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Abstract

Congenital heart defects (CHDs) are structural abnormalities of the heart present at

birth, arising when the heart or nearby blood vessels don’t develop properly during

fetal growth. These conditions are a major public health concern, particularly for

infants and young children, due to their complexity and the severity of their effects.

Critical congenital heart defects (cCHDs) are a severe subset that require immediate

medical intervention to prevent life-threatening complications. While genetic factors,

such as chromosomal abnormalities, play a role in cCHDs, recent research has high-

lighted the potential impact of environmental factors, including air pollution, on their

development. This has led to extensive studies investigating the relationship between

air pollution and cCHDs.

In this study, we use geographically weighted multinomial logistic regression (GWMLR)

to explore the relationship between exposure to four key air pollutants—particulate

matter with a diameter of 2.5 micrometers or less (PM2.5), ozone (O3), nitrogen

dioxide (NO2), and air quality smoke (AQSMK)—and various subtypes of cCHDs.

By analyzing data from 1,484 infants diagnosed with cCHDs, we examine how air

pollutant exposure and cCHD incidence vary across different geographic regions.

Our findings reveal significant patterns. PM2.5 exposure was associated with

cCHDs in 0.32% of the locations studied, with these significant associations primarily

clustered in Saskatchewan and Manitoba. When we compared the cCHD subtype

distribution in these significant locations with the original dataset, we found notable

discrepancies, highlighting the importance of accounting for spatial differences in air

pollution exposure. These associations were found in small, localized areas, under-
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scoring the need for targeted public health interventions.

For ozone (O3) exposure, about 15% of locations showed significant impacts on

cCHD subtypes, with most cases occurring in Alberta and a smaller number in

Saskatchewan. While there were similarities in the distribution of cCHD subtypes

across these regions, significant differences emerged when spatial adjustments were

applied, further emphasizing the need to consider geographic variability in environ-

mental health studies.

Interestingly, no significant associations were found for NO2 and AQSMK expo-

sure in any of the locations, suggesting that these pollutants may not have a direct

impact on cCHD incidence in the studied population. However, when adjusting for

these pollutants, we discovered significant associations between sex and cCHDs across

all four pollutants, with AQSMK and NO2 showing a higher number of significant

locations. Notably, the odds ratios in these cases were consistently below one, indi-

cating a higher risk of cCHDs among male infants.

The differences between the original dataset and the GWMLR results underscore

the importance of using advanced modeling techniques to uncover complex patterns

that may be missed by conventional methods. However, interpreting these findings

can be challenging, especially given that most odds ratios were below one. This

raises questions about the underlying mechanisms, which could include the choice of

reference group, genetic predispositions, or undiagnosed chromosomal abnormalities

within certain cCHD subtypes.

Additionally, the influence of undiagnosed confounding factors and interactions

between air pollutants and other environmental or genetic variables may complicate

our understanding of the relationship between air pollution and cCHDs.

This research provides valuable insights into the geographic variability of air pol-

lution exposure and its impact on cCHD incidence. The findings can guide targeted

public health interventions and inspire further research into the environmental fac-

tors contributing to cCHDs. By gaining a better understanding of how environmental
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factors influence CHD development, we can create more effective strategies to reduce

the burden of cCHDs in affected communities.

In conclusion, our study highlights the need for comprehensive strategies to ad-

dress air pollution and its role in CHD incidence. Targeted interventions that consider

geographic patterns, along with continued research into the mechanisms behind these

associations, are crucial for improving health outcomes for individuals with cCHDs

and reducing the global burden of congenital heart defects. Through collaborative

and interdisciplinary research, we can advance our understanding of cCHD causes

and develop effective prevention and management strategies to protect the health

and well-being of vulnerable populations.
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Chapter 1

Introduction

Congenital heart defects (CHD) are structural abnormalities or malformations in the

heart that develop during fetal growth and are present at birth. These anomalies

can significantly impact the heart’s structure, function, and blood flow, resulting

in a spectrum of symptoms ranging from mild to life-threatening. Notably, CHDs

rank as the most prevalent type of congenital anomaly, affecting approximately 8-10

out of every 1000 live births.[1] Among these cases, up to one-third are classified

as critical congenital heart defects (cCHDs), denoting severe cardiac conditions that

necessitate prompt medical or surgical intervention shortly after birth, or may even

lead to mortality within the first month of life.[1, 2]

While genetic factors have been extensively scrutinized in the context of CHDs,

our comprehension of non-genetic risk factors remains somewhat limited. Although

chromosomal abnormalities are recognized contributors to CHDs, the underlying eti-

ology of approximately 70% of all birth defects remains unidentified. It’s widely

accepted that a combination of genetic and environmental factors plays a pivotal role

in the onset of birth defects, with genetic influences accounting for roughly 20% and

environmental factors contributing to around 10% of all cases. [3]

Reproductive-related factors and parental characteristics, including advanced parental

age, lifestyle habits, maternal drug exposures, and maternal health conditions such

as diabetes mellitus, maternal phenylketonuria syndrome, and obesity, have all been
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associated with an elevated risk of CHDs in newborns.[4] Moreover, exposure to envi-

ronmental toxins and pollutants is increasingly recognized as a significant contributor

to the development of CHDs. Furthermore, there is growing recognition of the po-

tential role of environmental toxins and pollutants in the development of CHDs. [5]

Exposure to air pollutants, in particular, has garnered attention due to its widespread

presence and potential impact on fetal development. Studies have indicated associa-

tions between exposure to environmental pollutants and the risk of CHDs, highlight-

ing the importance of understanding and mitigating these risks.

In our study, we focused on four key air pollutants: PM2.5 (particulate matter

with a diameter of 2.5 micrometers or smaller), NO2 (nitrogen dioxide), O3 (ozone),

and AQSMK (ambient Air Quality Smoke Model). These pollutants are pervasive

in urban and industrialized areas, and their detrimental effects on human health

are well-documented. However, their potential impact on fetal development and the

etiology of congenital heart defects (CHDs) remains an active area of investigation.

PM2.5 (Particulate Matter 2.5): PM2.5 refers to particles suspended in the air

that are 2.5 micrometers or smaller in diameter. These fine particles can penetrate

deep into the lungs and even enter the bloodstream, posing significant health risks.

PM2.5 is generated from various sources, including vehicle emissions, industrial ac-

tivities, and wildfires. Exposure to PM2.5 can stimulate oxidative stress, leading to

inflammation and cellular damage in the respiratory system and potentially affecting

cardiovascular health. [6]

Ozone (O3), a reactive gas composed of three oxygen atoms, is a major compo-

nent of smog. While ozone in the stratosphere protects us from harmful ultraviolet

radiation, ground-level ozone can be harmful to human health. It is primarily formed

through chemical reactions between nitrogen oxides (NOx) and volatile organic com-

pounds (VOCs) in the presence of sunlight, with sources including vehicle emissions,

industrial processes, and chemical solvents. Ozone is a potent oxidant, capable of

reacting with and damaging lung tissues and exacerbating respiratory conditions. [7]
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NO2 is a gas that forms from the combustion of fossil fuels, particularly from

vehicles, power plants, and industrial processes. It is a primary component of vehicle

exhaust and emissions from combustion sources. Exposure to NO2 can irritate the

airways, aggravate respiratory conditions, and contribute to the formation of other

air pollutants such as ozone and particulate matter. [8]

AQSMK is a modelling tool developed by the Environmental Health Services of the

BC Centre for Disease Control, based on The Canadian Optimized Statistical Smoke

Model (CanOSSEM). It is used to estimate the concentrations of particulate matter

in the air resulting from smoke, particularly from sources like wildfires. AQSMK

incorporates various factors specific to smoke generation and dispersion, including

weather conditions, topography, and fire characteristics. By considering these factors,

AQSMK provides valuable insights into the distribution and impact of smoke-related

particulate matter on air quality and public health. [9]

1.1 Literature Review

While research has provided insights into the correlation between air pollutants and

certain types of CHDs, such as septal defects, evidence regarding more critical CHD

types remains less conclusive and subject to debate. Therefore, further investigation

into the impact of environmental factors, including air pollutants, on the development

of CHDs is imperative for advancing preventive strategies and safeguarding maternal

and fetal health.

One notable study by Hall focused specifically on critical forms of CHDs in relation

to exposure to PM2.5 and ozone variables. While no overall significant relationship

was found during the first trimester of pregnancy, associations were observed when

analyzing each week individually from weeks 3 to 8 of pregnancy. [10]

In another study by Buteau et al., first-trimester exposure to PM2.5 and NO2

was investigated in relation to CHDs, revealing a positive association between PM2.5

exposure and tetralogy of Fallot, as well as associations between both PM2.5 and NO2
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with coarctation of the aorta. However, confidence intervals encompassed the null,

likely due to the limited proportion of patients with critical CHDs in the study.[11]

Stingone et al. found a positive association between areas with the highest levels of

PM2.5 exposure and hypoplastic left heart syndrome, while Tanner et al. indicated

higher levels of exposure were linked to an increased risk of various critical CHDs

including non-isolated truncus arteriosus, total anomalous pulmonary venous return,

coarctation of the aorta, and interrupted aortic arch. [12, 13] Despite these findings,

separate systematic reviews and meta-analyses conducted by Hall and Chen did not

find significant evidence supporting an association between PM2.5 and congenital

heart defects. [5, 14]

Regarding ozone exposure, one study found an increased risk of CHDs overall,

including tetralogy of Fallot, especially during the second and third trimesters. [15]

Another study reported associations between ozone exposure and conotruncal and

both pulmonary and aortic valve and artery disorders related to ozone exposure in

the second month of pregnancy. [16] However, a negative correlation between exposure

to ozone and CHDs was reported in a study by Vinikoor-Imler. [17] Furthermore, a

systematic review and meta-analysis led by Vrijheid, covering 10 studies, found no

links between ozone exposure and any types of CHDs.[18]

An umbrella review by Michel evaluated 35 studies on maternal exposure to air

pollutants during pregnancy and various CHD subtypes, showing a moderate level

of confidence in the association between NO2 exposure and coarctation of the aorta,

while other associations varied among the studies reviewed. [19] Other independent

systematic reviews also supported the relationship between exposure to nitrogen diox-

ide (NO2) and the development of coarctation of the aorta, as well as associations

with pulmonary valve stenosis and tetralogy of Fallot.[12, 15, 18, 20]

Black smoke was weakly associated with cardiac chamber malformations in a case-

control study, albeit only when utilized as a continuous variable, with no clear evi-

dence of a dose-response relationship. [21]

4



In our study, we aimed to explore the potential correlation between prenatal ex-

posure to air pollution and the risk of critical congenital heart defects (cCHDs),

while considering spatial variations. To accomplish this, we employed geographi-

cally weighted multinomial logistic regression (GWMLR), a sophisticated statistical

method enabling the estimation of distinct models for diverse locations within the

study area. This approach allows us to capture and analyze the nuanced relationships

between a dependent variable with three or more categories, such as different types of

CHDs, and a set of independent variables. Specifically, we calculated the odds ratios

(ORs) with confidence intervals (CIs) and p-values to assess the association between

exposure to different pollutants and the risk of CHDs across different geographical

regions within our study area. By employing GWMLR, we were able to account for

spatial heterogeneity, thereby offering a more comprehensive understanding of how air

pollution may influence the incidence of cCHDs in varying environmental contexts.
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Chapter 2

Methodology

2.1 Data Collection and Preparation

We gathered data from a registry of 1,484 patients diagnosed with critical congenital

heart disease (cCHD) in the Stollery Children’s Hospital, who underwent surgery

with cardiopulmonary bypass at 6 weeks or less, shunts up to 6 months, and repair

of isomerism defects up to 1 year, between September 1996 and November 2021.

This registry was an integral component of the Western Canadian Complex Pe-

diatric Therapies Follow-up Program (CPTFP), initiated in September 1996. The

Stollery Children’s Hospital emerged as a central hub for the referral and care of crit-

ically ill infants with cCHD from across western Canada. The CPTFP employed a

developmental follow-up process in which parents of infants undergoing interventions

for cCHD were approached for registration and consent for developmental assess-

ments, with a participation rate of over 99.5

The evaluation process extended to the children’s home sites, with all develop-

mental outcomes recorded and centralized at the Glenrose Rehabilitation Hospital

in Edmonton. Consequently, the CPTFP has curated a comprehensive database en-

compassing acute care details and long-term outcomes for all children who underwent

surgery or interventions for cCHD at the Stollery since its inception in 1996. [22]

To accurately classify cases of critical congenital heart defects (cCHD), it was nec-

essary to separate those caused by chromosomal and genetic abnormalities from those

6



with other causes. To achieve this, we utilized the classification system developed by

Botto et al., which excluded data from infants with chromosomal and genetic con-

ditions, as well as rare heart defects, vascular anomalies, isolated valve dysplasias

and arrhythmias. Botto’s classification system provides a comprehensive risk assess-

ment of cCHD based on cardiac phenotype, cardiac complexity, and baby phenotype,

and was applied to data from the US National Birth Defect Prevention Study of

4703 infants born between 1997-2002. We employed the level 3 of Botto classifica-

tion system, which consists of eight categories, to classify cases of congenital heart

defects (CHDs). These categories include conotruncal, anomalous pulmonary venous

return (APVR), atrioventricular septal defects (AVSD), left ventricular outflow tract

obstruction (LVOTO), right ventricular outflow tract obstruction (RVOTO), septal,

heterotaxy, and complex. However, for our specific analysis, we have decided to ex-

clude AVSD and septal defects, as they are generally considered non-critical CHDs.

[3] Since the Botto classification excluded cases with known chromosomal abnormali-

ties, we added an additional category of reference (group 7) to our database to capture

these cases separately and accurately track cases of cCHD caused by chromosomal

and other known abnormalities while utilizing the categories of the Botto classification

for the rest of the cases. This decision was made to ensure that our analysis focused

specifically on the relative impact of air pollutants within the context of cCHDs. By

selecting this subgroup as our reference, we ensured that our comparison groups were

more homogenous in terms of underlying genetic predispositions, thereby reducing

potential confounding factors and enhancing the interpretability of our findings.

To determine the population distribution of our cohort, we utilized postal codes.

As the fetal heart begins to form around 3 weeks after fertilization and is fully formed

and begins beating by the end of the eighth week of pregnancy [23], we linked the

postal codes for the mother’s residence during the first and second months of preg-

nancy separately to exposure data on ambient and industrial air quality. We obtained

measurements of ozone (O3: 2002-2015)[24–26], ground-level fine particulate mat-
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ter (PM2.5: 2000-2012)[27], nitrogen dioxide (NO2: 1984-2016)[28–30] and AQSMK

(2010-2019)[31] from land use regression models developed by the Canadian Envi-

ronmental Health Research Consortium (CANUE)[9]. AQSMK is a variable gener-

ated by the Canadian Optimized Statistical Smoke Exposure Model (CanOSSEM)

to estimate national daily fine particulate matter (PM2.5) exposure specifically from

wildfires using a machine learning approach.[31]

These pollutants were specifically selected due to their availability of monthly ex-

posure levels, unlike other variables which were only available on an annual basis.

The decision to focus on pollutants with monthly data was crucial, particularly con-

sidering the critical period of fetal heart development, which occurs between weeks

3 and 8 of pregnancy. During this window, exposure data corresponding to the first

two months of pregnancy was deemed essential for capturing potential associations

between prenatal pollutant exposure and the development of cCHDs.[24, 32]

All variables were checked for missing data and outliers, and appropriate steps were

taken to address these issues before building the model. Missing data were addressed

through imputation techniques, while outliers were examined to determine their im-

pact on the analysis and adjusted or removed as necessary to ensure the robustness

of our findings. Initially, we considered including the distance from the source of pol-

lution in the model. However, given that the exposure data were relatively close to

postal codes, with spatial resolutions ranging from individual postal code locations to

approximately 1 square kilometer (less than 5 kilometers for AQSMK), this informa-

tion was indirectly captured through the geographical identifiers. Therefore, distance

from the source of pollution was not included as a separate variable in the analysis.

Additionally, our original dataset contained demographic information such as sex,

rural-urban status, and gestational week. Nonetheless, we made the decision to in-

clude only sex as a confounding factor in the model. This choice was based on several

considerations. First, postal codes inherently correspond to specific geographical lo-

cations, which indirectly capture the rural-urban status of the study population. This
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makes it unnecessary to include a separate variable for rural-urban differences. Addi-

tionally, we chose not to include gestational week as a variable because the formation

of the fetal heart is generally completed by the eighth week of pregnancy. Given that

our focus was on the critical early stages of heart development, gestational week was

deemed less relevant for our analysis and was therefore omitted.

2.2 Multinomial Logistic Regression

In order to investigate the relationship between air pollution and various subtypes of

cCHDs, Initially we employed multinomial logistic regression, a statistical technique

adept at analyzing the connection between multiple independent variables and a de-

pendent variable with three or more unordered categories. Our dependent variable

was the classification of cCHD subtypes according to the Botto classification sys-

tem, encompassing six categories, with an additional category designated for known

chromosomal abnormalities serving as the reference group.

To account for potential confounding effects, we included sex as an independent

variable in the model. We denoted the dependent variable as Y , representing cCHD

subtypes based on the Botto classification system, and the independent variables as

X1: air pollution levels in the first and second months of pregnancy (combined) and

X2: sex (male vs. female).

The multinomial logistic regression model can be written as:

log[p(Y = j|X)] = β0j + β1jX1 + β2jX2 (2.1)

for j = 1, 2, ..., 7, where p(Y = j|X) is the probability of cCHD subtype j given

the values of the independent variables X1, X2 and β0j, β1j, β2j are the coefficients

associated with each independent variable for cCHD subtype j.

This model operates under the assumption that the log-odds of each cCHD subtype

are linearly related to the independent variables, and that the error terms follow a
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multinomial distribution. Notably, the linearity assumption implies a consistent effect

of predictors on the log-odds across all levels of the dependent variable.

To estimate the coefficients, we employed maximum likelihood estimation, a method

that seeks the parameter values maximizing the likelihood of observing the data given

the model. In essence, maximum likelihood estimation endeavors to find the most

plausible parameter values that align with the observed data within the framework

of the specified model.

By using multinomial logistic regression, we aimed to explore the complex links

between air pollution, sex, and different types of cCHDs. Our goal was to identify

potential risk factors and provide insights that could help guide targeted interventions

and preventive measures.

2.3 Geographically Weighted Multinomial Logis-

tic Regression

While multinomial logistic regression has been instrumental in uncovering the rela-

tionship between air pollution and cCHD subtypes, its assumption of spatial homo-

geneity might not fully capture the intricate spatial variations present in the data.

To overcome this limitation and gain deeper insights into the spatial dynamics of

this relationship, we employed geographically weighted multinomial logistic regres-

sion (GWMLR).

GWMLR is a sophisticated spatial regression technique that offers a nuanced ap-

proach to modeling spatially varying relationships. Unlike traditional regression mod-

els, GWMLR acknowledges that the relationship between predictors and outcomes

may differ across geographic locations. By estimating distinct regression coefficients

for different locations within the study area, GWMLR allows us to capture and ana-

lyze spatial heterogeneity effectively.

In GWMLR, we systematically defined hypothetical bins around each data point

(X0), effectively creating a spatially structured dataset. Within these bins, we com-
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puted weighted averages of the cCHD subtype values (Y ), taking into account the

spatial distribution of observations. This approach ensures that the estimation of

regression coefficients is informed not only by the overall trend in the data but also

by the local characteristics of each spatial unit.

To address spatial autocorrelation and appropriately assign weights to observa-

tions, we employed a Gaussian kernel function. This function assigns weights to each

observation based on its spatial distance from the kernel’s center, which serves as

the focal point for the spatial weighting scheme. By giving greater weight to obser-

vations closer to the kernel center, GWMLR acknowledges the spatial dependency

present in the data, where neighboring observations are more likely to exhibit similar

characteristics than those farther apart.

The use of a Gaussian kernel function in GWMLR facilitates the estimation of

local coefficients that vary across space. This allows us to uncover spatially varying

relationships between air pollution and cCHD subtypes, providing insights into how

these relationships manifest across different geographical contexts within the study

area. By embracing the complexity of spatial heterogeneity, GWMLR offers a pow-

erful framework for exploring and understanding spatial patterns in health outcomes

and environmental exposures.

2.3.1 Gaussian Kernel Function and Distance Metric

The Gaussian kernel function is expressed as:

wi = e−(
d
h)

2

(2.2)

Where:

• wi represents the weight assigned to the i-th observation,

• di is the distance between the observation and the kernel center, and

• h was the bandwidth controlling the rate of weight decay.
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To compute the distance di, we utilize the Euclidean distance metric, which mea-

sures the dissimilarity or separation between an observation and the kernel center:

di =

⌜⃓⃓⎷ n∑︂
j=1

(xij − cj)2 (2.3)

Here,

• xi denotes the j-th feature (variable) for i-th’s observation,

• cj represents the j-th feature of the kernel center.

• n is the total number of features, and

• The kernel center serves as a reference point used in the computation of dis-

tances, with each feature of the kernel center influencing the distance calcula-

tion.

Additionally, to address biases near the boundary of the study area, an edge cor-

rection factor was applied to the Gaussian kernel function, adjusting the weights

assigned to observations based on their proximity to the edge of the spatial domain.

The goal was to account for biases introduced by observations near the boundary and

ensure a more accurate estimation of spatial relationships.

The edge correction factor qh(y|W ) is defined as:

qh(y|W ) = h−2

∫︂
W

K

(︃
u− y

h

)︃
du, y ∈ W (2.4)

Where,

• qh(y|W ) represents the edge correction factor for an observation at location y

within the spatial domain Wi. The factor qh(y|W ) adjusts the weights assigned

to observations, taking into account their proximity to the edge of the spatial

domain.

• h is the bandwidth or smoothing parameter and
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•
∫︁
W

is the integral taken over the spatial domain W , representing the region of

interest.

• K
(︁
u−y
h

)︁
is the Gaussian kernel function, where u represents the spatial coordi-

nates, and y is a scaled distance. The scaling by h, adjusts the distance measure

so that it aligns with the bandwidth of the kernel, influencing the width of the

kernel and, consequently, the weight assigned to the observation.

By incorporating the Gaussian kernel function and edge correction factor, GWMLR

enables the exploration of spatially varying relationships between air pollution and

cCHD subtypes, providing insights into how these relationships manifest across dif-

ferent geographical contexts within the study area.

2.3.2 Bandwidth Selection

In geographically weighted multinomial logistic regression (GWMLR), choosing the

right bandwidth is essential because it defines the spatial range over which obser-

vations are grouped to estimate local coefficients. This step is key to accurately

capturing how relationships between predictors and outcomes vary across different

areas.

To determine the appropriate bandwidth, we used the rule of thumb selector, a

commonly applied method where the bandwidth is set to 1/3 of the kernel width.

This approach helps balance capturing localized spatial variations with maintaining

computational efficiency.

The 1/3 rule is favored for its simplicity and practicality, especially when detailed

prior knowledge about the dataset or specific spatial relationships is limited. It pro-

vides a straightforward starting point for bandwidth selection, allowing for quick

decisions without extensive tuning.

For our study, we used the rule of thumb to set the bandwidth to approximately 1/3

of the kernel width (6σ), which covers 99.7% of the data under a normal distribution
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curve. We calculated a fixed bandwidth of about 1208 km at the mean latitude

(52.35686 degrees), based on a longitude standard deviation of 7.88357 degrees.

By selecting the bandwidth based on this rule, we ensured that the GWMLR model

accurately reflects the spatial variability in the relationship between air pollution

and cCHD subtypes. This careful bandwidth selection enhances the robustness of

our spatial analysis, helping us uncover localized patterns and trends that might be

missed by traditional regression models.

2.3.3 Model Fitting

During the model fitting stage, addressing collinearity among independent variables

was crucial for ensuring the robustness of our analysis. To manage collinearity, we

used a stratified approach by running separate models for each pollutant, stratified

by sex. This allowed us to evaluate the unique impact of each pollutant on different

cCHD subtypes and to explore potential interactions between pollutants and sex.

Noting that pollutant levels were similar in the first and second months of preg-

nancy, and seeing consistent results across individual models, we combined the data

for a more powerful analysis. This integration enhanced the statistical strength of

our study and reinforced the reliability of our findings on the relationship between

air pollution and cCHD subtypes.

The geographically weighted multinomial logistic regression model was then for-

mulated, expressing the relationship between air pollution and cCHD subtypes based

on the Botto classification system. This model considers six categories of cCHD sub-

types, with an additional category for known chromosomal abnormalities serving as

the reference point.

Let Y be the dependent variable representing cCHD subtypes, and X1, X2, ..., Xk

be the independent variables, including air pollution data and sex, the geographically
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weighted multinomial logistic regression model can be expressed as:

log[
P (Y = i)

P (Y = K)
] = βi0(s) + βi1(s)X1 + βi2(s)X2 + ...+ βik(s)Xk (2.5)

where:

• i represents the category of cCHD subtypes,

• K is the reference category for known chromosomal abnormalities,

• s denotes the location of the observation, and

• βi0(s), βi1(s), βi2(s), ..., βik(s) are the location-specific coefficients for the inter-

cept and independent variables, respectively.

In this formulation, the logit of the probability of being in category i versus the

reference category K is modeled as a linear combination of the independent variables,

with coefficients varying spatially. The kernel function assigns weights to each obser-

vation based on its distance from the center of the kernel, determining the influence

of spatial location on these coefficients.

We computed local standard errors for each coefficient, allowing us to calculate

p-values. These p-values help determine the statistical significance of the coefficients

at different locations. Additionally, we calculated odds ratios for each coefficient to

interpret the impact of the independent variables on the likelihood of different cCHD

subtypes. An odds ratio greater than 1 indicates an increased probability of a specific

cCHD subtype relative to the reference category as the predictor variable increases,

while an odds ratio less than 1 indicates a decreased probability.

A positive coefficient for an independent variable Xk implies that as Xk increases,

the probability of observing a particular cCHD subtype i, relative to the reference

category K, also increases at that location, assuming other variables remain constant.

Conversely, a negative coefficient suggests a higher likelihood of being in the reference

category K as Xk increases.
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The GWMLR approach allows for location-specific coefficients by computing weighted

regressions at each geographic point, resulting in detailed insights into spatial varia-

tions. By spatially disaggregating the data, each longitude and latitude coordinate is

associated with multiple cCHD subtype categories, allowing us to capture the distri-

bution of cases accurately.

Through this method, we uncover nuanced spatial patterns in the relationship

between air pollution and cCHD subtypes, offering valuable insights for targeted

public health interventions and policy decisions.

2.4 Model Assessment

To evaluate our conventional multinomial logistic regression model, we carefully ex-

amined the residual distribution and performed a likelihood ratio test. We employed

McFadden’s R-squared as a global measure of goodness of fit, which is calculated by

comparing the log-likelihood of the fitted model to that of a null model containing

only an intercept. Despite these efforts, the conventional model exhibited consis-

tently low McFadden’s R-squared values, indicating a limited ability to explain the

variance across all four pollutants. This limitation underscored the need for a more

sophisticated approach capable of capturing the spatial differences in the relationship

between predictors and cCHD subtypes.

To address this, we employed the Geographically Weighted Multinomial Logistic

Regression (GWMLR) model, which allows for spatially varying coefficients. While

the conventional model’s fit could be assessed using McFadden’s R-squared, the spa-

tial nature of GWMLR required us to focus on local pseudo-R-squared values. These

local values were calculated for specific geographic regions, offering insights into how

well the model fit the data in those areas.

The visualization of local pseudo-R-squared values on maps provided a clear pic-

ture of where the GWMLR model performed well, particularly in regions with distinct

environmental or demographic characteristics. This spatial assessment revealed clus-
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ters of high model fit, indicating areas where the relationship between air pollution

and cCHD subtypes was most accurately captured by the model.

By shifting our focus from a global to a local assessment of model fit, we uncovered

nuanced spatial patterns in the data, offering valuable insights that can inform tar-

geted interventions and policy decisions aimed at reducing the impact of air pollution

on congenital heart defects.

2.5 Visualization

To comprehensively explore the spatial patterns and relationships between variables,

we utilized GIS software to craft informative 2-dimensional plots depicting odds ratios

and p-values. These visualizations allowed us to gain insights into the geographical

distribution of associations between air pollution and the incidence of cCHD subtypes.

Our approach involved overlaying these maps with the locations of the study pop-

ulation. Given that exposure data were closely linked to postal codes, we leveraged

this spatial information rather than referencing monitoring stations. This enabled us

to delve into the spatial distribution of pollution exposure and its correlation with

cCHD incidence, offering a detailed perspective on potential environmental health

risks across geographic regions.

Visualizing the corresponding p-values allowed us to assess the statistical signifi-

cance of observed associations, highlighting regions where the relationships between

air pollution exposure and cCHD incidence were particularly noteworthy. The plotted

odds ratios provided a visual representation of the strength and direction of associa-

tion between air pollution and each cCHD subtype.

By integrating spatial analysis with visual representation, our visualizations not

only facilitated the identification of spatial patterns and trends but also provided a

means to communicate findings effectively to stakeholders and policymakers. Through

intuitive visualizations, we aimed to empower decision-makers with actionable insights

to address environmental health challenges and safeguard public well-being.
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Chapter 3

Results

3.1 Descriptive Results

Table 3.1 summarizes the characteristics of 1484 patients diagnosed with cCHD who

underwent surgical procedures involving cardiopulmonary bypass within 6 weeks,

shunts up to 6 months, and repair of isomerism defects up to 1 year between Septem-

ber 1996 and November 2021. Among these patients, 183 cases (12.33%) had known

chromosomal abnormalities, while the remaining 1301 patients were classified into

groups 1-6 of the Botto classification. These patients either were identified as not

having chromosomal etiology or were not yet diagnosed to have a chromosomal basis

with current available methods.

The dataset consisted of 60% male and 40% female patients, with the majority

(85%) having a gestational age of 37 weeks or more. 68% of the patients were from

urban areas, while 33% were from rural areas. Alberta was the most common province

of origin, accounting for 57% of the total patient population, followed by Manitoba

(18%) and Saskatchewan (18%). British Columbia contributed to a smaller percentage

of cases (3.5%), while patients from Yukon, Northwest Territories, Nunavut, Ontario,

New Brunswick, and Nova Scotia collectively accounted for 3.3% of the total. The

mean and standard deviation of several air pollutants, including NO2, O3, PM2.5 and

AQSMK, for each Botto group and for cases with known chromosomal abnormalities

is displayed in Table 3.1. The table shows that the mean values for each pollutant are
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relatively consistent across the different Botto groups and for cases with chromosomal

abnormalities. However, there are slight variations in the standard deviation of each

pollutant between the groups.

Table 3.1: Characteristics of Patients with Critical Congenital Heart Disease (cCHD)
and Air Pollutant Levels in Western Canada, 1996-2021

Botto group 1 2 3 4 5 6 Chromosomal

Male % 60.37 65.85 62.64 52.5 56.25 59.81 52.46

Female % 39.62 34.15 37.36 47.5 43.75 40.19 47.54

Alberta 63.56 48.78 58.05 56.88 38.75 53.27 61.2

Manitoba 18.09 24.39 13.51 20.62 25 20.56 15.3

Saskatchewan 13.83 18.7 18.39 16.88 26.25 19.63 18.58

British
Columbia

1.33 2.44 7.76 1.25 3.75 3.74 2.19

Other 3.19 5.69 2.3 4.38 6.25 2.8 2.73

PM2.5
(µg/m3)

6.83± 1.70 6.38± 1.81 7.06± 1.84 6.69± 2.13 6.08± 1.63 6.67± 1.50 6.67± 1.68

O3 (ppb) 19.73±8.18 19.99 ±
7.90

20.87 ±
8.06

22.09 ±
7.35

20.78 ±
7.46

20.25 ±
7.82

22.66± 6.81

NO2 (ppb) 13.81±7.36 13.30 ±
8.20

13.76 ±
7.07

12.59 ±
6.63

13.18 ±
7.50

13.18 ±
7.50

12.53± 6.14

AQSMK
(µg/m3)

7.69± 1.81 8.02± 2.64 7.86± 2.41 7.64± 2.04 7.94± 1.72 7.53± 2.30 7.85± 2.65

3.2 Analytic results

3.2.1 Ground-level fine particulate matter (PM2.5)

The conventional multinomial logistic regression model analysis on ground-level par-

ticulate matter (PM2.5) initially highlighted a significant correlation with the inci-

dence of non-chromosomal based subtypes of cCHD (LR chi2(12) = 23.17, P-value

= 0.026). However, the resulting pseudo-R squared value of 0.0033 underscored the

model’s limited interpretability, as PM2.5’s p-values across some categories failed to

reach significance.
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The employment of the Geographically Weighted Multinomial Logistic Regression

(GWMLR) model led to the discovery of intriguing insights, particularly in specific

geographic locations. The analysis included data on PM2.5 exposure levels and spa-

tial disaggregation, with each longitude and latitude coordinate associated with six

different points, corresponding to specific congenital heart disease (cCHD) subtype

categories. A total of 5665 locations were available for analysis, with 16 locations

(0.32%) exhibiting noteworthy p-values following adjustments for sex. These findings

revealed odds ratios below 1 for all significant locations.

Remarkably, nine of these significant instances were associated with category 1

cCHD subtype, primarily clustered in Saskatchewan, while the remaining six cases

pertained to category 4, primarily observed in Manitoba (Figure 3.1). It’s notewor-

thy that despite Alberta (6.23 ± 3.17) and British Columbia (5.92 ± 2.23) reporting

higher PM2.5 emission levels, Saskatchewan and Manitoba recorded even lower emis-

sions.
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Figure 3.1: Exploring the Impact of PM2.5 Exposure on the Incidence of cCHD
Subtypes: Accounting for Spatial Variability and Adjusting for Sex. Up: significance
(Blue: significant, Red: non-significant), Down: Odds ratios.
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Comparing the cCHD subtype distribution in significant locations post-spatial ad-

justment with the original dataset revealed intriguing disparities. Despite varied dis-

tributions in the original dataset (Table 3.2), all significant Saskatchewan locations

post-adjustment were linked to category 1 cCHD subtypes. Similarly, in Manitoba, all

significant locations post-adjustment were associated with category 4 cCHD subtypes.

Notably, the regions identified in Saskatchewan and Manitoba exhibited relatively

compact spatial extents, with Saskatchewan covering approximately 166 kilometers

(longitude) by 184 kilometers (latitude) and Manitoba spanning about 22.2 kilometers

(longitude) by 23.8 kilometers (latitude). These confined spatial scopes underscored

the localized nature of the observed associations, emphasizing the necessity of scru-

tinizing environmental risk factors at fine spatial scales.

Furthermore, our investigation delved into potential etiologies or demographic pat-

terns that might elucidate these observations. In Saskatchewan, areas with significant

associations between PM2.5 exposure and cCHDs showcased diverse environmental

stressors such as oil and gas exploration, coal mining, and agricultural production.

Similarly, in Manitoba, industrial activities including small industry, manufacturing,

and specific factories likely contributed to localized variations in air pollution levels,

consequently impacting cCHD prevalence.

Table 3.2: Distribution of cCHD Subtypes in Significant Locations for PM2.5 After
Spatial Adjustment based on original dataset.

1 2 3 4 5 6 7

Conotruncal APVR LVOTO RVOTO Heterotaxy Complex Chromosomal

Sasketchewan 4 1 1 2 1 1 1

Manitoba 1 - - 2 1 2 -

Further adjustment for PM2.5 led to 45 locations (0.8%) displaying significant p-

values for the sex variable, with an overwhelming majority (95%) of these instances

yielding ORs below 1 (Figure 3.2). These findings consistently point towards a lower

prevalence of cCHD among females, suggesting a potential interplay between PM2.5
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exposure and sex in shaping cCHD occurrences.
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Figure 3.2: Exploring the Impact of Sex on the Incidence of cCHD Subtypes: Ac-
counting for Spatial Variability and Adjusting for PM 2.5. Up: significance (Blue:
significant, Red: non-significant), Down: Odds ratios.
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3.2.2 Ozone (O3)

The analysis on ozone (O3) using conventional MLR underscores its significance,

supported by a LR chi-squared statistic of 44.90 and a p-value of < 0.001, affirming

the overall model’s statistical robustness. However, the modest Pseudo R-squared

value of 0.0082 implies that the model captures only a fraction of the dependent

variable’s variability.

Transitioning to the GWMLR analysis, after spatially adjusting each point for

six categories, data for 4290 locations were available for examination. Remarkably,

approximately 14.2% of these locations (609 locations) exhibited noteworthy p-values,

highlighting the spatial variability in the relationship between O3 and the incidence

of cCHD subtypes.

Intriguingly, among these locations, 362 cases were linked to category 6, with a re-

markable concentration of 98% observed in Alberta. Additionally, 247 cases were asso-

ciated with category 1, primarily distributed across Alberta (81%) and Saskatchewan

(18%). Notably, all locations with significant p-values for ozone demonstrated odds

ratios below 1, except for one location, indicating a consistent trend. Visualization

maps have highlighted most significant locations in an area spanning between east

Alberta and west Saskatchewan (Figure 3.3).
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Figure 3.3: Exploring the Impact of Ozone Exposure on the Incidence of cCHD
Subtypes: Accounting for Spatial Variability and Adjusting for Sex. Up: significance
(Blue: significant, Red: non-significant), Down: Odds ratios.
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In Alberta, the original dataset revealed a diverse array of cCHD subtypes. How-

ever, after spatial adjustment, the majority of cases (65%) were associated with cat-

egory 6, while the remainder (35%) were linked to category 1. In Saskatchewan, a

similar trend was observed in the distribution of cases across categories. However,

discrepancies arose regarding the significant associations with locations, with the ma-

jority (88%) of cases now associated with Category 1 after adjustments, and the

remaining 12% linked to Category 6 (Table 3.3).

Interestingly, the spatial distribution of significant ozone-related cCHD cases ap-

peared more distinct compared to PM2.5, with several locations aligning with areas

characterized by unique cultural and geographical features. These observations subtly

hint at the presence of underlying demographic nuances shaping the observed associ-

ations, further complicating the interpretation due to the interplay of distinct social

and environmental dynamics within these regions.

Table 3.3: Distribution of cCHD Subtypes in Significant Locations for Ozone After
Spatial Adjustment based on original dataset.

1 2 3 4 5 6 7

Conotruncal APVR LVOTO RVOTO Heterotaxy Complex Chromosomal

Alberta 151 43 133 58 25 92 68

Sasketchewan 15 6 12 7 3 10 9

After incorporating adjustments for ozone levels, a further subset of 23 locations

(0.53%) exhibited a significant p-value for the sex variable. Remarkably, around 70%

of these locations demonstrated ORs below 1 for sex, indicating a notable association

between ozone exposure, gender, and the occurrence of cCHD. (Figure 3.4)
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Figure 3.4: Exploring the Impact of Sex on the Incidence of cCHD Subtypes: Ac-
counting for Spatial Variability and Adjusting for Ozone. Up: significance (Blue:
significant, Red: non-significant), Down: Odds ratios.28



3.2.3 Nitrogen dioxide (NO2)

For nitrogen dioxide (NO2), traditional MLR revealed a statistically significant as-

sociation, highlighted by LR chi2(12) = 57.43 and p-value < 0.001. Although these

results indicate a relationship between NO2 and cCHD subtypes, the model’s ex-

planatory power was modest, with a Pseudo R2 of 0.0076.

Following spatial adjustment of each point for six categories, we had data for 4856

locations. Surprisingly, the application of GWMLR yielded no significant associations

with NO2 in any locations. This discrepancy underscores the complexity of NO2’s

spatial impact on cCHD subtypes and suggests that while a detectable overall asso-

ciation exists, it may lack substantial strength or be influenced by nuanced spatial

dynamics not captured by traditional modeling approaches. (Figure ??)

Figure 3.5: Exploring the Impact of NO2 Exposure on the Incidence of cCHD
Subtypes: Accounting for Spatial Variability and Adjusting for Sex (Red: non-
significant).
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After adjustment for NO2, a significant p-value for the sex variable was observed in

a subset of 272 locations (5.6%). Impressively, nearly 99% of these locations had odds

ratios below 1, suggesting a considerable association wherein males were more affected

than females by NO2 exposure. This highlights a distinct gender-specific impact of

NO2 on the occurrence of cCHD, emphasizing the importance of considering gender

disparities in environmental health research. (Figure 3.6)
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Figure 3.6: Exploring the Impact of Sex on the Incidence of cCHD Subtypes: Account-
ing for Spatial Variability and Adjusting for NO2. Up: significance (Blue: significant,
Red: non-significant), Down: Odds ratios.
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3.2.4 Air quality smoke model (AQSMK)

As previously mentioned, AQSMK is a variable generated by the Canadian Opti-

mized Statistical Smoke Exposure Model (CanOSSEM) to estimate national daily

fine particulate matter (PM2.5) exposure specifically from wildfires using a machine

learning approach. [31] In relation to AQSMK, the analysis using the MLR model

revealed no noteworthy connections with specific subtypes of cCHD, as indicated by

LR chi2(12)=19.58 and a P-value of 0.0754.

Data were available for 4284 locations after spatial adjustment of each point for

six categories. However, similar to the results obtained from the traditional MLR

model, the GWMLR model did not identify any significant associations across various

locations. These findings suggest that AQSMK exposure may not have a discernible

impact on the incidence of specific cCHD subtypes, at least in the context of the

variables considered in this analysis. (Figure 3.7)

Figure 3.7: Exploring the Impact of AQSMK Exposure on the Incidence of cCHD
Subtypes: Accounting for Spatial Variability and Adjusting for Sex (Red: non-
significant).
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However, when examining the sex variable after adjustment for AQSMK, there

were 299 locations (7% of the dataset) where significant p-values were observed. In-

triguingly, in all of these locations, the odds ratios were consistently below 1. This

suggests a consistent association between AQSMK exposure and gender in relation

to the occurrence of cCHD, with males potentially being more affected than females.

(Figure 3.8)
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Figure 3.8: Exploring the Impact of Sex on the Incidence of cCHD Subtypes: Ac-
counting for Spatial Variability and Adjusting for AQSMK. Up: significance (Blue:
significant, Red: non-significant), Down: Odds ratios.
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Chapter 4

Discussion

In our study, we employed geographically weighted multinomial logistic regression

(GWMLR) to comprehensively investigate the association between exposure to four

different air pollutants (PM2.5, ozone, NO2, and AQSMK) and various subtypes of

critical congenital heart defects (cCHDs). Our aim was to provide nuanced insights

into the underlying mechanisms and spatial variations of this association, thereby

contributing to the current understanding of cCHD etiology and the role of environ-

mental factors.

4.1 Ground-level fine particulate matter (PM2.5)

In our investigation of ground-level fine particulate matter (PM2.5) exposure and its

association with critical congenital heart defects (cCHDs), we observed significant

associations in 0.32% of the locations. However, it’s crucial to note that the subtypes

exhibiting significant associations differed from those observed in the original dataset

for some locations, highlighting the complexity and spatial heterogeneity inherent in

the relationship between air pollutant exposure and cCHD incidence.

Upon adjustment, all significant locations in Saskatchewan were linked to category

1 cCHD subtypes, while in Manitoba, all significant locations were associated with

category 4 cCHD subtypes. Category 1 primarily encompasses conotruncal abnor-

malities such as tetralogy of Fallot (TOF), transposition of the great arteries (TGA),
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and truncus arteriosus. These findings are consistent with previous studies by Buteau

et al. and Tanner et al., which reported associations between PM2.5 exposure and

the incidence of tetralogy of Fallot and non-isolated truncus arteriosus, respectively.

[11, 13]

Our classification includes right ventricular outflow tract obstruction (RVOTO)

diseases such as Pulmonary and Tricuspid atresia, Ebstein anomaly, and pulmonary

valve stenosis in category 4. However, there are no existing associations reported in

the literature between the incidence of these types of cCHDs and exposure to PM2.5.

This underscores the need for further research to elucidate the specific mechanisms

underlying the observed associations and to explore potential links between PM2.5

exposure and a broader range of cCHD subtypes.

Remarkably, the regions identified in Saskatchewan and Manitoba exhibited rela-

tively confined spatial extents. These compact spatial scopes underscore the localized

nature of the observed associations, emphasizing the importance of scrutinizing envi-

ronmental risk factors at fine spatial scales.

Furthermore, our investigation delved into potential etiologies or demographic pat-

terns that might elucidate these observations. In Saskatchewan, areas with significant

associations between PM2.5 exposure and cCHDs showcased diverse environmental

stressors such as oil and gas exploration, coal mining, and agricultural production.

Similarly, in Manitoba, industrial activities including small industry, manufacturing,

and specific factories likely contributed to localized variations in air pollution levels,

consequently impacting cCHD prevalence. Such localized patterns highlight the sig-

nificance of considering specific environmental contexts when assessing the impact of

air pollution on cCHD incidence.

4.2 Ozone (O3)

The GWMLR analysis revealed significant associations between ozone exposure and

cCHDs in 14.2% of the locations. Interestingly, the geographical range of signifi-
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cant locations was broader than that observed for PM2.5, primarily spanning the

area between eastern Alberta and southern Saskatchewan. Notably, despite Alberta

not having the highest ozone levels among all provinces, it exhibited a notably high

number of significant locations. Similar to PM2.5, the cCHD subtypes exhibiting sig-

nificant associations varied across different locations, highlighting nuanced patterns

in the relationship between air pollutant exposure and cCHD incidence.

Similar to PM2.5, our analysis revealed discrepancies between the cCHD sub-

types present in the original dataset and those exhibiting significant associations

in the GWMLR results. This highlights nuanced patterns in the relationship be-

tween air pollutant exposure and cCHD incidence, wherein certain subtypes may be

more strongly influenced by environmental factors in specific locations. Upon closer

examination of demographic characteristics within these locations, diverse popula-

tion profiles were observed. While we refrain from specifying particular demographic

groups out of ethical considerations, the presence of similar population compositions

underscores the complexity of factors influencing cCHD incidence. Further explo-

ration into the socio-economic and environmental context of these populations may

offer valuable insights into the observed associations.

Our analysis revealed significant associations primarily with categories 1 (conotrun-

cal) and 6 (complex) cCHDs. Interestingly, while most studies have noted an overall

increase in cHD incidence with ozone exposure, some have specifically mentioned as-

sociations with conotruncal anomalies and tetralogy of Fallot, aligning with our find-

ings for category 1. Notably, our study focused exclusively on the first two months

of pregnancy, differing from research highlighting increased risks during the second

and third trimesters. Category 6 typically encompasses a combination of conotruncal

or left ventricular outflow tract obstruction (LVOTO) anomalies with other types of

cCHDs.

In another study, associations with pulmonary and aortic valvular and arterial

anomalies were reported, which would correspond to our categories 3 and 4, respec-
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tively. However, we did not find any significant associations with these categories

in our results. Additionally, some studies have reported null or inverse relationships

between ozone exposure and cCHD incidence. [16–18]

4.3 Nitrogen dioxide (NO2)

In our investigation into the relationship between nitrogen dioxide (NO2) exposure

and congenital heart defects (cCHDs), traditional multinomial logistic regression

(MLR) initially indicated a statistically significant association between NO2 levels

and specific subtypes of cCHDs. However, despite this initial finding, the explana-

tory power of the MLR model was modest, reflected by a Pseudo R-squared value

of 0.0076. This suggests that although a significant association was identified, the

model could only explain a small proportion of the variability in cCHDs.

Interestingly, upon employing the Geographically Weighted Multinomial Logistic

Regression (GWMLR) modeling approach, the previously observed significant asso-

ciation between NO2 exposure and cCHDs did not persist. This discrepancy may

arise from various factors. For instance, GWMLR has the capability to account for

complex interactions and nonlinear relationships between NO2 exposure and cCHDs,

aspects that the traditional MLR model might have overlooked. Moreover, GWMLR

can address spatial or temporal dependencies within the data, factors that could influ-

ence the association between NO2 and cCHDs. The disparity in results between the

two models emphasizes the importance of exploring alternative modeling techniques

and thoroughly evaluating the reliability of findings in epidemiological studies.

While previous studies have demonstrated a moderate level of confidence in the

association between NO2 exposure and coarctation of the aorta, other studies have

reported varying levels of association with tetralogy of Fallot and pulmonary valve

stenosis, albeit with lower confidence. [12, 15, 18–20] However, our GWMLR model

did not reveal any significant associations with any of these categories. This suggests

the need for further investigation and consideration of additional factors in under-
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standing the relationship between NO2 exposure and cCHDs.

4.4 Air quality smoke model (AQSMK)

Despite the comprehensive modeling provided by AQSMK, a modeling tool used to

estimate the concentrations of particulate matter in the air resulting from smoke, par-

ticularly from sources like wildfires, neither traditional multinomial logistic regression

nor geographically weighted multinomial logistic regression models have demonstrated

any significant associations with any of the cCHD subtypes. This suggests that, de-

spite its ability to estimate smoke-related particulate matter concentrations, AQSMK

does not show a clear link between prenatal exposure to wildfire smoke and the risk

of specific cCHD subtypes in our study.

While PM2.5 measurements showed some level of significance in association with

cCHD subtypes, the lack of significant associations observed with AQSMK warrants

further investigation. The differences in results between PM2.5 and AQSMK may

stem from several factors.

Firstly, PM2.5 measurements represent direct observations of particulate matter

concentrations, providing a more tangible measure of exposure compared to AQSMK

estimates, which rely on modeling techniques. The inherent variability and uncer-

tainties associated with modeling approaches could attenuate associations with cCHD

subtypes in AQSMK estimates, leading to non-significant results.

Additionally, PM2.5 measurements may capture localized variations in pollution

levels more accurately than AQSMK estimates, particularly in areas with high wildfire

activity. This spatial variability in exposure levels could contribute to the observed

differences in results between PM2.5 and AQSMK.

Moreover, PM2.5 measurements may include particulate matter from various sources

beyond wildfire smoke, whereas AQSMK focuses specifically on smoke-related par-

ticulate matter. Other pollutants present in PM2.5 measurements, may contribute

to the observed associations with cCHD subtypes, whereas AQSMK estimates solely

39



capture particulate matter from smoke.

Overall, the discrepancies in results between PM2.5 and AQSMK highlight the

importance of considering the limitations and potential biases of different exposure

assessment methods when interpreting epidemiological findings. Integrating multiple

exposure metrics and refining modeling approaches could provide a more comprehen-

sive understanding of the relationship between wildfire smoke exposure and cCHD

risk.

4.5 Interpretation of odds ratios

Interpreting the odds ratios (OR) uncovered in our analysis revealed an unexpected

trend where nearly all significant locations reported ORs below 1. Conventionally

interpreted as indicative of a protective effect, this finding contradicts prevailing con-

clusions in similar studies.

Several explanations may account for this observation. Our decision to use known

chromosomal critical congenital heart defects (cCHDs) as the reference group aimed

to mitigate the influence of underlying genetic predispositions, reducing potential

confounding factors and facilitating result interpretation. However, it’s essential to

acknowledge that our findings suggest the baseline risk associated with known chro-

mosomal cCHDs might be higher than that of other groups not yet identified to have

a chromosomal etiology. This difference in baseline risk could introduce a downward

bias to the odds ratios, resulting in values below 1, as observed in our analysis.

While this approach could potentially induce selection bias, it was necessary be-

cause comparing the subtypes with a reference group of unaffected children might

not have been appropriate or informative given the complexities of critical congenital

heart defects and the genetic factors at play. Therefore, selecting a reference group

with known chromosomal cCHDs allowed us to better isolate and understand the

specific effects of different subtypes of critical congenital heart defects.

Another significant factor to consider is the possibility that some cases within other
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subtypes may have a chromosomal basis that went undiagnosed. Studies by Helm and

Buckley have highlighted that septal and atrioventricular septal defect (AVSD) groups

are the most common cCHD defects for which their genetic basis can be diagnosed

by available tests. [33, 34] However, as explained before these two categories were

excluded from our study because of their noncritical nature of malformations.

This limitation could potentially bias the strength and direction of the odds ratios

due to detection bias. Our reference group comprised diagnosed chromosomal etiology

cCHDs, yet there may be cases within other subtypes with undiagnosed chromosomal

abnormalities that tests couldn’t detect. This discrepancy in detection could lead to

an underestimation of the odds ratios, resulting in values below 1. Thus, the possibil-

ity of the presence of undiagnosed chromosomal abnormalities within other subtypes

highlights the complexity of our analysis and underscores the need for improved di-

agnostic methods to accurately identify such cases in future studies.

Additionally, confounding factors may also contribute to the observed trend. De-

spite our efforts to control for confounders, there may still be unmeasured variables

influencing the association between exposure and the incidence of different subtypes of

cCHDs. These unaccounted factors could distort the interpretation of the odds ratios,

leading to values below 1. Therefore, it is essential to acknowledge the potential im-

pact of confounding on our findings and consider additional analyses or adjustments

in future research to better understand the relationship between maternal exposure

to air pollutants and the incidence of critical congenital heart defects.

Furthermore, it’s crucial to acknowledge that air pollution may interact with other

environmental or genetic factors in complex ways, potentially modifying its impact

on the incidence of cCHDs. These interactions could either exacerbate or mitigate

the individual effects of each factor on cCHD risk. While our analysis concentrated

on investigating the associations between individual pollutants and cCHD subtypes

separately to circumvent issues of multicollinearity, it’s essential to recognize that in

real-world scenarios, air pollutants frequently co-occur and may interact synergisti-
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cally or antagonistically. Thus, future research should consider the intricate interplay

between air pollutants and other factors to gain a comprehensive understanding of

their combined influence on cCHD risk.

Moreover, it’s worth noting that many of the studies reviewed have reported null

or even inverse associations regarding the pollutants and the incidence of cCHD sub-

types, indicating the complexity and variability of the relationship between air pol-

lution and cCHD risk across different populations and geographic regions.

The significance observed in small clusters or localized areas, despite odds ratios

less than 1 and discrepancies in categories of statistically significant locations with

the original dataset, suggests that air pollution may still have a significant influence

on cCHDs, albeit not necessarily as a protective factor. This finding provides valuable

insights into the spatial variability of the relationship between air pollution and health

outcomes, highlighting areas where interventions may be most needed. Ultimately,

the magnitude and spatial distribution of the effect of air pollution on cCHD incidence

are more critical considerations than the direction of the association.

4.6 Gender Disparities after adjustment for effects

of pollutants

After adjusting the model for the pollutant variables, significant associations were

observed between sex and cCHDs across all four pollutants. Interestingly, the number

of locations with statistical significance varied, with AQSMK and NO2 showing a

higher number of significant locations. Notably, in all cases, the odds ratios were

below one, indicating that males were more affected than females. This aligns with

previous studies that have noted a higher risk of severe CHDs at birth among males,

while females tend to be associated with milder CHD subtypes.[35] These findings

offer valuable insights for further investigations into underlying mechanisms driving

gender disparities in CHD development.
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4.7 Limitations

While our study offers valuable insights into the association between air pollution and

cCHDs, several limitations must be acknowledged to interpret the results accurately.

Significant limitations due to study design were discussed in detail in Section 4.5.

As previously mentioned, undetected confounding factors and unaccounted interac-

tions with other pollutants or environmental and genetic variables could further in-

fluence the observed effects. Additionally, while using known chromosomal cCHD

cases as the reference group was essential for meaningful comparison, it may have

introduced selection bias, potentially resulting in lower odds ratios. Detection bias is

another concern, as undiagnosed chromosomal abnormalities in other cCHD subtypes

could have led to an underestimation of associations.

Moreover, in regions with smaller sample sizes, the reliability and generalizability

of the results may be compromised, increasing the likelihood that observed patterns

are influenced more by sampling variability than by genuine spatial effects.

The GWMLR model also brings its own set of challenges. One significant issue is

the assumption of spatial stationarity, which means the relationships between vari-

ables are assumed to be consistent across different locations. However, in reality,

spatial relationships can change dynamically, and this assumption might not always

hold true, potentially affecting the accuracy of the model’s predictions.

Interpreting statistical significance in GWMLRmodels can also be complex. Unlike

global models that provide a single set of results for the entire dataset, GWMLR fits

separate models for each location or subgroup. This localized approach means there

isn’t a single overall p-value representing the entire study area. Instead, results are

specific to each location, which can make it difficult to draw broad conclusions.

However it should be noted that, unlike traditional methods that fit multiple mod-

els, GWMLR customizes a unique model for each location rather than fitting multiple

models in the conventional sense. Thus, it avoids the issue of multiple testing.
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Another challenge is the sensitivity of GWMLR results to the choice of spatial scale

or unit of analysis. Different resolutions or spatial boundaries can lead to varying

results, highlighting the need to carefully select the spatial scale for analysis and

consider how it affects the interpretation of findings.

In addition to the limitations related to study design and the challenges inherent in

the GWMLR model, it is important to consider the impact of severe congenital heart

defects (cCHDs) that may lead to spontaneous pregnancy loss, selective abortions,

or stillbirth. These outcomes add complexity to understanding cCHD risk and high-

light the need for a comprehensive approach when examining the interplay between

pollutants, genetics, and health outcomes.

Therefore, caution must be exercised when interpreting the findings to ensure that

potential biases are adequately addressed and accounted for in the analysis. While

our study provides valuable insights into the relationship between air pollution and

cCHDs, acknowledging and addressing these limitations is essential to ensure the

robustness and validity of our findings. Further research efforts should aim to mitigate

these limitations and refine the methodology to improve the accuracy and reliability

of future studies in this field.
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Chapter 5

Conclusion

Our study provides significant insights into the complex relationship between prenatal

exposure to air pollutants and the risk of critical congenital heart defects (cCHDs),

offering a clearer understanding of how these environmental factors interact with

health outcomes. By focusing on spatial variability, we aim to contribute to more

precise and effective research efforts and public health interventions.

Through our detailed analysis, we identified important associations between spe-

cific air pollutants—such as PM2.5, ozone—and the incidence of cCHDs in particular

regions. However, while these findings are important, it is crucial to approach them

with caution. Variations in how cCHD subtypes are distributed across locations and

odds ratios slightly below 1 suggest that these associations are influenced by sev-

eral factors, including the choice of reference groups, genetic predispositions, and

environmental variables. These complexities make it essential to interpret the data

with nuance, recognizing that different cCHD subtypes may behave differently across

various regions.

Moreover, discrepancies emerged when comparing the subtypes of cCHDs that were

found to be significant in certain areas with the subtype prevalence in the original

dataset, highlighting the importance of understanding disease subtypes when assess-

ing spatial associations. For example, clusters of significance for PM2.5 exposure may

be connected to the unique environmental or demographic characteristics of these re-
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gions, while areas with significant ozone exposure showed demographic patterns that

warrant further investigation. These insights point to a need for more detailed stud-

ies that consider not only the pollutants themselves but also the context in which

exposure occurs.

The odds ratios observed in our study, some falling just below 1, also draw attention

to the ongoing debates within the literature about the effects of air pollutants on

congenital heart defects. While some of our findings are consistent with previous

studies, others differ, indicating that the relationship between air pollutants and

cCHDs is complex and multifaceted. The differences in results across studies likely

stem from variations in study design, population characteristics, pollutant exposure

levels, and the methodologies used to assess risk. This highlights the challenge of

drawing definitive conclusions in this field and underscores the need for more research

to clarify these relationships.

Despite these challenges, our study provides critical information that can inform

public health efforts. The identification of specific regions with significant associa-

tions between air pollutants and cCHDs offers a foundation for targeted interventions.

By focusing on these areas, public health authorities can implement strategies aimed

at reducing pollutant exposure and improving health outcomes for at-risk popula-

tions. These strategies could include air quality monitoring, stricter regulations on

emissions, and community-based health initiatives designed to raise awareness and

mitigate risks.

Our findings underscore the urgent need for more spatially focused research that

accounts for the complex interactions between environmental exposures and health

outcomes. Future studies should continue to explore how different pollutants interact

with each other and with various demographic and genetic factors to influence the

risk of cCHDs. Additionally, addressing gaps in our knowledge about how pollutant

exposure impacts vulnerable populations, such as pregnant women and children, will

be essential for developing effective public health policies.
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In conclusion, our study advances the understanding of the intricate relationship

between prenatal air pollutant exposure and the incidence of cCHDs. By empha-

sizing the importance of spatial variability, we provide valuable insights for both

research and public health interventions. These findings call for continued collabora-

tive efforts and further investigation to ensure that effective strategies are developed

to protect public health, reduce the incidence of congenital heart defects, and im-

prove the well-being of communities affected by environmental pollution. Through

sustained research and targeted action, we can work towards minimizing the impact

of air pollution on vulnerable populations and fostering healthier environments for

future generations.
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