
State Generalization in UCT

by

Srinivasan Sriram

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c©Srinivasan Sriram, 2015

Abstract

In this thesis, I study the problem of Monte-Carlo Planning in deterministic do-

mains with sparse rewards. A popular algorithm in this suite, UCT, is studied. A

new algorithm to incorporate state generalization in UCT using estimates of sim-

ilar nodes and a distance metric is presented. The algorithm’s correctness and

asymptotic convergence to optimality under certain conditions on the domain is

also shown. A second contribution in this thesis includes an algorithm for learn-

ing a local manifold of the state space when the state space does not have a natural

distance metric and use it for state generalization in UCT. The effectiveness of the

algorithm is studied by measuring its performance on multiple domains inspired

by video games. Empirical evidence shows that the new algorithm is more sample

efficient than UCT, especially on sparse reward games.

ii

Acknowledgements

I would like to thank my supervisors, Dr. Michael Bowling and Dr. Erik Talvitie, for

guiding me throughout this journey. Their keen insights and suggestions helped

me on numerous occasions, especially during the tough times. A special thanks to

Erik Talvitie for reviewing my code for performance speedups.

I would also like to thank Dr. Csaba Szepesvári for helping me with the proofs.

A special thanks to Ujjwal Das Gupta, friend and colleague. I thoroughly enjoyed

our discussions on research and life in general. Hope to have more in future.

I would also like to thank Dr. Rich Sutton and the RLAI lab members for the

various helpful discussions. They have helped me understand RL research quickly

and also shape my outlook towards research. Rich Sutton remains an inspiration

for my interest in RL.

I would also like to thank my friends - Ankush, Ujjwal, Talat for the fun and

support. I hope it continues in future too.

I would like to thank my parents for their unconditional love and support.

Contents

1 Introduction 1

2 Background 4

2.1 Markov Decision Processes (MDPs) 4

2.2 Value Function . 5

2.3 Monte-Carlo Tree Search . 6

2.4 UCT - UCB on Trees . 8

2.4.1 Convergence of UCT . 10

2.5 Enhancements to UCT . 10

3 State Generalization in UCT 13

3.1 NN-UCT . 14

3.1.1 Decay Scheme . 15

3.2 Theoretical Analysis . 16

3.3 Related Work . 18

4 State Generalization on Complex Domains 20

4.1 Manifolds . 21

4.2 Manifold Learning . 21

4.2.1 Isomap . 22

4.2.2 Local Manifolds . 23

4.3 mNN-UCT . 24

4.3.1 Discussion . 24

4.4 Related Work . 25

5 Experiments 27

5.1 Experiment Setup . 27

5.2 Grid World Domains . 27

iv

5.3 Game Domains . 29

5.3.1 Performance Comparison. 30

5.3.2 Parameter Sensitivity. 33

5.4 Summary . 33

6 Conclusion 35

Bibliography 37

v

List of Figures

2.1 DAG MDP State Diagram . 11

2.2 UCT Implementations . 11

4.1 Grid World with Wall . 20

4.2 2D data and its 3D mapping . 21

5.1 Performance on Grid World Domains 28

5.2 Games Domains . 29

5.3 Performance comparison between mNN-UCT and UCT on Game

Domains . 31

5.4 Parameter sensitivity of mNN-UCT algorithm on Game Domains . . 32

vi

Chapter 1

Introduction

One must be sane to think clearly,
but one can think deeply and be
quite insane.

Nikola Tesla

Humans, as well as computers, are constantly involved in decision-making. In

many cases, the decision-making process involves evaluating the outcomes of cur-

rent as well as future decisions. This process, commonly called planning, requires

a model to simulate future decisions and their outcomes without actually taking

them. If the model is accurate, the outcomes of the decisions can be estimated re-

liably. Although an accurate model enables reliable estimation of outcomes, the

problem can become hard if the search space of decisions gets very large. As the

agent looks ahead into the future for measuring the outcomes, the space increases

exponentially. A finite computational budget necessitates the need for efficient

search.

The search process needs to be efficient in two ways:

1. It must perform a reasonably far look-ahead of the outcomes and pick the one

which is most beneficial. The benefit is usually measured by the rewards the

agent can possibly accrue in the future (exploitation).

2. It must also simulate decisions which are outside of the current best choices.

This allows the agent to consider choices which may not look promising in

the very near future but better in the long term (exploration).

Notice that the actions needed to meet the two objectives are mutually opposing.

While the first objective requires looking further into the future, it limits exploring

other choices in the near future which may be valuable in the long term. The second

1

objective of exploration limits the search from looking further in the horizon (time

upto which future rewards are considered) for the choices that have been evaluated

with the current horizon.

An interesting situation arises when all the decisions look equally poor in the

near future, but there exists a sequence of decisions whose outcome is better than

many other sequences when the length of the sequence is longer than the near fu-

ture horizon. Such problems are also called sparse reward problems. One such

example is the game of Freeway, where the chicken receives a reward of one only

when it crosses the road completely. Identifying the best decision at the current

time step would involve a distant look-ahead but the available computational bud-

get may be insufficient to perform the look-ahead for all possible decisions in the

future. Thus the search process needs to grow in areas whose outcomes look more

promising, while also exploring other choices. In this thesis, I focus on such se-

quential decision problems. In particular, I attempt to solve this problem using a

popular planning algorithm —UCT. The UCT algorithm balances look-ahead and

exploration very well in general and has been successfully used in achieving mas-

ter capability levels in games such as computer Go. However, UCT performs poorly

in sparse reward problems as it spends most of its computational budget searching

in regions (states) similar to those it has already seen.

One way to tackle this problem is by generalization. If actions at a particular

time step lead to states similar to those that have already been encountered, the

search procedure can avoid expanding the search in those states and instead focus

on other states whose outcomes are unknown or unreliable yet. To achieve gener-

alization, one needs to be able to measure similarity between states. If these states

were points in Euclidean space, we could use distance between them for a similar-

ity metric. However, if they aren’t points in Euclidean space, we can embed them

in Euclidean space and compute distances. In this work, I introduce a method for

incorporating state generalization in UCT using these ideas. Specifically, I make

two contributions:

1. I introduce Nearest Neighbor UCT (NN-UCT), for incorporating state gener-

alization in UCT through a designer provided distance metric.

2. I describe how a manifold learning algorithm can be applied to provide a

distance metric in NN-UCT, when a natural distance metric is unavailable.

2

We call this combination, the mNN-UCT algorithm.

I begin by reviewing background material (Chapter 2). Related work is pre-

sented along with the contributions in Chapters 3 and 4. All the algorithms pre-

sented here are tested on domains inspired by video games, described in Chapter

5. Finally, Chapter 6 concludes the work with directions for future research.

3

Chapter 2

Background

Sequential decision problems involve an agent making a sequence of decisions at

discrete time steps in a known or unknown environment. The goal of the agent

is to maximize its future discounted sum of rewards. The rewards may be ob-

tained from the environment (Sutton and Barto, 1998) or intrinsically generated

(Oudeyer et al., 2007) or simply the reward of gathering knowledge about the envi-

ronment (Sutton et al., 2011). Sequential decision problems can be described using

the Markov Decision Process (MDP) setting (Puterman, 2009). The MDP frame-

work makes the assumption that there is a state variable that completely describes

the environment, which is formally called the Markovian assumption. Knowledge

of the state and the dynamics of the environment are sufficient to predict future

rewards.

2.1 Markov Decision Processes (MDPs)

In this thesis, I focus on deterministic MDPs. Such a MDP has no randomness

involved in its state transitions as well as reward function. A deterministic MDP

M is a tuple 〈S,A, T, ρ, γ〉, where each one of the components are:

• S: The set of all states, with s0 being the initial state.

• A: The set of actions available to the agent in the environment.

• T : S × A → S: The transition function returns the next state, given a state-

action pair.

• ρ : S × A → R: The reward function returns a scalar as reward obtained for

taking an action from a state.

4

• γ ∈ [0, 1]: The discount factor acts as a tradeoff between short-term and long-

term rewards.

The dynamics of the environment can be described as follows: at timestep t, the

agent observes state st and selects an action at ∈ A and receives reward rt =

ρ(st, at); the next state st+1 is given by the transition function T (st, at). The Markov

assumption of the environment can be formally described as:

Pr (st+1, rt|s0, a0, ..., st−1, at−1, st, at) = Pr (st+1, rt|st, at)

In other words, the next state and immediate reward is dependent only on the

current state and action. The Markov assumption is also captured in the parame-

terization of the transition and reward function, where the arguments include only

a state-action pair.

The behavior of an agent can be described by a policy π : S × A → [0, 1], where

π(a|s) denotes the probability of taking action a in state s. We can evaluate a policy

using its γ-discounted expected return defined as:

Eπ

[

∞
∑

t=0

γtρ (st, at)

]

.

Now that we can evaluate a policy, a natural question is to find an optimal policy,

π∗ = argmax
π

Eπ

[
∑∞

t=0 γ
tρ (st, at)

]

∀s.

2.2 Value Function

For a given deterministic MDP M and policy π, we can define a state-value func-

tion Vπ(s) : S → R, as the expected return obtained when starting in state s and

following policy π, i.e.,

Vπ(s) = Eπ

[

∞
∑

t=0

γtρ(st, at) | s0 = s

]

We can also define an state-action value function Qπ(s, a) : S × A → R, which is a

mapping from state-action pairs to the expected return achieved by starting in state

s, taking action a and following policy π thereafter, i.e.,

Qπ(s, a) = Eπ

[

∞
∑

t=0

γtρ(st, at)|s0 = s, a0 = a

]

(2.1)

5

The Markov property of MDPs allows us to write the state-action value function

recursively, known as the Bellman equation :

Qπ(s, a) = ρ(s, a) + γ
∑

a′∈A

π(a′ | T (s, a))Qπ(T (s, a), a
′). (2.2)

Thus, the state-action value function and value function are related as,

Qπ(s, a) = ρ(s, a) + γVπ(T (s, a)).

The optimal policy π∗ has a value function

Q∗(s, a) = ρ(s, a) + γmax
a′∈A

Q∗(T (s, a), a′).

2.3 Monte-Carlo Tree Search

Now that we have described the sequential decision problem in the form of MDPs,

we can now focus on planning algorithms to determine actions in the optimal pol-

icy. Recall from Chapter 1 that the search process should balance the two objectives

of looking ahead into the future and exploring other actions. One of the ways to

achieve this balance is by building a search tree using samples from the model. The

tree consists of nodes corresponding to states and edges corresponding to actions

taken from a state. These methods are called Monte-Carlo Tree Search (Browne

et al., 2012) algorithms.

A general Monte-Carlo Tree Search (MCTS) algorithm is shown in Algorithm

1. The algorithm builds a search tree iteratively, until there is no computational

budget available. This budget can be defined in terms of time or memory or a

constraint on the number of iterations. When there is no more budget available,

the function returns the best action from the root node. The search procedure is

called from a start state (s0). It then builds the tree, adding one node at a time.

MCTS algorithms compute value functions to determine action selection at each

level in the tree, eventually leading to the creation of a leaf node. Once a leaf node

is created, the algorithm performs a rollout, which is a sequence of actions dictated

by a pre-specified default policy. The algorithm uses the returns (discounted sum of

rewards) collected from these rollouts to determine the value of the node. A formal

description follows.

Let D denote the set of nodes in the tree. Note that two or more nodes can share

the same state s ∈ S. Let S(d) denote the state corresponding to node d ∈ D and

6

A(d) denote the action from the parent node, leading to node d ∈ D. Each node

maintains the sum of returns obtained by rollouts starting from that node, R(d),

as well as the number of times it has been visited, n(d). The value of the node is,

V (d) = R(d)
n(d) . The action value estimate is given by Q(d, a) = ρ(S(d), a) + γ ∗ V (d′),

where d′ is the child node reached by taking action a.

Algorithm 1 MCTS algorithm

1: function MCTS(s0, n, depth) . n = number of rollouts, depth = length of rollout
2: create root node d0 with state s0
3: while n > 0 do

4: dl ← TREEPOLICY(d0) . Tree Policy algorithm dependent
5: z← DEFAULTPOLICY(S(dl),depth,γ)
6: BACKUP(dl,z)
7: n← n− 1
8: end while

9: return argmax
a∈A

Q(d0, a)

10: end function

11: function DEFAULTPOLICY(s, depth, γ)
12: if s is terminal or depth == 0 then

13: return 0
14: else

15: Choose a ∈ A uniformly at random
16: r ← ρ(s, a)
17: s← T(s, a)
18: depth← depth− 1
19: r← r + γ * DEFAULTPOLICY(s, depth, γ)
20: return r
21: end if

22: end function

23: function BACKUP(d, z)
24: while d is not null do

25: n(d)← n(d) + 1
26: R(d)← R(d) + z

27: a← A(d)
28: d← parent of d
29: if d is not null then

30: z← ρ(S(d),a) + γ ∗ z
31: end if

32: end while

33: end function

An MCTS algorithm consists of the following components :

7

1. Tree Policy - The tree policy is used to perform action selection at each level

in the tree, eventually leading to the creation of a leaf node. Thus, the tree

policy dictates the way the tree is grown during planning.

2. Default Policy - This is used to run a simulation, starting from the state corre-

sponding to the leaf node, until a certain length or termination. The default

policy is usually uniformly random.

3. Backup - The backup procedure updates the nodes of the tree, starting from

the leaf, up to the root, along the branch chosen, with the return accumulated

from the default policy. The backup procedure updates the value estimates

of the nodes, which would affect the tree policy in the next iteration.

Finally, when no more simulations are run the greedy action from the root is chosen

and returned. Ties are either broken based on visit counts, or randomly.

2.4 UCT - UCB on Trees

UCT (Kocsis and Szepesvári, 2006) is an MCTS algorithm that uses the UCB1 algo-

rithm (Auer et al., 2002) for its tree policy. UCT treats the action selection problem

at each sub-tree as a multi-armed bandit problem. For the multi-armed bandit

problem, UCB1 tries to solve the exploration-exploitation dilemma by computing a

score that combines the two quantities. Assuming that the payoffs of the arms

are i.i.d. (identically and independently distributed), the UCB1 algorithm has a

regret that grows logarithmically in the number of arm pulls. The regret is the

loss incurred by not pulling the best arm in hindsight. The UCB1 aims to bal-

ance the exploration-exploitation dilemma by keeping track of the average rewards

of the arms and picking the one with the best upper-confidence bound. The aver-

age reward of arm i is given by ¯Xi,Ti(t−1) =
1

Ti(t−1)

∑t−1
j=0Xi,Ti(j), where Xi,j ∈ [0, 1]

denotes the rewards and Ti(t) =
∑t

j=0 1(Ij = i) is the number of times arm i has

been pulled from time 0 to t (included). The UCB1 algorithm picks the arm in the

following way :
It = argmax

i∈{1,2,..,K}

¯Xi,Ti(t−1) + ct−1,Ti(t−1),

ct,s =

√

2 ln t

s
.

(2.3)

The UCB1 algorithm uses the optimism under uncertainty principle. The measure

of uncertainty is expressed by the exploration bonus term. Thus, if a certain arm

8

hasn’t been pulled a sufficient number of times, its exploration bonus grows with

time, forcing the arm to be pulled. This helps in improving the reliability of the

estimates of less promising arms, as well as avoiding selecting a sub-optimal arm.

Algorithm 2 UCT Tree Policy

1: function TREEPOLICY(d)
2: while d is non-terminal do

3: if d has unexplored actions then

4: return EXPAND(d)
5: else

6: d← BESTCHILD(d, C)
7: end if

8: end while

9: return d
10: end function

11: function BESTCHILD(d, C)

12: a← argmax
a∈A

Q(d, a) + C ∗
√

ln
∑

a′∈A
n(d,a′)

n(d,a)

13: return f(d,a)
14: end function

15: function EXPAND(d)
16: Pick a ∈ untried actions from A

17: add a new child d′ to d with
18: S(d′)← T(S(d),a)
19: f(d, a)← d′

20: A(d′)← a

21: n(d′)← 0
22: R(d′)← 0
23: return d′

24: end function

Algorithm 2 shows the tree policy of UCT. The UCT algorithm treats the return

obtained by the Monte-Carlo simulations as i.i.d random variables. By Hoeffding’s

inequality, these estimates concentrate around the mean quickly at the leaf nodes.

However, since the sampling probability of actions changes in the subtree, the pay-

offs may change over time. But, with an appropriate exploration bonus, the change

is compensated for.

In the UCT algorithm, the UCB1 algorithm is used to select actions at each level

in the tree. Hence, the UCB score at node d and action a is given by:

Qucb(d, a) = Q(d, a) + C ∗

√

2 ln
∑

a′∈A n(d, a′)

n(d, a)
. (2.4)

9

The second term is an exploratory bonus, which encourages actions taken less fre-

quently from a node, where C is a positive parameter, n(d, a) is the number of

times, action a was taken from node d and hence n(d, a) = n(d′), where d′ is the

child node reached by taking action a. After the computational budget is exhausted

in building the tree, the greedy action at the root, argmax
a∈A

Q(d0, a) is picked.

2.4.1 Convergence of UCT

Given a finite horizon MDP, under the assumption that the returns from the default

policy are i.i.d samples, UCT converges to the optimal policy, asymptotically. The

probability of choosing a suboptimal action at the root converges to 0 at a polyno-

mial rate in the number of rollouts. In practice, UCT has been applied successfully

in many games such as computer Go. The UCB constant (C) is the only parameter

that needs to be tuned to the specific domain.

2.5 Enhancements to UCT

A few popular enhancements to UCT are described below. These enhancements are

used to make UCT sample efficient in practice and have no affect on the asymptotic

convergence to optimality.

1. Retaining the optimal subtree between planning steps: Once the planning

budget is exhausted, UCT returns the greedy action at the root. A useful

optimization is to retain the branch of the tree corresponding to the chosen

action for the next planning step. This helps UCT grow its tree deeper in the

next planning step, as the UCT tree for the next planning would consist of

nodes in the optimal branch.

2. Transposition tables: Transposition tables (Childs et al., 2008) are lookup ta-

bles to use values of state-action pairs that have already been encountered in

the tree. This allows statistics to be shared across nodes with the same state.

When memory is at a premium, care must be taken in ensuring that all the

child nodes are considered for action selection when only some of them are

stored in the table.

3. After-state trick (Méhat and Cazenave, 2010): Instead of storing statistics (re-

turns, visit counts) as state-action pairs in the edges, we can store the statistics

10

in the nodes corresponding to the after-state. This helps in the exploration be-

ing guided towards promising after-states, instead of relying on the counts of

the actions being taken from a state.

s1

s3 s2

s4

0.6 0.4

0.3

0.1

Figure 2.1: DAG MDP State Diagram

(a) UCT with Transpositions (b) UCT without Transpositions

Figure 2.2: UCT Implementations

Figure 2.1 shows the state diagram of an MDP whose state transitions form

a Directed Acyclic Graph (DAG) with states s3 and s4 being terminal states.

There is a transposition at state s3 as it is reachable from both states s1 and

s3. Figure 2.2 shows the UCT tree with and without transpositions, after 10

iterations. The after-state trick along with transpositions turns the UCT tree

in to a DAG with returns and visit counts stored in the nodes, rather than

the edges. Notice that the visit count of state s3 is higher than one of its

parents s2 as it is visited from both the root (s1) as well as state s2. Without

transpositions, two different nodes for the same state s3 are created. The sum

11

of the returns and visit counts of the two nodes sum up to the total visit count

of the state.

12

performing an exhaustive search of the state space would be impractical. We want

to retain the strengths of Monte-Carlo planning in using samples, while still achiev-

ing efficient exploration. I aim to exploit similarity between states and augment

UCT with this information. Using this information, we can generalize to new states.

The state generalization can be incorporated in the tree policy of UCT, specifically

in the UCB score computed for action selection in the tree policy. By doing so, UCT

can now grow its tree towards new and dissimilar states, thereby helping UCT see

possible reward in distant future states. This would help UCT choose the optimal

action from the start state, that helps it obtain reward(s) in future.

3.1 NN-UCT

Even if we haven’t visited a state before, a good estimate of the node’s statistics

can be obtained from the statistics of other similar nodes in the tree, thus making

better use of samples. A natural way to incorporate this form of generalization is

to combine the statistics of similar nodes and use it to compute the UCB score. One

way to achieve this is to compute a nearest neighbor estimate of the return and visit

counts for each node d, as given by :

Rnn(d) =
∑

d′∈D

K(S(d), S(d′)) ∗R(d′)

nnn(d) =
∑

d′∈D

K(S(d), S(d′)) ∗ n(d′)

Vnn(d) =
Rnn(d)

nnn(d)

where K(s, s′) is a kernel function that measures similarity between states s and s′.

A popular choice for the kernel function is the Gaussian kernel function, K(s, s′) =

exp
(

‖s−s′‖2
2

σ2

)

, where s, s′ ∈ R
d , σ is the Gaussian width parameter which controls

the degree of generalization. As σ → 0, the nearest neighbor estimate approaches

the Monte-Carlo (MC) estimate of all of the transpositions. If generalization is

turned off, we can still reap the benefit of using transposition tables, described

in section 2.5, without additional memory but with additional computational cost

for every run of the tree policy. The computational cost is linear in the number of

nodes in the UCT tree for every level at which the tree policy is executed. Although

transposition tables cost less in combining statistics of nodes with transpositions,

our approach helps us to introduce higher degrees of generalization.

14

Note that the nearest neighbor estimate adds bias, which could prevent the

guarantee of continual exploration of all actions. Hence, asymptotically, we want

the returns and visit count estimates to be closer to the unbiased MC estimates.

One solution is to employ a decay scheme, that shrinks the Gaussian widths of

the nodes as planning continues. In section 3.1.1, we discuss one such scheme for

reducing σ smoothly over time. The new UCB score is computed as :

Qucb(d, a) = Qnn(d, a) + C ∗

√

2 ln
∑

a′∈A nnn(d, a′)

nnn(d, a)

where Qnn(d, a) = ρ(S(d), a) + γ ∗ Vnn(d
′), where d′ is the child node of node d

when action a is taken from state S(d). The quantity nnn(d, a) ≡ nnn(d
′) is taken

from the child node d′. Thus, the nearest neighbor estimate of the number of times

action a was taken from state S(d) is obtained from the number of state visits to

the after-state S(d′). In our algorithm, unlike UCT,
∑

a∈A nnn(d, a) 6= nnn(d). Thus,

neither the actual visit count (n(d)), nor the nearest neighbor estimate (nnn(d)) of

the parent node is used in the exploration term. Hence, only the estimates of the

child nodes (after-states, as described in section 2.5) are used for action selection

and actions leading to after-states similar to the ones already explored are not pre-

ferred. Figure 3.1(c) shows the heatmap of states visited by NN-UCT on the grid

world domain after 100 rollouts from the start state where each state is given by a

pair (i, j), 0 ≤ i, j < 40, and a Gaussian kernel with σ = 100 is used with a decay

scheme (explained in the next section) that uses β = 0.9. NN-UCT directs tree to

be grown in areas farther from states that have been encountered already. In the

absence of reward, with ties bro- ken using visit counts, the action picked at the

root would be one that leads to a state where rollouts could see non-zero reward.

3.1.1 Decay Scheme

Given the initial Gaussian kernel width σ, we want to develop a scheme that shrinks

the Gaussian widths of nodes such that the value estimates and visit counts are

closer to the MC estimate, asymptotically. We use a simple decay rate, β, where

0 < β < 1. In this scheme, we shrink the Gaussian width of the child nodes when-

ever the tree policy is executed at the parent node. Thus, the Gaussian width of a

node d′ is given by

σ(d′) = σ ∗ βn(d),

15

where n(d) is the count of the visits to the parent node d. The Gaussian width of

the root node is shrunk after each rollout. This scheme ensures that if erroneous

generalization has starved visits to d′, it will eventually be explored once its parent

has been visited sufficiently often. The next section formalizes this intuition.

3.2 Theoretical Analysis

For our theoretical analysis, we assume that the deterministic MDP is episodic and

the maximum episode length is finite. We also assume for the moment that the

underlying state transition graph is a DAG. We consider transpositions and use

the values and visit counts of the after-states. One way of handling this in UCT is

to create only one node for each transposition as shown in Figure 2.2(a), making the

UCT tree also a DAG. The root of a DAG is the node which has a path to every other

node in the DAG. Leaf nodes in the DAG correspond to terminal states, and do not

have a path to any other node in the DAG. Another way of handling transpositions

while retaining the tree structure of UCT (Figure 2.2(b)) is to combine the statistics

of all the transpositions. The NN-UCT algorithm achieves this while computing

the nearest neighbor estimates using the kernel function. We also assume that the

kernel (similarity) function converges to the Kronecker delta after a (possibly) large

but finite number of rollouts, i.e.

K(S(d), S(d′)) =

{

1 : S(d) == S(d′)
0 : otherwise

Note that even after the kernel function evaluates to the Kronecker delta function,

NN-UCT still accounts for transpositions in the search tree. We want to show that

the NN-UCT algorithm chooses the optimal action at the root considering all re-

wards until termination, as the number of rollouts goes to infinity.

Let U denote the UCT DAG. A set of nodes τ of U spans a proper subgraph of U

if τ satisfies all of the following:

1. The root and at least one leaf node of U is in τ .

2. For every non-leaf node in τ , there is a path of U through nodes only in τ to

reach some leaf node in τ .

For a node d ∈ τ , we define childτ (d) as the set of nodes such that d′ ∈ childτ (d) if

node d′ is a child of node d in U .

16

For a proper subgraph τ and a node d ∈ τ , define

Vτ (d) = max
d′∈childτ (d)

ρ(S(d), A(d′)) + γ ∗ Vτ (d
′)

Lemma 1. Let τ denote the set of nodes in the UCT DAG that are visited infinitely many

times. Then τ is a directed acyclic subgraph, and for all nodes in τ , the nearest neighbor

estimates converge to the τ -value of the node.

Proof. Firstly, the root is visited infinitely often and hence is in τ . The set τ also

includes at least one leaf node since each rollout ends at a leaf node and there are

finitely many leaf nodes in U . The value of the leaf node(s) in τ converges trivially

to its τ -value, which is also its value.

It also holds that every non-leaf node in τ has a path in τ to a leaf node in τ ,

since there are finitely many nodes in τ . Hence τ is a proper subgraph of U .

Now that the nearest neighbor estimates at the leaf node(s) in τ converge to

their τ -values, by induction, all other nodes in τ also converge to their τ -values.

Lemma 2. τ is the whole DAG U .

Proof. We prove by contradiction. Let d ∈ τ be a node such that d′ is a child of d in

U , with S(d′) = T (S(d), a′) but d′ is not in τ . Let td′ denote the last time (index of

a rollout) d′ was visited. Consider any child d” of d with S(d”) = T (S(d), a”) such

that d” ∈ τ . Since d” is visited infinitely often, Qucb(d, a”) converges to ρ(S(d), a”)+

γ ∗ Vτ (d”) since limt→∞
ln(

∑
ã∈A

nnn(d,ã))
nnn(d,a”)

= 0. Hence for all children of d in τ , UCB

estimates converge to a finite value. On the other hand, since d′ is visited only

finitely many times but d is visited infinitely often, Qucb(d, a
′) grows unbounded.

This is because the denominator in the bonus term of Qucb(d, a
′) converges to a

finite visit count n(d′), while the numerator grows unbounded. Hence, there exists

a time after td′ such that Qucb(d, a
′) > max

d′∈childτ (d),A(d′)=a
Qucb(d, a), contradicting that

td′ was the last time node d′ was visited.

We now have the main result.

Theorem 1. For sufficiently many rollouts, the action whose value estimate is the largest

at the root is the optimal action.

Proof. By Lemma 2, the NN-UCT algorithm visits all the nodes in the DAG, in-

finitely often. By Lemma 1, the values of all nodes converge to their true values.

Since there are finitely many actions, the result follows.

17

A couple of important points regarding the proof are noted here:

Firstly, in the above proof, we assume a general kernel function that converges to

the Kronecker delta after a finite number of rollouts. Our choice of the gaussian ker-

nel function with an exponential decay seems to work in practice while performing

a finite number of rollouts, but it may be interesting to see if an appropriate fast de-

cay scheme for the gaussian kernel function is also sufficient to retain optimality in

the limit when the number of rollouts goes to infinity.

Secondly, the above proof of asymptotic convergence of NN-UCT assumes that

the transition graph of the deterministic MDP is a DAG, but it can be extended

to deterministic MDPs in general if we ignore transpositions. For example, when

the deterministic MDP includes loops, the NN-UCT algorithm can still be made to

converge to optimality in the limit by a slight modification of the kernel function.

Forcing K (S(d), S(d′)) → 0 for d 6= d′ after sufficiently many but finite number

of rollouts, ignores transpositions, but ensures that the value estimate of node d

converges to its true value estimate in the limit.

3.3 Related Work

We review transposition tables, described in section 2.5. Transposition tables offer

a basic form of generalization by sharing statistics of nodes in the UCT tree having

the same state. Our algorithm with σ ≈ 0 closely resembles UCT with transposition

tables. Although transposition tables help speed up search, they provide limited

exploration benefit as they can only recognize state equality. In large state spaces,

the likelihood of encountering transpositions is low, and hence transposition tables

may be less useful. In Chapter 5, this will be seen in even our relatively small

experimental domains, with more aggressive generalization improving on basic

transposition tables.

State abstraction using homomorphisms in UCT (Jiang et al., 2014) adds another

layer of generalization, by grouping states with the same transition and reward

distributions. The homomorphism groups states together but like transposition

tables, they do not have a degree of similarity, only a hard notion of equivalence.

In the case of the grid world domain in Figure 3.1(a), the only homomorphism is

the grid itself. Thus, homomorphisms offer no benefit over transposition tables in

this case.

18

Another approach to generalization in UCT is Rapid Action Value Estimation

(RAVE) (Gelly and Silver, 2011). RAVE uses the All-Moves-As-First (AMAF) heuris-

tic which states that the value of an action is independent of when it is taken,

i.e. if an action is profitable at a subtree τ(s), it is profitable immediately at root

s as well. RAVE combines the Monte-Carlo estimate with the AMAF estimate,

Qrave(s, a) = (1 − β) ∗ Q(s, a) + β ∗ QAMAF (s, a), where 0 < β < 1 is a weight

parameter that decreases with increasing number of rollouts. The RAVE estimate

is used in place of Q(s, a) for the tree policy. RAVE has been shown to be successful

in Computer Go and has also been applied in continuous action spaces (Couetoux

et al., 2011). In that case, the RAVE estimate for action a is obtained by computing

a nearest-neighbor estimate of the returns in the subtree where action a was taken.

However, the AMAF heuristic does not modify the exploration bonus. Thus, when

no rewards have been encountered, its exploration strategy suffers from the same

problems as UCT.

19

Chapter 4

State Generalization on Complex
Domains

(a) Grid World with Wall

−10

0

10

−10 0 10

(b) Manifold Embedding of 20 × 20 grid with wall

Figure 4.1: Grid World with Wall

In the grid world example shown in Figure 3.1(a), the Euclidean distance be-

tween two points on the grid was a good choice for a distance metric. However,

in general, the grid coordinates may not be the best representation. For example,

consider a grid world with a wall as shown in Figure 4.1(a). In this case, the dis-

tance between grid coordinates is not a good distance metric, as states on either

side of the wall, are farther apart than those on the same side. Furthermore, not

all state representations have a natural metric space for defining similarity. High

dimensional state spaces pose an additional problem of tractably computing a dis-

tance metric. Hence, we need a state representation that captures the underlying

topology of the environment, that is low dimensional, allowing fast computation

of distances between states. Low dimensional manifolds are a natural choice that

satisfy all the requirements.

20

4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

18

(a) 2D Data

−20 −15 −10 −5 0 5 10 150

5

10

15

20

−15

−10

−5

0

5

10

15

(b) Swiss Roll

Figure 4.2: 2D data and its 3D mapping

4.1 Manifolds

A manifold M ⊂ R
m is a set of points such that the Euclidean distance between

neighboring points on the manifold reflects the true distances between those points.

Figure 4.2(a) shows two dimensional data from four gaussian distributions. The

data was mapped to three dimensions using the mapping 〈x, y〉 → 〈x∗cos(x), y, x∗

sin(x)〉 to result in a Swiss roll shape shown in Figure 4.2(b). The 3D data on a

Swiss roll is said to lie on a 2D manifold. Note that the euclidean distance between

nearby points in the Swiss roll data is not exactly the same as the Euclidean distance

between nearby points in the two dimensional data, but approximately equal.

A manifold embedding refers to the representation of the points in the data in

Euclidean space. Figure 4.1(b) shows an example of a 2D manifold embedding of

a 20× 20 grid, with a wall. The intersection of edges represents points on the grid,

with the length of the edges representing the approximate distance between the

points on the grid. Notice that embedding has made the points on either side of

the wall to be farther apart than other points. The absence of a direct edge between

these points captures the presence of the wall.

4.2 Manifold Learning

Manifold learning typically involves learning a low-dimensional representation,

subject to distance preserving constraints. Manifold learning algorithms (Ma and

Fu, 2012) rely on the true distances between neighboring states, while approximat-

ing other distances. Euclidean distance between points on the manifold can then

serve as a distance metric for measuring similarity of states. Thus, the similarity

measure needed in our NN-UCT algorithm, can be obtained by embedding the

21

states on a manifold.

4.2.1 Isomap

Isomap (Tenenbaum et al., 2000) is a popular manifold learning algorithm that is

typically used on high dimensional data. The input is a distance matrix. The dis-

tance matrix is constructed in the following way: The distance between a point and

any of its k nearest neighbors is equal to the Euclidean distance or the actual dis-

tance between them. The other pairwise distances are computed using the shortest

paths between them. The rest of the steps is the same as Metric Dimensional Scaling

(MDS), which is to compute an embedding that preserves the pairwise distances.

Algorithm 3 shows the steps involved in learning a manifold from a transition

graph.

Algorithm 3 Isomap algorithm

1: function ISOMAP(G) . G = 〈V,E〉 is the state transition graph
2: Construct distance matrix D from G such that
3: for u, v ∈ V do

4: if 〈u, v〉 ∈ E then

5: D(u, v) = 1
6: else

7: D(u, v) = length of shortest path from u→ v

8: end if

9: end for

10: n = |V |
11: H = In −

1
n
11T . Construct Centering matrix

12: Dsq = 1
2 ∗H ∗D

2 ∗HT . Center the squared Distance Matrix
13: Compute top k eigen-vectors of Dsq . Choose k by heuristic
14: return Embedding as the top k eigen-vectors of Dsq

15: end function

The computational complexity of most manifold learning algorithms, includ-

ing Isomap, is O
(

m3
)

, where m is the number of points needed to be embed-

ded. This cost is due to the distance matrix construction and subsequent eigen-

decomposition.

It is important to note that MDS (and hence Isomap) assumes that the distance

matrix is symmetric. Such an assumption may not be true in certain domains (e.g

when time elapsed is part of the state). Other manifold learning algorithms such

as Graph Laplacian can be applied on directed graphs that do not impose this con-

straint. In this thesis, I used Isomap for illustrative purpose to show that manifolds

22

learnt from state transition graph of MDPs can be useful for planning.

It is also noteworthy to point out the criteria used for choosing k- the top eigen-

vectors for the embedding. One such approach is to threshold the eigenvalues

corresponding to the eigenvectors. Another approach is to measure the reconstruc-

tion error. In this case, the reconstruction error corresponds to the error between

reconstructing the pairwise distances on the manifold and the real distances in high

dimensional space. However, this involves additional computation cost of O
(

m2
)

for each dimension to threshold. In this thesis, I used the former approach of pick-

ing the eigenvectors by thresholding based on eigenvalues.

4.2.2 Local Manifolds

In my problem setting, each state is a point to be embedded, making cubic com-

plexity infeasible for large problems. One way to deal with the high computational

cost of embedding states on a manifold is to embed only those states that may be

encountered in the near future. As we are operating in the planning setting, with

access to a model, we can sample the states reachable in the near future and con-

struct a manifold that is local to the current state.

In our work, at every decision step, we learn a local manifold of the determinis-

tic MDP from the sample transitions encountered during a short breadth-first walk

of the state space, starting from the current state. The state transition graph from

the BFS walk is the input to the Isomap algorithm outlined in Algorithm 3. The

output of Isomap is an embedding of the states in Euclidean space.

During UCT planning, we may encounter states that lie outside the local mani-

fold. This situation is referred to as the out-of-sample problem and is more likely to

occur as the UCT tree grows larger. If we were to embed these states on a manifold,

the BFS walk needed from the start state would get deeper, resulting in a possibly

exponential increase in the number of states to be embedded.

We address the out-of-sample problem in the following way. We generate the

approximate embeddings of these states by applying a translation operator learnt

for each action in the action set. An operator is a function that takes as input the

manifold embedding of the current state and action, and outputs the manifold em-

bedding (approximate) of the next state. For example, if x denotes the manifold

embedding of a state s, and action k was taken from s to obtain state s′ which

was not encountered during the BFS walk, the operator for action k is given by:

23

f(x, k) = x+ bk, where bk is a vector that denotes the average translation offset for

action k. We learn this offset from the manifold embeddings of the states encoun-

tered during the BFS walk for the local manifold. Let T denote the set of tuples

〈x, k, y〉, such that y is the manifold embedding of the state obtained by taking ac-

tion k ∈ A from the state with manifold embedding x. We learn a simple translation

offset (bk) for this action by :

bk =
1

|T |

∑

t∈T,t=〈x,k,y〉

(y − x).

We found the simple translation operator to be useful in all the domains tested

in Chapter 5. Applying more sophisticated solutions to solve the out-of-sample

problem is a direction for future work.

Our use of local manifolds ensures good local coverage of the state space using

the BFS walk and along with operators limits complexity by not embedding the

entire space. In chapter 5, we evaluate the choice of using local manifolds over

global manifolds on grid world domains and find them to offer similar benefits.

4.3 mNN-UCT

We combine all the steps to obtain NN-UCT with manifolds, referred to as mNN-

UCT. This algorithm uses the manifold embedding as the state representation to

compute the kernel function, needed in NN-UCT. During planning, for nodes whose

states have already been encountered during the BFS walk, their manifold embed-

ding is computed from the Isomap algorithm described above. If a state outside of

the BFS walk is encountered, its manifold embedding is computed by applying the

translation operator to the state from which the most recent action was taken. This

enables the UCT tree to grow deeper than the BFS walk.

4.3.1 Discussion

While we show empirically (Chapter 5) that state generalization helps UCT, the

improvement comes at an additional computational cost. In our algorithm, the

cost is due to manifold learning and computing the nearest neighbor estimates.

The cost from manifold learning is controlled by size of the BFS walk. While it

would be useful to have a large size of the BFS walk to ensure a high coverage of

the state space, the number of states to be embedded will increase exponentially

24

in the depth of the BFS tree. Recall from section 4.2.1 that the computational cost

of most manifold learning algorithms is O
(

m3
)

, where m is the number of states

to be embedded. Thus, increasing the size of the BFS walk results in a dramatic

increase in the cost for manifold learning. Our choice of using local manifolds

constructed from a small BFS tree, along with operators, does not limit UCT from

growing deeper. Although operators only approximate the embeddings of states

outside of the BFS walk, the error is likely to be small within the finite horizon of

UCT planning. In all our experiments, the number of calls to the operator during

planning totaled less than 20% of the planning steps. Thus, the approximation

error due to the operator does not increase significantly.

The cost of computing the nearest neighbor estimate is controlled by the num-

ber of rollouts because each rollout adds one node. Experimental results (Chapter

5) show that mNN-UCT may need fewer rollouts than UCT to achieve good per-

formance. This limits the cost of computing nearest neighbor estimates and may in

itself justify the additional overhead.

4.4 Related Work

Learning manifolds in MDPs was previously done in proto-value functions (PVFs)

(Mahadevan and Maggioni, 2007). Proto-value functions are used to learn a low

dimensional representation from a transition graph generated by following a fixed

policy which is subsequently improved using policy iteration. PVFs assume that a

random walk of the state space is sufficient to construct basis functions that reflect

the underlying topology. However, in many domains with large state space, such

as video games, a policy consisting of random actions does not provide a sufficient

view of the state space. For example, in the grid world with a wall, such a pol-

icy is unlikely to make the agent move close to the wall. Additionally, it may be

computationally infeasible to embed all of the states encountered by following the

policy. The high cost of manifold learning limits the number of states that can be

embedded.

The idea of using local homomorphisms (Jiang et al., 2014) as an approximate

abstraction was an inspiration for the development of using local manifolds. In

their work, they construct a homomorphism of the MDP locally. They do so by

finding a homomorphism from sample UCT trajectories. Since UCT trajectories

25

are limited up to a finite depth in practice, the homomorphism obtained is local

to the current state. Nevertheless, they show empirically that UCT can benefit

from these local homomorphisms. The homomorphism construction procedure

relies on the policy followed (UCB in this case). But as we have shown earlier,

UCT’s policy is poor when rewards are sparse. Hence, as mentioned in section

3.3, homomorphisms offer no benefit over transposition tables in sparse reward

domains.

26

Chapter 5

Experiments

Now that we have described the algorithms, it is time to evaluate them in practice.

Video games are a natural choice which can be modelled as sequential decision

problems. We can evaluate the algorithms using the score obtained in these games.

Additionally, the sparse reward scenario occurs naturally in some games. In the

next section, we describe the setup and evaluation methodology.

5.1 Experiment Setup

As the focus of this thesis is on using UCT for planning, details of its implemen-

tation are described. In my UCT implementation, whenever a new node is cre-

ated, the default policy (random actions) was run for a constant length of length

50, rather than out to a fixed horizon. This helped prevent finite horizon effects

from affecting generalization. The optimal branch of the UCT tree and the BFS

tree was retained across planning steps. In all of the experiments, a wide range

{10−5, 10−4, .., 103, 104}was tested for the UCB parameter with 500 trials performed

for each parameter setting.

5.2 Grid World Domains

We first validate our intuitions about the impact of state generalization in UCT

by evaluating the algorithms on the two grid world domains shown in Figures

3.1(a) and 4.1. An episode terminates when the agent reaches the goal state, or

1000 time-steps have elapsed, whichever is shorter. We report the number of steps

taken to reach the goal state, given a fixed number of samples for planning. For the

UCT algorithms with generalization, the Gaussian kernel function was used. The

27

UCT NN−UCT mNN−UCT(0) mNN−UCT mNN−UCT−g
0

100

200

300

400

500

S
te

p
s
 t
o
 G

o
a
l

(a) Grid

UCT NN−UCT mNN−UCT(0) mNN−UCT mNN−UCT−g
0

200

400

600

800

1000

S
te

p
s
 t
o
 G

o
a
l

(b) Grid with Wall

Figure 5.1: Performance on Grid World Domains

initial Gaussian width σ, was chosen amongst {10, 100, 1000, 10000} and the decay

rate β amongst {0.1, 0.5, 0.9, 0.99}, and the best result is reported. The Euclidean

distance was used for the distance metric in the kernel function. For the mNN-UCT

algorithm, the BFS walk included at most 400 states for each planning step. The

mNN-UCT algorithm with σ = 10−6, referred to as mNN-UCT(0), effectively only

shares statistics between nodes with the same state. This provides a difference over

sharing values between nodes representing identical states. mNN-UCT-g is the

mNN-UCT algorithm using a global instead of a local manifold, where a full BFS

walk is used to construct the manifold. This allows us to evaluate the effectiveness

of local manifolds.

Figure 5.1 summarizes the results of our grid world experiments. The mean

number of steps (fewer steps being better), with standard error bars is shown. Shar-

ing statistics between nodes with exactly the same states (mNN-UCT(0)) improves

UCT slightly. Adding more widespread generalization to UCT improves the per-

formance dramatically in both the domains, with the NN-UCT algorithm reaching

the goal state in less than half the number of steps taken by UCT in the first do-

main. The best performing σ for the mNN-UCT and mNN-UCT-g algorithms was

substantially greater than 0 (100), suggesting that generalizing over nearby states

in the neighborhood of the manifold is useful. The NN-UCT algorithm, which uses

the Euclidean distance metric between grid coordinates, does not perform as well

in the second domain. The distance metric is not as useful since states on either

side of the wall are farther apart than the Euclidean distance indicates. The mNN-

UCT algorithm does not suffer from this problem as much, as it better captures the

topology of the state space. In both the domains, using local manifolds rather than

global manifolds does not substantially affect planning performance.

28

(a) Freeway (b) Space Invaders (c) Seaquest

Figure 5.2: Games Domains

5.3 Game Domains

We also test our algorithm on 3 domains inspired by video games. They are single

player games played on a 16×16 pixel screen. The initial configuration of the games

is shown in Figure 5.2. All the games last for 256 time-steps or until the agent loses

all of its lives, whichever is shorter. In each domain the agent is depicted by the

blue square.

1. Freeway : Cars are depicted by red chevrons. Their positions on each row and

direction of movement is set randomly at the start. On reaching the end of

the board, they reappear back on the opposite side. The agent has 3 lives. On

collision, the agent loses a life and its position is reset to its start position. The

agent has 3 actions: NO-OP (do nothing), UP and DOWN. The agent receives

a reward of +1 on reaching the topmost row after which the agent’s position

is reset to the start state. The maximum possible score is 16 in the absence of

cars, although with cars, the optimal score is likely lower. The complete state

of the game is specified by the time elapsed, number of lives left, location of

the agent, cars and their direction of movement

2. Space Invaders : The aliens are depicted by red triangles. These aliens fire

bullets vertically downward, at fixed intervals of 4 time-steps. The aliens

move from left to right. They change directions if the rightmost (or leftmost)

alien reaches the end of the screen. The agent loses its only life if it gets hit by

a bullet from the alien. The following actions are available to the agent : NO-

OP, FIRE, LEFT, RIGHT, LEFT-FIRE (fire bullet and move left) and similarly

RIGHT-FIRE (fire bullet and move right). The maximum possible score is 32

in the absence of the alien’s bullets, with a realizable score likely lower. The

29

state of the game is specified by the time elapsed, location of the agent and

its bullet, locations of the aliens and their bullets.

3. Seaquest : Fish depicted by red chevrons, move from left to right and reap-

pear back on reaching the end of the screen. The diver, indicated by a black

triangle, appears at either end, alternately. A diver appears when the current

diver is collected by the agent or if the current diver reaches the end of the

screen. The agent receives a reward of +1 if it collects the diver and drops it

at the drop point (top row, indicated in green). The agent loses its only life

on collision with a fish, or on reaching the drop point without the diver. The

actions available to the agent are NO-OP, UP, DOWN, LEFT and RIGHT. The

maximum possible score is 8, as it is impossible to capture any 2 successive

divers and drop them at the drop point. The state of the game is completely

specified by the time elapsed, location of the agent, fish and divers.

5.3.1 Performance Comparison.

We compare mNN-UCT with UCT on the domains described above. We again

evaluate the effect of generalization by running our algorithm with σ = 10−6,

referred to as mNN-UCT(0). We ensure that all of the algorithms are given the

same number of samples per planning step. We vary the number of rollouts from

{20, 40, 80, 160, 320}. The discount factor was set at 0.99. We fix the other param-

eters for the mNN-UCT algorithm with σ = 100, and β = 0.9. We learn a local

manifold for each planning step from a BFS tree comprising of at most 400 states.

For each of the domains, we measure the mean score obtained per episode. The

standard errors are indicated as error bars. The optimistic maximum score possi-

ble is indicated by a blue line in all the plots. Note that it may not be possible to

achieve this score in all domains.

Figure 5.3 shows the performance of the 3 algorithms against the number of

rollouts. The results are reported for the parameters which produced the best mean

score obtained by performing 500 trials. mNN-UCT outperforms UCT, especially

in Freeway and Seaquest. Both these games require the agent to perform a specific

sequence of actions in order to obtain reward. UCT’s rollout policy is sufficient to

achieve a high score in Space Invaders as the game does not have sparse rewards

to the same degree as the other domains. Generalization using manifolds provides

only a marginal improvement in the Space Invaders game.

30

20 40 80 160 320
0

5

10

15

20

Number of Rollouts

M
e

a
n

 S
c
o

re

UCT

mNN−UCT(0)

mNN−UCT

(a) Freeway

20 40 80 160 320
0

10

20

30

40

Number of Rollouts

M
e

a
n

 S
c
o

re

UCT

mNN−UCT(0)

mNN−UCT

(b) Space Invaders

20 40 80 160 320
0

5

10

Number of Rollouts

M
e

a
n

 S
c
o

re

UCT

mNN−UCT(0)

mNN−UCT

(c) Seaquest

Figure 5.3: Performance comparison between mNN-UCT and UCT on Game Do-
mains

31

−6 −4 −2 0 2 4
0

5

10

15

Log10 UCB Constant

M
e

a
n

 S
c
o

re

UCT

mNN−UCT

(a) Freeway

−6 −4 −2 0 2 4
0

10

20

30

Log10 UCB Constant

M
e

a
n

 S
c
o

re

UCT

mNN−UCT

(b) Space Invaders

−6 −4 −2 0 2 4
0

2

4

6

Log10 UCB Constant

M
e

a
n

 S
c
o

re

UCT

mNN−UCT

(c) Seaquest

Figure 5.4: Parameter sensitivity of mNN-UCT algorithm on Game Domains

32

5.3.2 Parameter Sensitivity.

Compared to UCT, the mNN-UCT algorithm has additional parameters such as

the depth of the BFS walk, and Isomap parameter (choosing the top k eigenval-

ues) and the gaussian kernel width (σ) and the rate of decay (β). Of these, σ and

β together control the degree of generalization in the UCT algorithm. While an

extensive sweep of all the parameters is desirable, the main objective of this the-

sis is to demonstrate the effectiveness of state generalization in UCT. Hence, we

evaluate the sensitivity of the algorithm with respect to only these parameters (σ

and β), keeping the rest fixed. Our choice for the rest of the parameters were set

keeping in mind that they do not affect the objective. For example, the depth of the

BFS walk was set so that it does not provide a full view of the state space, allow-

ing the test of generalization possible along with the use of the algorithm in large

state spaces. In this experiment, we fix the number of rollouts at 100. We vary σ

from {10, 100, 1000, 10000} and β in {0.1, 0.5.0.9, 0.99}. For each of the parameter

settings, we measure the performance of the mNN-UCT algorithm and compare it

to UCT using various settings of the UCB parameter.

Scatter plots are shown in Figure 5.4 where each blue x and red square repre-

sents the mean score per episode of the mNN-UCT and UCT algorithms respec-

tively for a specific parameter setting. We see that the mNN-UCT algorithm per-

forms better than UCT for a wide range of parameter settings in all the domains.

Using widespread generalization achieves significantly higher score on sparse re-

ward games such as Freeway and Seaquest, while the improvement is modest

when rewards are easy to obtain as in the game Space Invaders.

5.4 Summary

State generalization helps when rewards are hard to obtain. As we have seen

through the heat maps and experimental results, generalization helps UCT to spend

its rollouts more efficiently by visiting states different from those it has already vis-

ited. On domains whose state space does not have a natural distance metric, we

showed a method to learn a local manifold of the state transition graph to use Eu-

clidean distances on the manifold as a distance metric. In addition, the manifolds

learnt were found to be low dimensional (< 10 dimensions). This not only helps

computing the kernel function faster but provides a simple feature space to distin-

33

guish states.

The experimental results demonstrate that manifolds act as a useful distance

metric for measuring similarity between states. In addition, the algorithm is not

very sensitive to the parameters controlling the degree of generalization in these

domains.

34

Chapter 6

Conclusion

In this thesis, I presented a new algorithm that incorporates state generalization in

UCT by using nearest neighbor estimates of the action-value and the visit counts in

the tree policy. The primary motivation came from the need for efficient exploration

in domains where rewards are sparse. UCT with no generalization performs poorly

in such domains. In domains whose states do not have a natural distance metric I

presented an algorithm that learns a local manifold of the state space that gives us a

Euclidean representation of the states in the near future. I demonstrated the benefit

of learning such local manifolds on video game domains. Empirically, we see that

the algorithm substantially outperformed UCT with no generalization, especially

in environments with sparse rewards.

Through this work, an interesting observation can be made. State generaliza-

tion has largely been used to handle learning in large state spaces. For example

in reinforcement learning (Sutton and Barto, 1998), value function approximation

techniques are used to generalize to new unseen states. This work has shown that

an additional benefit of state generalization is efficient exploration. Empirically,

we have shown that incorporating state generalization results in significant per-

formance improvement in sparse reward domains. This improvement was due

to better exploration. Although Monte-Carlo methods incorporate exploration in

their search process (e.g. confidence bounds in UCT), it is not sufficient when re-

wards are sparse. Thus, through this work, we have augmented UCT’s exploration

strategy by adding state generalization.

It is also useful to revisit the way state generalization was incorporated in UCT.

The search tree was used not just for action selection, but also to learn a state rep-

resentation of the states encountered during planning. The choice of using only a

35

fraction of the states for learning the representation enabled planning to continue

unrestricted. Our choice of using a short BFS walk ensured complete coverage of

the state space in the near future. It would be interesting to see if the trajectories

of Monte-Carlo planning could be used to learn a state representation. The benefit

of this approach would be that it would make the process of learning the represen-

tation sample efficient as samples would be shared for planning and learning the

representation. As a result, there is an opportunity to learn a representation when

the search tree grows deep. A challenge, however, would be to ensure the adequate

coverage of the state space so that the representation captures the topology of the

state space well.

It would also be interesting to see how this algorithm performs on games with

extremely sparse rewards. For example, when the horizon of UCT planning is not

long enough to see any reward, it would be interesting to see the actions chosen

by the algorithm. Our intuition indicates that actions which leads to more unseen

states would be picked, causing the agent to take an exploratory action in the real

world. Whether such a behavior would result in the agent finally observing re-

wards, remains to be seen.

36

Bibliography

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multi-

armed bandit problem. Machine learning, 47(2-3):235–256.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,

P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A survey of

Monte Carlo tree search methods. Computational Intelligence and AI in Games,

IEEE Transactions on, 4(1):1–43.

Childs, B. E., Brodeur, J. H., and Kocsis, L. (2008). Transpositions and move groups

in Monte Carlo tree search. In Computational Intelligence and Games, 2008. CIG’08.

IEEE Symposium On, pages 389–395. IEEE.

Couetoux, A., Milone, M., Brendel, M., Doghmen, H., Sebag, M., Teytaud, O., et al.

(2011). Continuous rapid action value estimates. In The 3rd Asian Conference on

Machine Learning (ACML2011), volume 20, pages 19–31.

Gelly, S. and Silver, D. (2011). Monte-Carlo tree search and rapid action value

estimation in computer go. Artificial Intelligence, 175(11):1856–1875.

Jiang, N., Singh, S., and Lewis, R. (2014). Improving uct planning via approximate

homomorphisms. In Proceedings of the 2014 international conference on Autonomous

agents and multi-agent systems, pages 1289–1296. International Foundation for Au-

tonomous Agents and Multiagent Systems.

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In Ma-

chine Learning: ECML 2006, pages 282–293. Springer.

Ma, Y. and Fu, Y. (2012). Manifold learning theory and applications. CRC Press.

Mahadevan, S. and Maggioni, M. (2007). Proto-value functions: A laplacian frame-

work for learning representation and control in markov decision processes. Jour-

nal of Machine Learning Research, 8(2169-2231):16.

37

Méhat, J. and Cazenave, T. (2010). Combining uct and nested Monte Carlo search

for single-player general game playing. Computational Intelligence and AI in

Games, IEEE Transactions on, 2(4):271–277.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation systems for

autonomous mental development. Evolutionary Computation, IEEE Transactions

on, 11(2):265–286.

Puterman, M. L. (2009). Markov decision processes: discrete stochastic dynamic program-

ming, volume 414. John Wiley & Sons.

Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning. MIT

Press.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and Pre-

cup, D. (2011). Horde: A scalable real-time architecture for learning knowledge

from unsupervised sensorimotor interaction. In The 10th International Conference

on Autonomous Agents and Multiagent Systems-Volume 2, pages 761–768. Interna-

tional Foundation for Autonomous Agents and Multiagent Systems.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric frame-

work for nonlinear dimensionality reduction. Science, 290(5500):2319–2323.

38

