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Abstract

Topological photonic insulators (TPIs), a new phase of matter in photonics, have

attracted considerable attention due to their unique ability to transport light via

topologically-protected edge states that are immune to defect scattering. Among

the various potential applications, this property can be exploited to engineer robust

photonic devices that are insensitive to fabrication imperfections. In this thesis, we

explored the physics and applications of a class of TPIs known as Floquet insulators,

which are based on periodically-driven quantum systems. In particular, we proposed

a new Floquet topological photonic system based on two-dimensional (2D) lattices

of coupled microring resonators. We first developed a mathematical formulation for

a general 2D microring lattice as a periodically-driven system and derived its FB

Hamiltonian, which allowed us to characterize and study the topological properties

of the lattice. We showed that our lattice can be designed to exhibit a wide range

of topological phases, including normal insulator, Chern insulator, and anomalous

Floquet insulator. To validate our theoretical results, we realized Floquet TPIs based

on 2D lattices of coupled octagon resonators on a Silicon-on-Insulator (SOI) plat-

form and experimentally verified their nontrivial behaviours through the observation

of topologically-protected edge modes. Notably, our Floquet microring lattice is the

first realization of an anomalous Floquet insulator on a nanophotonic platform. The

proposed microring lattice thus provides a versatile nanophotonic platform for inves-

tigating Floquet TPIs and exploring their applications.

We also proposed and experimentally demonstrated a new mechanism for achiev-

ing high quality factor resonances in a Floquet TPI. The new resonance effect, which
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we call Floquet Defect mode resonance (FDMR), is achieved by perturbing the driv-

ing sequence of the system to isolate and tune the phase of a Floquet bulk mode

to induce constructive self-interference. The FDMR can be regarded as a Floquet

counterpart of defect-mode resonance in static, undriven systems, except that here

the perturbation is drive-dependent and varies periodically along the path of system

evolution. Notably, the FDMR is cavity-less, i.e., it does not require physical bound-

aries; instead, its spatial localization pattern is dictated by the driving sequence of

the Floquet system and is distinctly different for topologically trivial and nontrivial

lattices. Due to the lack of interface scattering, FDMRs can potentially have very

high quality factors. We experimentally demonstrated FDMRs in Floquet microring

lattices on SOI, achieving the highest quality factors reported to date for 2D topolog-

ical photonic resonators. We envision FDMR to have a wide range of applications in

topological photonics, including lasers, filters, sensors, and applications in nonlinear

and quantum cavity optics.
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Chapter 1

Introduction

Topological insulators are a new phase of matter that was discovered in the early

2000's [9]. A distinguishing feature of these materials is the existence of topologically-

protected edge states at the material boundaries that are immune to defect scattering.

This discovery has inspired recent efforts to study topological structures in the optics

domain, with the aim of realizing robust photonic devices that can transport light via

edge modes that are insensitive to fabrication imperfections [10–12]. In addition, the

unique properties of topological insulators provide novel ways to manipulate and con-

trol electromagnetic waves over a wide range of frequencies, from microwave radiation

to visible light and extending even to acoustic waves [13–15]. Some of the potential

applications of topological photonic insulators (TPIs) are in realizing optical delay

lines, optical isolators and topological lasers [16–19].

There exist methods to design and manipulate static photonic systems, i.e. those

with time-independent Hamiltonians, to achieve conventional topological behaviors

[13, 16, 20–22]. However, it has recently been realized that periodically driven sys-

tems, known as Floquet systems, can provide richer topological behaviors due to their

temporal periodicity which make their energy bands more complex than undriven (or

static) systems [23, 24]. In addition, Floquet systems are more versatile than static

systems since their topological behaviors can be tailored through the suitable design

of the driving Hamiltonian. All these unique properties have attracted a great deal
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of interest to realize Floquet TPIs and investigate their unconventional properties

which may pave the way for discovering new phenomena in the photonic realm. How-

ever, realizing periodically driven systems in the photonic domain is challenging and

so far investigation of Floquet TPIs has been limited to a few driving protocols not

compatible with integrated photonic systems [14, 25, 26]. Therefore, the search for

photonic lattices which are naturally driven and can provide a suitable platform to

experimentally investigate topological properties of Floquet TPIs is of great interest.

Various types of photonic lattices have been used to achieve topological behaviors,

including photonic crystals, metamaterials, quasi crystals, coupled waveguides arrays

and coupled microring resonators [22, 25, 27–30]. Among these structures, coupled

microring resonators are an excellent candidate for engineering photonic band struc-

tures since it is relatively easy to vary the coupling strengths and resonant frequencies

of individual elements of the lattice. The main goal of this thesis is to demonstrate

coupled microring resonators as a natural periodically-driven system that can be used

to realize Floquet TPIs on a nanophotonic platform. Specifically, we propose a new

type of Floquet TPIs based on a 2D lattice of coupled microring resonators, and

develop the mathematical formalism to analyze the topological behaviors of the lat-

tice. We show that the lattice can support richer topological phases not achievable in

static coupled resonator systems. We realized Floquet microring lattices on a silicon-

on-insulator (SOI) platform and experimentally verified their predicted topological

phases by transmission measurements and direct observation of the edge modes on

the lattice boundaries. We also proposed a new method to trap light in a Floquet

bulk mode in a topologically nontrivial bandgap, leading to the discovery of a new

type of resonance called Floquet Defect Mode Resonance (FDMR). The FDMR can

potentially enable a wide range of applications of topological photonics.

In the rest of this chapter, we will provide a review of previous works on 2D TPIs,

followed by a statement of the objectives of our research.
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1.1 Topological photonic insulators based on un-

driven systems

The study of the quantum Hall effect [31] revealed the existence of a new class of

electrical insulators called topological insulators, whose energy bands are character-

ized by nontrivial topological invariants. Kohmoto and Thouless were the first to

relate the quantized Hall conductance to one of the topological invariants, the Chern

number, which directly corresponds to the number of edge states that can exist at the

boundary of a sample [32, 33]. In 2005, a new type of insulators was discovered which

has trivial (zero) Chern number but can still support edge states. These systems sup-

port quantized spin Hall conductivity and are characterized by another topological

invariant, the Z2 number [34, 35]. In contrast to previously discovered topological

insulators, the time-reversal symmetry is not broken in a Z2 topological insulator.

The discovery of Chern and Z2 topological insulators sparked intense research

effort in the condensed matter physics community to find new materials exhibiting

topological behaviors. However, topological insulator materials are limited in nature

and it is difficult to synthesize solid state systems to achieve desired topological

properties. On the other hand, it was recognized that topological behaviors could also

be achieved in bosonic systems, in particular in photonic systems, which are easier to

realize. In 2008, Haldane and Raghu formally extended topological insulator concepts

to photonic systems [36, 37] by proposing a photonic crystal structure which could

theoretically support topological edge states at optical frequencies. In 2009, Wang et

al. reported the first experimental observation of topological behavior in a bosonic

system subjected to a magnetic field at the microwave frequencies [13]. Specifically,

they implemented a 2D photonic crystal based on periodic lattice of gyromagnetic

ferrite rods, as illustrated in Fig. 1.1(a). The sample is bounded along the edge by a

non-magnetic metal wall. By applying a 0.20T DC magnetic field perpendicular to

the photonic crystal, they could achieve guided transmission along the sample edge,
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Figure 1.1: First demonstration of a topological photonic insulator. (a) A 2D rod-
based gyromagnetic photonic crystal with lattice constant a = 4 cm bounded with
metallic plates. (b) Band structure of the system with the bulk modes, edge states
and the Chern numbers indicated (c) Propagation of topologically protected edge
state in the absence and presence of a large defect [13].

with a 50dB difference between the forward transmission and back scattering. The

authors attributed the unidirectional propagation to chiral topologically-protected

edge mode along the interface of the photonic crystal and the metallic wall, which

arose due to time-reversal symmetry breaking in the presence of the magnetic field.

Figures 1.1(b) and (c) show, respectively, the band structure of the system and the

propagation of electromagnetic waves along the edge of the sample without and with

a metallic object as a defect. The wave can be seen to go around the defect and

continue on as an edge mode.

The work of Wang et al. initiated many other theoretical and experimental studies

exploring topological behaviors in various photonic systems. However, since the effect

of a magnetic field is very weak at optical frequencies, research effort has also been

directed at searching for different methods to create topological edge states without

requiring a magnetic field to break the time-reversal symmetry. These efforts have led

to the discovery of various topological phases and effects in 2D photonic systems, such

as anomalous quantum spin Hall effect [16, 30, 38], photonic anomalous quantum hall

4



effect [39, 40], photonic valley Hall effect [20, 21, 41, 42], topological crystalline insu-

lators (TCIs) [29, 43], topological Anderson insulators [44], and Floquet topological

insulators [14, 23, 25, 26]. These photonic systems can be classified as either static

TPIs or Floquet TPIs. We will first review the various implementations of static

TPIs using photonic crystals and ring resonators in this section. Floquet TPIs will

be discussed in Section 1.2.

Efforts to realize TPIs in the photonic crystal platform have led to new topological

phases such as valley Hall topological insulators and TCIs. In valley Hall topological

insulators, spatial symmetry (inversion symmetry) is broken in contrast to previ-

ous TPIs that require breaking the temporal symmetry (or time reversal symmetry).

Figure 1.2(a) shows a method to break inversion symmetry in photonic crystals [21].

The photonic crystal in this work is a honeycomb lattice with unit cells consist of

two triangular holes, shown in Fig. 1.2(a) inset. When the unit cell has identical

holes (d1 = d2), the lattice is topologically trivial, while the unit cell with different

hole dimensions (d1 ̸= d2) supports topological behaviors due to the inversion sym-

metry breaking. Deforming the photonic crystal unit cells by shrinking or expanding

unit cells, shown in Fig. 1.2(b), is another method to induce topological behavior

in photonic crystals [29]. This method relies on the photonic spin Hall effect imple-

mented by breaking the crystalline symmetry, known as TCI. The photonic crystal

in Fig. 1.2(b) consists of honeycomb unit cells with dielectric rods surrounded by air.

Shifting the rods toward the center leads to a normal insulator (NI) (bottom structure

in Fig. 1.2(b)), while pushing the rods away from the center of the unit cells produces

nontrivial TPI behavior (top structure in Fig. 1.2(b)). It has also been shown that in

photonic crystals, disorders can induce a new topological phase, known as topological

Anderson insulator [44]. Figure 1.2(c) shows a schematic of the unit cells consisting

of a central gyromagnetic cylinder and three dielectric triangular pillars, which are

respectively shown by the gray circle and blue triangles. Disorder in each unit cell is

created by randomly rotating triangular pillars from their initial locations [45].
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Figure 1.2: Realizations of TPIs in photonic crystals. (a) A TPI which exhibits valley
Hall effect using a photonic crystal with each unit cell consisting of two holes with
different dimensions [21]. (b) A TCI realized by deforming the unit cells. The top
structure (with expanded unit cells) has topological behaviors, whereas the bottom
structure (with shrunk unit cells) is a NI [29]. (c) Topological Anderson insulators
realized by inducing random disorders in each unit cell [45].

Static TPIs have also been realized based on 2D microring lattices, as first proposed

in 2011 and demonstrated in 2013 by Hafezi et al. [16, 30]. These lattices sought to

emulate the quantum Hall effect in a 2D electron gas subject to a perpendicular

magnetic field. The system consists of a square lattice of microrings supporting light

propagation in the same clockwise or counter-clockwise direction (i.e., single-spin site

rings), with adjacent microrings connected via off-resonant link rings, as shown in

Fig. 1.3(a). The magnetic field is emulated by introducing a synthetic gauge field

in the form of a gradient in the hopping phase between site rings in one direction

(y direction in Fig. 1.3(a)), and constant hopping phase in the other direction (x

direction). The net phase accumulation around each plaquette (shown by the red

dashed line in Fig. 1.3(a)) is thus 2πα, where the value of α can be set to represent

the ratio of the magnetic flux penetrating each plaquette to one flux quantum [46].

The Hamiltonian of the system can be derived using the tight-binding approximation

with the effect of the link rings neglected to give

−J
(︁
ψx,y−1 + ψx,y+1 + ψx−1,ye

i2παy + ψx+1,ye
−i2παy)︁ = Eψx,y

where J is the hopping rate. The above equation has the same form as the discrete
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Harper equation for electrons in a 2D lattice subjected to a perpendicular magnetic

field [47], although no magnetic field is required for the microring lattice. These

microring lattices have been realized in SOI and experimentally verified to exhibit

edge modes associated with Chern insulators (CIs).

Figure 1.3: Realizations of CIs in 2D microring lattices using (a) a synthetic magnetic
field [16] and (b) a staggered local gauge flux [40].

A disadvantage of the above TPI microring lattice is that it is not translationally

invariant along the y direction, which could make it less useful for device applications.

More recently, it was shown by the same group that nontrivial topological behavior

in a 2D microring lattice can also be observed by introducing next-nearest neighbor

(NNN) couplings, using Haldane model [48], between single-spin site rings using off-

resonant link rings, as shown in Fig. 1.3(b). The lattice has translational symmetry in

this case. Although the net gauge flux is zero, the combination of NNN hopping and

directional nearest neighbor (NN) hopping between site rings emulates a staggered

local gauge flux that breaks the time-reversal symmetry between the two pseudo-

spin states of the lattice, giving rise to nontrivial topological behaviors known as the

anomalous quantum hall effect [40], which does not require an external magnetic

field.
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Both types of lattices described above are static 2D systems whose topological

behaviors can be characterized by the Chern number. Their CI behaviors are achieved

by imposing a synthetic local gauge flux on the lattice via the phase detunings of

the link rings. However, a synthetic magnetic field is not necessary for observing

nontrivial topological behaviors, as shown by Liang and Chong in [49]. The authors

instead showed that microring lattices consisting of strongly coupled single-spin site

rings, shown in Fig. 1.4, can also support edge modes in a bulk bandgap, even though

the Chern numbers of all energy bands are trivial. Pasek and Chong later used

Chalker-Coddington network theory [50] to show that these edge states are similar

to those in a Floquet insulator [51], although they did not explicitly compute the

dynamical invariants characterizing the Floquet TPI behaviors of the lattice.

Figure 1.4: Topological edge state in a 2D unidirectional microring resonator lattice,
with the sites (resonators) and coupler rings indicated [49].

1.2 Floquet Topological Photonic Insulators

In addition to the above methods used to manipulate the band structures of static

systems to exhibit conventional topological behaviors, it has been found that periodic

driving can be a versatile method to transfer a system from trivial to non-trivial topo-

logical phases with richer topological behaviors [52, 53]. For example, periodically-

8



driven systems, or Floquet systems, can support not only conventional CI [14, 54]

but also anomalous Floquet insulator (AFI) edge modes in the bandgaps between

energy bands with trivial Chern number [24, 51, 55, 56]. A number of methods have

been proposed to realize periodically driven systems using temporal modulation in

solid-state and photonic systems [23, 52–54, 57]. Fig. 1.5 (a) shows an example of

a temporal modulation on a hexagonal lattice consists of two sublattices, A and B,

with hopping amplitudes, Ji(t) (i = 1, 2, 3), varying periodically with time [23]. A

driving cycle in this lattice, shown in Fig. 1.5 (b), consists of three steps. During each

step i, the hopping amplitude Ji increases by a factor of λ while other hopping am-

plitudes remain unchanged. Figure. 1.5 (c) shows the band diagrams of semi-infinite

lattices (infinite in x direction and finite in y direction) characterized by different

modulating values (λ). For λ = 1, the lattice is undriven with a topologically trivial

bandgap. In contrast, for λ > 1, the lattice is turned into a periodically driven sys-

Figure 1.5: (a) Schematic of a 2D periodically driven system consisting of sublattices,
A and B, with time-dependent hopping amplitudes. (b) A driving cycle with three
coupling steps. (c) Band diagrams of the lattice for different modulating strengths λ
[23].
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tem that supports robust edge modes (green and red lines) in topologically nontrivial

bandgaps. The properties of the edge modes in topologically nontrivial bandgaps will

be discussed in Section 2.3 in detail.

Since temporal driving could be difficult to realize in photonic systems, it was

suggested that Floquet TPIs could be realized using photonic lattices whose Hamil-

tonians vary periodically in the direction of light propagation rather than in time

[14]. In 2013, Rechtsman et al. experimentally realized the first Floquet TPI using

evanescently coupled helical waveguides characterized by a z-dependent Hamiltonian

which varies periodically along the direction of light propagation (z-direction). [14].

Figures 1.6 (a) and (b) respectively show the facet of the fabricated lattice and the

schematic of the helical waveguides. The band diagrams of a straight waveguide array,

Fig. 1.6 (c), and a helical waveguide array, Fig. 1.6 (d), indicate that by driving light

in a periodic helical manner along the direction of light propagation, a topologically

nontrivial bandgap opens. Figure 1.6 (e) shows the formation and propagation of edge

states at the top and right boundaries of the lattice. Floquet topological behaviors

have also been demonstrated in 2D quasicrystals using helical waveguides [58]. These

Floquet TPIs are classified as Floquet CIs since their energy bands are characterized

by non-zero Chern numbers, similar to static CI systems.

In addition to the above Floquet CI behavior, periodically-driven systems can sup-

port edge modes in a bandgap even though all the energy bands have zero (trivial)

Chern numbers. This behavior is called AFI behavior and can only be found in Flo-

quet systems. AFI edge states have been realized at acoustic and microwave frequen-

cies using unidirectional site rings, which were strongly coupled to their neighboring

sites via off-resonant link rings, similar to the structure shown in Fig. 1.4 [59, 60].

AFIs in photonic systems have also been experimentally realized using periodically

coupled waveguide arrays [25, 26], shown in Fig. 1.7 (a). The structure emulates a

photonic system which evolves periodically along the direction of light propagation

(the length of the waveguides). Figures 1.7(a) and (b) show the coupling steps in one
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Figure 1.6: Realization of a Floquet CI using array of helical waveguides. (a) The
facet of the fabricated lattice. (b) Schematic of the helical waveguides in a honey-
comb lattice. (c) Band diagram of evanescently coupled straight waveguides. (d)
Band diagram of evanescently coupled helical waveguides. (e) Direct imaging of light
propagation by edge states along the top and right boundaries. The yellow ellipse
shows location of the input beam [14].

driving period [25], leading to the formation of bulk modes (brown arrows) and edge

modes (orange arrows), shown in Fig. 1.7 (c). The band diagram of a semi-infinite

lattice, shown in Fig. 1.7 (d), depicts the edge states (solid and dotted orange lines)

as well as the bulk band (the flat brown line). The lattice was shown to behave as an

AFI since edge modes exist in the bandgaps between the bulk bands having trivial

Chern numbers [25].

One major drawback of photonic AFIs based on coupled waveguides arrays [25,

26, 61] is that they require long waveguides, in the range of centimeters, to provide a

sufficient number evolution periods to exhibit topological behaviors. In addition, they

are inherently three-dimensional (3D) structures requiring 3D fabrication techniques

and are thus not amenable to integration. In this thesis, we introduce a new realization

of photonic AFIs using 2D coupled microring lattices that can be implemented on a

nanophotonic platform.
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Figure 1.7: Realization of an AFI based on periodically-coupled waveguides arrays.
(a) Schematic of a periodically coupled waveguide array. (b) Driving sequence of
couplings between neighboring waveguides. (c) Formation of the bulk mode and edge
states in a semi-infinite lattice, with boundaries along the x-direction. (d) Band
diagram of the semi-infinite lattice with edge states (solid and dotted orange lines)
and the bulk band (brown line) [25].

1.3 Research objectives and thesis organization

The aim of this thesis is to investigate 2D lattices of coupled microring resonators

as periodically driven systems and explore their topological properties. In particular,

we introduce a new Floquet TPI based on 2D coupled microring lattices that can

exhibit various topological phases, including AFI. We propose an implementation of

the Floquet TPI using lattice of coupled octagons on SOI and experimentally verify

its topological behaviors, leading to the first demonstration of AFI on a nanophotonic

platform. We also propose and demonstrate a new method for trapping light in a

Floquet microring lattice, leading to a new resonance phenomenon called FDMR
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which could pave the way for new applications of Floquet TPIs.

This thesis is organized as follows. Chapter 2 provides the necessary background

on the theory of TPIs and their properties. We discuss the topological invariants

characterizing static and Floquet TPIs, and the bulk-edge correspondence relating

the number of edge modes to the topological invariants of the lattice bulk. Chapter 3

presents our proposed Floquet system based on 2D lattices of microring resonators and

develops the theoretical framework for analyzing its topological properties. Chapter 4

describes the design and experimental realization of our Floquet TPI using lattice of

octagons on SOI. Chapter 5 describes a new method for trapping light in a Floquet

bulk mode, leading to the excitation of FDMRs in the Floquet microring lattice,

and our experimental demonstration of FDMR in a silicon octagon lattice. Chapter 6

summarizes our research contributions and proposes new research directions for future

work. Appendices A and B provide more in-depth technical details and supplementary

information of the computations and measurements.
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Chapter 2

Theoretical Background

In this chapter, we review the key concepts and properties pertaining to topological

insulators. We will first provide mathematical descriptions and energy band diagrams

of 2D periodic lattices characterized by static and periodically driven Hamiltonians.

We next review the methods to compute the topological invariants of static and Flo-

quet systems and discuss the concepts of bulk-edge correspondence and topologically

protected edge states. Finally, we describe the photonic analogue of electronic sys-

tems governed by the Schrodinger equation, which allows us to emulate static and

periodically-driven Hamiltonians in photonics.

2.1 Energy spectrum of a time-independent peri-

odic lattice

We start by reviewing the energy spectrum of a static periodic lattice characterized by

a time-independent Hamiltonian. We will be interested primarily only in 2D systems

in this thesis. In quantum mechanics, the behavior of a physical system is governed

by the Schrodinger equation:

i
∂

∂t
|ψ(r, t)⟩ = H(r)|ψ(r, t)⟩ (2.1)

where H(r) is the Hamiltonian operator and |ψ(r, t)⟩ represents the state of the

system. In Eq. 2.1, we have set Planck's constant ℏ = 1 for simplicity. For a static

periodic lattice, the Hamiltonian is independent of time and periodic in space, H(r) =
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H(r + R). For example, for a 2D lattice which is periodic in x and y directions

with lattice constant a, as shown in Fig. 2.1, the Hamiltonian has spatial periodicity

H(x + a, y + a) = H(x, y). Since the Hamiltonian is time-independent, we can first

determine the eigenstates of the system by solving the eigenvalue equation

H(r)|Ψn(r)⟩ = En|Ψn(r)⟩ (2.2)

where |Ψn(r)⟩ is the nth eigenstate with eigenvalue (energy) En. A general solution

to Schrodinger equation (Eq. 2.1) can then be expressed as

|ψ(r, t)⟩ =
∑︂
n

cn|Ψn(r)⟩e−iEnt (2.3)

where cn = ⟨ψ(r, 0)|Ψn(r)⟩ are complex numbers determined from the initial state of

the system |ψ(r, 0)⟩.

Since the lattice is spatially periodic, we can use Bloch's theorem to express the

eigenstates in the form [62]:

|Ψn,k(r)⟩ = eik.r|un,k(r)⟩ (2.4)

where k is the wave vector in reciprocal space and |un,k(r)⟩ is a Bloch mode which

has the periodicity of the lattice |un,k(r+R)⟩ = |un,k(r)⟩. The eigenstates |Ψn,k(r)⟩

thus satisfies Bloch's boundary condition:

|Ψn,k(r+R)⟩ = eik.R|Ψn,k(r)⟩. (2.5)

Using Eq. 2.4 and Eq. 2.5, we can express the eigenvalue equation in Eq. 2.2 in terms

of the Bloch mode |un(k)⟩ = |un,k⟩ for a given wave vector k:

HB(k)|un(k)⟩ = En(k)|un(k)⟩ (2.6)

where HB(k) represents the Bloch Hamiltonian of a unit cell in the lattice. The Bloch

Hamiltonian HB and its eigenvalues En are periodic in reciprocal space (momentum

space) with periodicity of 2π/a, where a is the lattice constant (here assumed to be
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equal in all spatial dimensions). Thus, the eigenvalues En(k) map a set of (possibly

disconnected) periodic surfaces in momentum space, with each period known as a

Brillouin zone (BZ) (e.g., −π/a ≤ kx, ky ≤ π/a for a 2D lattice). Each surface

represents an energy band (or eigen-frequency band in photonic systems) of index

n, with the gaps between disconnected bands called energy bandgaps. An insulator

is a material with at least one bandgap. In the next section, we will discuss the

topological properties of the energy bands and introduce a topological invariant to

characterize the energy bands of 2D static systems.

Figure 2.1: Schematic of a 2D lattice which is periodic in x and y direction with
lattice constant a. The dashed square indicates a lattice unit cell.

2.2 Topological insulators

In mathematics, topology refers to the study of geometrical properties of objects

(or closed surfaces) in d-dimensional space under smooth deformations. Therefore,

objects can be characterized by an integer called topological invariant, which remains

unchanged under continuous deformations such as bending, squeezing, and stretching

[10]. For objects in real space, the topology can be defined in terms of the integral of
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the Gaussian curvature K over the object’s closed surface:[10]

1

2π

∫︂
surface

K dA = 2(1− g) (2.7)

The above equation is the Gauss–Bonnet theorem [63], which indicates that the total

Gaussian curvature of a closed surface is always equal to an integer. The number g

is the topological invariant called ”genus”, which corresponds to the number of holes

an object has. Figure 2.2 shows some examples of objects with genus = 0, 1, and

2. Since these objects have different genus, it is impossible to continuously deform

object (a) into object (b) without breaking its surface. The same is true for any other

pair of objects with different genus numbers.

Figure 2.2: Three objects with different topological invariants: (a) a “sphere” with
genus=0, (b) a “torus” with genus=1, (c) a “No sign” with genus=2.

We can also classify materials based on the topological properties of their energy

surfaces in the reciprocal (or momentum) space. As discussed in Section 2.1, the

energy bands of a 2D periodic lattice are periodic in kx and ky. Over each BZ, the

surface of each energy band can be wrapped around in kx and ky (e.g., the points

along kx = 0 are joined with the points along kx = 2π/a and the points along ky = 0

are then joined to the points along ky = 2π/a) to form a closed surface (in the form

of a torus), shown in Fig. 2.3. It can be shown that the energy surface of the nth

eigenstate is characterized by a topological invariant called the Chern number [33,

64]. To calculate the Chern number, we first define the Berry phase connection of a

Bloch mode |un(k)⟩ (the periodic part of the Bloch wave function Ψn,k(r)):

A = −i⟨un(k)|∇k|un(k)⟩ (2.8)
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Figure 2.3: Energy surface in a BZ in a 2D momentum space and the formation of
a torus due to the periodic boundaries. Orange and green lines represent periodic
boundaries in kx and ky directions [10].

where ∇k is the gradient with respect to k. Loosely speaking, the Berry phase

connection can be thought of as the rate of change of the phase of the Bloch mode

|un(k)⟩ with respect to k. The curl of the Berry phase connection is called the Berry

curvature and is defined as [33]:

F (k) = ∇k × A (2.9)

The above expression is reminiscent of the relation between the magnetic field B and

the magnetic vector potential A, B = ∇×A, which sometimes invites the physical

interpretation of the Berry curvature as some type of flux threading the energy surface

in momentum space. The Chern number of the nth energy band is defined by the

integral of the Berry curvature of the corresponding band over the torus surface,

which is always an integer, [32]:

Cn =
1

2π

∫︂
BZ

d2kF (k) =
1

2π

∫︂ ∫︂
(∂kxAy − ∂kyAx)dkxdky (2.10)

where ∂k is the partial derivative with respect to k. Equation 2.10 can also be ex-

pressed as [24]

Cn = C[Pn] =
1

2πi

∫︂
BZ

Tr{Pn[∂kxPn, ∂kyPn]}dkxdky (2.11)

where Pn(k) = |un(k)⟩⟨un(k)| is the projector onto the nth eigenstate |un(k)⟩ of

the Bloch Hamiltonian. In Eq. 2.11, Tr and [..., ...] are the trace and commutator

operators, respectively. An energy band is said to be topologically nontrivial if its

Chern number is nonzero.
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2.3 Topologically-protected edge modes and the

bulk-edge correspondence

One of the distinguishing features of a topological insulator is the existence of edge

states in the bandgap at the interface between two insulators with different topo-

logical invariants. Figure 2.4 illustrates what occurs at the interface between two

lattices whose bandgaps are aligned. When two lattices have the same Chern num-

ber, left images in Fig. 2.4, they can connect without any considerable changes in their

bandgaps. As a result, no propagating mode arises at the interface in this bandgap.

However, in lattices with different Chern numbers, right images in Fig. 2.4, since the

topological invariant cannot change abruptly across the interface, the bandgap must

close at the interface (Fig. 2.4(b) right), giving rise to edge modes shown by green

lines in Fig. 2.4(c) right. These modes are localized at the interface without leaking

into the bulk lattice and propagate either in the forward or backward direction along

the sample edge, as shown by the red arrows in the right sample in Fig. 2.4(a). In

addition, the edge modes are said to be topologically protected since their existence

is a consequence of the difference in the topological invariants of the bulk lattices

and not due to any special features along the edge. In particular, their existence is

guaranteed even in the presence of defects or perturbations at the interface. Thus,

fabrication defects, modifications, or any other changes at the surfaces of the insula-

tors cannot affect the edge modes. This important property of topological insulators,

called topological protection, can be exploited to realize photonic devices that are

robust to fabrication imperfections.

From the above discussion, we see that edge states in the bulk bandgap arise due to

a discontinuity in the Chern number at the interface. Thus, the edge states depend on

the topological invariants of the bulk materials far away from the interface. Moreover,

it can be shown that the number of edge modes at energy ε is exactly equal to the

difference between the sums of the Chern numbers below the corresponding bandgap
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Figure 2.4: (a) Interface between two insulators consists of two energy bands with
the same (left figure) and different topological invariants (right figure); the red line at
the interface represents the unidirectional topologically-protected edge mode. (b) and
(c) show the band structures at the interface in real and reciprocal space, respectively
[10].

of the two materials. For the special case when one of the materials is air, the number

of edge states Nξ in a bandgap at energy ξ is equal to the sum of the Chern numbers

of all the energy bands below that bandgap:

Nξ =
∑︂
En<ξ

Cn (2.12)

This relation is called the bulk-edge correspondence of a topological insulator. It

allows us to predict the existence of the edge states from the bulk invariant of the

system without considering interface conditions. The Chern number of a static 2D

lattice can thus be used to classify its topological behavior. If Nξ = 0, the lattice is

a NI; otherwise it is classified as a CI.

The distinction between conventional surface states in a normal insulator and

topologically-protected edge states in a nontrivial bandgap is illustrated in Fig. 2.5

[11]. The top and bottom images in Fig. 2.5 (a) and (b) show what occurs at the

material surface in momentum space and real space, respectively, for a normal insu-

20



lator and a topological insulator. For a normal insulator which supports conventional

surface states, the band diagram of a semi-infinite lattice (with boundaries) exhibits

surface states shown by the black lines in Fig. 2.5(a), which lie in the bandgap of an

infinite lattice. However, these surface states do not cross the entire bandgap. An

example of a conventional surface state is a confined optical mode localized near the

interface between a homogeneous low-index material and a semi-infinite lattice con-

sisting of periodic dielectric multilayers. The surface states, in this case, are caused

by Bragg reflections in the periodic multilayer and total internal reflection from the

homogeneous medium. In addition, the number of surface modes is equal to the num-

ber of guided modes that can be supported in the waveguide layer near the surface

[65]. These surface states can propagate in both forward and backward directions

Figure 2.5: A compression between (a) conventional surface states, (b) chiral edge
states in both momentum and real spaces. The top images indicate the energy bands
in momentum space for a semi-infinite lattice. The bottom images show the behaviour
of surface states and edge states at the interface between topologically trivial and
nontrivial lattices, respectively, in the presence of sharp corners [11].
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(with positive and negative group velocities in the dispersion diagram), but since

their localization depends on the mode confinement near the surface, they can be

easily scattered in the presence of defects or sharp corners, as shown in the bottom

image of Fig. 2.5(a). By contrast, the dispersion curves of topologically protected

edge states cross the entire topologically nontrivial bandgap and their existence is

tied to the topological invariant of the bulk lattice. As a consequence, they cannot

be scattered or destroyed in the presence of defects or sharp corners, as shown in the

bottom image of Fig. 2.5(b).

2.4 Energy spectrum of a periodically-driven quan-

tum system

A periodically-driven system is described by a Hamiltonian which varies periodically

in time H(t) = H(t+T ), where T is the driving period. Neglecting the spatial depen-

dence for a moment, the time evolution of the system is governed by the Schrodinger

equation

i
∂

∂t
|ψ(t)⟩ = H(t)|ψ(t)⟩ (2.13)

A general solution for the time-dependent Schrodinger equation in Eq. 2.13 can be

expressed as:

|ψ(t)⟩ = U(t)|ψ(0)⟩ (2.14)

where |ψ(0)⟩ is the initial state at time t = 0, and U(t) is the time-evolution operator

given by

U(t) = T exp(−i
∫︂
H(t

′
)dt

′
)

= lim
δt→0

e−iH(t)δte−iH(t−δt)δte−iH(t−2δt)δt...e−iH(0)δt
(2.15)

with T being the time-ordering operator. We can define the Floquet operator, U(T ),

which captures the state of the system at the end of each period T . The Floquet

operator satisfies the eigenvalue equation:

U(T )|Ψn⟩ = e−iεnT |Ψn⟩ (2.16)
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where |Ψn⟩ is called a Floquet state of the system and εn its quasienergy. Unlike

the energy of a static system, the quasienergy of a Floquet system is periodic with

a periodicity of 2π/T , since we can add an integer multiple of 2π to the phase εnT

without changing the eigenvalue e−iεnT . Thus associated with an eigenstate |Ψn⟩ is an

infinite number of quasienergies εn± 2mπ/T , m being an integer. Each 2π/T period

in the quasienergy spectrum is called a Floquet Brillouin zone (FBZ), in analogy with

the BZ in reciprocal space. According to Floquet theorem, each Floquet state evolves

in time as:

|Ψn(t)⟩ = e−iεnt|Φn(t)⟩ (2.17)

where |Φn(t)⟩ is also periodic, |Φn(t)⟩ = |Φn(t + T )⟩. The above equation is just

the Floquet counterpart of Bloch's theorem expressed in Eq. 2.4. Thus each Floquet

state begins each period (at t = 0) as |Ψn(0)⟩ = |Φn(0)⟩ and becomes |Ψn(T )⟩ =

e−iεnT |Φn(0)⟩ at the end of the period, acquiring a phase of εnT while its magnitude

is left unchanged. The general solution of the Schrodinger equation in Eq. 2.13 can

then be written as

|ψ(t)⟩ =
∑︂
n

cn|Ψn(t)⟩ =
∑︂
n

cn|Φn(t)⟩e−iεnt (2.18)

where the coefficients cn are defined by initial condition.

If the system is also periodic in space with lattice constant a, we can define the

Floquet-Bloch (FB) Hamiltonian, HFB(k, t), for a unit cell in the lattice. The FB

Hamiltonian is also periodic in k with the periodicity of 2π/a such that for a 2D

square lattice, we have HFB(kx, ky, t) = HFB(kx + 2π/a, ky + 2π/a, t). In this case,

the time-evolution operator is:

U(k, t) = T e−i
∫︁
HFB(k,t

′
)dt

′

(2.19)

Similarly, the Floquet operator U(k, T ) satisfies the eigenvalue problem:

U(k, T )|Ψn(k)⟩ = e−iεn(k)T |Ψn(k)⟩ (2.20)
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where εn(k) is the nth quasienergy band in a BZ within one 2π/T quasienergy period.

Note that compared to a static system, which has a finite number of energy bands, a

Floquet system has an infinite number of periodic quasienergy bands.

2.5 Topological invariant of Floquet topological in-

sulators

In a static 2D periodic lattice, each energy band is characterized by a Chern number

given by Eq. 2.11, which depends on the eigenstate |un(k)⟩ of the Bloch Hamiltonian

of a unit cell. In a similar manner, the quasienergy bands εn(k) of a periodically-

driven system can also be characterized by a Chern number [24]:

Cn = C[Pn] =
1

2πi

∫︂
BZ

Tr{Pn[∂kxPn, ∂kyPn]}dkxdky (2.21)

where Pn(k) = |Ψn(k)⟩⟨Ψn(k)| is the projector onto the eigenstate |Ψn(k)⟩. If a

Floquet system has nonzero Chern numbers for its quasienergy bands, it is classified

as a CI. Note that the Chern number of a quasienergy band depends only on the

Floquet operator U(T ), which only captures the state of the system at the end of

each period T . In other words, the Chern number does not depend on the detail of

the system evolution within each period.

In addition to the CI behavior, it is found that a periodically-driven system can also

support edge modes even in the case where all the Chern numbers of the quasienergy

bands are trivial. This topological behavior is known as AFI, which implies that the

Chern number cannot fully characterize the topological phases of a Floquet system.

Instead, it was shown [23] that Floquet systems must be characterized by a new

topological invariant, called the winding number, whose value depends on the complete

time history of the system during each driving period through the evolution operator

U(t) at quasienergy ξ (for this reason the winding number is also referred to as a

dynamic invariant). Loosely speaking, the winding number gives the number of times

the phase of a FB mode winds around the origin over one period of evolution. The
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winding number of a 2D Floquet system is given by [24]:

w[Uξ] =
1

8π2

T∫︂
0

dt

∫︂
BZ

dkxdkyTr
{︂
U−1
ξ ∂zUξ[U

−1
ξ ∂kxUξ, U

−1
ξ ∂kyUξ]

}︂
(2.22)

where Uξ is defined as:

Uξ(k, t) = U(k, t)eiHeff,ξ(k)t (2.23)

with Heff,ξ is the effective Hamiltonian defined in terms of the Floquet operator:

U(k, T ) = e−iHeff,ξ(k)T (2.24)

with the eigenvalues of Heff,ξ chosen to be between ξ and ξ+2π/T . The computation

of the winding number of a 2D Floquet system (Eq. 2.22) is more complicated than

the Chern number and will be discussed in Chapter 3 for the case of the Floquet

microring lattice. The winding number corresponds to the number of edge modes

that can exist in the bandgap at quasienergy ξ [24]:

nedg(ξ) = w[Uξ] (2.25)

This relation is the bulk-edge correspondence of Floquet topological insulators. In

addition, the Chern number of each energy band is related to the winding numbers

of the upper and lower bandgaps via [24]

Cξ′,ξ = w[Uξ′ ]− w[Uξ] (2.26)

where ξ′ and ξ are quasienergies located in the upper and lower bandgaps, respectively.

2.6 Photonic analogue of quantum systems

Up to now we have discussed the topological properties of electronic systems gov-

erned by the Schrodinger equation. These concepts can also be applied to photonic

systems. In this section, we show that in the paraxial approximation, the Helmholtz

equation governing wave propagation in an optical waveguide has the same form as
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the Schrodinger equation, with the direction of propagation (z-direction) replacing

the time variable. Thus, electromagnetic waves propagating in a waveguide can mimic

the time evolution of electron waves in a quantum system.

We consider a dielectric waveguide oriented along the z-direction with its cross-

sectional refractive index distribution given by n(x, y). The transverse component of

the electric field, Et, of an optical mode propagating in the waveguide satisfies the

wave equation:

∇×∇× Et − n2k2Et = 0 (2.27)

where k = 2π/λ is the wave vector, and λ is the wavelength in vacuum. Since the

wave is assumed to propagate along the z-direction, we can express the dominant

electric field component of the polarization mode of interest (transverse electric field

(TE) or transverse magnetic field (TM)) as:

Et = ψ(x, y, z)e−iβz (2.28)

where ψ(x, y, z) represents the slowly-varying envelope of the electric field, β = neffk

is the propagation constant of the mode with effective index neff , and the time-

harmonic component, eiωt, is assumed and suppressed [66]. By substituting Eq. 2.28

into Eq. 2.27 and making the paraxial approximation, ∂2ψ
∂z2

≈ 0 (see Appendix A for

details on the derivation of Eq. 2.29), we obtain

i
∂ψ(x, y, z)

∂z
=

(︃
− 1

2neffk
▽2
t −∆nk

)︃
ψ(x, y, z) (2.29)

where ▽2
t = ∂2

∂x2
+ ∂2

∂y2
and ∆n = n − neff . Equation 2.29 has the form of the

Schrodinger equation, Eq. 2.13, with the direction of wave propagation (z variable)

taking the role of time t. The Hamiltonian is identified as H =
(︂
− 1

2neffk
▽2
t −∆nk

)︂
.

Equation 2.29 describes a static system since the Hamiltonian is independent of z

[67]. We can emulate more complex Hamiltonians using arrays of coupled waveguides,
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where the coupling configuration determines the driving sequence in the z-direction.

In the next chapter, we will show that a 2D lattice of coupled microring resonators

emulates a periodically driven system and can thus be designed to exhibit nontrivial

topological behaviors.
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Chapter 3

Floquet TPIs based on 2D
microring resonator lattices

3.1 Introduction

In this chapter, we formalize the description of a microring lattice as a Floquet topo-

logical insulator by showing that it can be described by a Hamiltonian that is peri-

odic in the direction of wave propagation. By converting the microring lattice into

an equivalent coupled waveguide array, we can explicitly derive the FB Hamiltonian

of the system and construct its evolution operator. Knowledge of the system state at

every point during a driving period allows us to determine the dynamic topological

invariant of the lattice and characterize its topological phases. In particular, we will

show that Floquet topological characteristics can be observed over a wide range of

coupling strengths and the lattice can support both Chern and anomalous Floquet

edge modes.

3.2 FB Hamiltonian of a 2D microring lattice

Figure 3.1(a) shows a schematic of a 2D square microring lattice in which the mi-

croring resonators are assumed to have the same radius R and identical resonant

frequencies. Light in each microring propagates in either the clockwise or counter-

clockwise direction and scattering into the counter-propagating mode is assumed to

be negligible. Coupling between neighbor microrings is achieved via evanescent field
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Figure 3.1: (a) Schematic of a 2D square microring lattice with coupling angles
θa and θb. (b) Topological transformation of the microring lattice into a coupled
waveguide array. Fields of the same colors map between the microring and waveguide
lattices. The lines connecting adjacent waveguides represent coupling points between
corresponding microrings (for clarity only couplings between the outer waveguides in
(b) are shown).

coupling between the microring waveguides, with the coupling strength defined by a

coupling angle θ such that the fraction of power transfer between the two waveguides

is equal to κ2 = sin2 θ. The direction of light propagation in each evanescent wave cou-

pler dictates that the fields in adjacent microrings propagate in alternate directions.

For the lattice, the smallest unit cell consists of four resonators, which are labeled

A, B, C and D in the figure. We will focus on the particular coupling configuration

where the coupling strengths of microrings A and D to their respective neighbors are

dissimilar, since this system is found to exhibit richer topological characteristics than

other coupling configurations. The lattice in this case can be characterized by two

coupling parameters: coupling angle θa between microring A and its neighbors and

coupling angle θb between microring D and its neighbors, as shown in Fig. 3.1(a). We

also note that the lattice is unchanged if we exchange the values of θa and θb.

Within each resonator, the propagating field executes a periodic motion around

the microring, with a spatial period equal to 2πR along the direction of propagation,

29



which we will denote as the z direction. The microring lattice can thus be regarded as

a periodically-driven system, although the driving is along z rather than in time. To

determine the system Hamiltonian, we employ the approach in [68] to transform the

microring lattice into an equivalent coupled waveguide array as shown in Fig. 3.1(b).

This is accomplished by “cutting” each microring at the point indicated by the small

open circle on each microring in Fig. 3.1(a) and unrolling it to form a straight waveg-

uide. In this manner we obtain a 2D array of coupled waveguides, each having equal

length L = 2πR with Floquet boundary conditions at the two ends. The waveg-

uide lattice is also periodic in the transverse (x and y) directions with periodicity

of Λ = 2a ≈ 4R (Λ is the lattice constant and a is the distance between adjacent

microrings), where we have neglected the evanescent coupling gaps between the mi-

crorings. In Fig. 3.1(b), a connection between two adjacent waveguides indicates

coupling between two corresponding microring resonators.

Figure 3.1(b) also suggests that the evolution of the fields in the waveguide array

over each period can be divided into four steps, with the couplings between pairs

of waveguides in each step depicted in Fig. 3.2(a). We note that the hopping (or

coupling) sequence of our microring lattice is more complicated than the hopping

sequence realized by the Floquet TPI based on coupled waveguide array in [25]. For

our lattice, by setting different hopping strengths between sites A and D with their

neighbors (θa ̸= θb), we can guarantee that light in a microring will partially return

to its initial location after three periods, resulting in localized bulk modes within a

topological bandgap. This can be seen by considering the driving protocol in the limit

of perfect coupling where θa → π/2 (κa → 1) and θb → 0 (κb → 0), as depicted in

Fig. 3.2(b). Grey arrows show light hopping in the bulk of the lattice. Light starting

from site A of a unit cell will hop over to site B after the first step due to the strong

coupling κa. In step 2, it remains localized in site B due to the weak coupling κb. In

step 3 it hops over to site A of the right neighbor unit cell. Continuing tracing the

path of light in this manner shows that it will return to its initial position after three
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Figure 3.2: (a) Couplings between pairs of waveguides in each of the four steps in a
driving period. κ2a = sin2 θa and κ2b = sin2 θb are the field coupling coefficients. (b)
Hopping sequence of the Floquet microring lattice in the limit θa → π/2 and θb → 0.
Each dot represents a microring waveguide in the equivalent coupled waveguide array
picture. Grey arrows show the path of light in the bulk, which forms a closed loop
after 3 periods. The inset in the dashed box shows the path followed by a bulk mode
in the microring lattice. Purple arrows show the hopping sequences of the two chiral
edge modes along the bottom and top boundaries of the lattice.

periods (or three microring roundtrips), as shown in the figure. Also indicated in the

figure by the purple arrows are the hopping sequences followed by the two chiral edge

modes along the bottom and top boundaries of the lattice. In each case, the presence

of the boundary breaks the bulk loop pattern, forcing light to propagate along the

edge of the lattice forming an edge mode.

Although evanescent coupling between two adjacent microrings occurs only over a

small segment of the ring waveguides, we will assume in the following analysis that

the coupling is constant over the entire quarter length of the waveguide array, so that

the coupling angle θ between a pair of waveguides can be expressed as θ = kcL/4,

where kc is the coupling strength per unit length. This assumption greatly simplifies

the computation of the evolution operator of the system and, as long as the coupling

remains adiabatic, does not change the topological characteristics of the lattice.
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The field evolution along the waveguide array can be described using the coupled

mode equations [69]. These equations can be cast in a similar form as the Schrodinger

equation in which the direction of propagation (the z -axis) takes the role of time.

Following the coupling sequence in Fig. 3.2(a), we can write the equations of motion

for the fields [ψAm,n, ψ
B
m+1,n, ψ

C
m,n+1, ψ

D
m+1,n+1] in each unit cell over one period as:

∂ψAm,n
∂z

= iβψAm,n + ika(1)ψ
B
m+1,n + ka(2)ψ

C
m,n+1

+ika(3)ψ
B
m−1,n + ika(4)ψ

C
m,n−1

∂ψBm+1,n

∂z
= iβψBm+1,n + ika(1)ψ

A
m,n + ikb(2)ψ

D
m+1,n+1

+ika(3)ψ
A
m+2,n + ikb(4)ψ

D
m+1,n−1

∂ψCm,n+1

∂z
= iβψCm,n+1 + ikb(1)ψ

D
m+1,n+1 + ika(2)ψ

A
m,n

+ikb(3)ψ
D
m−1,n+1 + ika(4)ψ

A
m,n+2

∂ψDm+1,n+1

∂z
= iβψDm+1,n+1 + ikb(1)ψ

C
m,n+1 + ikb(2)ψ

B
m+1,n

+ikb(3)ψ
C
m+2,n+1 + ikb(4)ψ

B
m+1,n+2 (3.1)

where k(a,b)(j) = k(a,b) = 4θ(a,b)/L in step j and equals 0 otherwise. Since the waveg-

uide array is periodic in x and y, we apply Bloch's condition to get ψA,B,C,Dm±l,n±v =

ψA,B,C,Dm,n ei(±lkx,±vky)Λ/2 where l and v are integers. Equation 3.1 can be written for

the state vector |ψ⟩ = [ψAm,n, ψ
B
m,n, ψ

C
m,n, ψ

D
m,n]

T of each unit cell in the form

i
∂

∂z
|ψ(k, z)⟩ = [−βI +HFB(k, z)]|ψ(k, z)⟩ (3.2)

where k = (kx, ky) is the crystal momentum vector and I is the identity matrix. The

FB Hamiltonian, HFB, is given by

HFB(k, z) =
4∑︂
j=1

H(j) (3.3)
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where H(j) = Hj in step j and zero otherwise. The Hamiltonian in each step is

H1 = −

⎛⎜⎜⎜⎜⎜⎜⎝
0 kae

ikxΛ 0 0

kae
−ikxΛ 0 0 0

0 0 0 kbe
ikxΛ

0 0 kbe
−ikxΛ 0

⎞⎟⎟⎟⎟⎟⎟⎠

H2 = −

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 kae

ikyΛ 0

0 0 0 kbe
ikyΛ

kae
−ikyΛ 0 0 0

0 kbe
−ikyΛ 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

H3 = −

⎛⎜⎜⎜⎜⎜⎜⎝
0 kae

−ikxΛ 0 0

kae
ikxΛ 0 0 0

0 0 0 kbe
−ikxΛ

0 0 kbe
ikxΛ 0

⎞⎟⎟⎟⎟⎟⎟⎠

H4 = −

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 kae

−ikyΛ 0

0 0 0 kbe
−ikyΛ

kae
ikyΛ 0 0 0

0 kbe
ikyΛ 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
The FB Hamiltonian is periodic in z with a periodicity equal to the microring cir-

cumference, i.e., HFB(k, z) = HFB(k, z + L).

The evolution operator of the lattice is given by

U(k, z) = T e−i
∫︁ z
0 HFB(k,z′)dz′ (3.4)

Noting that the Hamiltonian Hj is independent of z in each step, we can obtain the

evolution operator as (omitting the eiβz term for brevity)
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U(k, z) =

⎧⎪⎪⎨⎪⎪⎩
e−iH1(k)z, 0 ≤ z < L/4

e−iH2(k)(z−L/4)e−iH1(k)L/4, L/4 ≤ z < L/2

e−iH3(k)(z−L/2)e−iH2(k)L/4e−iH1(k)L/4, L/2 ≤ z < 3L/4

e−iH4(k)(z−3L/4)e−iH3(k)L/4e−iH2(k)L/4e−iH1(k)L/4, 3L/4 ≤ z ≤ L

(3.5)

The Floquet operator, which provides a stroboscopic snapshot (at every interval L)

of the state of the system, is

UF (k) = U(k, L) = e−iH4(k)(L/4)e−iH3(k)L/4e−iH2(k)L/4e−iH1(k)L/4 (3.6)

The Floquet operator is a unitary matrix with complex eigenvalues of unit magnitude.

Its eigenstates, which are the Floquet modes, are obtained from

UF (k)|Ψn(k)⟩ = e−iεn(k)L|Ψn(k)⟩ (3.7)

where εn(k) gives the periodic quasienergy bands, which are periodic in k with a

periodicity of 2π/Λ and repeated in energy with period 2π/L.

Figure 3.3(a) shows the spectrum of quasienergy bands over one FBZ (0 ≤ εL ≤

2π) of an infinite microring lattice with θa = 0.48π and θb = 0.1π. Three distinct

bandgaps (labeled I, II, and III) can be seen, with bandgap II centered at εL = π

and bandgaps I and III symmetric about this energy. Figure 3.3(b) shows the regions

where bandgaps I and II are open as functions of the coupling angles. Bandgap II

(the π bandgap) is always open except for coupling angle values on the dashed lines.

3.3 Topological Invariants of a 2D Microring Lat-

tice

Since the quasienergy bands of the 2D microring lattice are periodic in kx and ky,

the surface of each band over one Brillouin zone can be wrapped around in kx and

ky to form a torus. As discussed in Section 2.5, the integral of the Berry curvature of
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Figure 3.3: (a) Band diagram over one FBZ of an infinite 2D microring lattice with
θa = 0.48π and θb = 0.1π. Floquet bands (n = 1, 2, 3, and 4) and bulk bandgaps
(I, II, and III) are labeled in the figure (there is no gap between bands n = 1 and
n = 4). (b) Map of coupling angles θa and θb showing the regions where bandgaps I
and II are open. bandgap II is always open except for the dashed lines. bandgap I is
open only in the cyan regions.

the nth FB mode, |Ψn(k)⟩, over the torus surface defines the Chern invariant of the

quasienergy band n:

Cn = C[Pn] =
1

2πi

∫︂
BZ

Tr{Pn[∂kxPn, ∂kyPn]}dkxdky (3.8)

where Pn(k) = |Ψn(k)⟩⟨Ψn(k)| is the projector onto the eigenstate |Ψn(k)⟩. Since the

Chern number depends only on the Floquet operator (via the eigenstate |Ψn(k)⟩), it

does not capture the full evolution dynamics of the Floquet system and thus does not

fully characterize the topological behaviors of the system. In particular, for a Floquet

system the Chern number only represents the difference between the number of edge

states in the bandgaps above and below that quasienergy band. Notably, edge states

can still exist even if the Chern numbers of all the Floquet bands are zero.

To completely characterize the topological behaviors of a 2D Floquet system, we

need to determine the dynamical gap invariant, or winding number, which depends

on the complete evolution history of the system over each driving period. The pro-

cedure for computing the winding number of a 2D Floquet system [24] requires that
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the evolution operator U(k, z) returns an arbitrary state of the system to itself after

one evolution period, i.e., U(k, L) = I, where I is the identity matrix. In gen-

eral, this property is not satisfied by the evolution operator of our system defined in

Eq. 3.4. However, we can periodize the evolution operator (i.e., enforce the condition

U(k, L) = I) without altering the topological invariant of the system by multiplying

it with a suitable operator while ensuring that the bandgap of interest remains open

over the entire evolution period. We first define an effective Hamiltonian Heff (k) for

the lattice in terms of the Floquet operator such that

UF (k) = e−iHeff (k)L (3.9)

Next we define an operator Vξ(k, z) as

Vξ(k, z) = eiHeff,ξ(k)z (3.10)

with the eigenvalues of the effective Hamiltonian Heff,ξ chosen to be between ξ and

ξ + 2π/L (note that we can add 2mπ/L to an eigenvalue of Heff without changing

the Floquet operator). The evolution operator U(k, z) can then be periodized by

multiplying it with Vξ [24],

Uξ(k, z) = U(k, z)Vξ(k, z) (3.11)

It can be verified that the new evolution operator Uξ satisfies Uξ(k, L) = I while the

bandgap containing the energy ξ remains open over the entire evolution period. The

winding number associated with the bandgap at quasienergy ξ can be computed as

[24]

w[Uξ] =
1

8π2

L∫︂
0

dz

∫︂
BZ

dkxdkyTr
{︂
U−1
ξ ∂zUξ[U

−1
ξ ∂kxUξ, U

−1
ξ ∂kyUξ]

}︂
(3.12)

It can be shown that the winding number is equal to the number of edge modes that

can exist in the bandgap. This is the bulk-edge correspondence of a Floquet insulator.

In addition, the Chern number of the nth Floquet band is related to the winding
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number of the upper (ξ′) and lower (ξ) bandgaps via the relation Cξξ′ = w[Uξ′ ]−w[Uξ]

[24].

Using the Floquet operator of the 2D microring lattice in Eq. 3.6, we computed

the Chern number associated with each quasienergy band using Eq. 3.8. We found

that in general, the Chern number is always trivial for the bands n = 1 and 4.

However, for the cases where bandgap I is open, it can take on nontrivial values for

the bands n = 2 and 3, indicating that the microring lattice can behave as a CI. We

also computed the winding numbers WI and WII associated with the two bandgaps

I and II (the winding number of bandgap III is the same as bandgap I). Specifically,

WII is computed for ε = π/L, while WI is computed at the quasienergy ε coinciding

with the middle of bandgap I when it is open. To highlight the different possible

topological characteristics that can be observed in the microring lattice, we considered

four different sets of coupling angles (θa, θb) : (0.2π, 0.1π), (0.3π, 0), (0.45π, 0.2π), and

(0.45π, 0.05π). In order to verify the existence of edge modes in each lattice, we

also computed the band diagram of a microring lattice strip with boundaries in the

y direction and infinite length in the x direction using the transfer matrix method

in Appendix B. The band diagrams of the four semi-infinite lattices are shown in

Figs. 3.4 (a)-(d). The number of unit cells in the y direction is 10 for each structure.

In Fig. 3.4, we also show the winding number of each bandgap and the Chern numbers

of the Floquet bands for each lattice.

We observe that while all four lattices have an open bandgap II, lattices (a) and

(b) have trivial winding number (WII = 0) and thus do not support edge states in this

bandgap. On the other hand, lattices (c) and (d) have nontrivial winding numbers

(WII = 1) and thus support edge modes, as can be verified by the modes crossing

bandgap II in the corresponding band diagrams. However, as indicated in the figures,

the Chern numbers associated with the bulk bands of both lattices are all trivial, so

the edge modes in bandgap II of these lattices cannot be of the Chern type but must

be classified as AFI edge modes.
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Figure 3.4: Band diagrams of microring lattice strips with 10 unit cells in the y
direction, infinite length in the x direction, and coupling angles (a) θa = 0.2π, θb =
0.1π; (b) θa = 0.3π, θb = 0; (c) θa = 0.45π, θb = 0.2π; (d) θa = 0.45π, θb = 0.05π.
The winding numbers associated with the open bandgaps I and II and the Chern
numbers of the bulk bands are also indicated.

With respect to bandgap I, we observe that it is closed for lattices (a) and (c)

but open for lattices (b) and (d). For the latter two cases, the band diagrams show

the existence of edge modes in the bandgap, which confirms the nontrivial winding

numbers (WI = 1) obtained in bandgap I of these lattices. However, for lattice (b),

the Chern number associated with bulk bands n = 1 and 2 are nontrivial, indicating

that the edge modes in bandgap I are of the Chern type. On the other hand, the

Chern numbers of the bands in lattice (d) are all trivial, so the edge modes in bandgap

I must be classified as AFI edge modes. In Fig. 3.5, we summarize the topological

characteristics of the microring lattice by showing the map of coupling angles θa and

θb for which CI and AFI edge modes are supported in bandgaps I and II. The four

examples in Fig. 3.4 are also indicated by the markers on the map.
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Figure 3.5: Topological phase map of the microring lattice showing the range of
coupling angles θa and θb for which CI and AFI edge states are supported in bandgaps
I and II (CII means CI edge mode is supported in bandgap I, with similar meanings
for AFII and AFIII). The symbol markers correspond to the four examples in Fig. 3.4.

To verify the existence of the edge modes in the microring lattice, we used the

transfer matrix method in [68] to compute the field distribution in a lattice consisting

of 5 × 10 unit cells with coupling angles θa = 0.45π, θb = 0.05π (κ2a = 98% and

κ2b = 2%), which corresponds to the structure in Fig. 3.4(d) located in the purple

region of the phase map. Light enters the sample via an input waveguide coupled to

microring A of a unit cell on the left boundary and exits the sample via an output

waveguide coupled to microring B of a unit cell on the right boundary. The input

and output coupling efficiency is set at 99%. Figures 3.6(a) and 3.6(b) show the

excitation schematics and normalized light intensity distributions of the two chiral

edge states at the center of bandgap II (ξ = πL). We note that all the simulated light

intensities in this thesis are normalized to the input light intensity. We note that all

the simulated light intensities in this thesis are normalized to the input light intensity.

The counter-clockwise edge mode is excited by injecting light into port 1 of the input
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waveguide, while the clockwise edge mode is excited using port 2. Figure 3.6(a)

shows that the edge mode corresponding to the counter-clockwise pseudo-spin state

in microring A travels in the counter-clockwise direction along the sample boundaries

and exits from port 4 of the output waveguide. On the other hand, the edge mode with

the clockwise pseudo-spin in microring A travels in the opposite direction along the

sample boundaries to exit from port 3 of the output waveguide, as seen in Fig. 3.6(b).

Similar edge mode field patterns are also obtained for light excitation in bandgaps I

and III of this sample.

Figure 3.6: Schematic for light excitation and intensity distribution of the (a) counter-
clockwise and (b) clockwise edge modes at quasienergy ξ = πL in an AFI microring
lattice with 5× 10 unit cells and coupling angles θa = 0.45π, θb = 0.05π

We also performed field simulations to verify nontrivial behaviors of the microring

lattice in other regions of the topological phase map. We first verified CI edge states

supported in bandgap I of a microring lattice in the cyan region. The lattice consists

of 5× 5 unit cells with coupling angles θa = 0.3π and θb = 0 (κ2a = 65% and κ2b = 0),

which corresponds to the structure marked by the red triangle on the phase map
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in Fig. 3.5 and whose band diagram is shown in Fig. 3.4(b). To excite clock-wise

edge states, we injected light into port 2 of the input waveguide as in the schematic

in Fig. 3.6(b). Figure 3.7 (a) shows the excited CI edge state at the quasienergy

ξ = 0.15πL located in bandgap I. Light localization along the top lattice boundary

verifies the excitation of an edge state in this bandgap.

Figure 3.7: (a) Clockwise CI edge state at quasienergy ξ = 0.15πL in the microring
lattice with coupling angles θa = 0.3π and θb = 0π (κ2a = 65% and κ2b = 0) located
in the cyan region of the phase map. (b) Clockwise AFI edge state at quasienergy
ξ = πL in the microring lattice with coupling angles θa = 0.45π and θb = 0.2π
(κ2a = 98% and κ2b = 35%) located in the green region of the phase map.

To verify the AFI behavior of the lattice in the green region of the phase map, we

used a microring lattice with coupling angles θa = 0.45π and θb = 0.2π (κ2a = 98% and

κ2b = 35%), corresponding to the structure marked by the red diamond on the phase

map, whose band diagram is shown in Fig. 3.4(c). Using the same excitation scheme

as in Fig. 3.6(b), we simulated the field distribution in the lattice at quasienergy
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ξ = πL located at the center of bandgap II. Fig. 3.7(b) confirms the formation of an

AFI edge state travelling along the top edge of the lattice. These field distributions

confirm that edge states are supported over a wide range of coupling angles θa and

θb as predicted by the topological phase map.

Finally, to examine the robustness of an edge state in the presence of a defect, we

removed a microring, shown by the black arrow in Fig. 3.8, at the bottom boundary of

a microring lattice with 5× 5 unit cells. The lattice has coupling angles θa = 0.45π,

θb = 0.025π, which supports AFI edge states in all three bandgaps. We excited a

counter-clockwise edge state with quasienergy at the center of bandgap II (ξ = πL)

by injecting light into input port 1 of the input waveguide as in the schematic in

Fig. 3.6(a). The simulated light distribution, shown in Fig. 3.8, indicates that the

edge mode goes around the defect and continues travelling along the bottom boundary.

This behavior confirms that the edge mode is topologically protected in the presence

of defects.

Figure 3.8: Counter-clockwise edge state in the microring lattice with coupling angles
θa = 0.45π and θb = 0.025π at quasienergy ξ = πL in the presence of a defect at the
bottom boundary.

3.4 Conclusion

In this chapter we showed that a 2D microring lattice can emulate a quantum system

driven by a periodic Hamiltonian in the direction of light propagation. Knowledge
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of the FB Hamiltonian allows us to obtain the complete evolution history of the

system over each driving period, which is necessary for determining the topological

invariants and the bulk-edge correspondence of the system. In particular, we showed

that the lattice exhibits nontrivial winding numbers for certain ranges of the coupling

strengths, and correlated these values to the existence of anomalous Floquet edge

modes in a microring strip with boundaries.

The analysis presented in this chapter can also be used to determine the FB Hamil-

tonians and compute the winding numbers of other periodic microring lattice config-

urations in both one and two dimensions. One example is the hexagonal microring

lattice studied in [51], which was shown to also support both Chern type and AFI

edge modes, although the topological invariants of the lattice as a Floquet system

have not been determined. It is also possible to apply our method to study micror-

ing lattices with complex coupling coefficients, whose phases can be used to simulate

an artificial gauge [16]. As mentioned in Chapter 1, such a lattice has only been

studied as a static system using the tight-binding approximation. By treating it as a

periodically-driven system in a gauge potential, it may be possible to observe richer

Floquet topological behaviors in such a lattice.

Given a 2D microring lattice, it is always possible to construct a coupled waveguide

array that is topologically equivalent in both real and reciprocal spaces, although the

converse is not necessarily true. For the cases where such equivalence exists between

a microring lattice and a waveguide array, the topological properties of one system

can be predicted by studying the other. For example, the 2D periodically-coupled

waveguide array in Fig. 3.1(b) has the same topological phase map shown in Fig. 3.5

as the equivalent microring lattice. From the experimental point of view, however,

microring lattices are better candidates for demonstrating Floquet insulator behaviors

since it is easier to fabricate a microring lattice on an integrated optics platform than

a 2D waveguide array, which requires 3D fabrication techniques [25].
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Chapter 4

Experimental realization of
Floquet photonic insulators based
on coupled microring lattices

In the previous chapter, we showed that coupled microring resonator lattices can

emulate periodically driven systems and are thus natural candidates for realizing

topological Floquet insulators. In particular, we proposed a square microring lat-

tice characterized by two different coupling angles in each unit cell which exhibit

a wide range of topological behaviors including NI, CI and AFI. In this chapter,

we experimentally realize 2D Floquet microring lattices using direct-coupled octagon

resonators on a silicon nanophotonic platform. By exploiting asynchronism in the

evanescent coupling between adjacent octagonal resonators, we could achieve strong

and asymmetric couplings in each unit cell, which are necessary for realizing topo-

logical behaviors. We performed direct imaging of scattered light from fabricated

samples to confirm the existence of chiral edge states as predicted by the topological

phase map of the lattice. In addition, by exploiting the frequency dispersion of the

coupling coefficients, we also observed topological phase changes of the lattice from a

NI to CI and AFI. These results validate the theoretically predicted behaviors of 2D

microring lattices as Floquet topological insulators in the previous chapter.
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4.1 Design and fabrication of coupled octagon res-

onator lattices

We realized the Floquet microring lattices on an SOI substrate. Figure 4.1(a) shows

the schematic of the SOI substrate with a 220 nm-thick silicon layer on a 2µm-thick

silicon dioxide (SiO2) layer. The silicon waveguide were also covered with a 2.2µm-

thick SiO2 cladding. We used silicon waveguides with 400 nm and 600 nm widths,

which support the fundamental TE mode at telecommunication wavelengths, to im-

plement the Floquet microring lattice and its input/output waveguides. Figs. 4.1(b)

and (c) show the electric field distributions of the fundamental TE mode in silicon

waveguides with widths of 400 nm and 600 nm, respectively.

Figure 4.1: (a) Schematic of an SOI waveguide. (b) and (c) Electric field distributions
of the fundamental TE mode at λ = 1550 nm in waveguides with widths of 400 nm
and 600 nm, respectively.

To realize a 2D Floquet microring lattice characterized by square unit cells consist-

ing of microrings with identical resonance frequencies, shown in Fig. 3.1 of Chapter 3,

the microrings must be identical with identical evanescent coupling gaps between ad-

jacent resonators. However, we also have the requirement that in each unit cell, the

coupling strength between microring A and its neighbors must be different from the

coupling strength between microring D and its neighbors. To realize such a lattice,

we used octagonal resonators with the sides having identical lengths but alternating
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Figure 4.2: Schematic of a unit cell of the Floquet microring lattice consisting of
octagons with alternating widths W1 and W2. Octagon D is rotated by 45◦ with
respect to the other resonators to achieve asynchronous coupling.

widths W1 and W2, as shown in Fig. 4.2. To maintain a square lattice, we set the

coupling gaps between adjacent octagons to be identical. Different coupling strengths

between adjacent octagons can be achieved by exploiting the difference between syn-

chronous coupling between waveguides of the same widths and asynchronous coupling

between waveguides of different widths. In the lattice design, octagons A,B, and C

are oriented in the same way such that coupling between resonator A and its neighbors

B and C occurs synchronously between waveguides of the same width W1 (support-

ing the same propagation constants). By rotating octagon D by 45◦ with respect

to the other three resonators, different coupling strength between resonator D and

its neighbors can be obtained due to asynchronous coupling between waveguides of

different widths W1 and W2 (which have different propagation constants).
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4.1.1 Design and measurement of the synchronous and asyn-
chronous couplings between adjacent octagon resonators

In our octagon lattice design, we use synchronous coupling to achieve the strong

coupling angle θa and asynchronous coupling to obtain the weak coupling θb. For the

synchronous coupling between two waveguides of the same width W1, the coupling

strength per unit length, kc, is calculated from

kc =
π∆n

λ0
(4.1)

where λ0 is the operating wavelength, and ∆n = neff,1 − neff,2 is the difference

between the effective indices of the first and the second order modes of the coupled

waveguide system. Using the Lumerical mode solution software [70], we simulated

the effective indices of the symmetric coupled waveguide system with coupling gap

g = 225 nm over the wavelength range λ0 = 1510 nm to 1630 nm (available from our

lasers) and obtained coupling strength values kc = 0.074 µm−1 to 0.1318 µm−1. To

achieve the widest range of coupling angles, θa = kcLc, over the operating wavelengths,

we set the coupling length so that maximum power coupling (θa = π/2;κ2a = 1),

would be achieved at λ0 = 1630 nm. This yields Lc = 11.918 µm for the synchronous

coupling length between adjacent octagons, as shown in Fig. 4.3. In our octagon

design, the corners are rounded using 5 µm-radius arcs to reduce scattering loss.

Taking these small bends into account, the total length Ls of the outer side of the

octagon (Fig. 4.3) is given by

Ls = Lc + 2∆L = Lc + 2R× tan(90◦ − ∠γ
2
) (4.2)

where ∠γ = 135◦ is the interior angle of the octagon. For R = 5 µm, we obtain

Ls = 16.06 µm. The total perimeter of the octagon is 125.104 µm, which yields a free

spectral range (FSR) of around 5 nm for the resonator.

For the asynchronous coupling between octagon sides with different widths (W1 =

400 nm and W2 = 600 nm, Lc = 11.918 µm), we used Finite-Difference Time-Domain
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3D solver in Lumerical software to determine the coupling angle θb. We obtained

simulated values for θb in the range 0.014π to 0.028π over the 1510 nm - 1630 nm

wavelengths, as shown in Fig. 5 and described in more detail below.

Figure 4.3: Schematic of rounding the corner of octagon using an arc with the radius
of R. This figure indicates the relation between octagon side and coupling length (the
size of octagon widths are exaggerated in this figure).

To experimentally verify the coupling angle values, we fabricated test structures

as shown in Fig. 4.4 for the synchronous and asynchronous couplers with identical

length, coupling gap, waveguide widths W1 and W2, as the coupling junctions in the

designed octagon lattice, including the 5µm-radius rounded corners at the two ends

of the coupler. We coupled TE-polarized light into the input port and measured

transmitted powers P1 and P2 at output ports 1 and 2, respectively, of the coupler.

The power coupling coefficient is computed as κ2 = P2/(P1+P2), which gives coupling

angle θ = sin−1 κ. The results for the synchronous and asynchronous coupling angles

over the wavelength range 1510 – 1630 nm are shown by the dashed traces in Fig. 4.5.

Large differences between the synchronous and asynchronous coupling angles can be

seen. In particular, around λ= 1620 nm, we obtain θa = 0.438π for the synchronous

coupler and θb = 0.018π for the asynchronous coupler.
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Figure 4.4: Schematic of the coupling structure used in the simulation of the coupling
angles, with waveguide widthW2 = 400 nm for the synchronous coupler andW2 = 600
nm for the asynchronous coupler. Similar test structures (inset microscope image)
were also fabricated for the synchronous and asynchronous couplers.

We also performed simulations of the couplers using the Finite-Difference Time-

Domain solver in Lumerical software [70]. In the simulations, we launched a TE-

polarized mode into the input port and monitored the optical powers P1 and P2 at

output ports 1 and 2, respectively, of the coupler. The power coupling coefficient and

coupling angle are computed in the same manner as in the experiment. The solid

curves in Fig. 4.5 show the wavelength dispersions of the coupling angles θa and θb

over the wavelength range 1510 – 1630 nm. To account for variations in the waveguide

dimensions due to fabrication, we also show in the plots the range of coupling values

obtained from simulations of structures with the waveguide widths deviated by ±5

nm from the designed values. For the synchronous coupling angle θa, the measured

values are slightly lower than the simulated values for the designed coupler but fall

within the range of expected coupling values when accounted for ±5 nm variations in

the waveguide widths. The discrepancy between measurement and simulation results

could also be caused by variations in the coupling between the fibers and the SOI

waveguides in the experimental setup. Overall, both the measured and simulated

results confirm that our synchronous and asynchronous couplers perform as designed.
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Figure 4.5: Wavelength dependence of the synchronous coupling angle θa and asyn-
chronous coupling angle θb between adjacent octagon resonators. Solid curves are
simulated values; dash traces are measured values. The bands represent the range of
coupling angles obtained from simulations of coupling structures with ±5 nm devia-
tions from the designed values of waveguide widths W1 and W2.

4.1.2 Fabrication of octagon resonator lattice

We fabricated an octagon resonator lattice consisting of 5 × 10 unit cells (200 res-

onators) using the Applied Nanotools SOI process [71]. For excitation of edge modes

and measurement of the transmitted spectra, we coupled an input waveguide to res-

onator A of a unit cell on the left boundary of the lattice and an output waveguide

to resonator B of a unit cell on the right boundary. Input and output coupling

waveguides were realized using half-octagons, as shown in Figs. 4.6(a), with the same

parameters as the lattice octagons to obtain input/output coupling angle equal to θa.

Figs. 4.6(a) and (b) show images of the fabricated lattice and the synchronous and

asynchronous coupling sections.

4.1.3 Experimental setup for transmission measurement and
near-infrared imaging

A schematic of the experimental setup used to measure the transmission spectra

and perform direct near-infrared (NIR) imaging of the microring lattice is shown in

Fig. 4.7. Light, with the power in the range of mW, from a tunable laser (Santec TSL-
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Figure 4.6: (a) Optical microscope image of a 5×10 fabricated lattice with input and
output waveguides coupled to the left and right boundaries. (b) Scanning electron
microscope (SEM) images of octagonal resonators A and D with zoomed-in images
of the synchronous and asynchronous coupling sections. The two smaller octagons
inside each octagon are dummy structures.

510 1510−1630 nm) was passed through a fiber polarizer to obtain TE polarization,

which was then butt-coupled to the input waveguide via a lensed-tip fiber. The

transmitted light at the output waveguide was collected by another lensed-tip fiber

and detected with an InGaAs photodetector and power meter. To obtained NIR

image of the scattered light from the lattice, we used an NIR camera (NX1.7-VS-CL-

640) to image the lattice through a 20× objective lens. The NIR camera had a 14 bit

digital InGaAs image sensor with 640×512 pixels and 15 µm pixel pitch.
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Figure 4.7: Schematic of the experimental setup used to perform transmission mea-
surements and NIR imaging of scattered light from the microring lattice.

4.2 Experimental results

4.2.1 Observation of AFI edge state

We characterized the transmission bands of the octagon lattice by coupling TE-

polarized light to the input waveguide and measuring the transmitted power in the

output waveguide. Figure 4.8(b) shows the normalized power transmission spectrum

measured over the 1620−1626 nm wavelength range. We note that all the measured

transmission powers in this thesis are normalized to the maximum measured power

in the corresponding FSR. Over one FSR of the microring resonators (∼5 nm), we

can identify three bulk bandgaps (I, II, and III) separating the passbands. The high

power transmission in all three bulk bandgaps indicate that edge modes are excited

at these frequencies in the bandgaps. We conclude that these modes must correspond

to the AFI edge states which exist in all three bandgaps of the microring lattice, as

predicted in the projected band diagram computed for the same lattice in Fig. 4.8(a).

On the other hand, the transmission spectrum in the bulk passbands exhibits multi-

ple dips, which are caused by multiple interference and localized resonances of light

propagating through the bulk of the lattice. For comparison, the simulated trans-
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mission spectrum of the lattice computed using the field coupling method in [68] is

shown in Fig. 4.8(c). The coupling angles were set at θa = 0.473π and θb = 0.026π

and a propagation loss of 3 dB/cm was assumed in each octagon resonator. The

effects of ±5% uniformly distributed random variations in the coupling strengths and

roundtrip phases in the lattice are also shown by the hatched area in the plot. The

characteristic high and flat transmission spectrum in the bulk bandgaps due to edge

modes are clearly visible, in good agreement with the measured spectrum. The bulk

passbands also exhibit transmission dips similar to those observed in the measured

spectrum.

Figure 4.8: (a) AFI edge states in the projected quasienergy band diagram of a semi-
infinite lattice with boundaries along the x-direction and coupling angles θa = 0.473π,
θb = 0.026π. The Chern number (C) of each energy band and winding number (W ) of
each bulk bandgap are also indicated. (b) Measured and (c) simulated transmission
spectra of the TPI microring lattice. The red line in (c) is the spectrum obtained for
an ideal lattice of identical microring resonators with coupling angles θa = 0.473π and
θb = 0.026π. The hatched area indicates the range of transmission values obtained
in the presence of ±5% random variations in the coupling strengths and microring
roundtrip phases.
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Figure 4.9: (a) and (b) NIR camera images showing chiral AFI edge modes along the
bottom edge and top edge, respectively, of the octagon lattice when light in a bulk
bandgap (λ = 1623 nm) was injected into Port 1 or Port 2 of the input waveguide. The
lower left plot in each figure shows the map of scattered light intensity constructed
from raw camera data; the lower right plot is the simulated light intensity distribution
in the lattice. (c) When input light was tuned to a wavelength in a transmission band
(λ = 1624 nm), only bulk modes were excited and no edge mode is observed.
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To obtain direct evidence of AFI edge modes in the bulk bandgaps, we excited

the lattice by injecting light at 1623 nm wavelength, which lies in bandgap II, into

the input waveguide and imaged the scattered light pattern using the NIR camera.

Figure 4.9(a) shows the imaged scattered light intensity distribution over the lattice

when light was injected into Port 1 of the input waveguide. Also shown (lower left) is

the scattered light plot reconstructed from the raw digital camera and superimposed

on a lattice schematic. Clear evidence of light propagating along the bottom edge

of the lattice can be seen, indicating that an AFI edge mode was formed. The

simulated light intensity distribution in the microrings in Fig. 4.9(a), obtained using

field coupling method in [68], also shows good agreement with the scattered light

intensity map obtained from the camera. When light was injected into Port 2 of the

input waveguide, a counter-propagating edge mode was excited, which propagated

along the top edge of the lattice, as seen in Fig. 4.9(b). The two chiral modes

represent two orthogonal pseudo-spin states of the lattice which are time-reversal

counterparts of each other since they have identical quasienergy but propagate in

opposite directions in each microring. However, since the driving sequence of our

lattice does not satisfy the condition for TR invariance [55, 72], the two chiral edge

modes are not TR symmetric, as evidenced by the asymmetry in their dispersion

behaviors about kx = 0 and the difference in their field distributions. We also observed

similar AFI edge mode patterns for excitation wavelengths in bandgaps I and III.

By contrast, when we tuned the laser wavelength to 1624 nm, which lies in a bulk

passband, only bulk modes were excited and no edge mode was observed. This can be

seen in the NIR image in Fig. 4.9(c), which shows that the input light spread out over

the lattice instead of being localized along the edge. The simulated light intensity

distribution in the lattice at the corresponding wavelength in Fig. 4.9(c) also confirms

this behavior.
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4.2.2 Topological phase transition of the microring lattice

The phase map in Fig. 4.10 shows that the topological characteristics of the micror-

ing lattice depend on the coupling angles θa and θb. By exploiting the frequency

dispersion of the evanescent couplers, we can observe topological phase change of

the Floquet octagon lattice across a phase boundary. Figure 4.5 shows that as the

wavelength is tuned from 1510 nm to 1630 nm, the coupling angle increases from

0.283π to 0.495π for the synchronous coupler and from 0.014π to 0.028π for the

asynchronous coupler. The corresponding topological phase of the lattice follows

the yellow trajectory in Fig. 4.10, which crosses a phase boundary. Figures 4.11(a)-

(c) show the projected band diagrams of a semi-infinite lattice at the three sample

points X, Y , and Z marked on the phase map. These points correspond to wave-

lengths λX = 1532.5 nm, λY = 1546.5 nm, and λZ = 1593.5 nm, with coupling an-

gles (θa; θb) = (0.315π; 0.016π), (0.355π; 0.018π), and (0.430π; 0.023π), respectively.

Around wavelength λX , the lattice behaves as a CI in bandgaps I and III and a NI

in bandgap II. At λY , bandgap II closes but the lattice still retains its topological

insulator behavior in bandgaps I and III. Near λZ , the lattice supports AFI edge

Figure 4.10: Topological phase map and the octagon lattice topological phase trajec-
tory (the yellow line) over the wavelength range 1500−1630 nm. Markers X, Y , and
Z correspond to the topological phases of the fabricated lattice at three wavelengths
λX = 1532.5 nm, λY = 1546.5 nm, and λZ = 1593.5 nm in Fig. 4.11.
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modes in all three bandgaps.

Figure 4.11: Topological phase changes in the microring lattice due to frequency
dispersion in the coupling angles: (a)-(c) Projected band diagrams of a semi-infinite
lattice with 10 unit cells in the y-direction, infinite extent in the x-direction for
three different sets of coupling angles: (a) (θa; θb) = (0.315π; 0.016π) around λX =
1532.5 nm, (b) (θa; θb) = (0.355π; 0.018π) around λY = 1546.5 nm, (c) (θa; θb) =
(0.430π; 0.023π) around λZ = 1593.5 nm. (d)-(f) Measured transmission spectra of
the fabricated lattice over one FSR centered around the three wavelengths λX , λY ,
and λZ .

To observe these topological phases, we measured the transmission spectra of the

microring lattice around the three wavelengths λX , λY , and λZ . The results are shown

in Figs. 4.11(d)-(f). The close correspondence between the measured transmission

spectra and the projected band diagrams can be seen for all three cases. In particular,

high transmission is observed in wavelength ranges corresponding to topologically

nontrivial bulk bandgaps where CI or AFI edge modes are expected. Within one

FSR of the microring resonators, transmission spectra X and Y show only two bulk
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bandgaps with edge modes (bandgaps I and III) while spectrum Z has three distinct

bulk bandgaps with edge modes, as predicted by the projected band diagrams. For

spectrum X, the transmission in the center bulk bandgap (bandgap II) is low since

the lattice behaves as a NI and thus no edge mode exists. As the wavelength is tuned

from λX to λY , the center bandgap closes (Fig. 4.11(e)), although transmission in

the output waveguide remains low since light can propagate throughout the lattice

and is partially reflected back into the input waveguide. As the wavelength is further

increased to λZ (Fig. 4.11(f)), the center bandgap opens again but with an important

difference in that the transmission in the bandgap is now high, implying the existence

of an edge mode.

Figure 4.12: Scattered light intensity distributions obtained from NIR camera show-
ing different topological behaviors of the lattice at various input wavelengths: (a) NI
at λ = 1532.80 nm located in topologically-trivial bulk bandgap II, (b) CI edge mode
at λ = 1534.67 nm in bulk bandgap III, (c) bulk modes at λ = 1546.50 nm in closed
bandgap II, (d) AFI edge mode at λ = 1593.50 nm in reopened bulk bandgap II.

Direct evidence of these topological phases can also be seen from NIR images of

the scattered light distributions at different input wavelengths. Fig. 4.12(a) shows
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the reconstructed plot of the scattered light distribution at λ = 1532.80 nm, which

lies in bandgap II of spectrum X where the lattice behaves as a NI. The input light

is simply reflected from the lattice in this case. In Fig. 4.12(b), the wavelength is

tuned to λ = 1534.67 nm, which lies in bandgap III of spectrum X, where the lattice

behaves as a CI. Clear evidence of an edge mode formed along the bottom edge of

the lattice boundary can be seen. When the wavelength is increased to λ = 1546.50

nm, which lies in the closed bandgap II of spectrum Y , the NIR image in Fig. 4.12(c)

shows light scattered throughout the bulk of the lattice. Finally, when the wavelength

is further increased to λ = 1593.50 nm, which lies in bandgap II of spectrum Z, the

lattice behaves as an AFI, as evidenced by the edge mode in Fig. 4.12(d). Thus

by simply tuning the wavelength of the input light, we could change the topological

phases of the microring lattice from a NI to a topological insulator of either the CI

or AFI type. These results provide additional evidence that our Floquet microring

lattice behaves as predicted.

4.2.3 Experimental validation of the topological phase map

To provide additional evidence that our Floquet microring lattice behaves as predicted

by the topological phase map, we also designed and fabricated four other octagon

lattices with different coupling gap g, coupling length Ls, and waveguide width W2.

The design parameters of the four lattices (M , N , O and P ) are summarized in

Table 4.1. The simulated values of the coupling angles θa and θb are also shown in

Table 4.1: Parameters of fabricated octagon lattice samples M , N , O, and P .

Sample unit cells Ls(µm) W1(nm) W2(nm) g(nm) θa(π) θb(π) wavelength edge mode type

M 5× 10 13.14 400 600 275 0.146 0.019 1516 nm NI (bandgap II)

N 5× 10 14.6 400 600 225 0.261 0.02 1560 nm CI (bandgap I)

O 10× 10 16.06 400 410 225 0.397 0.304 1554 nm AFI (bandgap II)

P 10× 10 16.06 400 600 200 0.437 0.029 1618.4 nm AFI (bandgap I)
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the table, along with the operating wavelength and the expected topological behaviors

of the samples. The lattices are located in the four different regions of the topological

phase map as shown in Fig. 4.13. The projected quasienergy band diagrams of semi-

infinite lattices (consisting of 10 unit cells in y direction and infinite in x direction)

with coupling angles corresponding to samplesM , N , O, and P are respectively shown

in Figs. 4.14(a)-(d). The Chern (C) and winding (W ) numbers are also indicated.

Figure 4.13: Topological phase map of 2D microring lattices characterized by coupling
angles θa and θb. The markersM , N , O, P correspond to the four samples in Table 4.1.

The measured transmission spectra of the fabricated lattices are shown in Figs. 4.15

(a)-(d). We observe that these spectra correlate well with the projected band diagrams

in Fig. 4.14. In particular, the transmission is high and flat in nontrivial bandgaps,

which support edge modes, and low in trivial bandgaps, where the lattice behaves as

a NI. In the bulk passbands, the transmission has an irregular pattern since light is

spread out throughout the bulk lattice and partially reflected back. For the nontrivial

bandgaps, the types of edge modes (CII, AFII, and AFIII) can be identified based on

the computed Chern numbers and winding numbers in the projected band diagrams

and indicated in the transmission spectra.

We also performed NIR imaging of the scattered light patterns from the lattices

at the wavelengths indicated by the blue arrows in the transmission spectra. These

images are shown in Figs. 4.16(a)-(d). For latticeM , which is a NI, Fig. 4.16(a) shows
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Figure 4.14: (a)-(d) Projected band diagrams of microring lattices L, M , N and O,
respectively, each with 10 unit cells in the y-direction and infinite in the x-direction.

that input light at λ = 1516 nm is reflected and cannot propagate into the lattice

bulk. For lattice N , which is a CI in bandgaps I and III, the scattered light pattern

in Fig. 4.16(b) clearly shows the formation of an edge mode along the bottom sample

boundary when excited by input light at λ = 1561.77 nm (in bandgap III). For lattice

O, although bandgap II is almost closed, it can still support an AFI edge mode, as can

be verified by the image in Fig. 4.16(c) for input light at λ = 1554.08 nm. For lattice

P , which is an AFI in all three bandgaps (bandgaps I, II, and III), Fig. 4.16(d) shows

the clear image of an edge mode at λ = 1618.4 nm in the bandgap I. These results

help validate the different topological behaviors of the Floquet microring lattice as

predicted by the topological phase map.
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Figure 4.15: (a)-(d) Measured transmission spectra of the fabricated samples M , N ,
O, and P with bulk bandgaps indicated along with the expected topological behaviors
(NI, CII, AFII, and AFIII). The blue arrows correspond to the wavelengths of input
light in Fig. 4.16.

4.3 Conclusion

In this chapter, we experimentally demonstrated a Floquet TPI based on a 2D lattice

of strongly-coupled octagon resonators. The system emulates a periodically varying

Hamiltonian through the periodic circulation of light in each octagon resonator. In

addition, by exploiting asynchronism in evanescent coupling between waveguides of

different widths, we could realize strong and asymmetric direct couplings between

adjacent octagon resonators, which is necessary for observing nontrivial topological

behaviors of the lattice. Direct imaging of the scattered light pattern shows clear
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Figure 4.16: NIR camera images of scattered light intensity distributions taken at
(a) λ = 1516 nm, (b) λ = 1561.77 nm, (c) λ = 1554.08 nm, and (d) λ = 1618.4
corresponding to the blue arrows in Fig. 4.15.

evidence of the formation of chiral AFI edge modes in the bulk bandgaps, which con-

firms the nontrivial topological behaviors of these lattices. In addition, by exploiting

the frequency dispersion of the coupling coefficients, we could observe topological

phase transition in the lattice. Finally, we experimentally investigated the different

topological behaviors (NI, CI, and AFI) predicted in the 2D Floquet microring lattice

phase map. Our lattice thus provides a versatile platform for investigating Floquet

topological photonic insulators on an integrated optics platform and explore their

unique applications.
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Chapter 5

Floquet Defect Mode Resonance

In a Floquet insulator, the phase evolution of the FB modes plays a crucial role in

determining its topological behaviors. In this chapter, we show that by perturbing

the driving sequence, it is possible to manipulate the cyclic phase change of the sys-

tem over each evolution period to induce self-interference of a bulk mode, leading to

a resonance effect which can be regarded as a Floquet counterpart of defect-mode

resonance in static lattices. This FDMR is cavity-less since it does not require phys-

ical boundaries; its spatial localization pattern is instead determined by the driving

sequence and is found to be different in topologically trivial and nontrivial lattices.

In this chapter, we first discuss the theoretical origin of the FDMR. Then, we demon-

strate the excitation of FDMRs by edge modes in a Floquet octagon lattice on SOI,

achieving extrinsic quality factors (Q-factors) greater than 104. By imaging the scat-

tered light pattern, we confirm the spatial localization of FDMR in a bulk-mode loop,

which also directly captures the hopping sequence of the Floquet system. We also

experimentally investigate FDMR in a square-grid Floquet microring lattice, demon-

strating the possibility of achieving FDMRs with higher Q-factor in the range of

3.6 × 104 − 6.4 × 104. Finally, we experimentally show the excitation of coupled

FDMRs in the bulk of the lattice.
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5.1 Topological resonances

The ability to form robust high Q-factor resonators in a topological lattice is of prac-

tical interest as it would significantly broaden the range of applications of TPIs such

as in lasers, filters, nonlinear cavity optics, and quantum optics [73–78]. In 2D TPI

lattices, travelling-wave resonators can be realized by exploiting the confinement of

edge modes at the interface between topologically trivial and nontrivial insulators to

form ring cavities, although these tend to have very long cavity lengths as they require

many lattice periods [19, 79–82]. Figure 5.1(a) shows a hexagonal closed-loop edge

mode cavity embedded in the interface between topologically trivial and nontrivial

photonic crystals [83]. A straight waveguide on the left side of the lattice is used

to excite the edge mode which couples light to the topological cavity. Topological

resonators can also be realized by creating line defects, shown in Fig. 5.1(b) [84], or

point defects in the lattice bulk, e.g., by spatially shifting air holes in a photonic

crystal to create a Dirac-vortex topological cavity, shown in Fig. 5.1(c) [85]. The

resonance mode is pinned to the midgap and can be regarded as the 2D counter-

part of one-dimensional (1D) resonance modes in distributed feedback lasers [86] and

vertical-cavity surface-emitting lasers (VCSELs) [87]. In another variant of defect

mode cavities, shown in Fig. 5.1(d) [88], resonant confinement occurs due to band-

inversion-induced reflections from the interface walls as a result of the different parity

modes inside and outside the cavity. The cavity mode is a bulk mode located at the

Γ point of the energy band diagram very close to the edge of the topological bandgap.

Recently, it was shown that topological corner states with zero energy can also be used

to form resonances in a TPI [89–96]. However, the mode is not tunable and can only

be formed at the corners of the lattice. Figure 5.1(e) shows a topological nanocavity

based on a topological corner state realized in a photonic crystal lattice [90]. Indeed

all the topological photonic resonators reported to date are not continuously tunable

and have only been realized for static TPI systems.
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Figure 5.1: Realization of topological cavities. (a) Topological cavity using edge
modes in a closed-loop interface between topologically trivial and nontrivial insulator
based on photonic crystal lattices. The right image shows the experimental obser-
vation of the travelling-wave resonance due to the excitation of an edge state along
the boundaries of the hexagonal cavity [83]. (b) Left image: schematic of a dislo-
cation using a cut-and-glue technique to remove a line of rods in a photonic crystal
lattice. Right image: observation of trapping light in the dislocation [84]. (c) Left
image: Schematic of Dirac-vortex topological cavity using point-like defect by shift-
ing the air holes in a photonic crystal lattice [85]. Right image: schematic showing
light confinement in the topological defect. (d) Left image: A fabricated photonic
crystal lattice consists of topological and trivial insulators for trapping bulk mode in
the bulk of the topological photonic crystal due to band-inversion-induced reflections
from the interface walls between topologically trivial and nontrivial lattices. Right
image: observation of topological resonance in the bulk of the topological insulator
[88]. (e) Schematic of the photonic crystal lattice with topological corner state that
traps light at the corner of a topological photonic insulator. Right image: simulated
light intensity of the corner state [90].

In this chapter, we propose a new mechanism for forming resonance in a Floquet

TPI by adiabatically tuning the cyclic phase of a Floquet mode to achieve construc-

tive interference. This has the concomitant effect of shifting its quasienergy into a

topological bandgap to form an isolated flat-band state that is spatially localized in a

bulk-mode resonant loop, which we refer to as FDMR. The resulting resonance effect

can be regarded as a Floquet counterpart of defect-mode cavity in static systems,

with the main difference in that here we perturb the driving sequence rather than
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introducing a static defect such as a point or a line in the lattice [84, 85, 97–104]. In

particular, the perturbation in our lattice is drive-dependent and varies periodically

with the Floquet system evolution. The ability to modify the driving sequence locally

provides an additional degree of freedom for controlling the resonance mode that is

not afforded in static systems. Notably, we found that the spatial localization pattern

of the FDMR is determined by the perturbed driving sequence of the Floquet TPI

and is distinctly different for trivial and nontrivial topological lattices. We also note

that while drive-dependent defects have been used to investigate the robustness of

edge modes in 2D Floquet TPIs based on coupled waveguides [105], the perturba-

tion of the FB Hamiltonian to manipulate both the cyclic phase change and spatial

localization of a Floquet mode to create a resonance has not been reported before.

5.2 Theoretical Origin of FDMR

As discussed in Chapter 2, our Floquet microring lattice can be converted into an

equivalent 2D array of periodically coupled waveguides (Fig. 5.2(b)), with each period

consisting of four coupling steps between different pairs of adjacent waveguides. In

the limit of perfect coupling (θa = π/2, θb = 0), the hopping sequence guarantees that

light starting from site A in a unit cell will return to its position after three periods,

tracing out a bulk-mode loop depicted in Fig. 5.2(c). However, in a uniform Floquet

lattice, such a bulk mode does not exist in a bandgap since its phase change around

the loop is not equal to an integer multiple of 2π. We also note that although our

analysis here is for a system periodically driven in space (along z) as emulated by the

microring lattice, the same treatment and observations can also be applied to Floquet

systems periodically driven in time.

Suppose that we now perturb the driving sequence by introducing a phase shift ∆ϕ

in coupling step j of a microring in the lattice (Fig. 5.2(b)). Taking a block of N ×N

unit cells with the perturbed microring located near its center, for sufficiently large

N , we can treat this block as a supercell of an infinite periodic lattice. Using the
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Figure 5.2: Driving sequence of a 2D Floquet microring lattice. (a) Schematic of the
lattice showing a unit cell with four microrings {A,B,C, and D} and coupling angles
θa > θb. (b) Equivalent coupled-waveguide array representation of the microring
lattice, obtained by cutting the microrings at the points indicated by the open circles
in (a) and unrolling them into straight waveguides. The system evolves periodically
in the direction of light propagation z in each microring, with each period consisting
of four coupling steps j = {1, 2, 3, 4}. Also shown is a phase detune ∆ϕ applied to
microring C in step j = 1 to perturb the drive sequence. (c) Spatial localization of
a bulk mode in a loop (red arrows): starting from step j = 1 in microring A (yellow
star), the hopping sequence of the lattice guarantees that light returns to its initial
point after three evolution periods.

coupled-waveguide array model, we can write the equation of motion of the supercell

as

i
∂

∂z
|ψ(k, z)⟩ = H(k, z)|ψ(k, z)⟩ =

4∑︂
j=1

[H
(j)
FB(k, z) +H

(j)
D ]|ψ(k, z)⟩ (5.1)

where k is the crystal momentum in the x-y plane, H
(j)
FB is the FB Hamiltonian of the
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unperturbed supercell in step j (see Eq. 3.3 of Chapter 3), and H
(j)
D is the perturbed

Hamiltonian in the same step. The perturbed Hamiltonian matrix is zero everywhere

except for a term of −4∆ϕ/L in its kth diagonal element corresponding to the detuned

microring k. Any state of the system evolves as |ψ(k, z)⟩ = U(k, z)|ψ(k, 0)⟩, where

U(k, z) = T e
−i

z∫︁
0

H(k,z′)dz′

(5.2)

is the evolution operator. The evolution over each roundtrip period of the microrings

is given by the Floquet operator, UF (k) = U(k, L), whose eigenstates are the Floquet

modes |Φn(k, 0)⟩ with eigenvalues e−iεn(k)L. In the absence of detuning (∆ϕ = 0),

the quasienergy bands εn(k) of the Floquet modes form composite transmission band

manifolds, each containing 4N2 degenerate bulk modes and separated by bandgaps.

The effect of the phase detune ∆ϕ is to break the degeneracy and lift one Floquet mode

into the bandgap, forming an isolated single band (Fig. 5.3(a)). Moreover, this energy-

shifted band becomes increasingly flattened as the phase detune is increased, implying

that the field distribution becomes more strongly localized spatially. Importantly, the

spatial localization pattern depends on how the driving sequence is perturbed. For

example, Fig. 5.4(a)-(d) show the field distributions of the isolated Floquet mode

when each of microrings A, A, C, and D, respectively, is detuned during step j = 1.

When microring A and B are detuned, the field is localized in two coupled bulk-

mode loops sharing the common segment j = 1. By contrast, detuning microring C

results in the field strongly localized in only a single bulk-mode loop traced out by

the hopping sequence. A similar mode pattern is also observed when segment j = 2

of microring B is detuned. When the weakly-coupled microring D is detuned, light

does not follow the driving sequence but instead remains trapped in the same site

resonator, forming a point-defect mode. Thus by selectively applying phase detunes

to specific steps in the driving sequence, distinct mode patterns can be excited to form

single or coupled resonant loops. This highlights a key difference between FDMR and

conventional defect-mode resonance in a static system, where the defect is introduced
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as a constant perturbation so the system still remains undriven. The ability to vary

the perturbation along the path of system evolution provides an additional degree of

flexibility for controlling the spatial localization of the resonance mode. In particular,

we emphasize that although our microring lattice with a phase detune can be treated

as a static system using a mean field theory in which the phase perturbation is

averaged uniformly over the detuned microring, the defect mode in this case will

appear only as a point defect as shown in Fig. 5.4(d). The bulk-mode loop patterns

in Fig. 5.4(a)-(c) can only be predicted by taking into account the exact details of

how the driving sequence is perturbed.

Figure 5.3: One FBZ of the quasienergy band diagram of an AFI microring lattice
consisting of 5 × 5 unit cells with θa = 0.458π and θb = 0.025π. The blue bands
are composite transmission bands of Floquet states separated by three topological
bandgaps (labeled I, II, and III). The red bands are the flat bands of Floquet bulk
modes which are lifted from the transmission band manifolds due to a phase detune
∆ϕ = π applied to step j = 1 of microring C. The yellow dasshed square show the
unit cell.

The strong field localization in a bulk-mode loop is effectively a resonance effect

caused by the energy-shifted Floquet mode constructively interfering with itself after

completing each roundtrip around the loop. Starting out each cycle at z = 0, the

shifted Floquet mode |Φs(k, 0)⟩ evolves as |Ψs(k, z)⟩ = U(k, z)|Φs(k, 0)⟩. According
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Figure 5.4: Spatial localizations of energy-shifted Floquet states. (a)-(d) Intensity
distributions of the energy-shifted bulk modes Φs obtained when phase detune ∆ϕ = π
is applied to segment j = 1 of microring A, B, C and D, respectively, labeled in the
unit cells shown by dashed yellow squares.

to Floquet theorem, the state |Ψs(k, z)⟩ can also be expressed as [106]

|Ψs(k, z)⟩ = e−iεs(k)z|Φs(k, z)⟩ (5.3)

where |Φs(k, z)⟩ = eiεs(k)zU(k, z)|Φs(k, 0)⟩ is the periodic z-evolved Floquet state

satisfying |Φs(k, z+L)⟩ = |Φs(k, z)⟩. The state |Ψs(k, z)⟩ will constructively interfere

with itself after every period L if |Ψs(k, z + L)⟩ = |Ψs(k, z)⟩, or

e−iεs(k)(z+L)|Φs(k, z + L)⟩ = e−iεs(k)z|Φs(k, z)⟩ (5.4)

Since |Φs(k, z+L)⟩ = |Φs(k, z)⟩, we obtain the condition for constructive interference

as εs(k)L = 2mπ, m ∈ Z. Using the quasienergy for a stationary Floquet mode at

k = 0, we can calculate the shift in the resonant frequency of the FDMR relative

to a microring resonance as ∆ωs = εs(0)L∆ωFSR/2π, where ∆ωFSR is the FSR of
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the microrings. Figure 5.5(a) plots the dependence of the cyclic phase change εs(0)L

on the phase detune ∆ϕ, showing that the resonant frequency of an FDMR can be

continuously tuned across a topological bandgap. The above analysis supports the

picture that the FDMR is formed by the constructive interference of a Floquet bulk

mode with itself, and that by tuning the cyclic phase of the mode, we can vary its

quasi-energy to create a resonance localized in both spatial and frequency domains

in an otherwise homogeneous topological lattice.

Figure 5.5: Effects of the phase detune on the resonant frequency and spatial lo-
calization of FDMR. (a) Dependence of the cyclic phase change εs(0)L and reso-
nant frequency shift of the FDMR in each bandgap of an AFI lattice (θa = 0.458π,
θb = 0.025π) on the phase detune ∆ϕ. The blue lines are the quasienergies of the
transmission bands, which remain largely unchanged with phase detuning. (b) Varia-
tion of the average IPR of FDMR (in bandgap III) with phase detune ∆ϕ for Floquet
lattices with coupling angle θa varied from 0.4π to 0.499π and θb fixed at 0.025π.

We note that this resonance effect is cavity-less since it does not require physical

boundaries between the lattice and another medium but instead relies on an adiabatic

change in the Hamiltonian via a phase detune. Since no interface scattering takes

place, FDMRs can in principle have very high Q-factors. Importantly, since the

phase detune ∆ϕ represents a local adiabatic change to the Hamiltonian HFB, the

energy-shifted band still retains the topological properties of the unperturbed lattice.

This is evident from the fact that the FDMR mode (Fig. 5.4(c)) retains the same

spatial distribution of a bulk mode in a homogeneous lattice as we increase the phase
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detune. Also, the bandgaps above and below the FDMR still support edge modes,

implying that the topological behavior of the lattice is not altered by the adiabatic

phase detuning.

We can quantify the degree of spatial localization of an FDMR by computing its

inverse participation ratio (IPR) [107]. For a z-evolved Floquet mode with normaliza-

tion ⟨Φs(0, z)|Φs(0, z)⟩ = 1, we can define the average IPR over one evolution period

as

IPR =
1

L

4N2∑︂
k=1

L∫︂
0

|Φ(k)
s (0, z)|4dz (5.5)

where Φ
(k)
s is the field in site resonator k in the lattice. Figure 5.5(b) shows the

average IPR of an FDMR (in bandgap III) as a function of the phase detune for

different coupling angles of the lattice. It is seen that the mode becomes more strongly

localized as it is pushed deeper into the bandgap. Thus, in general, we can expect

to achieve the strongest intensity enhancement for FDMRs located near the center of

the bandgap. The degree of localization is also higher for lattices with larger contrast

between the coupling angles θa and θb. We note that the maximum IPR achievable

for FDMR is 1/3 because at any given position z in an evolution cycle, the field is

localized in three separate microrings in the bulk-mode loop.

5.2.1 FDMR in a topologically trivial bandgap

The spatial localization patterns of an FDMR are distinctly different in topologically

trivial and nontrivial bandgaps. Specifically, in a trivial bandgap, the FDMR behaves

as a conventional point-defect mode. Here we provide a contrasting example of the

difference in the spatial patterns of an FDMR in a topologically nontrivial bandgap

and a defect state in a trivial bandgap, both existing in the same Floquet lattice. We

consider a microring lattice with coupling angles θa = 0.3π and θb = 0.01π, which

behaves as a Floquet CI in bandgaps I and III and as a NI in bandgap II. These

behaviors can be verified by the projected band diagram of a semi-infinite lattice (with
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Figure 5.6: Comparison between FDMR and point-defect state in a Floquet microring
lattice. (a) Projected quasienergy band diagram of a microring lattice with coupling
angles θa = 0.3π and θb = 0.01π, with 5 unit cells in the y direction and infinite extent
in x (a is the spacing between adjacent microrings). bandgaps I and III are nontrivial
with winding number w = 1; bandgap II is trivial with w = 0. (b) Quasienergies
of the Floquet states as functions of phase detune ∆ϕ applied to step j = 1 of a
microring C in a lattice with 5 × 5 unit cells. The shifted states are indicated by
the green, red and black curves. (c) and (d) Intensity distributions of energy-shifted
bulk modes in bandgaps III and II, respectively, when phase detune ∆ϕ = 0.75π is
applied to the lattice. These states are indicated by the green and red dots in (b).

5 unit cells in the y direction and infinite extent in the x direction) in Fig. 5.6(a),

which shows edge states existing in bandgaps I and III but not in bandgap II. We

apply a phase detune ∆ϕ in step j = 1 of a microring C in the lattice, which shifts the

quasienergy of a bulk mode from each transmission band manifold into the bandgap

below, as shown in Fig. 5.6(b). Although the trivial bandgap II hosts an energy-

shifted bulk state, the spatial field distribution of the mode is markedly different

from those in the nontrivial bandgaps I and III. For instance, for the same phase

detune of ∆ϕ = 0.75π, the intensity distributions of the shifted states in bandgaps
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III and II are shown in Figs. 5.6(c) and 5.6(d), respectively. The shifted bulk mode

in the nontrivial bandgap is not localized in the detuned resonator but also hops to

neighbor sites, forming a loop defined by the hopping sequence. Notably, this loop

extends over a distance of many wavelengths from the location of the point defect

(the perturbed microring segment), in marked contrast to conventional defect-mode

cavities whose optical modes are tightly bound to the point defects. On the other

hand, the shifted bulk mode in the trivial bandgap is localized in the same detuned

site resonator, which is similar to a point-defect mode in a static undriven lattice. The

same point-defect pattern is also observed in the trivial bandgap regardless of which

microring is detuned. Thus there is a connection between the topological behavior of

the lattice and the spatial localization pattern of the shifted bulk mode, which may

be intuitively understood by considering the behavior of an edge mode in the same

bandgap in the presence of a lattice boundary (which can also be regarded as a kind

of perturbation to the system Hamiltonian). In a nontrivial bandgap, the field which

exists in each unit cell on a lattice boundary is strongly coupled to fields in adjacent

boundary cells and this coupling enables the propagation of an edge mode along the

lattice boundary. This spreading of field to adjacent neighbor cells is also what gives

rise to the loop pattern of FDMR in a nontrivial bandgap. On the other hand, in a

trivial bandgap, the field is localized in each unit cell and does not couple to neighbor

cells, which prevents light propagation along a lattice boundary and the formation of

edge mode. This same behavior also results in light being localized in a point-defect

pattern observed for FDMR in a trivial bandgap.

5.2.2 Excitation of FDMR by edge mode

FDMRs exist in the bulk of a lattice in a bandgap, which may make it difficult to

excite them. However, since a topologically nontrivial bandgap supports both FDMRs

and edge modes, it is possible to couple light into the FDMR using an edge state. In

this section, we theoretically investigate the excitation of FDMRs using edge states
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as well as theoretically achievable Q-factors of these resonances. We considered a

lossless 10 × 10 unit cells microring lattice with coupling angles θa = 0.458π and

θb = 0.025π (these parameters were chosen based on our fabricated lattice, which

will be discussed in Section 5.3). Light enters the lattice via an input waveguide

evanescently coupled to microring A of a unit cell on the left boundary and exits

the lattice via an output waveguide coupled to microring B of a unit cell on the

right boundary of the lattice (with 99% input and output coupling efficiency). We

computed the distribution of light intensity in the lattice using the field coupling

method in Ref. [68]. Figure 5.7(a) shows the intensity distribution of an edge state

excited at quasienergy εL = 2π∆ω/ωFSR = 1.767π in bandgap III. We next excited

Figure 5.7: Excitation of FDMR using edge modes (a) Field distribution of edge mode
before applying a phase detune to microring C. (b) and (c) Field distribution of light
with quasienergy of 2π∆ω/ωFSR = 1.767π after applying phase detune of ∆ϕ = 0.7π
into one segment of microring C (step j = 3) and ∆ϕ = 1.45π into all segments of
microring C (steps j = 1, 2, 3, and 4), respectively. The segments of the microring
C during that the phase detunes were applied are shown by green color in the inset
diagrams.
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an FDMR by applying a phase detune ∆ϕ = 0.7π during step j = 3 in a microring

C on the left boundary of the lattice, a schematic of which is shown in the inset

diagram of Fig. 5.7(b). The main figure shows the light intensity distribution of the

FDMR excited by the edge state, which is invisible due to the high contrast between

the intensity of the edge state and FDMR. The resonant frequency of the FDMR is

2π∆ω/ωFSR = 1.767π. We note that detuning the same segment of another microring

C in the FDMR loop also excites the same FDMR. Also, since the FDMR loop lies

at the edge of the lattice, we can also excite it by detuning the entire microring C

at the edge of the lattice, as shown in Fig. 5.7(c). In this case, simulation results

indicate that a phase detune ∆ϕ = 1.45π is needed to excite the same FDMR at the

same resonant frequency as in Fig. 5.7(b).

We computed the spectral response of light intensity inside the FDMR over one

FSR of the microring resonators. The light intensity was taken at a point in the

FDMR loop as indicated by the yellow star in the inset diagram in Fig. 5.8 (a). The

figure plots the intensity of FDMR due to a phase detune of ∆ϕ = 0.7π during step

j = 3 of a microring C on the left boundary (blue line) and also due to a phase detune

of ∆ϕ = 1.45π over the entire microring (red line). The plot shows that both phase

detunes lead to the same three resonances to appear within each FSR. However, the

Q-factors are different since the coupling between the edge state and the FDMRs is

different for each phase detune. For example, for a lossless lattice with ωFSR = 600

GHz at telecommunication frequency of f ≈ 195 THz, the Q-factor of FDMRs excited

by the first (blue line) and second approach (red line) are 1.90× 105 and 1.01× 105,

respectively. Figure 5.8 plots the resonant frequencies of the FDMRs in the bandgaps

I, II, and III as functions of the phase detune applied to microring C. The blue lines

represent bulk states in the transmission bands which are not affected by the phase

detune. The plot shows that the FDMR can be continuously tuned over the entire

bandgap by varying the phase detune from ∆ϕ = 0 to ∆ϕ = 4π. Comparing Fig. 5.8

(b) with Fig. 5.5 (a) in section 5.2 indicates that the required phase change to excite
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an FDMR by tuning the whole microring C is approximately twice the phase change

required for exciting the same FDMR by applying phase detune to only one segment

of microring C. However, since it is easier to tune the entire microring (e.g., by a

thermo-optic heater), in the experimental demonstration of FMR, we apply the phase

detune to the entire microring C instead of just one segment.

Figure 5.8: (a) Simulated spectral response of the light intensity in the FDMRs (at
the location indicated by the yellow star in the inset figure) for applying the phase
detune of ∆ϕ = 0.7π during the segment j = 3 of microring C on the edge of the
lattice (blue line) and for applying the ∆ϕ = 1.45π during all segments of microring
C (red line). (b) Dependence of the resonant frequency shift of the FDMR on the
phase detune ∆ϕ applied to the all segments of the microring C (step j = 1, 2, 3, and
4) located on the edge of the lattice. The blue regions in this figure represent the
passbands.

Since the coupling between the edge mode and the FDMR varies with the applied

phase detune on microring C, it is possible to achieve very high Q-factors at some

frequencies in the bandgaps. For instance, for the same lossless lattice design (cou-

pling angles θa = 0.458π and θb = 0.025π) at telecommunication frequencies (f ≈ 195

THz), we can achieve a FDMR with Q-factor in the range of Q ≈ 1 × 107 when a

phase detune ∆ϕ = 1.69π is applied to microring C, as shown by the sharp peak at

2π∆ω/ωFSR = 1.7193π in bandgap III in Fig. 5.9(a). Figure 5.9(b) shows the field

distribution of the FDMR at the corresponding peak. We note, however, that these

simulations neglect loss and scattering in the microring resonators, which will lower

the Q-factors in a real lattice.
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Figure 5.9: (a) The computed light intensity of the FDMR at the point shown by
the yellow star in the insect diagram in (b) in a lossless 10 × 10 Floquet microring
lattice with coupling angles θa = 0.458π, and θb = 0.025π for applying a phase
detune of ∆ϕ = 1.69π. (b) Field distribution of FDMR excited by edge state at
2π∆ω/ωFSR = 1.7193π, corresponding to the resonant frequency of the sharp peak in
(a), after applying the phase detune of ∆ϕ = 1.69π to the whole microring C located
on the left boundary of the lattice. The inset diagram shows the detuned microring
C.

5.2.3 Robustness of FDMR

We also investigated the robustness of FDMR in the presence of random variations

in the resonance frequencies and coupling angles of the Floquet microring lattice. We

considered the specific case of a lattice with 10 × 10 unit cells and coupling angles

θa = 0.458π, θb = 0.025π, which behaves as an AFI in all three bandgaps. We

formed an FDMR near the left boundary of the lattice by applying a phase detune

of ∆ϕ = 1.45π to a microring C on the left boundary. We coupled light into the

FDMR using AFI edge mode, which is excited through the input waveguide, shown

in Fig. 5.10(b). Figure 5.10(a) shows the simulated spectral response of light intensity

inside the FDMR loop. The red trace is the ideal case with no random variations

in the lattice, showing three resonant peaks appearing in the three bandgaps over

one FSR of the microrings. The grey area indicates the variations in the intensity

due to uniformly-distributed random deviations of up to ±10% in the coupling angles

and roundtrip phases of the microrings in the lattice. These variations are slightly
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worse than what can be expected in a silicon photonic microring lattice fabricated

by electron beam lithography. It is seen that the FDMR peaks still appear in the

3 bandgaps at approximately the same quasienergies, implying that the frequency

position of an FDMR is robust to random variations. Figure 5.10(b) compares the

spatial distributions of light intensity of the FDMR in bandgap III without and with

the random variations. It is seen that while random variations cause light to be

spread out more to the resonators surrounding the FDMR loop, most of the light

is still strongly localized in a bulk-mode loop. Thus the spatial localization of the

FDMR is also robust to random variations in the lattice. These results indicate that

it is feasible to observe the resonance and spatial localization of an FDMR in a real

lattice, as demonstrated in the next section.

Figure 5.10: Effects of random variations in the Floquet microring lattice on FDMR:
(a) Simulated spectral responses of light intensity inside the FDMR, when a phase
detune ∆ϕ = 1.45π is applied to microring C on the left boundary. Red trace is
the ideal lattice with no perturbation; the grey area shows the variations in the
intensity due to ±10% random perturbations in the coupling angles and microring
roundtrip phases obtained from 100 simulations. (b) Intensity distributions of the
FDMR in bandgap III without and with the random perturbations (obtained from 20
simulations). The FDMR loop appears in dark red color, which is also clearly visible
for the case with random perturbations, suggesting that the spatial localization of
the FDMR is also robust to variations.
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5.3 Experimental Demonstration of FDMR

We demonstrated FDMR in the Floquet octagon lattice presented in Chapter 4. The

octagon lattice was realized on an SOI substrate with 220 nm-thick silicon layer

lying on a 2 µm-thick SiO2 buffer layer with a 2.2 µm-thick SiO2 overcladding layer.

In addition, to tune the phase of an octagon resonator, a heater was designed and

fabricated using Applied Nanotools'tri-layer metalization process [71]. Figure 5.11

(a) shows the schematic of silicon resonators on an SOI substrate and a ring-shaped

heater on top of a resonator. The heater was made of a titanium-tungsten (TiW)

alloy with high electrical resistivity to create high temperature leading to a phase

detune of the resonator underneath due to the thermo-optic effect. A low-resistance

titanium-tungsten/aluminum (TiW/Al) bilayer was also used for the routing layer,

bonding, and probing pads. To protect the probing pads from oxidation damage, a

300 nm-thick SiO2 layer was used as a passivation layer. A schematic of the cross-

section of the SOI chip is shown in Fig. 5.11 (b) which indicates the locations and

thicknesses of the different layers.

Figure 5.11: (a) Schematic of the octagon resonator lattice on an SOI substrate with
tri-layer metalization to realize a heater on top of a resonator. (b) Schematic of the
cross-section of the SOI chip showing the locations and thicknesses of the different
layers.
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We fabricated an octagon resonator lattice with the same design parameters as

in Chapter 4. Specifically, the octagons had sides of length Ls = 16.06 µm and

alternating widths W1 = 400 nm and W2 = 600 nm. The corners were rounded using

arcs of radius R = 5 µm to reduce scattering. The coupling gaps between adjacent

octagons were fixed at g = 225 nm. From numerical simulations using the Finite-

Difference Time-Domain solver in Lumerical software [70], we obtained θa = 0.458π

and θb = 0.025π for the synchronous and asynchronous coupling angles, respectively,

around 1615 nm wavelength. The lattice exhibits AFI behavior for all the bandgaps

(see Floquet microring phase map in Chapter 3). The fabricated lattice consisted

of 10 × 10 unit cells (Fig. 5.12). An input waveguide was coupled to resonator A

of a unit cell on the left boundary of the lattice to excite AFI edge modes and an

output waveguide was coupled to resonator B on the right boundary to measure

the transmission spectrum. The input and output waveguides were coupled to their

respective octagon resonators on the left and right boundaries of the lattice via half-

octagons, shown in Fig. 5.12, with coupling gap g = 225 nm, which yields input and

output coupling angles equal to θa.

Figure 5.12: Microscope image of the fabricated octagon lattice in SOI showing the
input and output waveguides used to measure the transmission spectrum, and the
heater used to tune the phase of an octagon C on the left boundary to excite FDMR.
The left image shows the schematic of the left boundary of the lattice with input
waveguide, heater, and applied current.
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We used the same measurement setup in Fig. 4.7 of Chapter 4 to measure the

transmission spectrum of the lattice as well as perform NIR imaging of the scattered

light intensity from the chip. Figure 5.13(a) (red trace) shows the transmission spec-

trum measured for input TE light over one FSR (∼ 5 nm) of the resonators around

1615 nm wavelength. Three distinct bands of high transmission (labeled I, II, and

III) due to AFI edge mode propagation can be seen, which correspond to the topo-

logically nontrivial bulk bandgaps of the Floquet lattice. Imaging of the scattered

light intensity distribution at 1612.833 nm wavelength (in bandgap III) using a NIR

camera (Fig. 5.13(b)) confirms the formation of an edge mode propagating along the

lattice boundary from the left input waveguide to the right output waveguide.

We next used the AFI edge mode to couple light into an FDMR in the same

bandgap. We excited an FDMR near the left boundary of the lattice by thermo-

optically tuned the phase of an octagon C on the left boundary (Fig. 5.12),with the

time response in the range of µs, using a heater fabricated on top of the resonator.

Figure 5.13(a) (blue trace) shows the transmission spectrum when P = 34.9 mW

of heater power was applied to the octagon, which corresponds to a phase detune of

1.45π (heater calibration is discussed in Section 5.3.1). We observe that the spectrum

is almost identical to the spectrum without phase detune (red trace), except for the

presence of two sharp dips located in bulk bandgaps I and III. These dips indicate

the presence of an FDMR excited in each bulk bandgap by the edge mode. To

obtain visual confirmation of the spatial localization of the FDMR, we performed

NIR imaging of the scattered light intensity at the resonance wavelength 1612.833

nm (in bandgap III) (Fig. 5.13(c)). The image clearly shows that light is localized

and trapped in a bulk-mode loop, which is not present in Fig. 5.13(b) when no phase

detune was applied. The bulk mode pattern directly captures the hopping sequence

of the Floquet lattice as predicted in Fig. 5.2(c). Strikingly, the edge mode does

not “go around” the detuned octagon C as when it encounters a defect, but instead

excites the FDMR and couples to it. We also note that transmission dips occurring
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Figure 5.13: Experimental observation of FDMR. (a) Measured transmission spectra
of the Floquet octagon lattice over one FSR when there was no phase detune (red
trace) and when a phase detune of ∆ϕ = 1.45π was applied to microring C on the left
boundary (blue trace). (b) NIR camera image of scattered light intensity at 1612.833
nm wavelength in bandgap III with no phase detune, showing an AFI edge mode
propagating along the left and bottom edges of the lattice. (c) NIR image at 1612.833
nm wavelength with phase detune of ∆ϕ = 1.45π, showing FDMR localized in a bulk-
mode loop. The edge mode is not visible due to its much weaker intensity compared
to the FDMR. Inset (i) shows a map of scattered light intensity reconstructed from
raw camera data superimposed on the octagon lattice; inset (ii) shows the simulated
intensity distribution of the FDMR for comparison.
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in the bulk transmission bands of the lattice, which appear with and without phase

detuning, are caused by random interference of light propagating deep into the lattice

bulk. As shown in Fig. 4.9 of Chapter 4, imaging of light intensity patterns at these

wavelengths in the transmission band does not show light localized in FDMR loops.

5.3.1 Tuning the FDMR

Focusing on the FDMR in bandgap III, we measured the resonance spectrum for

different phase detune values. The spectra are plotted in Fig. 5.14(a), showing that as

the phase detune is increased, the FDMR spectrum is pushed deeper into the bandgap.

The resonance linewidth also becomes narrower while the extinction ratio reaches a

maximum of almost −40 dB near the bandgap center. Figure 5.14(b) shows that the

measured resonant wavelength shift ∆λ of the FDMR varies approximately linearly

with the applied heater power P . Using the fact that the roundtrip phase detune ∆ϕ

of the octagon resonator also varies linearly with the heater power, we can correlate

the measured ∆λ vs. P plot with the simulated ∆λ vs. ∆ϕ plot across the bandgap.

This allows us to calibrate the heater efficiency and deduce the linear correspondence

between the phase detune and the heater power. The relationship between ∆ϕ and P

is explicitly shown on the top and bottom horizontal axes of Fig. 5.14(b). This figure

also indicates that the linear relationship between ∆λ and ∆ϕ is in agreement with

the theoretically predicted dependence of the FDMR quasienergy on the phase detune

(Fig. 5.5(a)). We also calculated the changes in the refractive index of the silicon as

∆n = ∆ϕλ/2πL = 0.002−0.0037 corresponding to the phase detunes ∆ϕ = π−1.8π.

From the resonance wavelength λr and 3dB bandwidth ∆λ3dB of the FDMR, we

computed the extrinsic Q-factor of the resonator using the expression Q = λr/∆λ3dB.

The dependence of the Q-factor on the phase detune is shown in Fig. 5.15 (black

circles). We obtain Q values in the range 1.2×104−1.7×104, with a slight increasing

trend as the FDMR moves deeper into the bandgap. For comparison, the intrin-

sic Q-factor of a single resonator obtained from the measurement of a stand-alone
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Figure 5.14: Tuning of FDMR across the topological bandgap: (a) transmission spec-
tra of FDMR in bandgap III at various phase detunes. The top horizontal scale
indicates the phase detunes ∆ϕ corresponding to the resonance dips. (b) Dependence
of the resonant wavelength shift of the FDMR (relative to the microring resonance at
zero phase detune) on the phase detune (bottom horizontal axis) and heating power
(top horizontal axis). Blue circles are measurement data; the red line is the linear
best fit.

octagon (discussed in Appendix C) was only slightly higher at 2.6× 104 (correspond-

ing to roundtrip loss of 0.35 dB). Using the designed coupling values (θa = 0.458π,

θb = 0.025π) for the lattice and a slightly higher roundtrip loss of 0.59 dB in each

octagon, we simulated FDMR spectra for various phase detunes and obtained the

corresponding extrinsic Q-factors (red line in Fig. 5.15), which show good agreement

with the measured values. Larger discrepancies between simulated and measured Q-

factors are observed for smaller phase detunes, which can be attributed to the fact

that the FDMR and edge mode are less localized near the band edge and are thus

more susceptible to lattice imperfections. From the measured extrinsic Q-factor, Q,

we can calculate the effective coupling (µ) between the FDMR and the edge mode

using the expression [66]

µ2 = ω0(1/Q− 1/Q0) (5.6)
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Figure 5.15: Variations of the extrinsic Q-factor and the coupling rate µ of the FDMR
with phase detune ∆ϕ. Black circles are measured Q; the red line is the simulated Q
of FDMR in a lattice with θa = 0.458π, θb = 0.025π and roundtrip loss of 0.59 dB in
each octagon.

where ω0 is the resonant frequency and Q0 = 2.6× 104 is the intrinsic Q-factor. The

results are also plotted in Fig. 5.15 (blue circles). The coupling rate µ depends on the

overlapping between the field distributions of the AFI edge mode and the FDMR. This

dependence is seen to correlate with the variation in the degree of spatial localization

of the FDMR as indicated by the plot of IPR vs. ∆ϕ in Fig. 5.5(b). As the FDMR

is pushed deeper into the bandgap, it becomes more strongly localized spatially so

that its coupling to the edge mode is weaker, which results in higher Q-factor. We

note that higher Q-factors can be achieved by reducing the roundtrip loss in the

FDMR loop, for example, by reducing scattering from the octagon corners and using

materials with lower absorption.
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5.4 FDMR in a ”square grid” Floquet microring

lattice

In this section, we experimentally investigate FDMR in a variant of the Floquet

microring lattice, which we call the ”square grid” microring lattice. The square grid

lattice is a special case of the general microring lattice presented in Chapter 3 with

the coupling angle θb set to zero. In this case, microring D in each unit cell is not

coupled to its neighbors and can thus be removed. As a result, the lattice resembles a

square grid of microrings, with each unit cell consisting of three identical microrings

(labeled by A, B, and C) coupled to each other via equal coupling angle θa, as shown

in Fig. 5.16(a). The topological phase of the square grid lattice is given by points

on the horizontal (or vertical) axis of the topological phase map in Chapter 3 and is

determined solely by the angle θa. In particular, for θa > 0.355π the lattice behaves

as an AFI in all three bandgaps (I, II, and III) whereas for θa < 0.355π it behaves

as a CI in bandgaps I and III and NI in bandgap II. This type of TPI microring

lattice was originally proposed and theoretically investigated by [49, 51] and has been

experimentally realized at acoustic and microwave frequencies [59, 60]. However, a

nanophotonic realization has not been demonstrated before.

Here we aim to realize AFI using the square grid lattice in SOI and demonstrate

FDMR in the lattice. A beneficial feature of this lattice is that the absence of mi-

croring D in each unit cell can help reduce scattering loss, potentially leading to

higher Q-factors for the FDMR. In addition, since the coupling is uniform among the

three resonators in each unit cell, we can use ring resonators or any kind of polygons

with uniform waveguide width instead of octagon resonators with alternating widths.

However, in order to achieve AFI behavior, the coupling between adjacent resonators

must be strong (θa > 0.355π). In our design, we use square-shaped resonators with

rounded corners as shown in Fig. 5.16(a). The square resonators have identical side

length of Ls = 29.64 µm and waveguide width of Ws = 450 nm. To reduce bending
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Figure 5.16: (a) Schematic of a square grid Floquet microring lattice unit cell consist-
ing of three identical square resonators with coupling angle θa. (b) Optical microscope
image of a 10× 10 unit cells square grid microring lattice fabricated on an SOI plat-
form. Insets are SEM images of a square resonator and zoomed-in image of the heater
on top of resonator B on the bottom boundary.

loss, the inner and outer corners of the resonators are rounded with 90◦ arcs with radii

of R = 5 µm and R = 5.45 µm, respectively. The average perimeter of the square

resonator is 108.69 µm, which yields a FSR of around 5 nm for the resonator. The

square resonators are evanescently coupled to their neighbors via identical coupling

gap g = 180 nm. Using FDTD solver in Lumerical software [70], we obtain a coupling

angle θa = 0.395π for TE polarized light at wavelength λ = 1515 nm. The projected

band diagram of a lattice with 10 unit cells in the y direction and infinite extent along

x is shown in Fig. 5.17(a). The plot shows that the lattice supports AFI edge states

in all three bandgaps over each Floquet-Brilluoin zone. The simulated transmission

spectrum of a lossless lattice with 10 × 10 unit cells is shown in Fig. 5.17(b), which

confirms the high transmission of edge states in the 3 bandgaps of the lattice. Since

bandgap II is small, transmission of edge state in this bandgap is lower and exhibits

large ripples since the edge mode is not strongly localized along the lattice boundary

as in bandgaps I and III.
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Figure 5.17: (a) Band diagram of a square grid Floquet microring latice strip with
10 unit cells in the y direction, infinite length in the x direction, and coupling angle
θa = 0.395π. The winding number associated with the bandgaps (W ) and Chern
numbers (C) of the bands are also indicated. (b) Simulated transmission spectrum
of a 10× 10 unit cells square grid Floquet microring lattice.

We fabricated a square grid microring lattice with 10 × 10 unit cells on an SOI

substrate. A microscope image of the device is shown in Fig. 5.16(b). An input

waveguide was coupled to a microring A on the bottom boundary of the lattice to

couple light into the lattice, and the transmitted light was measured using an output

waveguide coupled to a microring B on the right boundary. To excite FDMR, a

heater was fabricated on top of a microring B at the bottom edge of the lattice to

thermo-optically tune its phase. An SEM image of the microring with heater can be

seen in the inset of Fig. 5.16(b).

We first measured the transmission spectrum of the fabricated lattice to charac-

terize the topological behavior of the bandgaps. TE-polarized laser light was coupled

into the input waveguide via a lensed fibre and the transmitted light at output port

was coupled to another lensed fibre and measured. We also used an NIR camera

to directly observe the scattered light intensity from the lattice, which allows us to

confirm the excitation of edge mode and FDMR. Figure. 5.18(a) shows the normal-

ized power transmission spectrum of the lattice over one FSR≈ 5 nm. Three AFI
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bandgaps can be identified, which we also confirmed from NIR images showing the

existence of edge modes in these bandgaps. bandgaps I and II are wide and have

high and flat transmission, in agreement with the simulated spectrum in Fig. 5.17,

whereas bandgap II is narrower with lower transmission. A direct NIR image of an

AFI edge state at wavelength λ = 1511.97 nm, which lies in bandgap III, is shown in

Figure 5.18: (a) Measured transmission spectra of the fabricated square grid Floquet
microring lattice over one FSR (a) before and (b) after applying a phase detune
∆ϕ = 0.9π to a microring B on the bottom edge of the lattice.
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the top panel of Fig. 5.19(a). For comparison, the simulated intensity distribution of

the edge state is also shown in the bottom panel of the figure.

Next, we excited an FDMR by applying P = 22.4 mW of electrical power to the

heater on microring B at the bottom edge of the lattice, as shown in Fig. 5.16(b).

This electrical power corresponds to a phase detune of ∆ϕ = 0.9π as obtained by the

calibration method described in Section 5.3.1. The transmission spectrum measured

Figure 5.19: NIR images and simulated plots of the scattered light intensity at λ =
1511.97 nm (a) before and (b) after applying a phase detune ∆ϕ = 0.9π to a microring
B at the bottom edge of the lattice.
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over one FSR of the microrings is shown in Fig. 5.18(b). As indicated in the figure,

two sharp dips appear in bandgaps I and III due to the excitation of FDMRs, which

we also verified from direct observation using the NIR camera. The top panels of

Figs. 5.19(a) and (b) show the NIR images of the scattered light at 1511.97 nm

(corresponding to the sharp dip in bandgap III in Fig. 5.18(b)) before and after

applying the phase detune. The excitation of the FDMR on the bottom boundary

of the square grid microring lattice by the edge mode is clearly seen. The bottom

panel in Fig. 5.19(b) shows the simulated intensity distribution of the FDMR in

bandgap III, where good agreement in the spatial patterns of the FDMR obtained

from simulation and measurement can also be seen. We note that the edge state is

not visible in Fig. 5.19 (b) due to the high contrast between the intensities of the

edge state and the FDMR. NIR imaging of the scattered light from the lattice at the

input wavelength corresponding to the dip in bandgap I also gave similar pattern of

light localization for the FDMR.

In Fig. 5.20 (a) we plotted the transmission spectra of the FDMR in bandgap III

for different phase detune values, demonstrating its tunability over the bandgap. The

variation of the resonant wavelength of the FDMR with the phase detune ∆ϕ and

the corresponding heating power P is shown in Fig. 5.20 (b). Since the coupling

between the FDMR and the edge mode depends on the phase detune, the Q-factor

of the FDMR also changes as it is tuned across the bandgap. Figure 5.21 shows

the measured Q-factor of the FDMR at different phase detunes ∆ϕ, which are in the

range of 3.6×104−6.4×104. These values are higher than those obtained for FDMRs

on the octagon resonator lattice in Section 5.3.1. The higher Q-factors obtained for

the square grid microring lattice can be partly attributed to the absence of microring

D in each unit cell and the reduced scattering loss in the square-shaped resonators

with uniform width and rounded corners.
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Figure 5.20: Tuning of FDMR in the square grid Floquet microring lattice: (a)
Transmission spectra of the FDMR in bandgap III for various phase detunes from
∆ϕ = 0.4π to π (phase detune values corresponding to the resonance dips are shown
on the top horizontal scale). (b) Variation of the resonant wavelength shift of the
FDMR versus phase detune ∆ϕ (bottom horizontal axis) and heating power (top
horizontal axis). Blue circles are measured resonant wavelength shift, and the red
line is the linear best fit.

Figure 5.21: Plot of the measured Q-factor of the FDMR in bandgap III of the square
grid Floquet microring lattice versus phase detune ∆ϕ .
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5.5 Coupled FDMRs

In this section, we investigate the possibility of exciting multiple coupled FDMRs to

form the Floquet counterparts of coupled cavities in static systems. Coupled FDMR

arrays could support light transport through the lattice bulk in a bandgap by hopping

between adjacent localized bulk modes. This represents a different mode of light

transport in a TPI from the conventional edge modes along topological interfaces.

These structures could open up new applications for Floquet TPIs such as optical

delay lines, optical routing, and high-order coupled-cavity filters.

We first theoretically investigate the excitation of coupled FDMRs in a square grid

Floquet microring lattice with 10×10 unit cells. The design parameters of the lattice

are the same as those in Section 5.4. Each square-shaped resonator has a perimeter

of 108.69 µm and group index of ng = 4.286, yielding an FSR of λFSR = 5 nm around

1515 nm wavelength. The propagation loss in each resonator is assume to be 3dB/cm.

Each unit cell consists of three microrings with coupling angle θa = 0.395π, so that

the lattice supports AFI edge states in all three bandgaps. We consider the excitation

of 3 FDMRs, labeled FDMR1, FDMR2, and FDMR3, as shown in Fig. 5.22(a), by

applying phase detunes ∆ϕ1, ∆ϕ2 and ∆ϕ3 to the three microrings indicated by the

red arrows in the figure. The phase ∆ϕ1 is applied to the whole microring B at

the bottom boundary of the lattice, while ∆ϕ2 and ∆ϕ3 are applied to only segment

j = 3 of microring C in FDMR2 and FDMR3 loops. An input waveguide coupled to

a microring A at the bottom boundary of the lattice is used to excite an AFI edge

mode, which couples light directly to FDMR1. In the simulations, we monitored the

light intensity in each FDMR loop at the point marked by the yellow star in the

schematic of Fig. 5.22 (a).

In order to achieve efficient coupling between the FDMRs, the applied phase-

detunes must be chosen so that the three resonances occur at the same frequency. In

our simulation, we considered a fixed value for ∆ϕ1 = 0.63π, leading to the excitation
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Figure 5.22: (a) Simulated intensity distribution of three coupled FDMRs at λ = 1513
nm. Inset is a schematic diagram showing the phase detunes applied to excite the
three FDMR loops labeled FDMR1, FDMR2, and FDMR3. (b) Simulated spectral
response of light intensity inside the FDMRs, with applied phase detunes of ∆ϕ1 =
0.63π, and ∆ϕ2 = ∆ϕ3 = 0.48π. The red, blue, and green lines are light intensities
inside FDMR1, FDMR2, and FDMR3, respectively, at the points marked by the
yellow stars in the schematic diagram.

of FDMR1 at λ = 1513 nm, shown by the red line in Fig. 5.22 (b). Next we computed

the light intensities in FDMR2 and FDMR3 by applying different phase values for
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∆ϕ2 = ∆ϕ3. The simulation results indicate that for ∆ϕ2 = ∆ϕ3 = 0.48π, the three

resonances are aligned, as shown by the red, blue, and green lines in Fig. 5.22 (b). The

progressively sharper resonance spectra of light in FDMR2 and FDMR3 indicate that

light coupling takes place among these resonators. Fig. 5.22 (a) shows the intensity

distribution of the lattice, which also confirms that all three coupled FDMRs are

excited.

We also experimentally realized coupled FDMRs in a square grid AFI microring

lattice on SOI. We fabricated a 10×10 unit cells lattice using square-shaped resonators

having the same design parameters as in Section 5.3 (Ls = 29.64 µm, Ws = 450 nm,

and g = 180 nm). Figure 5.23 shows a microscope image of the fabricated lattice with

an input waveguide coupled to microring A on the bottom boundary. Five heaters

Figure 5.23: Microscope image of the fabricated 10×10 square grid Floquet microring
lattice on an SOI substrate. The input waveguide is coupled to resonator A on the
bottom boundary. Zoomed-in image shows the locations of heaters H1, H2, H3, H4,
and H5 used to excite three FDMR loops, which are indicated by the yellow arrows.
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labeled H1, H2, H3, H4, and H5 were also fabricated to excited three FDMR loops, as

can be seen in the zoomed-in image of Fig. 5.23. Similar to the simulated structure,

heater H1 is used to tune the phase of the whole microring B to excite FDMR1,

while heaters H2 and H3 are designed to tune the phase of half microring C to excite

FDMR2 and FDMR3 (heaters H4 and H5 are unused).

We first applied a phase detune ∆ϕH1 = 0.63π to microring B on the bottom

boundary of the lattice and scanned the input laser wavelength across bandgap III of

the lattice to locate the FDMR1 resonance. Since the lattice doesn’t have an output

waveguide, we could not use the transmission spectrum to find the resonant wave-

length of FDMR1. Instead, we used NIR imaging to find the wavelength at which

the FDMR1 is excited. We observed that FDMR1 loop was formed at input wave-

length 1512.75nm, an image of which is shown in Fig. 5.24 (b). When we removed

the applied electrical power to heater H1, the FDMR loop disappeared and we ob-

tained an image of an edge state propagating along the lattice boundaries, as shown

in Fig. 5.24 (a). These results confirm that we have successfully excited FDMR1. We

also note that for this experiment, the scattered light intensity was captured using

an analog NIR camera without adjustable shutter time. The light intensity received

by the camera exceeded the saturation level leading to saturated images in which the

spatial localization patterns of the edge mode and FDMR are not as clear as the NIR

images in Figure 5.13.

Next, to find the required phase detune ∆ϕH2 to excite FDMR2 by light coupling

from FDMR1, we applied a low current to heater H2 and increased it until the second

FDMR (FDMR2) appeared, as shown in Fig. 5.24 (c). The phase detune at which

this occurred was ∆ϕH2 = 0.43π. Finally, we applied current to H4 to excite FDMR3

via light coupling from FDMR1 and FDMR2. We increased the current until a loop

corresponding to FDMR3 was observed. The phase detune at which this occurred was

∆ϕH3 = 0.39π and the resulting image is shown in Fig. 5.24 (d), from which it can

be seen that all three FDMRs were excited. We note that we couldn't directly excite
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Figure 5.24: NIR camera images of the scattered light intensity at wavelength 1512.75
nm in bandgap III of the square grid microring lattice: (a) an AFI edge mode propa-
gating along the lattice boundaries when no phase detunes were applied; (b) excitation
of FDMR1 by applying phase detune ∆ϕH1 = 0.63π to resonator B at the bottom
boundary of the lattice; (c) excitation of coupled FDMR1 and FDMR2 by apply-
ing phase detunes of ∆ϕH1 = 0.63π and ∆ϕH2 = 0.43π; (d) excitation of all three
coupled FDMRs by applying phase detunes of ∆ϕH1 = 0.63π, ∆ϕH2 = 0.43π, and
∆ϕH3 = 0.39π. The locations of FDMRs are shown by red loops on NIR images.

FDMR2 by edge state without exciting FDMR1, and similarly, FDMR3 couldn't be

excited without the excitation of FDMR2. These results indicate that the excitation

of FDMR2 and FDMR3 is due to light hopping from neighbor FDMRs.

To summarize this section, we theoretically and experimentally demonstrated the

feasibility of exciting multiple coupled FDMRs in a Floquet TPI lattice. Using these
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coupled FDMRs, it is possible to dynamically control the path of light in a topo-

logical bandgap through the lattice bulk by applying phase detunes to appropriate

resonators. The ability to control the path of light can open up a new directions for

future research to realize high-order filters, optical routers and switches, and optical

delay lines on a topological nanophotonic platform.

5.6 Conclusion

In this chapter we proposed and demonstrated a new resonance phenomenon called

FDMR, whereby light is trapped in a TPI lattice by adiabatically tuning the cyclic

phase of a Floquet mode to induce constructive self-interference. A distinct feature

of the FDMR is that its spatial localization pattern depends on how the driving

sequence of the Floquet lattice is perturbed. The localization pattern is also found

to be distinctly different for topologically trivial and nontrivial bandgaps, suggesting

that there may be a connection between the topological invariant of the bulk lattice

and the spatial localization of the FDMR beyond the bulk-defect correspondence [98,

101, 102], which only predicts the number of static defect modes but not the spatial

patterns. We note that it is also possible to perturb the coupling angles in the driving

sequence, which may provide an additional mechanism for engineering the FDMRs,

for example, to control the coupling strength to the edge mode or between coupled

FDMR loops.

Compared to other topological resonators, the FDMR is cavity-less, tunable, and

can be formed anywhere in the lattice bulk. The lack of physical cavity boundaries

suggests that very high Q-factors can potentially be achieved. The resonance can

also be dynamically switched on and off, which could be useful for realizing optical

switches and modulators. In addition, our experimental results have shown that

multiple adjacent FDMRs could be excited to form coupled cavity systems, which

could open up new applications such as high-order coupled-cavity filters, optical delay

lines, and optical routing by light hopping through adjacent localized bulk modes.
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Chapter 6

Conclusion and future research
directions

6.1 Summary and Contributions of Research

Topological photonics is an emerging field of research which has gained much attention

because of the unique light transport properties and other novel effects in topological

photonic insulators. The topological protection of edge modes enables light trans-

mission along lattice boundaries that is insensitive to defects in the systems [10],

potentially leading to more robust photonic devices and lower manufacturing cost,

since lower fabrication accuracy can be tolerated without impacting device perfor-

mance. Moreover, topological insulators with unconventional properties provide new

methods for manipulating electromagnetic waves from acoustic to optical frequencies

[14, 15, 25, 27, 30, 59, 60, 108, 109]. It is envisioned that topological insulators could

potentially lead to new photonic devices, such as lasers, filters, and switches, with

properties and performance not achievable in conventional materials. However, the

realization of these applications depends in a large part on our ability to construct

robust topological photonic lattices on an integrated platform, to achieve low-loss

propagation of edge modes, and to realize high-Q topological resonators.

While earlier studies have focused on static TPIs with time-independent Hamilto-

nians, recently much interest has been directed to periodically-varying systems since

they can exhibit richer topological properties than static or undriven systems. The
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extra periodicity in time (or direction of propagation) of these Floquet systems results

in more complex band structures and anomalous topological behaviors not observed

in static systems. To date, however, the only Floquet TPIs that have been realized

are based on waveguide arrays, [14, 25, 26] which have large dimensions in the range

of centimeters and are thus not amenable to integration. In this thesis, we proposed

and demonstrated a new type of Floquet TPIs using 2D lattices of coupled microring

resonators which can be implemented on a nanophotonic platform. We developed the

mathematical model to analyze the topological phases of the lattice and showed that

the lattice can be designed to exhibit a wide range of behaviors, including NI, CI, as

well as AFI. We realized the lattice on a silicon photonic platform and experimentally

verified the existence of edge modes associated with Chern and AFI behaviors of the

lattice. To broaden the range of photonic applications enabled by our Floquet mi-

croring lattice, we also proposed and demonstrated a new type of resonance whereby

light is trapped in a Floquet bulk mode of the lattice by adiabatically tuning its cyclic

phase change. Below we summarize the key contributions of the thesis.

• Formulation of 2D coupled microring lattices as periodically-driven

systems - We first showed at a 2D lattice of direct-coupled microring res-

onators can emulate a periodically-driven quantum system. We proposed a

Floquet microring lattice with each unit cell consisting of four coupled micror-

ing resonators characterized by two different coupling angles. By transforming

the lattice into an equivalent array of coupled waveguides with periodic bound-

ary conditions, we derived the FB Hamiltonian governing the sytem’s evolution.

The FB Hamiltonian allows us to investigate the topological behaviors of the

lattice.

• Characterizing the topological phases of 2D Floquet microring lattices

- We used the FB Hamiltonian to compute the topological invariants (Chern and

winding numbers) and establish the bulk-edge correspondence of the proposed
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Floquet microring lattice. We showed that by varying the two coupling angles,

we can achieve different topological behaviors such as NI, CI and AFI. We

generated a topological phase map for the lattice which predicts its topological

behavior depending on the values of the two coupling angles.

• Experimental realization of Floquet TPI based on 2D octagon lat-

tices - To validate our theoretical results, we designed and fabricated Floquet

microring lattices using coupled octagon resonators in the SOI platform. By

exploiting asynchronism in the evanescent coupling between adjacent octagon

resonators, we could achieve strong and asymmetric couplings in each unit cell

to realize nontrivial topological behaviors. By exciting edge modes and measur-

ing their transmission spectra, we verified the nontrivial topological behavior

of the lattice. Further evidence of the edge modes was provided by direct NIR

imaging of the scattered light from the lattice. In particular, we demonstrated

for the first time AFI behavior in a 2D nanophotonic lattice. By exploiting the

frequency dispersion of the coupling angles, we could also observe topological

phase transition of the lattice from NI to CI and AFI. These experimental re-

sults show that the microring lattice provides a versatile nanophotonic system

for investigating 2D Floquet topological insulators.

• Discovery of FDMR in 2D microring lattices - We discovered a new

method for trapping light in a Floquet TPI by perturbing the Hamiltonian to

tune the cyclic phase of a Floquet bulk mode to induce self-interference. The

new resonance effect, which we refer to as FDMR, can be regarded as a coun-

terpart of defect mode resonance in a static, undriven system, except that here

the perturbation is drive-dependent and varies periodically with the system

evolution. A notable feature of FDMR is that it is cavity-less; its spatial local-

ization pattern is not defined by physical boundaries but instead dictated by

the coupling sequence of the Floquet lattice. Furthermore, this spatial pattern
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is distinct for trivial and nontrivial topological lattices. Due to the lack of inter-

face scattering, FDMRs can potentially have very high Q-factors. Simulations

showed that it is possible to achieve Q-factors higher than 107.

• Experimental demonstration of FDMRs - We experimentally demonstrated

FDMR in a Floquet octagon lattice in SOI. The FDMR is excited by thermo-

optically tuning the phase of an octagon resonator located on the lattice bound-

ary, which also serves to couple the FDMR to an AFI edge mode. Evidence

of the FDMR was obtained by direct imaging of the scattered light from the

lattice, as well as by measurement of its resonance spectrum. We achieved Q-

factors in the range of 1.2−1.7×104, which could be improved to 3.5−6.5×104

using a square grid microring lattice. We also showed that the FDMR can be

continuously tuned across the bandgap of the lattice. These results show that

FDMR can provide a versatile way to form high-Q resonances in a Floquet lat-

tice for various applications. We also showed that it is possible to excite multiple

coupled FDMRs in the bulk of the lattice, which was verified by NIR imaging.

The device could enable high-order coupled-resonator filters and optical routers

to be realized on a topological photonic platform.

6.2 Recommendation for future research

The new FDMR resonator has many unique attributes which could enable a wide

range of interesting applications of topological photonic insulators, such in photonic

switching, optical filters, lasers, modulators, nonlinear cavity optics, and quantum op-

tics. From the theoretical point of view, future research could explore the relationship

of FDMR to static defect modes and establish similar bulk-defect correspondence that

has been shown for defect modes in static TPIs [98, 101, 102]. Such a correspondence

would allow us to predict the number of Floquet defect modes from the topological

invariants of the bulk lattice. In addition, there may also exist a connection between
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the spatial localization pattern of the FDMR to the bulk topological invariants, which

may provide additional insight into the behaviors of these FDMRs. From the applica-

tion perspective, future research could aim at exploring FDMR and Floquet microring

lattices for many interesting applications, some of which are proposed below.

• Applications of coupled FDMRs

In Chapter 5, we experimentally showed that FDMRs can be coupled to each

other to form coupled cavity systems, which can be used to realize high-order

coupled cavity filters, optical delay lines, and light transport in a bandgap

through the lattice bulk by hopping between adjacent localized bulk modes.

An example of light transport through the bulk is shown in Fig. 6.1(b). As

shown in this figure, in the bulk bandgap, light is being transported through

the bulk of the lattice and exits the lattice via output2 by hopping along an

array of coupled FDMRs. These FDMRs are excited by detuning the phase of

the microrings indicated by the red arrow in the figure. By contrast, without

phase detuning, light travels along the bottom edge of the lattice and exits via

output1, shown in Fig. 6.1(a). Future work could also explore ways to vary the

coupling strengths between the FDMRs to engineer the spectral shape of the

transmitted light for applications in filtering, optical routing and optical delay

lines.

• Enhanced Four-Wave Mixing using Floquet mode resonance

Four-Wave Mixing (FWM) is a third-order nonlinear effect whereby three opti-

cal beams at different frequencies interact to generate a new beam at a different

frequency. Since the nonlinear optical responses of materials such as silicon are

typically very weak, high optical intensities are required for FWM generation.

By exploiting the high-Q resonance of FDMR, we can enhance the optical inten-

sities of the lightwaves in the resonance loop, which allows us to achieve more

efficient FWM generation with lower input intensities. Thus Floquet microring
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Figure 6.1: Optical routing based on light transport by FDMR hopping in a topolog-
ical bandgap through a 20× 10 unit cells Floquet microring lattice: (a) without and
(b) with phase detunes applied to the microrings shown by red arrows. Light exits
Output1 port in (a) and Output2 port in (b).

TPIs combined with FDMRs could provide a robust nanophotonic platform for

efficient on-chip light generation based on nonlinear optical effects.

• Robust high-speed switches and modulators

FDMRs can also be a promising platform to demonstrate robust high-speed

switches and modulators using active silicon photonics. By incorporating pn

junctions into the microrings in a FDMR loop, the resonance can be dynamically

switched on and off at high speeds. Such devices could enable active photonic

applications on a topological platform.

• Realizing higher-order topological insulators based on Floquet mi-

croring lattices
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Higher-order topological insulators, such as corner states in 2D lattices, are new

topological branches that haven’t been experimentally realized in Floquet TPIs

[110]. Floquet microring resonators could be a versatile platform to theoretically

and experimentally investigate higher-order Floquet TPIs.

• Realization of non-Hermitian Floquet TPIs based on microring lat-

tices

Non-Hermitian photonics represents another interesting approach for realizing

topological insulators [111–114]. Recently, some efforts have been made to study

the topological phases in non-Hermitian Floquet systems [115, 116]. However,

experimental realization of TPIs based on non-Hermitian Floquet systems has

remained challenging. Inducing non-Hermiticity parameters such as gain and

loss in a Floquet microring lattice makes it a versatile platform to experimentally

investigate the topological phases in the interplay of non-Hermiticity and period

driving.

• Application of Floquet microring TPIs in quantum photonics

There are many interesting applications of TPIs in quantum photonics, such as

topologically-protected transport of single photons and photon entanglements,

as well as robust quantum light sources and amplifiers. Floquet microring lat-

tices can provide a robust platform for realizing some of these topological devices

in quantum photonics. For example, the FDMR can be used for efficient en-

tangled photon pairs generation by spontaneous four-wave mixing on a silicon

chip.
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Appendix A: Derivation of
Schrodinger-like equation for
photonic systems

As discussed in Section 2.6, the transverse component of the electric field, Et, which

propagates along the z direction in the optical waveguides satisfies the wave equation

Eq. 2.26, which can also be expanded to give:

∇2Et + n2k2Et = [∇(∇ · Et)]t = ∇t(∇t · Et)−∇t

[︃
1

n2
∇t · (n2Et)

]︃
(A.1)

where ▽t = x̂( ∂
∂x
) + ŷ( ∂

∂y
), k is the wave vector, and n is the refractive index of the

waveguide. We can define Et as:

Et(x, y, z) = ψ(x, y, z)e−iβz (A.2)

where ψ(x, y, z) represents the slowly-varying envelope of the electric field in z and

β = neffk is the propagation constant of the mode with effective index neff . By

substituting Eq. A.2 into Eq. A.1, we obtain

∇2(ψe−iβz) + n2k2ψe−iβz = ∇t(∇t · ψ)e−iβz −∇t

[︃
1

n2
∇t · (n2ψ)

]︃
e−iβz (A.3)

considering the first term on the left hand side of Eq. A.3:

∇2(ψe−iβz) = (∇2ψ)e−iβz +
∂2

∂z2
(ψe−iβz) (A.4)

117



with

∂2

∂z2
(ψe−iβz) =

∂

∂z

[︃
(
∂

∂z
ψ)e−iβz − jβψe−iβz

]︃
= (

∂2

∂z2
ψ)e−iβz − iβ(

∂

∂z
ψ)e−iβz

−jβ( ∂
∂z

)e−iβz − β2ψe−iβz (A.5)

Since ψ(x, y, z) varies slowly in z, we can neglect ( ∂
2

∂z2
ψ) ≈ 0 based on slowly-varying

envelope approximation SVEA. Therefore, Eq. A.5 can be written as:

∂2

∂z2
(ψe−iβz) = (−2jβ

∂

∂z
ψ − β2ψ)e−iβz (A.6)

Substituting this expression into Eq. A.4, we have

∇2(ψe−iβz) = (∇2ψ)e−iβz − (2jβ
∂

∂z
ψ + β2ψ)e−iβz (A.7)

Substituting Eq. A.7 into the wave equation, Eq. A.3, and cancelling out the common

term e−iβz, we obtain

∇2ψ − 2jβ
∂

∂z
ψ − β2ψ + n2k2ψ = ∇t(∇t · ψ)−∇t

[︃
1

n2
∇t · (n2ψ)

]︃
(A.8)

For simplicity we define an square function which represents the mode confinement

in the waveguide □ψ = ∇t(∇t · ψ)−∇t

[︁
1
n2∇t · (n2ψ)

]︁
, and we rewrite Eq. A.8 as:

− 2jβ
∂

∂z
ψ − β2ψ = −∇2ψ − (n2k2 − β2)ψ +□ψ (A.9)

In above equation, by replacing −j with i, we obtain

i
∂

∂z
ψ = − 1

2β
∇2ψ − n2k2 − β2

2β
ψ +

1

2β
□ψ (A.10)

For further simplification, we can neglect the confinement effect □ψ ≈ 0 and rewrite

Eq. A.10 as:

i
∂

∂z
ψ = − 1

2β
∇2ψ − n2k2 − β2

2β
ψ (A.11)
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since neff ≈ n:

n2k2 − β2

2β
=

(n2 − n2
eff )k

2

2neffk
=

(n+ neff )(n− neff )

2neff
k ≈ ∆nk (A.12)

where ∆n = n− neff . Substituting Eq. A.12 in Eq. A.11, we obtain:

i
∂

∂z
ψ = − 1

2neffk
∇2ψ −∆nkψ (A.13)

This equation shows the evolution of ψ along the z direction. Comparing this equation

with the Schrodinger equation i ∂
∂t
ψ = Hψ indicates that Eq. A.13 has the form of

the Schrodinger equation with z playing the role of time as discussed in Section 2.6.
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Appendix B: Computation of the
band diagram of a microring lattice
strip

The band diagram of a microring lattice strip with infinite length in the x direction

and Ny unit cells in the y direction can be computed using the coupled waveguide

array representation in Fig. 3.1(b). Fig. B.1 shows the couplings between pairs of

waveguides in one column of unit cells for each of the four coupling steps. The

quasienergy bands of the microring strip can be computed as the eigenvalues of the

Floquet operator

UF = U(k, L) = U4U3U2U1 (B.1)

where the evolution operator Uj is a 4Ny × 4Ny coupling matrix, which specifies

the couplings between pairs of waveguides in step j. Using the diagrams in Fig. B.1,

we find that the evolution operators for steps j = 1, 2, and 3 have the simple block

diagonal form

Uj = diag(Kj, Kj, ..., Kj) (B.2)

where Kj is a 4× 4 coupling matrix of each unit cell in step j given by

K1 =

⎡⎢⎢⎢⎢⎢⎢⎣
cos θa i sin θa 0 0

i sin θa cos θa 0 0

0 0 cos θb i sin θb

0 0 i sin θb cos θb

⎤⎥⎥⎥⎥⎥⎥⎦
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K2 =

⎡⎢⎢⎢⎢⎢⎢⎣
cos θa 0 i sin θa 0

0 cos θb 0 i sin θb

i sin θa 0 cos θa 0

0 i sin θb 0 cos θb

⎤⎥⎥⎥⎥⎥⎥⎦

K3 =

⎡⎢⎢⎢⎢⎢⎢⎣
cos θa i sin θae

−2ikxa 0 0

i sin θae
2ikxa cos θa 0 0

0 0 cos θb i sin θbe
−2ikxa

0 0 i sin θbe
2ikxa cos θb

⎤⎥⎥⎥⎥⎥⎥⎦
For coupling step 4, the evolution operator has the block diagonal form

U4 = diag(I,K4, K4..., K4, I) (B.3)

where I is the 2× 2 identity matrix and K4 = K2.
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Figure B.1: Coupled waveguide array representation of a microring lattice strip with
Ny unit cells in the y direction and infinite length in the x direction. The diagrams
show the couplings between pairs of waveguides in one column of unit cells in each of
the 4 coupling steps in one driving period.
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Appendix C: Loss measurement of
a stand-alone octagon resonator

To determine the loss in the octagon resonators in the Floquet lattice, we fabricated

a stand-alone octagon resonator with the same dimensions as the octagons in the

lattice. The octagon was evanescently coupled to two waveguides of 400 nm width at

the top and bottom sides, as shown in Fig. C.1(a). The coupling gaps between the

resonator and the waveguides were g = 225 nm, which is the same as those between

adjacent octagon resonators in the Floquet lattice. We measured the transmission

spectrum of the resonator at the through port by scanning input TE-polarized light

over the 1510 nm - 1630 nm wavelength range. Two sample resonance spectra around

1515 nm and 1615 nm wavelengths are shown in Figs. C.1(b) and C.1(c), respectively.

To determine the coupling coefficients and loss of the resonator, we fit each resonance

spectrum using the equation for the power transmission at the through port [66]:

Tt =
Tmin + F sin2(ϕ/2)

1 + F sin2(ϕ/2)
(C.1)

where Tmin = τ2(1−art)2
(1−τ2art)2 and F = 4τ2art

(1−τ2art)2 . In these expressions, τ is the transmission

coefficient of the coupling sections, ϕ is the roundtrip phase and art is the roundtrip

amplitude attenuation constant in the resonator. Sample best-fit curves are shown

for the two spectra in Figs. C.1(b) and C.1(c). From the curve fits, we obtained

art = 0.96, which corresponds to an intrinsic Q-factor of 2.6× 104 for the stand-alone

resonator. The coupling angle θ = cos−1(τ) could also be obtained from the curve fit.

For the two sample spectra, we obtained θ = 0.286π around 1515 nm and θ = 0.453π

around 1615 nm. The latter value is in good agreement with the designed synchronous
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coupling angle θa of the Floquet lattice around the same wavelength.

Figure C.1: Characterization of a stand-alone octagon resonator. (a) Image of a
stand-alone octagon resonator coupled to two waveguides along the top and bottom
sides. (b) and (c) Measured power transmission spectra at the through port and best
curve fits of resonances around 1515 nm and 1615 nm wavelength, respectively.
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