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ABSTRACT -
SN ] ‘

’

A numerical analysis of the equations. of thermo-

. mechanical flow applicable to geodynamics is considered

under the assumption of creep. An analytical investigation

of these ,equatibns suggests the seismic'low‘velocity zone
. < . P - .

(L.V.2.) can. ,be interpreted as a region of - stationary
AY . . -

thermo-mechanical coupling between the tectonic plateé at

the earth's surfdce and the hantlelcod&ection' cells Dbelow,

With the ihtroduction of a steady state cohéentratioa

gradient of melt one can obtain "a viscoéity. distribhtion.

which = fits with. the observed . shear wave yelocity.

distribution in the L.V.Z. as well as with measurements of
seismic attenuation. The introduction of inmertial terms in

the thermal and mechanical ~field eqdations permit an
explanation  of _'ﬁeep _earthquakes ~as a -shear heating

, S C : _
instability in the boundary layer 'at the upper boundary of

4

the subducting plates. The ‘deep earthquakes musi occur

S o ! : o .
vithin this fluid boundary layer in order to produce the
observed ‘compressionaiirfocal 'meéhanism. This differs from

<

suggestions by others - that the events ‘occur in the:

Subduqting- iithosphere. - The prédictions of the theory

developed for this mechanism ' of- deep , earthquakes “then .

~exhibit a good~cofre;atiop with observationms.

iv 7 - R -
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. ' . NOTATION -

"The following Syigglé‘iif used throughout the thesis.

Also given are craracteristic' values and the references fron

2

vhich.'these values were taken (the temperatures are given 1in

oc and all other values are in <c.g.s. units unless othervice

¢

-

"specified).' : , e

; .Symbol , Value “ Réference
Density ' p o 3 — MacKenzie >
) t1970)
Heat Capac%tance. c - 1.3x107 MacKenzie
(197Q)
Thermal . T '
Condpctivity - k 3x10s ' MacKenzie
Activation o . _
-Energy " B . 120 Kcalymole
7 (Chapter 2) .
‘ - 60 Kcal/mole o
(Chapter 3) Griggs & Baker
' (1969) :
Gas Constant T . 20 Kcal , v ’
o 9/molé B : ; ’
Viscosity w1022 - cathles (1976)
Melting - ‘ ) : ' -
‘Temperature Thn 1400 (Low ' :
' velocity zone) Ringwood (1975)
Boundary :
-Temperature - - Tg 1100 )
: - C (Lithosphere
‘Boundary) - Ringwood (1975)
Strain Rate o € . 10-1se : 5 Ca fer°(197¥)

. Only vc;p and R are. well deteimihe . The thermal



conductivityrk, the viscosity i1 and their depencence 2
‘temperature are ghcertain_(nacKenzie 1970) . The temperature
arb,mhqnitudes used only as g2caling factors and thus do $ot
affect thevggneral physical outcome. The difference between
‘TB"and Tm hdiever is important and tﬁis difference is very
uncerta;n ;s is the sthén rate. ihe uncertainty 1in there.
values ;s a result: of the\\fact that direct ;easurement

7 - I K
cannot be done and we thus must rely on indirect arguments. -

xi ‘ ' /[’\\\\\



- ' . CHAPTER 1
Iptroduction

L

1,1 The Geodynamic Problems Under consideration

i

The purpose of this dissertation 'is -to construct

mathematical models for two specific geodynami; pheno?enal

'.'which are generally assumed to be problems in flidid:

dynamics. The first 1is the coupled thermo;mechanlcal

‘behavior _of the wupper mantle. This- .can result from the

stress induced by relative motions~bétween  tectonic Wplateé
and .the uppef lpari off mantle convection fcells.
(Turcotte,D.L. and Oxburgh, E.R. 1972, Torrance, k.é. “and
Turcotte, D.L. 1971a,b, Schubert G. etial 1576:.Qarhepti@r

E.M. et al 1976). In this analysis I assume a. ‘constaut’

stress. This however - is .the same as the asSdmption of a.

o

‘constant, velocity boundary condition and creep. Cféep{lmeahs

that the time derivatives of velocity are zero and thus fromg

the Navier Stokes egquation one can see'_that,<this is

equivalent to constant stress.’ The "second is the focal

~mechanisa ofkdeep earthquakes (Shaw, H.R. 1969,‘Gr£ggs,'D.T.

and Baker, D.W. 1969, Randall M.J.. 1972).

Of primary concern in' the . discussions of these two

processes 1is the stability or the ability of the very

‘viscous fluid which makes up the earth's mantle to withstand

<&

thé shear stresses im?étted to it without melt;ng.vIn the
€eismic low velocity kone -the temperature and pressure is

such that the wmantle later;al'(essentially,iron magnesium

1

1
\.

7
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silicates) in . this refion is close to its solidis. (Ringwood

A.E. 1975, MacDonald G.J.F. and Ness N.F. 1961, Wyllie P.J.

.1971) . In this sense the seismic low velocity zone exists in

a marginally stable state (i.e. close to melting) even Qhen_
- <

\

unstressed. On the other hand the subducting plate is far
e

. . Q .
from instability in the unstre:sed state. When the time over

which this material.can achieve thermal equilibrium is large

in comparison to the rate at which heating takes place

within the material, we may consider the material to have a

low thermal conductivity; P.W. Bridgman (i936) founé that

this precise circumstance of low thermal conductivity and a

high melting point relative to the ambient temperature of

‘the experiment caused materials to.  exhibit an anomalous

.

AN

Ly

behavior when subjected to large shear streks at hi‘\gh?:f

. « L.
pressures. Here high pressure means that the pressure is

sufficiently large that brittle fracture (breaking of the
material with ‘frictional sl1iding at the fracture zone)

cannot occur. This is prpbabl§',the case for pressures

greater than 30“kb wvhich is the pressure  at approximately

100 km in, the earth (Griggs D. T. and Baker D. W. 1969)..

"

A series of =2xpericents were performed by sr.dgman

i19351lin which thin i sks were confined between hLairdened

steel parts. The disrs.  were then subjected to ‘normal

pressure (50 kb) and torque siﬁultaneouslz.' Bridgman - found
that wmost materials deformed smoothly under;this éondition
of lar§é shear stress at high pressure. This appears to be

g
the case in the seismic lcw velocity zone due to the absence



-

of any observatiops of suddeg stressorelief in.that region.
'HQwever in the case of nmaterials with a low thermal
conductivity and high melting point, the application a of
Largef)shear stress’ caused violent snapping. Ameng the
qqqlitative effects found was that many sgpstances normally

AN

stable became unstable and ~detonated, and conversely

combinations of substances rermally inert to each orher
Ly .

. » combined eprBsivly. Here the applied force Qould suddenly
ékop to a very smalllvalue ené then build up at a nearly
steady rate until another snap occqrred; Bridgman's actual

. experiments are probably not of much use for geophysicaij
purposes Since the straln rates.were much to large. Thus the
actual condltlons in the earth should allow a greater amount

‘of fluid behavior This is important since . SiO showed

‘ \
rupture only withoug flow.

Bridgman (1936) and others (Gruntfest I.J. 1963, Shaw

//H(R. 1969,~Griggs D.T. and Baker D;w. 1969) have;interpreted

/;//// this phenbmenon as'the mechanism of deep- earthquakes. They

, ‘however encounter problems in the applicetion of this theory

to deep 'earthquakes. It is, generally acknowledged (e.g;

Griggs D.T. and Baker D.¥. 1969) that the mantle material

hast very little strength in comparison'to the subducted:

slab.vThus inAthe above papers it is‘assumeq that the deep

earrhquakes must pccur' within the subdueted sléb.'HoweVer

’" all attempts(to model this fluid’ instability within the
; - ;

subducted slab have failed begﬁusé the mantle cannot ‘support

sufficient stress to ,cause instability in the slab. (See

a . ) -
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section 4.3 of this dissertion)

The mantle must yield to fluid deformation for smaller
values of stress and exhibjit larger inertial mofions (non

zero time derivatives in the v ocity field) than he slab

because of its lower visCosity. Also the hiéher temperatures
of ‘the mantle cause it to be more ductile than thg glab
(Ranalli G. 1974). Thus due to the greater strength 6f the
slab it 'is more realistic to cOnsider the motionsvof the
slab as elastic geformations caused by the  viscous
resistance  of fhé‘ bounding fluid. One then ‘qbtaiﬁsA
instability in the fluid at the boundary of -the slab

relieving the elastic deformation of the slab.

As’ the slab susduCts tﬁe ﬁurface is heéged by thermal
conduct ion and since melting»of crustal fracfions will occur
tcrusgal materi;l must miXx vith. mantle material..cTﬁus the -
‘surrounding fluid in which the ,instabiiipy occurs has a
composition far moré.similar to'the <c¢rustal material than
mantle material. This diffusion: of_cruééal material then
alsd causes l?rge viséoéity'gradients due - to the . changing
chémical 'composition, thig vistoéity gradient then induces
an inertial shear heafing séuf&e term in the heat balaﬁce

equation.

‘1,2 Fluid Dypnamics Content

Fluid . dynamics is by its very nature the study of
“macroscopic phenomena sSince a fluid 1is regardéd as ' a

-
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K

continuous medium. One thus considers even in the so called

~

"infinitesimal volume element"™ of ‘a fluid, the resultant
approximate behavior of many molecules assumed to be

contained within that volume (Landaj L.D. and Lifshitz E.M,

Y.

1959) . . o,

'The description of a classical one-phase fluid is given‘ﬂ

by the équation of motion for the density (conServation of

‘mass), the equations of wmotion for the components of

.
velocity (conservation of momentum), an equation of heat .

ar
»

transfer (the equation of 'motionf for the entrbgy)‘ and
supplemented by an equation of state relating any three
. ‘ .

thermodynamic variables for a given amount of. substance’

contained in the system (Putterman S.J. 1974},

Of primary -importance in <determining if equilibrium
solutions exist for one phase fluid flow is a study of ythe

N

relationship pétveen’fhe'heat sources and the heat loss. If
the heat input inpo sﬁch a system increases at a ;suffiCient
rate with temperafure the‘heat'loss from the systém may not
- be suffiéient té allow the évolution 5f an equilibrium state-
(Laﬁdau L.D. and Lifshitz E.M. 1959). This condition will be’
called a "thermhlviﬂstabilityﬂ (Griggs D.T. and Baker D.HW.

o 7
1969, Gruntfest I.J. 1963).

A .limited form of a theory~forﬁsuch a-condition‘was '
first devéloped for exothermic'_cpmbustion reactions and
cal;edb the ™"thermal theory of  explosions" (Seméndv N.N.
1928) . A guantitatije'theory.vas later. worked‘ioﬁt for a

&

~.
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distribution of exponential temperature dependent heat
Ty : ‘

sources in a material Frank-Kamenetski D.A. 1955)..  The

’

first experimental work on viscous flow in this area was
done by P.W. B}idgman (1935,1936,1927) as discussed in ‘the

previous 'section. The conditions wunder which stability

A . - .
(steady state solutions) can be obtained for constant shear

stress have been found for both Newtonian and non-Nevtonian

stress strain-rate rel#tions (Gruntfest T.J. 1963, Griggs

,D:T. and Baker -D.W. 1969). In thé applications to deep

"

earthquakes in the above Papers only the analysis-- of the
temperature field and itsvbehavior relative to the source

term<ﬁriven by. a constant stress has been considered. 1In

Chapter 4 I exténd‘this vork by copsidering the effect of

inertial ternms inAdetérmining the onset of instability.
r

1.3. Mathematical and Numerical Content K , -

In Chapter 2 a yariational princibLe is used to study
the codpled thermal and mechanical field equations with the
first order time derivative terms ppesent{ Using this

-

" variational principlé i éonsider the evolution of -a sheared .
sléb under'the assuﬁ&%&on of creep (fhe fime deriéatives, in
the equations of viscous flow are taken as zefo). The values.
of thé physiéal con$tant$ and the dimensions are chosen here

. o \ , ' ,
to approximate: thé\ conditions in the seismic low velocity
Zone. An interestin§ result occﬁrs in this énal&sis; When

. One assumes a viscosity gradient across the slab one obtains

. the evolution of a largé temperatu;e' gradient : by the

’



: _ ~ ’
boundary of‘lbuer viscosity. One thus obtains the evolution

of very lovw viscosity . zone near that boundary. Here it

should be ndted that one pfoplém vhich can be encountered in
anaiysing a/‘highly vi;cous mfluid is that of imposed
stabil%ty by %heruse of a.condition such. as constant stress.
In using this conditién éze is assuﬁing inertial motions do
not exist whiéhvis the vefy condition which nust evolve for.

instability to occur.
. . : b

In Chapter 3 I demonstrate that one may obtain exact

o

selutions for all thé'stress strain-rate relations discussed
in that chapter if the physical systems cdn be described by

the stationary field equations., This comes about as a result

of the decoupling o6f the thermo -~ mechanical field equations

>
N

in a stationary systen.

In Chapter 4 I show that wvhenever an intertial term

occurs in one of the field equations the other must also

contain inertijial terns and one obtains a coupling of the

¢

thermo - mechanical field eéuations. In these cases exact

solutions have not been found.

In the actual physical systems which are discussed I anm
dealing with non-linear coupled partial differential

equations of exponential order., Solving such egquations
numerically is..in general wery difficult and in many cases.
. , 0 -

iﬁpossible (Bellman R. 1953j. The method which I use for. the
numer ical’ solutions - presented here 'is the variational

principle in chapter 2. This method however has many

']



Numer ical problems. For example, in order to obtéin accurate-
valués for the iﬁfegral and thé derivatives‘a lérge number
of ‘points‘ are needed. However -a miniﬁiiation»routiné\is'
néeded to find the extremes of the .functjional I(L,t)
représehting the time integral dffthé 1agraﬁgidn. Here an
aqgitional variable is; obtaiuedv‘fort each field ‘equation
represented in the . lagrangian and for each point "at which'
the minimization is done. Since the 'amoynt of 'efrqr must
increase in(a'winimization routine with the‘number‘gf'péinfs
ﬁsgd and also the coét increases dramafically with each

additional variable one is faced with severe limitations.:
[ : o . ] .



) . Chapter 2

< Shear Heating with the Assumption of Creep

-

I define the state of motion in which time derivatives

‘of the nelocity'are negligible as creep, i.e. the inertial
~terms in the equation ‘describing the velocity fleld are

negligible. In thls chapter I will con51der the evolutlon of

a sheared viscous slab under 'such an assumptlon.

The response of " a v1scous layer to a constant shear
stress wvhen the v1sc051ty is temperature dependent has been
discussed by Gruntfest (1963). a4 geologlcal dlscus51on and
exten51on of his results for deep earthqnake mechanisms’ has
‘been ‘glven by Shaw (1969). A 51m1}ar .analysis of this
phenomenon has”beeﬁ given by Griggs‘and Baker (1969) usiné a
nore rempfex stress strafn-;afe relation thana nsed by

: _ . o ,
Gruntfest (1963) and' Shaw (1;22) The 1Grig§s and Baker‘
(1969),stress-strain-rate urelatlon will be dlscussed .rn

chapter 3. Here I Hlll summarize and extend the arguments of

Gruntfest (1963).

Consider a material ‘with ' thermal conductivity. k,

1

'specific heat c and'viscnsity

o= uoexp[—a'('{::TB)]. | (2.1)

Rd . o - -

Here TB represents a. reference temperatnre‘ (usually the

2
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¥

10

'ambrent temperature) at which the material has viscosity ub

“

and T represents the temperature at any positfon in the

Raterial. The, exponential temperature' dependence of
Y

. .
viscosity is reasonable‘xlf t he vlsc051ty is controlled by

point-defect dlffu51on and T/T =1. Here "a" contains the

L

activation energy. Suppose ' that a constant shear o 1is .

applied to this material. The rate of heat production due to ‘

viscous shear heating is

¢

oe = OzexP[?(T_TB)J/uo, S | (2.2)

provided a Newtonian stress Stain-rate relation is satisfied
0 = pe ' ; : - (2.2a)

Here ¢ 1is the strain rate.

The heatdproﬁuctlon must act as a source in the . Heat

flow equation. The temperature is therefore governed by

- . 2 2. - : : -

dT

I - - -

o0X

. where x is a co-ordinate at right angles to the bounding-

1

surfaces of the;lajer and p is,the density.

If o_=0, eq (2.3) is associated with a characteristic
cooling time
‘ 2

A 3 _
t = ol ,
c  Pex | . S (2.4)

~where & is the half thickness of the layer.
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If k=0, that is, if the system is thermally-isolated,
it is easy to show that T goes .to infinity in a time

pPCHU
t = o

Mo 2, ' , ~ (2.4a)

A real physical éysten must be between these extrenmes.

The dimensionless-ratio . .

62I2a‘ ' ;
uok g

A=

of these-two times repreéents a cbmparison of the cooling
.time to the heating time of- the system., Instability occurs

N

~in .the homogeneous plane—sheép cage for A >.88 (Grunﬁfest

I.J. 1963). - : | . N

2l

Here inétability represents théA bréakdown " of  the
assuﬁption of creep. This’hasvbeen‘assumed to‘be”’fhe onset
of an explosive instability or shear-melting induced
eépth@uaké (Gruntfest I,J. 1963, Shaw H. R. 1969, Gfiégs T.
and %aker D. W. 1969, Nyland E. and Spanos T.J.T. 1976).,f§e

- validity of this conclusion 1is not  clear and will be

.explored in more detail in chapters 3 and 4.
- ' - "

2.2'5 Variational Princimle for th Diffusion Equation

The heat flow equation (2.3) is a diffusion equation
with a shear-heating'source term. In this section I discuss

a variétional principle vhich can be used to find

B

approximate rnumerical solutions of the diffusion equation

and extend ‘it to the full physical system in - the follbuing

V]
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"
section. When .considering a variational principLe for a .
‘dissipative systepvoﬂe must often part frem the traditional
methods such- as Hamilton's Vatiational prirciple,. (narse
?.M: and Feshbach H,'1953). Theref;one is;‘dealing with a
process which. is reversibie in time; In'dealipg vith a
dissipative systenm wvithout time  symmetry, 1one has an
irreversible process, and thus a prefetred'time direction.
This is the fundamental fact used in the construction -of
: 0

this variational technique.

Many authors have studied dissipative systems by

variational techniques. Their approaches are of four types:

[

(1) Some investigators (for example, Morse P.M. and
Feshbach H. 1953) introduce a dualbabsorbtion system and
then couple the two systems in a Hamilton vaniational

principle. By coupllng dlSSﬂpatlve and absorptlve equatlons

one has made ‘the time dlrectlon once again
indistinguishable. ~A time reversal simply swltches the
places of the absorptlve and dissipative fields. There is no’

net dlSSlpatlon in the total system. .

(2) Stability analysis ‘'can be formulated as a

vv'variatiénal principle (Schechter, R.S. 1967).

>(3)' A generalization of Hamilton's principle appeats

. | k , N
possible (Djuk D. and Verjansevic, B.Z. 1971). The argument
of ‘the Lagrangiaﬁ of the system'is.modified‘parametrically

in this approach.
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. r A

(u) Other variational techniques exist for irreversible
processes (Biot,‘ H.A. 1970y. It 'is possible {to mremovg
notions sQCh :ds @ Lagrangian from the ‘mathematics' by
fOrhulafiné fime:aependent . variational 'principles for
dissipative vsyétéms. fhis aﬁproach yields solutions.at‘a
particula: tiﬁe only. New calcuiations mhst be mé e for

other times. . : .

.The essen£ial féature of the method presented here is

‘the intrOduction Qf a discrete approximation for time
derivatives. It is.then assumed that the sta€e of thé system
iis known at- sometime, t-c¢. Thus, the variation oVer'the
field varlables at this time is zero and one may find the
value of the fleld varlables at the time t by demanding that -
a fuqctiqnal L be stationary. If é,is small this approach®
alléﬁg Vone’ to. remove ‘the time integration’ from - the

variational principle.

This technique (which is discussed in greater detail in

Appendix A) is illustrated with a simple example. Consider:

>

GL—CS{,{%;}:—{‘?(X,t)—’Cb (vx,_t—E)']‘ +Ez[v_¢‘x,t)] v-}dv‘ 112.5)

. B R . .""‘
where X is a position vector.
<4

The cond¥tion 6L = 0 will generate an approximate form

Y

of the diffusion ‘equaiion“provided suiﬂablevboundary and

initial conditions are chosen.
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After applying the boundary condition and 3@ (x,t-L)¥O one

obtains

hl

S1= f’{cf”("“)“ 0 (x, t‘f)’-* VI (x, 0 1Es (X, thay

The term in braces Bust be zero and in the limit .->0 this

becones

vhere ¢ =a(T-T ).

2.3 The Coupled Navier Stokes and EHeat Flo

——— e—————— ST oo _._.-‘_. —_— ————— o

One can find a similar variational principle for the
coupled heat flaowv (eq 2.3) and Navier Stokes equations for
viscous flow. The Navier Stokes equations are:

pu - Ve (uVQ) + Tp - ogEB =0 | T (2.6)

vhere & represents the time derivative ««f the velocity
field, P is the pressure and M is - he temperature -

)

dependent v1scos1ty.

A variational<?cidé;;le which will generate these

equations is: ' S e

, .
sr=6/ (010 (%, t10 (X, - E)]2+——[V¢(x £)12+5 exp (- ¢(x 2y

, (2.6a)
-, g—' R %ot e P te 360 50, R davmo

Here all time derivatives are given approximately over

-~



an interval - . The céefficent of ¢ (x,t) becomes the heat
flow equation and the coefficient of ‘u(x,t) becomes the
Navier Stokes equétion. The variation of any field wvarilable
at time t- is zero and tHe field variébles and their
spatial derivatives. are known for all time on the surface S
that bounds the slab. If we assunme oﬁe dimensional creep ﬁni
a constant pressure across £h9 slab then the‘lqst two, terms

-~ . ™

in eqn (2.6) vanish. ' =

r

In the one-dimensional analysis I evaluate particular
cas: of the integral(2.6a) for constant stress (i.e. creep)
after interpolating a cubic spline through the 1integrand.

The derivatiVes w.r.t. x are.calculated on this spline. A

o

o .
finite number of values of ¢ and u which will minimize the

integrand are determined. The  minimization is done using

I

Zangwill's modification of Povéll's “conjugate ~direction
/élgorithm (Johnson 0.C. and Williams L.L. 1973). This
routine was called from the International MathBmatical and
Sfatistical Library edition 4, qvailable dn the University

of Alberta computer. The accuracy of this process was tested

by the addition of points until the sctructure of the
velocity and temperature profiles ‘vere smooth across the

sl>b. For the perposes of this analysis only approximate
' ' : 9]

values of the témpefature"and velocity are necessary.

Here § L=0 ‘does not necessarily imply 'a unique
. . / . !
solution. The functional L contains a term of more than
. ——

(
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bilinear form.  The uniqueness of the solutions here may be

tested ,nuﬁéfically. This is done .by making small

~

perturbations in the . initial gquesses and changes in the
convergence criteria to see if the same solution will

result.

—— s e mmmeam me———m— N L SRS L2

In figure (2. 1) thg values of the lagrangian specified
in eqn. (2.5) are shown as a function of tempefature for
different values of the dimensionless constant lambda. Here
a constant stress is assumed and the time step is'ktﬂgcgz=i.
In figure (2.2) the solutions of the differential equation
(2.3) are 1illustrated on  contour plqts of the'lagrangian
specified in @qh.(2.5) with time steps of kt/pcgz=.25,.5,.f5

and 1. Here temperature is'plotted on the vertical axis and

lambda on the horizontal axis.

The values of the sﬁecific heat é, thermal conductivity
k and the activation energy for poinf - defect‘diffusioﬁ
vary widely for geologic materialé; In the calcuiations in
£his séction'the ;alqes c=.25 cal/g/C°§ k=.03-¢al/C°/cm/sec;

a=.01 /C° are used.

Although these numbers may hot fit any particular rock
exactly they do not vary by more than a few orders of
magnitude for most geologic materials. The'density p can be

taken as 3 g/cm3 within 10% for most éeologic materials, at

‘"low" pressures, but the viscosity can vary widely.



If we use a Newtonian stress strain-rate relation’ with
a viscosity of 1022 .poise and a Qelocity gradrent of
10-1+ ssec, the assumption that thermai instaoilitybioccurs
“leads to a half thickness ) in the constant of
approximately 6x10¢ cm. This value mQSt be slightly small
sinceﬁ the actual value of ) must be reduced due to shear
heating: This crude approximation thus jields a value of 2
which is fdirly close to the thickness of the seismic low
velocity Zone. It is thus possible that the seismic low
velocity =zone is a marginally stable material. This would
seem to fit well with the presence of melt. However if .
"marglnally stable" material is able to exist in the seltmlc
low ve1001tyi ‘zone wlthout experiencing any lnstaollltles
(observed sudden relief of stress) one’ must then question
the wvalidity of assumlng the breakdoun of creep to be a

representation of coupled thermo - mechanical . imstability.

' This problem will be discussed in both chapters 3 and 4,

Consider now sonme ndmerical results assdming creep.
Pirst assume'lve haie a isiab - of viscosity 1622 poises
thro. - out. The slab has a half +h1ckness of 60 km and the
gradient of the veloc1ty fleld \is given by, O/M
throughout the slab.’The stress Qithin the slab is assumed
to'be 100 bars (the values o0f stress are chosen to give a
velocity difference of 10-7 cm/sec accross the \sfab)
everywhere ahd in all cases ther boundary temperatures are

fixed. I am therefore con51der1ng here whether the decrease

in v1sc051ty in the selsmlc low veloc1ty zone can be solely

1
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attribu£éd‘ to '.shear heating. The evolution of the
temperature and displacement’is shown in figUres (2;3 and
2.4) for a time step of 101+ seconds. I£ shogld be noted’
‘that ﬁhef?iscosity does not decrease by.the almost 2 orders
of magnitude necessary to be in agreement with the obse%ved
viscosities "in thié region (see Section 3.1 of this -

'disséftation).

Increasing prgssure with depth and the rise of fielt
towards the surface results in a viscosity which increases
‘ ’ , )

with depth. The evolution of a slab under this condition

from a constant temperature throughout may be illustrated by

R .
Py

Ho U ©XP(2(x+1)). The results of this évolutipn' of
temperature are then given‘ﬁ in figure - (2.5). The
Corfesponding evolution in veloc;ty..ié given in figufe
(2.6) . The earth aljso has a, temperature wgich increases«with
depth \due‘ to coéling at the surface. The.evolution of the
same slab as in figure (2;5) only from a linear témpé@ﬁture
'gradieht Jof‘ 300°K across thé_slab is illﬁstrated in figure'
(2.7) . The,éorresponding evolution in velocity fo;"this slab
is given 'in figure (2;8). Another example of interest‘tO'the
analysis innéhapter 4'%3 ‘that éf a temberature increase
towards tﬁe ‘boundary of 1low ,viscdsity. The'evslution of
_temperature and velocity in “this case is illustrated ’in
figures (2.9). and (2.10)vrespectiveiy. Figure"(Z.li) illus-"

trates aﬁproposed viscosity depth profiie'in thé'seismic low
veiocity)zone.' | |

-]



Figure 2.1: Values of the'lagrangian in sec (2.2) are shown
as a function of  temperatnre for different

values of the dimensionless constant lambda.

e
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N

Figure 2,2:

Solutions of the: variational principle in

section 2.2 are. illustrated for 4  different
sized time steps, .25, .5, .75 and 1,. The
initial «condition is a . constant temperature

~across the slab.
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Figure 2.3:

.1'

The evolution of the temperature field is shown
from an iritially ‘constant value across the
slab. The fluid, is -ehomogeneous and 10 time
steps of 1013 sec -(i.e. ‘episilon =.111) are
used in the calculation. The temperature change
is given in 10-2 x °C. Here the stress is 50
*bars. ' ' o

’
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Na

.

The velocity evolution is given correspohding
to the +*emperature rvolution of the homogenecus
slab in figure (2.3).. The values on the
contours. are the velocitiés in cm/sec relative

to -the centre of the slab. 5
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F

Figure 2.5:

The temperature evolution with a viscosity
gradient Ho= Mgexp(-3(zZ+1)/2) 1is 1illustrated.
Here the stress is 10 bars ang ThHe time steps

-are 1013 sec. The ipnirial temperature

distribution is constant across the slab.

[y
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Pigure 2.6:

~

The: velocity evolution corresponding to the
temperature cdistribution. in figure (2.5) fur an
inhomogeneous-sldab is given. The boundary of
low viscosity is on the right. X
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Figure 2.7:.

tg-“r

IS

G
A
The earth has a known temperature gradient.
This figure illustrates the temperature
distribution for the slab in figures (2.5) and
(2.6) with the teumperature of the boundary of
highk viscosity held at 300°C greater than the
boundary of low viscosity. Here the stress is

_1Q,bars. : ‘ \.

[We
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4,

Figure 2.8:

L 23

'

/7

The velocity . evolution 'corresponding to tae
slab described in figure ¢2.7) is given. EKere
one obtaincs a fairly uniform velocity gradient
across the slab.

O

.
“»

»
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Pigure 2.9:

N -

A temperature increase of 60°C at the boundary

of .low velocity over the boundary - of high

viscosity  is considered. This figure
illustrates that the shearing of the slab then
causes the maximum temperature to move away
from the boundary of low viscosity towards the
interior. Here the time steps in 1013 sec and
the stress is 1kb and the sldb width is 5 knm.

~
< <
i SN
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Figure 2.10: The velocity evolution corresponding to the
: temperature distribution in figure (2.9 is
given. Note that the maximum velocity gradients

occur in the region of maximunm temp%rature.

B “.
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Figure 2.11: Viscosity verses depth 'is illustrated first
without shear heating- and secondly ' with shear
~heating . for a viscosity increasing
¢y exponentially with depth. The depth scale is
- linear and the viscosity scale is logarithmic,

-

3
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v'\\\ P \ AI . ‘
\\\ : Chapter 3
Exact Solutiogs  for  Constant  Stress and Their
Application to the Seismic Low ielocity Zone.,
o r v

3.1 Physical Discussion

it is.geﬁer;lly“acknowledgedp(Schubert G. et al, 1976)
thét many 3geophfsical éharacteristics like topograbhy,
lithospherejthiekness and hea;flow on o%ean ‘bottoms are
essentially a fﬁnctioﬁ ‘bf' the age’ of the ocean botton.
Within "limits, these féatures can be predicted as a
cohsequence of relatively simple‘ mnodels of heat flow and
~dynamics in the earth (Turcotte D.L; and.oiburgh E.R., 1567,

McKenzie D.P., 1967, Parker R.L. anc Oldenburg D.W., 1973

for examplej. With rare_excepg&ons (Schubert G. and Turcotte

.D.L., 1972 Schubert G. et al, 1976) none of these models

include the thermo-mechanical coupling that must exist if

shear-heating contributes to temperature, and viscosity is

/

‘temperature dependent. . o

All plausible relations between stress and strain rate

in rocks under mantle conditions involve the di%%lpation %;
v . . i .
heat in some form. These mechanisms of deformation are -

controlled by the migration of crystal defects and as such

v

regquire the generation of heat. This heating modifies. the
'vphysical " properties of the material and as a result can
-Aaltet its mechanical behaviour.: Under most geologic

conditions such thernmal feedbdck.’appears' to be a fairly

40

H

v
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< . . _

‘small ~ontribution to  geodynamics wut, with sufficiently
effective Leat .generation me&hanisms, instabilities can
afise.'The}cohditiohs under .vhich the feedback mechanism
becomes importaﬁt to the ceodynamic models being considered
is of funddmental importance both in  this chapfer and

chapter 4.
. <>

Here _1ithosphefe formation will not be dealt Qith
d;gectly; fnstead;in fhis chapter I attempf to clarify the
part §hedr'hea}ing Plays in the existence of the seismic low
velocity zoné. The resilts of this analysis are dépendentlon
;the mahy assumptions made'ébout.the physical parameters .and
constants involved. For example it‘is.éssumed here that the
seismic low veloéity zone behaves essentially aspa viscous
fluid over the tinme scaleé'of the motion impérted tb it. The
mantlé'materialhbelbw is fhén able to exhisit soiid behaviorv
relative to the felaxation time for the seismic low Qeloéifj“
zone. Yet this mato?ial?beneéth' the seiswic low velocity‘
zone is able to bekuve -°s é-fluid~itself-over longer perioeds
off time. 1In reality this aﬁproximation rgpresehts a 1rluid
whose viscosity increases with depth. Highly vigcousf fluids
do have‘the &bility to ackgas solids or fluids forvdifferent
rates of application of sgfess-(Kolsky H. 1963). It a?pears
however that this is Fnot a _fégtor i% the geodyuamié
processes being considered. Cathles {(1975) ‘claims that thgfe

is no evidence for ‘a stress rate dependent viscosity in

glacial rebound studies.

Certainly the mwost controwersial physical parameter is



in fact the value of viscosity. All of the preseot kr ledge
of the viscosity' of the mantle comes from glacial rebound
studies. A falrly complete review of this subject and 1list
of references is glven by Cathles (1975). It should be noted
however. that Cathles assumes a Nevtonlan mantle. This is an
assumption thCh is not generally accepted (e.g. Carter N. La
1976, Froidevaux C. and Schubert G. 1975). There are
differences in the rates of change of v1sc031ty Ulth depth
for Newtonlan and non-Newtonian flow laws, and the non-
Newtonian (pover) flow laws give rise to a well defained iov
v1sc051ty channel in contrast to the linear law (Carter N. Lﬁ
1876) . Cathles (1975) however~clalms that the load cycle
behavior = of ea;th' models that have high viscosity lower
mantles, non-Neutoaian mantle viscosity or substantial non-
adiabatic deasity ‘gradients are similar to the load cyale
behaviorlof layered Newtonian viscosity models. Thus for the
purposes of this analysis - I will assume the values of

viscosity obtained by Cathles.

The areas of uolift which have. been studied are .
Fennoscandia, the Canadian Shield, Lake Bonneville,
Greenland and the Arctlc. The area over which upllft occurs
is used along with the rate and ‘horizontal varlatlons in the
':ebound to obtain models for the values of the viscosity to
different depths under each region. The generai values
obtained by Cathles'are, a fegion of relative low vlsc051ty

of 4x1029 poise from the llthosphere asthenosphere boundary

to a depth of approximately 75 km below the plates and a
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viscosity of approximately 1022 poise fhroughout the rest of
the mantle. Although fhese values are subject to some
dispute (eg. MacDonald G.J.H. 1963{ they probably cannot be
very much in 'error above the 650 km discontinuity. If the
viscosity were much less than this glacial -~rebound would
ha§o to occur at a faster rate than observed. For much
larger values of viscoSity one would be required to altef
the equations wused by Cathles gsverning the dynamics in
order to obtain .,a reasonable rate - of- rebéuné. Such an
analysis certainly _does not seem to be justifiedlsince
simiiar values were obfained for all areas which ﬁéve been

studied  in spite of the different areal extents and load

releases involved.

The values of the other physical constants used in the
equations of heat flow and fiuid fiow, specific heat c,
density p and thermal conductivity k, :seem‘ to be fairly
consistent throughout the literatﬁre, on héat flow in the
manfle"(eg Hqﬂém;ie D.P.’1970, Toksoz N.HM. et al 1971). The
vaiues'ofa the;e constants are generaiif assumned tb bé
c=107e:gs/°C/gp, ;p=3gm/cm3; k$4x1osergé/cm/9C/sec.

N

3.2v5‘Simple Newtonian Stress Strdin-Rate Rélatigg'

Consider now the solutions which "may™ evolve for an

~infinite slab of-half thickness 2  subjected to a shear

stress o . The rate of heat production due to viscous shear

" heating at any point in the slab is o€ wvhere & is - the

':straiﬁ rate and o is the stress at that point. The
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boundarieé of the slab are held at femperathre TB. The slab
has thermal conductivity k, spe&ific heat c and viscosity

v ;'goexp(—a(ﬁ—TB ))‘ . Here Ué is the viscositj at
perature Tp and a is a material constant. Thus the rate

N / . .
#Wtat production is given by eq. (2.2) 1if a newtonian

stress strain rate relation is satisfied and the principle
of heat balance is ohce again given by egq. (2.3). Momen tun

balance eg (2.5) is conveniently derived from the condition

lo_ = —-——_____d(pv) o -
ax dt (3.1)

.
L

where v is the velocity in the plane of the slab. The
complete sclution of a sheared slab requires simultaneous

solutions of equatiohs (2:2), {(2.3) and (3.1)-‘
. : . 4

The assuﬁption' of Grunffest‘(1963), Griggs ana Baker
(1969), Shﬁu (1969), Schubert etuai'(1976) énd the'lprevious
chapter_ that (30 /3 x)=0. But when inertiél té;g\exist in
the tempé%dtﬁre field this is not rigorously valid. wig* the
analysis of the1iﬁertial field equations givgn in Chap£er‘4
it is shown that the stress is‘un;form throughout the' slab
if the inér;ial terms (derivatives w.r.t. time) are zero in
both the heat-flow and Naviér Stokes é&QJuations. I ‘do no°
mean to imply that {his assumpﬁion of créép is not a uSéfuJ
a%Engimftion in many cases. However I do wish to point  out'
- tha: 2-alyzinc a system changing in time the creep

: , o
assum; +.u ' €A mp. e" stability on highly unstable

\
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physical situations and it must always breakdown in thg

“neighbourhood of instability".

The fashion.in which stability cap be "impoped" is éé
follows. It will be shown 1in <c¢h pter. 4 that a thermal
ig§tability is a locali;ed  pheno/énon within a fluid.

" However " the instability criterion derived in chapter 2.
depends only on the slab as a whole. Keeping theée

S

statements in mind it <can be seen from egq (3;1) that aﬁy
/Pf;aképwn in the "asgsumption of creep" can - induce a large
local velocity gradient without a substantial réduction in
‘stress. This may then'préduce a local weakness within the
slab from whch %t is not able to recbver before the.qnset
of melt. If one were to then take a slab whiéh behaved 1in
this fashion ;hd apply t:he creep assunptions to it; the
velocity field would beuaveraged out over the slab as a
whole .and the slab could appéar very stable. 1In thé
neigﬁbourhood of iﬁstability the creep assumptioné' must
breakdown by definition since ax suéfiif?nt reduction in

. T
‘viscosity must result in the relief of \E}(st by

accelerations. The analysis of these phenomena will be the
o ) ' .
subject of chapter 4.
The rest of this chapter is concerned strictly with
e . ' .
analytic-solutions to the stationary field equations and the
applications discussed 1in section (3.1) to the seismic low

velocity zone.

"% 1In general one has the condition,

at
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(3.2)

% (6, y) |
= _CL__}\',_‘Y_‘ eﬁ)(a('[‘—-TB) )

Ho

for the heaf balance in an infinite fluid layer in which
flow is not restricted to beé lhmipaf. Here x is the co-
ordinate across the slab and y is a co-ordinate in the.giaue
of the slab and ghe direction of the applied shear. If there

is no stress in the x direction then vx(x,y)=0. Further, if

we dssume' that the temperature is time’}ndcpendent ay any

point in the slab then the ‘velocity amust also b time
independent and must be a function of Yy only. Equationh (3.2)

then becomes

v . :
.:écvy(x,y)%% —,KV2T = o (y) éxp(a(T~TB))

If the sfress varies in the horizontal direction one obtains
a stressvgraéient and thus f:om»eqn. (3.1) we have inertial
motions.‘Howeﬁer i1f the flow is -incompressibie such a
condition of a ,constanf stress across the slab and a
variable stress in the plane parallel to -the slab is
'imbossible, Also if shear stfess causes heating .- in'Some
cases melting it nust diffuse at é‘finite rate vhich rzy be
" Zero ";cross 100% melt. Therefore: ac /9 77" 1implies
00 /93 x#0, I therefore consider only the fully stationary
sékution, 0 not ‘a fuhction of x, y, or t. Thé inertial term'
in the +thermal. equation must’ thefefore'be Zero and_this'

implies 3T/ 9y =.0 for v# 0.
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I8 ‘ . ' o ’ .
. The differential equation for the stable ’temperature
distribution which may evolve is given by

2 , ‘
T _ 2 |
kg;§ = ~g exp[a(T—TB)]/UO (3.3)

. e
with boundary conditions T = TB for x=t & where-2 2 is the

r

thickness of the slab.

The solution of equatiqns (2.2, 3.1, 3.3) is similar to
one in Landau angd Lifshitz (1959, P« ©190). 1In order ' to
reduce the calculation to dimensiohless quantities, as in

chapter 2, let

€3 ’d2¢+,\ _{') , 6252,
T ex ¢ = 0 h ‘. = ’ ) ) ’
Then  gg2 T AexRL) vhere LK ) (3.4)

‘Equation (3.3) has the solution

o . | i T v " . . j
9 = ¢, - 2 in [c’osh</§.eXP(¢c/Z)[€’)J - (3.5)

where ¢ is the maximunm tempeﬂgtdre (whiqg must océur"at
the genfre of the ‘'slab). I obtain ¢ from the boundary
condition ¢ =0 at £ =1 and observe that solutions of this

equation for g§ exist only"if' A 2.88 as illustrated in
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figure(3.1). Figure (3.2) shows graphical presentations of

this solution. .

Prom equations (3. 1) and (3.3) oné finds the

,nodvanishing component of velocity is given by

Figuref(3.3) show graphical representations of the velocity.
Note that the critical parameter is the value 6f A . PFor the
.pérficular case sélved lhére ‘"the condition’ thdt stablé
solutions ‘may exist is A<,88. It 'is however interestiné to
considérﬁ the case where me;ting occurs at . a finite
témperature ”iM' Then the timé‘to melting, {M, a§'defined in
phaptég 2 becomes |

' - =‘vpcu -

f% 02a (l—exp(~a(TM—TB)))

For the low velocity zone a(TM-TB}?1Ahence tc/j:M =, 62 , but

from fiqure (3.1) it can be seen that the value of )

‘changes very little to .85 for this valde of oc;{ It should

be noted that in this case tc/tM#A since tM is the time fpr

the material to melt and )\ is defined under the assumption
, iy ] :

that the materjal could be heated to an infinite temperature

without melting.
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Figure 3.1:

R

O o e

The central temperature as a function . of th;\

dimensionless constant lambda is plotted. Note

that the maximum value of lambda for which”

solutions exist is .88 which corresponds to a
temperature of 1.2. _
(“
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Figure 3,2:"

O

The values of the temperature are given betwveen

"the middle x=0.0 and the boundary x=1.0 of the

class of homogeneous slabs in which a
stationary solutions exist., The vertical axis
represents: different values of the

dimensionless constant lambda. The temperatures,
are . given in terms of the .dimentionless
temperature ¢ (ie. 10-2 x ©°C). ‘
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:’['f

. oo e )
s F 2% -

Figure 3.3: 'The values of the velocity are given for the
'same slabs as in figure (3.2). The values of
the velocity are on the contuur lines in
cn/sec. . :
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———— e

A further cdmplication in the geophysical application

f thgse équations is the neceSsity of using “"realistic"

_stress strain rate’ relations. This is a subject which has

been treated very’ extensively - by Ranalli(1974) and a@ore
Tecently in a review paper by Cartefr (1976) and thus the
justification of the stress strain-rate relation will not be

considered here.

Steady State creep rates for metals, ceramics and rocks -

are related to temperature and stress by a Weertman -~ type

equation of the form (Carter N.L.”1976)

é,=lA exp (- (E+PV) /RT) f (o) T ' (3-5):

Here \A is -a slightly temperature sensitive material
constant, E creep aétivation energy, P is the pressure, V is
the activafibn volume, R is the gas constant, T it the
temperature and f (o ; is the stress ‘?ihction. In this

section I will be concerned mainly with the special case of

eqn (3.6),.

E

i
ala

= exp

umﬂm-
o

O NSNS
,

wvhich holds. for most geblogic material in the neighbourhood
of instébility_(criggs D.T. and Baker D.VW. 1969) .

4 »

Writing this rélationship in a form which includes

r/ n

{ 4
TB ‘ > l\ (@] ) - (3.7)
Aizn - ) .



56

"yiscosity" one has

Where n 1is an experimentally determined constant. Observe

that for small temperature changes (T =Tp) we can“write

\ "
E| 1 1 -~ L (T —T))
- — | = - = x ex L
exp( “R<TB T > "\ arr2 R (3.8)
, B _ o
, , : : E
so that the constant "a" used previously becomes VRT 2
: C n
‘ B

and ‘Mg becomes (5O)wso. J

The approximation inen by equation (3.8) relies on the
condltlon that at least in the seismic low veloc1ty zone the
actual temperature is close to the melting temperature. This
is the *essencei of a 'et;;;}ity criterion developed by
Robertson (1948). If 96 is taken as 0 the constant stress

in the slab, the steady state héat flow becomes

Ek d7¢ _ - )

' -2
Ekdcb__L 4L_l\o
R 5 y exp < "3
where ¢ =(R/E)T. Observe that the source ternm depends on

dx o]

temperature, on the constant applied stress’ ¢ and Ho Which
i | . o » .
is also constant. This equation is the analogue of equation

(3.4) . Introducing the dimensionless length £ =x/%

2 i .
a9 _ _ P11 2
dgz Eku epr‘¢ 5.0

"l
BN N I

.
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which becomes

2

a~é + Alexp(- =0
—% Vexp (-1/¢) = 0 3.9
o ' dgz N -~ oY
where | : {J
2 .. .
. R2 2 - »2 e :
A = EEE; o eXp(l/¢B) —A<¢3 ehl(l/¢B)> (3.10)

Here ) was def%ged in (3.4) and a was derived above for the

assumption T :TB. Multiplying'both sides of (3.9) by dd?/dg

and integrating one obtains <
. . ' ' /
, -1/¢ N .
. dé —_ S ( 10 |>
e — DUl - ‘ - / -
o - +/2 1 be Exrl L 8/ J
. ‘ (S ¢C n.
| e ot .
vhere Ei(x) =: [ T at , oc is the oun-u. 7ensional
‘o E '
\‘¢
> temperature ét‘the'centre of the slab. -
/ : . N [ y
- , Define - f{unction A by -
~ A(0) :H{.—¢e 1/¢—E1(—l/¢{}
’ : . . e 4
-
g . |
Then d¢ | _ .
f [A(6)-A(s )1% 2A (3.11)
b fe o
© where ¢, the value of ¢ at £=1, o
PRt C ‘ ' ‘ -
- »éétéfﬁznes @C.'andg
PRI L .
A”d¢ o . | : o
ol tE£y/2)" determines ¢(€2§} (3illa)

[X($)<2(6,)]

,
s
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‘A plot of ) (A.,x) appears in Figure. (3.4). The velocity

is given by

| 1y
2 _ 5
vo= 2280 20 2/ am(e(r) A )T,

v EoL 9 Hg

-

|

gy

where the“sign“on the square root is chosen tb correspond to
positive or negative E‘. Comparé this with equation (3.95).
If ¢ =¢. -¢ wvhere € /0. <<1 then
Khoo YoA(P, )) 1 2E(e exp(=1/e )t 72
‘hnd thus | |

. e
- A J}\

=M/;,$ <¢—¢ ) exp<%[?}?§"£_c]>

o~

We may then .useguthe,,following‘approximation in equation’

3.5! . 5 -

canh /%exp’[@c‘db'a)/z%ﬂa - /3 e ?2;“’3
' v | , ., L “*s

s

to ’obtain
L0 171 1

The introduction of a melting Femperaéﬁfé is now natural. If

we arque thafi:¢¢ <oM"where ¢M. is the melting‘temperature

it is easy to use (3.?[ﬁé}o evqluaté A at the «condition

Qc.;gM . Fgrther it vis worth moting that stable solutiorns

exist fortéll'valués of . Thermal runaways do not occur-in

the same way as in the previous case. Mechanical instability
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in the material described by (3.7) comes about only by

melting.

Now éonsider the problem of determining a stability

criterion for a slab heated from within by viscous shear

\ ‘
heating Gith the stress st ‘n rai. relation (3.7). If we
assume ze] thermal condwctivi 'y and uniform shear . %§
" throughout “the slab then t. :ntre will be heated to the,;fq ‘}
. ) . Wﬁm‘ I

melting temperature in a time

Epcuo :
t, = — exp(fl/¢B)[¢Mexp(l/¢M)—¢BeXP(l/¢B)
+ Ei(1/¢B) - Ei(1/¢M)]
, EocuO {2
= > exp(—l/¢B)f(¢>M,¢>B) A
RO . b

¢

*With no heat sources the slab has a characteristic cooling
. LW ) .

;x?

time

A

By analcgy with Gruntfest (1963), let

. o
G = ES = A/ (00 05)

=

3

where A ' is defined 'by equation (3.11). or by equation

(3.11a).
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X

is sufficiently large compared with t it 1is

If t c

M
clear that stability exists. The instability occurs when the
central teﬁpérature in the slab . reé4ches the melting
temperature.® The corresponding value of A is the «critical

value and can be caiculated from equation (3.11a). It 1s

easy to show that
; 2

P . )
1 JB as v .
¢

1

(Akg) =B (B))

R Y

M

is the limiting value of G for ftability. When ¢B ='¢M—e

where & .- <<l.
2%

Another stress '~ strain-rate relation of 'considerablev

~ ’ N i .
‘interest for steady state creep in rocks is (Weet®man and

X

Weertman, 19795) _ ' ) A%
' ¢ = "o exp(~E/RT)/T

" Here the value of A from éqn(3§$) has a 1/T dependence.

The values of E, C and n are subject to considerable debate,
but the analytic properties of flows which couple.-to thermal

behaviour are interesting.

-Solving for the heat source term we get for constant

stress
'

: non+l exp(~E/RT)

‘ge = C \\T N "
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Setting: ¢ = gi we get

ER) + oy exp(=1/¢) _ 4
ag?' 9
where
A" d n n+lR2£2/kE
- ¢ _ AN n~1 2 R
C'X where C Cu ?o 5 5 .
- hich' de : L ks
from which . 3%'3 oyl {E1(71/¢)*El(vl/¢c)}
v'd ,
¢B - ) .
and [ TRy
' s (Bi(=1/¢)-Bi(-1/6_))"

c.
. "' )
can be:solved humerically for P A stability criterion can

-be detlved exactly as uas done for the prev1ous relatlon.

The preceding?’aiguments involving non-linear.rheology

are hard to 1qﬁerpret ig. anelmmedlately ‘useful géophysical

vay. The' success of a 51mple Newtonlan stress strain rate

I 3

‘relation in geodynamlcs suggests.ve Sh0uld at least look at

L)

'R
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. .»‘ B} . . M ) ) ral
the way thermomechanical coupling can mnodify- appérent
viscaosity. This theoretical development = will now be
completed with some connections to Newtonian processes in

‘which thermo-mechanical coupling is ignored.

Traditionally experiments on_the-shear; of .layers Care
iﬂterpreted in terms of such Néwtonién viscosity laws. If
she;E-heating modifies the viscoéity, the observed
experimental resuits are obviously not a good measure ‘of
actual viscosity. Calculation of . "apparent Viscqsify“ is
fairly 4easy wi£h the résults derived ébove;'Here abparent
viscosity 1is the ratio ' of applied‘ stress ‘to appareﬁt

velocity gradient. We «can estimate this quantity using

equation. (3.7) which yields

v

o ' exp(-1/n¢_) 1 ; o o
Loy P J exp(l{}nC-)dE L (3.aa2)
UR o dx

4 A

0

PR

It is generaily aceepted (e.q. Ringuobd A.f. 1975) thépf the
temperature of  the 5eismic low velocity zone is néér its\
solidus. .Although there is no.vell defined.mélting point for
such matérial; it .is still useful to introduce. this
approximatibn since 1it behaves in the presence of partial
melt as a material very near instability. |
CIf ¢ = OyE
then 1 1 (Y 2

== exp (e/ngy)dg
no M J S

2N
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and from (3. 11a).

2y

€ =

2exp (1/¢y) | &

Let M = 2! A

o~

2n¢M2exp(l/¢M) ~ 2n

Then we have

1 Mlﬁ :
1 1 2
== J exp (MET)dg = —"EE f eXP(WZ)dW " (3.13)
u o ‘ u M- ‘ | '
o) O O

i

which can be evaluated as a Dawson ihtegral-(Abramouitz‘ and .

Stegun, ‘1965r® Observe that U depénds in a non linear

" fashion on the stress. In féct»f Yy éipaﬁdipg exp(ﬂ;z). and

truncating we get

\\ 1 | M M2
M 7 = Ut -3+ 55)
| L+ Mo

3 10

The sfress strain law wused to derive‘"(3.13) is more
réélisticvlthgn the. assqutidn that viscosity decajs
exponentially ‘'with -‘tempefature; ‘ Nevertheless_ another
appar;nt viscoéity can be deri&ed frbh the high tempggatufe

limit‘qf equation (3.7).
: _ 0 A
. 0= = /; 2xp (=9 /2)

from which it is easy to see -

i &



W=y /; exp (¢ _/2)

In this case || varies as g 2 for high values of 0.

s
.

64
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Pigure 3.4:

The temperature distribution across a class of
stationary slabs with uniform composition is
given. Here the stress strain-rate relations is
given by equation (3.7) and the temperature is
given in ‘term of the dimensionless temperature
o . : .
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3.4 Application to the Seismic Low Velocity Zone

—— e —_—_—— _———

The veloci}y of seisnic uaves\ia/general increases with
pressure and decreases‘with increasiné temperature. One or
the other of these two effects can dominate for certain
temperature ~ and pressure gradients"depending on the
material. In fact many early explanations of the existence
of the seismic low  velocity zone were soley dependent on
this phenomena (Birch F. 1952, valle P.E. 1956, MacDonald
G.J.F., and Ness N.F. 1961). The critical temperature
gradientéﬂ particularly for S waves are -probably  exceeded
within the outer 150 kn so there is littlc ioubt that thj
explanation is at least partially correct (Rlngwood A.

1975,_ Lieberman R.C.” and Schrleber E. 1969)..It is however
‘pointéd' out by Ringwood (1975) that chemlcal and
mineralogicai heterogenelty must also play a part since. the
largest vertlcal temperaturev gradlents in ~the earth are -
inmediateiy below ,the Mohoroylc dlsconfinﬁity, where the
seismic velocity etill iacreases with depth. I will not
consider ;heee facters here as they ‘regui:e a rather
- detailed petrological study . which -is ~given by Ringweod

(1975). .

The general thysical situatien vhich results in plate
formatlon 1s extremely complet and open to much dlspute. The
theorles in this area vary from the crust and llthosphere
belng formed by chemlcal separation (Rlngwood A.E. 1975) to
a fairly unifornm comp951t10n ;hrpughoutd'wlth the vertical

. K 'r' e “ i
inhomogenieties being caused by phase chahges resulting fronm
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the incréasing pressure with depth (Kepner G.C. 1959)..Her9

I simply mention the situation as I envisage it fron a,fluid

~dynamics point of view. In the formation of the plates there .

‘are a number of factors which must be considered sucb as the
melting ;Bint, conductivity and denéity of thé different
materials iﬁvolyed. In génefal the least dense material, the
material of lowest melting point and the material of - lowest
conductivity all téhd 'to rise to the top~inrlithosphere
‘differentéation. The crust is then formed by, matcrial .1tk

some or all of these properties depending or. The degree to

which any of these properties cdn dominate. The Lot of the -

-~

lithosphere is then formed 'mainly by " .aterial with the
opposite prope-ties which has beeﬁ depleted of the crustal
material. Once the plates have beén formed they separate the
high femperatures of the"earth's interior from the puch
cooler.temperatufes af the surface. This layer of thermal
insulation is very :efficienﬁ becéﬁse its.high viscosity
allbys'heaf to escape only by conduction over the . majority

of the earth's surface.

Below the plates cbn#ection éf the.earfh's manfle then
éausés ;sméller temperature ;gradien{s. This  description
Vhdwevér is ;omplicated by the.fact'thatithe thickness of the
platés varies froam lesé than S0 km near the ridges to 250 knm
Hiihin some of the continents (Isacks B. et al'1968)..rhis
causes the temperatures in the coﬁ;ingntal lithosphefe whicﬁ
- arg'atidomparable.depths<to the éeismi& ~low velocity =zone

beneath the oceans to bé9approximately 200°_coolef. As a
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result the marginal,stability.beneath the‘oceans would not

Lo
be experienced in the mantle material beneath the contlnents

g

in an unstressed state.

The pressure in the seismic low veloc;ty Zore “eneath
the continental llthosphere is in fact very s° lar to that
of the mantle material beneath the SelSmlC low velocity zone
underl the oceans. oOne thus does not get the same c0nd1tlon

.

o‘ran amblent temperature close to the welting temperature
because of -the effect of pressure on 1ncrea51ng the meltlng
temperatnre. A region of marginal stability therefore does
not. exist to the same degree as beneath the oceans allou1ng
a i Lp region of decoupling of motlon of the plates and the
coﬁctlon cells.” As a result tbe seismic low velocity zZone

beneath - the continents is far more complex than beneath the

‘Oceans.

N

I do not propose to study this region beneath the

continents in deptn, but wish to simply consider some of its

properties. From the present knovledge of plate motions
relative to the mantle convection cells it is generally
acknowledéed that the plates vhlch contain continents move

slower than‘those‘wlthout. This may be concluded by looking

at relative plate motions and considering the hot spots
vhich are assosiated whith wuplift (and thus Yan be

'considered as orlglnatlng fronm depth) as belng essentlaly-

fixed (Bnrke K. et. al. 1973). Thls observation then s€ems
to imply that the continents impart greater amount of shear

stress to the asthenosphere and thus impede plateﬁkmotions
» . ST :

.
e

&
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(Chapple W. M. and Tullis T. E. 1977).

But partial melting is assumed to be the dominant cause
of the  low viscosities in the seismic low velocity zone

beneath the oceans (this has also been speculated by many
others e.g. Cathles 1.HM. 1975}. Thus in order to cOnclude
that the shear stress in the seismic low velocity zone

beneath the «continents 1s greater one must also conclude

that the degree of rpartial ‘melting is also less. This

follows didectly from the fact that one must have larger

viscosities. This however is about as far as I can arque for
the continents in general. Dué‘to_the tremendous differences
of the tectonic environments of the different continents one

finds . that for any general theory developed for the

" ; A 32
(R4

existence of - 'the seismic low velocity zone, almosb every

o

individual continent is an exception. This-is a result of

such phenomena as glacial rebound, continéntal collisions,

the subduction of oceanic plates beneath th: continents,
T - ) A e

large varidtions in-the depth of different cgntinent§fetc.

all of which bhave substantial changes on 'fhgj‘physical

‘ - - - .. - . J ‘ AN
conditions in the seismic low velocity zone.

Consider now the lithosphere - asthenosphere boundary
beneath the ocean. Hére one has a siight decreasé.gn deﬁéity
from the lifhosphe;e above (of about 3.35 gm/cm? to 3.3
gn/cm3) and muéh larger temperature gradients ﬁhaq beneath
the continents. This causes the material to be‘subjectedﬂ to
relatively high teypératures vhich‘are close to the melting

/

point of the material at the pressufes at those depths. This -
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w,
materlal may then be coﬁﬁldered as marglnally stable meaning

4\

5y
tha¥ it is either close to partlalv melting 'or slightly

© beyonad the solidus of some of the components.

The results of this eectipn will indicate that the
thermo-mechanical coupling of the plate ' motions above to the
'mere viscous mantle below cannotvbe solely responsible for

the observed low viscosities in the seisnmic low‘veloc;ty
zone. However when an“incfeasing viscosity withedegth dueptot
fchanging physiCal properties is taken into eonsidefaiionlehe'
eaear heating can then result in the observed changes in
size. and intensity of the eelsmic low velocity zone. This
can occlr due to changes ia.‘thé” relative motion of the
plafes and mantle cenvectioﬂ cells. Also it car seen that

shear heating ‘must at least ba respon51ble f Ancfease

in the amount of melt in .ex1stence.¢in _the ‘ seismic* low.
rihw . : . I o .

. velocity zone. This melting . may also be aidea Hithe,
€y - B T : !
L ARN t : T e
presence of up to .1% water (Rlngwood A. . B, 1975). "%hé.
- - ;g :
s . g

1ncreasing- v1scos1ty ’wlth depth 1§“ then a result Lf the

S ».»«“9

pressupe gradlents becomlng grea%er than the temperature

o
3

.gradlents adﬁ a changlng gbmposmtlon due to ‘a rise of the

€«

eltlng materlal. I vlll show at the - end of tais sectlon

" that one may construct statlonary'solqtions for the materlal
’ ]v . . ) } | . L

becomning more ' viscous with ‘depth due to compositional and

pfessuqe'changes; The molten material generated in the
i . : : L

-
[J

co

seismic low velocity =zone then rises and cools as part .of
the - lithosphere. ‘This ' fits theories of lithosphere

thickening (e.g. Parker R. L. and Oldenburg D.:-®W. 1973).

.-
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. .o X
' The seisnmic low vejocity zone as a region of Steady
state thermo-mechanical coupling of a marginally stable
material would at first sight seem to imply that the low

velocity zone nmay

plates. ThlS

Sk

p
1llustrate that materials

be aériven

of a %pall amount of

hoyRvadr is cer
9@6, 1937)

to instability through the

shear stress by the moving

tainly ot the case. Consider the

experiments once again. They

with " low melting poihts deforn

Smoothly mwitfeut experiencing a degree of thermo-mechanical
o, i A ' .

coupling which 1leads to dramatlc stress rellef A thermal .

'instability is thusjjust locallzed ruﬁﬁway heatlng whlch

5

in’ an ever narrowln
o -
1ncrea81ng faster

occurs{ g region due to g@e shea; heatlng

than €he ablllty of them matérlal “to.

examlnatlon huwever one flnds that the

conduct neat Upon

low veloclty zone must be even more’ stable than materlal

<§, h 1ow:'melt1ng p01nt._Thls is; becauSe it 1s not composed

<

,.{-

of ‘one materlal close _to meltlng bmf} numerous materlals
(olmV1ne,v pyroxine,‘ garnet, and ‘Nps: in ‘some reglons

: - 2 ; . &
‘amphlbbbé‘(Rlngwood E&E 1975)) vhldﬁ”me t .over a range of*'

tempaﬁature. “Thus as the solldus for some of the materlals
!

is passed the v1sc051ty drops resultlng in. a smaller amount
of shear stress be1ng 1mparted by the ‘motion of the plates.

RS

is 51mply a consequence of eqn (3 3) or (3.9) The

majorlty of the material then remains unmelted

This -
wlth the melt.

being con51dered at present as unlformly dlstrlbqted across

The stress berng 1mparted thus is

“th

the : low

velocity ‘zone.

able to be transported at large veloc1t1es across slab
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as a whole makfng the concept of 4 localized‘instability

‘even more unrealistic.

£,
-

-

One possiﬁle genéralization~bf the work in this chapter

1

'now betomes obV1ous. That would be to 1n{roduce the concept

4

of 'a  concentration fleld of melt whlch would allow the

matétial to reach theﬁsolidus over a range of temperatures.

The, equations for this c¢ase are shown in appendlx B. %ﬁf

problem in this casells tgat one must}consider the behaviour

of three coupled equatlons }kich *mﬁxes findingi solutions
very difficult. e ' . ‘ . ' N

C S

'In‘F@rder to evaluatle the
L)/ “,,' E v

follbwiﬁg valuesV?vhlch~:appear ‘to  be, representatlvenﬁof

(A3

ﬁeg this chapter the

e
selsmlc low veioc1ty zone condlggnégare used. (Temperatures

are in °g 4§ther unlts are cqs\except where noﬁed )

Sk &

‘oz 1.3'x 107 T uo = 1022 = O i
Tg = 11ogw,,_ S & ;\ : E = ‘60kc‘al/.mé;e ' 4
Ty = 1900 T N  Rim=3 x 104 .YV o |
g; 3.5 - - T R :iﬁéO'kcal/°K/molev.l

.

o
i

14 i - -

shear coupling zone in. a 'marglnally stable state over a

distahce of 100 knm. ThlS zone is assumed to be caused by the
y <

shear stress applled by the mdv1ng plate at the top and the

more v1scous materlal below.
: r .
Using the stress strain rate relation (2.2} the stress

e

1n thlS simple statlonary thermo-mechanlcal system is given

«

~

¢
I ﬁféﬁ *c T.cuiate’ﬁe shear stress. riecessary to maintain this

&~

<N

P

L



¢ = G - . (3.13)
222 . |

klf_ ,the temper ture 1is a nonotonics crea51ng function'

. S’ - o by
vith depth t £ . is the thickness "W\ the low velocity
zone and is its viscasity at the plate&boundary. Egn.

Lo

(3.13) then yields aﬁ’appliedalstress “of approximately‘ 50

bars which in’ turn ‘yields a strain rate at any position

N

adross the slab of

E(x) 2 5 x 10713 exp(o(x)) /sec O (3.14)

' ) e 0‘1;g§k. .
*Here ¢ (x) goes’ from 0 to 1.2 which corresponds to a

. AT

j temperature range of 11000C -to 122096. ' > R P
. - ) “ < ) ‘ ‘ J'A *
T If -one nou asgpmes a plate motion of § cm/year, then a

velocity,pf approx1mately 10 7 cm/sec is obtained for uthe

o w7

top of the low veloc1ty zZone. Also 1f a much smaller

, velocity is assumed for the more Visgous material below and

¢
‘a constant \velociﬁx\ gradient across the low velocity zone’
. ) . - .
-~ . - - . . Y .
then a 'strain rate of approx1mately 10—-1+ /sec results.wfhis
“ )

»result“is almost identical to the strain -rate obtained in

eqn(3 1) .and depénding only on the physical consfanés.and
- LS ' 7' S .

the assumpticn oﬁ marginal stability for - the' equations in

section (3 2). ’ o , . -

v

Now in order to use the stress strain rate -relation

(3;7)~oqe nust figst,khow ¢5 andfpc,‘so that the'sttess may



be-calculat

11000C

rom eqn. (3.10).

than the range obtalned 1n the

case

Here a temperature

prev1ous

example., In

bars and the strain rate is approx1mately

5 X 10=15 x exp (<. 1-1/¢ ) /sec

Here 1/¢ goes from 7.1 to 9.1 and thus the strain- rate once

»

J
aqaln flts’Very vell with Cbserved plate motions.

B

. . g v k.
An 1increasing pressure and” the rise of molten

essentially

,%%oth

function.of‘depth.

‘g o .
. CH= U exp(-9) eXP[ (1-£) X133 = =
. ‘ P N :
there € = 0+is the bottomlof the 1ow veloc1ty zone, H

and x is a constant such .that uo ¥

QJX), for which the‘

Thus I wish to consider the'

behavior

Qe solved analytlcally

*ﬁ S

thenivrite eqn (3.4 in the form

” vwmw

Now let y =¢ -(1- £)x
2

A, "‘f T 2——% = ;A ey I

R SR
. 3€~.b

vhich has the solution

»

L= <X exp (9= (1-6)

R

s

X)

and va then:

eXp (X )=1022, ye

range

.15

of
to 1aOO°C is taken wh'ich is probably more reasonable
thlS

the stress once again works out to. be approxxmately 50

material
‘cause the value of Hoto be an increasing

.Qf‘

=1021

may



L

76

2
- 240
I = 2 X+ <X ﬂéag »b)

and 9 ¢ /0¢& |b is the temperature gradient evaluated at the

5 Y
boundary of the slab. Thus ﬁ"
- , . Y '
. _. ): e , i -
a9 = -y + Z;5 tanh ( cosh l<v 5y ©XD (%)) - .
9t |b - S T A . .
. %p &Y LAy L

- From the value fof}q- .at & =1 ‘we .can -solve for
b “, . W - - N ~ . : . ’
etermine the position of the
’ p ' '

-,‘35 /ag"|b- We may the
maximum temperature by setting 5 ¢ /Sﬁggdgandfsolving”fopg'.

-

The effect of thié'aséuﬁétioh of a composition gradient is
that it causes the maximum temperature to be shifted towards
the boundary of lower viséoSify (see figure (2.5)). With the

introduction of heating from below (the bowdary of higher
¢ . /"0

viségsity) one may get rid of this maximum temperature as
. . - =iy - , .

o _ '
illustrated in figure (2.7). ' L

s

¢



_ Chapter-d

The ~Inertial Field Equations and.fheir Application to

Deep Earthquakes ,

4.1 A Physical Discussion
>~ <y y

Studies . of 1ntermed1ate anﬁtdeep earthquake mechanisms

1nd1categmthat the pr1n01pal stresses are developed Hlthln’

P

th@ down dlpplng plate and 1n the dlrectlon of plate motlon.v‘

(Sykes L. R.,1966 'Isacks B. L. 'aud Molnar JP,‘.1969, ,ﬁ971
Isacks B.L. et _al 1969) 'Hoiever “the - proposed phy51cal;
1ipu§5fof 'deep earthéuake E mechanlsms i.all . have
ézh51dei flrst:'a gproposal of Isacks and Molnar

u" M
s S,

SN C oo
. ke
e e 3
o

If one assumes hhat the slab cannot penetrate the 650

km- dlscontlnulty then the 'upwaﬁd transm1551dn of  the

.compre551onal stress 'ceuld cause deep earthguakes.¢ Thlsj”'”

3 ~_w~ e

mechanlsm is rejected in great detall by gﬁngwood (1975) .

R

Also 1t has been shovn by Griggs (1972) that sufh reSLStance
‘vould result in buckllng of the subductlng plate, for  vwhich

there ‘is  little eV1dence, and thus could not transmlt the

"l

necessary stress for hundreds of kllometers upwards in any

.; ’ j

’ - v
. .. -
.

‘Anqther‘ proposal ' has been made by Ringwood {1975) and

' case.

‘others (Bridgman P.W. 1945, angwood7h 1956 1967, Evison

-

F. 1963, 1967, Demnis I.C. and Wlker'C. 1965y . Here

intermediate " and deep focus earthq akes a;e assumed to be

s LT ~
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E

o
i
¥ ~

‘Cams¢d by phase transformatiohs fassociated with sudden

Jolume changes in the subductlng slab. Two problers with
<z & | i
this mechanism have beqn suggested by Ringwood (1975). It is

' not understood how phase transitions can occur quickly

““enough to cause an earthquake and thﬁfanalyses of first

, . | e . .
motions . from earthquake seismograms ‘show douple: couple

mechanisms exactly as in shear failure rather than monopolar

implosion as has been belieyed to be required in phase

’v\

ch&nge mechanisms. Rlngwood (ﬂ975) then simply passes the

“

@%1r problem off as due tp the large temperature gradlents

“and the second problem as the rellef of pre- ex1st1ng stress

o

due to gravitational hody'forces. An aﬁalysis of the Seismic
moments of Aintermediate amgy&eep forcus earthquakes has been -

done by McGarr (197f}j' T clalms to get reasonable

cons1stency under the assumptlon of phase change induced

earthquakes %n four island arc regions.

N

I am however not .awvare of any research whlch has béen

.done on- the dynamlcs of this mechanism. Part of the reason

«

for this apparent absence of work in thls area is certalnly__

«m@ ° .
due to the fact that the theo:étical base conﬁ“Sts_ in
X R ;\> p

’\\

applying é statlc theory to a dynamlc system. I would llke

:::::

to suggest thatuﬁﬁth our presentr meagre knowledge of the

k.

fashion in whlch the phase .changes occur it is just as
reasonable to conclude that they 1nh1b1t deep earthguakes as

cause them. I make this suggestlon 51nce a v1sc051ty

i,

'l«

El

increaSe is probably associated wlth the maJorlty of the.

phase changes in the subductlng slab because of the density

¥

P,
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increases‘which occur and I am. aware of no evidence t t the

L

phase changes can occur as qulckly as necessary to 1nd

earthquake under the conditions present in the subductlng
’ a

slab. Also, almost every subductlug plate on earth exhibits
an absence of earthquakes in the r ion where the Olivine-

'Spinel phase change is thought to occur in the slab.

v

w

- It has also been suggested that deep earthqudkes may be«ﬁ@@p

eV1dence of a fluld 1nstab111ty within the subductﬁkg slab,

caused by shear stress 1mparted by the surroundlng nantle

1)

’\(Grlggs D.T. and Baker D.W. 1969 Shaw H.R. 1969) . Although
L - : 5y
'this theory would seem to ffit best with observatlons of

_focal mechanism of deep earthquakes it.is shown in sec. (4. 3)

& o fgl“ .

that the subducting slab is orders of magnltude away fronm
= .

& 1nstab111ty.

I wish to look ?urther into the p0551b111ty of fluid
a . )

1nstab111ty as a mechanlsm for deep earthquakes in this
9 , ‘ . : - ‘
chapter. " First one should con ider carefully where thé

instability would occun, I ,show i section (4.3) that - »

~only reglon which may be reallstlcal U driven to 1nstab111ty
L‘lS the- boundary layer ,between the mantle and upper edge the
subduc+1ng slab. The 1nte&10r of the slab is, far too 'stable

to exhlbwf 1nstab111ty uhlle the surroundlng mantle is able

- ’ - \
*to defornm smooth;y. The boundary layer on the other hand has

the greates' arount of“heat productlon (Turcotte D. L. and_

Schubert . 1973 also see sec. 4.4) and is 1n1t1ally far“
from melting. fhese are the precxse/condltlons necessary for
_the geueration‘of a thermal instability according to 'the
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experimental observat&ons made by Brldgmanx-

R i
a0

N

Taﬁi'~- q | o '.;ﬁieﬁ

4 W0 Analysis of the Fquations of Hotion

I considere here a discription‘of the inertial effects
'of a:highli viscous fluid when ,subjected to a time dependeht
boundary stress. I start by discussing a fluid contained
withi;n an' infinite horizontal® slab of depth 2% .. The
ahaljsisAI use for the propagation of the velocity field in
a hrgﬁly viscous"fluid ';S similar to t&s.theory for the
propagatiOn of a plastic wave ia visco-elastic solid
(Taylor G. I. 1946, von Karman .T. and Duwez'P 1950,

&

Rakhmatulin K. A. 1945). In the case oi a visco- elastlc
solid one is deallng withe SOll
- ..‘@

with some‘ fluid
: ‘ : “)ﬁ‘ "r
-propertiesy i.e. the '"flul&\‘

- . . -

“" - propagatlon of av

displacement. The dlfference here is that I am deallng wltha‘T

a flUld with somé solid propertles, i.e. the "SOlld like"

o . .

propagation “of a velocity. Both analyses are. identical in

that they represent the propagation of a stress wave across

thew materlai/ The difference is simplyﬁfheimgtﬁbd by which:

stress is propagated in the tuo cases. , :
> j : _. . ,’\\

- ! : N
’ .

o

If a unlform shear stress 1s applled at the boundarles,&

hY

thatgstress wlll be.assumed to propagate across-.the slab at %

R t‘r—~ |
the veloc;ty B(x t) ﬁpre % is the vertlcal co- ordlnate and
: x
v . ’ =
t 'is the tinme. B(x,t) therefore represents the ratloA x4t
* : re

- of the distance a ve1001ty perturbatlon will propagate,'

N . [N

orthogonal to the,direotion of‘the perturbation,’to;the time -

At" of propagation (i.e, in the case of & fluid of constant

v

1

<@
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- Y ’ . !
" '\ .1« . L
A

L
gV :a ‘ .

)

viscosity hroughout and initially constant velocity
throughout V(xféx;t+ﬂt)=0(x,t)). As each ﬁart of the slab
Jdhen becomes subjected to.a ho£izontal ‘force we. thain a
corresponding ﬁotion. ‘The slab thus 'undergées plastic
defq&?ation and we obtain a continyous distribution of heat
'sourCP . This'confinuum of heat-Sodrces is the sheac‘heating
due to the viscous dissipation of-the_forces responsible for
‘the dYnahics. The heating ‘of t he ‘fluid then_ causes a
decrease in the viscosity and tphédthe abiiigy of “the fluid
to dissipate the shear stfesé imparted'.yéﬁit.(i.e. the

plastic shear wvave veloc1ty decreases). This- Cé’%es a change

in the dynamics which accordlng %ﬁ the pryvggvs: argum‘lt

bs I .

once again changes the thermal fleld. One t glbka ?93
coupled thermo-mechanical syst;m in which both ﬁﬁiggas 'must
‘be solved' simultaneohsly except for. the spécial case of
statibhary soluzioné, i.e. solutions which ‘dél"nqt %g?@ain 5

any inertial motions, which were discussed in chathp 3i

Now consider the evo%3tion of an instability in such a

material. In Appendix C_it is shown that bn!i?@dhdl obtain a.

* [

stable statloﬁary solution for a homogégous half spacé
subjected to constanb sheaf no matter how slowly the shear
sffess is"increqsed td‘ the“desired- ;mount¢; One should
however remembér that fhis -is st;ictly ‘a"mathehatical
result. When using the-idealized.c&se of a«homogeﬁeous half -
Spaée,u the above ‘resh;t cantbnly'be meapingful whgre~the
distance from the boundary to ‘the = position of  the

'instabfiity/ is a diétance over which the basic thstal



assumption can be considered reasonable and the time for. an

A

instability to evolve 1is 1less than the time far the

phenomena beiné modeled to occur.

It sﬁould}be noted that all modedls of. deep earthquake
.mgchanisms are very spéculagive due. to - the great
uncertainties in knowledge of the geoiogic‘.and physical
’conditions. Hefe I attempt to find a simple model‘which fits

i

with the preseﬁt experimental -evidence and requires a

.minimum number of hypotheses} I wish to .consider -the

equations of fleid flow in more detail iqg;he remainder ‘of

this section and in section (4.3) bafore presenting a new
. ol t . ta

model for deep earthquakes in section (4:4) bése@ on these "

> ¥

equations. a ‘

The equation of motion .of ‘a"horizontally shgafed

viscous fluid in the absence of convection is given by
) i RV

3 (pv) _ éﬂ .
ST - (4.1)

/ ” S ¢ ' i A

Here the velocity, v, is in the y directioh horizontal te
. e N

the surfaces,'x is. perpendicular to the surface, s p .is the

. S , 2 v o
density and I is the *momentum flux dens4ty. In the case of
pure shear (i.e. when the'momentdm flux due to convection

\and_pressﬁre gradients is zero) one.may write
i T = -
Lo m X o
_wheE? .0 1is thecshear stress and -g, represents the momentunm
flux density due to viscous dissipation for pure shear.
oo : . . .

1
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In the absence of phase diffusion the equation of heat

transfer is given by

pc 9T o dv + 9 . 97T o
ot - ax 9x X : (4.2)

) -

The right hand side of this e%i?tion may also be written-in

]

the form -

"‘_‘ A;:;u\.'. )

I wr &, ) aT . a
. RS ! —_— [ 1 - o
. . 3% { . 5 + ‘Vo'} v 5;
vowo T .
’gh_ . A . B .n“ “’!" 4

Applying Gauss's theorem to a unit_volume of ‘the flaid we

find. k 3T/H

-

.- surface due8. thermal conduction; vg represents the enerqy

Uy

ﬁiegrééents-fﬁe energy flux density through the °

flux dehsig;”th aigﬁ?the{surfaceggpé-tb non-inertial vyiscous .

-

B

effects; ahd'vaofjbi represéentd the net energy flux ~ density

in the unit ‘volume due” to the inertial:CSuplingnpf the

i

n . ot - > . . ‘ e
jpal and mechanical field equations. ,The last term may

A \
¢ dividéd as” follows .
o 5 . ’
a0 _ 8v' )
Vix T OPVoaE. ~o
v
= DB(Xrt)V§§
T a2y L o 0Bt 21 T oy
. ) 2\,!:2,”{ (pB(x,t)v ) p -——5-)-{——--v:] ‘4, a) »

vhere the time of propagation for the dynamics resulting

from an applied force is
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5
w

'since the inertial’heating is strictly,% result of a ,Heat
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X ,
_ 1 '
bt = j Alx, 0y 9% | (4.3)
X-€ ' - '
and B(x,t) is the velocity of propogation of the dynamics

in the direction orthogonal to the. applied torce. Here

B(x t)v2 represents the-ehergy‘flux density wfthin a unit

By

\volume of the fluid due to the 1nert1al 1nteract10ns of the

»

thermal and mechanlcaikﬁgeld equatlons in that voluﬁz.

: Y
. Assuming 3T/at 0. the net energy flux in a unit volume

.« Oy

of the fluid beconmes zerd. ThlS may be wrltten as

!
-~ ¥

_) : . n B .»f,; h
Bt 5= 00 | 4.0
. “J . . ! & | , i ' (.\

M

source due too the‘ dynamlcs-‘and thus either 3(x;t)50’or
. : ‘ Hy L

-3T/3x=0- If B(x,t)=0 ‘then one ¢an see from (4 2a)
vt . M . ‘:E-); .

<

i medlately that BV/at-ij' If | aT/ﬂx 0 then the net heat

conductlon muﬁt bé@&ero and the heat produc@%on rust be the

same everywhere. Nou assumlng a Newtonlqp stress stfaén-r%te

Y

re}atlon" é‘ have : u(av/ax)Z—constant and 51nce La,lﬁsa o

¢

i . v , ‘
function of T only p=constant. Thus 3 v/3x= ‘constant _anQ“

" ‘'since’ the feat production may also be written as

7

. . ’,’.
odv/3x=constdnt, we have 6=constaﬁ7: Thus
‘ N B - o .
‘v _ 130 _ /o
- at - p E =9 A . &

LENEFeN

“

AN

)

.Now assume 3v/3t=0. Differentiating ¢ =p V4 axX vith respect: .



to t we obtain

which may be written in the form

OB(XIt),

Thus we have

< oL do

but p,/3¢ #0 <cince

RR% SRS
ot ol

. DA A

&
KAY

viscosity 1s a strong function of

~

temperature 1in a highly viscous fluid and | Iv/3x#0 since ve

have a viscous fluid.

{

Thué_anyfapplied stress must result in

velocity gradients across +he slab. Therefore for a- highly

vicscous fluid undergecirc shear stress one obhtairs 1h~

condition

a¢ 2
—_— 0 <«
Lo d

V)

o

We thus have +the rerul:t that heating can occur onl; If there

- »
are acceleratlQis auvd

is heating.

4
Consiier :ow_§§e

horizontal slab of

1

cb(t) is applied at

accelerations can occur only if there

P
“

o

the Irertial Field Eguations.

o

Solut;zﬁ§\5h1ch<evolve for an infinite
half-+hickness ¢  when a éhégx,stﬁess
v D

each boundary. The forces responsible

’ : ’.
for the stresses are assumed to be in opposite directions.

’



The rate of heag production due to viscous shéar‘heating at
) :

any ‘point across the slab is ‘once again given by g& where

o and . are the stress and strain rate at that point

respectively. . 3

A sf}ess strain-rate rel:t .. ,khich hold# for most
geologic material in the néﬁg:»ourhou” of instability was
given by equation ’(3.7). H-wvevel 1 1rst wish to‘consider
the simpleg relationship obtained i1or T =Tp in eqn (2.2) and

the newtonian approximation eqn (2.2a).

;o

The heat balance equation is then given by

: o o
s 92® _ 22a 02(g £ ()
S 2 7 RO Getexp(
3¢ o)
b Y
where - h ' -
q)\: a<T—~'I‘O> , {) —_ X/Q, and tl = t K 2 !
s pcl

Momentum balance is given by the equation

v oc2 go (L, t")
- = —
ot KEO ag

w

_Here v is the dimensionless velocity.

A,vIn‘tbe absence of inertial term it was shown in chapter
3 that analytic solutions may be obtained for. 1<.88. Now in

. _ ‘ . N
order to illustrate the importance of the ipnertial teérms,-
, _ A

4 ,the evollition of -the system from its initial¢condition to -

¢ . ‘ - “f- '
melting is'fohloaeﬁyby different processes. First qpnsider a

e~ L S i
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.
. ©

quati-stationary process. This lmplies that we study-.the

)

evolution of the system for ‘an \idfiniteiy slow rate\of
“increase of stress at the'béundary, The solutions at any
time are thef :given by the stationary theory. Assume the
equations yield solutipns for values of 0.0y where ¢ .

is the central temperdture and ¢ 1s the melting

temperature. The maximunm temppfature occurs at the centrp of

the slab and it is there-that the condw{)on 9= OM . is first

¥
/ T
encountered angd the fqlab* beglns .t§- melt. Thlsionset of.,

)

meltlng and its attendant reductlon in v15coslty creates an

LY

.instability for A<.88.

" Now consider-the same evolution as before'githfoc <¢w
. . - ~ . - . A 1

-

for a%i possifhle stationary solutions. The: p051tlon o§ the

*
instabilify may - be f¢und by, considering the slab as three
o R
separate slabs -
4 ’ B - L7

(Slab 1: -1¢ &g-€ , Slab 2: - < &€e , Slab 3: ¢ < EKN)

v

&

’

Here € .-is an arbitrarily ;mall}numger..lf » =.88 for the
slab = as a whole, slabs T and 3 oncelagain ybeld'stationary
solutloﬁs {see appendlx c) capable of transportlng a greater
amount of stress. Slab 2 has a cehtral max1mum temperature

of ¢ =1.2 whlch must correspdnd to A=.88 in this slab (see

<

sec. 3.3). Thus any stress increase in t@is slab must result
3 : .

in an instabiiity. By this analysis one ﬁa; now obtained the
result that any slab which is composed of one material and

" whose motion and heating is‘determined by equation (2.2} can

reach inStability'only at the center. The generalization of



k|

this arqumert to the more coi - .. stTess . Straihl - rate
relation (2. 7) ‘is trivial sin stationery’solﬁtions exist
for . any value of' #he‘ applicd strese (S?C_(/j'“) and
instabilityj siaply occurs when the cenfral maximum

temperature reéches)the melting temperature.

Note that here on- 1s assuming that -one has avperfectiyi
homogeheous fluid composed of a single material and a very

“well defined melting point. tere one is also considering a

constant stress boundary condition- afd. not a cpnstant

velocity boundary Conditien in whiéh cese thevstresejcah

',u§pally evolve te a sufficiently low value that instabifity

vill noct occur. This analysis thus does not in any way

eentradict the werk in‘sectidn (3.&).162 : | _‘y |
. ) 5

. ¢ .
{ Now consider the_inSténtaneous application of stress at
/ ,

the boundary;yﬁere 0y has a time dependence like

a H({t)

vhere o R : e

. - CH(t) ={g £
< - -

\

and o -is a constant. Since the stress must propagate into
‘the slab at a finite velocity 8 we have the condition
dc0 sox| = SUx(| - & ) where 8§(x) 1is the dirac delta
function. Ihis ihplies that v has a ‘space dependehce like
a H(1x] -2 yv and 3 v/ 39 i' has a space dependence like
8 tx) -2 ) for -2 <x<4& at time ,iero. - Since fbe ‘heat
production term -is the. prohuct of aifinite stress and an

’

infinite strain rate, the density of heat sources at the



boundary is infinite.

Fith an infinité.de;sity of heat sources the viscdéity
drop; infinitelw, répidly. This means the stress ’cénnot
propagafe into the slab and th8 velocity,gradi?ng aust
increase uiiﬁout limit.. In particular, melting will "~ now °
occur on the pgﬂpdary and not'at'the centre. A trqe physical
system 1is neither quasi-statiohary hor hés a Zero time
interval for‘tbe,éppliéafion oﬁ'StFess.-Wifh'a finite speed
of applciation 'of) stress instabilities cgn’ﬁe expectéd ag
- any distance between the boundaries énd the center debending
on the rate of incréase of stress and'fhe magnitude of the
stress. This indicates that £he charaé;e;istic distance to
instabil;ffﬁis a function cf the ti;e rate of change of the
" boundary force) . the -ma£eriél _properties .énd the initial

k4

conditions. . - !

I wish to consider now the physical situations which
2 . ’ . ?5
lie between these two very unphysical extremes. Consider .an

infinite slab of thickness £ which is held at a colI;st‘antc'
ltemperature at one  sur face and thermallyﬁinsulateé'at the 
other surfacé. The thermally insulated‘ "surface _‘thus
corresponds to;the centre of the slabs discussed previouély.
Assume “the slab is subjected  to ‘an -applied force E(tf
horizontal to the cooied 'suffaqé; The traction at the

boundary is given by . : , :»

Qu

N |
p(E)en = f(;)

'HQ;e the only non zero component of traction yields a

4
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-5 . .

-

t . ’ : . res
. horizontal shear stress. This stress propagates to any denth
) ST :

X 1in the leb in a time

X .
o
. ) . 1 a {
t () = J B(T (x,t)) "
\ g .
Thus we may write '
o(x,t) = qb(t—tp»(x'),)

\

vhere o(X,t) ‘Tepresents the shear stress at the position® x

.

within the slab-at time t. At this point it should be noted

.

that one may obtain further inertial effects, such as’ those

8

which éan result from the partial étténuation of the stress

vaves, which have pot been ‘cqnsidercd.' Neglecting thesc

. I : .
effects should however give a 'reasonable upper bound. to the

- -

,
depth and time to instability.
g b : . : 7

;-The equatlons of motion may now be written in . terms of

the boundary stress-.and shear wave velocity - as

«

EE?='8 h—— + Vo (t-t (x)')v~ ) S o

ot é~ P . |

’» , . o S C (4. 5)’

1. 21 .1 ag(m) 2
- 5' o‘B(T)v } + 3P T ,v 4
; . °
and o ov o 1 2% (1)
ot  B(T)  at' £ = t-t (4,6)_

2

The velocity of. propagation of the dindnics,'-s(x,t)

r
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, &
:gill here he cbnsidered to be the\shear wave velocity -when
ao/‘aé is large since 1in fhis case the material‘shquld
exhibit only solid propertieX and the plastic.ugve> velocity
wvhen ‘,ao/ 3t is small since the ﬁaterial shoula exhibit
bnlyffiuid properties. Ithis houe&%r such a highly npﬂlinear

function of température (especially in the neighbourhood of

relting) hat it would be foolish to try to solve eq's (h.S
and 4.6) \in any genera;iﬁy‘ either analytically or
numerically. L .

One .case 'xoweQer wvhich may be éalculéted, is fﬂe time
qu'the stress to propagéfé to any point in the interior
when a '"statipnary soluéion“is subjectet tbn a smali
pertﬁrbafion inithe applied stress at the boundarf. Tﬁisg
case represéntg‘a reééonable étafting point for cohsidering
tﬂe onset of instabiiity. Since the viscosityl decreases
exponentiélly with increasing @emferatufe it is reésonablé
to assume the velocity ogwpropagation‘df the dynamics also
" decreases  exponentially .with increasing temperature.
Viscosity is af£ei all simply:é measurement of the ability
of a’ 'fluidv to diffdsé morentum.. Theréfore with t;e,
approximation T ;iB‘aﬁd the Newtonian stress strain-néte'

relétion one obtains a time

’

wl"
-'€=€o

v_for a small perturbation in the boundary stress to propagate
to a distance £ from the thermally insulated boundary. )

L]

1
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Here the shear wave‘velccity is assumed to.beiof the form

) 'B(n’)‘»,: Fooexp (=)

-

where BO is the velocity of propagatlon of the dynamlcs at

¢©=0. This form for B does not allow the Qtress to

-propagate past -an ’nstablll‘y.‘It also flts 91*h the natural

expectation that- g have the same temperature dependense as

~

\\a~ '

-rn
Viscosity. The time of propagation is a hlghly non -llnear

function of the distance as 1llustrated in flgureq (4.1)

The propagation tlme to any p01nt from the boundary here in'

"

fact dlffers from the: changt in veloc1ty to that point from.

v

the boundary by only a constant.

. . : ,
S . . .
\ i . ’ .

& Con51der nov the case of a plate belng subducted' into
the earth' fmantle. The lower® part of~the plate derorm

o
smoothly and no 1nstab111t1es .occur. Here the llthOspher= is

I

a material of lower melting pbintVthan . the surroundlng

mantle material (Ringwood A. Bh 1973) and has a, tenperature~

‘distributjon ‘which is falrly smooth throughout. The inrtial
‘temperature dlstribution is simply a resdlt of a qolld

- heated at the lithosphere asthenosphere boundary and - cooled

4

~at . the crust:mantle boundary. The temperature and stressﬁgt

-

-the lower surface of the plate then increase gradually as 1t

fsubducts. The subducted crustal materlal houever is gquite

dlfferent It probably has a lower conduct1v1ty than the
S

surroundlng @antle and ig subducted With an extremely low

temperature_ relatlve to the mantle materialggone thus has a

large tempeqature difference at this crust man*le interface.
\ N ! ; ) . " .

.

D

\ e : B o . N - R v
- . R N . : .

n .
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~

The time. for the slab to reach thermal equitibrium with the
L s ] - ' ; T
mantle when _held at a fixed posid ion in *he man%lo may be

° i
-‘estimated-from t =p c 2/k to be approxipately 108 years,
S AL ‘ Y :

f o

a Lo
. et ' . . <
Now consider the mimimum stress required to produce an

- Y

.

o instability assuming constdn% stress.throughout the slab ‘and

an initial temperature éqﬂivalent jo that of the nmantle.
~ hére az=103*/t.. from eqn(2.3a)" where £D;<j013 S€ec aL thus‘
it'would téke‘a stre§s"of 10 kilobars approxikately 136',
&ears, to' produce an iq;tability within ihe crust. ngﬁ one

is also éssumfhg~thé crust to be +*hermally irsolated  from

the lithbSphere. . These -figures pay not be eﬂtfpmely
: e o :
reliable, but the certain&y“windicate “that it "is’ not

N

' . Lo Y o
reasonable to assume that instabilityican be produced within

oo

R} B
"¢« the slab by the shearing of the mantle. Here 10 kilobars is

™ far too much shear .for the mantle to lmpart to th& zlab
- since the mantle motion induced by the subducting slai aust
reduce its viscosit

3

\

Y substaniially. If the stress 1in the
slab 1is 10 kilobars however then the stress in the mantle
must also bgb10 kildbars. This fact then yields -a—%ery
interesting result using  the Same approximations as

g eviously. One n finds that instabjlit lts in the
pr sly e 81/’} s th Lnst .;l Y* resul

Jrantle in approximately 102 years and ¥within pné tenth of a

kilometer of the:surface of thé slab.
< . .
] . Q B

The previohs analysis certainly indiCages -that. the
~» crust 1is much jiore stable than the bounding fluid. It-thus
seens much moge reasonable to consider the crust as

undergoing elagstic deﬁofmation and the fluid instability
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™ o . N . N
occurring within some boundary layer in the:boundary fluid.
"This _ becomes an ‘even more dttrgrtlvo moﬁpl' wvhen one

i

considers that the cru¢t£i materxj;gny‘ dleuvlng into the

mantle 'and thus induci ng g(cdmpgt}ﬁkonal gradient by the

4"_(‘ ,‘”v-\.i . \‘F ,r

bouﬁdary‘of the slab. Here the 4¢uef moltlnq point -of the
" \\
. < \}

crustal material also means it can support leﬁc stress at
nw .

~

equivalent temperatures. If one then also.considers a shear

Ni

wave velocity gradient 1induced by ‘a change in chemical

e ' - - ~
composition as well as by the change 1n tempytature t hen
. 7

inertial - motions-due to stréss;gradients are by far largest
B ' ) b ’
at the slab boundary. The problem is then whether the shear

' heating induced by thése effecés i§ large enough™to overcone
ihe"ability, of thé materiall Qg\foqduct’heat out of tbiS'
regiOn; ;f the véloci;y‘oé pxopaggtion of1§he_strcsd is many
orderé of magnitude ggeatef than the flxidv velocities i{
'then, éppeafé‘reasonable ;5 assume the stress is constant to.-
sowe.small‘-dépfh 5 -initidllx. Thus ot 5)=ab+a 'wheré
A(jo and T(® )-T <<”b If the cogpoesition in the material
bei;g sheated was the same thgoughout then. the téﬁpe:aiure
’ddstfibution coula be written as

X ., _

¥ :
v ¢(8) = ¢(3) - 2v?,‘n[cosh_l{exp(ﬂf(‘f))]

b /7 SO
- 'i' exXp P :}

Here the propagation time to a distance ¢ from the boundary

is given by .o
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and the velocity  may then be written as

.

C‘.\lp<—c
2,

Il
|
'ﬁlp-t

0
w
ge!
*
n
.

0
T
-]

>
N
N
s
I
N~
\_/

. - ~\
. ‘ o :
Now assume ttere exists a depth vy <<! duch that
‘ ® B R » e .

Bs(8) ~ 8 expl(1-7)) | ' :

.and [ (1=F) ] : ‘
Mo (B) g eXR, TOAT for £ <y j , e

.

In this region we can observe how the temperature and
veloc. y £ 21ds will evolvd initiall} from the class of
e - i

Sossible stationary solutions found in section (3.4).

The. case of interest in Chapter 3 was a témpefature
ipérease towards the boundary of high viscosity;‘ In this
chaptér the oppo;ite‘acasé i1s  of intrest,,avteﬁperature
'decrease towards the boundéry of high viscosily.o When the
. plate first subducts the heat loss from the dantle material

A . : ‘4

~to the uppéf plate boundary will be grQater'than_the effects

of shear heating in that region because of . the® very .large.
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temperature - difterernoe between the crnst ani surrouniing

. . A ! ' ?
mantle mrtericl. However as the plate boundary apovroaches
4

mantle temperature the effects of shear heating are able to
c _ ' X

domina*e. Under these condi*ions one may obtain a maximum
o .

terperature in the boundagy lay=r .as 1illustratod in figures

(2.5) and (2.9). Tn the presence of inential motions caused

.

by the large shear wave velocity gradients in this region a

sharvly defined region with +the maximum temperature aust
o X

dev~—lop. This 1s a direct result of +he fact that 1nertial

. ‘motion must cause inertial-heating (see ssection 4.2).

One 1is now faced witsh a problem since for deep
earthqu:kes -the failure. is not parallel to the subdu%ting
plate but at a 39° to 459 angle to plate subductfbn. One

method by which this «can be overcone i's, as follows. The
: . .

pressﬁre gradient in the earth at 400 km. depth 1s about
3.8 x 133 gm/cm2/sec? (Stacey P. D. 1969). The teﬁpérature

'~ variations due to shear heating cause large density
‘¢ . .

variations in the boundary layer. Here the density of the

mantle material is 3.8 dn/cm3 (Stacey . D. 19%9), «while

“u.2'gm/cm3 and 3.5 gm/cad are probably reasonable values for

-

the density of the slab and'boundary layer at this depth

>

respectively. This yields an appjoximately zero body force
in theﬁ-a ﬁihple; ’ a fbrce per unit volume of
4 x 1O?Igm/cm2/Sec§ in the slab directed towards the centef
of they earth, and a buoyant force per unit volume ofy

3 x 102 gm/cm2/sec? in'the boundary layer. It iS'interéSting

to note that these two values are of the 'same order of "

» ’ /
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)

- magnitude, they are however Hnly :pproxiaations. Thnnbugyxpt

force' in the boundary layelt  for examplr miy “viry
. - ' .

dramatfcally with the temperaturo. an? compositron of the
material.” Now arssume that the only for@es ot inpdrténcp 1n
the boundary layer are, the fbfcg parali=-1 to the ﬁiato " due
to the ,viscous shearing of thﬁ”iluid aﬁd thé‘buéy&nt torce’

caused by the heating of the material. ‘The axis of vrincinral
. L. . St Lo e
shear at’any position in the boundary layer is then oriented
in the direction of the vector sum of these two forces.
3 . : ‘\v ) & . - i
. . ‘ o .
This analysis may then be sumr:rised- as follow;;'qs *ha
boundary layer is sheared it is subjected *o0 large decieases
- .. P ,
in density and is in the. neighbourhocl of melting. fTheso .-
density ‘changes cause compressional. stresses Fn-d thus &l€er

v

the axis of wrincipal shear. The earthquake . must’ therefore

- -

be a _combidation of tﬁe.relief 0f t: elastic stress .built
up in the shearing of the subductiig %lébgifand BTt

compressional stresses induced by temperature and pres=ur=2
gradients in suhduction. - )

1 . - ) ' . .
The oddurence of compressional earthquakes thus ,cseoms
unlikely .at sh&llow depths for a uniformly moving plate Jue )
’ )

to the dominance of cooling. It therefore sceers that such an

A}

earthquake would require a large jeork *o s*art it'on its way .

to fluid instability.. This however is certain{j not a

>

problek\‘hs.;he plate motions are not unifora (Isacks B. and
#Holnar P. 1971, Spence W. 1977). The frictional sliding of

"the converging' plates.~ét the surf and the tensile
>/earthquakes where plate bending oc urs cause . largel non-
{ : : . ’

N

//4 . i . i L | . s :M
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uniformities -in the motion of the subducting plates. These
compressional strain pulses propagate down the slab at
velocities of the order of 100 km/year (Spence W.  1977). In
the following section T will examine the possibility of

these inertial effects leading to instability.
o) I



Figure 4.1:

g

The propagation time from the boundary  x=1 to
any position in the «kmterior is given in
scconds. - These times are probably much smaller
than the propagation *+ime for an actual strain-
rate pulse' as the velocity of propagatioh 1is
assumed to be the seismic shear wave .wvelocity.
The contours valves . for a more slowly
propagating plastic wave however should only
differ in magnitude. ' ©
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I wish to consider here tﬁe crust as an infinite
elastic! plate of fhickness h wshea;ing a hlghly viscous
‘fluid. The fluid is eompbsed' of  crustal materlal at the
interface and its composition changes to that of mantle.
material within a small boundary layer. The deformation of
the pla?e will be assumed go be homogeneous and only -in the
direction opposite to the plate motion. Sjince thelstrain is

constant across the plate for a homogeneous deformatioh the

»

stress tensor Yik must also be constant. If the =z

coordinate is the direction of plate motion an&'ﬁhe X
. 4

coordinate is orthogonal to the plate surface then the - only,
external . force on 'the. plate is horizontal Ehear‘in the x

dire¢tion. For small displacements the only non vanishing

N

component of ‘the stress tensor is then Oxz. ) 3

~
{

The stress for this homogeneous sheared slab is *hen
related to the strain by (lLandau L.D. and; Lifshitz  E.M,

1959) | o o

\

Here E is the modulus of extension or Young s modulus and P,

-

the ratio ogwéle transverse compre531on to the longltudlnal
exten51on, is called Poisson's ratio. The displacements are-

thus related to the stress by

)

_2(1+P) o .
Ux - E a2z B N
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The . velocity of QXab subduction is of the order 10

’

cm/year while the velocity of plastic wave propogatioﬁ into
the nmantle is orders 0of magnitude greater. Thus initially

one obtains a stress which is essentially constant to great
R . ] .
distances into the surrounding mantle. Appendix C however

indicates that, ‘instability must occur for any .constant
stress applied to a ‘half space and thus that instability

PR
a '
should occur at a great distance from the slab., This is not

e

relevant’  to the'problemrat hand as can be seen by.a simple

calculation. If one " assumes instability will result and

<

simply gssumés ~that it may be expressed in-terms of the

»

breakdown of the stationary stability «criterion one thepn

obtain the following results. Instability at 1000 km will

‘result for an applied stress of approximately 3 bars and a
. r .

s;raip”rate of T x 10-1s exp( ¢ ) ssec which ?ield§~a plafe
velgcityA of 10 cn/year. The tinme for'éhis instagiliﬁy to
erlve\asSuming'nb:heat Eonduction ‘is. then approximately
1010 years whigh ié.m&re than twice the age of the earth. In
any case if Qne‘is to accept tﬁe results of sectién 3;4 that
50 bars sfress ig.iransmittgd.by the seismic lo;\ve}ocity‘.

'

. ‘ . M
zone then the mantle material beneath must be -capable' of

impagting an even larger stress on the subducting plate.

\ .

By this analysis one finds that for every factér of 10
increase in the stress that the mantle‘is abié tq offer, the
distance: to instability decfeases bf’a factor of 10. The
velocity_ of the blate in ail cases—reméins 10‘cm/year but:

.

the time~to_instability decreases in - factors of 102, The
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ability of the mantle ﬁétefial to act as a viscous fluid jn
“the nelghbourbood of the 'slab and yet more resemble a solld

beyond some depth 2 in 1ts“abllity to resist flow, clearly
results fromn ‘both geo}oglc heterogenelty and the fact that
the tran51t10n from a highly v1scous fluid to a SOlld is not

sharply defined. ' o (

. v
The propérties of these fluids ﬁay be deséribedﬁbas
iollows. When the.: stress is'applieé.théf undergo elastic
) geformation.‘ If the deformatioh ceases; shear stresses
2 ‘ . . o ‘
remain dithough these are damped in the .course of ;ime as
they slowly yield to plastic deformation (Landau L.D. and
Lifshitz E.M. 1959). The time for stresses to be relieved
.after the ‘deformation stdps:‘is called the ;Maxvellién
relaxation time". This relaxation time is much longer for
the subducting .slab than for the surrounding manile because
6f its ﬁigher viscosity It is thus the mantle whlch first
ylelds to plastlc deformation " as the slab is belng subducted
into it. However the st:eSS‘reLief of the mantle results in
v, shear heating. Thué since the flu1d V1sc051ty decreases as
én exponen?ial functlon 6f \temperatnre tﬂe region ’/of
greatest ' net heat productibn behaves mqre‘and more as fluid

’

. subjected to the éhearipg of elastic solids on each side.

This results in- a region of shear cbupling at the crust-
mantle interface similar to tée seismic . low -velocity . zome

beneath the plates.

" Now ‘consider the  POssibility of conStructing stable

solutions (i.e. stationary solutions). For a stationary
. L X . .
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solution to evolve the 1nert1al terms in the stress strain
rate relation must vanlsh (i.e. rate of stress relaxatibn

'must balance the rate of stress application). Assume that’

’

the subducting slab causes'a zome-_of 10 ko thickness to
q;ist in a marginally stable state. This is'approximately
the depth of boundary layer heating argued by-.Sydora (1977).

" If we assume that the normal mantle . temperatur= at the depth .

/
under con51deratlon is 20009°K then the stress ‘in the mantle-

is 50 bars. The temperature at the boundary of thlS reglon

is then 2120°C or J1f we use the stress strain-rate

s

Now consider the boundary layer of composition change.
_ 2]

relation. (3.9) it becomes 2300°C

Assume this region has a thickness Ggf approximately one
kilometer. 1In this’ region‘_we can approximate the heating
time by t = 4x101s sec and the‘cooling time by’ te = 4x101
. sec ksection 2.1). Usino' the analysis for a material of
uniform composition..Thus if the cooling is,.dominant over
the ' heatlng 1u thls approx1mat10n one obtalns a temperature

decrease at the slab boundary. _But - thzs "does not imply

;table solutlons recult. ' : . .

;tability may . evolve in two vays. First_the crustal'
mate. has a Lower melting point' than the 'surrounﬁing
mantle ‘aterial (Greea T.H. and Ringwood‘A.E§‘1§66) and one
-obtainsz -ing >f the crust due'to thermal conduction‘ffrom
the mantl: The lowe- ‘thermal conductivity and h%gher

viscosity - f <he crust wiil allow this boundary to evolve

initially as - bourdary of thermal insulation. However as
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- ,
the boundary-heats it will undergo fluid -deformation and due

-

{to»its low melting point not'be able to support the amount'

)of 'stress that the mantle supports. ThlS follows &1rectly
from:eqn.(2.a) and the attendant reductlon in viscosity
"which mpust - occur. The® fluid - then nmust experience

accelerations in order to reduce the stress impafted to 1it,.

- If this boundary layer is very thin, the onset of melt will'

result in larger accelerations and thus total melt.’ This
occurs since the appliedAstress'remains greater even in the

presence of partial melt, than this thin slab can support.

1

The second uay 1nstab111ty may evolve is by obtaining EN

maxlmum temperature away from the boundary of the subductiug

slab due to shear heating. The v1scos1ty gradients in  this

region nmust. result in  inertial heatlng Then as’ this

N

.boundary layer is heated by.thermal conductlon -one \obtains
changes ip the, relaxatlon tlmes“of this materlal. This in

turn causes ctress gPadlents and thus acceleratlons of the

<

flu1d in thls region (sec 4.2). In this fashion one obtains
: additional heating due to the. applied stress of the

subducting~ slab which is accentuated by the ex1stence of

shear wave veloc1ty gradlents. Thus once a slab ,w1th a-

concentratlon gradient undergoes inertial heating in the

interior due to an applied stress thls' in turn nmay 'cause

1nert1al motions which themselves become’heat sources. This

'means that for a constant stress at the boundary, inertial
{

motions will occur inj an attempt to relleve excess heat

.productlon at any pos1t10n in the slab These accelerations

R 4

~
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-rest of the slab. It then

defotmation which 1s taking

+ : R ' ‘ - 106

kg

‘

however ' Cagfb greater velocity gradients at the, positions

vhere they occur and thus even greater heat .production. At

[ . L "
the slab boundary these i@celeration are not able to supply

a noticeable reduction in stress-dup to its high viscosity-

in relation to;the mantle. The prébl then becomes whether

a real instability results  in wfich one obtains snapping

(stress religef due to melfihgfgn a thin layer) or it is able
to_deform smoothly,as‘the~mant1e-météfial does. i

The answer to .this problem depénds on two factors. JjOne

s

is the amount of heating vhich must take place in:order for

mélting to occur while the other is how well definéd:-the

melting point is. If the initial ;emperatdre of the material

is far from melting, then difference in the rate of heating .

vill cause a very narrow region of melt. Also if the melting

point is Qe{} dgfined then the radgion which first reaches

this point exhibits a substantialfly lower viscosiiy than the

"yields to .almost the entire

ace thus Causiﬁg, total melt

and a complete relief of stres

Now consider -[the role phase changes in the:mantle and

and subducting slab ay in this process. .If the

(Xl

_incfeases ‘dramatically at the slabp bOundary; a

{

teﬁperéture'
phase;changevuill oécdf on both sides df the boundary’ léféf
prior .to  1ts IOCCﬁfrence Githin that 1§ye:. The layer will
thuSAbecdme narroyéf Qith‘depth. The/paterial on eajch side

have a

vill then be able to support more s¥fess and wil

"/‘ ' : .

slover relaxatibn time than it had befd undergoiihg a phase
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Ch{iiéﬁ The fluid deformation Cérried by slab subduction
vill thus ‘be forced to occur almost totally githin‘the_
boundary layer. The increasing viscosities outside this

region will thus prevent a large stress reduction. Thus the

.

attendant reduction in viscosity can easily cause the

stability criterion to  be exceeded within the boundary

layer. For a viscosity of 1019 poiseé‘é'thickness .of 1 kn

and a' stress of 100 barsg one_bbtains instability even for
~the steady staté equation of motion. This houevér Yields a
slab velocity éf 30 cm/yéara If the stress under these
conditions is considered to increase to 1kb ., the stability -
criter;oﬁ  can be pxceeded by a viscosity of 102t poise»ovér

g,
the velocity of , slab subduction

7

the 1 km boundary layer
nhecessary in this case in the Only 3 cm/year. This =tre:cs of
tkb. is in fact approximately the stress Obtained vor slab

subduction by Td¥cotte and Schubert, (1973).
\ .' e ) . |
Finally consider the evidence that this is in-:fact <£he

A

‘mechanism of deep earthquakes. First the focal mechanism is

s
-

Observed to be the same as in shear fracture., In theory a
shear ™heating iﬁsfability should be indistinguishable from

shear fracture. Second this mechanism should cause volcanic

»

. aétivity iollowing™ iarge earthquakes. To test Correlétions

between earthquakes 1n - the upper mantle and volcanic

-

activities Blot _(1977) has attempted since 1963 to predict

volcanic eruptions in the island . arc comprising the  New =

“

Hebridies, the Solomons and New Zealand. In the period 1970

to 1975 he forcast 25 eruptions of which 20 took place with
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an accuracy Lﬁf. +15 déys. Other,'exampleé” of volcamic
preditions by the method also exigi‘ (Grover J. 1977){;}A
third factor 1is that one shouldiexpect'an‘inCrease in\the-
,numbég of earthquakes, uith. depth dué tol greater ‘manﬁle
viscosities ada with the speed of subduction. This is also
observed. Fourth the observed compreséional' earthquakes
.should define the‘upper edqge of the sléb and the orientation

should define  the direction of subduction. These +two

.~
7
[

_phenomena have. also been consistently observed (Isacks B.
and Molnar P. 1971) HRHowever in the past the'earthquakes have

been assumed to -occur within the upper surface of the slab.

Y
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Appendix A

An ‘Analysis of the Variational Principle in Chapter 2

Thevmathematical approach presents here originétes Fiomi
a technigque first ucsed in relativistic pérticle dyﬁamics_
.(Israel H._and Bailey TI., 1975). It 1is essentially an
attempt to insert in the variational forqhigtion the notion
of an irreversiblé system. TQE apprbach may be justified
rigorously by constructing an.:ction functional simular to
the éonsfruction in Hamilton's principle. The fundamental’

dlfference, howevie¥, is that here t he actlon functional is

only constructed for an 1nﬁ1n1te51mal tlme step.

s

now let O'({) = o(t) + 4d o) N "
therefore O'(T—§)1=-O(T—E) + d o(rt—=)

then vary O(;,T) such that

_* .v
d o0(x,t) = 0O for T < t-€
> . ' . : -
d o(x,t)-# 0 for t > 1 > t-—=
One_then obtains
61 = I'-
. t‘ . '
- f j d O(X T) dV dT
e O(x T-c ) = const

o=t 0

> -
0(x,T-£) = const

and thus 1im 8L
»e+0'50




‘This principle as abplied to a system, with a first
order time derivative in:the field equations, nakes it a
prdperty\of the'varietional principle that thedsyStem be
irreversible. This is donevby defining-the action of the
sfstem,for'only\an infinitesimal time steé and EOnstructing
the‘total action as a sum of infinitesimal actions. The_
dlrectlon of the summation may then be performed in only the
future pointing time direction since the initial coddltlons:
are determined by the final couditions ef the.previeus tiue
.step. It is interresting to uote that this attion functional_
‘may, /ﬂso be defined 1n terms of an 1ntegral over a finite
time 1nterval which produces the equations of motion at
every 1nstant. The direction of evolution of the system 1is
defirncd by the sigrn of ¢ uhichﬁbecones the_differential_in
this integrél.'This.secdnd"type of'cgnstruction dees not
lead 1ts$lf to the numerlcal evaluatlon of the 1ntegra1
whlch is of prrmary 1mportance in the_ geophy51cal |

considerations for uhich it is used here. ' e
o . A :

Tests on the accuracy of ‘this method have been done
numerically by comparing the results ‘obtained by Gruntfest
" to the solution' of the samée .problem with this variational

principle. The'solutipns obtained were identical.

An anaiytical test has also been done; Here a semi-
infinite slab initially at.zego temperature hae its~face.
suddeniy raieed td temperature T'; It is assumed that T can
be represented in the form- T= T (1 x/f(t))z where f (t) is

,,r
-
the penetration depth. Solvlng the varlatlonal prlnglple forv

e



-4
ﬁ(t) I bbtain T=To(i—z/3.16)2 wvhere z=x/(kt).1/2. This is the
same'reéult as obtained by Djukic and Vujanovic (1971 ) for
this‘problem" and is a géod approximation to the exact

'solution'T=TO(1-erf(z/2)). ) 4
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-Appendix B
Equations for Multiphase Viscous Flow when Subject to a

Shear Stress.

The equation of continuity for the total mass of the

fluid is the same as.for a one phase'fluid;
a0
ot - E "

-

Eere the velocity 1is defined- in éetms of the total'momentum'
’of'a'unii mass of fluid. The fo;m of the Navier Stokes
equation also,remains‘ih the sanme form.-If ﬁquevér does
depend on the‘cqnéentratiéps of ‘the different phaées by 

virtue of the fact4that1viscosity depends'on the rélative
consentrdtions.

‘Diffusion of the phases and the solid body motion of
small_portiohs,df the fluid both cause changes in thé

concentrations of the phases at differeht positions Within
the fluid. The composition of any givenvfluid‘element in the
"absense of diffusion is given by’

oan L - 0
'8t + v . § n=2=a0

R eTe?
o>
Y

where - N is the ratio of the mass of the iTH phase to .the
; v 7 .
mass of the fluid in a small volume, Using the equation of

¢ohtinuity,of.t0tal'mass and introducing the density of
~diffusion flux 1 thiﬂ equation becomes .

. an . >
pc(§%-+ v - Vn) = - ¥-i. = pc.

A,
=
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- The equation of heat transfer than hHas an additional term

due to diffusion and may be written as

3

pc
2, a

Here \Mp is the chem{%al potential of the i*th phase.

o~
.

If‘the concentration of the phase we are describing‘by

’

the equation of contlnulty is small, as in the case of melt

in the asthenosphere, we may express the dlffu51on flux as
T
1 = =pch grad n

Here D the,diffnsion-coefficient and gives the diffusion

.

flux in this case.
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Appendix C

-

A Calculation of the Méximum Depth.to which a

Stationary Solution May Exist in a Homogeneous Fluid *

Subjected to Constant Shear.

Assume we have an inf;nité half spare. First we wish to
consider the solutions for the temperature field if th@

stress is.assumed constant for all time. In this case the

solutioﬁéjmust be stationary.

ks = —O? c>p[a(T*T 1/

0 = u, € exp(-¢)

_ From the temperature equation we obtain

. 2 \L ) | L
3¢ do“a\?/ Y
5% _< Kuo> ,(exp(¢m) - PAP(¢)>

l
+

() =0 ' ) : *
¢ (=) :=vd'>m' . .
= ( 2:§2> exp<f ':;m)[cosh (exp( o) ))



- 120

21:110 . (:)m ' -1 .
,X(¢m) = acz exp(—.§—> cosh r(exp13¢m)> .

(3
E)

But the boundary condition at x=« cannot be satisfied

unless 0 =0. 'Now assume we start. with a zero stress ¢ and

o

incréase it infinitely slowly so that the stress can be'
considered conStént across any thickneés \Wévnow Qish fo.a
find the thickhess L 6vér which a statio.ar 751utipn'may
reéulta We thus have the condition

» . —

OLL) =0, =1.2

~The thickness ¢ over which a stationary'soiutioh eri ts is
.

2Kyu

L =[—=2

ac”/ : o . s o

B . . ) ]"
.88 K SO
_ [ 8 }uo
2 .

ao” ’ o

In any real physical Sitdation.houever the stress is,hot
increased‘infinitely:slowly. Thus the above relation given
‘an upper bouhd»for the léngth over which a sfable solution

may exist.:



