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Abstract

This thesis develops a group of Lagrangian Stochastic (LS) turbuient dispersion
models, and applies those raodels to study some problems of theoretical and/or practical
importance.

By invoking the maximum missing information (mmi) principle, an mmi pdf of
vertical velocity is constructed for non-Gaussian turbulence and the LS model implied by
that pdf is derived. With this model, the effects of higher Eulerian velocity moments on the
mean concentration distribution is studied and some earlier predictions of the small time
behaviour of spread from a source are re-examined. The moments approximation method
for developing LS models is also examined, and shown to be inferior to the standard
method.

A second-order model for decaying isotropic turbulence was developed. By
applying it to wind tunnel and water channel grid turbulent flows, and by applying a well
established first-order model to wind tunnel and atmospheric boundary layer turbulence,
the universal constant for the Lagrangian velocity structure function in the inertial
subrange is determined to be 3.0+().5.

With these stochastic techniques two other problems are aiso studied: the droplet
collision probability in turbulent clouds - it is found that the effect of turbulence on
enhancing collision probability can be very strong if the sizes of droplets arc not
substantially different, and the rate of upcressing over a specified threshold level of
concentration at a given spatial point - the model result accords with the Dugway ficid

experiment data very well.
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Nomenclature

a(u,x,t): mean acceleration of particles conditioned on wu,x.t,
a(A*,W*,Z"% 1): rate of change of the Lagrangian acceleration conditioned on A* W* Z*,
ag: dimensionless constant appeared in the expression of Eulerian

acceleration variarnice,

A: (everywhere except section 3.1) fractional area occupied by thermals,

(in section 3.1) Eulerian acceleration,

A™: Lagrangian acceleration,

b;: coefficient in the expression 6, =b,u.,

b,: coefficient in the expression T, =b,z/0,,,

by coefficient of random forcing in Langevin equations,

B: fractional area occupied by downdraftts,

c: instantaneous concentration,

c.: threshold concentration,

Cul non-dimensional concentration defined as c.=Q/hU(h),

C: the mean concentration,

C.: the coefficient of the k-th order term in the moment-approximation for
a(w,z),

C, conditional (in-plume) mean concentration,

Co: Kolmogorov’s constant for Lagrangian velocity structure function,

C,cffective; effective Kolmogorov’s constant in low Reynolds number flow,

CWIC: cross-wind integrated concentration,

d: separation between two cloud droplets,

dy: zero-plane displacement height,

dc: Gaussian random variable with zero mean and variance dt;

Dy: horizontal separation between two cloud droplets,

D;(At): Lagrangian velocity structure function,

E(R,r): collection efficiency,

g: gravitational acceleration,



p(c):

R.(T):

height of line source,

missing information when choosing a pdf p,

(in-plurae) conditional concentration fluctuation intensity,
kurtosis factor for velocity fluctuations,

horizontal distribaution functicn of collection kemel,

scalar eddy diffusivity,

collection kernel,

Lagrangian integral length scale,

Eulerian inte:gral length scale,

k-th order of vertical velocity moment,

total number of known moments,

cloud droplet number density function,

rate of upcrossing concentration threshold level c.,
ILagrangian pdf for velocity.

conditicnal pdf of concentration derivative conditioned on c,,
(everywhere except in section 3.1) Euferian pdf for velocity,
{in section 3.1) Eulerian joint pdf for acceleration and velocity.
Eulerian pdf for concentration,

line source strength per unit length,

radius of small cloud droplet,

radius of large cloud droplet,

auto-coerrelation coefficient for concentration fluctuations,
Reynolds number,

Reynolds number based on Taylor micro scale A,
f.#yrangian Reynolds number defined by 16a,°Re/C,’,
inho~r /. 21ty index,

Lag-»n7ian auto-correlation coefficient,

skewness fator of velociry fluctuations,

Kolmogrov micre time scale,

integral time scale for concentration fluctuations,



Lagrangian integral time scale or Lagrangian deccrrelation time scale,
velocity,

the component of velocity in i-th direction,

friction velocity,

(everywhere except in section 3.1) mean downstream velocity.

(in section 3.1) Evlerian (instantaneous) velocity,

Lagrangian velocity,

terminal velocity of cloud droplet in still air,

the mean vertical velocity within thermals,

the mean vertical velocity within downdrauphts,

scale for vertical velocity,

scale for verucal veloctty in CBL,

k-th order moment of vertical velocity,

distance from source to the point of interest,

(everywhere except in section 3.1) non-dimensional distance defined as
xwJ/Z U,

(in section 3.1) downstream distance from the sourcc to the point of
interest,

distance frosn the grid to the source,

non-dimensional distance from the source to the location of maximum
ground-level concentiration,

crosswind distance from plume centreline to the point of interest,

height from ground level,

roughness length,

height for point source,

Eulerian space variable (in vertical direction),

Lagrangian position in vertical direction,

mean plume height,

variance of vertical spread (related to o, by <Z'*>"*=0,),

depth of CBL,



n o

¢ > >
R,

Kronecker delia funcuon,

time increment,

the mean rate of dissipation of turbulent kinetic energy,
Kolmogorov micro scale,

characteristic function of p,,

von Kidrmain constant,

Taylor micro scale,

Lagrangian multiplier,

molecular kinematic viscosity,

correlation between Eulerian vertical velocity and acceleration,
derivative of p with respect to t,

fluid density,

(everywhere except in section 3.1) standard deviation of vertical
velocity within thermals,

(in section 3.1) standard deviation of Eulerian acceleration,
derivative of o, with respect to't,

standard deviation of vertical velocity within downdrafts,
standard deviation of streamwise velocity fluctuations,
standard deviation of vertical velocity,

standard deviation of vertical velocity,

derivative of standard deviation of vertical velocity with respect to t.,
standard deviation of cross-wind spread,

standard deviation of vertical spread,

time increment,

solution of o¢/dw = -dp /oz.

Glossary of terms:

CBL:
DNS:

FP:

convective boundary layer,
direct numerical simulation,

Fokker-Planck equation,



LES: jarge-eddy simulation,

LS: Lagrangian stochastic,

mmi: riaximum missing information,
pdf: probability density function,
TKE: turbulent kinetic energy,

wmc: well-mixed condition (or constraint).
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Chapter 1
Introduction: Review of Lagrangian Stochastic

Models and Outline of Present Contribution

1.1 History

To protect the atmospheric environment, and to deal efficiently with environmental
accidents, knowledge of how poliutants are transported and diffused in the atmospheric
boundary layer is of great importance. The best means to expand and refine that
knowledge is ongoing theoretical study, guided by experimental studies.

Over the last thirty years or so. many kinds of theoretical dispersion models have
been advanced: among them being K-theory models (Egan and Mahoney 1972): higher-
order closure models (Donaldson 1973); large-eddy simulation (LES) models (Nicuwstadt
and de Valk 1987); direct numerical simulation (DNS) models (Pumir 1994); and,
Lagrangizn stochastic models (Wilson et al. 1981; Sawford 1985; Thomson 1987, 1990),
which will be our topic here.

Lagrangian Stochastic (LS; or "Random Flight," or "Monte Carlo") simulation is
the most natural means to describe turbulent diffusion, which is fundamentally a
Lagrangian process: pollutants are carried by individual fluid elements. LS simulation has
several advantages over the Eulerian approach, the most attraciive being the avoidance of
closure assumptions which involve the joint distribution of tracer concentration and fluid
velocity. Closure assumptions of that character are essential to Eulerian methods, and are
not very accurate except in simple cases where both the velocity statistics and the source
distribution conspire to forgive the superficiality of the basic description; eg. the gradient-
diffusion closure, <y/c'>=-K dC/dx;, introduces a scalar eddy diffusivity (K ,), whose
unknown "actual” value depends (in general) on the independent variables(x,t), the state

of motion of the fluid, and on the scurce distribution; in practise, K, is usually little more
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than a “calibrated function,” tuned to observations. And Eulerian closures are barren in this
sense, whether the :zontext be (as in the example just given) to describe the mean
concentration field; or o siudy statistics of the fluctuations. To reiterate then, the
fundamental advantage of the Lagrangian method is that closure assumption(s) relate to
the velocity field oy, czlcolation of concentration statistics is a more-or-less exact
process. Other notable merits of the LS method are the ability to correctly calculate the
near field of a source; the absence of numerical problems (pseudo-diffusion); and the
simplicity of coding.

The history of numerical LS simulation is not long. Thompson (1971) was perhaps
the first work of the modemn type reported in the literature; but the roots of the LS theory
for turbulent dispersion extend back to the study of Brownian motion, by A. Einstein, P.
Langevin, A. Fokker and M. Planck (for a historical review, see van Kampen 1981). G.1.
Taylor (1921) was the first to use Lagrangian statistics to study turbulent diffusion. By
noting the similarities between turbulent diffusion and the random ““drunkard” walk, Taylor
introduced into turbulent diffusion theory a focus on individual particle movement, and
derived his famous formula for the spread of particles in unbounded homogeneous and
stationary turbulence. That exact formulation by Taylor has been used extensively for
various purposes - especially as a criterion to examine alternative or (putatively) more
general theories/models of turbulent dispersion. For example it is with the aid of Taylor’s
theory that we can understand the failure of K-theory in the near source region; the theory
proves that at such short range, the process (of spread) is "memory-dominated," not the
manifestation of many independent random velocity choices, ipso facto, NOT actually
"diffusive.”

Obukhov (1959) introduced the Fokker-Planck (FP) equation to the field of
research in turbulent diffusion. At the time many scholars were sceptical, but recent
developments prove Obukhov’s idea correct; its importance cannot be over-exaggerated.
Early followers of Obukhov were Novikov (1963) and Lin and Reid (1963); while Lin
(1960) pioneered the use of the Langevin equation, a stochastic differential equation

(SDE) equivalent to the FP eqn.
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‘While Thompson’s (1971) "computer age™ work was heuristic, and in the light of
today's knowledge over-simplified, it showed how easily the effects of flow complexity
(eg. wind shear) and topography can be incorporated into an LS model. After Thompson
came others, eg. Hall (1975) and Reid (1979), who also used the LS model to study
turbulent diffusion in the atmospheric boundary layer. Especially, Wilson et al. (1981,
WTK) triggered many other studies, that greatly improved LS theory and enhanced the
applicability of LS simulation; these authors noted that in inhomogeneous turbulence,
tracer particles (in their heuristic formulation) erroneously aggregated in the region of
lower turbulence intensity. To correct this tendency, they added a “mean drift velocity™
term in their rescaled LS model, based on simple physical reasoning, and found more-
plausible dispersion statistics. In the simpler case that turbulent velocity scale is height-
invariant, WTK showed their model simulated field diffusion observations very
satisfactorily.

Legg and Raupach (1982, LR) were perhaps the first to enunciate a crucial model
design criterion: that tracer particles which are uniformly distributed shouid (according to
the model) remain uniformly distributed (this criterion has proven pivotal in the
development of LS theory). LR gave a rational argument for the addition (in any region
where the turbulent velocity scale is variant) of a mean drift velocity to the Langevin
equation, a correction differing from that of Wilson et al. (1981). Subsequently Wilson ct
al. (1983, WLT) investigated the difference between the WTK and LR models, and
showed them equivalent in weakly inhomogeneous turbulence, but not in strongly
inhomogeneous turbulence. WLT also proposed a new model, WTK", a variant of WTK,
which has subsequently been given theoretical foundation (Thomson 1984, 1987) and is
now well-known to be useful even in strongly inhomogeneous (but Gaussian) turbulence.
We re-emphasize that all the models mentioned so far (WTK, LR and WTK") were in
some manner heuristic.

In contrast, Thomson (1984) used the moment-generating function method to
design an LS model rigorously. By requiring the Langevin model (in the form dW =

-Wdt/T+u which is assumed a priori) to produce the correct steady-state distribution of
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tracer particies in phase space, he derived a set of constraints on the random forcing term
(u). Apart from the novel rigour brought to bear on the subject, a lasting finding of
Thomson’s study is that in inhomogeneous Gaussian turbulence the WIK® model ( a re-
scated Langevin equation with Gauassian forcing) satisfies the design criterion,- whereas
the LR Langevin model requires non-Gaussian forcing, which later studies show is not
realizable.

Different, mcre-complex, but similarly profound, model design criteria were
introduced by van Dop et al. (1985): a correct model should give correct small-time spread
of tracer particles; and, Eulenian statistics implied by the LS model should be compatible
with the hierarctiy of Eulerian conservation equaticns. Given that guidance, but again
taking a form of Langevin equation assumed a prizri, van Dop et al. developed an LS
model having Gaussian random forcing.

From essentially the same criterion used &ty Lezgg and Raupach (1982) and by
Thomson (1984), namely that an initially well-mixed 57w= should remain so, Sawford
(1986) confirmed the findings of Thomson (1984) and of var: Dop et al. (1985), and found
further that in inhomogeneous turbulence only models rescaled in the manner of Wilson
et al. (1983) are "realizable.” Sawford also proved that the criteria of Thomson (1984) and
van Dop et al. (1985) were equivalent.

In 1987 two exceptionally important papers in the LS field were published:
Thomson (1987) and Pope {1987). The latter is less widely-cited. By arguing that the
mcean dissipation rate uf turbulent kinetic energy (€) is the only physical parameter that the
random forcing is dependent on, Pope showed that the random forcing must be Gaussian,
whatever the statistical nature of the turbulence, in order to contrive an LS maZe! thai is
consistent with Kolmogorov's similarity hypothesis. Upon fixing the random term, Popc
suggested that all flow complexity should be accommodaied in the deterministic term.
From the well-mixed criterion, that the model calculated (output) one-point pdf for
velocity should egual the specified (input) pdf for velocity, which is in essence the same
criterion used earlier by Legg and Raupach (1982), Thomson (1984) and Sawford (1986),

Pope derived a constraint on the selection of the deterministic term of the Langevin
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equation.

Thomson’s {1387} contribution is essentially the same as Pope’s: but has
presentation is more general, and his work therefore more widely appreciated. Thomson
coBected all the LS model design criteria used in the literatire. namely: (1) the well-mixed
condition, ie., that the model should give the correct steady-state distribution of particles
in the (position and velocity) phase space; (2) the model should produce correct small-time
behavicur for a point source; (3) the model should imply Eulerian statistics compatible
with the Eulerian equations; (4) when the Lagrangian time scale approaches zero, the
model should reduce to a diffusion equation; and (5) the forward and backward
formulations should be comsistent. Thomson proved that criterion (1) is the most general,
and that satisfying (1) ensures that all (these) other criteria are satisfied.

Upon proving in a rigorous way that the random forcing must be Gaussian,
Thomson derived a mathematical expression of the well-mixed condition that constrains
the selection of the deterministic term,- provided the Eulerian velocity pdf is known. It is
noteworthy that the formulations of Thomson and Pope are identical; and that, to derive
the LS model equation, the Eulerian pdf for velocity must be known (ie., the Eulerian
turbulence must be specified in terms of its velocity pdf).

Thomson (1987) realized that in multi-dimensional problems the well-mixed
constraint can not give a unique model. Sawford and Guest (1988) showed that this non-
uniqueness is of practical consequence: different models derived from the same constraint
give different predictions of particle spreud. Borgas and Sawford (1994) shewed that in
isotropic turbulence a unique model can be derived (even in the multi-dimensional casc).
But for anisotropic turbulence, the non-uniqueness problem remains unsolved. Sawford
and Guest (1988) raised another question: is the Kolmogorov constant (used in specifying
the coefficient of the random foscing term) truly universal? This question will be answered
in the present thesis (Chapter 2).

An important application of LS modelling is to study turbulent dispersion in the
convective boundary layer (CBL), or more specifically, the mean concentration distribution

in the CBL. The CBL is characterized by strong (verticai) inhomogeneity, and large
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skewness of the vertcial-velocity fluctuations. Baerentsen and Berkowicz (1984, BB) was
the first modemn anempt to simulate diffusion in the CBL by the Lagrangian meihod. BB
approximated the skewed pdf of Eulerian velocity as a bi-Gaussian - a2 summation of two
Gaussian pdf’s, one representing the contribution from updrafts, and the other the
downdrafts. In both the updrafts and the downdrafts the Legg-Raupach model (which is
not well-mixed) was employed, but with different turbulence parameters. The bi-Gaussian
pdf was also used by de Baas et al. (1986) and Sawford and Guest (1987) to study
turbulent diffusion in the CBL, but these later models also were not well-mixed, violating
Thomson’s model selection criterion. Well-mixed models were later develeped by Luhar
and Britter (1989) and Weil (1990), both using BB’s pdf, with slightly different
specifications for the pdf parameters.

In all the above studies of the CBL, the bi-Gaussian pdf was used; but the basis for
using that pdf is merely its empirical consistency with observations, - so further
examination of the bi-Gaussian pdf, and the criterion for designing a pdf for velocity is
needed. This will be addressed in the present work.

The 1990's have also seen much progress in LS simulation. Sawford (1991)
proposed a second order (in velocity) LS model for steady, homogeneous turbulence, in
order to examine Reynolds number effects or: dispersion. He found that in low-Reynolds
number turbulence (eg. grid turbulence) the Reyno:ds number effect is important, the
primary effect being through the Lagrangian integral time scale. This implies the apparent
non-uniqueness of the Kolmogorov constant (as judged from the enforceraent of
concordance of first-order LS models with dispersion observations) is at least partially due
to Reynolds number efiects. Extension of the Sawford model to unsteady (decaying)
isotropic turbulence is another aspect of the present thesis.

Kaplan and Dinar (1993) gave a "moments approximation” method so that in
constructing an LS model the background flow is specified by a (small) number of low
order velocity moments, rather than the complete velocity pdf. This method will be
examined in Chapter 2. Wilson and Flesch (1993) studied how to incorporate flow

boundaries into an LS model, and how to make boundary conditions consistent with the
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well-mixed conditiorz. They showed that the (usually-used) perfect reflection algorithu is
consistent with the well-mixed condition only in in the case of homogeneous Gaussian
turbulence; but that there exists no reflection scheme consistent with well-mixed con<ition
in inhomogeneous and/or skewed turbulence. Borgas (1993) censidered turbulence
intermittency corrections to LS simulation, by means of a2 multifractal formalism; his majer
conclusion is that for single-particle Lagrangian statistics, the intermittency effect is
negligible.

The above mentioned models are all "single particle” models: correlation between
different particles is not considered. In parallel to the development of single-particle
models, two-particle models (capable of predicting relarive diffusion and concentration
variance) have also been progressing. Since the present thesis deal mainly with single-
particle models, two-particle simulation is only briefly reviewed here.

Durbin (1980) proposed the first two-particic LS model. Although the model is |-
dimensional, and very simple, it reproduces many known results. Sawfcrd and Hunt (1980)
extended Durbin’s model to include molecular effects on relative movement between two
dispersing particles. They found that moiecular processes influence the spread of particle
pairs in such a way that increasing viscosity enhances small-scale structure, while
mnolecular diffusion tends to smooth it. Kaplan and Dinar (1988), by incorporating (in a
heuristic way) the spatial correlation between two particles into the random forcing term
of the Langevin equation, developed a 3-dimensional, 2-particle model. The advantage of
a 3-dimensional model is that it can explicitly respect the incompressibility condition as an
additional constraint, in contrast to 1- or 2-dimensional models. However Kapluan and
Dinar’s model was criticized by Thomson (1991) for its violation of Kolmogorov’s
similarity hypothesis. By further generalising the well-mixed condition to the casc of
particle pairs, Thomson (1990) constructed a 2-particle, 3-dimensional model for isotropic
turbulence in which the two-point joint Eulerian velocity pdf is Gaussian. He compared his
model results with laboratory measurements. Borgas and Sawford (1994) tried to develop
constraints to select a unique model from the family of models introduced by Thomson,

by requiring that two-particle models should correctly predict 1-particle statistics.



1.2 Markovian Hypothesis

The basic assumption in the LS method is that the evolution of the "state” of a fiuid
elemem/fparticle s Markovian, ie., the change of the state of a particle is dependent on its
present state, but not its earlier state. When the Reynolds niumber (Re=VL/v; V is the
velocity scale, L is the length scale; v is kinematic viscosity) is sufficiently high, the "state”
is defined as the particle’s joinr position and velocity (u, X). T2 basic assumption then is
that the evolution of (u, x) is dependent on present (u, X), but not (u, x) at earlier times.

This is a plausible ~~~umption. According to the Kolmogorov similarity theor:
(Monin and Yaglom 1975), when the Reynolds number is sufficiently high, the variance
of particle acceleration is of order et,;’ (€ is the mean rate of dissipation of turbulent
kinetic energy, and t,=(v/€)'? is the Kolmogorov micro time scale), while the acceleration
covariance over time lag At, is of order €/At = et,”(t,/At). Thus the auto-correlation
coefficient for acceleration is of order t,/At, and so over any time interval At satisfying
At>>t,, the acceleration is only weakly auto-correlated: changes of a fluid element's
velocity at two successive time instants separated by At are approximately independent.
The evolution of a fluid element's velocity (over intervals At>>t,) can be taken as
Markovian. And although this Markovian assumption has not been rigorously justified,

the success of simulations based upon it suggests its adequacy.
1.3 Review of the modern basis for LS models

Under the assumption that the evolution of a fluid element's velocity and position
is jointly Markovian, the movement of ihat fluid element is mathematically described by
a set of stochastic differential equations (SDE's), our Lagrangian stochastic model
equations

du=a (ux,ndt+b(ux,ndl,

(1.1)
d.ri=u‘dt.
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According to Thomson (1987) each component of the random forcing (d{) is necessarily
Gazussian (otherwise the model is either non-existent. or trajectories are discontinuous in
phase space). It is usual to specify that -dC has zero mean, and variance di.

Equations (1.1) imply an equivalent deterministic equation, the Fokker-Planck
equation, for the evolution of the transiticn pdf, p(u.x,t|v,y.s) - the probability density
for {u, x) at time t of a fluid element that at rime s was in state (v, y). The FP eqn can be
written {Gardiner 1983)

%”f-E%(u,pzmgz(ap)*%:%(b,.kbﬂp)- (1.2)
Now, we introduce the well-mixed condition (Thomson 1987): if the Lagrungian pdf
p(v.y.s) is proportional to the single-point Eulerian pdf (p,), ie., if we posit a special case
in which the tracer particles are well-mixed with the background fluid, then at any later
time t, the single-point Lagrangian pdf p(u,x,t) must remain proportional to p,. otherwise
order will develop from disorder. Mathematical implementation of the well-mixed
condition to obtain the implied constraint on the selection of LS models is straightforward:
multiply (1.2) by p(v.y,s) (assumed proportional to p,); integrate w.r.t. v, ¥y over all

.

allowable v, y; since (according to the well-mixed condition)

f - f mp(u.x,!]v;y,s)pu(v,y,s)dvdy =p (u.x.1), (1.3)

it follows from (1.2) that

Pu__& e 1 &
Pa__ € up1-—Lap )+t . |
ot ax‘ (ll,pu) au’. (a;pa) > 'a———uia“j( i J‘P‘,) (1.4)

Equation (1.4) exerts a constraint on the selection of functicas a(u,x,t} and b(u.x.t).
Although the well-mixed constraint has been presented here in the context of u
single-particle, first-order model, it is able to be generalised to other cises:eg., zero-order

models, second-order models, 2-particle models.
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We now determine the function b(u,x,t). According Kolmogorov's theory, for
time lags dt lying in the inertial subrange (ie., t,«dt«T,, where T, is the decorrelation time

scale) the ILagrangian structure function is of form (Monin and Yaglom 1975)

<[uf(t+dny-u Ol uft+dty-ufD)]> = C,eddt, (1.5)

L)

where C, is supposedly an universal constant. It follows from eqas 1.1 and 1.5 then

b, b, =Coed dt. (1.6)

The simplest choice for b, is

b.= Coeﬁ,.j. (1.7)

g

since it is by by that determines the Lagrangian velocity statistics.

Naturally a question follows (Sawford 1985; Sawford and Guest 1988): is the
constant C, really universal; and if so, what is it's numerical value? This question will be
answered in Chapter 3.

Assuming the Eulerian pdf is known and that the function b(u,x,t) has been chosen,
the function a(u,w,t) is ccnstrained by the Fokker-Planck equation (1.4). For a 1-
dimensional model, a(u,x,t) ca:: be uniquely determined from (1.4}, but for a multi-
dimensional problem a(u,x,t) cannot be determined solely fiom solving (1.4).
Mathematically, this is because for an n-dimensional problem, the unknown vector function
a(u,x,t) has n components, and those n components can not be determined by only one
equation of constraint. Physically, the information contained in a(u,x,t) is much more than
that contained in the single-point pdf p,: the information about time variation is lost when
(1.2) is integrated over the whole velocity-position space; or put it in another way: the LS
model equation (1.1) is statistically equivalent to (1.2), ie., all the information contained
in function a(u.x.t) is also contained in the transition pdf p(u,x,t| v,y,s), so in principle, one
can derive p{u,x.t|v,y,s) from a(u,x,t), and can recover a(u,x,t) from the derived transition
pdf p(u.x.t|v,y,s) but not from any single-point pdf: the latter does not contain any

information about time variation.
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For the ideal case of homogen=ous, isotropic and stationary turbulence, Bergas and
Sawford (1994) show a unique LS model can be derived from (1.4). But for anisotropic

turbulence, to make a multi-dimensional LS model unique, other physically-meaningful

constraints must be discovered and employzd.

1.4 Contribution of the present thesis.

This thesis will use "paper forru’." ie. each section in the next three chapters will

be self-contained. The work has three main parts.
1.4.1. First-order single-particle model for non-Gaussian turbulence.

Since Thomson's (1987) provision of the well-mixed constraint as the selection
criterion for LS models, knowledge of the Eulerian velocity probability density function
(pdf) has become a prerequisite for designing an LS model. However, the Eulerian pdf is
usually not known, and what is available are a few low order moments of that pdf. In
chapter 2 the maximum missing information (or maximum entropy) principle is used to
construct an unbiased Eulerian velocity pdf, and a new LS model is derived from that pdf.
The new model is used as the standard to examine the Kaplan-Dinar (1993) moments
approximation method, which was claimed to yield a weil-mixed model. The present study
shows the latter does not satisfy the well-mixed constraint, and can give a poor prediction
for dispersion. The effect of higher-order Eulerian velocity moments on the spatial

distribution of the mean concentration is also studied.

1.4.2. Universality (?) of Kolmogorov constant (C,) of Lagrangian velocity structure

Junction.

Sawford and Guest (1988) found that, in order to achieve the best agreement

between first-order LS model predictions and experimental measurements, different v:dues



12

for C, had to be used for different flows. In chapter 3, evidence is presented that G, is
indeed universal, and its value is estimated to be Cy= 3.0+0.5.

These results are obtained (in part) by developing a second-order model for grid
turbulence, in which the Reynoids number is fairly low. The second-order model takes that
low Reynolds number explicitly into account. With the aid of this second-order model, it
is also shown that the effective, Co™™****, arising if a first-order model is applied to low-R,
flows, is smalier than C,.

Constancy of C, is further examined across atmospheric and laboratory boundary

layer flows: the optimal value is again found to be, C;=3.0+0.5.
1.4.3. Other applications of stochastic technigues.

Chapter 4 gives two examples of the application of stochastic methods to other
problems. In the first, we employ a two-particle model to study the effect of turbulence on
collisions of cloud droplets, and to examine previous LS models of that process. In the
second, a stochastic model for an Eulerian (rather than Lagrangian) problem is developed:
the temporal evolution of the concentration of a contaminant at a given spatial point. The
rate of upcrossing over any "threshold” level of concentration is studied; and the prediction

of the stochastic model accords quite well with field measurement.
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Chapter 2.

CONSTRUCTING A P.D.F., AND A FIRST-ORDER

LS MODEL, FOR NON-GAUSSIAN TURBULENCE

In this chapter, the maximum missing information (mmi) principle is used to
construct the probability density function for Eulerian turbulent velocity from given
(partial) information: known velocity moments. From the mmi pdf for Eulerian vertical
velocity, a one-dimensional Lagrangian stochastic model is derived, and applied to the
convective boundary layer. With the new model, the Kaplan-Dinar moments
approximation is examined and is found to be inferior. The effect of higher-order velocity

moments on the mean concentration distribution is aiso studied.
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2.1. PROBABILITY DENSITY FUNCTION FOR VELOCITY IN

THE CONVECTIVE BOUNDARY LAYER, AND IMPLIED
TRAJECTORY MODELS'

2.1.1. Introduction

When taking advantage of Thomson's (1987) well-mixed condition (w.m.c.) in
designing Lagrangian stochastic (LS) models of trajectories in turbulent flow, we must
specify the Eulerian probability density function (pdf) of the fluctuating velocity. Except
in idealized flows, that pdf is not exactly known, so it is usual practise to assume a pdf,
guided by experimental evidence. Flesch and Wilson (1992) showed that adding
increasingly numerous moment constraints, to shape an ad hoc pdf so as to describe highly
non-Gaussian turbulence, can result in deteriorating agreement between simulation and
measurement. It is clear then, that criteria are needed in formulating the pdf, and we here
investigate using the "maximum missing information™ (mmi) pdf.

Though our point is general, we will discuss the choice of a pd{ in the context of
modelling vertical dispersion in the Convective Boundary Layer (CBL). Up to now, the
most widely-used pdf for the CBL has been the bi-Gaussian (a linear combination of two
Gaussian functions), proposed by Baerentsen and Berkowicz (1984), supported by
atmospheric observations (Quintarelli 1990}, and used to build a well-mixed LS model by
Luhar and Britter (1989) and Weil (1990). Our considerations lead to an LS model that

performs slightly better than its predecessors.
2.1.2. Criteria in constructing a pdf

Assume we require to choose a pdf p(x) for a variable x, which is random on the

! A version of this section has been published. S. Du, J.D. Wilson and E. Yee, 1994,
Atmospheric Environment 28, 1211-1217.
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range (-, «). According to information theory (Jaynes 1957}, p(x) should:
(a) reflect all the information we actually have; and

(b) subiect to constraints implied by the given information, maximise the function

HE) = - [ px) I [fl‘,i‘l) dx @.1.1)

—

Here P, is a scale for probability density, quantitatively irrelevant to the maximisation of
H. H(p) quantifies missing information (Baierlein 1971; Guiasu 1977), ie. provides a
numerical measure of the amount of additional information needed to determine the pdf
correctly and uniquely. It may be surprising that the "amount of missing information,” on
first sight a qualitative concept, can be given a unique quantitative measure. We will
attempt no formal justification, but perhaps the following words might help. We reduce
our uncertainty about the pdf with the help of information given us (e.g., moment
constraints). However uncertainty remains, because an infinite number of pdfs are
consistent with the given (finite number of) conswraints. The principle of scientific
objectivity dictates that we be maximally wuncommitted about what we do not know
concerning the pdf, and the requirement that p(x) maximizes H(p) enfoices that principle:
by satisfying (b) in our choice of p(x), we are "maximally non-committal with respect to
missing information” (Jaynes 1957).

Now, we seek a pdf p{(x) that maximizes H(p), subject to the constraints:

f“ x!p(x) dx = M, (G=12.....N) (

and the normalization condition [_* p(x)dx = 1. We zet M, = O, without loss of generality.
Introducing appropriate Lagrange multipliers {4, , k=0..N}, (Swokowski 1979), one

maximises the functional H* = H"(p) defined irom
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H™0)=— [ "px) In px) de+h,=D{ 1~ { Tpt) dr} .

- -

N
+3 X Mk-f’“xkp(x) dx).
k=1 el

Functional variation with respect to the unknown pdf, p(x),

dH "
5p(ip)_) =0, (2.1.3)
yields the following mmi pdf:
N
p(x) =exp| - Y A, x*| . (2.1.4)
k=0

where the N+1 unknown Lagrange multipliers arc determined from the normalization

condition and the given moments by the implicit relationships

N
exp(A,) =f°°exp( >3 AxNdx=2Z, €2.1.5)
- k-0
and
1 &
M== f “xJexp(-3_ Ax “ydx, j=1.2,....N. (2.1.6)
ZJ - ey

If N > 2, analytical solution is impossible, because the numerator of (2.1.6) involves un

integral which cannot in general be expressed in terms of elementary functions. We infer

that:

D If we seek the mmi pdf for a random variable x defined on (-, «), subject to
constraints (i.e., available information) of the usual form (viz, a set of moment

constraints), our search can succeed only if we have an even number of moment

constraints.
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{an From (2.1.4), to ensure the pdf reproduces the known moments and vanishes for
very large |{x|, we must require 4, > 0, where N (necessarily even, from I) is the
highest order imposed moment constraint.

2.1.3. Pdf’s for vertical velocity (w) in the CBL

We assume available the information that:

<w> = 0,

<w?> = 3.0<u>>?,

where S is the skewness. A value of about 3 for the kurtosis is supported by data from the
Boulder Atmospheric Observatory (see Figure 2.1.1), and by aircraft observations (Hanna
1982).

2.2.3.1 The mmi pdf

The mmi pdf, which 1s in principle to be preferred, is:

4
pa(“, ’z = exp( Z )"k(z) W ’

k=0

At each of ten heights within the CBL, we determined numerically the set of values (2,
A,..... A,) consistent with the four velocity-moment comstraints, and the normalization

condition.

2.1.3.2 Bi-Gaussian pdf



Baerentsen and Berkowicz (1984; hereafter BB) proposed to use in the CRL the

pdf
. A Axp{— (u.-—u.-A)z . B nxp!— (u«bws)z 217
a\’t he - —_— > =.1.17)
V2rmo, [ 20, v2no, 20,

where A and B are the fractional areas occupied by thermals and the compensating
downdrafts, and w, (wg) and 6 , (0 ) are the mean and the standard deviation of the

fluctuating vertical velocity within thermals (downdrafts). Making no use of information

on the kurtosis, but assuming

g, = w,, Ty = Wy (2.1.8)

BB obtained the parameters:
o,=w =[(<w3>2+8<w2>3)m'-<w3>]l4<w2>
B~ "B :
= = ,2 2 C
O, =w,=<w >/2wg,, (2.1.9)

A=w, l‘(wA + WB), B = 1w, l(wA + WB)
Luhar and Britter (1989) used Egs. (2.1.9) in their LS model. Weil (1990), assuming
(rather than (2.1.8)) that o,/w, = 0g/w,; = R (where R is an arbitrary constant taken as
1.5), used similar expressiorns. Note that in view of the discussion of Subsection (2.1.2),
it is not possible to construct the mmi pdf corresponding to the bi-Gaussian (2.1.9).
One is quite at liberty to specify the parameters of the bi-Gaussian otherwise than
(2.1.9). We are interested to see whether the bi-Gaussian can approximate the mmi pdf
that corresponds to the given information. The mmi pdf, as stated, made use of the known
kurtosis: so that information, if the comparison is to be fair, must be brought to bear in

fitting the bi-Gaussian.

Invoking knowledge of the kurtosis, we require o solve



A+ B =1,

A(Gi + wj) + B(oi + w;) = <w?>. (2.1.10)

A(3wA o+ wj) - B(3WB ol + wg) = <w3>,

4 22 4 4 22 4\ _ 4
A(3o , oW, 0, +wA)+B(3oB+6wBoB+wB)—<w >.

Now the assumption (2.1.8) is not supported by experimental data (Lenschow and

Stephens 1982), so we close the set of equations (2.1.10) by instead assuming

A = 04. (2.1.11H)

This is supported by many experiments (Hunt et al. 1988; Fritsch and Businger 1973;
among others), but is not valid as straiification tends towards the neutral condition. Under
this assumption, and provided S < 1.12 (which is usually the case; LeMone 1990), the
solution 1s

A = 04, B = 06

w, = <w’sIA, wy = (23) <w>IA (2.1.12)

o, ={<w>>-0.280<w >R, o o ={<w2>-0.927<n3523)\2

Figure 2.1.2 compares the mmi pif with the two bi-Gaussian pdf's, for S=0.2,
S$=0.65 and S=1.0. Not surprisingly, our alternate bi-Gaussian pdf generally approximates
the mmi pdf better than does the BB bi-Gaussian pdf (pay particular attention to the pdf

near the mode, whose value greatly affects the mean concentration field, Hunt et al. 1988).

2.1.4. LS models for the CBL, from bi-Gaussian and mmi pdf's

The well-mixed LS model corresponding to the Baerentsen and Berkowicz bi-
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Gaussian pdf was derived by Luhar and Britter (1989}, to whom the reader may refer. A

similar derivation, based on our (alternatively fitted) bi-Gaussian, yields a similar model:

2 2 2
dw=| - <w->Q+¢] dt +( 2<w~>} dC

2.1.13
7 _%PU(W,Z) T, ( )
(terms have the same meaning as in LB). Q and ¢ are given by:
(w —w)Ap‘Jl (w+w)Bp8
Q= * (2.1.14)

°A 08

&= - _A_ Bw‘,‘ e'f(w—w’&]
2 aZ ﬁoﬂ
+[o co, . w(w - w,) do, +W8wA
[ 4 9z 6, Jz ozf*?

[ (2.1.15:
. B Cwy . W+ wy
2 aZ ‘/EOB

do, w(w+wp)do, OJw
+ o -+ -
£ az o, 0z o

In the case of the mmi pdf, we obtain the model equation:

2<w> 3

dw = a{w,z)dt+( )~ dC (2.1.16)

L

where

2 4
a(w,2) = - i >E kA (2w !
TL k=1

(2.1.17)
dA,‘(z)

IZ

f wk1 p.,(w.2) dwllp (w,2).
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We adopted exactly the same turbulence statistics for the CBL as did LB, and we
carried out LS trajectory simulations, using both the bi-Gaussian based modeis, and the
mmi model, for tracer particles released at source heights z, = (6.067, .24, or 0.49) Z
{where Z, is the CBL depth). Perfect reflection was imposed at the top and bottom
boundaries, and the time step was taken to be 0.01 T, . The model based on the mmi pdf
consumed at least an order of magnitude more computer time than the bi-Gaussian model.

The mmi-based model and our bi-Gaussian based model produce fields of
Crosswind Integrated Concentration (CWIC) that are almost indentical, but different from
the prediction that stems from the BB bi-Gaussian (Figure 2.1.3, 2.1.4). A feature we for
the moment focus on, familiar from the convection tank experimenis of Willis and
Deardorff (1978, 1981; hereafter WD), is that the locus of the maximum concentration
descends until it reaches the ground, causing the maximum ground level concentration to
occur much closer to the source than it would in un-skewed turbulence (of otherwise equal
properties). For a given source height, the distance x,,, to the point of maximum ground
level concentration can be estimated by (Misra 1982; Li and Briggs 1987)

x - [ dz/Z,
max
heiz, wplw,

(2.1.18)

where X, ., is non-dimensional on the translational velocity U and the convective time
scale Z/w.. Table 2.1.1 gives X .., according to the present LS models; the WD water-
tank experiments; a simulation by Lamb (1978, 1982) of particle trajectories in the
turbulent field generated by Deardorff's (1974) large-eddy simulation; and the CONDORS
field experiment, (Briggs 1989). We conclude that (in regard to X,_,) the mmi model (and
its more economical relative, our alternatively-fitted bi-Gaussian) is superior to the model

based on the BB bi-Gaussian. A weakness of the latter pdf is that it implies

Mg (ew? + B<wDY)? - ands

. <0
3
& <> 4 <w?> (ew?>? + 8 <3P

for <w2> # 0. The magnitude of the mean velocity in the downdrafts decreases with
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increasing <w*>, and so takes its maximum value at <w”> = Q. The BB bi-Gaussian model
makes X increase with increasing skewness, contradicting the water-iank simulations.
In our aliernately-fitted bi-Gaussian, the mean velocity in the thermals and downdrafis is
determined by the third order moment only, or by skewness, <w’>/<w™>**, for given
velocity variance.

Returning to Figure 2.1.4, overali, the LS models simulate the CWIC distribution
in the lower CBL quite well (compare our results with Figure 7 of WD, 1976; Figure 4 of
WD, 1978; and Figure 4 of WD, 1981). We note, however, an overprediction of the mean
concentration in the upper CBL, particularly near the top boundary (the LB simulation
shows the same discrepancy). We satisfied ourselves that this feature of the simulations
is not due to the small (< 10%) increase in CBL depth over the period of each tank
experiment, nor to detrainment of tracer out of the mixed layer (to address the latter
puossibility we used partial, rather than perfect reflection at the top boundary). Possibly the
velocity statistics we (and others) have adopted poorly represent the actual flow in and
near the interfacial layer. That the maximum CWIC line does not impinge on the CBL top
(as shown by the WD physical experiments, Lamb's (1982) numerical experiments and the
CONDORS field experiments) suggest a mechanism for repelling tracer. Indeed. on

applying the LS model to the case z/Z, = 0.75, we get a high CWIC tongue which reaches
the CBL top and is reflected back.

2.1,5. Conclusion

Although it is not possible to be conclusive on the basis of comparison with
experimental evidence, we suggest on the basis of the foregoing that Lagrangian stochastic
models of CBL dispersion should be based on the maximum missing information pdf for
vertical velocity, the latter based on the first four Eulerian velocity moments (assumed
given). A bi-Gaussian based model is practically as good, when fitted as we have shown
here (to reproduce kurtosis). These details improve the prediction of the location of

maximum ground level concentration.
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Table 2.1.1.  Location X, of maximum surface concentration according to LS models.

and; WD water-tank experimerni; Lamb LES/LS simulation; CONDORS
field experiment

CONVECTION
TANK LS
WD PRESENT

BI-GAUSSIAN

“Slightly different release heights were used in Lamb's works: 0.26 corresponding to 0.24
of the WD and 0.50 t0 0.49 of the WD.

“For the mmi LS model, the X, is obtained from the calculated CWIC distribution rather
than from (2.1.18). However, we infer that the mmi LS model and the LS model derived
from the present bi-Gaussian pdf yield the same X because the mode of velocity in these

two pdf's are nearly same.
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2.2. ON THE MOMENTS APPROXIMATION METHOD FOR
CONSTRUCTING A LAGRANGIAN STOCHASTIC MODEL’

2.2.1. Introduction

In studies of turbulent dispersion it is usual to treat the underlying turbulent flow
as “statistically known,” the notion normally indicating no more than that means and
variances of the turbulent velocity field are specified. This has been completely satisfactory
for simple (eg. gradient-diffusion) models of dispersion, which hinge on rudimentary flow
knowlkedge. But modern Lagrangian stochastic (LS) "Random Flight” models, which are
used to calculate an ensemble of turbulent trajectories and thus to mimic dispersion, call
for and can usefully employ, a deeper statistical knowledge of the flow: and so give
sharper definition to what is implied (in the context of dispersion) by calling a flow
“"known."”

Since Thomson's (1987) provision of a selection critezion for LS models (the "well-
mixed condition,” Section 2.2.2), "known flow" has come to mean that the probability
density function (pdf) p, of the Eulerian velocity field is a mathematically-known function
of position. The beauty of Thomson's criterion is that, given complete Eulerian information
(p.). onc may derive with reasonable assumptions a consistent though not necessarily
unique trajectory model. Further rigorous developments cua only pin trajectory models to
an even more complete specification of the turbulent flow (eg. two-point, joint pdf's).

Here we focus on the fact that only for ideal flows is the velocity pdf p, completely
known. For any real flow one has available only partial information on p,, in the form of

a few low-order moments. The LS model for any real flow, therefore, must be built from

* A version of this section has been published. S. Du, J.D. Wilson and E. Yee, 1994,
Boundary-Layer Meteorology 70, 273-292.
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partial information. To overcome this difficulty, Kaplan and Dinar® (1992, 1993)
introduced a "moments approximation,” whereby only a finite number of moments of the
Eulerian turbulent velocity are needed. The Kaplan-Dinar method relieves the derivation
of a trajectory model equation of any fundamental difficulty, but a number of questions

remain to be answered:

(i) Does the moments approximation model] satisfy the well-mixed constraint?
(i1) How many terms in the power series for the conditional mean acceleration of a particle
need to be retained, to obtain a satisfactory simulation?

(iii) How many moments are to be involved?

We will address these questions, and we consider also an alternative approach to
building an LS model from partial information on the flow (via the “maximum missing

information” pdf corresponding to the given information). We confine our attention to
steady-state, one-dimensional problems.

2.2.2. The exact model and the approximate model

The general form of a one-dimensional LS model for the evolution of particle state

(z,w) under steady state flow conditions is (Thomson 1987)

dw = a(wz)dr + biw.z2)d( (2.2.1H)

dz = wdl. (2.2.2)

Here a(w,z) is the conditional mean particle acceleration, and b(w,z)d{ is a randoin

3 The Kaplan-Dinar model is comprehensive in that it is intended to be applicable to the
calculation of multi-particle trajectories (with correct relative velocity statistics) in three
dimensional inhomogenous turbulence. We here consider only the basic case of a single
particle in one dimensional turbulence.
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forcing, d{ being a Gaussian random number with mean zero aad variance dt.
2.2.2.1. The Well-Mixed Constraint

Corresponding to (2.2.1) and (2.2.2) is a Fokker-Planck equation which governs
the evolution of the joint position-velocity pdf of dispersing particles, p(w,z,t):

32

9 1
2 ow?

ow

el A aiz (wp) - (ap) + (b°p). (2.2.3)

Suppose tracer particles are released at t = O such that
pw,z,0) = p (2)p (wz2),
where p, is the fluid density (henceforth assumed constant), and p, is the Eulerian velocity

pdf: then the tracer particles are "well-mixed" with respect to position and velocity. It is

natural to expect that they remain well mixed, so that for all t,

pw.z1) = p (wz2).

It follows that p,(w,z) should s:atisfy (2.2.3), i.e.,

_ 9
oz

ol 1 &
(wp,) Ew (ap,) + 2 3

(b%p,) = 0. (2.2.4)

This is the well-mixed constraint, which restricts the selection of a(w,z) and b(w,z).
Evidently the w.m.c. prohibits the spurious growth of order from disorder, and thus
(speaking informally) is an entropy-evolution constraint.

Now, b(w,z) can be obtained from the Kolmogorov inertial subrange theory as
(Monin and Yaglom 1975)



bwy) = 1/C0€ (2.2.5)

or (in principle equivalently; Thomson 1987) by

bwo) = | Mz (2.2.6)

”

T,

G is a (supposedly) universal constant, here taken to be 2.0; € is the rate of dissipation of
the turbulent kinetic energy; M, (=0,?) is the variance of the vertical velocity; and T, is the
Lagrangian decorrelation time scale.

The difference between the exact model and the approximate model lies in the
specification of a{w.z).

2.2.2.2. The Exact Model

If the Eulerian pdf for the vertical velocity p.(w,z) is known, a(w,z) can be derived

from (2.2.4) in principle as (Thomson 1987)

ef1,a .
[a“‘( Eb pa] d)} ("D 9 7)
a(w,z) = : -
P,

where & is the solution of

e cp,
8_?:- = - = (2.2.8)

satisfying ¢~0 as |w|-=. However, only for particular forms for p,(w,z) can one solve

analytically for ¢.

2.2.2.3. The Moments Approximation Model
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To avoid needing explicitly the Eulerian pdf, Kaplan and Dinar (1992, 1993)

approximate a(w,z) as:

a(w,2)=Cy)+C(DW+Cy (W +Cy(w3+..+Cw *+.... (2.2.9)

Substituting this expansion into the governing equation for the characierisiic function of

P.(W,z)

60,2 = f " p,(wz)e™® dw,

and making use of eqn (2.2.4), we Lave

.00 . .~ 00 &0
- -i9[C.O-iC,—-C,——+...
’azae 4 [ o i 186 ‘862+
+ (2.2.10)
.k © b2,
+(—l)‘ ik Ckﬁﬁ-,"]q& > 8-0=0

(note that no surnmation is implied by the recurring index k).

Equation (2.2.10) indicates that satisfaction of the w.m.c. is guaranteed provided
infinitely miany terms in the expansion (2.2.9) are retained. However, the moments
approximation method is useful only to the extent that one may truncate eqgn (2.2.9) at a
small number of terms: so we need to determine how well the w.m.c. remains satisfied
upon such truncation.

By repeated differentiation of (2.2.10) with respect to 0, one can obtain (on setting
0=0) a set of simultaneous equations for the coefficents C; in terms of the moments M,.
Provided the number of terms retained in (2.2.9) is finite, a closed solution for these
coefficients in terms of a finite number of specified moments is available. For example if
we retain S terms (C,. C,, G, G, and C) in (2.2.9), we must differentiate (2.2.10) five

times, and obtain:
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dM,
C M, +C M, + CM, + CM, + CM, = —2,
1dM; p2
COM1+CXM2+CZM3+C3M4+C4AIS=E d: ‘_2_ o
1 dM, |
CoMy +C My +C M, + CM +C Mo = = —— =M, (2.2.11)
1 dhlﬁ 3 2
CoMs +CM, +CMs + CMy +CMy =2 — 2 == b°M,,

) 1 dMm, 5
CM,+C M, +C M +CM, +C M, =3 ~-2b°M,

where M, is the k-th order moment of the turbulent velocity. In general if the expansion
(2.2.9) for a(w) retains terms up to order w¥, then the set of simultaneous equations for
the coefficients C, (k<K) will involve moments as high as M.i. For the case of K=1, we
need to assume dM,/dz=0.

Our specification of the C's is slightly different from that used by Kaplan and Dinar,
who made the approximation (from dimensional considerations) that C,=-b*/2M,.
Therefore the comparisons between "exact” and "approximate” models shown in the
following section do not represent necessarily comparison:. to the original Kaplan-Dinar

mode], but rather to a modified version of it.
2.2.3. Comparison of the exact and approximate models

In this section we look at several ideal turbulence systems wherein the velocity pdf
(hence all moments) are known. Our object is to examine any deterioration of the moments

approximation model (relative to the exact mocel) due to truncation (neglect of high order

moments).

2.2.3.1. Gaussian Turbulence
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A Gaussian velocity pdf is a satisfactory approximation in many flows (Batchelor

1953), a familiar example being the atmospheric surface layer under neutral stratification.
For Gaussian turbulence, the probability density function is

p(wz) = —l—exP(— w? ).
“ 1 2M, (2:2.12)
V2M,’

and the moments are*

M, =0,
(2.2.13)
M, =(2n-DUM,".

Using (2.2.12), one readily obtains the exact model (Thomson 1987)

2 22 am,
aw,z) = - b w+—l( i l\ =

+ s 22
20, M, | d .21

and, by using (2.2.13), exactly the same expression arises following the approximate
approach,

M, 2 dM,
c,-L™: o . b 1

* 1 » = -, Cn‘=0, C4=0-
2 d: M, P M, dz

(2.2.15)

The above derivation shows that for Gaussian turbulence, these two methods are

consistent with each other, which is not surprising since the pdf is fully defined by the first
two moments.

2.2.3.2. Homogeneous Non-Gaussian Turbulence

* (2n-1)=(2n-1)(2n-3)...5.3.1.
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We now examine the flow having pdf

1 _ Ww wooa
Pa(;,)_Mmexpi[ [l°+AI(M"3)+lz(M.,"3)

i ) (2.2.16)
Ay (——)3+A (—2)%],

2 1”2
M, M,

where the A's are related to skewness (S=M,/M,*?) and kurtosis (K=M,/M,’). We will use
S$=0.65 and K=3.0 (values typical of the convective boundary layer). These constraints,

plus normalization, and the specification of zero mean velocity, imply

X, =0.9881, i, =0.5941, A, = 0.3281,

(2.2.17)
Ay =-0.2594, A, = 0.0708.

From eqns (2.2.7,2.2.8,2.2.16,2.2.17) it follows that the exact model is:

” 2 3
awy=—2" 1 22 W Viaa] 2| san ) (2.2.18)
M 1z ! MR 1 M Vi

i.e., the approximate model (2.2.9) is actually exact provided the C, are given by®

2 (i+ A,
c,.=—b2 (l—()-lTl"—l (i=0.1,2,3)
MR (2.2.19)
C,.,=0. (i>4)

The information (2.2.19) is not available, however, to the hypothetical worker not
privileged to know the pdf (2.2.16); who rather is given only a certain number of velocity

moments, and wishes to use that restricted information in the approximation (2.2.9).

5 Readers may recognize this pdf as being of the form of a maximum missing information
df. However this pdf is used here simply as a convenient example.
p P ply P

6 We are indebted to Dr. N. Dinar for noting this formula.
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1 et us for convenience set T, =30 [s] and M, = 1 [m’/s’}, The exact model (2.2.18)

becomes

a(w)=-0.01980-0.02187w+0.02594w2-0.009447w3 (2.2.18")

Cur worker knows some or all of these moments’:

M,=1, M,=0, M,=1, M,=0.65, M,=3,

(2.2.20)
M,=4.64, M,=15.03, M,=33.43, M,=100.27.

Depending on whether he is given My~ M, 0or M g~ M, or M , — M, he will deduce (in

corresponding order} that

a(w)=-0.01373-0.04226w+0.01373w2 (2.2.21a)
a(w)=-0.01980-0.02187w+0.02594w>*~0.00944 1w > (2.2.21b)
a(w)=-0.01980-0.02187w+0.025941-0.00944 11w *-9.0 10 3* (2.2.21¢)

Small differences between coefficients in 2.2.21(b,c) and in the exact model (2.2.18') are
due to roundoff errors.

We have shown that if the worker unknowing of the pdf makes use of only the
moments M , - M ,, he obtains a model (egn 2.2.21a) quite distinct from the exact model
(eqn 2.2.18"). How good or bad is his approximation? Figure 2.2.1 shows that the
difference between the exact model and the approximate model is quite large. The
deterministic term a(w) normally has the effect of returning the velocity towards its
conditional mean value. The approximate model with four or more terms dees have that
property, but with only three terms it does not. In the latter case, a(w) drives a large
positive velocity even larger.

We calculated the spread of particles released at z, = 500 m, into a domain

’ These values for M - M, follow from (2.2.16), although from the viewpoint of our
worker unknowing of (2.2.16), they are simply data made available.
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compares the calculated stadandard deviation of the particle position from the exact and
the approximate model (2.2.21a) over the range of (0, 2T,). For a short flight time, the
approximate model gives a satisfactory result due to memory of correct release statistics,
but for t>T,, it is quite wrong because the particles' flights are governed by an incorrect
conditional mean acceleration a(w).

Figure 2.2.3 shows there arises a violation of the w.m.c., with regard to both
position and velocity, when the moments approximation model is truncated at K=2 (i.c..
four moments are used, and we retain terms to order w” in a(w)). In Figure 2.2.3(a) we
show that violation of the w.m.c. in position worsens as the flight time t of the particles
increases. For t=T,, the degree of violation is not serious (due to the correct release
statistics) , but for later time, it becomes unacceptable. Figure 2.2.3(b), on the other hand,
indicates that the pdf of the particle velocity, calculated from the moments approximation
model, decays with respect to the initial pdf; in particular, at large w the probability density
grows with time. This is not surprising in view of the expansion used for a(w): the three
term approximation forces large w to be even larger.

Of course, the worker using the approximation (2.2.21a) does not know the
correct pdf (2.2.16), so would have no basis for considering the velocity pdf that results
from his model (2.2.21a) as "wrong" by comparison with (2.2.16). In fact the moments
approximation for a(w), in conjunction with other assumptions made, may (under suitable
restrictions) imply a pdf. In the present case however (homogeneous, four specificd
moments, second order polynomial), such a pdf is not implied (see Appendix 2.2).
Particles in the present simulation were released with a random velocity from the "exact”
pdf (2.2.16), but since the underlying moments approximation model does not imply a pdf,

we should not be surprised to see that at later times there is no pdf approaching (2.2.106).

2.2.3.3. Inhomogeneous Non-Gaussian Turbulence

The Eulerian probability density function for vertical velocity in the convective
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boundary layer (CBL) is commonly modelled (eg. Baerentsen and Berkowicz 1984) as bi-

Gaussian,
w-w,)? waw,)>
p(w2)=—2 ex S ,‘) B exJ—( f’) . (2.2.22)
v2na, 20, v2ro, [ 20

where A(B) is the fractional area occupied by thermals (downdrafts), w,(wg) the mean
velocity within the thermals (downdrafts) and 6 ,(o 5 ) the standard deviation of the
fluctuating vertical velocity in thermals (downdrafts). As in Du et al (1994), we choose to

relate the parameters of (2.2.22) to the unconditional moments by

A=0.4, B=0.6
1/3 2. .13
w,=M;3", W,,=§M3 (2.2.23)

UA=(M2"0.281M;B)”2, OB=(M2_0-927M32/3)”2

We will assume S=0.65 and K=3.0, typical of values observed in the CBL. In deriving

approximate models we will need higher velocity moments. From (2.2.22, 2.2.23) we get

M =4.62TM;", M =15.662M,,

(2.2.24)
M,=35.992M,", M,=116.438M, .
From (2.2.7,2.2.8,2.2.22) we obtain the exact model equations
M 040
- +

T 2M, 2
dw = = dt + = dg, (2.2.25)

p.(w) T,

where
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"oz g, oz oz Jp
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2 az \/EOB
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do, °B+ w(w +wp) do, —waw8 v,
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.
1 (w—wA)2
pA = » exp|- ——
v2mo, | 20,

1 ‘ (w+wB)2

Ps = exp- ———
y2mo, ' 26 |

A e

Again, the approximate model equation depends on how many terrns in the expansion
(2.2.9) are used. If three terms are used,
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C, = =

Using four terms.

o) 2 daM.
c, = - 92705° | o550 22,
M= dz
- dAl‘i 1 X
- 0.385h> ~ 0.265 = "
C = < .
i M,
2 dM. (2.2.31)
0.353b% o 4eq M-
M= =
C, = 2
2 M,
. M, -
- 0.115b% - 0.027 —= M.)"
C, = ~ ,

M;

while with five terms,



_ - 0293b" dM.
M" dz’

. M,  n
- 0.4186% + 0330 —= M.)"

C, = = ,
MZ
2 dn,
038162 .5 9
M,)"? dz
C=— ~ (2.2.33)
, aM,
- 000757 - 0062 —2 31"
C, = & :
M:
N : dM,
— 000857 , 9016 2
MJ" dz
c, = : .
M:

We computed the dispersion of tracc. particles in a flow in which the profile of

variance was specified as
T v 2 v 2l
> -3 - 13!
My = wiloor + [ 2|3 [y - 2| (2.2.33
) i Z, z) |

where w, is the scale of vertical velocity, taken to be 1 m/s. This profile (2.2.33) is In
craltative agreement with experimental data in the convective boundary layer (Sawford
and Guest 1987; Stull 1988). The Lagrangian decorrelation time scale was set to be

2.5M,Z,

3 : (2.2.33)

wy

T,(2) =

Using (2.2.34) is equivalent to taking



48

w?
b = s . 2235
(1.25 Zi) (2.2.35)

IJ|~

Simulations were performed for p< 3u z=500 m) and well-mixed releases, with a timestep
0.01T,. The height of the boundary layer Z, was 1000 m.

Figure 2.2.4 shows that the approximate models satisfactorily predict the standard
deviation of the dispersing particle position, but not the mean height. The five term
approximation is not, however, superior to the four term one.

Figure 2.2.5 shows the mean density distribution (C) at =2T, (where T, is
the Lagrangian time scale at the mid-point of the computational domain) of particles
released from a well-mixed initial state (C=1). The four term approximation satisfies the
w.m.c. (within statistical error), but the three and five term approximations do not (note
the accumulation of particles at the middle of the domain and the deficit near the
boundaries). This suggests that using more terrns does not necessarily improve the
approximate model. At first glance, this seems strange. But commoi sense suggests the
expansion for a{w,z) terminating at the term C,w* requires to have K odd and ¢ <0,
otherwise a(w,z) can drive the magnitude of a large velocity even larger. For example if
K=4, then a positive (negative) C; wili force a positive (negativc.) velocity of large
magnitude even farther away from its equilibrium value, w = 0. i» the homogeneous case
we studied in th2 last subsection, this problem is not seric:: because the coefficient C, is
extremely smail. In strongly inhomogeneous turbulence, €, may be numerically large due
to the velocity variance gradient term, so that truncating at the C,w* term could be
problematical.

The above analysis suggests that when using the moments approximation one

should truncate the expansion for a(w) (in powers w*) at an odd power (k<K, K odd).

2.2.4. Forming an optional Lagrangian model from partial information on Eulerian

velocity statistics
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In this sub-section, rather than as earlier assuming a fully-known pdf (whose
specification was not however available for the purpose of exploiting the Kaplan-Dinar
method), we examine the situation where an LS model is to be built strictly from partial
information - so thai one cannot, even in principle, appeal to an "exact” model as =
criterion. Specificaily, we wiil assume only the N lowest-order moments are known, and

we compare the following two models
(i) the modified Kaplan-Dinar moments approximation model;
(ii) the well-mixed model that corresponds to the "maximum missing information” pdf
(n.b., not the true pdf, which is unknown) implied by the given moments.
The model (i) is by now familiar: all information given about the Eulerian velocity is used
to determine the coefficients C's of a truncated expansion for a(w,z). Model (ii) begs
explanation.
When one requires to form a pdf on the basis of partial information about & random
variable, the scientifically objective choice is that pdf which is “maximally uncommirtted
with respect to missing information” (Jaynes 1957). This objectivity is achieved by

choosing the pdf which maximizes the functional

H(p)=- f “p(w) In[p(w)} dw

under the given constraints {this inference principle is well-known in statistics, and has
already been applied in { - context of LS models by Du et al. 1994). Having formed this
"mmi” (maximum missing informations} pdf, one may then (in principle, though not

necessarily easily) derive the correspondiig well-mixed LS model.
2.2.4.1. Optimal Trajectory Model From N=2 Given Momenits
Suppose we are given the mean and variance of the Eulerian velocity. We are not

entitled to assume the Eulerian pdf is Gaussian.

The mmi pdf in this case (not the actual pdf, which remains unknown) is Gaussian
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(Du et ai. 1994). Therefore the LS model obtained from the mmi principle and the w.m.c.
is simply the model (2.2.14) given earlier (Subsection 2.2.3.1).
If we employ the moments approximation in this case, we are limited to the

expansion:

a(w,2)=Cy+C,w, (2.2.36)

and we obtain

Co=—— C=- (2.2.37)

Clearly this model is quite different from (2.2.14) or (2.2.15). We suspect this is not a
well-mixed model in the inhomogeneous case. We have been unable to prove this point.
But in random flight experiments (using the inhomogeneous turbulences profiles of
Subsection 2.2.3), the initial well-mixed distribution was retained much more closely by
the mmi model (2.2.14) than by the moments approximation model (2.2.36,2.2.37), as
shown in Figure 2.2.6. This finding must be qualified by stating that, (a) we did not know
the correct initial velocity statistics for the moments approximation model; and (b),
implementing perfect reflection at the boundaries implied an unavoidable (though arguably
minor) violation of the w.m.c. (see Wilson and Flesch 1993) by BOTH models.

In this case, our exploitation of the mmi principle to build an LS model from partial
information has yielded a well-mixed (and consequently mere-rigorous) model than does

the moments approximation (2.2.36).
2.2.4.2. Optimal Trajectory Model From N=4 Given Moments

In this case, given the four lowest-order moment constraints, the mmi pdf is (Du
et al. 1994)

4
pw:2) = exp(—z A (Dw 4,
k-0
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1

where the A (z)'s are determined by the four known moments and the normalization

condition. Following Thomson (1987), the corresponding well-mixed LS model is

M,
a(w,z)=- ?Z kA (z 2w

L k=1

(2.2.38)
dl‘(z)

+Z

f_ w ! (w’,z)dw’]lpu(w,z).

We refer to this as the mmi model.

The two methods under consideration use exactly the same information about the
Eulerian velocity distribution, but proceed on different routes to obtain the LS model
equation. Which is better? To answer this, we simulated dispersion from a continuous
point source at height z = 0.24 Z in the convective boundary layer (of depth Z)), adopting
the velocity statistics My(z), M ;(z) and T, (z) that were previously used for the same
purpose by Luhar and Britter (1989), plus a supplementary (and justified: see Du et al.
1994) assumption that M, = 3.0 M,".

Figure 2.2.7 compares predictions of the two models for the contours of cross-
wind integrated concentration (CWIC), and may be compared with the corresponding
contours of the convection tank experiment of Willis and Deardorff (1978; their Figure 4).
The mmi model seems superior to the modified Kaplan-Dinar model. In Figure 2.2.8 we
compare predictions of the alongwind profile of ground-level CWIC. Again, the mumi
model gives the better prediction. In particular, at (what should be) suitably lurge
downwind distances (X ~ 4), the CWIC predicted by the modified Kaplan-Dinar model

is not well mixed.
2.2.5. Conclusion

From a practical viewpoint, the concept of an "exact” Eulerian velocity pdf is
absurd (as any experimentalist would confirm), and the Kaplan-Dinar aspiration to build

a Lagrangian stochastic mode] from a realistic, partial knowledge of the turbulence (a few



low-order velocity moments) is appropriate.

However, what is involved here is a statistical inference problem, and the Kaplan-
Dinar approach may not be the best one. We have shown that a danger of the Kaplan-
Dinar approach is that one may obtain a random flight algorithm that fails the well-mixzd
condition (does not keep initially well-mixed tracer well-mixed). On the basis of our
findings, we suggest that a better altemnative to the Kaplan-Dinar approximation is to
construct from the known velocity statistics the maximum missing information probability
density function; then by the usual procedure (Thomson 1987) derive the corresponding

well-mixed trajectory model.



Appendix 2.2. Eunlerian velocity pdf implied by the moments approximation

Thomson (1987) has shown that the Eulerian velocity pdf p,(w.z) must be a
solution of the Fokker-Planck equation that corresponds to any suitable model for the
evolution of particie velocity (the well-mixed condition referred to earlier). We note that
if the expansion (2.2.9) for the model coefficient a(w,z) is substituted into the FP equation,
one may obtain an Eulerian pdf that derives consistently from the principal assumptions
made (Markovian evolution; model must be well-mixed; coefficient b independent of w;

power series expansion for a(w,z)). In the case of homogeneous turbulence, the solution

to the FP equation is:

C

—X w1y (A2.2.1)

r (w)=exp[—2—(C +C, w+&w3+
* p2 % 27 K+l

If K is even, this solution (eqn A2.2.1) is unbounded, and so NOT a pdf.

On the other hand if K is odd, the solution (eqn A2.2.1) is of the form of an mmi
(maximum missing information) pdf (for a detailed description of the mmi pdf, the reader
is referred to Du et al. 1994). However, determining the coefficients C,, C, ... C;. of the
modified Kaplan-Dinar expansion (and of the above pdf) requires knowledge of 2K
velocity moments®, whereas the pdf (A2.2.1) is exactly the mmi pdf corresponding to a
smaller number (K) of given velocity moments. C. can be determined by the normalization
condition or any one of the given moments.

It is seen, then, that the modified KD model, in effect, may imply a pdf. Presumably
the principle of consistency of approximation requires that the particles of a modificd KD

simulation be released with a random velocity from that pdf.

8 The original Kaplan-Dinar approach requires 2K-1 moments plus an assumption on C,
in the one dimensional case.
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Figure 2.2.1. Comparison of a(w) in the exact model and the three term approximation

model. The flow is homogeneous non-Gaussian.
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The predicted standard deviation by both the exact model and the threc

term approximation model in homogeneous non-Gaussian turbulence.

Perfect reflection condition was applied at both top and bottom

boundaries. 5,000 particles were released at =500 m with initial velocity

drawn from the Eulerian velocity distribution. In calculation, At=0.01T,.
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2.3. THE EFFECTS OF HIGHER EULERIAN VELOCITY
MOMENTS ON THE MEAN CONCENTRATION
DISTRIBUTION’

2.3.1. Introduction

It is natural to presume (though possibly hard to prove) that the lower the order
(n) of a given turbulent velocity moment <w">, the more important its influence on the
spread of material from a source {an assumption implicit in most dispersion models).
Knowing the first and second moments {mean, variance) of the Eulerian velocity enables
us to understand many important features of tracer dispersion. But there are circumstances
when knowing those two moments alone is insufficient. For example, in the case of
dispersion from sources in the convective boundary layer (CBL), taking account of the
third order moment (or skewness) can greatly improve model performance (Baerentsen
and Berkowicz 1984; Luhar and Britter 1989; Du et al. 1994).

However, observations of velocity moments of orders higher than four are scarce.
Furthermore reported CBL skewness and kurtosis (Sawford and Guest 1987; LeMone
1990; Du et al. 1994; Lenschow et al 1994), when appropriately normalised (mixed-layer
scaling). exhibit more variability (from run to run, from experiment to experiment) than
dovs the variance. This is presumably due to the fact that determining higher moments to
within the same fractional error as lower moments requires a longer sampling time
(Lumley and Panofsky 1964; Lenschow et al. 1994): a given velocity record will usually
give better estimates (ie. statistics which are closer, in relative terms. to the corresponding
population parameters) of lower order moments than of higher. One wonders, then, how

much to trouble oneself, with the provision of high-order statistical information on the

? A version of part of of this section has been published. S. Du and J.D. Wilson, 1995,
preprint volume for the 11th Svinposium on Boundary Layer and Turbulence, pp 180-
183, Amer. Meteorcl. Soc.



flow, and the buzlding of dispersion models able to capitalize on such knowledge.

A Lagrangian stochastic (LS) trajectory model is an ideal 100l to examine the
influence of the Eulerian velocity moments on the pattern of dispersion. Given a set of
moments, we can coastruct a probability density function (where practicable, we prefer to
form the "maximum missing information” pdf ); then from the specified pdf. by the method
laid down by Thomson (1987), we can develop the comresponding LS dispersion model.

With an LS model, we can also examine the small time (or near source) behavior
of vertical dispersion, as earlier studied by Hunt (1985), due to continuous point sources
in inhomogeneous, skewed turbulence, and the inference made by Hunt that under strongly
convective conditions the vertical dispersion may be dominated by the vertical gradient of
the third order velocity moment. We will find out, with our model, the range within which
Hunt's predictions are good representations of dispersion and, whethear his inference is
correct.

In this study, we confine ourselves to one dimensional (vertical) dispersion, and to
cases where moments up to the fourth order are available. We consider convective

conditions only, as almost all reported data on skewness and kurtosis are obtained for that

case.

2.3.2. Vertical velocity (w) moments in the Convective Boundary Layer

In a horizontally-homogeneous CBL, <w>=0. Many empirical formulae for <w?>
have been advanced, on the basis of field measurements and physical simulations
(Lenschow et al. 1980; Sawford and Guest 1987; Sorbjan 1991). Here we adopt the

Sawford and Guest empirical formula:

4(z/Z,-0.3)
2+|2Z.-0.3])*"

<w>iw 2=1.1(ZZ)*(1-2Z)*"(1- (2.3.1)

v here w. is the convective velocity scale and Z, is the CBL height. This formula represents

the body of observations, for any z/Z, to within about +50%
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There is much greater scatter in the case of <w’>. Sorbjan (1991) analyzed the
Limagne, Beauce, AMTEX and Minnesota experiments, and found skewness
S=<w’>/<w’>" varied between 0.0 and 1.2 (considering all heights and all experiments),
with a mean value 0.5. Sawford and Guest (1987) obtained S=0.8 with a substantial error
range, from aircraft measurements (Willis and Deardorff 1974) and water tank experiments
(Willis, quoted by Raerentsen and Berkowicz 1984). Although the scatter is large,
skewness in the CBL appears to be roughly height-invariant.

Reported results for <w*>, or kurtosis K=<w *>/<w %> are even fewer. Du et al
(1994) obtained K=2~5 by analyzing BAO data. From the AMTEX and ELDOME
experimental data, Lenschow et al. (1994) deduced K=3~5. Again, the vertical profile of

K appears height-invariant.
2.3.3. Eulerian vertical velocity pdf and the corresponding LS model
2.0 7.0 e maximum missing information pdf

To design an LS model satisfying Thomson's (1987) well-mixed criterion, the
Eulerian velocity pdf p,(w) must be known. Invoking the maximum missing information
(mmi) principle (Du et al. 1994), we can construct an mmi velocity pdf of the exponential

form

AV
p(wy=——exp[-3_ AN, 2.32)

w L0 “

where N is the number of known velocity moments (in this section N=4), and o, =<w*>'"?
is the standard deviation.

Since in the CBL the mean, skewness and kurtosis of the vertical velocity are (at
least roughly) height independent, the A's in p,(w) can be taken to be height independent.
For given (S.K) the A's can be fitted by assuming o, = 1 ms’. In the resulting pdf, ail

height variation is due to height variation of g,..
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2.3.3.2. The LS model corresponding 1o the mmi pdf

According to Thomson's (1987) well-mixed criterion, the coefficients a{w.z,t) and

b(w,zt) of the general Markovian LS r del

dw=a(w,z,0)dt + b(w,z,0)d(,
(2.3.3)
dz=wdt,

must satisfy

9, @& 3 1 &
@p =Pa S 2 (ap)-1L
Pa ot az(wP") * o @p.) 2 gw?

(b3p,)=0. (2.3.4)

In equations (2.3.3), d{ is a Gaussian random number with zero mean and variance dt.

Note that

Lp(w,z,1)=0 (2.3.5)

is implied by the LS model equations (2.3.3) and is a Fokker-Planck equation governing
the evolution of the pdf of the tracer particle's velocity and displacement. In other words,
equaiion (2.3.4) means that the Eulerian pdf p,(w,z,t) is a solution of equation (2.3.5).

From the Kolmogorov inertial subrange theory (Monin and Yaglom 1975), we

expect

b(w,z,=,/C €. (2.3.6)

Here C, is a universal constant, which we have taken to be 3.0 (Du et al. 1995); € is the
mean rate of dissipation of turbulent kinetic energy. Since we consider one-dimensional
dispersion, the other model coefficient a(w,z,t) is uniquely determined by eqn (2.3.4).

Considering stationary turbulence and substituting (2.3.2) into (2.3.4), we obtain
(Du et al. 1994)
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b2 00, . w,.w _dw
a(wz)=- F+a - 1-F—y—Lp =2 . 5
(w2} 20, " oz {f —m( ow) owp“ Ou,yp" (3.7
where
ad w
F=Y_ KA (—)L (2.3.8)
k=1 ..

w

To implement an LS model, an initial velocity for each trajectory is required.
Usually it is assumed that the initial velocity distribution for passive tracer particles is the
same as the Eulerian velocity distribution at the source location (otherwise the
concentration field obtained is referred to as conditional). An algorithm was developed to
produce a random initial velocity for any kind of turbulent field, provided the Eulerian

velocity pdf is given. Details are given in Appendix 2.3.

2.3.4. Sensitivity of the mean concentration distribution to the skewness and

kurtosis of the vertical velocity

The dissipation rate € was specified by Luhar and Britter's (1989) empirical
formula

3
e=21[1.5-1.2(Z)), (2.3.9)
V4 Z,

which accords quite well with the Ashchurch and Minnesota data.

We calculated the paths of 20,000 particles, with time increment At =
0.01(2<w?>/C,¢). Perfect reflection was imposed at beth boundaries.

Before embarking on numerous calculations with (2.3.7), we examined the special
case of Gaussian turbulence (S=0.0, K=3.0), for which eqn (2.3.7) must in principle reduce

to
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Co€ 1, w? w>
0% pi—( +]}8< .

a(w,z)=-
2<u> 2 <u> oz

(23.100

which is the unique 1-d model for this case provided by Thomson (1987). Having been
unable to reduce (2.3.7) to (2.3.10) analytically, we resorted to a numerical check: Figure
2.3.1 shows that contours of crosswind-integrated concentration (CWIC) calculated with
(2.3.7) and with (2.3.10) are equivalent (bearing in mind the inevitable stochastic error).
In Figure 2.3.1 and henceforth, X stands for tw./Z; (or xw./UZ), - the dimensionless travel

time (or downwind distance) from the source.

2.3.4.1. Sensitivity to the skewness

Holding kurtosis K=3.0, we constructed the mmi Eulerian pdf of vertical velocity
for skewness S=0.0~1.0, Figure 2.3.2(a). The pdf is skewed toward negative velocity for
positive skewness and the mode of the velocity becomes more negative with increasing S.
When S>0.6, the shape of the pdf varies very rapidly with skewness.

In this sub-section, we adopt source height 2=0.49Z,, consistent with the Willis
and Deardorff (1981) water tank simulation. Figure 2.3.3(a) shows the variation of
ground-level CWIC with skewness. Maximum ground-level CWIC increases with
skewness (see also Figure 2.3.3(b)), but the displacement of that maximum rclative to the
source, X, .., is almost unchanged. The latter point is surprising at first glance. Earlier
studies (eg. Lamb 1982) showed that the slope of the axis of maximum concentration is
proportional to the ratio of the mode of w to the alongwind advection velocity U, so that
one might expect that X, would be smaller for more-strongly skewed turbulence than for
weakly-skewed turbulence. We offer an explanation for this phenomenon as follows.

The location of maximum ground concentration is mainly determined by two
quantities in the downdraught: the average vertical velocity in the downdraught, <w >, and
the standard deviation of the velocity fluctuation, 0,4 Intuitively, X,,,, decreases with

increasing <w,> or 0,. Now, larger S implies larger <w,> (because <wg> is proportional
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to the mode of p,(w); Hunt et al. 1988). Larger S also implies smaller o 4 (refer to Fig
2.3.2; or see Du et al. 1994). Thus a larger S will on the one hand tend to increase X,
due to the smalier o,, and will on the other hand tend to decrease X, due to the larger
<w >, i.e., those two effects are in opposition. We hypcthesize that this is why X is
quite insensitive to skewness.

We calculated the mean plume height,<Z>,

<Z>= fo Z4C z dy fo %C dz (2.3.11)

and the standard deviation of the spread of tracer particles, g,,

o.<[ fozfc (z-<Z>) dof fo Zic dz3'”. (2.3.12)

As shown in Figure 2.3.4, with increasing skewness, <Z> decreases rapidly at first to a
minimum elevation, begins to rise from that point to the initial height, overshoots to a
higher position and then approaches its equilibrium: <Z>/Z=0.5. The behaviour of o, is
simpler: in the near source region (X<1) and the region far away from the source (X>3),
o, is insensitive to the skewness; while in the intermediate range, o, increases with the
skewness.

Contours of CWIC in the X-Z plane are shown in Figure 2.3.5. For large skewness
(S>0.8) the cross-wind integrated plume is divided into downward and the upward
branches, both of them becoming narrower with increasing skewness. It is quite obvious
that it is the downward plume that is responsible for the high maximum ground level
CWIC shown in Fig. 2.3.3. Also worthy of mention is that for stronger (positively) skewed
turbulence, the effective zero-concentration area in the near source region becomes bigger,
desirable for that region; but the sacrifice is that in the vicinity of the plume centreline

touch down point, the CWIC will be larger.

2.3.4.2. Sensitivity to the kurtosis
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We now hold S=0.5, a plausible magnitude for skewness in the CBL., and we
construct the mmi Eulerian velocity pdf, as shown in Figure 2.3.1(b).

We carried out a series of numerical calculations with the LS model for kurtosis
K=2.0~6.0. In Figures 2.3.6, 2.3.7 and 2.3.8 we show the variation, with the magnitude
of kurtosis, of ground-level CWIC, mean plume height and standard deviation of ihe
spread of tracer particles, and the contours of CWIC in the X-Z plane. The effect of
decreasing kuriosis is qualitatively equivalent to increasing skewness. The spatial

distribution of mean concentration is very sensitive to kurtosis when K <3.0.
2.3.4.3. Other faciors affecting the concentration field

We have not considered all the factors that might affect our prediction of the
concentration field, so that the agreement of our predictions with physical simulations
(Willis ang Deardorff 1981) and field experim=nt (Briggs 1993) is not expected to be
perfect. Among factors bearing on the validity of our model are the boundary condition
for the dispersing tracer particles, and the universality of the constani C, employed in our
moazi.

Wilson and Flesch (1993) found that no reflectionn scheme can satisty the well-
m:cd condition, when the velocity normal o the reflecting boundary is skewed. In other
words, any reflection condition employed in the model will introduce some error in the
concexntration field. An associated problem is that the structure of the top region of the
C3L is very complicated, likely making the concentration prediction in that region even
worse.

As to the influence of C,, we ran the model with G,=2.0, 3.0 and 4.0. As shown
in Figure (2.3.9), C, can indeed make a big difference. It seems that C, = 2.0 gives best
simulaticn of the Willis and Deardorff (1981) experiment within the framework of the
present model; however, we cannot claim that it is generally true, because in the model and

the paysical experiment there are so many other uncertain factors that can affect the

comparisor.



2.3.5. Small time behaviour of vertical dispersion

Hunt (1985) proved that at asymptotically smali times after release at z=z_ into

unbounded turbulence of arbitrary statistical character

d<Z> _ d<w*>

z, 2.3.13.1
dr oz ( )
d<z®> _ 5 2, . 3 G> 1oy 42 (2.3.13.2)
dt 2 9 3¢9 T
where
<Z”> = <(z-z)> (2.3.14)

(note the deviance from the definition of Z' we used earlier; we here adhere to Hunt's
definition, though it is not necessarily a good indicator of the spread, unless <Z> = z.).
Thomson (1987) showed that LS models satisfying his well-mixed condition indeed
reproduce this small time behaviour, while earlier models (Thomson 1984; Van Dop et al.
1985) in which the conditional mean acceleration g, is linear in u; do not.

Hunt (1985) inferred from (2.3.13.2) (see also van Dop et al. 1985; Hunt et al.
1988) that in strong convection (i.e., strongly skewed turbulence), for near-ground
releases, the variance of particle spread should reduce to

3
_1_ A<n'> ¢3
oz

<z"> = (2.3.15)

because the variance of vertical velocity in the near ground region is small'’.

'* I¥+. D. J. Thomson (UK Metecrological Office) is acknowledged for pointing out that

whis: ¢ is very small the Lagrangian velocity structure function varies quadratically with
t. 0 the Go€ term can be neglected. We interpret "very small” as t«{,, the Kolmogorov
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Equation (2.3.13) is rigorously correct for extremely small travel time T, . In
homogeneous, stationary turbulence, T, is related to the measurable statistics <w > and
£ by T, = 2<w’>/Cge. But in inhomogeneous (and/or nonstationary) turbulence there is no
such simple relationship, and T, is dependent on releasing time and location. Neve, ... zless,
here for . :: sake of discussion we evaluate T, at the source location and release time with
Ty =2<w*>/Cgt.

It would be useful were (2.3.13) valid for a longer travel time, since an analvtical
prediction has sometimes its advantages. A possible application might be to calculate the
mean concentration distribution in the near-source region (see Raupach 1989 for a
practical example). With our uniquely correct well-mixed model, we can find out to what
travel distance/time ¢2.3.13) remains approximately valid.

We choose a variance profile

<W'>=WS‘(1 _—Z:) (2.3.16)

i

where w, is a velocity fluctuation scale. We set z = 0.5 Z; to minimize the boundary cflect
on dispersion in the near source region. We calculated dispersion in skewed turbulence
with S = 0.5 and K = 3.0. As shown in Fignze 2.3.10, the Hunt prediction (eqn 2.3.13)
represents quite well the mean plume height and the standard deviation of particle spread
uptot ~ 0.5T,.

We compared the Hunt formulae, again with (S = 0.5, K = 3.0), for a very low
(near ground) release height (z/Z,= 0.01). Although the Hunt prediction is not supposed
to remain rigorously correct for this case (because dispersion is affected by the flow
boundary), it is our intention here to examine if practically it does a good job in predicting
dispersion. This example also enables us to tes his inference that for short travel time the
vertical dispersion from a near ground release is dominated by the vertical gradient of the

third moment of velocity. We chose the velocity variance as

micro time scale (Monin and Yagiom 1975, p359).
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- 2.2 %
<y =1 Ry T2 231
> 3.
P 2.
1
which gives
. 3
d<w’> w,
=1.8%§s—_, (2.3.1%)
dz Z

i

similar to that used by Hunt et al. (1988). As shown in Figure 2.3.11, upto /T, ~ 1.0 eg4n
2.3.13 accords very well with our LS simulation. It is hard to explain why eqn 2.3.13
prevails for longer travel time {/T)) in the latter example, but a possible reiason may be the
presepce of the reflecting boundary.

We quantify the relative importance of inhomogeneity by the ratio Ry, = T, /T .
where Ty, = (do,/dz)"! is a time scale of inhomogeneity (Wilson et al. 1983). In the twa
above examples R, ~ 0.5, which corresponds to a fairly strong inhomogeneity in the
atmospheric boundary layer and plant canopy layer. So, we suggest thi in those turbulent
flows the Hunt formula for the dispersion may be valid uptot ~ 0.5T,.

Now, we turn to examine Hunt's inference (eqn 2.3.15).

Figure 2.3.12 compares our model calculation of dispersion in skewed turbulence
with Hunt's (2.3.13.2) and the simplification (2.3.15). We see that neither of Hunt's
formulae agrees well with our prediction (note that in Figures 2.3.12 we used X as the x-
axis, while in Figure 2.3.11 we used /T ; and X = 1 implies much longer downwind
distance than t/T, = 1 does. The reason we use the former here is that in the literature most
experimental diffusion data for the CBL are presented in the form of o, ~ f(X).). In Figure
2.3.12 we also show the model prediction of dispersion in Gaussian turbulence (S = 0.0,
K = 3.0).

Hunt (see also Hunt et al. 1988) considered the experimental data of Briggs (1985)
as supporting his inference (see also Briggs 1993). However, we note that both
Nieuwstadt (1980) and Deardorff and Willis (1974), from whose work Briggs drew his

conclusion, obtained the "3/2" law (i.e., 0, =« X**) but offered no explanation why such a
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law prevails and whether the effect of velocity variance is negligibie. Figure 2.3.12(b)
shows that the existence of a "3/2" law does not necessarily imply that the diffusion is
dominated by the gradient of the third velocity moment, since in Gaussian inhomozeneous
turbulence the vertical spread also follows a "3/2" faw.

There is a simple explanation for &he "3/2" law in strongly inhomogzneous
Gaussian turbulence: in calculating particle dispersion, an effective velocity variance, rather
than the velocity variance at the source heiot, should be emploved. The effective velocity
variance is an average of the variance (with the mean concentration as weighiing function)
over the domain that can be reached by dispersing particles. It is obvious that the effective
variance is an increasing function of wavel distance (or time) since (in the case we
consider) the vertical profile of <w™> increases monotonically with height, and the majority
of the dispersing particles tend to fly to higher elevation after leaving the ground-levei
source due to the presence of the reflecting boundary. If the effective velocity variance
follows a "1/2" law (Le.. <W> .. = X*?), the variance of particle spread will then follow
a "¥/2" law. G~r numerical calculations show that for a vertical profile of velocity variance

given by (2.2.17), o, does follow approximately a "3/2" law.

2.3.6. Conclusions

With a uniquely correct Lagrangian stochastic model, we studied the effects of
third and fourth order moments on the spatial distribution of mean concentration in non-
Gaussian (positively skewed) turbulence. The main findings are: (1) when the turbulence
is strongly skewed (S$>0.6), the mean concentration distribution can be very sensitive io
the skewnress; (2) the maximum ground-level cross-wind integrated concentration
increases monotonically with skewness, but the downstream: distance for that maximum
concentration remains almost unchanged for different values of skewness; (3) the mean
concentration distribution is sensitive to kurtosis as K<3.0; and, {4) the effect of
decreasing Kurtosis is qualitatively equivalent to increasing skewness. These findings

suggest that it might be worthwhile to incorporate the third and fourth order moments into
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a diffusion mclel, especially when the velocity skewness is big and the velocity kurtosis
is small.

We examiried Hunt's (1985) small fime predictions of vertical dispersion. Our
model calculairsns show that s predictions well represent the dispersion for travel times
up to T, ~ € 5. But his inference that for = ground -level release the rate of dispersion is
dominated by the gradient of the third velocity moment is not correct, i.e., a “d<w'>/dz

controlied region” does not exist.



Appendix 2.3. An aigorithm to generate random numbers with given pif

Whenever an Eulerian velocity pdf is availabie, we can derive a siochastic
differential equation for the evolution of a tracer particle's ~elocity and displacement. For
any given turbulent flow (for the present work by “given” we mean that the pdf for
velocity, p,, and the dissipaticn rate of turk ulent kinetic =ncrgy, €, are provided), we have
a hypothetical homogeneous ard stationary ficw characterized by p, and € of the (real)
given flow at the source location, z, and the initial time instant, #,. In this hypothetical flow,
the evolution of a tracer particle’s velocity iz simpiy written as

b2 3

dw=2_ S In p (wz_1)de+b(w.= 1340 (A2.3.1)
2 ow “ :

Integrating eqr (A2.3.1) from t = 0 to t = T, (where T, = 20 ,”/C € is the Lagrangian
integral time scale in the hypothetical homogeneous and stationary turbulence) with an
initial velocity drawn from a Gaussian distribition, we obtain a random velocity w,,. This
W, is the desired iritial velocity for the given pdf p , (w.z ( ,t 4 ). Figure A2.3.1 gives an
exanple of this alg: ithm. In calculaticn, dt = 0.01T, was used and 10,000 particles were

released.
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Figure 2.3.1.  The variation of the shape of Eulerian pdf of vertical velocity with
skewness and kurtosis. (a) For a given kurtosis, K=3.0, the variation of pdf

with S; (b} For a given skewness, S=0.53, the variation of pdf with K.
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Figure 2.3.3.
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The variation of the cross-wind integrated concentration (CWiC) with
skewness. (a) The variation of the maximum ground level CWIC with
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dimensional downstream distance X for different values of skewness.
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Figure 2.3.4. The variation of (a) the mean plume height and (b) the standard deviation

of vertical spread with downstream distance X for different values of

skewness.
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Figure 2.3.5. CWIC contours in the X-Z plane for different values of skewness (holding
K=3.0). Contour levels (from inner to outer) are 2.0, 1.5, 1.3, 1.1, 0.9, 0.6,

and 0.3, respectively.



Figure 2.3.5. Continued.
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Figure 2.3.8. CWIC contours in X-Z plane for different values of kurtosis (holding
S=0.5). Contour levels (from inner to outer) are 2.0, 1.5, 1.3, 1.1, 0.9, 0.6,
and 0.3, respectively.



Figure 2.3.8. Continued.
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Figure 2.3.9. The variation of the mean concentration distribution with different values

of the Kolmogorov constant C,,. In calculations, $S=0.5, K=3.0. (a) CWIC
contours in the X-Z plane, contour levels (from inner to outer) are 2.0, 1.5,
1.3, 1.1, 0.9, 0.6, and 0.3, respectively, (b) variation of ground-level CWIC
with downstream distance, different symbols are used for different values

of the Kolmogorov constant (2.0, 3.0 and 4.0).
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Chapter 3
ON THE UNIVERSALITY OF THE
KOLMOGOROV CONSTANT FOR THE
LAGRANGIAN VELOCITY STRUCTURE
FUNCTION

Sawford (1991) developed a second-order Lagrangian stochastic model for the
ideal case of isotropic, homogeneous and stationary turbulence. In this chapter, that model
is extended to (the realisable case of) isotropic, homogeneous but decaying turbulence.
The model is used in conjunction with laboratory measurements of dispersion in grid
turbulence, to determine the (dimensionless, and hopefully universal) Kolmogorov
constant (C,) for the Lagrangian velocity structure function.

Because C, is of great importance in Lagrangian stochastic modelling, in order to
encempass a wider range of data we further investigated its value by comparing a first-
order LS model with field and laboratory dispersion data at high Reynolds number. We
find C, = 3.0x0.5.
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3.1. Estimation of the Kolmogorov constant (C,) for the Lagrangian
structure function, using a second-order Lagrangian model of

grid turbulence!

3.1.1. Introduction

In this paper we are concerned with the numerical value of the universal constant

C, that appears in Kolmogorov's theoretical small-time estimate

D’.J.(At) = Coeaaat G3.1.1)

for the Lagrangian velocity structure function
Dyan) = < [U; t+an)-U; ONU; (t+a0)-U; (0] > (3.1.2)

Here the bracket < > denotes the expected value of its contents; U;" is the Lagrangion
velocity'z; t and t+At are arbitrarily separated times; € is the mean rate of dissipation of
turbulent kinetic energy; and At inegn (3.1.1) is a time increment satisfying t, << At <<
T,. where t, is the Kolmogorov inner timescale, and T, is the integral timescale. Our
interest in C, stems from the fact that predictions of turbulent dispersion, if obtained usin [
Lagrangian stochastic (LS) models satisfying the criteria provided by Thomson (1987).
which include consistency with eqn (3.1.1), will depend upon the value taken for it. That
this is so is seen niost easily in the case of homogeneous, stationary turbulence; for then

(Tennekes 1979) C, is related to the Lagrangian timescale by

' A version of this section has been accepted for publication. S. Du, B.L. Sawford, J.D.
Wilson and D.J. Wilson, 1995, Physics of Fluids.

2 We use U*, A*=3U*/dt for Lagrangian velocity and acceleration; U, A=dU/dt denote the
fixed point (Eulerian) velocity and acceleration fields.
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and the rate of dispersion in homogenenous turbulence is o,= 6, (2T, )" at t » T, and thus
proportional to C, 2.

In principle the "true” value of C, could be determined from investigations of any
turbulent flow, and widely-differing means to do so have been cxercised: Lagrangian
velocity measurements; Direct Numerical Simulations (DNS); the observed dispersion of
tracer particles in a flow. It is perhaps not surprising that a wide range of estimuites of C,
is to be found in the literature (Rodean 1991). Luhar and Britter (1989) and Du ct al
(1994) cobtained (qualitatively) adequate predictions of dispersion from sources in thie
convective boundary layer (CBL), using well-mixed (Thomson 1987) LS models with C,
= 2.0. Wilson et al. (1981) compared predictions of a well-mixed LS model with the
(numerous and definitive) Project Prairie Grass observations (Haugen 1959) of
atmospheric surface layer dispersion, and obtained excellent aeantitative agreement with
(in effect) the specification Cy= 3.1. Hanna (1981) suggested C,= 4.0%2.0, on the basis
of Lagrangian velocity measurements (neutrally-buoyant balloons) in the CBL. Sawford
(1¢91) suggested C,= 7.0, by comparing the ratio T,/ t, as obizined from a second-order
Lagrangian stochastic model with the value calculated from Yeung and Pope's (1989)
DNS of homogeneous isotropic turbulence. And at the upper end of the range suggested.
Sawford and Guest (1988) found 5<C, <10 vielded be- simulations of dispersion within
a physically-modelled neutral boundary layer.

When, as has sometimes been the case, C, is inferred from mecasured tracer
dispersion, the value obtained depends on the correctness (or otherwise) of the dispersion
model. First order LS models presume the joint evolution of position and velocity (X,*,U*)
to be Markovian. This is defensible for large Reynolds number turbulence, but at low
Reynolds number a better assumption is that position, velocity and acceleration are jointly
Markovian (second order LS model). Sawford (1991) suggested that variations in the

Reynolds number, across the various dispersion experiments available, may account for
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the variability in estimates of C, obtained using first-order LS models. By introducing a
second-order LS mudc! (in which the Reynolds number is explicitly incorporated and C,
is truly independent of i) for homogeneous, stationary and isotropic turbulence, he
showed that in first-order madels the supposedly universal constant C, is not universal, but
rather depends ot the Reynolds number, the effects of which are manifested in first-order
models through non-universality across different flows of the "best” value of C,.

Our objective here then, is to use a Lagrangian stochastic dispersion model (of
known pedigree) to infer the true value of C, from measurements of dispersion in the very
simplest of turbulent flows. To this end, we will first review the physical basis of Sawford's
model. By broadening the well-mixed constraint to encompass acceleration, we will show
that the Sawford model is uniquely correct for homogenous, stationary, isotropic
turbulence,- only provided it is a satisfactory assumption that for such turbulence the joint
probability density function (pdf) for the Eulerian velocity and acceleration is Gaussian
(Gaussianity of that pdf was not explicitly assumed by Sawford). Then by extending the
model to decaying turbulence, the optimal value of C,will be evaluated, by fitting model

predictions to laboratory measurements of tracer spread in grid turbulence.

3.1.2. Sawford's second-order model

Consider isotropic, homogeneous and stationary turbulence, and let (Z*,W* A™) be
one component of the position, velocity and acceleration of a tracer particle. Assuming
that the collective evolution of (Z*,W*,A*) is Markovian'?, one has the (otherwise general)
model:

dA "=a(A "\ W".Z " .0)dt+b(A "W ",Z",nd((1),
dW " =A "dt, 3.1.4)

dZ =W'dt,

' For very high Reynolds number, it is usually assumed that the evolution of velocity and
position is jointly Markovian.
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where {(t) is a Wiener process. Sawford (1991) assumed within this overall framework a

particular form for a(Z*\W* A1), namely:

a=-o A" -o, W’ Q.15

It can be shown that the choice (eqn 3.1.5) implies (by virtue of Thomson's 1987 well-
mixed condition) a joint Gaussian pdf for A,W. However for our purpose it helps to turn
the argument around: we will presently assume the Eulerian (A,W) statistics to be

Gaussian, and deduce the form of a(Z*,W* A",t).

>

The stochastic differential equations (3.1.4) imply a governing equation, the
Fokker-Planck equation, for the evolution of the joint probability density function
p(Z7,W™,A™,1):

3 1 &

Lo wp)-—2—a p)-—Lap)+L
+ aA + 2

ar oz oW

2

=(&°p) (3.1.6)
Now, we extend Thomson's well-mixed constraint by the following proposition: 7F at time
t=t,, p is proportional to p , the Eulerian joint pdf of the acceleration, velocity and
position, THEN at later time t>t;, p must remain proportional to p,. Mathematically this
requires that p, be a solution of eqn (3.1.6). So, we have:

ap,
ot

9

3
W 2(b WURE (3.1.7)

O0A

__o _ ~ 9 (ap )+ L
= a_Z(Wp“) (\p,) A (ap ) "3

In homogeneous and stationary turbulence this requirement reduces to

o . d 1 & .
- A - — b" :O. 3
SAPD T @) 5P (3.1.8)

2

We now introduce the assumptions upon which, in effect, the Sawford model rests.
Firstly we assume the Eulerian velocity pdf to be Gaussian; this is supported by
experimental data from homogeneous and isotropic turbulence (Batchelor 1953).

Secondly, we assume that the Eulerian acceleration pdf is also Gaussian (the validity of this
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assumption is explored in Appendix 3.1 ). In stationary homogeneous turbufence, velocity
and acceleration are uncorrelated, and so in this case we obtain for the Eulerian joint pdf
of veiocity and acceleration:

L ep- W2 _A7

~2.’:cr fof 2 2
w4 20, 20,

P, ), (3.1.9)

where oy and 0, are the standard deviations of the velocity and the acceleration,
respectively. Substituting into eqn (3.1.8), we obtain

»

b2 . Oy .
a=-——:A ———f—W. (3.1.10)
20, Ty,

By requiring his model to yield an asymptoticzliy stazionary random process A*(1),

Sawford (1991) from his assumption (eqn 3.1.5 here? found

b=y2e,a,0;, (3.1.11)

where in view of our eqn (3.1.10),
o=—7, =" (3.1.12)

It is obvious that this stationarity property is satisfied by the present (more-general) model.
This is not surprising because Thomson's well-mixed constraint encompasses the condition
of the asymptotic stationarity of a random process (Thomson 1987).

Eqn (3.1.10) automatically gives the correct velocity structure function in the
dissipation range. It is desirable that it also yield the correct correlation function in the

inertial subrange. Following Sawford (1991), this is ensured if we specify:

-

205
b= - Re (1+Re_ ") (3.1.13)

T,

1]
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where:

16 a_ 20
e = . TL = .

c? C, e

(3.1.1

{ T.)2 o

Re = i ——E] . TE = 2

\ If! €

Tg is an Eulerian timescale, and T, is a Lagrangian timescale. The dimensionless constant
a, is defined by (Monin and Yaglom 1975)

- 5
. (3.1.15)

This is obtained by dimensional analysis in the framework of Kolmogorov's second
hypothesis: that in locallv-homogeneous and isotropic turbulence, the motion is determined
by the forces of viscous friction and inertia {Panchev 1971). For very high Reynolds
number, 2, is universal; but when the Reynolds number is finite, 2 , can be Reynolds-
number dependent {Yeung and Pope 1989).

Since b, if specified by eqn (3.1.13), is independent of both W* and A*, then a in
eqn (3.1.10) will be linear in W* and A". This is the property assumed by Sawford as a pre-
condition of his model for homogeneous, stationary and isotropic turbuience. It follows
from our re-examination of that model thzi since the pdf of acceleration cannot be exactly

Gaussian (see Appendix), the Sawford model cannot be exactly correct.

3.1.3. Extension of the Sawford model to decaying turbulence

In any real flow, energy dissipation ensures that the turbulence cannot be both
stationary and homogeneous. In this section we extend the Sawford model (o

homogeneous decaying turbulence, in order to develop a model applicable to decaying grid

turbulence.
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In non-stationary iurbulence, the Eulenan velocity and acceleration are correlated:

po<WA> _ ] <W¢;W> - 1 4w (3.1.16)
0.0, 0,0, t 20,0, di

Continuing to assume the Eulerian pdf for velocity and acceleration is a joint Gaussian, we

then have:

i

oiAzmﬁwz—zpvoWWA]

p,=- expl- - - (3.1.17)
210,0,y1-p* 20,0(1-p%)
Eguation (3.1.7) yields:
i ! ’
i B % O p0' .
20,(1-p%) Ow O, 1-p°
, (3.1.18)
2 [o A /I o
— e (DA @ Tagy-

. ., 2 =2 5
20,0, (1-p7) aq;, I-p~ Oy

The symbol (') represents the derivative with respect to time. It is interesting that in this
slightly more complicated turbulence the second-order model remains linear in A* and W*.
Eqn (3.1.18) reduces to the original Sawford model (egn 3.1.10) for stationary turbudence.
Since the statistics of the increment of acceleration A* are mainly determined by small scale
eddies, under the hypothesis of local isotropy b remains as given by egn (3.1.13), even in

decaying turbulence.
3.1.4. The magnitude of C;
In second-order trajectory models, the constant C, is free of the Reynolds-number

effects and is therefore genuinely uriversal. This property makes it possible to determine

C, by fitting-second-order model predictions to experimental data. In grid turbulence the
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collective assumptions of homogeneity, isotropy and Gaussianity (of the velocity pdf) are
approximately satisfied. Therefore we will use equations (3.1.4, 3.1.13, 3.1.18) to predict
turbulent dispersion in water channel and wind wnnel grid turbulence.

3.1.4.1. Simulation of water channel dispersion

Measurements of the dispersicn of a neutrally-buovant saline tracer released from
a point source into decaying homogeneous turbulence {grid turbulence) have been carricd
out in a water channel at the University of Alberta. A detailed description of the
experiment has been given by Wilson et al. (1991), and here we list only the turbulence

statistics needed in order to simulate tracer tvajectories using the present model:

X+X, _ -+
O'W’—'O. 13U(—M—— 13) “

(3.1.19)
X+X, -

-6.5) -,
M

19|

6,=0.195U(

Here U = 18.75 cm 5! is the mean alongstream velocity; M = 7.62 cm is the center-1o-
center mesh spacing; X is the downstream distance from the source to the point of interest:
and X, is the distance froin the grid to the source (X,= 147.5 cm).

In decaying homogeneous turbulence, the turbulent kinetic energy budget is

approximately a balanice between the dissipation rate € and advection by the mean flow,

ie.
(OZ, + Oy + Oy ) (3.1.20)
(Townsend 1976). Because V was not measured, we assume that o, = O,,.

To specify a;, we used Pope's (1994) formula

22
a0=3(l -Ee—-),

(3.1.21)
A
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where Re; = 0 y A/v is the Reyrolds number based on the Taylor microscale A =

(15vo,,*/e)'>. This formula is derived from the DNS data of Yeung and Pope {1989).
Figure 3.1.1 compares the measured and predicted standard deviation of vertical

spread 0y, for several assumed values of C,. The choice Cy= 3.0+0.5 gives a good fit of

the second-order model to the experimeantal data.
3.1.4.2. Simularion of wind tunnel dispersion

The rate of dispx  “ion was measured in decaying grid turbulence in a wind tunnel
at the Division of Atmospheric Research., CSIRO, Australia. Best-fit formulae for

turbulence velocity statistics are:

X+X,
6,=0.060U(——2)07%,
XO

X+X,
6,=0.055 U(Tﬁ)‘“', (3.1.22)

0

oW=O.053U(X—;§2)'°'69,
where U (= 548 cms™!) is the mean velocity along the wind tunnel, X is the streamwise
distance from the source, and X,,= 31.0 cm is the distance from the grid to the source. We
estimated the dissipation rate € by the means indicated earlier.
Figure 3.1.2 compares measured and calculated vertical spread of the tracer. As

in the case of the water chanrnel data, C,= 3.0+0.5 gives a good fit.
3.1.4.3 Estimates of C, from infinite Reynolds number flow
The Reynalds number for atmospheric boundary layer turbulence is (effectively)

infinite. Rodean (1991) estimated that in the neutral atmospheric surface layer (NSL), the

Kolmogorov constant Cy=5.7. The basis for this result (or its equivalent for the
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specification of a Lagrangian timescale) is as follows.
Suppose in the NSL we regard the Eulerian velocity statistics as Gaussian (this is
quite a good assumption, except within or close to the vegetation, ie., provided height z

» Z,, where z, is the surface roughness length). Thomson (1987) proved that the model

. 3oy | -
rem W e LW W drebag (3.1.23)
(2 2 ozi o2,
where
b=JC e , T\ = —= 1.4
Vo 4D C, € (124

is the uniquely correct 1-dimensional model for Gaussian inhomogeneous turbulence, - that
is, it is the "uniquely correct” model within the most rigorous theoretical frumework

presently available, that of Thomson (1387). This model is easily shown 1o be equivalent

to
{ e - do,,, 2
iw )z_w dr Owp | 2ar (3.1.25)
| o) oy T, oz \l T,

which is the infinitesimal form of the model compared by Wilson et al. (1981; hercafter

WTK) against the Project Prairie Grass field observations of dispersion'. Now, Durbin
(1984) has analysed this model to show that it implies (in the large time limit UT, -~ =) «

random displacement (or zero-order) model

oK
dZ" = 2 K(2) df + 5 (3.1.26)

<

where d{(t) is a Wiener process (d{ has variance dt), aud

4 The equivalence between the discrete-time implementation of the above equation for
d(w/o,) and the model compared by WTK against field data can be traced through Wilson
et al. (1983). Durbin (1983) may independently have suggested this model.
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(3.1.27)

is an effective eddy diffusivity.

Flux-gradient experiments in the horizontally-uniform NSL indicate that the eddy
diffusivity is K| = xu.Z, where u. is the friction velocity, and the von Kdrman constant (i)
is now generally accepted as having the value k=0.4+0.02 (Dyer and Bradiey 1982;
Hogstrom 1985). If this (empirical) result is to be matched with Durbin's rasult (asymptotic

eddy diffusion model), we require that

g,
C“=2(7“)4 (3-1.28)

where we have used the fact that in the NSL, e€=u.’/kZ. Now since o,~1.3u., we have
C,=5.7. This is the value suggested by Rodean, here deduced by 2 logic which avoids
reference to the Lagrangian timescale (the latter being undefined in the case of
inhomogeneous turbulence). The equivalent result for a Lagrangian timescale (albeit
difficult of interpretation} was arrived at much earlier (eg. Reid 1979).

This is a pleasing theoretical argument. However one does not claim the present
generation of LS models to be ultimately correct, and may expect Thomson's 1987 criteria
eventually 10 be superseded. The above logic does not guarantee that the conformance of
(properly selected) LS models with atmospheric observations is optimal, when C,=5.7. In
fact, several workers have found otherwise. For example, Wilson et al. (1981) found that
a better fit to observed dispersion (Project Prairie Grass) is cbtained using (in effect)
Co=3.1 (the WTK model was actually couched in terms of a Lagrangian timescale and
WTK wrote 0/u.=1.25). Earlier Reid (1979) reached the same conclusion in reference
to the Porton field data. Findings corresponding to C,~3.1 exist (Wilson 1982; Hassid
1983) in the context of Eulerian dispersion models, for the magnitude of the turbulent
Schmidt number (S, the ratio of the eddy diffusivity for mass to the eddy viscosity) giving

best agreement with observed (field and wind tunnel) dispersion. C,=3.1 is close to our
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best guess for C, on the basis of our e.:ziinstion of laboratory experiments.

3.1.5. First-order Lagrangian stochastic model

Sawford (1991) found that for homogeneous, isotropic and stationary turbulence.

Reynolds number effects in first-order models can be incorporated by replacing the

universal constant C, with

C(;’ﬂﬂeaivt=co(l+Re:1E)-l (3.1.29)

Now we ask: is this correction to the first-order model useful in homogeneous, isotropic

but decaying turbulence?

For such a flow, the one dimensional first-order model is (Thomson 1987):

C,e o,
dW " =-(—= —-—)W’dn,/c edg,
20 9w (3.1.30)

By replacing C, in eqn (3.1.30) by C,™"** as given by eqn (3.1.29), and carrying
out a simulation with the revised first-order model, we found that eqn (3.1.29) works well,
especially for the wind tunnel experiment (Figure 3.1.3). For comparison, we also show
the prediction with C /% =3.0.

Figure 3.1.4 shows the Reynolds number in the range of interest of the wind tunncl
and water channel experiments. This helps to explain why the correction (egn 3.1.29) is
more significant for the wind tunnel experiment. In the water channel, the Lagrangian
Reynolds number Re. is sufficiently high that the Reynolds-number correction to the first-
order model is not large. But in the wind tunnel experiment Re. is lower, so G, is

significantly different from its asymptote.

3.1.6. Conclusions
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The Sawford (1991) model has been shown to be implied by a generalized well-
mixad constraint, for (hypothetical) homogeneous, isotropic, stationary turbuleace, for
which the Eulerian joint pdf for the velocity and acceleration is Gaussian.

We have extended that model to cover decaying grid turbulci.ce. By comparing
measured and modelled dispersion, the universal Kolmogorov constant C, is estimated to
be 3.0+0.5, substantially different from the result, C;=7.0, obtained by Sawford by
comparing modelled dispersion statistics with direct numerical simulation data (Yeung and
Pope 1989).

When the Reynolds-number-effect is incorporated into the first-order model via the
supposedly universal constant C,, ie., by replacing C, with a variable C, = (eqn 3.1.29),
the first-order model also gives a very good prediction, suggesting that Sawford’s revision
of the first-order model for finite-Reynolds-number flow is satisfactory. This is useful,
because first-order models are simpler than second-order, and require less Eulerian

statistical information on the flow.
APPENDIX 3.1. The pdf for fixed-point acceleration

The spatial derivative of velocity is not Gaussian {Batchelor 1953), and recent
studies of isotropic turbulence show that, even if the single-point velocity pdf is identically
Gaussian, the distribution of the pressure fluctuation is negatively skewed (Holzer and
Siggia 1993; Pumir 1994). While it is not clear how these non-Gaussian properties impact
the Eulerian acceleration pdf, we believe the latter is non-Gaussian on this and the
following evidence.

Recall that we signify Lagrangian quantities by superscript (+). The Eulerian

acceleration field

, U (Xg)-UXyty) . AU
AXyto)=lm,_, _, °H 0 =hmt-o’r (A3.1.1)
Q

is defined by the difference of Lagrangian velocity over an infinitesmal time interval
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(Monin and Yaglom 1975, p368, eqn 21.47). Here U*(X,,t) is velocity at time t of that
fluid element which, at time t,, was at location X,. We can therefore infer the distribution
for Eulerian acceleration if we know the distributioa of the Lagrangian velocity difference.-
taken over a very short time interval. According to Figure (15) of Yeung and Pope (1989),
derived from Direct Numerical Simulation of isotropic turbulence, the distribution of
Lagrangian velocity difference A U* (where U * is one component of U*) is symmetric
about A U*=0 for any time interval t, and deviates from the Gaussian distribution as t gets
smaller. When Tt is extremely small (t~t,), the distribution appears to be exponential.
Because the Eulerian acceleration is given by the Lagrangian velocity difference
A_U* over an extremely small interval T, we may assume on the evidence of Yeung and
Pope that the pdf for Eulcrian acceleration is exponential and is symmetric about A=0. We
derived a second-order model from the exponential pdf, and compared its prediction for
tracer spread with the prediction of the model presented in section 3.1.2. No substantial
difference was found: out to t/T,=10, the maximum difference was less than 5% in ¢,. and
had no effect on the choice of C, = 3.0+0.5. So we propose, a Gaussian pdf for Eulerian

accelera‘ion is an acceptable approximation, at least for the purpose of predicting the mean

concentration distribution.
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Figure 3.1.1. Vertical dispersion from a tracer source in a water channel experiment,
compared with simulations using a second-order LS model with different

values of C,. Curves for Kolmogorov’s constant C, from 2.0 to 4.0.
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Figure 3.1.2. Vertical dispersion from a tracer source in a wind tunnel experiment,
compared with simulations using a second-order LS model with different

values of C,. Curves for Kolmogorov’s constant C, from 2.0 to 4.0.
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3.2. Universality of the Kolmogorov constant for the Lagrangian velocity
structure function across different kinds of turbulence

3.2.1. Introduction

In Lagrangian stochastic (LS) simulations of turbulent dispersion, the value of
Kolmogorov's (universal?) constant (C,) for the Lagrangian velocity structure function in
the inertial subrange, or the trivially related coefficient (henceforth denoted B) of the local
decorrelation time scale, T;, is of great importance. Since C, is determined by turbulence
statistics in the inertial subrange, it is supposed to be universal; ie., it should take the same
value for any turbulent flow, provided only that the Reynolds number is sufficiently large
(so as to ensure an inertial subrange is present).

In homogeneous, stationary and isotropic turbulence, T, is the Lagrangian integral

time scale and is related to C, by (Tennekes 1979)

”
_ 20y,

C,€

where o, is the standard deviation of the turbulent velocity, € is the mean rate of
dissipation of the turbulent kinetic energy, and Ly is the Eulerian integral length scale,
equal to 0.80, e according to Townsend (1976). Accepting Townsend's estimate for L,
it follows from (3.2.1) that the constants § and C; are related by C,=2.5 in this ideal flow.

In the atmospheric boundary layer, the flow is so complicated that it is very
difficult to relate the Lagrangian integral time scale to local Eulerian turbulent statistics.
Historically a time scale is defined using the first line of eqn (3.2.1), but this time scale can
not be identified as the Lagrangian integral time scale. Rather, it is a local decorrelation
time scale (Durbin 1983; Sawford 1985). In recent work on LS simulation of

inhomogeneous turbulence, T, is used only symbolically.
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In the neutral surface layer, the dissipation rate is well represented by

e:_, - (3_" ke

where u. is the friction velocity, x (=0.4) is the von Karman constant, and z is the height

above ground. It follows from (3.2.1,3.2.2) that

Lo (3.2.3)

since o,=b,u. (b,~1.3); from (3.2.1,3.2.2) we also have
2b'x
—)=, (3.2.4)
C, o,

T, =(

so b, in (3.2.3) is related to C, by
b, Cy=2b/x. (3.2.5)

There has been a controversy in recent years about the value of C,. Sawford (1985)
drew attention to the issue in his review paper, summarizing the values of b, used in
several LS models of diffusion within the neutral boundary layer. There were two
“popular” values for b, at that time: 0.3 (C~5) and 0.5 (Cy~3). The fermer was supported
by Ley (1982) and Legg (1983), while the latter was preferred by Reid (1979), Wilson ct
al (1981b) and Davis (1983). Three years later, Sawford and Guest (1988) reported an
even bigger range for the possible values of Cg: in wind tunnel grid turbulence C,=2.1, and
in a wind tunnel boundary layer flow, from which Legg (1983) obtained C,=5, C,=5~10
(disagreement between values obtained by Sawford and Guest and by Legg may relate to
the Legg model not having the well-mixed property).

The present study will evaluate the value of C, by compariag LS simulations with
experimental data gathered from grid turbulence (wind tunnel and water channel),

laboratory boundary layer turbulence (Legg 1983; Raupach and Legg !983) und
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atmospheric surface layer turbulence (Project Prairie Grass). We will also identify

problems with earlier stirdies.

3.2.2. C, in Grid Turbulence

In grid-generated turbulence, wherein the Reynolds number (Re=UM/v; U the
mean velocity, M the mesh spacing, v the kinematic viscosity) is generally not very large,
the dissipation range and the energy-containing range (of eddy size/wavenumber) are not
widely separated. Therefore a first-order LS model may be inapplicable, unless the travei
time of tracer from the source is substantially greater than the integral time scale, T,.

Sawford { 1951) designed a second-order LS model for the ideal {but unreaiisable)
case of homogeneous, isotropic and stationary turbulence. With his model, Sawford
found that for Reynolds numbers typical of grid turbulence the Reynolds-number-
dependence cannot be neglected. He also found that in order to render a first-order model
applicable to low Reynolds-number flow, a modified Kolmogorov constant C,™**¢, which
is dependent on the Reynolds number and differs from the true of Kolmogorov constant
(C,). should be employed.

Du et al. (1995) extended Sawford's model to an experimentally realizable but still
very simple flow: grid turbulence. Comparing predictions of this model with wind and
water channel measurements of dispersion (for details, see Section 3.1), Du et al. found
best-fit when Cy=2.5~3.5. A smaller value C(,‘“““"‘ can render the (actually, inapplicable)
first order model prediction in better accordance with experimental data than the choice
Cy=2.5~3.5. This explains why an earlier study by Anand and Pope (1985) found
predictions with a first order model, using Cy=2.1, fit well with several wind tunnel grid

turbulence expesiments.

3.2.3. C,froma Wind Tunnel Boundary Layer

A diffusion experiment reported by Raupach and Legg (1983) and Legg (1983) is
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of particular interest, because with the support of data gathered in this experiment Legg
(1983) obtained C, = 5 and Sawford and Guest (1988) obtained C, = 5~ 10, estimates
differing substantially from those summarised above (and given in more detail in Section

3.1) for grid wrbulence.

For our LS simulations we specified turbulence statistics drawn from Legg (1983)
and Raupach and Legg (1983):

u senean Z"do
U= In( ),
K %
o -{10.68-23.0( -0.1)*I(1-/13.6), for (z£0.1m)
w 0.68(1-x/13.6), Sfor (z>0.1m)
(3.2.6)
<tw>= -0.28(1 -x/8.35), for {(z<0.066nm)
-[0.28-0.475(=-0.066)](1 ~x/8.5), for (=>0.066m)
u,3
€=09 .
=

where units are MKS; von Kiarmin's constant k=0.37 {in this experiment); zero-planc
displacement d;=6x 107 m; the roughness length z,=1.8x10™* m; and the average friction
velocity used in the mean wind profile, u.,,,=0.5 ms™. The line source lay at a height
h=0.06 m above the zero plane displacement.

Since below z~0.2 m the turbuience was approximately Gaussian, it is appropriate

to use the unique, well-mixed, one-dimensional’” (vertical), first-order® LS model
(Thomson 1987):

15 We compared the first-order model and a two-dimensional (x-z) version of Thomson’s
model for Gaussian turbulence. Differences between the two models' predictions for

diffusion were quite small up to travel distance x=2 m (beyond which distance no diffusion
measurements were made).

'6 We also compared the 1D first-order model and the 1D second-order model (outlined
in section 3.1.2) in an equivalent homogeneous turbulence (i.e., whole-omain-averaged
turbulence statistics replaced the real statistics): no appreciable difference was observed.
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3.2.7)

We used (3.2.7) to calculate vertical diffusion, with different values of C,. As
shown in Figure 3.2.1, C;= 3.020.5 gives better prediction than does C ,= 5.0, for the
vertical plume width 0,(x) in the downstream range x<1.2 m. G; = 5.0 gives superior
prediction for x>1.2 m; and C,= 10.0 does a poor job over the whole range.

Figure 3.2.2 gives predicted vertical profiles of the mean concentration, for
differing C,. Comparing with the measured mean concentration profiies (Figure 5(a),
Raupach and Legg, 1983), we see Cy~3 gives best fit to the measured profile, particularly
for the lower part of the boundary layer. This is further supported by Figure 3.2.3. a
comparison of predicted ground-level concentration with the experimental data.

It is clear that overall Cy~3 makes the model prediction best fit the experimental
data; but one may still wonder why C,~3 performs poorly (in predicting 6,) when x>1.2
m. Recall the vertical velocity in the upper part of the wind tunnel boundary layer is not
Gaussian, but positively skewed: this will certainly affect vertical diffusion in that region.
Positively skewed vertical velocity will push the tracer downward (Lamb 1982; and
Section 2.3), so g, will be smaller than it would be in Gaussian turbulence (note that
spread is confined by the lower boundary). Since bigger C, implies smaller g,, this perhaps
explains why a bigger (effective) C, is spuriously deduced for far downstream distance.

Legg's model does not satisfy the (subsequently provided) model design criterion,
the weli-mixed constraint (Thomson 1987), which is arguably reason enough to prefer the
present derivation of the value of C, implied by these experiments. On the other hand, the
Sawford and Guest (1988) model is indeed well-mixed; but these authors overestimated
the standard deviation of the vertical velocity (0,). Because bigger C, implies weaker
diffusion (see Figure 3.2.1), and bearing in mind that in unbounded homogeneous

turbulence the far-field spread is related to C, by 0,=2 0, 2(t/C,€)"?), we reason that an
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overestimate of o,, will necessitate an overestimate of C . to result in a good prediction
for tracer spread.

3.2.4. C,in the Neutral Atmospheric Surface Layer: Project Prairie Grass (PPG)

Project Prairie Grass

Project Prairie Grass (PPG; Barad, 1958) is an extensive field diffusion experiment carried
out during the summer of 1956, over a flat plain near O’Neill, Nebraska. In the
experiment, 70 runs of 10-minute average concentration data were collected along five
azimuthal arcs of detectors at downstream distances (from the continuous point source)
of x = 50m, 100m, 200m, 460m and 300m. On the 100m arc only, six towers measured
vertical profiles of the mean concentration.

A point source at height z, = 0.46m was used in all runs, and in each run sulphur
dioxide was released steadily; the source strength differed from run to run. Metcorological
variables to be used to determine wind and turbulence statistics and atmospheric
stratification were measured simultaneously.

In this sub-section we simulate vertical dispersion in the PPG experiment for runs
performed under neutral stratification. In the neutral surface layer (NSL), turbulent

velocity statistics are height-invariant, so the 1-d well-mixed model for Gaussian

wurbulence reduces to:

C.e
dw=-——wdt+[C ed(,
Y 20 0 ¢

w (3.28)
dz=wdt.

where e=u.’/kz, and x=0.4. We carried out model simulations for six individual PPG runs.
Figure 3.2.4 compares measured and simulated vertical profiles of cross-wind integrated
concentration {CWIC). In calculations, perfect reflection was employed at the bottom
boundary because it guarantees that (3.2.8), which is derived for unbounded flows,

remains well-mixed for the present bounded turbulence (Wilson and Flesch 1993), and
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there is no evidence that absorption of SO, by the grassy surface caused significant loss
of tracer material up to 100m downstream (Bazad 1958, p77). Best agreement between
our LS simulations and the field measurement is achieved when C,= 3.0+0.5, which is

completely consistent with the conclusion of Wilson et al. (1981).
3.2.5. Criterion te Determine C, in the Neutral Atmospheric Boundary Layer

In principle, C, should be evaluated from measurements of the difference of
Lagrangian velocity over a short travel time At, satisfying t, « At « T}, where t, is the
Kolmogorov micro time scale and T, _is the time scale of the energy-containing eddies.
However, carrying out such an experiment i1s extremely difficult, so that we have to turn
to other alternatives. Inferring C, from diffusion measurements, as in the present study, is
only one of these alternatives. A disadvantage of the present method is that the rate of
diffusion is not sensitive to Cg for travel time t « Ty (ie, in the inertial range); only when
t ~ T, or even t>T|, can we see the consequence of assuming different values for C,,.

We realize that with different methods for evaluating C, we may arrive at different
values for C,, though C, is supposedly universal. Nevertheless, we believe for the purpose
of simulating diffusion with an LS medel, C;=3.0+0.5 is the best choice for any turbulent
flow.

Now we review the criterion used by Sawford (1985) and many others for
selecting an optimal value of C,. Recall that in the neutral atmospheric surface layer the
standard deviation of vertical velocity, o,=b,u., is height-independent, while the dissipation
rate of turbulent Kinetic energy e=u.’/kz (which indicates that the atmospheric surface
layer is not vertically-homogeneous). If we apply to surface layer dispersion G.1. Taylor's
analytical formula (recognising however that this formula is exact only in truly stationary
and homogeneous turbulence), then for large travel time (quantified by Sawford as t» z /u.)
or far downstream distance the standard deviation of the vertical spread of tracer about

the release height is
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5.=0,,/2T,t . (3.2.9)

On the other hand, for large travel time the diffusion equation is applicable. By matching
the Langevin equation 2nd the diffusion equation, the diffusivity is then related 1o o, by
(Csanady 1973)

1 dof 2
K =——=0T,. (3.2.10)

2 dr
Note that (3.2.10) is exact only in the ideal of homogeneous and stationary turbulence. By
assuming that (3.2.10) holds in the neutral atmospheric surface layer (which is not really
homogeneous since € is height-dependent, and in (3.2.10) T, is supposed to be a constant
but in the neutral surface iayer it is not), and by invoking the Reynolds analogy (ie., by
assuming the eddy diffusivity K| is equal to the turbulent viscosity K, = ku. 2z, which
assumption, according to Dyer and Bradiey 1982, is supported by field experiments in the

neutral surface layer) it follows that

KHZ K, 2
T =—F=(—=)—). 3.2.11
0; bl e ( )
Thus the coefficient b, in eqn (3.2.3) is constrained by
b,b,=x. (3.2.12)

Sawford (1985), after obtaining the foregoing criterion, proposed that in the

surface layer, b, = x/b, = 0.3 (ie, C, = 5). We conclude this section by noting the

inconsistencies of this derivation.
3.2.6. Conclusions

We have shown a universal value for Kolmogorov's constant C, applies, across

decaying grid turbulence, wind tunnel boundary fayer flow, and the atmospheric boundary
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layer flow. The universal numerical value is Cy=3.0+0.5.

We are confident about this value for C, only in the context of diffusion
calculations. For other applications, C;=3.0+0.5 may not be the best choice and should be
used cautiously. To completely settle the question of the universality of Cy, other methods

should be explored (eg., comparison of modelled and measured Lagrangian spectra).
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Figure 3.2.1. Measured and simulated vertical spread of tracers, o,, for source height
h=6 cm in a boundary layer with downstream distance x for wind tunnel
data of Raupach and Legg (1983). Curves for the Kolmogorov constant
C, from 2.5 to 10.0.
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Simulated vertical profiles of mean concentration with different vajues of

C, in a wind tunnel boundary layer flow due to a line source of height h =

6 cm. c. is defined by ¢ .= Q/hU(h), where Q is the source strength perunit

length.
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Figure 3.2.3.

Measured and simulated ground-level mean concentration in the wind
tunnel boundary layer flow (Raupach and Legg 1983) dve to a line source
of height h = 6 cm. c. is defined by c. = Q/hU(h), where Q is the source
strength perunit length. Curves for the Kolmogorov constant C, from 2.0
to 10.0.
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Chapter 4
OTHER APPLICATIONS OF STOCHASTIC
METHODS

In this chapter two other applications of the stochastic techniques are presented.

The first is a study of turbulence effects on the collision of cloud droplets. Earlier
LS models used for the droplet collision problem were of zeroth-order. This is
fundamentally wrong: the droplet-separation of interest is much less the turbulence integral
leagth scale. A first-order, two-particle model s employed to study the effect of turbulence
and to examine earlier models.

The other subject in this chapter is an Eulerian problem: the temporal evolution
of concentration at a given spatial point. By assuming the evolution of concentration is a
Markov process, a (model) time series of concentration can be generated, and many useful
statistics of the concentration time series can be calculated. In section 2 the rate of
upcrossing over certain ("threshold") concentration levels is predicted; and accords quite

well with field measurements obtained in the Dugway experiment.
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4.1. MODELLING THE EFFECT OF TURBULENCE ON THE
COLLISION OF CLOUD DROPLETSY

4.1.1. Introduction

It has been recognized for a long time that turbulence can influence collisions of
cloud droplets, possibly spurring the growth of cloud droplet size between the ranges
where (initially) effects of condensation and then (finally) gravitational coalescence
dominate (Rogers and Yau 1989). Over the last two decades, a number of theoretical
investigations have been done on this subject, and in some of them the Lagrangian
Stochastic (LS; ie., trajectory, or "Random Flight") simulation has been employed (eg. de
Almeida 1976, 1979a, 1979b; Reuter et al. 1988).

Quantitatively the effect of turbulence can be expressed in the stochastic collection
equation (SCE) for the evolution of the cloud droplet number density distribution function.
N(V.,t), [units, #m*®]. This function is defined such that N(V,t)dV is the average number
density [#m™] attime t, of cloud droplets of a size lying within droplet volume interval
(V,V+dV). The SCE is:

v
-g;N(V,r) - % { N(V-v.1) N(v,t) K(V-vv) dv
4.1.1)

-N(V,1) f Nw.,t) K(V,v)dv,
0

where K(V,v) is the collection kernel {m® s''] which describes the rate of change of the
probability that a droplet of volume V merges with a droplet of volume v, provided both

are present in unit concentration. Given K(V,v), which is to some extent influenced by

'7 A version of this section has been accepted for publication. S. Du and J.D. Wilson,
1995, Journal of the Atmospheric Sciences.
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turbulence, the SCE determines the evolution of an initial distribution of droplet volume
N(V.1p).

A trajectory simulation is the natural way to study the movement of small particles
in turbulent flows, for example in order to calculate the collection kernel. However to the
author's knowledge, in LS models applied to date for cloud droplet collisions, the
correlation of cloud droplet velocity between consecutive instants was not accounted for:
i.e., the random displacement of a cloud droplet was assumed to be Markovian. This is
incorrect when calculating a cloud droplet trajectory over a time period shorter than the
integral time scale of the background turbulent field, because the displacement of a particie
can be taken as Markovian only when the travel time of interest is much longer than the
integral time scale of the droplet velocity (Sawford 1991). Another problem associated
with some earlier LS simulations of cloud droplet collisions was the use of independent.
single-particle trajectories (single particle models). This in principle is not acceptable,
because the movements of nearby cloud droplets are highly correlated (in space).

For reasons that will be given in Section 4.1.3, in this work we study collisions
between large droplets (by large we mean that the radius (r} of droplets r > 50 um). For
simplicity, we take the coalescence efficiency to be unity (cloud droplets merge upon
collision), and hydrodynamic effects when drops are in close proximity arc neglected.
Although "large-large" collisions are much less frequent than "large-small” or "small-smali”
collisions, their contribution may be important because overtaking a single large drop (~50
um) is equivalent to collecting many (~100) small (~ 10 um) cloud droplets. On occasion,
the majority of cloud droplets may be quite large as a result of flow difluence at the upper
parts of the cloud (Kogan 1993).

4.1.2. Relevant scales in the cloud droplet collision problem
Before considering the class of Lagrangian stochastic model that might be

appropriate in studying cloud droplet collisions, we need to establish some critical

timescales of the problem. In doing so, we recognise that turbulence statistics differ in



different kinds of clouds, and even within one cloud there is spatial variability.

In mature cumulus clouds, typical values for the standard deviation of the vertical
velocity fluctuation and the rate of dissipation of turbulent kinetic energy (TKE) are
0,=2.0 ms’, €=0.02 m’s” (Weil et al. 1993). Extreme values in the literature are €=0.0003
m?s? for small cumuli (Ackerson 1967), and €=0.25 n? s® in very strong cumulus
congestus (Panchev 1971). Assuming for the kinematic viscosity of cloud air v=1.2 x 10°
m’s’}, the corresponding range in the Kolmogorov time scale t,=(v/e)'”? , which
characterises the smallest eddies in the flow, is about 102 <t, <10" s. The corresponding
Kolmogorov length scale 1=(v¥/€)" is in the range of 10* <1 <10” m.

The Kolmogorov (inner) scale; describe the minimum lengths over which changes
{in velocity) occur in the airflow. These are to be contrasted with the Lagrangian integral
(outer) scales, which measure typical spatial and temporal persistence of the turbulent
velocity. In stationary, homogeneous turbulence, the Lagrangian integral timescale can be
determined from the velocity variance (0,%) and the TKE dissipation rate (€) as (Tennekes
1979)

_ Zof,

T,=—Y, (4.1.2)

Coe

where C, is a (supposedly) universal constant (C, = 3.0, according to Du et al. 1995).
Adopting 0,~1 ms”', then T, = 10 ~ 10" s and the Lagrangian integral length scale is
L=0,T,=10~10"m. It is our proposition that in some regions of real clouds, there exists
a wide separation in scale between dissipation range and energy-containing range of scales,

e., 1,<<T_ and n<<L. The truth of this bears on the validity of the model we later
construct for droplet paths.

Now we want to establish a timescale t_ characterising the collision interval, which
will limit the permissible time step At upon which we discretize droplet trajectories. Firstly,
consider non-precipitating cumulus, wherein the liquid water content is of order 1 gm™ and
the mean radius of the cloud droplet is about 5 um (Pruppacher and Kliett 1978, pp 14-16).

It follows from simple geometry that, assuming a uniform spatial distribution of droplets,
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the mean separation (d) between neighbouring cloud droplets is about 10 m, i.e.. d<<L.
It seems d/m) could be of the order of unity in small cumuli, and about one order larger in
deep convective clouds.

For the purpose of discussion, assume (temporarily) that the separation d satisfies
the condition Ty<<d<<L. Using dimensional arguments, 8d/dt ~ (ed)'?. It follows that for
two cloud droplets separated by d, a collision takes place at intervals of order t _ ~ (d°/¢)'"*
~ 107- 10" s. This is about the same order as the Kolmogorov time scale. If d were of the
same order as 1, it is very unlikely that the collision time interval t _ could be larger than
the Kolmogorov time scaie. Hence for the small droplets, the discretization time step At
is necessarily small w.r.t. t,, and droplet acceleration is an auto-correlated time series.

In contrast, for large cloud droplets of radius r>50 pm, it is estimated that the
separation between neighbouring drops is of order 107 m: so if the turbulence in the cloud
is strong (€~0.1 m’s™), the collision interval is about t .~ 10 "' s. This is an order of
magnitude larger than the Kolmogorov time scale (~ 107), yet much smaller than the
Lagrangian time scale (~10 s), i.e., t. is well within the inertial subrange. In this casc it is

appropriate to consider droplet velocity and position to (jointly) constitute a Markov

Process.

4.1.3. First-order two-particle LS model for the collisions between large droplets

4.1.3.1. Model order

Sawford (1991) summarized the hierarchy of LS models in a study of Reynolds
number effects in LS models of turbulent dispersion. According to Sawford, the
appropriate order of LS model to be used is determined by the ratios tt, and VT, wherc
t is the time interval of interest. We will assume the clout’ - zan be regarded as
homogeneous, isotropic and stationary: probably a satisractory assumption, since the
relative movement of initially-nearby cloud droplets is caused by the smallest scale eddies

of the field, having approximately this simple statistical structure.
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If ©>T,, a "zeroth-order” LS model

dc = [2 K, dC (4.1.3)

is sufficient to study the displacement of tracer elements (random walk in position). In
(4.1.3) and hereafter, d{’ is the increment of a Wiener process (i.e., d{ is a Gaussian
random number with zero mean and variance dt). The superscript 1 is the direction index;
and K, is the eddy diffusivity, K=0,?T, . This very simple model is acceptable because
both acceleration and velocity are uncorrelate ° :ver discretization intervals At satisfying
T <<At. However this model is inapplicable to our cloud droplet problem: we have argued
(Section 4.1.2) that the collision interval (thus t, the duration of simulations) is t. << T,.

At the other extreme, if t/t, is small or order 1, the only permissible choice is a
"second order” model, in which the acceleration, velocity and displacement of the moving
tracer particle are taken to be collectively Markovian, and the acceleration is modelled as
an auto-correlated stochastic process. From Section 4.1.2, we conclude that for a general
study of cloud droplet collisions, one indeed requires a second-order model. This is a
difficulty, because such models are not well-developed.

However for collisions between large cloud droplets, and provided the turbulence
in the cloud is strong, the required duration of a simulation of the droplet trajectory
(estimated in Section 4.1.2 as "t.") satisfies t/t, >>1, and /T, finite. In this case a "first-
order” LS model is appropriate (Thomson 1987): we can choose a time step At in the
range t,<<Ai<<T, to resolve the evolution in velocity and position over time period t
(Lagrangian acceleration correlation vanishes over timesteps At>>t,). The uniquely
correct LS model (for a single non-buoyant tracer particle in homogeneous, isotropic

turbulence) is (Borgas and Sawford 1994):

du' = - L4t + o ‘i dz,
T, T, (4.1.4)

dvi = u' dr



4.1.3.2. Need for a 2-particle model

If the separation of two cioud droplets is not much larger than the integral length
scale. their movements are spatially-correlated, because the movements of the fluid
elements embedding them are correlated. Turbulent fluctuations at one point can be
viewed as the superposition at that point of an ensemble of eddies having different scales
and orientations (Townsend 1976). Relative motion (due to turbulent fluctuations in the
cloud) of a pair of particles is caused by eddies of sizes smaller than. or of the same order
as, the separation. Larger-scale eddies only cause a coordinated displacement of both
droplets together. So we conclude, in studying collision problems, it is not appropriate i
use a single particle model, in which the motion of any particle is assumed independent of
all others, and the relative miotion of a pair of particles is attributed to all eddies of various
scales. An example of single-particle model is the work by Reuter et al. (1988). who chose
a corstant diffusivity, rather than a diffusivity which is dependent on the separation

according to Richardson's law, to study relative movement between two air elements.
4.1.3.3. A heuristic model for trajectories of large droplets

We consider two large cloud droplets of radii r, and r, moving in a turbulent {low.
Since the three components of the relative velocity of air elements that carry the droplets
are not independent (being constrained by the incompressibility condition), a three
dimensional, two-particle model must be employed. If we assume a small enough droplet
Reynolds number Re=rdU/v (where 8U is the velocity of the droplet relative to the
surrounding air, and r is r, or r,), then the air-droplet drag is linear in relative velocity, and

we may write a first-order model:
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dv, PR .
— v g%,

dt <,
dx li i
— =vl s

dt

) (4.1.5)
dv, i
f = 1 (u2 —V, )"863‘,

dt 2

el

2 =vy,

at

where the superscript (i) is the direction index; the subscript (1 or 2) is the droplet label;
v is the droplet velocity; u is the velocity of the air surrounding the droplet; x is the droplet
position; g is the gravitational acceleration; and T, is the droplet aerodynamic response
time (time constant for response to a step change in the velocity of the surrounding air).
For large cloud dropiets, the following empirical formula for T, is appropriate (Pruppacher

and Klett 1978, p324; Rogers and Yau 1989, p126):

8000r
8

a

, 4.1.6)

where r is the radius of the droplet.
Kaplan and Dinar (1988) have given a hewuristic two particle model for the
evolution of the velocity of a pair of fluid elements in stationary, homogeneous, isotropic

turbulence:

16/ (r+An=R (ADu, () +/1-R }(ADO (),
3 (r+A1) =R (AN (1) +/ 1 -RAADOY),

1,'(0)=6/(0),

(4.1.7)

1, (0)=05(0),
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where R, (At)=exp(-At/T,) is the Lagrangian temporal correlation coefficient, and 0 is a
random field that is spatially correlated, but temporally urncorrelated from t to t+At. By
assuming the spatial correlation between the components of 8(t) is equal to the spatial
Eulerian velocity correlation of the turbulent field, and using the conditions of continuity
and isotropy, Kaplan and Dinar developed an algorithm to calculate the random fieid ©(t).
The O field is strongly dependent upon the separation of the two moving particles: only
when the separation is much larger than the Eulerian length scale do 6, and 6, become
uncorrelated. For a detailed description of the construction of the 0-field, please refer to
the original paper.
We used the Kaplan-Dinar model to calculate the driving fluid element velocity
(i.e., velociiy of the fluid element surrounding the cloud droplet). Since the driving fluid
velocity time series is not a Lagrangian series (i.e., at different instants the droplet is
surrounded by different air elements), we reduced the Lagrangian time scale T, in the

manner suggested by Sawford and Guest (1991)

(4.1.8)

1=

1T+ By
b4

This accounts (heuristically) for the "crossing trajectory” effect (Csanady 1963), ic., the
fact that the cloud droplet is not accompanied and driven by the same air parcel at different
times. In (4.1.8), V' is the terminal velocity of the cloud drop in still air, related to t, by
vi=t,g. f relates Lagrangian and Eulerian length scaies (defined as 3 = o (T ,/L |, L [ is the
Eulerian integral length scale in the vertical direction), and following Sawford and Guest
we set B=1.5. Equation (4.1.8) is simply an interpolation between the integral time scales
for a passive tracer, and for a particle of very large terminal velocity relative to the ambient
fluid. For a passive tracer, v' = 0, and the time scaie reduces to T ; for particles of large

velocity resative to the surrounding air, the time scale becomes L,/v' (L is Eulerian length
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scale of the turbulence). L takes values L, for the direction parallel to the external force

and L/2 for the direction perpendicular to the external force.
4.1.4. The collision probability and the collection kernel

The movement of a cloud droplet can be divided into two parts: movement with
the ambient air and, movement relative to the ambient air (Saffman and Turner 1956). For
a very small cloud droplet, the former dominates, i.e., the turbulent motion of the air
controls the movement of the droplet; while for a very large droplet, movement is mainly
of the latter type, because in this case the turbulent fluctuation of the cloud air hardly
affects the droplet's movement.

When only movement relative to the ambient air is present, the collection kernel

in the SCE has the following simple form (Rogers and Yau 1989, p130):

K(Vo)=m(R+r)? |u(R)-u(r)| E(R.D, (4.1.9)

where E(R,r) is the collection efficiency, the product of collision efficiency and
coalescence efficiency, the droplet radii R and r are trivially related to V and v by

=(4/3)nR* and v=(4/3)7tr’. We here set E=1, which assumes that as two cloud droplets
approach, one droplet's trajectory is not affected by the presence of the other droplet, and
that those two droplets coalesce upon collision.

When movement with the ambient air is involved (smaller droplets}), the collection
kernel becomes far more complicated. For this case, whether or not two cloud droplets can
collide depends on the turbulent field in the cloud, in addition to their (initial) relative
positions. From the model outlined in the last sub-section, we can calculate the trajectories
of a pair of cloud droplets for any given initial separation. When the separation (between
the centres of the two droplets) is equal to or less than the summation of the two drops'
radii, they collide, otherwise they do not.

K(V.v) is related to the probability p(R,r,x,,x,,T) that a pair of droplets of radii r

and R, having arbitrary initial separation (x,-X,), will collide within time interval T.



According to Reuter et 2. (1988),

K(V,v):g-T’E [,PR.rx, %, DD, D, D, (4.1.10)

Here D, is the initial horizontal distance between the centres of the two droplets (the
projection of |x,-X, | onto the horizontal plane); dD , and dD, are the horizontal and
vertical fength increments, respectively; and X is the initial-separation-domain over which
p(R,r.x,,x,,T) is non-zero. Note that the property of symmetry about the vertical axis has
been used.

To calculate p(R,r,x,,%x,,T) numerically, we calculated an ensemble (N members)
of trails, in each of which we released a pair of cloud droplets (droplet 1 has radius R and
is located at x, at t=0; droplet 2 is of radius r and is located at x, at t=0), and followed
their trajectories to examine whether or not they would collide within time t<T (with time

increment At=0.01T). If the tWo droplets collide n times in N realizations, then

. n
Lim,  p(R,rx,x,7T) = N

We used our thus-determined collision probability to estimate the function

24 -
K(Vv,D,) = —;‘— p(R,rx,x,,T) D, dD, 4.1.11)

in terms of which K(V,v) follows by integration w.r.t. D,,.

4.1.5. Results

In addition to the first-order two-particle model defined above (and hercafter
referred to as model 1), we examined two simplifications of it: a zeroth-ordcr two-particle
model (referred to as rnodel 2; temporal correlation along the driving air parcel trajectory

is ignored); and a zeroth-order single-particle model (referred to as model 3; spatial
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correlation across the two driving parcels is also ignored). These latter trajectory models

are fuliy defined in the appendix. For each initial separation 5,000 pairs of droplets were
released. The total flight time for each pair of droplets was 0.1 s.

4.1.5.1 Large drople:s, strongly rurbulent cloud (0,=2ms™, e=0.1m’s7)

First we considered droplets of distinet radii S0am and 100um. Our results {Figure
4.1.1) for the collection kemel from model 1 and model 2 are probably not significantly
different, and as shown in Table 4.1.1, the enhancement of K (over purely gravitationally-
driven coalescence) due to turbulence was quite small (order 20%). The predictions from
model 3 were markediy different. Relative to model 1 (which is certainly more rigorous
than models 2,3). model 3 underestimates collision probability when the droplet separation
1s small, but overestimates when the droplets are far apant. Explanation is easy: recall that
model 3 assumes that the two cloud droplets move independently. and their relative
velocity is simply the difference of two independent velocities. Thus when two droplets
are mitixlly close to each other. if they do not prompely collide, they fly apart rapidly (with
the erroneously overestimated relative velocity): the collision probability for jater time
becomes very small and as a result, the caiculated collision probability for two close
droplets is reduced. On the other hand, if the initial separation is large (but still much
smulier than the integrai length scale). the falsely exaggerated relative velocity gives the
droplets more opportunity to collide: and thus model 3 overestimates the collision
probability for far separated droplets. In their comment on the paper by Reuter et ul.
(1988), Cooper and Baumgardner (1989) argued that model 3 overestimated the
turbulence effect. Our calculations confirm this, but model 3 does not overestimate the
collision probability everywhere: for smrall horizontal separation model 3 underestimates
the collision probability.

As we noted. in this example, turbuience has minor influence on the frequency of
collisions between cloud droplets: the relative velocity due to turbulence is much snwller

than that which would be caused by gravity alone. But in the case of the collision of two
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droplets of equal size, the collection kernel duc to gravitational coilision is zero: so
turbulence accounts entirely for collisions (absolute movement of each cloud droplet is still
strongly affected by gravity). The result of a simulation for the case of large droplets of
egual size r=30pm, is given in Figure 4.1.2. Model 2 generated a K(R,r,D,) that is smaller
than that from model 1, in the range 0.015 cm < D < 0.10 cm. For the full collection
kemel K. model 1 yielded K = 0.94 x 10® m's!; whereas model 2 gave K=0.77 x 10°;

model 2 underestimates the collection kemel by about 20%.
4.1.5.2. Large droplets, weakly turbulen: cloud (0,=0.5 ms™, €=0.01m’s™)

It is less defensible to apply the present first-order LS model (model i) in weuk
turbulence, so the following result will bear re-examination when bciicr model: are
developed. As shown in Figure 4.1.3 and Table 4.1.2, whether for Zroplets of different
radii (50pm and 100 um) or of equal radii (50pum). model 1 and model 2 gave (within

numerical error) equal results for the coliection kernel.
4.1.5.3 Small droplets, strongly turbulen: cloud (6,=2ms"'. €=0.1m’s™)

In the case of small droplets (S5um, 10um), at small (large) horizontal separation,
model 2 underestimated (overestimated) the collection kernel. Overull, model 2
substantially overestimated the impact of the turbulence: the collection kernels and
enhancement factors (over gravity-driven collection) were.

model 1 K=9.2x 10" m%"', ef. =33

model 2: K=1.4x 10"°m'"', ef =428
Although model 1 is invalid when separations d between droplets are very small (so that
d>>n does not hold), our comparison nevertheless suggests model 2 gives a bad prediction

of the collection kemnel for small droplets.
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4.1.6. Conclusion

By considering the sc=’+ = i ~.1otion in a cumulus cloud, in comparison to typical
cloud droplet separations, we hav: ._ggesied that to study the evolution of a full droplet
spectrum, one will require a second-order, multi-particle trajectory model. Rigorous
models of that type are not yet available, and needed turbulence statistics (at the level of
fluid element acceleration) are unknown, - one must parameterize the spectral region
between the dissipation and inertial subranges.

However for large droplets in a very turbulent cloud, a first-order model will
suffice. Using such a model, we have shown the need to account for both the temporal and
spatial velocity correlations existing in the cloud, over time and space scales relevant to

droplet collisions.
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AFFENDIX 4.1. Three droplet trajectory models

Equations (4.1.5) of Section (4.1.3) were used to calculate the trajeciories of
droplets 1,2 in all three models, but the means to calculate U, the velocity of the air
element surrounding the droplet, differs across the three models we have studied.
Model 1 is the first-order two-particle model of Section (4.1.3.3 ). When the temporal

correlation of the driving fluid element velocity between consecutive instants is

neglected, model 1 reduces to:
Model 2: zeroth-order two-particle model. Spatia! correlation between the two driving-
parcel's velocities is taken into account, but the temporal correlation of each air

parcel's velocity is not. The trajectory equations for the air parcels containing

droplets 1,2 are:

u/ (=6,

. , (A4.1.1;
uzt(t)zelz(z)v

where O | and 6, are two spatially correlated random numbers, given by the
Kaplan-Dinar method. When spatial velocity correlation between the two moving
air parcels is neglected, model 2 reduces to:

Model 3: zeroth-order single-particle model. Neither spatial correlation between the two
parcel's velocitic . nor temporal correlation of each air parcel's velocity, are
accounted. The trajectory equaticas are:

u ()=o)

_ . (A4.1.2)
uy (1)=C5(1),

where {, and {, are independent random numbers, each with a zero mean and variance o,°.



147

Bibliography

Ackerman, B., 1967: The nature of the meteorological fluctuations in clouds. J. Appl.
Meteor. 6, 61-71.

Borgas, M.S. and B.L. Sawford, 1994: A family of stochastic models for two-particle
dispersion in isotropic, homogeneous and stationary turbulence. J. Fluid Mech.
279, 69-99.

Cooper, W.A. and D. Baumgardner, 1989: Comments on "The collection kernel for two
falling cloud drops subjected to random perturbations in a turbulent air flow: a
stochastic model.”. J. Atmos. Sci. 46, 1165-1167.

Csanady, G.T., 1963: Turbulent diffusion of heavy particles in the atmosphere. J. Armos.
Sci. 20, 201-208.

de Almeida, F.C., 1976: The collisional problem of cloud droplets moving in a turbulent
environment. Part 1: A method of solution. J. Armos. Sci. 33, 1571-1578.

de Almeida, F.C., 1979a: The collisional problem of cloud droplets moving in a turbulent
environment. Part 2: Turbulent collision efficiencies. J. Atmos. Sci. 36, 1564-1576.

de Almeida, F.C., 1979b: The effect of small-scale turbulent motions on the growth of a
cloud droplet spectrum. J. Atmos. Sci. 36, 1557-1563.

Du, S., B.L. Sawford, J.D. Wilson and D.J. Wilson, 1995: Estimation of the Kolmogorov
constant (C,) for the Lagrangian structure function, using a second-order
Lagrangian model of grid turbulence. Submitted to Physics of Fluids.

Kaplan, H. and N. Dinar, 1988: A three-dimensional stochastic model for concentration
fluctation statistics in isotropic homogeneous turbulence. J. Comput. Phys. 79,
317-335.

Kogan, Y.L., 1993: Drop size separation in numerically simulated convective clouds and
its effect on warm rain formation. J. Armos. Sci. 50, 1238-1253.

Panchev, S., 1971: Random Functions and Turbulence. Pergamon, 444 pp.

Pruppacher, H.R. and J.D. Klett, 1978: Microphysics of Clouds and Precipitation, D.
Reidel, 714pp.



148

Rogers, R.R. and M.K. Yau, 1989: A Short Course in Cloud Physics, 3rd edition.
Pergamon Press, 293pp.

Reuter, G-W_, R. de Villiers and Y. Yavin, 1988: The collection kernel for two falling
cloud drops subjected to random perturbations in a turbulent air flow: A stochastic
model. J. Amnos. Sci. 45, 765-773.

Saffrnan, P.G. and J.S. Turner, 1956: On the collision of drops in turbulent clouds. J.
Fluid Mech. 1, 16-30.

Sawford, B.L., 1991: Reynolds number effects in Lagrangian stochastic models of
turbulent dispersion. Phys. Fluids A3, 1577-1586.

Sawford, B.1L. and F.M. Guest, 1991: Lagrangian statistical simulation of the turbulent
motion of heavy particles. Bound. Layer Meteor. 54, 147-166.

Tennekes, H., 1979: The exponential Lagrangian correlation function and turbulent
diffusion in the inertial subrange. Atmos. Environ. 13, 1565-1567.

Thomson, D.J., 1987: Criteria for the selection of stochastic models of particle trajectorics
in turbulent flows. J. Fluid Mech. 180, 529-556.

Townsend, A.A., 1976: The Structure of Turbulent Shear Flow, 2nd ed., Cambridge
University Press, 429 pp.

Weil, J.C., R.P. Lawson and A.R. Rodi, 1993: Relative dispersion of ice crystals in
seeded cumuli, J. Appl. Meteorol. 32, 1055-1073.



K (x10% més ')

Figure 4.1.1.

ta

0.8

0.6

04

o
)

149

i :
] —— model 1 :
: »~  model2 :
3 . model 3
i ;
i é
i :
b
i
Fl
Ji
]

P . .
> P A T s L, a s, ot st
: A, AP AL T L et 0N L UL
-~ e v e e vTETY TV e v oa DR ol o B ik as i S g e v ey
0 0.1 0.2 0.3 0.4 0.5 0.6

D, (»10° m;

Distribution of the collection kemel according to models 1, 2, 3 for

droplets of radii 50 um, 100 pm in strong turbulence (0,=2.0 ms™' ; €=0.1

m?s?).



150

107 < TSt T s T T e ;
: L ] 3
- [ 3 .
i o s !
—_ " . mode! 1
= - . model 2
cw :. e e - H
& K .
‘.9 - ":O l
L 10% - e
x‘ ]. = -
} ,-'- ..O
E - -’ - .c ., .
3 ! L J
10 ? . 4 .. . -
-: e . . . !
= - - o -« * .
': r » e ®
A - . -
H » » - P . o
] .
i . . -
B .
H i .
0t A N N e )
[+] 0.02 0.04 0.06 G 08 010
D, (- 107 1y
Figure 4.1.2.

Distribution of the collection kernel according to models 1, 2 for droplets

of equal radii (50 um) in strong turbulence.



151

o
o

model 1
x model 2

-t
[5,]

K. (+10'mi")

-
(=]

O dorsgpita bt b i [TV R I P B ST S IR Y TS O

o
o

o

e e - = .
0.05 0.10 0.15

D,, (x10¢ m)

Figurc 4.1.3. Distribution of the collection kasiel according to models 1, 2 for droplets

of radii SO pm. 100 um in weak turbulence (0,=0.5 ms* ; €=0.01 m?73).



152

Table 4.1.1.  Collection kernels from models 1, 2, 3 for droplets of radii 50 um and 100

pm in strong turbulence (0,=2.0 ms™; €=0.1 m’s ). The pure gravitational

collection kernel for this case is 0.02827. The unit is 10® m¥s™.

n model model 1 model 2 model 3 ]
l collection kernel 0.03332 0.03464 0.05852 W
| enhancement factor’ 1.178 1.225 2.070 Wl

" Defined as the ratio of collection kernel to the pure gravitational collection kernel.
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Table 4.1.2.  Coliection kernels from models 1, £ for weak turbulence driving large
droplets of (2) different radii (50 pm, 100 pm); and (bt} equal radii
(50um).The unit is 10° m3s™.
model model 1 model 2 ﬁ
a. Collection kernel 0.03236 0.03237 l
(different size)
a. Enhancement factor 1.1447 1.1450 ‘
(different size)
b. Collection kernel 0.000465 0.000455

(identical size)
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4.2. A STOCHASTIC MODEL OF CONCENTRATION FLUCTUATIONS IN
PLUMES

4.2.1. Introduction

In the analysis of some important atmospheric diffusion processes, a knowledge
of the (time or space) average concentration is insufficient. For example, to assess the
impact of toxic and/or flammable materials released into the atmosphere, one may require
to know recurrence statistics, specifying the frequency of exceedence of a specificd
threshold value ¢, (of concentration),- the "upcrossing rate,” N*(c,). Once the upcrossing
rate 1s known, other quantities of interest, such as peak conceitration, mean duration of
exceedances, first crossing probability, and mean waiting time for the first upcrossing. can
be obtained; see Yee et al (1993b); Wilson (1995).

Kristensen et al. (1989) and Yee et al. (1993b) have modelled concentration
upcrossing rate N*, on the basis of Rice's (1945) theory, that relates upcrossing rate to the

joint prebability density function (pdf) of concentration (c¢) and its time derivative (¢'):

N’(c,)=j:c ‘p(c’.c)dc ’=p(.(c,)f:c 'py(c’le)dce’ 4.2

To apply Rice's theory, one has to know the form of the joint pdf p(c, .c), or of the
conditional pdf p,,(c'|c,) of concentration derivative {(c, given ¢ , ). We have scant
knowledge of these pdf's, in general. Even if we have prior knowledge of the functiona!
form of the joint pdf, the standard deviation of concentration derivative, conditioned on
a specified threshold level, is difficult to measure because of its sensitivity to the data
processing procedure used to produce smooth fits to data points from which the derivative
is calculated.

The objective of this study is to develop a direct numerical method for predicting
the upcrossing rate, using what we will consider the minimum amount of given statistical

information. What we consider "given" is the "single” probability density p.(c) function for
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concentration (by “single” we intend to stress that this pdf is not the joint pdf p(c’,c,) we
mentioned earlicr), and a timescale characterising the rate of evolution of concentration.

The simplest characteristic tirnescale is the Eulerian (fixed point) integral timescale
cf the (entire) conceniration fluctuation time series: assuming a stationary, continuous,
non-intermittent iinmc series, c(t, we can define the correlation coefficient as
<c(t+T)c(t)>

o (4.2.2)

¢

R(1)=
o

where < > denotes an ensemble average, and o_ is the standard deviation of c(t). The

integral time scale, T, is related to R (t) by

T.= j; "R (1) dt. (4.2.3)

If we consider only the "in plume™ time series of concentration, ie. if we discard
concentration "zeross," the resulting time series is not continuous. The time scale is then
physically less meaningful, a point we will discuss later.

Assuming as given parameters the integral time scale and the single pdf of
concentration, our approach is to develop 2 stochastic model for the time evolution of
concentration, with which we can mimic the random time series of concentration at a fixed
location,- in a way that is guaranteed to reprodr:ce those salient properties. From such a
simulated concentration time series, the upcrossing rate N*(c)) can be calculated directly,
for any or many threshold level(s), c,. The Dugway - xperiinental data (Yee et al. 1993a,

1593b, 1994) will be used to test the numerical model.
4.2.2. A stochastic model of the concentration time series
We assume that the in-plume concentration evolution at a given spatial point can

be represented as a first-order Markov process, ie. by the stochastic differential equation
(SDE)
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de=a{c,t)dr+b(c,nd(, (4.2.4

where a(c,t) is the conditional mean time derivative of concentration, conditioned on
concentration, c; and bd( is a random forcing, in which d¢ is a Gaussian random nusber,
with zero mean and variance dt. Physically, the first term represents the contribiuiion to the
change of concentration from factors that are correlated with th:e present state, while the
second term is the contribution from random factors un-corref:ted with present state.

The SDE (4.2.4) can be shown to imply a deterministic equation for the evolution
of the probability density function p., where p.dc is the probability that a random sample
of the concentration lies in the range c+%2dc. The deterministic equation is (Risken 1984;
or Gardiner 1985):

op. @ 1 3%,
— e {a y+— b~ ), 42.5
P ac( I 2ac3( p.) (4.2.5)

In the case of a steady source emitting into a stationary turbulent flow, the time derivative

of p. is identically zero; and (4.2.5) reduces to:

el

F (b 2p‘,)=?_ap‘,. (4.2.0)

This equation yields a useful constraint on the coefficients a(c,t) and b(c,t) of the SDE

(4.2.4). Assuming the simplest linear form

C
a(c,t) = - — 2.7
T (4 )

we have from (4.2.6) that

2 =
bz:ﬁf‘- ¢ p(c) de. (4.2.8)

To progress, we need p.(c).
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The shape of the (in plume) concentration pdf depends on the distance from the

source (Yee et al. 1993a; Zelt 1992). Far downwind from the source, both studies found
the pdf to be approximately log-ncrmal; eg. for the Dugway experiment p_ at the point
(x/h, y/6,)=(20,0) is well represecied (Yee et al. 1993a) by the log-normal distribution'®

2(ct.
pAc)=— _exp[-l/m)y
27toC 20~

4.2.9)

where m and o are related to the conditional mean concentration Cp and fluctuation

intensity i, by

- CP
m= . (4.2.10)
i+1
o:=ln(i3+ 1). .2.11)

Substituting (4.2.9) into (4.2.8), we obtain an explicit specification for our second

coefficient of the stochastic model, in terms of a set of "knowns,”

2= me° " (1 -erf] In(c/m)-o*
T

P, V20

12 (4.2.12)

We now turn to the time scale T in (4.2.7). In an ideal continuous, non-intermittent
time series, T is identically T, defined by egn (4.2.2,4.2.3). This can be shown by solving
(4.2.4) for c(t+1) with the above specified a(c,t) and b(c,t), multiplying the solution by c(t)
and averaging the product to get the autocorrelation coefficient R (7); since we obtain

R.(t)=exp(-t/T), it is obvious that T . the integral time scale of concentration

fluctuations.

'* Later experiments with sensors that captured fluctuations over wider frequency and
amplitude range (Yee et al. 1994) found a gamma function pdf gave best fit . We will
consider both log-normal and gamma functions, and show the log-normal is most suitable.
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Of course, (4.2.7) is but an assumption, the most important made in this study.

Since a(c,t) is the time derivative of concentration condizioned on the instantaneous

concentration, adopting (4.2.7) implies the form of the conditional pdf p» (c'lc).- aithough

we do not know what this pdf is. The good agreement we will demonstrate, between the

predicted and measured upcrossing rate, suggests our assumption (4.2.7) is acceptable,
at Jeast from the viewpoint of predicting the upcrossing rate.

To determine whether the linear ("Langevin™) assumption for a{c.t) (eqn 3.2.7) is

too strong, we have also examined a generalization of (4.2.7), a non-linear specification

of the conditional mean concentration derivative a(c,i),

==L (Eye=
a(c,n)= T(( C,,) » (4.2.13)

where T, is the integral time scale for concentration fluctuations'”. The corresponding

specification of the second model coefficient is, from {4.2.8),

a® 2
7(] -y

C -a2(1 -
p2=_M (=2yee 2 {l_e'ﬂln(c/m) c-(1 a)]}.
Tp. m V20

(4.2.14)

4.2.3. Application of the present model to an intermittent concentration time series

Dispersing plumes are usually intermittent, ie., at a fixed sampling point, some
readings of concentration will be zero (see Figure 4.2.1(a)). A common practice used in
the air pollution community is to remove the zero readings from the series, and 1n form the
conditional time series, as shown in Figure 4.2.1(b). However, in so doing the essentially
uncorrelated segments (e.g. A, B, C, etc) become artificially correlated, so that in the

conditional time series the high-frequency component originally contained in the total time

' We can not prove rigorously that T, is the Eulerian integral timescale for this particular
non-linear model, but it will be approximately so provided a< O(1).
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series will be “contaminated” by the artificiaily introduced high-frequency “kinks™. It is
necessary to assume errors will be introduced to power spectra, time scales, and other
properties calculated from the conditional time series.

It is our proposition that in predicting the upcrossing rate, the medel developed in
the last section can be used to approximate the conditional time series obtained by
reduction (zeroes-¢limination) of an intermittent series. However, since the conditional
time series contains some artificial high frequency component, caused by removing of
zeros from the total time series, the integral time scale calculated from the conditional time

series may not give the best prediction.

4.2.4. Comparison of stochastic model with the Dugway data

Firstly, we investigate the (in-plume) concentration pdf given by the model. When
b is specified by eqn (4.2.12), ie. under the a-priori assumption of a log-normal pdf, we
require to set a minimum permissible concentration (c,,,) in order to prevent unrealistic
evolution of concentration: otherwise the numerical model can produce an extremely high
concentration when the concentration at previous time step is extremely low. Our criterion
for choosing ¢, is simply that we should reproduce the gesired pdf p.(c).

We simulated the concentration evolution of the Dugway experiment data obtained
at point x/h, y/6,=(20.0,0.0), at which point i,= 1.4 and T_ ;= 0.164 sec (T, is the integral
time scale from analysing the measured conditional time series). Since the statistics of
concentration derivative are controlled by high frequency fluctuations produced by small
eddies, the upcrossing rate will be sensitive to the sampling cut-off frequency. The
concentration time series generated by the stochastic modei was filtered with a
Butterworth digital filter, with the cut-off frequency set at S Hz or 100 Hz.

The linear model calculations (with “a” term from (4.2.7)) were carried out with
several values for the time constant T, to obtain a family of threshold upcrossing rate N*
for each of the two cut-off frequencies. Figure 4.2.2 shows, as expected, the upcrossing

rate N* decreases monotonically with increasing T, ,, showing that N* is indeed controlled
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by small scale eddies.

Figure 4.2.3 compares t..e upcrossing intensities obtained from the linear model
cakulations (with T, ;= 0.164 sec) with observations of the Dugway experiment. Overali
the agreement is quite satisfactory (the maximum difference is within a factor of 2).

Figure 4.2.4 compares the ncn-linear model predictions of upcrossing rate for
different o's. The prediction is not very seasitive to the value of &, and it seems that ¢=0
may be the optimal choice. This is a very good property of the model: the simplest model
gives the best result.

4.2.5, Sensitivity of N' to the shape of the concentration pdf

We also examined the sensitivity of N* to the shape of the concentration pdf. The
Gamma pdf

k k(::/Cp)k"'

PO

exp( -l:——c-), (4.2.15;
CI’

where 'k:l/i:, approximates many of the available observations quite well. With a(c,t)

given by (4.2.7), we can derive by substituting (4.2.15) to (4.2.8) that

b=

2C k* o
L—— " cle’de.. (4.2.161
T, p.(c) TitkyJac, )

Figure 4.2.5 compares the predictions of N* with (4.2.1) and with (4.2.16), respectively.
Predicted N” is somewhat sensitive 10 the shape of p(c), which suggests that in predicting
upcrossing intensity the functional form of p, should be chosen with care, - a difficulty,

since from: experimental data it is often difficult to discriminate which pdf p, is "best.”
4.2.6. Conditional standard deviation of concentration time derivative

One of the most important findings of Yee et al. (1993b) is that for a stationary
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concentration time series, the concentration derivative is not independent of concentration

itself, although concentration and its time derivative are uncorrelated due to the steadiness

of the concentration series. This of course is hardly surprising, and was anticipated by

Kristensen et al. {1989). It explains in part why the Kristensen et al. model underestimates
the upcrossing intensity for large concentrations.

For the Dugway field experiment, Yee et al. (1993b) obtained that at the sampling

point x/h=20.0 on the plume centerline that the conditional standard deviation (o;) of

normalized concentration derivative, £=c/0_, given a fixed nonmalized concentration level,

c/C,, can be represented well by the empirical formula

O(c/C)=— L&y (0.5<c/C,<6.0). (4.2.17)

V2 G

In obtaining (4.2.17), the cut-off frequency was chosen to be 100 Hz.

The stochastic model predictions for T, ,= 0.1 ~ 0.3 s, cut-off frequency f.= 100
Hz were compared with formula (4.2.17). Our results (Figure 4.2.6) support Yee et al's
(1993b) finding that 6;=0c/C,), but suggest a slightly different form

€ yha

,(c/C )=A +A(— (4.2.18)
Cp i

where the A's are constants for given T. We also calculated o; with the gamma single pdf,
as shown in Figure 4.2.7. It seems that A, increases with T_, for a given pdf, while A,
and A, are controlled by the form of the single pdf p.(c). In general A, and A, could vary
with location, concentration pdf and possibly other factors. Formula (4.2.18) seems more
reasonable than (4.2.17) for small ¢/C,; the latter implies that when the concentration is

zero (or near zero), concentration at the later time should remain zero (or near zero).
4.2.7. Considerations to improve the model

The concentration spectrum generated by our first-order Markovian model is
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characterised by a "-6/3 law" in the high frequency range. Wilson and Zhuang (1989)
demonsirate this for the paraliel case of their Langevin modei for the evolution of velocity,
in contrast the Dugway field data exhibit a "-5/3 law."” Wilson (1995) in his Appendix B
studied the effect of the concentration spectrum shape on the upcrossing rate, {inding that
the distinction between the "-6/3" and "-5/3" spectral form is not important for frequencies
of practical interest. But when the concentration spectrum differs substantially from the
"-6/3" law, for example, the "-3/3" law for the diffusion process with Schmidt number
Sc»1 (Wilson et al. 1991), consideration must be given to this aspect if we intend to
predict upcrossing intensity (or more broadly, to regenerate the concentration time series)
with a stochastic model .

The other problem is how to define an in-plume conditional time scale. Usually the
in-plume conditional time series is obtained from the total series by simply clipping off all
the concentration readings smaller than some *“zero” threshold level. In doing so. the
segments of the process lying between non-zero segments are artificially replaced by a
"faster" process, so that artificial high frequency components are introduced, and the time
scales caiculated from such a conditional time series are expected to be smaller than the
true values. This may explain why a larger T_, (in between 0.2~0.3) gives the best

agreement between the model prediction and the measurement.

4.2.8. Conclusions

From a specification of the concentration pdf and the Eulerian integral time scale
for concentration, we can specify a Markovian model for c(t), simulate a concentration
time series, and draw information from it to predict upcrossing intensity. The merit of this
technique, in comparison with models based on the Rice (1945) theory. is that it demands
less given-information, but nevertheless achieves a reasonably accurate prediction. The
conditional standard deviation of the normalized concentration derivative calculated from
this stochastic model is qualitatively consistent, over the range of 1.0<c/C <6.0, with Yee

et al.'s (1993b) field measurements that show that the standard deviation of the derivative
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increases with the concentration level ¢, at which it is measured, and may be more
reasonable in the small concentration range ¢/C,<1.0. Our model calculation also shows
that the upcrossing intensity has some dependence on the functional form of the single pdf,
p.(c), with the upcrossing rate N* about a factor of two higher for the gamma pdf

compared to the log-normal pdf.
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Chapter 5
Concluding Remarks

Two Lagrangian stochastic models are developed in this thesis: a firsi-order single
particle model for non-Gaussian turbulence, and a second-order single particle model for
Gaussian, low-Reynolds-number flow.

Some turbulent dispersion problems are studied by making use of these models and
models developed by others: the distribution of mean concentraticn in the convective
boundary layer; the effect of higher-order velocity moments on the mean concentration
distribution; the validity of the moments approximation method developed by Kapian and
Dinar; determination of the Kolmogorov constant for the Lagrangian velocity structure
function. The stochastic simulation technique is also used to study droplet collisions in a
cloud, and the rate of upcrossing over certain threshold levels of concentration at a given
spacial point downwind of a contaminant source.

A brief summary of the findings/contributions is as follows:

1. Rather than adopt an ad %oc velocity pdf, the maximum missing information
¢mmi) principle should be used when constructing the Eulerian velocity pdf from known
velocity moments, otherwise the pdf may have unphysical properties.

2. There is no guarantee that an LS model derived by using the Kaplan-Dinar
moments approximation method is well-mixed, and the model can give an inferior
prediction for the mean concentration.

3. The third and fourth order velocity moments can affect the concentration
distribution. The mean concentration distribution is sensitive to the velocity skewness S
when S is large (S>0.6), and to the velocity kurtosis K when K is small (K<3.0). Hunt's
small-time analytic predictions for the plume centerline position and the plume width are
valid for t< 0.5(20,°/C,€); but his inference that near a ground-level source the vertical
spread is dominated by the gradient of third-order velocity moment, is not correct.

4. The Sawford second-order model is exact for isotropic, homogeneous,
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stationary and (Gaussisn mrbulence {wherein both velocity and acceleration pdf's are
Gaussian); an extended wersion of the Sawford model for isotropic. homogeneous,
Gaussian and decaying ttwbulence is denived.

5. The Eeclmosgorov constant {C,) for Lagrangian velocity structure function hos
numerical value C,=3.0+0.5, universal across grid turbulence, laboratory boundary layer
flow and (fuli-~<ale) atmospheric boundary layer flow.

6. Tuisulence can enhance the collision probability of cloud droplets when
fluctuations are strong and the size difference of cloud droplets is not large.

7. A stochastic simulation technique is developed to predict the rate of upcrossing
over concentration threshold levels at a given spacial point. The model is tested against
experimental data from the Dugway Proving Grounds, and is shown to be satisfactory.

The present work has dealt with both the determinisiic term a(u.x,1} and the
random forcing term b,(u x,t) d; of the Langevin equation for the evolstion of particle’s
velocity. By applying appropriate mcdels to several different turbulent fiows, the
Kolmogorov constant C, appears to be universal with a value of 3.0+0.5. Therefore the
non-universality problem raised by Sawford and Guest (1988) has been solved. However,
1 want to stress that a discrepancy . ive apparent value of C, still exists, between the
present study and studies based on other methods (eg., Fung et al. 1992; Popc 1994); that
is, to completely settle the non-universality problem, further investigation is nceded. With
respect to the deterministic term, I studied how to construct the Eulerian vefocity pdf from
given low order momerts so that the well-mixed constraint can be used to derive the
coefficient a(u,x,t) - which is of great importance in practical applications: but the
outstanding non-uniqueness problem is yet to be soived. Selving tie non-uniquencess
problem is imperative, because frequently diffusion must be calculated in multiple
dimensions.

Speaking of practical applications, few real plumes/puffs can be treated as “passive
tracers™; real pollutants are either buoyant or heavy, in comparison with the ambient air.
Diffusion models are less developed for those non-passive contaminants, the main

difficulty in the Lagrangian stochastic modeling being a lack of sound physical



174

constraint(s) parallel to the well-mixed constraint for passive tracer.

Though it is presumably the most natural and appropriate means t» siudy droplet
collisions in turbuler: clouds, a second-order two-particle Lagrangian stochastic model 1s
not yet availabie. The present study in this respect is intepded only to draw the auention
of the cloud physics research community to the fact that :{ the LS moedeling iechnique is
used inappropriately, results could be in serious error.

A novel attempt made in this thesis is to apply tbe stochastic modeling technique
to simulate the time evolution of concentration (ie. to simulate statistically the
concentration time series) at a given spatial point. To 735y knowledge this is the first work
of iis kind reported. The prelimirary results show this technique can be very successful.
If further tested (confirmed) the model wili b2 very useful in many practical applications.

Finally, it may be helpful to discuss the fundamental assurnpiion underlying
Lagrangian stochastic simulation: each fluid element/particle conserves its species
concentration and does not mix with other fluid elements. If this assumption were exactly
true, then the distribution of ¢oncentration moments will be uniquely determined by the
source distribut:on and the time-~space distribution of tracer particles - for example, under
that assumption, thz mean corcentration distribution due to a point source will be uniquely
determined by source strength and by the number density function of tracer particles. But
there is evidence showing this is not the case in reality: the shape of the mean
concentration distribution is not identical to the shape of the concentration intermittency
factor {Myine 1983); and the in-plume conditicnal mean concentration decreases with
dowastream distance (Chatwin and Sullivan 1990). One may expect LS methods to require
further development for applicatiun to problems in which molecular effects play an

important role.
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