injected into the fully-developed turbulent flow.

The dispersion formation process is visualized by plotting the iso-surfaces of the

order parameter ϕ = 0 (which represent the liquid-liquid interface) at different time

instances (Fig. 5.5). At the moment t = 3.3τK starting from the drop injection, the

drop is already significantly deformed. By the time t = 19.9τK , small droplets have
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(a) (b)

Figure 5.4: Longitudinal (a) and lateral (b) velocity correlation functions for the
case with Kolmogorov length scale resolution ηK = 5 [lu] at the time instant t =
199.2τK . Symbols refer to the value of the functions at a given distance between
two points; curves represent the data fit

been formed. The large dispersed phase structure is, however, not yet disintegrated.

Finally, the drop is broken into small fragments (see t = 59.7τK).

By the time t = 59.7τK , most of the drops have diameters less than 10ηK (d < 10

[lu]) approaching the viscous sub-range of the energy spectrum. When the drop size

becomes comparable to the Kolmogorov length scale, the drops interact with the

eddies that create shear of the order of γ̇ = 1/τK . In order to compare this drops in-

teraction to a drop behavior in simple shear flow, the dimensionless numbers based

on drop radius a are used. The drop Reynolds number for a drop with radius a = 5

[lu] is Re = γ̇a2/νc = 25. The relevant capillary number for the viscous sub-range

is Ca = aγ̇µc/σ = 0.05. In order to break the drop, the critical capillary number

Cac should be exceeded. According to the results presented by (Khismatullin et al.,

2003) who studied drop breakup in simple shear flow, the critical capillary number

at Re = 10 is Cac = 0.147 and at Re = 50 is Cac = 0.058 for λ = 1. This means

that at Re = 25 the critical capillary number is in between these two values. Con-

sequently, the drops of radii ∼ 5 [lu] and smaller might not be broken under the

present agitation conditions. However, complex interactions with multiple eddies

might lead to drop breakup. Droplets of diameter ∼ ηK could be satellites and

sub-satellites formed after breakup of larger droplets.
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3.3τK 19.9τK

39.8τK 59.7τK

Figure 5.5: Iso-surfaces of order parameter ϕ = 0 at different time instants relative
to the Kolmogorov time scale τK for the case with ηK = 1 [lu] and viscosity ratio
λ = 1. The dispersed phase volume fraction is φ = 0.005. The moment of drop
injection refers to t = 0
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In addition, the numerical method is plagued by numerical dissolution of small

drops. These drops disappear almost immediately after generation. The change

in time of the number of drops in the system is shown in Fig. 5.6 (a). The num-

ber of drops increases with time reaching maximum and then decreases to zero. A

decrease in the number of drops to zero is a numerical effect. The ratio of the dis-

persed phase volume V to the initial drop volume Vinit is plotted versus time in Fig.

5.6 (b). The maximum drop diameter and the Sauter mean diameter as functions of

time are presented in Fig. 5.7. Because of dissolution, both of them eventually go

down to zero. To reduce the dispersed phase dissolution, it is suggested to improve

the resolution of Kolmogorov scales so that the minimum size of the drops after

breakup is in the range 20−30 lattice units. The numerical dissolution of the drop

can be considered as a numerical mass transfer process between the liquids. The

Peclet number which relates the convection time scale to the diffusion time scale

can be used to characterize this process. Smaller Pe results in lower mass transfer

rate since diffusion process has larger time scale than convection. It can be shown

that an increase of ηK resolution leads to smaller Peclet number. For simplicity,

consider a single drop of radius equal to the Kolmogorov length scale a = ηK . The

drop is deformed in a shear flow characterized by a shear rate γ̇ = 1/τK , where

τK = (νc/ε)0.5. Using relation (5.12), the shear rate is γ̇ = νc/η2
K . Then the Peclet

number Pe = aγ̇ξ/(MA) = ξ νc/(MAηK). Consequently, the ratio of Peclet num-

bers for the cases with higher ηK2 and lower ηK1 resolution is Pe2/Pe1 = ηK1/ηK2.

That means the numerical dissolution rate in the case characterized by Pe2 is re-

duced.

It was shown experimentally, for instance, by Lovick et al. (2005); Pacek et al.

(1998) that the DSD of a liquid-liquid dispersion formed under turbulent flow con-

ditions is close to a log-normal distribution. The drop size distribution for the case

with the highest energy input is shown in Fig. 5.8 (a) at time instant t = 59.7τK .

Probability plots are used to assess whether data comes from a certain distribution.

In Fig. 5.8 (b) the numerically obtained distribution is compared to a log-normal

distribution (for the same time instant as the DSD shown in Fig. 5.8 (a)). The

strongest deviation from the log-normal distributions are for the smallest and largest
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τ τ

(a) (b)

Figure 5.6: Number of drops (a) and dispersed volume V in the system relative to

the initial value Vinit (b) as functions of time for the case with Kolmogorov length
scale resolution ηK = 1 [lu] and viscosity ratio λ = 1. The dispersed phase volume
fraction is φ = 0.005

τ

η

Figure 5.7: Dimensionless maximum dmax and Sauter mean d32 diameters as a
function of time for the case with Kolmogorov length scale resolution ηK = 1 [lu]
and viscosity ratio λ = 1. The dispersed phase volume fraction is φ = 0.005
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(a) (b)

Figure 5.8: Drop size distribution (a) and cumulative log-normal probability plot (b)

for the case with the Kolmogorov length scale resolution ηK = 1 [lu], viscosity ratio
λ = 1, dispersed phase volume fraction φ = 0.005 at the time instant t = 59.7τK

droplets. The reason is an underestimation of small droplet size due to numerical

dissolution. The largest droplets might break if the simulation is continued.

Now consider the results of the simulations with the higher resolution of the

Kolmogorov length scale ηK = 2.5 [lu]. The simulations were performed in a 5003

domain with one initial drop of diameter d = 42.4ηK [lu] that results in a dispersed

phase volume fraction φ = 0.005. Two viscosity ratios were examined λ = 1 and

1/3.

With the increase of the Kolmogorov scale resolution the dispersed phase dis-

solution is reduced (compare Fig. 5.9(b) with Fig. 5.6(b)). The number of drops

as a function of time for λ = 1 and 1/3 is shown in Fig. 5.9(a). Significantly less

drops are produced compared to the case with ηK = 1 [lu] because the domain size

gets smaller by (2.5)3.

The factor of three difference in viscosity between the liquids is not sufficient

to see a prominent difference in the number of drops generated. Nevertheless, more

drops form when λ = 1/3 which is physically correct, since the counteracting in-

ternal viscous forces become weaker. Generation of more drops results in larger

interfacial area which leads to faster drop dissolution (see Fig. 5.9(b)). The liquid-

liquid interface at different time instance when λ = 1 and 1/3 is demonstrated

in Fig. 5.10. As one can see, the system with less viscous dispersed phase has
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Figure 5.9: Number of drops (a) and dispersed volume V in the system relative to

the initial value Vinit (b) as functions of time for the cases with Kolmogorov length
scale resolution ηK = 2.5 [lu] and viscosity ratio λ = 1 and 1/3. The dispersed
phase volume fraction is φ = 0.005

more droplets (compare Fig. 5.10 (b) and (e)). The maximum drop diameter and

the Sauter mean diameter for the case with Kolmogorov length scale resolution in

ηK = 2.5 [lu] are presented in Fig. 5.11.

In turbulent flow, the drop is broken due to interactions with turbulent eddies.

To isolate drop breakup events and minimize the probability of drop coalescence, a

dilute dispersion formation was considered characterized by a dispersed phase vol-

ume fraction φ = 0.001 and a Kolmogorov length scale resolution of ηK = 2.5 [lu].

The initial drop radius is a = 32 [lu] (d = 25.5ηK). Assume that co-rotating turbu-

lent eddies interacting with the drop create a shear rate of the order of γ̇ = 1/τK .

Then the drop Reynolds number Re = 155. The entire process of dispersion for-

mation is demonstrated in Fig. 5.12. The diameters of the four drops at t = 26.3τK

are: 19.5ηK , 18.1ηK , and two drops with diameter of 8.6ηK . The captured drop

deformation and breakup process in turbulent flow mimics drop behavior in simple

shear flow: elongation, necking, and breakage with formation of larger daughter

drops and two satellite droplets.

With further increase of the Kolmogorov scale resolution up to ηK = 10 [lu],

the injected 10.6ηK diameter drop stays almost spherical (Fig. 5.13).
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Figure 5.10: Iso-surfaces of order parameter ϕ = 0 at different time instants relative
to the Kolmogorov time scale τK for the case with ηK = 2.5 [lu]; (a)-(c) viscosity
ratio is λ = 1; (d)-f) viscosity ratio is λ = 0.3. The dispersed phase volume fraction
is φ = 0.005. Drop injection time refers to t = 0
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Figure 5.11: Dimensionless maximum dmax (a) and Sauter mean d32 (b) diameters
as functions of time for the cases with Kolmogorov length scale resolution ηK = 2.5
[lu] and viscosity ratios λ = 1 and 0.3. The dispersed phase volume fraction is
φ = 0.005

Figure 5.12: Iso-surfaces of order parameter ϕ = 0 at different time instants relative
to the Kolmogorov time scale τK for the case with ηK = 2.5 [lu] and viscosity ratio
λ = 1. The dispersed phase volume fraction is φ = 0.001. Drop injection time
refers to t = 0
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Figure 5.13: Dispersed phase at t = 14.7τK for the case with ηK = 10 [lu] and
viscosity ratio λ = 1. The dispersed phase volume fraction is φ = 0.005. The
moment of drop injection refers to t = 0

5.5.2 Effect of dispersed phase volume fraction

Liquid-liquid dispersion formation at high loadings of dispersed phase was exam-

ined for the cases with the Kolmogorov length scale resolution ηK = 2.5 [lu], equal

phase viscosities, and at dispersed phase volume fractions φ = 0.05 and 0.2. The

simulations were carried out in a 5003 domain. The initial size of the injected drop

was 91.0ηK and 144.5ηK for φ = 0.05 and 0.2, respectively.

A higher dispersed phase volume fraction significantly reduces the dissolution.

The specific surface (ratio between interfacial area and dispersed phase volume)

gets smaller, thus, the numerical mass transfer over the interface is less efficient.

The number of drops as a function of time is shown in Fig. 5.14 (a). The change

in time of dispersed phase volume relative to the initial value is depicted in Fig.

5.14 (b). When φ = 0.2 the V/Vinit levels off to the value of 0.96. For this case

when breakup and coalescence reach equilibrium the number of drops in the system

obtains an average value of ∼ 45 (Fig. 5.14 (a)).

The iso-surfaces of ϕ = 0 at different time instants for the cases of φ = 0.05

and 0.2 are shown in Fig. 5.15. The maximum drop diameter and the Sauter mean

diameter are presented in Fig. 5.16 (a) and (b), respectively. When φ = 0.2 the dmax

and d32 fluctuate around their average values.

For both values of dispersed phase holdup it is not possible to obtain a disper-

sion: droplets continuously break and coalesce, and a large volume of dispersed
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Figure 5.14: Number of drops (a) and dispersed volume V in the system relative

to the initial value Vinit (b) as functions of time for the cases with Kolmogorov
length scale resolution ηK = 2.5 [lu] and viscosity ratio λ = 1. The dispersed phase
volume fraction is φ = 0.05 and 0.2

phase remains connected (especially at φ = 0.2). An example of simultaneous

breakage and coalescence events is shown in Fig. 5.17 for the case when φ = 0.2.

Even though the drops are broken efficiently into smaller drops, easy coalescence

which is an issue of the numerical method, prevents dispersion formation. In dif-

fuse interface methods, the drop interfaces have a finite thickness. If they overlap

for sufficient time during the collision, the drops coalesce (Jia et al., 2008). A possi-

ble way to suppress easy coalescence is a significant increase of resolution (Shardt

et al., 2013). In this case, the simulations of turbulent flow with multiple droplets

involved will be computationally unaffordable. However, the overestimated coales-

cence rate is not the only reason that prevents dispersion formation. Experimentally,

it is not always possible to mix pure immiscible liquids. For instance, Rueger and

Calabrese (2013) pointed that it was not possible to achieve complete dispersion

experimentally for pure systems above dispersed phase volume fraction 0.05. Only

the addition of a sufficient amount of surfactant allowed to acquire data for stable

dispersions up to φ = 0.5.

The DSD at φ = 0.2 is plotted at different time instants in Fig. 5.18 (upper

row). A drop with volume-equivalent diameter close to the initial value remains in

the system while smaller droplets form, and then merge with others (coalescence).
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Figure 5.15: Iso-surfaces of order parameter ϕ = 0 at different time instants relative
to the Kolmogorov time scale τK for the case with ηK = 2.5 [lu]; (a)-(c) dispersed
phase volume fraction is φ = 0.05; (d)-(f) dispersed phase volume fraction is φ =
0.2. Viscosity ratio is λ = 1. The moment of drop injection refers to t = 0
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Figure 5.16: Dimensionless maximum dmax (a) and Sauter mean d32 (b) diameters
as functions of time for the case with Kolmogorov length scale resolution ηK = 2.5
[lu] and viscosity ratio λ = 1. The dispersed phase volume fraction is φ = 0.05 and
0.2

417.4τK 420.6τK 423.8τK

427.0τK 430.2τK 433.4τK

Figure 5.17: Simultaneous breakage and coalescence events happening in the sys-

tem with ηK = 2.5 [lu] and the dispersed phase volume fraction φ = 0.2. Viscosity
ratio is λ = 1
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102.0τK 299.5τK 446.1τK

Figure 5.18: Drop size distribution (a) and probability plots (b) at different time

instants for system with ηK = 2.5 [lu]. The viscosity ratio λ = 1, the dispersed
phase volume fraction φ = 0.2

Moreover, small drops that are formed have higher chances to coalesce rather than

dissolve. It can be seen from Fig. 5.18 that a significant amount of small drops

are produced but they do not reach the size of the order of the Kolmogorov length

scale. This means that they coalesce with the bulk of the dispersed phase liquid.

Even though one large volume-equivalent drop remains, the rest of the drops tend

to follow a log-normal distribution as shown in the cumulative distributions in Fig.

5.18 (bottom row).

Simulations with the Kolmogorov length scale resolution ηK = 2.5 [lu] were

also performed on a larger scale with domain edge size Ld = 1000 [lu]. As the

initial condition 125 drops of diameter 46.3ηK were injected into a fully-developed

turbulent flow. The dispersed phase volume fraction is φ = 0.14. The evolution of

the dispersed phase in time is shown in Fig. 5.19. As one can see, the dominant

mechanism of drop breakup is by end-pinching. At time t = 35τK (with 99 drops

in the system) a lot of thin elongated structures have been formed (bridges that

connect drops). By the time t = 38.2, most of these bridges are broken producing
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many satellite and sub-satellite droplets, such that the number of drops in the system

increases up to 140. The number of drops in the system and relative dispersed phase

volume as functions of time are shown in Fig. 5.20.

5.5.3 Effect of dispersed phase volume fraction and resolution
of Kolmogorov scales

Simulation with ηK = 5 [lu] were carried out in a 5003 domain. As the initial con-

dition 125 drops of diameter 12.8ηK were injected into fully-developed turbulent

flow. The dispersed phase volume fraction is φ = 0.14.

The evolution of the liquid-liquid interface is presented in Fig. 5.21. As one

can see, only one drop is eventually formed, mostly due to easy coalescence. In

addition, the high volume of dispersed phase results in frequent collision of drops,

while small energy input makes collisions efficient and drops merge (low droplet-

droplet relative velocity). However, breakup events also take place in this system:

when smaller drops collide with larger ones, the collisions result in temporary drop

merges and then breakup. An example of such an event is shown in Fig. 5.22.

The number of drops in the system as a function of time is presented in Fig. 5.23

(a) and the volume of the dispersed phase evolution in time is plotted in Fig. 5.23

(b). The drop dissolution effect is negligibly small in this case. The maximum drop

diameter and Sauter mean diameter as functions of time are shown in Fig. 5.24.

5.5.4 Energy spectra in one- and two-phase turbulent flow

The scale separation calculated as ratio between the simulation domain edge length

and the Kolmogorov length scale Ld/ηK defines the reproduction of inertial energy

sub-range. Fig. 5.25 shows the kinetic energy spectra of one-phase fully-developed

turbulent flow (black curves) for different cases of Kolmogorov scales resolution.

The viscous sub-range of the turbulent energy spectrum is always reproduced. The

reproduction of the inertial sub-range improves with the increase of Ld/ηK , and fol-

lows the slope of Kolmogorov universal scaling law (E(k) ∼ k−5/3) at small wave

numbers (or large length scales). The energy spectrum curve becomes horizontal at

high wavenumbers k for ηK = 5 and 10 [lu] because at these values of k the machine
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8.0τK 38.2τK

35.0τK 59.0τK

Figure 5.19: Iso-surfaces of order parameter ϕ = 0 at different time instants relative
to the Kolmogorov time scale τK for the case with ηK = 2.5 [lu] in a 10003 simula-
tion domain; dispersed phase volume fraction is φ = 0.14. Viscosity ratio is λ = 1.
The moment of drop injection refers to t = 0
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Figure 5.20: Number of drops (a) and dispersed volume V in the system relative

to the initial value Vinit (b) as functions of time for the cases with Kolmogorov
length scale resolution ηK = 2.5 [lu] and viscosity ratio λ = 1. The dispersed phase
volume fraction is φ = 0.14, the simulation domain edge Ld = 1000 [lu]

0.4τK 49.8τK 127.5τK

Figure 5.21: Iso-surfaces of order parameter ϕ = 0 at different time instants relative
to the Kolmogorov time scale τK for the case with ηK = 5 [lu] and viscosity ratio
λ = 1. The dispersed phase volume fraction is φ = 0.14. Drop injection time refers
to t = 0
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57.0τK 57.4τK 57.8τK

58.2τK 58.6τK 59.0τK

Figure 5.22: Iso-surfaces of order parameter ϕ = 0 at different time instants relative
to the Kolmogorov time scale τK for the case with ηK = 5 [lu] and viscosity ratio
λ = 1. The dispersed phase volume fraction is φ = 0.14. The drop temporary
coalescence, followed by breakup is shown in the left bottom corner of the domain

τ τ

(a) (b)

Figure 5.23: Number of drops (a) and dispersed volume V in the system relative to
the initial value Vinit (b) as functions of time for the case with Kolmogorov length
scale resolution ηK = 5 [lu] and viscosity ratio λ = 1. The dispersed phase volume
fraction is φ = 0.14
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Figure 5.24: Dimensionless maximum dmax (a) and Sauter mean d32 (b) diameters
as functions of time for the case with Kolmogorov length scale resolution ηK = 5
[lu] and viscosity ratio λ = 1. The dispersed phase volume fraction is φ = 0.14

accuracy is reached for corresponding energy values E.

The kinetic energy spectrum changes dramatically when the second phase in

injected. Energy spectra of one- and two-phase turbulent flows that correspond to

different resolution of Kolmogorov scales are presented in Fig. 5.25. As one can

see, there is a significant energy gain at high wave numbers or length scales which

are of the order of and smaller than Kolmogorov length scale ηK . Furthermore, the

energy gain is more notable for higher ηK resolution. This issue has a numerical

background. An increase of ηK assumes a decrease of the energy dissipation rate.

As a result, the velocities in lattice units get smaller. Artificial numerical issues

arise when velocities approach the magnitudes of spurious currents representing a

numerical peculiarity of diffuse interface methods including LBE (Van der Sman

and Van der Graaf, 2008). In two-phase turbulent flow the velocity magnitude

becomes comparable to the magnitude of spurious currents over the liquid-liquid

interface. It is demonstrated in Fig. 5.26 for the case of ηK = 2.5 and φ = 0.2 that

small amplitude velocity spikes appear on the interfaces over the length scales in the

range 1−10 lattice units which is smaller than and of the order of the Kolmogorov
length scale. These spikes provide significant energy input in the viscous sub-range

where energy gain is observed. For the case with the highest energy input, the ve-

locities over the interface are higher than the spurious currents, which is why the
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Figure 5.25: Kinetic energy spectrum in one- (black curves) and two-phase (red

curves) systems for different resolution of Kolmogorov scales. Energy is scaled

with EK = ε2/3η5/3K ; wave number is scaled with kK = 2π/ηK . Marker ∗ stands for
the wavenumber corresponding to the Kolmogorov length scale ηK

energy gain is smaller.

In every simulation performed, the maximum and the Sauter mean diameters

are larger than the corresponding ηK . This means that drop sizes mainly fall in the

inertial sub-range of the energy cascade, and, therefore, we expect that the breakup

and coalescence dynamics is not strongly affected by the energy spikes appearing

on scales that are smaller than ηK .

5.6 Conclusions

Numerical simulations of liquid-liquid dispersion formation in turbulent flow have

been presented. A free energy lattice Boltzmann method was used to perform large-

scale, three-dimensional simulations of the binary system. Simulations were carried

out in cubic fully-periodic domains of 5003 and 10003 lattice units. Homogeneous

isotropic turbulence was generated throughout the domain by means of linear forc-

ing. Liquids of equal density were considered. The viscosity ratio (dispersed phase
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Figure 5.26: Deformed drop and velocity magnitude field (a); velocity magnitude
along the black vertical line shown on the left (b). The figure demonstrates the
appearance of small velocity spikes over the liquid/liquid interface

over continuous phase viscosity) varied between λ = 1 and 0.3.

In each simulation, the process of dispersion formation is visualized. The num-

ber of drops in the system, the maximum drop diameter, and the Sauter mean di-

ameter are all tracked as functions of time. Several numerical issues of the method

are encountered. The method is plagued by numerical dissolution of small drops. It

is demonstrated that in order to mitigate the drop dissolution effect, it is necessary

to increase the resolution of the Kolmogorov scales. The numerical dissolution of

drops can be considered as a numerical mass transfer process between the liquids.

The process is characterized by the Peclet number which relates the convection and

diffusion time scales. Since time scale of a diffusive process is much larger than of

convective, smaller Peclet results in slower dissolution. It is shown that the Peclet

number decreases as the resolution of the Kolmogorov scales increases. Moreover,

increase of the concentration of the dispersed phase also reduces the dissolution

effect. In this case, the specific area gets smaller, thus slowing the numerical mass

transfer through the interface. If experimentally it is more challenging to investi-

gated dense systems, in the context of LBE, highly-concentrated systems are ad-

vantageous: the dissolution is reduced allowing to better study the physics of the

system.
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However, with the dispersed phase volume fraction higher than 0.05 it is not

possible to form a dispersion, a large portion of dispersed phase remains connected.

With the increase of the dispersed phase fraction, drop collisions become more fre-

quent and most of them results in coalescence. Small droplets are likely to coalesce

rather than dissolve. In physical system, drops collide, form a thin film of continu-

ous phase between them, the film drains, and eventually ruptures. Drops should be

in contact sufficiently long for the film to drain and rupture. Otherwise, the collision

is not efficient, and the drops do not merge. In numerical simulations of turbulent

dispersion, the drop collision results in merging, except for several cases when the

collision process is changed due to interactions with turbulent eddies. Easy coales-

cence occurs because multiple drop interfaces can occupy the same computational

cell. Thus, in order to suppress unphysical coalescence, it is necessary to resolve the

film between the drops which requires enormous mesh resolution (see e.g. (Shardt

et al., 2013)).

With the present implementation of the free energy LBE method, it is not pos-

sible to obtain a representative energy spectrum of two-phase turbulent flow. It is

known that LBE methods are prone to spurious currents over the interface due to

discretization of the velocity space. The order of magnitude of the velocity field

is comparable to the magnitude of the spurious currents. In addition, the spurious

currents appear on the diffuse interface. They interfere with the Kolmogorov length

scales which leads to significant unphysical energy gain at high wave numbers. The

size of the resolved drops, the maximum drop diameter and the Sauter mean diame-

ter, are larger than the corresponding ηK . Thus, they fall into the inertial sub-range

of energy cascade, and, therefore, the breakup and coalescence dynamics is not af-

fected by the energy spikes appearing on the scales, which are smaller and of order

of ηK .

When the drawbacks of the method are resolved, the developed numerical ap-

proach could be used to broaden the understanding of liquid-liquid mixing. The

relation between energy input and the resultant DSD can be determined. The size

of each drop in dense dispersions can be measured in-line with no disturbance of

the flow. Since the dispersed and continuous phase interactions in well-controlled
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homogeneous isotropic turbulent flow are resolved on microscopic level, it is pos-

sible to derive more fundamental breakup and coalescence kernels even in dense

systems, that can be later used in population balance equations.
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Chapter 6

Conclusions and outlook

6.1 Conclusions

In the present project, a numerical approach to study liquid-liquid dispersions has

been developed. The free energy LBE model was used to perform three-dimensional

direct numerical simulations of binary liquid systems. A computer code was created

using FORTRAN 90 in serial and parallel versions. The parallel code used domain

decomposition and the MPI (Message Passing Interface) platform. The number of

processors to perform simulation varied depending on the considered problem from

1 to 125 with a memory usage of 8 GB per processor. In addition, the capability

of the code to run simulations on 1000 processors with 3D domain decomposition

of a fully-periodic domain was successfully tested. The vast majority of jobs was

performed on WestGrid clusters. The data were visualized in ParaView.

The developed approach has been verified, validated and applied to study sev-

eral research problems: a single n-butanol drop rising in water under the influence

of gravity, the behavior of a single liquid drop suspended in another liquid and sub-

jected to simple shear flow, and formation of turbulent liquid-liquid dispersions.

The results of these studies show that the numerical approach can be adopted to

perform simulations with moving, deforming, rupturing and merging liquid-liquid

interfaces.

The accuracy of the results is primarily determined by the mesh resolution.

Based on the simulations of sheared drops, two regions of resolution are outlined:

a region of moderate resolution with drop radii a6 30 lattice units and high resolu-
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tion with a > 30 [lu]. It has been demonstrated that even moderately resolved drops

can be used to investigate the physics of drop deformation and breakup. Shape-

oscillating motion of drops in the oscillatory regime is captured for a drop of radius

a = 30 [lu], while the process of drop deformation followed by breakup is revealed

for the drops with initial undeformed drop radius of a = 20 [lu]. The fact that the

behavior of lower-resolved drops can be captured is very valuable for simulations of

dispersion formation in turbulent flow: satellite and sub-satellite drop formed after

breakup are resolved, and it is feasible to simulate systems with hundreds of drops.

Even though mesh resolution plays a key role in accuracy, numerical parameters

should also be chosen with special care.

The diffuse interface free energy LBE method is characterized by a finite thick-

ness of the interface between the two liquids which is much larger than the actual

physical thickness estimated as tens of Angströms (Yang and Li, 1996). The inter-

face thickness and related free energy model parameters introduce numerical de-

grees of freedom. It is relatively easy to set the interface-related parameters if there

is benchmark data such as experimental results or results of simulations obtained

using other reliable numerical techniques. If so, it is necessary to validate the de-

veloped numerical approach with a reference solution, and determine the interface-

related numerical parameters. Once the numerical approach is validated, it can be

applied to study problem under different conditions or problems with no reference

solution. This approach to determine the numerical parameters was successfully

applied in the study of a rising n-butanol drop (Chapter 2).

However, benchmark solutions are not always available, while the parameters

still have to be specified. In the study of a single sheared drop (Chapter 3) it is

demonstrated that the numerical degrees of freedom of the diffuse interface method

are characterized by two dimensionless numbers: the Peclet Pe and Cahn Ch num-

bers. A guideline on how to choose Pe and Ch in order to obtain physically realistic

behavior of the drop at given Reynolds number Re, capillary number Ca and viscos-

ity ratio λ is presented. To develop this guideline, several benchmark simulations

were performed. The impact of Pe and Ch on accuracy and stability of the method

was analyzed in a range of physical conditions from near-creeping flow to Reynolds
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of 10. As a conclusion, accuracy and stability are affected by the choice of Pe and

Ch. Even though for a given set of physical parameters (Re, Ca, λ ) correct physical

behavior is captured in most of the cases, different numerical parameters (Pe, Ch)

may give different simulation results: at one Peclet number the drop may attain a

steady shape, while at another Peclet number the drop may eventually break at high

resolution, or the simulation might be unstable at low resolution. It is shown that for

a drop with radius a, specification of Ch and Pe is actually the specification of the

interface thickness ξ and the mobility coefficient Γ, respectively, because the rest

of the parameters involved in the dimensionless numbers are already determined by

the chosen drop resolution and the physical dimensionless numbers. If no reference

data exist, it is recommended to set these parameters as follows. Drops of moderate

resolution require a thinner interface. The suggested value is 1.14 [lu] (in line with

the results of Kendon et al. (2001)). For highly resolved drops a thicker interface

is preferable (at least two lattice units). And it is suggested to select the mobility

coefficient value from the stability range 1−15.

This guideline was followed when setting up the parameters for a study of a low

viscosity drop in highly viscous liquid under inertial shear flow (Chapter 4). This

system is relevant to many industrial processes, but has hardly been studied at a

fundamental level. High resolution simulations were performed over the range of

viscosity ratios λ = 0.1− 2 at Re = 10 and different capillary numbers allowing

to determine the critical capillary number, the drop breakup mechanism and the

visualization of the drop deformation and breakage processes.

The issues in choosing the Peclet and Cahn numbers does not outweigh the

advantage of the diffuse interface method over other numerical techniques: the fea-

sibility to perform simulations of a system involving a high fraction of dispersed

phase, i.e. large numbers of drops, such as a turbulent liquid-liquid dispersion.

Based on the guidelines and the results of studies of sheared drop, the parameters

to simulate the formation of liquid-liquid dispersion have been specified (Chapter

5). Three-dimensional simulations were carried out in fully-periodic cubic domains

with grids of size 5003 and 10003. The simulations were executed as follows: first,

one-phase homogeneous isotropic turbulence with a well-controlled energy dissi-
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pation rate was generated throughout the domain by means of linear forcing. Four

levels of Kolmogorov length scale resolution have been considered ηK = 1, 2.5,

5 and 10 [lu]. Even with ηK = 1 [lu] the turbulence was resolved. The second

phase was instantaneously injected into fully-developed turbulent flow. The pro-

cess of dispersion formation was then followed and visualized, revealing the details

of breakup and coalescence. The volume-equivalent diameter of every drop was

measured providing information on DSD of the dispersion. Based on these mea-

surements, the maximum and the Sauter mean diameters were calculated. However,

several numerical issues have been encountered.

It is known that LBE methods are prone to spurious currents over the inter-

face due to discretization of the velocity space. In order to estimate the magnitude

of these parasitic velocities, the equilibration of a single stationary drop was sim-

ulated. Spurious velocities over the interface are of the order of 10−4− 10−5 in

lattice units, while the order of the velocity field in the rising and sheared drop

simulations is of 10−2 [lu]. Thus, the velocities related to the spurious currents are

several orders of magnitude smaller than the physical velocities. In simulations of

turbulent dispersion, the order of velocity field is of 10−4−10−3 [lu] which is com-

parable to spurious currents. In addition, the spurious currents appear on the diffuse

interface which makes it difficult to obtain a representative energy spectrum of two-

phase turbulent flow. The spurious velocities that appear at the scales comparable

to the Kolmogorov length scales ηK lead to significant unphysical energy gain at

high wavenumbers. Nevertheless, in every simulation performed the maximum and

the Sauter mean diameters are larger than the corresponding ηK . This means that

they fall into inertial sub-range of energy cascade, and, therefore, the breakup and

coalescence dynamics is not affected by the velocity spikes appearing at the high

wavenumbers.

Another peculiarity of the diffuse interface methods is the numerical dissolution

of small drops. The dissolution of drops rising under gravity and deforming under

shear is negligible since the initial undeformed diameter of the drops of 20− 30

[lu] is large enough so that the evolution of the system occurs faster than the drops

dissolve. However, numerical dissolution has an impact on the simulation results
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when drop breakage occurs and small daughter, satellite and sub-satellite droplets

are formed. The volume-equivalent diameter of the fragments can be 10 [lu] and

smaller. These droplets dissolve almost immediately after formation which makes

it difficult to measure the DSD of the dispersion. A straightforward thing to do

to overcome this issue is to increase the resolution of the simulation, i.e. increase

the diameter of the initial undeformed drop. In this case, the size of the drops

produced after breakup increases as well, therefore, they can be captured and mea-

sured. For instance, high-resolution simulations allowed to reveal capillary wave

breakup demonstrated in Chapter 4.

In turbulent two-phase flow simulations, however, increase of mesh resolution

is computationally very expensive. In addition, turbulent dispersion formation is

characterized by multiple breakup processes, and small satellite and sub-satellite

are very likely to appear after consecutive breakages. In order to mitigate drop

dissolution in such system, it is suggested to increase the resolution of the Kol-

mogorov scales. The numerical dissolution of drops can be considered as a nu-

merical mass transfer process between the liquids. The process is characterized

by the Peclet number which relates the convection time scale to the interface dif-

fusion time scale. Smaller Peclet means that diffusion dominates over convection.

Since the time scale of a diffusive process is much larger than of convective, smaller

Peclet results in lower dissolution rate. It is shown that the Peclet number decreases

as the resolution of the Kolmogorov scales increases. An additional way to miti-

gate the drop dissolution is to increase the concentration of the dispersed phase. In

this case, the specific area gets smaller, thus, lowering the numerical mass transfer

through the interface. If experimentally it is more challenging to investigated dense

systems, in the context of LBE, highly-concentrated systems are advantageous: the

dissolution is reduced allowing to better study the physics of the system.

With the increase of the dispersed phase fraction, drop collisions become more

frequent and may result in coalescence. In physical system, drops collide, form a

thin film of continuous phase between them, the film drains, and eventually rup-

tures. Drops should be in contact sufficiently long for the film to drain and rupture.

Otherwise, the collision is not efficient, and the drops do not merge. In numerical
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simulations of turbulent dispersion, the drop collision results in merging, except for

several cases when the collision process is changed due to interactions with turbu-

lent eddies. Easy coalescence occurs because multiple drop interfaces can occupy

the same computational cell. Thus, in order to suppress unphysical coalescence, it

is necessary to resolve the film between the drops which requires enormous mesh

resolution (see e.g. (Shardt et al., 2013)). Another option is to introduce surfactants

as it has been done by Skartlien et al. (2013).

Nevertheless, even with the outlined numerical drawbacks, the developed nu-

merical approach can contribute to a deeper understanding of liquid-liquid systems

in a wide range of operating conditions from creeping shear to fully-developed tur-

bulent flows. One of the most valuable capabilities of the approach is visualization

of the flow: whether it is evolution of initially spherical drop rising under the influ-

ence of gravity, deformation of a drop during sudden onset of shear or the bursting

of a drop in a turbulent flow field. The approach can be used to gain fundamental

knowledge on liquid-liquid systems: determination of terminal drop rise velocities

and the conditions for the shape-oscillating regime for single rising droplets. Drop

breakup mechanism for drop in shear can be determined. And it also useful for in-

dustrial application: for a given binary system of two liquids under applied shear it

is possible to determine the DSD, or if the final product should have a certain DSD

then the proper shearing conditions can be found. For a given binary liquid system,

the critical capillary number can be found. The binary liquid systems subjected to

inertial shear flow at capillary numbers much higher than the critical have not been

extensively studied on fundamental level. This gap can be filled with the use of the

present approach. Also it is possible to consider sheared drops in confined channels,

and assess the drop deformation and breakup mechanisms with wall effects.

When turbulently-induced dispersion are considered, it is possible to relate

the local energy dissipation and the DSD of the system. Moreover, the volume-

equivalent diameter of every drop is measured in-line without any disturbance of

the flow. Based on these data, the maximum, mean, and minimum drop diameters

are easily calculated. The rates of drop breakup and coalescence can be determined

and used to construct sub-models for CFD methods and kernels for PBEs.
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6.2 Outlook

The promising results of the simulations motivate further development of the ap-

proach so as to serve as a valuable addition to experimental studies. As for the

future work, it is necessary to test the sensitivity of the results of turbulent dis-

persion formation with respect to the interface-related numerical parameters and

spatial resolution. An influence of the length of the cubic domain edge Ld should

also be considered especially in cases with high resolution of Kolmogorov length

scale. Simulation domain sizes larger than 10003 require further optimization of

the developed computer code.

It is also of interest to study in detail the relation between turbulence and the

DSD of liquid-liquid dispersion. How do the turbulent flow patterns change with

an introduction of the second phase especially at high dispersed phase concentra-

tions? Most importantly, it is necessary to estimate an effect of spurious currents

on the interface dynamics and, eventually, on the DSD. In the present study, it was

assumed that the breakup and coalescence events are not affected by parasitic ve-

locities, since the latter ones appear at the scales much smaller than the drop size.

However, this assumption should be quantitatively justified. Furthermore, represen-

tative energy spectrum of two-phase turbulent flow should be revealed that requires

elimination or at lease reduction of the spurious currents. This task is a subject of

ongoing research (see e.g. (Lee, 2009; Lee and Fischer, 2006; Pooley and Furtado,

2008; Wagner, 2002)). Connington and Lee (2012) reviewed spurious currents and

their elimination in multiphase LBE methods including the free energy model. It

is noted by authors that none of the discussed methods can eliminate spurious cur-

rents during the transient part of a simulation. The reduction or elimination of

spurious velocity typically occurs long after equilibrium has been reached. In case

of liquid-liquid dispersions, energy spectrum can be obtained only during dynamic

equilibrium in the system. A way to minimize the influence of the spurious currents

is to determine the numerical LBE parameters (e.g. the relaxation time) such that

the velocity values throughout the domain would have magnitudes larger than the

magnitudes of the spurious currents.
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In the present study, the size of the resolved drops fell into the inertial sub-range

of energy spectrum. It is interesting to see what happens in the system when the

drop size reduces to the scales less than Kolmogorov.

Additionally, it is necessary to validate the dispersion formation process which

requires knowledge of the numerical LBE parameters that refer to the real physical

binary liquid system. The numerical parameters of n-butanol/water system have

already been determined in Chapter 2. Thus, these values can be used to simulate

turbulent dispersion formation of n-butanol drops in water. Moreover, the two-

relaxation-time (TRT) collision operator (Ginzburg et al., 2008) was incorporated

in that studies. So the existing code based on the single-relaxation-time collision

operator (Bhatnagar et al., 1954) should be extended to utilize the TRT. This study

will show an influence of collision operator choice on accuracy and stability. Also

this binary liquid system can be considered under shear flow conditions. It will

be possible to compare the deformation and breakup of a single n-butanol drop

suspended in water and subjected to simple shear and the behavior of the same drop

in turbulent flow.

Once the numerical issues are resolved, the approach can be applied to study

different physical systems and influence of physical properties and agitation condi-

tions on DSD.
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Appendix

A-1 The D3Q19 model parameters

The D3Q19 model is used to discretize the velocity space (D. d’Humieres et al.,
2002). The lattice vectors are separated into two groups. Velocities ccc1−6 point in
the nearest neighbor directions:cx1−6

cy1−6
cz1−6

=

c −c 0 0 0 0
0 0 c −c 0 0
0 0 0 0 c −c


and ccc7−18 point in the 12 square diagonal directionscx7−18
cy7−18
cz7−18

=

 c −c c −c 0 0 0 0 c −c c −c
c c −c −c c −c c −c 0 0 0 0
0 0 0 0 c c −c −c c c −c −c

 ( A-1)

The equilibrium distributions (H. Kusumaatmaja, 2008) f eq
q , geq

q for population
q = (1−18) are calculated as follows

f eq
q =

wq

c2

(
p0−κ(∂ 2

xxϕ +∂
2
yyϕ +∂

2
zzϕ)+ cαqρuα +

3
2c2

[
cαqcβq−

c2

3
δαβ

]
ρuαuβ

)
+

κ

c2

(
wxx

q ∂xϕ∂xϕ +wyy
q ∂yϕ∂yϕ +wzz

q ∂zϕ∂zϕ +wxy
q ∂xϕ∂yϕ +wxz

q ∂xϕ∂zϕ +wyz
q ∂yϕ∂zϕ

)
( A-2)

geq
q =

wq

c2

(
Γ µ + cαqρuα +

3
2c2

[
cαqcβq−

c2

3
δαβ

]
ϕuαuβ

)
( A-3)

while the distributions for q = 0 are given by

f eq
0 =ρ−

18

∑
q=1

f eq
q

geq
0 =ϕ−

18

∑
q=1

geq
q

( A-4)

and the bulk pressure is p0 = c2
s ρ +

A
2

ϕ2 +
3B
4

ϕ4
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And the weights (H. Kusumaatmaja, 2008) read:

w1−6 =
1
6
, w7−18 =

1
12

,

wxx
1−2 = wyy

3−4 = wzz
5−6 =

5
12

, wxx
3−6 = wyy

1−2,5−6 = wzz
1−4 =−

1
3
,

wxx
7−10 = wxx

15−18 = wyy
7−14 = wzz

11−18 =−
1

24
,

wxx
11−14 = wyy

15−18 = wzz
7−10 =

1
12

,

wxy
1−6 = wyz

1−6 = wzx
1−6 = 0, wxy

7,10 = wyz
11,14 = wzx

15,18 =
1
4
,

wxy
8,9 = wyz

12,13 = wzx
16,17 =−

1
4
, wxy

11−18 = wyz
7−10 = wzx

7−14 = 0.

( A-5)

The stencils for the gradients and Laplacian calculations in the pressure tensor
and chemical potential are

∂x =
1

12∆x

 0 0 0
−1 0 1
0 0 0

 ,

−1 0 1
−2 0 2
−1 0 1

 0 0 0
−1 0 1
0 0 0

 ( A-6)

∇
2 =

1
6∆x2

0 1 0
1 2 1
0 1 0

 ,

1 2 1
2 −24 2
1 2 1

0 1 0
1 2 1
0 1 0

 ( A-7)

where the left, middle and right matrices show slices of the stencil when czq = c, 0
and −c, respectively.
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A-2 Benchmark cases

Benchmark case 1. Simulation parameters are Re = 1, Ca = 0.27, λ = 1. To

verify that at higher mesh resolution the same influence of Pe and Ch holds, mesh

refinement cases were considered with the base-line drop radius of a = 32 [lu]. The

refinement factors of 1.5 and 2.0 gave drop radii of 48 and 64 [lu]. The Cahn num-

bers ofCh = 0.0355 and 0.0625 at Peclet numbers of 1, 3 and 10 were examined.

θ

(a) (b)

Figure A-1: Drop deformation results at Re= 1, Ca= 0.27, λ = 1 and different Pe
and Ch numbers. The L/a ratio (a) and the orientation angle θ (b) as a function of
drop radius (Benchmark 1)

The drop elongation and orientation angle are presented in Fig. A−1 (a) and
(b), respectively. When Ch = 0.0625 and Pe = 1 the simulations are unstable for

a = 48 [lu] (Γ = 34.56 for this case). Breakup of the droplet takes place in the

following cases: Pe = 1, Ch = 0.0355 and a = 32 [lu]; Pe = 3, Ch = 0.0355 and

a � 48 [lu]; Pe = 10, Ch = 0.0625 and a � 48 [lu]. Thus, the same trends with Pe

on the results as at lower mesh resolution are observed: higher Peclet numbers lead

to more deformation and smaller inclination angle of the drop.

Benchmark case 2. Simulation parameters are Re= 0.0625, Ca= 0.1, λ = 1.

The relaxation times for both distribution functions were set to τ f = τg = 1.

In what follows two mesh refinement principles are considered. In the first mesh

refinement principle all dimensionless parameters are kept constant (physical Re,

Ca and λ and numerical Pe andCh). The second mesh refinement principle assumes

keeping Re, Ca, λ , Pe and ξ the same when the mesh is refined. The thickness of
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θ

(a) (b)

Figure A-2: Drop deformation D (a) and orientation angle of a drop θ (b) for

different drop radius a at Re= 0.0625, Ca= 0.1 and λ = 1; I first principle of mesh
refinement at Ch = 0.1136 = const; II second principle of mesh refinement with
ξ = 1.14 = const. Reference VOF computations of Li et al. (2000) are D = 0.119
and (45−θ) = 8.48° (Benchmark 2)

the interface is a numerical artifact and the reasoning is that Ch should approach

zero when the grid is refined thereby approaching the real (physical) situation. This

mesh refinement principle can be considered as approaching the sharp-interface

limit (Yue et al., 2010). Both principles are tested further. A base-line drop radius

of 10 [lu] was chosen. The refinement factors β were 1.5, 2.0, 2.5 and 3.0. The first
principle was tested at Pe = 0.1 and Ch = 0.1136. The second one was performed

with fixed interface thickness of ξ = 1.14 [lu] and different Pe numbers of 0.07, 0.1

and 0.2.

The results of drop deformation and orientation angle for the Stokes flow sim-

ulations are presented in Fig. A−2 (a) and (b), respectively. Convergence for
increased resolution towards an asymptotic value is observed in each case. This

means that both mesh refinement principles work: upon refinement the solution

tends to become mesh independent. However, at Pe = 0.1,Ch = 0.1136 and a = 30

[lu] the simulations are unstable.

When a� 20 [lu] and constant interface thickness ξ = 1.14 [lu] the deformation

results D agree well between different Pe. In addition, the deformation D is in a

good agreement with the reference VOF result (the deviation is less than 1% for the

finest drops). However, the deviation of the orientation angle θ from the reference
data is around 20%.
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Benchmark case 3. Physical simulation parameters are Re = 10, Ca = 0.15,
λ = 1. This capillary number is right below the critical value for the given Re as
discussed by Renardy and Cristini (2001). The reference VOF results (Renardy
and Cristini, 2001) have L/a = 1.9 and θ = 23°. To obtain the required Re, the
viscosity of the liquids was lowered by setting the relaxation time to τ f = 0.56. A
mesh refinement procedure was performed with a base-line drop radius of a = 20
[lu]. The refinement factors were β = 1.5 and 2.0 (drop radii of 30 and 40 lattice
units). The Cahn numbers were 0.0568 and 0.1. Also the second mesh refinement
principle was tested with two constant interface thickness ξ = 1.14 and 2.0 lattice
units.

The simulation results are organized in Fig. A−3 and A−4 where the L/a

ratio and the orientation angle θ are plotted versus drop radius a, respectively. In
Fig. A−3(a) and A−4(a) the results of the first principle at Ch = 0.0568 and the
second one with fixed ξ = 1.14 [lu] at different Pe numbers are shown. The plot
in Fig. A−3(b) and A−4(b) shows similar results but for constant Ch = 0.1 and
the fixed interface thickness in 2 [lu]. A significant difference form the reference
data is observed for both deformation parameters. However, the reference results of
Renardy and Cristini (2001) show unexpected non-monotonic trends. Renardy and
Cristini (2001) present L/a and θ as functions of the Reynolds number ranging from
0.0625 to 100. The results at Re = 10 and Ca = 0.15 deviate from the general trend:
by interpolation of nearby results a smaller value of L/a and a higher θ would be
expected. For example, Renardy and Cristini (2001) show L/a = 1.8 and θ = 25°at
Re = 1 and Ca = 0.27. At Re = 60 and Ca = 0.053 the result is L/a = 1.52 and
θ = 53°. In both cases the capillary number is sub-critical. Thus, for the case at
Re = 10 and Ca = 0.15 an elongation between 1.52 and 1.8 is expected since the
drop shortens as Re increases. Similarly, an orientation angle between 25° and
53° is expected because the drops tend to align more vertically for higher Re. In
addition, the deviation between the present and reference data can be minimized if
the Peclet number is increased.

The results based on the first mesh refinement principle (constant Ch) converge
marginally better than the results based on the second one (constant ξ ). The simu-
lations of the drops with a = 40 [lu] and fixed ξ = 1.14 [lu] at Pe = 3 and 4 resulted
in breakup. The reason is a low mobility coefficient Γ. When a = 40 [lu] and
Ch = 0.1 = const at Pe = 1.5 and 2 the simulations are unstable because of a too
high Γ value (Γ = 107 and 80, respectively). Drops are more deformed if they have
a thinner interface. In addition an increase in Pe leads to an increase of deformation.
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ξ ξ

(a) (b)

Figure A-3: Elongation of a drop L related to initial drop radius a for different drop
radii. Re= 10, Ca= 0.15, λ = 1. Cases denoted by •, � refer to the first principle
of mesh refinement; cases denoted by ◦, � refer to the second principle of mesh

refinement (Benchmark 3)

The droplets incline more when Pe is smaller.

In the Stokes flow limit, only one vortex forms inside the drop (see Fig. 3.8).

The drop inclines towards the flow direction and has an ellipsoidal shape. With

increasing Reynolds number, three major events take place (Renardy and Cristini,

2001). First, the drop becomes more aligned with the vertical axis and shortens

in the horizontal direction. Second, two vortices appear in the drop. And the third

change is that the symmetry over the mid-plane at steady state is lost (see Fig. 3.13).

These effects can also be observed in Fig. 5(c) presented by Renardy and Cristini

(2001). To validate the present numerical technique, the velocity field inside the

drop was compared to the reference data.

In Fig. A−5 the drop shapes together with streamlines inside the drop are
plotted for the cases with Pe = 1 for two types of mesh refinement: (a)-(c) fixed

Ch = 0.0568 (the first principle); (a), (d), (e) fixed interface thickness ξ = 1.14

[lu]. Pe = 1 has been chosen because the drop does not break in the entire range

of drop radii. The black curves in Fig. A−5 show the interface (ϕ = 0). In every

case two vortices can be seen. However, the drop is deformed differently. Consider

the first type of mesh refinement (figures (a)-(c)). With increasing resolution, the

interface widens, and the drop deforms less and shortens in the flow direction. On

the other hand, finer drops with thinner interface (figures (d) and (e)) are more
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ξ

θ

ξ

(a) (b)

Figure A-4: Orientation angle of a drop θ for different drop radii. Re = 10, Ca =
0.15, λ = 1. Cases denoted by •, � refer to the first principle of mesh refinement;
cases denoted by ◦, � refer to the second principle of mesh refinement

deformed compared to the base-case. The internal circulations migrate almost to

the tips of the drop (compare figure (c) and (d)). The same remarks refer to other

cases at different Pe.

Now consider a higher Ch (with the interface thickness of 2 [lu]). The drop

shape and internal circulations are shown in Fig. A−6 at Pe = 4 for different mesh

refinement types: (a)-(c) constant Ch = 0.1 (the first principle); (a), (d), (e) fixed

interface width of two lattice units. Pe = 4 was chosen because simulations are

stable in the entire range of drop radii. As one can see, none of the mesh refine-

ment simulations with the first principle were able to capture two vortices inside

the drop. The interface is so thick relative to the drop diameter that the circulations

cannot develop. When the size of the drop was increased while keeping the inter-

face thickness constant, two vortices were captured (figures (d) and (e)). However

the intensity of these circulations is different. The finest drop has more developed

flow inside.
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(a) a = 20 [lu], ξ = 1.14 [lu], Ch = 0.0568

(b) a = 30 [lu], ξ = 1.7 [lu], Ch = 0.0568 (d) a = 30 [lu], ξ = 1.14 [lu], Ch = 0.0379

(c) a = 40 [lu], ξ = 2.28 [lu], Ch = 0.0568 (e) a = 40 [lu], ξ = 1.14 [lu], Ch = 0.0284

Figure A-5: Drop shape (ϕ field) and streamlines at steady-state at Re= 10, Ca=
0.15, λ = 1, Pe = 1 and different Ch numbers: (a)-(c) the first principle of mesh
refinement; (a), (d), (e) the second principle of mesh refinement (Benchmark 3)
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(a) a = 20 [lu], ξ = 2 [lu], Ch = 0.1

(b) a = 30 [lu], ξ = 3 [lu], Ch = 0.1 (d) a = 30 [lu], ξ = 2 [lu], Ch = 0.067

(c) a = 40 [lu], ξ = 4 [lu], Ch = 0.1 (e) a = 40 [lu], ξ = 2 [lu], Ch = 0.05

Figure A-6: Drop shape (ϕ field) and streamlines at steady-state at Re= 10, Ca=
0.15, λ = 1, Pe = 4 and different Ch numbers: (a)-(c) the first principle of mesh
refinement; (a), (d), (e) the second principle of mesh refinement (Benchmark 3)
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A-3 Comparison of CPU and GPU codes

To compare the results of the CPU and GPU codes, the following simulation was
performed: a drop with radius a = 20 [lu] in a simulation domain of 6.4a×6.4a×
6.4a (full size before symmetry-type boundary conditions) at Re= 0.375, Ca= 0.1,
λ = 1, Pe = 3.2, and Ch = 0.1. The evolution of drop elongation L/a in time is
shown in Fig. A−7. The relative deviation between steady state values is 0.15%.
This deviation is attributed to the difference in the velocity fields caused by the use
of two different types of velocity boundary conditions. The velocity of the moving
wall in the CPU code was set using a procedure proposed by Mussa et al. (2009),
and in GPU code the boundary condition of Ladd (1994) was utilized. In the
method of Mussa et al. (2009), the wall is located exactly on the last node, while
in the method of Ladd (1994) the wall is located one-half grid spacing beyond the
last fluid node. This difference is shown in Fig. A−8 where the horizontal velocity
component obtained with the two codes is plotted along a line starting from the
centre of the drop and up to the sheared wall. Since the difference between the
elongation of the drop in simulations with the two codes is negligibly small, it is
concluded that the CPU and GPU codes produce effectively identical results.

0 5000 10000 15000
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 L
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Figure A-7: Drop elongation L/a change in time obtained using CPU and GPU
codes
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(a) (b)

Figure A-8: The horizontal velocity component u obtained using CPU and GPU
codes as a function of vertical coordinate y starting from the drop centre and up to
the wall (a) and the difference between these two values (b)
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