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Abstract

One popular approach to estimating an unknown function from noisy data

is the use of a regularized optimization over a reproducing kernel Hilbert

space (RKHS). The solution belongs to a finite-dimensional function space.

If we assume the additive measurement noise is Gaussian, then there is a

well known statistical interpretation that the RKHS estimate represents the

posterior mean (minimum variance estimate) of a Gaussian random field with

covariance proportional to the kernel associated with the RKHS. In this thesis,

we calculate the sharp upper bound of the error of the RKHS estimate (given

unit RKHS norm of the underlying function). We also present a statistical

interpretation for general loss functions, by assuming the density of prior is

in exponential form in terms of RKHS norm and then give some simulation

examples.
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Chapter 1

Introduction

In machine learning, two non-parametric approaches based on positive def-

inite kernels have been widely used for the purpose of modeling non-linear

functional relationships. On the one side, there is Bayesian machine learning

with Gaussian processes (GP) which defines a hypothesis space through a GP

prior distribution of the true function’s realizations and then produces a pos-

terior distribution for an unknown function of interest. On the other hand,

frequentists assume the true function can be well approximated by functions

in a reproducing kernel Hilbert space (RKHS) and then search for the function

via regularized optimization. These two approaches have been shown to be

practically powerful, and have found a wide range of practical applications in

dealing with nonlinear phenomena. It is widely known in machine learning

that these two approaches are closely related; for instance, the estimator of

kernel ridge regression is identical to the posterior mean of Gaussian process

regression In this thesis we review the existing literature and show the connec-

tion between them. In the present section, we review some basic concepts and

known connections between the Bayesian and frequentist approaches in terms

of reconstructing a function f : X → R from noisy data.

1.1 Basic definitions

In this chapter we review basic concepts and models which are related to

Gaussian process prediction. We cover the well known reproducing kernel
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Hilbert space (RKHS), which defines a class of sufficiently smooth functions

with certain positive definite kernel k.

Definition 1.1.1. Let H be a vector space over R. A function
〈
·, ·
〉
H : H ×

H → R is said to be an inner product on H if:

1. 〈λf, g〉H = λ〈f, g〉H

2. 〈f1 + f2, g〉H = 〈f1, g〉H + 〈f2, g〉H

3. 〈f, g〉H = 〈g, f〉H 1

4. 〈f, f〉H ≥ 0 and 〈f, f〉H = 0 if and only if f = 0

With this inner product, the norm will be: ||f ||H =
√
〈f, f〉H.

Definition 1.1.2. A inner product space is a vector space H equipped with

its inner product 〈·, ·〉H.

Definition 1.1.3. An inner product space over the field of complex numbers

are called a unitary space.

Definition 1.1.4. A sequence {an}∞n=1 is said to be a Cauchy sequence if for

every ε > 0, there exists N = N(ε) ∈ N, such that ∀n,m ≥ N, ||an−am||H < ε.

Definition 1.1.5. A space C is complete if every Cauchy sequence in C

converges: it has a limit, and this limit is in C.

Definition 1.1.6. Given a set X and a function d : X × X → R, we say

that the pair M = (X , d) is a metric space if and only if d(·) satisfies the

following properties:

• (Non-negativeness) For all x, y ∈ X , d(x, y) ≥ 0

• (Identification) For all x, y ∈ X we have that d(x, y) = 0 ⇐⇒ x = y

• (Symmetry) For all x, y ∈ X , d(x, y) = d(y, x)

1Throughout we discuss in real-valued world only; otherwise the right hand side becomes
its conjugate symmetry: 〈f, g〉H = 〈g, f〉H
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• (Triangular inequality) For all x, y, z ∈ X we have that d(x, z) ≤ d(x, y)+

d(y, z)

Definition 1.1.7. A Banach space is a complete normed space, i.e., it

contains the limits of all its Cauchy sequences.

Definition 1.1.8. A Hilbert space H is a complete metric space on which

an inner product is defined and every Cauchy sequence converges to a limit in

H.

Definition 1.1.9. Positive definite kernel Let X be a non-empty set. A

symmetric function k : X × X → R is called a positive definite (pd) kernel, if

for any n ∈ N, (c1, ..., cn) ∈ Rn and (x1, ..., xn) ∈ X n,

n∑
i,j=1

cicjk(xi, xj) ≥ 0

Remark 1. Equivalently, it can be described by the following: a symmetric

function k is positive definite if the matrix K̄ ∈ Rn×n with elements [K̄]ij =

k(xi, xj) is positive semidefinite for any (x1, ..., xn) ∈ X n of any size n ∈ N.

The matrix K̄ is called the kernel matrix or Gram matrix.

Proposition 1.1.1. Let X be a non-empty set. If there exists an R-Hilbert

space and a map2 φ : X → H , then the function k : X × X → R defined by

k(x1, x2) := 〈φ(x1), φ(x2)〉H, ∀x1, x2 ∈ X is a positive definite kernel.

Proof. Let (x1, ..., xn) ∈ X n and (c1, ..., cn) ∈ Rn.

n∑
i,j=1

cicjk(xi, xj) =
n∑

i,j=1

cicj〈φ(xi), φ(xj)〉H

= 〈
n∑
i=1

ciφ(xi),
n∑
j=1

cjφ(xj)〉H

= ||
n∑
i=1

ciφ(xi)||2H ≥ 0

(1.1)

2 φ is usually called the feature map.
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Remark 2. In fact, the reverse direction also holds: a positive definite func-

tion is guaranteed to be the inner product in a Hilbert space H between features

φ(x) [8].

Remark 3. Positive definite kernels may be viewed as generalized inner prod-

ucts. Indeed, any inner product is naturally a pd kernel though the property

of linearity does not carry over from inner products to pd kernels in general.

However, another property of inner product, the Cauchy-Schwarz inequality,

does have a natural extension as follows.

Proposition 1.1.2. If k is a positive definite kernel, and x1, x2 ∈ X , then

k(x1, x2)
2 ≤ k(x1, x1)k(x2, x2).

Proof. The 2× 2 Gram matrix with entries K̄ij = k(xi, xj) is positive definite.

Hence both its eigenvalues are non-negative, and so is their product, K̄’s

determinant, i.e.,

0 ≤ K̄11K̄22 − K̄12K̄21 = K̄11K̄22 − K̄2
12

Substituting k(xi, xj) for K̄ij , we get the desired inequality.

Informally, a kernel function computes the inner product of the images

under an feature map φ of two data points. Note that we imposed almost no

conditions on X : the inner product is defined on the features of elements of

X rather than on X itself. Also, if k(·, ·) is positive definite, one can always

define a family X(t) (on certain index set X ) of zero-mean Gaussian random

variables with covariance function k, that is, E[X(s)X(t)] = k(s, t), s, t ∈ X .

The well-definedness of classes of random variables in the continuous case is

supported by the Kolmogorov consistency theorem.

Two popular classes of kernel functions are the Mat’ern kernels and spline

kernels [9, p.6].

Definition 1.1.10. Mat’ern kernels Let X ⊂ Rd. For fixed α > 0 and

h > 0, the Matern kernel kα,h : X × X → R is given by:

kα,h(x1, x2) =
1

2α−1Γ(α)
(

√
2α||x1 − x2||α

h
)Kα(

√
2α||x1 − x2||α

h
)
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where Γ is the gamma function, and Kα is the Bessel function of the second

kind of order α.

If α = 1/2, it becomes exponential kernel:

k1/2,h(x1, x2) = exp (−||x1 − x2||
h

)

The limiting case where α→∞ turns out to be the square-exponential kernel:

kh(x1, x2) = exp(−||x1 − x2||
2

2h2
)

Definition 1.1.11. Spline kernels Let X ⊂ R. For fixed m ≥ 1 and m ∈ N,

the Spline kernel km : X × X → R is given by:

km(x1, x2) =

∫ 1

0

((x1 − u)+(x2 − u)+)m−1

((m− 1)!)2
du

where (x)+ = x when x ≥ 0 and zero elsewhere.

That Spline kernel is often used to reconstruct a real-valued function on the

unit interval [0, 1] with (m−1)th continuous derivatives and square integrable

f (m), satisfying the boundary condition f (k)(0) = 0 for k = 0, ...,m − 1. In

particular, in the context of cubic spline where m = 2, the kernel is given by:

k2(x1, x2) =

∫ 1

0

((x1 − u)+(x2 − u)+)du

=

∫ x1∧x2

0

((x1 − u)(x2 − u))du

= (u(6x1x2 − 3x1u− 3x2u+ 2u2))/6|u=x1∧x2

= x1x2(x1 ∧ x2)/2 + (x1 ∧ x2)3/6

where x1 ∧ x2 = min(x1, x2) = (x1 + x2 − |x1 − x2|)/2

Some other common choices of kernels:

• polynomial

k(x1, x2) = (xT1 x2 + c)M for c > 0 and M ∈ N

• sigmoid

k(x1, x2) = tanh(axT1 x2 + b)
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• non-vectorial space [2, p. 297]

k(A1, A2) = 2|A1∩A2|, where ”| · |” means the number of subsets of a set.

1.2 The reproducing kernel Hilbert space

Provided with the notation of feature spaces, and positive definite kernels on

them, we are now able to define a particular class of functions on X in this

section. The space of such functions is known as a reproducing kernel Hilbert

space. We will see that RKHS are spaces of functions with the nice property

that if a function f is close to a function g (in the sense of the distance derived

from the inner product), then their evaluations f(x) and g(x) are close, too.

Definition 1.2.1. Reproducing kernel Hilbert space

Let H be a Hilbert space endowed with an inner product
〈
·, ·
〉
H of real

functions f defined on an index set X . Then H is called a reproducing kernel

Hilbert space if there exists a function k : X × X → R with the following

properties:

1. for every fixed x1 ∈ X , k(x1, x2) as a function of x2 belongs to H,

2. k has the reproducing property:〈
f(·), k(x, ·)

〉
H = f(x)

for all x ∈ X and f ∈ H

Remark 4. Note that, by the reproducing property we have the following:

k(x, y) = 〈k(x, ·), k(y, ·)〉H (1.2)

That is, an RKHS associated with a positive definite kernel k (called a repro-

ducing kernel (RK)) gives a desired feature space. This can be further developed

as a theorem [9, p. 2] below:

Proposition 1.2.1. Every RKHS corresponds a unique RK and conversely,

given a positive-definite function k on X ×X we can construct a unique RKHS

of real-valued functions on X with k as its RK.

6



Figure 1.1: The relationship between some common abstract spaces [5, p. 19]

Proof. Assume we have two RKs k1 and k2, then by the linearity of inner

product and the reproducing property we have 〈f, k1(·, x)−k2(·, x)〉H = f(x)−

f(x) = 0. Letting f(·) = k1(·, x) − k2(·, x) yields ||k1(·, x) − k2(·, x)||2H = 0

which means k1 and k2 are identical by property of norm.

The converse part follows from constructing a linear manifold by taking all

finite linear combinations of the form
∑n

i=1 cik(xi, ·) for all choice of n and

{ci}i=1
n ⊂ R, {xi}i=1

n ⊂ X .

Example 1.2.1. Cameron-Martin space [10, p. 88] Define H = {f :

f(0) = 0, f is absolutely continuous and its derivative f ′ is square integrable

on the interval X = (0, 1)} equipped with the inner product:

〈f, g〉H =

∫
X
f ′g′

Then by choosing the kernel k(x, y) = x ∧ y we see the reproducing property

holds: 〈
f(·), k(x, ·)

〉
H =

∫ 1

0

f ′(y)
∂

∂y
k(x, y)dy =

∫ x

0

f ′(y)dy = f(x)

where we compute ∂
∂y

(x ∧ y) = I(0,x)(y) in the sense of weak derivative.
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Example 1.2.2. Define H = {f : f is absolutely continuous. f and f ′ are

square integrable on X = R} equipped with the inner product:

〈f, g〉H =

∫
X

(fg + f ′g′)

Then by choosing a (scaled) exponential kernel k(x, y) = 1
2

exp (−|x− y|) we

see the reproducing property holds:

〈
f(·), k(x, ·)

〉
H =

∫
R
f(y)k(x, y) + f ′(y)

∂

∂y
k(x, y)dy

=

∫
R
f(y)k(x, y)dy +

∫ x

−∞
f ′(y)

∂

∂y
k(x, y)dy +

∫ ∞
x

f ′(y)
∂

∂y
k(x, y)dy

=

∫
R
f(y)k(x, y)dy + f(y)

∂

∂y
k(x, y)|xy=−∞ −

∫ x

−∞
f(y)

∂2

∂y2
k(x, y)dy

+ f(y)
∂

∂y
k(x, y)|∞y=x −

∫ ∞
x

f(y)
∂2

∂y2
k(x, y)dy

=

∫
R
f(y)k(x, y)dy +

1

2
f(x)− 0−

∫ x

−∞
f(y)k(x, y)dy

+ 0− (−1

2
f(x))−

∫ ∞
x

f(y)k(x, y)dy

= f(x)

(1.3)

where we used the identities: ∂
∂y
k(x, y) =

{
k(x, y) if y > x

−k(x, y) if y < x
and ∂2

∂y2
k(x, y) =

k(x, y) if y = x.

1.3 An equivalent definition

The evaluation functional δx defined by δx(f) = f(x) assigns a real number

to the given function. In general, the evaluation functional is not continuous

in the sense that fn → f does not imply δx(fn) → δx(f). For example,

given f(x) = 0 and fn(x) =
√
nI(x < 1/n2), then we have ||fn − f || =

(
∫ 1

0
(|fn−f |)2dx)1/2 = (

∫ 1/n2

0
(
√
n)2dx)1/2 = 1/

√
n→ 0 but δ0(fn) =

√
n which

does not converge to δ0(f) = 0. Intuitively, this is because Hilbert spaces can

contain very unsmooth functions. We shall see that RKHS is a special class

of Hilbert spaces where the evaluation functional is continuous, meaning that
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the functions in the space are well-behaved. We first introduce some basic

concepts in functional analysis.

Definition 1.3.1. (Linear operator)

A function A : F → G, where F and G are both normed linear spaces over

R, is called a linear operator if it satisfies the following properties:

• Homogeneity: A(α) = α(Af),∀α ∈ R,∈ F

• Additivity: A(f + g) = Af + Ag,∀f, g ∈ F

Remark 5. Clearly the evaluation functional δx is a liner operator, as δx(αf+

βg) = (αf + βg)(x) = αf(x) + βg(x) = αδx(f) + βδx(g).

Definition 1.3.2. (Operator norm) The operator norm of a linear operator

A: F → G is defined by:||A|| = sup
f∈F

||Af ||G
||f ||F

.

Definition 1.3.3. (Bounded operator) The linear operator A: F → G is

said to be a bounded operator if ||A|| <∞.

Definition 1.3.4. (Continuity)

A function A: F → G is said to be continuous at f0 ∈ F , if for every

ε > 0, there exists a δ = δ(ε, f0) > 0, such that ||f − f0||F < δ implies

||Af − Af0||G < ε.

Definition 1.3.5. A function A is continuous on F , if it is continuous at

every element of F .

In fact the boundedness and continuity turn out to be equivalent in normed

linear spaces:

Proposition 1.3.1. Let (F , || · ||F) and (G, || · ||G) be normed linear spaces. If

A is a linear operator, then the following are equivalent:

1. A is a bounded operator.

2. A is continuous on F .

3. A is continuous at one point of F .

9



Proof. (1)⇒(2):By definition 1.3.2 we have

||A(f1 − f2)||G ≤ ||A|| ||(f1 − f2)||F

Since ||A|| <∞, we know A is Lipschitz continuous with a Lipschitz constant

||A|| and hence A is continuous over F .

(2)⇒(3): It trivially holds true.

(3)⇒(1): For linearl operator f and f0, let g = f − f0. By definition 1.3.4,

there exists a fixed δ > 0, for any ||f − f0||F = ||g||F < δ we can have

||Af − Af0||G = ||A(g)||G < 1. Then

||A(g)||G = δ−1||g||F ||A(δ
g

||g||F
)||G ≤ δ−1||g||F

Hence ||A|| ≤ δ−1 <∞ and A is bounded.

With the ingredients listed above we can now build the equivalent definition

of RKHS:

Proposition 1.3.2. (Equivalence definition of RHKS) A Hilbert space

H of functions defined on non-empty X is an RKHS if and only if ∀x ∈ X the

evaluation functional δx is continuous (or, equivalently, bounded) on H.

Proof. Suppose H is an RKHS with RK k. Then ∀x ∈ X , applying the

Cauchy-Schwarz inequality and the reproducing property of RKHS yields:

|δx(f)| = |〈f, k(x, ·)〉|

≤ ||f ||H||k(x, ·)||H

= ||f ||H〈k(x, ·), k(x, ·)〉1/2H
= ||f ||Hk(x, x)1/2

(1.4)

Hence δx is a bounded linear operator on H.

The converse part immediately follows from Riesz Representation Theorem [3,

p. 13], 3 where we let gδx(·) = k(·, x) ∈ H and write δx(f) = 〈f, gδx〉H =

〈f, k(·, x)〉H and hence k is the corresponding RK.

3 Riesz Representation Theorem: In a Hilbert space H, all bounded linear operators
are of the form 〈·, g〉H, for some g ∈ H.

10



Remark 6. k(·, x) is usually called the kernel section or representer of eval-

uation at x.

Corollary 1.3.5.1. (Evaluation functional is continuous in H.) If two func-

tions converge in RKHS norm, then they converge at every point, i.e.,||fn −

f ||H → 0 implies fn(x)→ f(x), ∀x ∈ X

Proof. |fn(x)− f(x)| = |〈fn − f, k(x, ·)〉H| ≤ ||fn − f ||H||k(x, ·)||H → 0

An important property of the RKHS norm ||f ||H is that it captures not

only the magnitude of a function f ∈ H but also its smoothness: f gets

smoother as ||f ||H decreases, and vice versa. This is particularly important

in understanding why regularization is required for kernel ridge regression, to

avoid overfitting.

1.4 Representer Theorem

As a consequence of the last section, one of the crucial properties of kernels

is that even if the input domain X is only a set, we can nevertheless think of

the pair (X , k) as a (subset of a) Hilbert space, thus allowing us to explore

various data structures in Hilbert spaces whose theory is very well developed.

From a practical point of view, however, the new problem is that the Hilbert

space is usually infinite-dimensional for many popular kernels and that causes

difficulty in optimization. This issue may be addressed by the following well

known theorem, which shows that a large class of optimization problems with

RKHS regularizers have solutions spanned by kernel sections in terms of the

training data, whose dimension is finite.

Theorem 1.4.1 (Representer Theorem). [7] Given a positive definite ker-

nel k on X ×X (and an RKHS H induced by it), a training set (x,y) ⊂ X×R,

a strictly monotonic increasing real-valued function Ω on [0,∞], and an ar-

bitrary cost function c : (X × R2)n → R ∪ {∞}, any f ∈ H minimizing the

11



regularized risk functional

c((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + Ω(||f ||H)4

admits a representation of the form

f(·) =
n∑
i=1

αik(xi, ·)

Proof. First we define φ(xi) = k(·, xi). Since every vector space can be written

as a direct sum of a subspace and its orthogonal complement, we use the

orthogonal projection and decompose the function f in the following form

f =
n∑
i=1

αiφ(xi) + v,

where

〈φ(xi), v〉H = 0 ∀i = 1, .., n.

The orthogonality condition simple ensures that v is not in the span of {φ(xi)}ni=1.So

for any point xj (j = 1, ..., n), applying the reproducing property yields:

f(xj) =

〈
n∑
i=1

αiφ(xi) + v, φ(xj)

〉
H

=
n∑
i=1

αi〈φ(xi), φ(xj)〉H,

so v has no effect on the cost function c ((f(x1), y1), ..., (f(xn), yn)).

We now check the regularization term, by the monotonicity of Ω and or-

thogonality condition, we compute:

Ω(‖f‖H) = Ω

(∥∥∥∥∥
n∑
i=1

αiφ(xi) + v

∥∥∥∥∥
H

)

= Ω


√√√√∥∥∥∥∥

n∑
i=1

αiφ(xi)

∥∥∥∥∥
2

H

+ ‖v‖2H


≥ Ω


√√√√∥∥∥∥∥

n∑
i=1

αiφ(xi)

∥∥∥∥∥
2

H

 .

(1.5)

4Here || · ||H is the norm in the RKHS Hk associated with a given pd kernel k, i.e. for
any zi ∈ X , βi ∈ R( i ∈ N),

||
∞∑
i=1

βik(·, zi)||2 =

∞∑
i=1

∞∑
j=1

βiβjk(zi, zj).
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Setting v = 0 thus does not affect the cost function , while strictly reducing

the second term. Hence, any minimizer must have v = 0 and the solution

takes the form:

f(·) =
n∑
i=1

αiφ(xi) =
n∑
i=1

αik(·, xi).

This theorem in fact provides a powerful way of detecting non-linear rela-

tions using standard function minimization algorithms. It dramatically sim-

plify the regularized empirical risk minimization problem by reducing the

search domain from an infinite-dimensional function space to a finite (n-dimensional)

vector space. Consequently, the representer theorem provides the theoretical

basis for the reduction of the general machine learning problem to algorithms

that can actually be implemented on computers in practice.

1.5 An equivalent characterization of RKHS

norm

If we could write a function f ∈ H as a finite sum of kernel sections as

f(·) =
∑n

i=1 cik(·, xi), then there exists an a equivalent characterization of

RKHS norm of such f .

Theorem 1.5.1. Let k be a pd kernel on X and H be its RKHS. Then for

any n ∈ N, x1, ..., xn ∈ X and c1, ..., cn ∈ R, we have:

||f(·)||H = ||
n∑
i=1

cik(·, xi)||H = sup
f∈H,||f ||H≤1

n∑
i=1

cif(xi)

Proof. By the reproducing property, the right side of 1.5.1 can be written as

sup
||f ||H≤1

n∑
i=1

cif(xi) = sup
||f ||H≤1

〈
n∑
i=1

cik(·, xi), f(·)〉H

By the Cauchy-Schwartz inequality, it is upper-bounded as:

RHS ≤ sup
||f ||H≤1

||
n∑
i=1

cik(·, xi)||H||f ||H = ||
n∑
i=1

cik(·, xi)||H

13



On the other hand, on letting g(·) =
∑n

i=1 cik(·, xi)/||
∑n

i=1 cik(·, xi)||H, we

have ||g||H = 1, and thus the right side of 1.5.1 can be lower-bounded as:

RHS ≥ 〈
n∑
i=1

cik(·, xi), g(·)〉H = ||
n∑
i=1

cik(·, xi)||H

Hence the equality in 1.5.1 holds true.
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Chapter 2

Bayesian estimation of a
Gaussian random field

We first review the problem of regression model. For a given non-empty set

X and a regression function f : X → R, assume that the training data is

described by n pairs of observations (xi, yi) ∈ X × R such that:

yi = f(xi) + εi

where εi is a zero-mean random variable, usually referred as the noise term in

the output. The main goal of regression is to reconstruct f from the training

sample (xi, yi)
n
i=1. Though f itself is a deterministic function, its evaluation

will be henceforth treated as realization of a Gaussian random field. Specifi-

cally, we shall make two assumptions:

Assumption 1 (f as a Gaussian random field): For any finite collec-

tions of sample points {xj : j = 1, ..., J}, the vector f(x) = (f(x1), ..., f(xJ))

is a zero-mean Gaussian random variable with covariance:

cov(f(xi), f(xl)) = λk(xi, xl) (2.1)

where λ is a fixed positive constant and k(·, ·) is a positive definite autocovari-

ance function on X ×X . Such function f that satisfies the above assumption

is called a zero-mean Gaussian random field on X .

Assumption 2 (Conditions on the noise): The independent measure-

ment y given the regression function f is distributed according to an expo-

15



nential form:

P(y|f(x)) ∝ Πn
i=1 exp(−V (yi − f(xi))

2σ2
)

where V is a loss function and σ > 0. Note that we assume the measurement

noise εi = yi − f(xi) are independent of f(xi).

2.1 Gaussian noised data

Suppose assumptions 1 and 2 hold with Vi(r) = r2 applying the above result

from Appendix A to the jointly Gaussian random vector x1 = f(x∗) for a new

input x∗ and x2 = y yileds

cov(f(x∗), yj) = cov(f(x∗), f(xj) + εj)

= cov(f(x∗), f(xj)) + cov(f(x∗), εj)

= λk(x∗, xj) + 0

(2.2)

cov(yi, yj) = cov(f(xi) + εi, f(xj) + εj)

= cov(f(xi), f(xj)) + cov(εi, εj) + 0

= λk(xi, xj) + σ2

(2.3)

where the zero terms are because of independence assumption. Then the

posterior conditional expectation of the prediction at new observation x∗ is

given by:

E((f(x∗))|y)) = 0 + (cov(f(x∗),y))(cov(y,y)−1(y − 0)

= λ(k(x∗, x1), ..., k(x∗, xn))(λK̄ + σ2In)−1y

= (k(x∗, x1), ..., k(x∗, xn))(K̄ + γIn)−1y

(2.4)

where we define γ = σ2/λ and In is the n× n identity matrix.

The problem of inferring an underlying function f(·) from a noisy dataset

without any additional assumptions is clearly ill-posed [6, p.129]. For example,

in the noise-free case, any function that passes through the given data points

is acceptable. Under a Bayesian approach our assumptions are characterized

by a prior over functions, and given some data, we obtain a posterior over
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functions. The problem of bringing prior assumptions to bear has also been

addressed under the regularization viewpoint, where these assumptions are

encoded in terms of the smoothness of f .

In general, the problem can be written as follows. To reconstruct f from

the noisy data, we estimate

f̂ = arg min
f∈H

n∑
i=1

Vi(yi − f(xi)) + γ||f ||2H (2.5)

One of the important features of the above approach is that, even if the dimen-

sion of H is infinite, the solution belongs to a finite-dimensional subspace. In

fact, under mild assumptions on the loss function, according to the representer

theorem 1.4.1, f̂(·) in 2.5 is given by a finite sum of kernel sections k(xi, ·):

f̂(·) =
n∑
i=1

ĉik(xi, ·) (2.6)

where ĉ is hence estimated by:

ĉ = arg min
c∈Rn

n∑
i=1

Vi(yi −
n∑
j=1

cjk(xj, xi)) + γcT K̄c. (2.7)

Notice that the squared norm with f in the form of 2.6 is then calculated by:

||f ||2H = 〈
n∑
i=1

cik(xi, ·),
n∑
j=1

cjk(xj, ·)〉H

=
n∑

i,j=1

cicj〈k(xi, ·), k(xj, ·)〉H

=
n∑

i,j=1

cicjk(xi, xj)

= cT K̄c

(2.8)

To see this coincides with the Gaussian random field approach in the previous

example, we calculate:

d

dc
[(y − K̄c)T (y − K̄c) + γcT K̄c] = 2K̄2c− 2K̄y + 2γK̄c (2.9)

Since the Hessian matrix is clearly positive definite, setting the above

derivative to zero we conclude the minimizer is given by:

ĉ = arg min
c∈Rn

(y − cT K̄)T (y − cT K̄) + γcT K̄c = (K̄ + γIN)−1y

17



2.2 Error estimate of Posterior Variance

Apart from the estimate of the mean, we may also compute the posterior

variance and do some further analysis. Throughout this section we will still

assume the noise to be Gaussian with V (r) = r2. As in 2.4 we would com-

pute with help from classic conclusion from conditional multivariate Gaussian

distribution. First we define: kx = (k(x1, x), ..., k(xn, x))T , the column n × 1

vector of kernel section evaluated at x and define k(·) = (k(x1, ·), ..., k(xn, ·))T

wherever the argument x can be omitted. Then the posterior variance is given

by:

Var((f(x∗))|y)) = (cov(f(x∗), cov(f(x∗)))− (cov(f(x∗),y))(cov(y,

y)−1)(cov(y, f(x∗))

= λk(x∗, x∗)− λkTx∗(K̄ + γIn)−1kx∗

(2.10)

From the Bayesian viewpoint, that quantity is usually interpreted as the

average case error at a location x∗ to measure the uncertainty of the estimates

from Gaussian process regression. The next upcoming theorem is to show that

there exists a frequentist interpretation of Var((f(x∗))|y)) as the worst case

error.

Define a new kernel

kγ(x1, x2) = k(x1, x2) + γ∆(x1, x2), x1, x2 ∈ X

where ∆(·, ·) is the Kronecker delta function:∆(i, j) =

{
0 if i 6= j,

1 if i = j.
.

With that kernel we have corresponding RKHS Hkγ and Gram matrix K̄γ =

K̄ + γIn . Notice that the posterior mean from 2.4 can now be conveniently

written as:

E((f(x∗))|y)) = kTx∗K̄
−1
γ y

We then have the following theorem [4]:
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Theorem 2.2.1. For any x∗ ∈ X that is independent of (xi)
n
i=1, we have√

Var((f(x∗))|y))/λ+ γ = sup
g∈Hkγ ,||g||Hkγ≤1

(g(x∗)− kTx∗K̄−1γ g(x))

Proof. By using the theorem 1.5 we have:

||kγ(·, x∗)− kTx∗K̄−1γ kγ(·)||Hγ = ||kγ(·, x∗)−
n∑
i=1

(kTx∗K̄
−1
γ )ik

γ(·, xi)||Hγ

= sup
g∈Hkγ ,||g||Hkγ≤1

(g(x∗)−
n∑
i=1

(kTx∗K̄
−1
γ )ig(xi))

= sup
g∈Hkγ ,||g||Hkγ≤1

(g(x∗)− kTx∗K̄−1γ g(x))

(2.11)

Simplifying the square of the left hand side of the above equation yields:

(LHS)2 = kγ(x∗, x∗)− 2
n∑
i=1

(kTx∗K̄
−1
γ )ik

γ(x∗, xi) +
n∑

i,j=1

(kTx∗K̄
−1
γ )i(k

T
x∗K̄

−1
γ )jk

γ(xi, xj)

= k(x∗, x∗) + γ − 2
n∑
i=1

(kTx∗K̄
−1
γ )ik

γ(x∗, xi) + (kTx∗K̄
−1
γ )K̄γ(kTx∗K̄

−1
γ )T

= k(x∗, x∗) + γ − 2
n∑
i=1

(kTx∗K̄
−1
γ )ik(x∗, xi) + kTx∗K̄

−1
γ kx∗

= k(x∗, x∗) + γ − kTx∗K̄−1γ kx∗

= Var((f(x∗))|y))/λ+ γ

(2.12)

where in the third line we used the property of kγ that kγ(x1, x2) = k(x1, x2)

if x1 6= x2.

Remark 7. If σ2 = 0 i.e. the sample data is noise-free, then the problem

is called interpolation. If we further assume K̄ is invertible, then the Theo-

rem 2.2.1 shows that the posterior variance Var((f(x∗))|y)) (up to a constant

multiple λ) provides an upper-bound on the squared error of kernel interpola-

tion for any fixed target function in RKHS induced by k. Specifically, by the

reproducing property and Cauchy-Schwartz inequality we have the following

corollary:

Corollary 2.2.1.1. Given σ2 = 0 (and thus γ = 0), and an invertible Gram

matrix K̄, for any new input x∗ ∈ X we have:

(m(x∗)− f(x∗))2 ≤ ||f ||HVar((f(x∗))|y))/λ, ∀f ∈ H,
19



where m(x∗) = kTx∗K̄
−1f(x)
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Chapter 3

Statistical interpretation

Now we consider the general case when the Gaussian assumptions on the noise

εi are removed. If we are given that f has a well defined prior probability

density:

P(f) ∝ exp (
−||f ||2H

2λ
) (3.1)

Then it immediately follows from the Bayesian rule that the posterior dis-

tribution (given the assumption 1) is:

P(f |y) ∝ exp (−
n∑
i=1

Vi(yi − f(xi))/2σ
2 − ||f ||2H/2λ) (3.2)

Then f̂ defined by 2.5 is called a maximum a posteriori (MAP) estimator, as

minimization in 2.5 is evidently equivalent to maximizing the right handside

of 3.2 . Given Vi(r) = r2, f̂ can be also interpreted as the posterior mean

which the minimum variance estimator (MVE) of f(x), see Appendix B. It is

worth to mention that in general the MAP and the MVE are different without

the the special assumption of square loss function.

3.1 Connection between MVE and MAP

Nevertheless, the minimum variance estimate E[f(·)|y] and the MAP estimate

f̂ belong to the same (finite-dimensional) subspace of H spanned by the kernel

sections k(xi, ·), i = 1, ..., n.

Proposition 3.1.1. [1] Assume f satisfies Assumption 1 and P(y|f) satisfies

Assumption 2. Then the MVE of f at x∗ (independent of training sample
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inputs x = (xi)
n
i=1) is given by:

E[f(x∗)|y] = kTx∗K̄
−1E(f(x)|y)

Proof.

E[f(x∗)|y] = E(E[f(x∗)|f(x)]|y)

= E(cov[f(x∗), f(x)]cov(f(x), f(x))−1f(x)|y)

= E(kTx∗K̄
−1f(x)|y)

= kTx∗K̄
−1E(f(x)|y)

(3.3)

where in the second equality we applied the result from Appendix A.

3.2 Justification of the MAP estimate on new

inputs

The statistical interpretation would be perfectly valid if the density of the prior

information of the Gaussian random field f (given by P(f) ∝ exp
−||f ||2H

2λ
) was

well defined. Unfortunately this is not true in general since H can be infinite-

dimensional where the concept of probability density is not well defined and the

finite-dimensional form 2.8 does not apply. Although in some special cases as

in Section 2.1 one may obtain the exact same result by properties of Gaussian

Process instead of relying on Bayes’ rule, this may not work for general choice

of loss function Vi(·).

However, in real applications one can never obtain infinite-size samples.

After establishing the model ŷi = f̂(xi) based on the training set (xi, yi)
n
i=1,

we would like to examine its performance on the new inputs (xi)
n+m
i=n+1 whose

elements are independently distributed according to the same probability dis-

tribution as the training set. In fact, one can prove [1] that , the estimated

function f̂ defined by 2.5 is a legitimate MAP on (xi)
n+m
i=1 .

Theorem 3.2.1. Assume the Assumption 1 and 2 are satisfied. Let (xi)
n+m
i=n+1

be an arbitrary set of points in X where m is a given non-negative integer, and
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define f = [f(x1), ..., f(xn+m)]T . Then the MAP estimate for f given (yi)
n
i=1

is:

arg max
f

P(y, f) = [f̂(x1), ..., f̂(xn+m)]T (3.4)

where f̂ is defined by 2.5, with γ = σ2/λ and H is the RKHS induced by k

from 2.1.

Proof. Define g = [f(x1), ..., f(xn)]T and h = [f(xn=1), ..., f(xn+m)]T . Then we

have f = [gT , hT ]T . Note that P(y|f) = P(y|g) by the independent observation

assumption. Then applying the Lemma 1 from Appendix C and the representer

theorem yields:

ĝ = arg max
g∈H

P(y|g)P(g),

= K̄ĉ
(3.5)

where ĉ is determined by:

ĉ = arg max
c∈Rn

exp {−(

∑n
i=1 Vi(yi −

∑n
j=1 cjk(xj, xi))

2σ2
+
cT K̄c

2λ
)}

= arg min
c∈Rn

n∑
i=1

Vi(yi −
n∑
j=1

cjk(xj, xi)) + γcT K̄c
(3.6)

Hence ĝ = [f̂(x1), ..., f̂(xn)] by 2.5.

Then we used the results and from Appendix A to calculate:

ĥ = max
h

P(h|g = ĝ)

= cov(h, g)cov(g, g)−1ĝ

= cov(h, g)(λK̄)−1(K̄ĉ)

=

 K̄(x1, xn+1) . . . K̄(xn, xn+1)
...

. . .
...

K̄(x1, xn+m) . . . K̄(xn, xn+m)


ĉ1...
ĉn


= [f̂(xn+1), ..., f̂(xn+m)]T

(3.7)
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Hence we have:

arg max
f

P(y, f) = arg max
g,h

P(y, g, h)

= arg max
g,h

P(y|g, h)P(h|g)P(g)

= arg max
g,h

P(y|g)P(g)P(h|g)

= arg max
g

[P(y|g)P(g) max
h

P(h|g)]

= arg max
g

P(y|g)P(g) max
h

P(h|g = ĝ)

= [f̂(x1), ..., f̂(xn+m)]T

(3.8)

where the fifth equality follows from the fact that maxh P(h|g) is constant with

respect to g.

Thus we showed a formal connection between Bayesian estimation of a

Gaussian random field and the more general case prescribed by Assumption

2. Given the training sample (xi, yi)
n
i=1, for any finite set of locations (xi)

n+m
i=1 ,

the MAP estimate of f at any given locations is the RKHS estimate (which

are determined only from the training sample) evaluated at these locations.
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Chapter 4

Simulation Study

In this section the use of the general model 2.5 is illustrated by means of

numerical examples. We basically replicate the result from [1] . The function

to be estimated is given by f(x) = exp (sin 8x) on the unit interval. The choice

of kernels reflects the subjective belief on the smoothness of the underlying

function. A cubic spline kernel from 1.1.11 (shifted by 1 unit to satisfy the

null initial condition) is adopted to reconstruct the function from the sample

generated with additive iid noise: y = f(x)+ε, assuming the unknown function

f has first order continuous derivative.The samples are taken from observations

of f at xi = (i− 1)/66, i = 1, ..., 65. The measurement noise is modeled by iid

centered random variable (either Gaussian or Laplace) with variance of 0.09.

We first estimate the regularization parameter γ by a 3-fold cross valida-

tion. That is, we evenly divide the sample into three subsamples and obtain

the total errors with different values of γ. Then an estimate of γ is chosen at

which the minimum of CV errors is attained.

We simulate four cases, each consisting of 100 function reconstructions:

• Gaussian noise

• Gaussian noise with outliers

• Laplace noise

• Laplace noise with outliers

The presence of outliers is given by tripling the true function evaluations with

probability 0.1. A typical case is presented below [4].
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Figure 4.1: The errors in validation sets vs -log10(γ). Note that the relationship
between them may not be convex. We choose the minimum at -log10(γ)=3.5
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Figure 4.2: Red/blue/green lines represents true function/estimates/estimates
under perturbed condition, respectively.
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Figure 4.3: Example of simulated case under Laplace noise

It appears that under absolute value losses assumption (i.e. V (·) = | · |) the

estimates suffers less from outliers than that under square losses assumption.

From the box-plots [4] of the errors it is true in general, as expected.
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Figure 4.4: The errors are defined by
√∑66

i=1 f̂(xi)− f(xi)
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Chapter 5

Conclusions

In machine learning, statistics and numerical analysis, both the notion of a

kernel and that of a Gaussian process play central roles in theoretical analysis.

Kernel methods are founded on notions like regularization and optimization,

while Gaussian processes are generative models operating in terms of marginal

and conditional distributions. The present thesis provided a review of the

intersection of these two areas, by proving the fact that the estimate computed

by the regularization framework is indeed the MAP estimate of the undelying

function f . We also showed that the MAP estimate and the MVE of f belong

to the finite dimensional subspace of the RKHS induced by the pd kernel k.

In particular, by assuming the quadratic loss function, the posterior variance

of the RKHS estimate can be interpreted as the worst-case error in frequentist

viewpoint.

30



References

[1] A. Y. Aravkin, B. M. Bell, J. V. Burke, and G. Pillonetto, “The connec-
tion between bayesian estimation of a gaussian random field and rkhs”,
IEEE transactions on neural networks and learning systems, vol. 26,
no. 7, pp. 1518–1524, 2015. 21, 22, 25

[2] C. M. Bishop, Pattern recognition and machine learning. springer, 2006. 6

[3] J. B. Conway, A course in functional analysis. Springer Science & Busi-
ness Media, 2013, vol. 96. 10

[4] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur,
“Gaussian processes and kernel methods: A review on connections and
equivalences”, arXiv preprint arXiv:1807.02582, 2018. 18

[5] D. J. McDonald. (). Topics in mathematical statistics: Machine learning,
[Online]. Available: http://mypage.iu.edu/~dajmcdon//teaching/
2014spring/s682/lectures/lec19a.pdf. (accessed: 05.09.2014). 7

[6] C. E. Rasmussen, “Gaussian processes in machine learning”, in Summer
School on Machine Learning, Springer, 2003, pp. 63–71. 16

[7] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer
theorem”, in International conference on computational learning theory,
Springer, 2001, pp. 416–426. 11

[8] I. Steinwart and A. Christmann, Support vector machines. Springer Sci-
ence & Business Media, 2008. 4

[9] G. Wahba, Spline models for observational data. Siam, 1990, vol. 59. 4, 6

[10] H. Yaozhong, Analysis on Gaussian spaces. World Scientific, 2016. 7

31

http://mypage.iu.edu/~dajmcdon//teaching/2014spring/s682/lectures/lec19a.pdf
http://mypage.iu.edu/~dajmcdon//teaching/2014spring/s682/lectures/lec19a.pdf


Appendix A

Gaussian random variable

Suppose X = [X1, X2, . . . , Xp]
T ∼ MVN(µ,Σ), a multivariate Gaussian ran-

dom variable with mean µ and variance Σ and its density function is given

by:

φ(x1, . . . , xp) =
1

(2π)p/2|Σ|1/2
exp{−

1

2
(x− µ)TΣ−1(x− µ)} .

We partition the vector X as follows:

XT = [X1, X2, . . . , Xp] =

[[X1, X2, . . . , Xk], [Xk+1, Xk+2 . . . , Xp]] ≡ [XT
1 ,X

T
2 ]

Partitioning the mean vector and variance-covariance matrix in the same way,

µ =

(
µ1

µ2

)
; Σ =

(
Σ11 Σ12

ΣT
12 Σ22

)
,

we have

X1 ∼MVN(µ1,Σ11) ; X2 ∼MVN(µ2,Σ22) .

Note that X1 and X2 are statistically independent vectors if and only if

Σ12 = 0k×p, the k × p zero matrix.

Assume they are not statistically independent, then the conditional density

of X1 given X2 = x2; it is multivariate normal with mean vector of order k×1:

µ1 + Σ12Σ
−1
22 (x2 − µ2) ,

and variance-covariance matrix of order k × k:

Σ11 − Σ12Σ
−1
22 ΣT

12 .
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Proof. We introduce the auxiliary variable z = x1 + Ax2, where A =

−Σ12Σ
−1
22 . Note that:

cov(z, x2) = cov(x1, x2) + cov(Ax2, x2)

= Σ12 + Avar(x2)

= Σ12 − Σ12Σ
−1
22 Σ22

= 0

Hence z and x2 are uncorrelated and, since they are jointly Gaussian, they

are independent.Then we compute:

E(x1|x2) = E(z− Ax2|x2)

= E(z|x2)− E(Ax2|x2)

= E(z)− Ax2

= µ1 + Aµ2 − Ax2

= µ1 + A(µ2 − x2)

= µ1 + Σ12Σ
−1
22 (x2 − µ2)

For the variance part, first note that:

var(x1|x2) = var(z− Ax2|x2)

= var(z|x2) + var(Ax2|x2)− Acov(z,−x2)− cov(z,−x2)A
T

= var(z|x2)

= var(z)

Hence we have:

var(x1|x2) = var(z) = var(x1 + Ax2)

= var(x1) + Avar(x2)A
T + Acov(x1, x2) + cov(x2, x1)A

T

= Σ11 + Σ12Σ
−1
22 Σ22Σ

−1
22 Σ21 − 2Σ12Σ

−1
22 Σ21

= Σ11 + Σ12Σ
−1
22 Σ21 − 2Σ12Σ

−1
22 Σ21

= Σ11 − Σ12Σ
−1
22 Σ21
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It is worth to mention that the conditional variance is independent of x2;

it depends only on the fixed parameters from Σ.
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Appendix B

Minimum Variance Estimate

Let X and Y be two jointly distributed random vectors. Then the minimum

variance estimator X̂ of X in terms of Y is given by:

X̂ = E(X|Y ).

When Y is interpreted as the prior and X is the observations, we say that the

posterior mean minimizes the (error) variance.

Proof. We define x̂ = E[X|Y = y] the conditional mean of X given that

Y = y. Then we show that x̂ is a minimum variance estimate:

E(||X − z||2|Y = y) = E(XTX|Y = y)− 2zTE(X|Y = y) + zTz

= E(XTX|Y = y) + ||z − E(X|Y = y)||2 − ||E(X|Y = y)||2

≥ E(XTX|Y = y)− ||E(X|Y = y)||2
(B.1)

The minimum is attained when z = x̂. Now assume Z (as a function of Y )

is an estimator of X, then:

EX,Y (||X − Z(Y )||2) = EY (EX|Y (||X − Z(Y )||2|Y = y))

= EY (EX|Y (||X − Z(y)||2|Y = y))

≥ EY (EX|Y (||X − X̂(y)||2|Y = y))

= EY (EX|Y (||X − X̂(Y )||2|Y = y))

= EX,Y (||X − X̂(Y )||2)

(B.2)

And the result follows.
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Appendix C

Lemmas

Suppose that g and h are jointly Gaussian random vectors. Then the max-

imum of the log-likelihood of h|g does not depend on g. To see that, we

calculate:

−2 log p(h|g) = log det[2πcov(h, h|g)]+[h−E(h|g)]T cov(h, h|g)−1[h−E(h|g)]

And that quantity is clearly minimized at h = E(h|g). From the basic

property of conditional Gaussian distribution we see that

max
h

log p(h|g) = − log det[2πcov(h, h|g)]/2

= − log det[2π(cov(h, h)− cov(h, g)cov(g, g)−1cov(g, h))]/2

(C.1)

Since the covariances in the last equality are from the fixed parameter of the

joint Gaussian distribution of (g, h), the result follows.
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Appendix D

Code

Estimating the regularization parameter by using 3-fold cross-validation:

1 rm(list = ls()) # clear the memory

2 install.packages("kernlab") # for computing the kernal matrix

3 install.packages("rmutil") # for generating Laplace noise

4 install.packages("ggplot2") # for ploting

5 library(ggplot2)

6 library(kernlab)

7 library(rmutil)

8 set.seed (2)

9 m<-66

10 xx<-(0:65)/66 # location "x" is evenly spaced on unit interval

11 zz<-exp(sin(8*xx)) # the example funtion

12 yy<-zz+rnorm(m, 0, 0.3) # Gaussian noise case

13
14 CVL2 <-function(gamma ,xx,yy ,xtest ,ytest) #Cross -validation function

15 {

16 kernel <-function(x,y){((x +1)*(y +1)*min(x +1, y +1)/2-(min(x +1, y +1))^3/6)

}

17 Kbar <-kernelMatrix(kernel ,xx)

18 fc<-function(c,ga,x,y)

19 {sum((y-c%*%kernelMatrix(kernel ,x,x))^2)+ga*c%*%Kbar%*%c} # applying the

square loss function

20 gr<-function(c,ga,x,y){Kbar%*%c-y+ga*c}

21 # the gradient , to improve the perforamnce of optimization

22
23 result <-optim(par=rep(0,22), fc,gr ,ga=gamma , x=xx, y=yy ,method = "BFGS")

24 c.hat <-as.vector(result$par) # estimates of the coefficients

25 q<-sum((ytest -c.hat%*%kernelMatrix(kernel ,xtest ,xtest))^2)

26 +gamma*c.hat%*%kernelMatrix(kernel ,xtest ,xtest)%*%c.hat # calculating the

errors

27 return(q)

28 }

29
30 index1 <-3*(1: round(m/3)) # creating 3-fold cross -validation subsamples

31 x1<-xx[index1]

32 y1<-yy[index1]

33
34 index2 <-3*(1: round(m/3))-1

35 x2<-xx[index2]

36 y2<-yy[index2]

37
38 index3 <-3*(1: round(m/3))-2

39 x3<-xx[index3]

40 y3<-yy[index3]

41
42 CV3foldL2 <-function(gamma) #validating on test sets

43 {
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44 CVL2(gamma ,x1,y1 ,x2,y2)+CVL2(gamma ,x1,y1 ,x3,y3)

45 +CVL2(gamma ,x2,y2 ,x1,y1)+CVL2(gamma ,x2,y2 ,x3,y3)

46 +CVL2(gamma ,x3,y3 ,x1,y1)+CVL2(gamma ,x3,y3 ,x3,y3)

47 }

48 gamma <-(16:4)/4

49 plot(gamma ,mapply(CV3foldL2 ,10^(- gamma)),

50 main = "CV error vs -log(gamma)",

51 xlab = "-log(gamma) (base 10)",

52 ylab = "CV error")

53 # Hence we choose the value of gamma =10^ -3.5

An example of our simulated case:

1 kernel <-function(x,y){((x +1)*(y +1)*min(x +1, y +1)/2-(min(x +1, y +1))^3/6)

}

2 Kbar <-kernelMatrix(kernel ,xx)

3 fc<-function(c,ga,x,y)

4 {sum((y-c%*%kernelMatrix(kernel ,x,x))^2)+ga*c%*%Kbar%*%c}

5 gamma <-10^ -3.5

6 gr<-function(c,ga,x,y)

7 {Kbar%*%c-y+ga*c}

8 result <-optim(par=rep(0,m), fn=fc,gr,ga=gamma , x=xx , y=yy,method = "BFGS")

9 y2<-as.vector(result$par %*%Kbar)

10 df <- data.frame(xx,zz ,y2)

11 g <- ggplot(df , aes(xx))+geom_line(aes(y=zz), colour="red")+geom_line(aes(y=

y2), colour="green")

12 g

Montle Carlo simulation of the L-1 noise model with perturbed data:

1 rm(list = ls()) # clear the memory

2
3 library(ggplot2)

4 library(kernlab)

5 library(rmutil)

6 m<-66

7 xx<-(0:65)/66 # location "x" is evenly spaced on unit interval

8 zz0 <-exp(sin(8*xx)) # the example funtion

9 kernel <-function(x,y){((x +1)*(y +1)*min(x +1, y +1)/2-(min(x +1, y +1))^3/6)

}

10 Kbar <-kernelMatrix(kernel ,xx)

11 fc<-function(c,ga,x,y)

12 {sum(abs(y-kernelMatrix(kernel ,x,x)%*%c))+ga*c%*%Kbar%*%c}

13 gr<-function(c,ga,x,y)

14 {-kernelMatrix(kernel ,x,x)%*%sign(y-kernelMatrix(kernel ,x,x)%*%c)+2*ga*Kbar%*

%c}

15 gamma <-10^ -2.8

16
17
18 w4<-rep (0 ,100)

19 for (j in 1:100)

20 {

21 zz<-rep(0,m) # perturbing the data

22 for (i in 1:m)

23 {

24 zz[i]<- zz0[i]+3*zz0[i]*rbinom(1, 1, 0.1)*((2*rbinom(1, 1, 0.5)) -1)

25 }

26 yy<-zz+rlaplace(m, 0, s=0.3/sqrt (2)) # Laplace noise case

27
28 result <-optim(par=rep(0,m), fn=fc,gr,ga=gamma , x=xx , y=yy,method = "BFGS")

29 y2<-as.vector(result$par %*%Kbar)

30 w4[j]<-sqrt(sum((zz0 -y2)^2))}
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31
32 boxplot(w4)
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