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ABSTRACT

A brief review of the classical theories of rigid perfectly
plastic and elastic-perfectly plastic continua is presented and the
invariance requirements of constitutive equations, which lead to the
kinematically correct form of the Prandtl-Reuss equations are discussed.

The kinematics and thermodynamics of elastic-plastic de-
formation of materials which may undergo finite elastic strains are
discussed and a plastic flow rule obeying the necessary invariance
requirements is proposed for these materials. Relevant topics in the

theory of finite strain elasticity are reviewed.

Two intepretations of the von Mises yield condition are
given for a material which may undergo finite elastic sfrains, and
the associated plastic flow rules are found.

Numerical solutions are obtained for the stress deviator
tensor in a cuboid undergoing simple shear. The two elastic-perfectly
plastic materials considered exhibit neo-Hookean elastic behavior prior
to yielding and during unloading. Both interpretations of the von
Mises yield condition and the proposed plastic flow rule are used.

The numerical results found for the simple shear problem
are used to obtain the stresses in twisted circular cylinders com-
posed of the same materials.

A solution is also found for the stresses in a thick spherical



shell expanded by an internal pressure and composed of a neo-Hookean
elastic-perfectly plastic material obeying any jsotropic yield condition.

The residual stresses resulting from unloading from an elastic-plastic

state are also found.-
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CHAPTER I

PERFECTLY PLASTIC AND ELASTIC-PERFECTLY PLASTIC CONTINUA

1.1 Introduction

A branch of applied mathematics called continuum mechanics
has been developed which attempts to describe the macroscopic behavior
of deforming materials by considering idealized mathematical models.
It is not surprising in view of the natural division of materials into
solids and fluids, that the two most well established branches of this
field are classical elasticity and hydrodynamics. The need however,
for more elaborate theories, valid for the wide range of applications
of materials, and to describe the numerous new materials which have
been developed has accelerated the growth of continuum mechanics and
has led to several new branches.

One such development is the mathematical theory of plasticity.
The plastic deformation of metals is the basis of all metal forming
processes and consequently it is of considerable technological interest.

It is observed in a simple tension test of a material such as
steel that elastic behavior occurs under increasing load only up to a
certain point called the yield point aftér which plastic flow occurs
with continuing deformation resulting with 1ittle increase in load.
In contrast to the viscous flow of fluids, the resistance to shear de-

formation of plastically flowing materials appears to be almost inde-



pendent of the rate at which the deformation occurs.

Early work in plasticity, such as that of Coulomb [1]* in
1773, dealt mainly with the failure of soils. In 1864 Tresca [2]
~published the results of some experiments on the extrusion of metals
and concluded from these experiments that the yield point is reached
when the maximum shearing stress reaches a critical value. Soon after,
St. Venant [3] suggested that for p1ane plastic strain the principal
axes of stress and plastic strain increment coincide. Levy [4] in 1870
extended this idea to three dimensions and proposed a coaxial relation
between the stress deviator tensor and the strain increment tensor.
The same relation was suggested independently by von Mises [5] in 1913.
In 1928 von Mises [6] extended his theory to consider a perfectly plastic
solid with an arbitrary regular yield function f(oij)'

Hencky [7] proposed a so called total deformation theory in
1924 in which the stress and the total plastic strain are related
rather than the stress and the plastic deformation rate or strain in-
crement as in the incremental or flow theory of St. Venant and Lavy.
Valid objections have been raised against total deformation theories by
Handelman, Lin, and Prager [8] and by Hill [9]. These theories have
often been used however, especially in Russia, and under some conditions
they give satisfactory results.

The incorporation of elastic strains in the incremental or

fiow theory was first done by Prandtl [10]in 1924 for plane problems and

*The numbers in square brackets refer to references listed in the
Bibliography at the end of this thesis.



by Reuss [11] in 1930 for three dimensional problems.

In the period following World War II until the present,
much work has been done to put the theory of plasticity on a sound
mathematical and physical foundation. Several reference books have
been written [12], [13], [14], [15], [16], [17], and a number of ex-
tensive review papers have appeared [18], [19].

Some recent developments in the theory of elastic-plastic
continua have involved the consideration of finite deformations. For
example the kinematically correct form of the Prandtl-Reuss equations,
valid for large total deformations with small elastic strains was first
presented by Thomas [15], [20] in 1955.

Classical elastic-plastic theory, including the Prandtl-
Reuss equations, is not applicable to the consideration of elastic-
plastic flow in the presence of finite elastic strain. One example
of this is the elastic-plastic flow of a metal which is subjected to
an hydrostatic pressure which is sufficient to produce finite elastic
volume change. Such pressures are produced in certain explosive forming
processes.

The results of some preliminary experiments at the Department
of Mechanical Engineering, University of Alberta, indicate that several
types of a urethane elastomer (duPont Adiprene) exhibit permanent set
after finite elastic shear strains. Cubes of this material, of 5/8
inch side, were compressed slowly between lubricated parallel flat dies.
Tests conducted in the temperature range 70 - 80°F showed significant

rate effects with the recovery of a major portion of the residual
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deformation occurring over a period of several days. At temperatures
around 32°F however the residual deformation which occurred after red-
uctions of approximately 30% appeared to be permanent. The elastic
behavior of these materials is approximately neo-Hookean and volume
measurements of deformed specimens showed that they are very nearly
incompressible.

These experiments were not extensive and are not part of the
work of this thesis. They are mentioned however because they indicate
a practical and important area for more extensive experimental work which
may or may not justify some of the assumptions made in this thesis.

High energy rate metal forming problems and the possibility
that an elastic-plastic theory may, although not yet experimentally
verified, provide an approximation to the behavior of some e]éstomers at
certain temperatures has motivated the development of a number of theories
for elastic-plastic continua which may undergo finite elastic strains.

One of the first works which may be applicable to such problems
appears to have been by Sedov [21]. A theory for rate independent mater-
ials in which the stress is a functional of the entire deformation hist-
ory has been presented by Pipkin and Rivlin [22]. Isothermal deformations
only are considered. A theory which is not restricted in this manner
has been proposed by Green and Naghdi [23], [24]. It is modelled on
the classical flow theory and makes considerable use of thermodynamic
considerations. Lee [25], [26], [27] has also suggested a flow theory
for elastic-plastic materials under finite elastic and plastic strains

which differs from that of Green and Naghdi. The most recent work is



that of Freund [28]. It is an extension of the work of Lee and introduces
a plastic rate of deformation tensor which differs from that suggested
by Lee and that developed in Chapter II.

In this thesis the kinematics for a general theory for materials
which may undergo finite elastic and plastic strains is discussed in
Chapter II. Following the discussion in section 3.7 the development of
the theory is restricted to materizls which are elastically isotropic.

An argument based on the assumption that the materials considered are
elastically incompressible and obey Drucker's postulate [30] leads to a
general plastic flow rule from which two specific flow rules are found,

one of which is associated specifically with materials whose elastic
behavior is neo-Hookean. A simplification which results if plastic iso-
tropy is assumed is indicated in section 4.4. Three boundary value problems
are solved. These are the isothermal simple shear of a cuboid, torsion

of a circular cylinder, and expansion of a spherical shell, the respective
deformations being homogeneous and rotational, inhomogeneous and rotational,
and inhomogeneous and irrotational. The materials considered in the prob-

lems are isotropic, incompressible, and exhibit neo-Hookean elastic behavior.

1.2 Constitutive Equations for an Hookean Elastic Material

Let u, be the components of the displacement vector of a
particle of an Hookean elastic material, referred to a fixed Cartesian
coordinate system. The small strain tensor referred to this coordinate

system has components

2
eiJ-§(E+axi) . (].2.])

The constitutive equation for an Hookean elastic material is



_E vE
%5 " Tev %ij t TIRT(T-) Sk Sij (1.2.2)

where °ij are the components of the Cauchy stress tensor, E is Young's

modulus, and v is Poisson's ratio [29].

Substituting the components of the stress deviator

N |
i3 = %3 3 %%k Sij

and the strain deviator

'oa 1
€5 = %5 3 %k Sij

in equation (1.2.2) giVes

1 | =
eij = ?'u' cij s ekk - - p/K (].2.33,[))

where p = ET%%;T is the modulus of rigidity, K = §TT§%37 is the bulk

==l : : Vo
modulus and p = 3 Ok For an incompressible material eij eij and
only the first of equations (1.2.3) is required. The hydrostatic part

of the stress is then determined from the equations of motion.

1.3 Constitutive Equations for a Rigid Perfectly Plastic Material

The rigid perfectly plastic material is a hypothetical material

which remains rigid under loading until the stresses satisfy a yield



condition. Then irreversible, rate independent deformation occurs at
constant stress. The model is a reaéonab]e approximation to some
structural materials such as steel which have a well defined yield
point and for which the modulus of rigidity is large compared to the
yield stress. It is not suitable however for problems in which the
plastic strains are constrained to be of the same order of magnitude as
the elastic strains.

Fundamental to the theory is the concept of a yield condition.
It is postulated that there exists a function of the stress and temper-

ature, f(oij,T), called the yield function which has the properties

f<0,
dgg) =0if f<Oorf=0anddf <0,
and |d§§)| >0 if f =0 and df = 0 ,

where dgg) are the components of the plastic rate of deformation tensor

given by
av. av.,
(p) _ 1 j
4" =2 (axj ¥ axi) ,

Vs being the components of velocity at a point.
In nine dimensional stress space the yield condition f(oij,T) =0

defines a closed surface. Deformation is possible only under stress systems



which Tie on the surface, and stress points outside the surface are not
admissible.

Consider a body in equilibrium under an homogeneous stress
system c?j which is inside or on the yield surface. Suppose that an
independent external agency applies and removes isothermally an addi-
tional stress to the body. Drucker's postulate [30] states that the
work done by the external agency during the complete cycle is non-
negative for a perfectly plastic material. That is, the external
agency cannot extract useful work from the system by applying and re-
moving additional stresses. Drucker's postulate defines a class of
material models which have been found to provide an acceptable ap-
proximation for many structural materials.

Two important results follow from this postulate. Let the
stress point c?j lie inside the yield surface. With the addition and
removal of the external agency the stress point follows a closed path
in stress space. Suppose that during the time interval [t, t + St]
the stress path lies on the yield surface. That is, during this time
interval, the body has yielded. The work per unit volume done by the
total stress system during the complete cycle is

t+6t
w=f % d§§) dt ,
t
since for a rigid plastic material deformation can occur only when the

stress point lies on the yield surface and in general for an elastic-



plastic material the net work done on the elastic strains in a closed
cycle is zero.
Similarly the work done per unit volume by the original
stress o?j during the complete cycle is
t+ét

0 _ o (P),,
w ‘f O',ijdij dt .

Drucker's postulate states that

- t+6t (p)
0. _-0 P
Ww-w = f (oij Gij)dij dt >0 .
t
It follows that
0 y,(P)
(oij-cij)d'ij io s (].3.])

where o?j is any stress point lying on or inside the yield surface and
°ij is any stress point on the yield surface with an associated plastic
rate of deformation tensor dgg) .

Equation (1.3.1) which is known as the maximum work inequality
implies that the yield surface is convex and that a vector in stress
space with components dgg) » multiplied by a suitable scalar to give
the units of stress, is normal to the yield surface at the point oij
or lies between adjacent normals if Oij is at a corner of an irregular

yield surface.



Thus for a regular yield function

d(p) -Aagf (1.3.2)
ij

where A is a non-negative scalar factor of proportionality and ) = Q
iff<Oorf<0. The flow rule (1.3.2) implies that if yielding is
not influenced by the hydrostatic part of the stress tensor the plastic
deformation is isochoric, that is déf) = 0.

For an isotropic rigid plastic material the form of the yield
function at a point must be independent of the orientation of the
material element considered so that the yield function depends only on
the invariants of the stress tensor. Furthermore the experimentally
observed fact that yielding is almost independent of moderate hydro-
static pressure [31] results in the usual assumption that for an iso-

tropic solid f is a function of the stress deviator invariants

| —

. ] - ' ) ]
and J3 3 oij Ojk cki .

In general, the flow rule associated with the yield function

f for an incompressible isotropic perfectly plastic material is

(p) _ af 2
le AEO]J aJé * (°1k°kJ 3 2 ) ad'] (1.3.3)
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For the von Mises yield condition

2

_iJ-O' - k

;—c ' =0, (1.3.4)

where k is the yield stress in pure shear, the flow rule (1.3.3) be-

comes
(P)_
d_iJ- - }\O_ij 3
from which
(P) (P). .2,
dij dij A 0i5%45 - (1.3.5)

From equations (1.3.4) and (1.3.5) the following expression for A is

obtained,
(P) ,(P)
. l. di' di'
k 2
and thus d(P)dgFf)
- 1J 1) '
drs Tk 2 Ops

As mentioned by Thomas [32], there is no one-one relationship
between the stress deviator and the plastic rate of deformation tensors

unlike the constitutive equations for a viscous fluid.



1

1.4 Prandtl-Reuss Equations for Small Total Deformation

The classical elastic-plastic material is one for which the
total deformation rate may be written as the sum of a plastic and an
elastic part which are obtained respectively from the rigid plastic
flow rule and the material derivative of the Hookean elastic stress
strain law.

Suppose that during a time increment dt the increment of
stress at a point in an elastic-plastic material is dcij referred to
a fixed Cartesian coordinate system OX; and denote by dui the increment
of displacement which occurs during this time increment.*

The total strain increment then is

a(dui) X a(duj)

axj exi

1
de.. =‘2—( (].4.])

1J

It is assumed that deij may be written as the sum of an elastic and a

plastic strain increment** so that

- a.(e) (p)
deij = deij + deij
and thus
- q(e) (p)
dij dij + dij

where dgs) and dgg) are the elastic and plastic rate of deformation

* The components dui are given by dui = vidt where Vs is the velocity
at the point considered.

**A1though deij must be derivable froT ?n increTental displacement field
this is not necessarily true for dei? and dei?
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tensors respectively.

An expression for the elastic rate of deformation tensor is

obtained by taking the material derivative of equations (1.2.3) to give

() o1 =, 1
43" T %5 ;P&

The plastic rate of deformation tensor is given by equation

(1.3.2) and thus the total deformation rate tensor during loading is

=1 1 of
dij =2 %53k P&+ eI

In particular for an elastic-perfectly plastic material obeying the

von Mises yield condition (1.3.4) the constitutive equation is

= oo

1 . - |
dij 2w %3 P Gij + Aoij . (1.4.2)

An expression for XA may be obtained by multiplying equation

(1.4.2) by °3k and contracting. This gives

- d’i' ii
28

with A = 0 if o!. o° <2k20rifdi.c' <0 .

1J 7ij J i
Equations (1.4.2) are called the Prandtl-Reuss equations

and for an incompressible‘material they become
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d.. = 3.+ g!

1
T T TRECE (1.4.3)

1.5 Invariance Requirements for Constitutive Equations

The constitutive equations of a material are essentially a
mathematical description of the deformation properties of the material
and must satisfy certain invariance requirements to be physically
meaningful.

The first requirement is called coordinate invariance. The
deformation characteristics of a material must be independent of the
coordinate system used to describe the system. This requirement
is satisfied by representing correctly all physical quantities by
their components as scalars, vectors, and tensors referred to some
coordinate system.

The second invariance principle may be stated in two slightly
different but equivalent forms called the principle of material in-
difference or material objectivity and the principle of isotropy of
space [33], [34], [35].

Consider a body whose motion is given by xi(XK’t) referred
to a coordinate system in the reference frame S. The quantities X; are
the coordinates at time t of a material particle which occupied the point
with coordinates XK at some reference time to' Consider the following

equations,

X (Keot) = C5(8) + Q458 x;(X,t) (1.5.1)



where Qik Q. ik = 6 for all tlme t.

Two 1nterpretations may be given to this equation [33].
Firstly it may be thought to relate the same motion of a body as seen
by observers in two different reference frames , 3 and S, moving
relative to one another. For this interpretation the transformation
Qij(t) belongs to the full orthogonal group, that is transformations
for which det[Qij] = - 1 are included.

Equation (1.5.1) may also be interpreted as relating two
motions of a body, differing only by a rigid body motion, as seen
by a single observer. To be meaningful, Qij must then belong to the
group of proper orthogonal transformatIOns. that is det[Q ]

Returning to the first interpretation of equat1on (1.5.1),
the following definition is useful. Quantities whose transformation
from reference frame S to § depends only on the relative orientation
of the two reference frames and not on any other aspect of their re-
lative motion are said to be frame-indifferent or objective. Thus

frame-indifferent scalars, vectors, and tensors trans form as

Vi = Qij(t) Vj s

and

blj = Qik(t) Qj](t) bk] ’

14
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respectively for all time t.

Since the response of a material to some loading system
must appear the same to all observers regardless of their motion, con-
stitutive equations must be form invariant under a change of reference
frame. Thus in general if the constitutive equation for a material

as observed from reference frame S is of the form

Gij = Hij(xk(XK’t)) s
where the tensor components Hij are functionals of the entire defor-
mation history of the body, then the constitutive equation for the

same material as observed from the reference frame S must be

Eij = Hi5 (% (Xot)
where 8ij = Qik(t) Qj](t) o)y and Xk(XK,t) is given by equation (1.5.1).
This same result follows if the second interpretation of equation
(1.5.1) is used.

It will now be shown that the Prandtl-Reuss equations given
in the previous section do not satisfy the principle of material in-
difference. The results one obtains using the Prandtl-Reuss equations
for any particular problem must be considered in view of this since
the use of these equations in situations where rotations are significant
may result in unacceptable errors.

Taking the total time derivative of equation (1.5.1) gives



v = ci(t) + Qij(t) vyt Qij(t) X5 -
Defining the antisymmetric tensor Qij by

U5 7 Qi QG = - 9y

the velocity gradient tensor observed from reference frame S

is

?

ov. avk
Qi Uy IR
5 1

l—l

>

0

16

.(1.5.2a,b)

(1.5.3)

Forming the symmetric and antisymmetric parts of the velocity gradient

tensor gives

5 = Qik Uy 9q »

and B3 = Qi Uy v *+ 25

which are the stretching or rate of deformation and the spin or

vorticity tensors respectively. Thus the rate of deformation tensor

is frame-indifferent and the spin tensor is not.

Consider the total time derivative of the stress tensor

~

%3 = Qik 4y 9y -
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This leads to
515 = %1% * Qiyi%g * 98500 (1.5.4)

which shows that the material derivative of the stress tensor, and
hence the stress deviator tensor, is not frame-indifferent and thus
the Prandt1-Reuss equations (1.4.3) are not form invariant under a
change in reference frame. If the material derivative of-stress in
equation (1.4.2) was replaced by a frame-indifferent stress rate then
it follows, since dij and o%j are frame-indifferent, that equation
(1.4.2) would be form invariant under changes of reference frame.

From equations (1.5.2) and (1.5.3) it is found that

ov. v

R - _r
Qik Y Qrk Qir oX (1.5.5)
r k
ov RYY
- r _k
T aii Qrk * Qir Bx,, (1.5.6)

Substituting equations (1.5.5) and (1.5.6) into equation
(1.5.4) gives

. ov, ov. . ov v
2 ~ i . J _ _k _ o
%37 % 3,7 e R Uly1 (om0 3 - 9 30 5 (1.5.7)
r r r r
and
ov v . oV oV
M o ro., - r _ r _r
°1j * orj axi * %ip axj - Qiij](°k1+°r1 axk * p ax]) » (1.5.8)



18

respectively. Addition of equations (1.5.7) and (1.5.8) and use of

the definition of the spin tensor gives

~ ~ ~

+

. w ..o .+
°1J r1°rJ

Using the notation

So . av av
Bt I —dJ
§t ij rj ax ir ox,. °
r r
Vv oV
D _ r r
ot %ij T Yij * O 9X; ¥ axj *
and Gij = Gij + Orjwri'+ oirwrj R

equations (1.5.7), (1.5.8), and (1.5.9) become

doi. i

5
5t - Q51 3T % o

D . . 2
ot %5 = %y 7t 9 o

Q

and 95 = 851Q51% -

Bpi%ir = Q151 (Ot Tt oy,)

(1.5.9)

This indicates that these stress rates, the Oldroyd [36], the Cotter-

Rivlin [37], and the Jaumann [38] stress rates respectively, are all
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frame-indifferent and may therefore be used in constitutive equations.
Other stress rates may be formed from any of the above

stress rates by addition of terms which are frame-indifferent.

1.6 The Kinematically Correct Form of the Prandtl-Reuss Equations

As shown in the previous section the use of the material
derivative of the stress or stress deviator tensor in constitutive
equations violates the principle of material indifference. Thus one
of the frame-indifferent stress rates must be used instead.

It has been suggested by Prager [39] that the most suitable
definition of stress rate for the theory of plasticity is the Jaumann
derivative, since only it has the property that its vanishing implies
_that the stress invariants are stationary. Since the yield condition
for an isotropic material depends on the invariants of the stress de-
viator and since any observer who observes zero rate of change of
stress should observe no change in the value of the yield function,
the choice of the Jaumann stress rate seems justified.

The following physical interpretation may be given to the
Jaumann derivative which adds to its desirability for use in constitutive
equations. The Jaumann derivative of the stress tensor at a point
in a deforming medium is the material derivative of the stress referred
to a Cartesian coordinate system which instantaneously coincides with
the fixed coordinate system but which participates in the rotation
of the material particle at that point. Such a coordinate system has

been called a kinematically preferred coordinate system by Thomas [40]
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and the Jaumann derivative is sometimes referred to as the co-rotational
derivative.

The kinematically correct or frame-indifferent form of the
Prandti-Reuss equations using the Jaumann stress rate were first
developed by Thomas [20].

After substitution of the Jaumann stress rate for the ma-

terial derivative of stress, the Prandtl-Reuss equations become

since p = 6 .

In particular for an incompressible material

] Al
=ZJ. U.. + A\

ij o%j . (1.6.1)

dij

This form of the Prandti-Reuss equations is valid for large
total deformations since the use of frame-indifferent tensors allows
for finite rotations of the material elements. They are valid how-
ever, only for small elastic strains, that is elastic strains which
may be described by the small strain tensor (1.2.1).

The constitutive equations (1.6.1) have been used by Haddow
and Danyluk [41], [42], [43] to solve the problems of the plane and
axisymmetric flow of an incompressible elastic-perfectly plastic

material in a converging channel.
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CHAPTER 11

KINEMATICS FOR A LARGE STRAIN ELASTIC-PLASTIC THEOQRY

2.1 Introduction

In this chapter the kinematics of a large strain elastic-
plastic theory are discussed and frame-indifferent tensor quantities
are developed which may be used in constitutive equations without
violating the principle of material indifference. The only assumption
made is that both finite elastic and plastic strains may be possible
in the materials considered.

Three configurations of a body composed of an elastic-plastic
material are defined. These are the initial unstrained and unstressed
configuration of the body at a uniform reference temperature, the
unstressed plastically strained configuration of the body at the
reference temperature, and the stressed configuration of the body in
which elastic and possibly plastic strains may be present due to ex-
ternal loads and body forces. These configurations of the body will
be referred to as C.1, C.2, and C.3 respectively. If no plastic strains
have occurred then C.1 and C.2 differ at most by a rigid body motion.
The use of three configurations to consider finite elastic-plastic
problems has been adopted by Sedov [21], Backman [44], and recently
by Lee [27].

If the deformation from C.1 to C.3 is non-homogeneous any
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plastic strains which result will in general not satisfy the compatibility
conditions for finite strain [45]. Thus residual stresses will result
from removal of the external loads and body forces required to maintain
the body in C.3 and the space corresponding to C.2 will then be non-
Euclidean and C.2 will not be a configuration which the body may occupy
physically. The configuration C.2 is then thought of as the configuration
of the body which results from isolating each material element from the
surrounding material and unloading it elastically and then returning
it to the reference temperature,

A fourth configuration of the body C.4, which is used in
Chapter VII results from removing all external loads and body forces
from C.3 and returning the body to the uniform reference temperature.
If the plastic strains satisfy the compatibility conditions then C.2

and C.4 coincide, otherwise residual stresses are present in C.4.

2.2 Deformation Gradients and Strain Tensors

Let the coordinates of a particle in C.1, C.2, and C.3, re-
ferred to a fixed Cartesian coordinate system, be XK, Xo, and xj re-
spectively. Henceforth lower case Latin subscripts refer to C.3,
lower case Greek subscripts to C.2, and upper case Latin subscripts
to C.1.

The motion of the body is given by

X = X (Xot) (2.2.1)
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or Xa ,t) and Xy = ( K,t) , (2.2.2a,b)

where in general the functions xk(XK,t) and Xk(Xa’t) have different
forms .

Continuity requires that the mapping (2.2.1) from C.1 to C.3
have a unique inverse in the neighbourhood of any given particle. It
follows from the implicit function theorem [46] that xk(XK,t) is con-
tinuous and possesses first order partial derivatives with respect to
XK in the neighbourhood of a particle and that det (axk/aXK) does not
vanish in that neighbourhood. These conditions are not necessarily
true for the mappings from C.1 to C.2 and C.2 to C.3 since C.2 may
not be a physically attainable configuration of the body.

Let dS, ds, and ds be an infinitesimal element of length
in C.1, C.2, and C.3 with components dXK’ an’ and dxi respectively,

referred to a fixed Cartesian coordinate system. Then

_ (e)
and dy, = F{P) gx (2.2.4)
oK K *E.
where F,, = Efi— is the total deformation gradient and F(e) and F(p)
LY g io aK

are the elastic and plastic deformation gradient tensors respectively.

These tensors are related by
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.

If the space corresponding to C.2 is Euclidean then

F(e> = Eﬁ.
o 9x,
ak axK °

If this space is non-Euclidean the above partial derivatives do not

exist but equations (2.2.3) and (2.2.4) are stili valid with the

matrices Fgg) and FQE) representing local linear mappings. Although

the remainder of the discussion in this chapter is restricted to con-

figurations C.2 which are Euclidean, the results remain valid in

general provided velocity and deformation gradients with respect to

C.2 are not expressed as partial derivatives.

The assumption from classical plasticity that the plastic

volume change is zero is retained here and thus

Furthermore

3
det(—— Xa =1, (2.2.5)
K
oX Bxi P
det(=—) = det{=) = — ,
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where P1 and py are the densities in C.1 and C.3 respectively.

From
ds? = dx.dx
k3 »
ds? = dy d
Xa Xo ®
and ds2 = dx.dx.
B -'1’

and equations (2.2.3a,b) and (2.2.4) the following results are ob-

tained,
2 2 _
ds™ - dS” = 2EKLdXKdXL ,
2 2 _ ,-(e)
ds” - ds® = 2 Sy dx,
2 2 _ He(p)
and ds™ - dS” = ZEKL dede ,
1 Bxi BX1
where B =7 G ax - k)
K "L
ele) 1
oB 2 Bxa axB aB’ ?
9x . 9
(P) . 1 Zra Ay :
and EgL 5 (aXK o, - GKL) , (2.2.6a,b,c)

are the total, the elastic, and the plastic Lagrangian strain tensors
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referred to C.1, C.2, and C.1 respectively.

2.3 Strain Rate and Rate of-Deformation Tensors

The material derivative of equation (2.2.6a), that is the

time derivative holding XK constant, is

9X: OX.

- 1 _J
K °“L
V. ov.
S R |
where dij =3 (axj + axi) (2.3.2)

is the total deformation rate tensor and Vi X is the velocity of
a particle in C.3.

Similarly material differentiation of Eéf) gives

E(P) - 4(P) 2 Mg
KL aB  3Xy oX ?

av av

(P) _1 a B

where d\r/ = & (=2 + =)
aB 2 BXB axa

is a plastic rate of deformation tensor and v, = ia is the velocity of

a particle in C.2. Equation (2.2.5) which follows from the assumption

of zero plastic volume change implies that

(P) .
d =0.
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The material derivative of the equation (2.2.6b) is*

axi axj avY axi axi oV axi ax1

gle) _ i 1

1 1
= d, . > 5 . (2.3.3
af d1J axa axB 2 9X, axY axs 2 BXB ax,Y Bxa (2.3.3)

The velocity gradient ava/axB which appears in equation

(2.3.3) may be written as

oV
o _ 4(P) (P) .
sig = daB + g (2.3.4)
(P) 1 Mo
Where waB = 2 (aXB aX )

is the plastic spin tensor. Configuration C.2 is defined only to

(P)

within a rigid body rotation and the plastic spin tensor 98 is not
uniquely defined. The strain rate Eég) depends on wég) and consequently
it is an unsatisfactory definition of elastic strain rate. In fact it
can have non-zero components when the body is undergoing a rigid body
motion with neither elastic nor plastic deformation occurring. The
necessary and sufficient condition for a rigid body motion is

d 0

Ht

1J

throughout the body and the condition for no plastic deformation is

p
g

1"
o

*In taking this material derivative it is noted that the coordinates
X, are functions of time.



throughout the body. If both conditions are met then no elastic de-

(P)

formation is occurring but w 8 is in general not zero for a rigid

body motion of C.2 and it can be deduced from equations (2.3.3) and

(2.3.4) that é(e) is non-zero when d = 0 and d(g) =0 if w(P) # 0,

oB
An elastic strain rate tensor which does not depend on wég) 1s ob-

tained as follows.

The plastic deformation gradient may be written as.

Xy _ 2(P),(P)

Xy al LK ?

(P)

where Réf) is a proper orthogonal tensor and ULK is a symmetric

positive definite tensor such that

PP D X
KM LM BXK BXL
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The deformation from C.1 to C.2 consists of a pure stretch deformation

given by U(P) followed by a rigid body rotation given by R(P). There-

fore unlike E(e) the tensor

B ]

ele) _ p(P)p(P)c(e) (2.3.5)

KL oK "BL aB

is independent of any rigid body rotation of C.2.

The material derivative of equation (2.3.5) is
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ele) o p(P)p(P)p(e) le) _ g(e)

KL " Rak'ReL"Bag” * Quuw” - Exn Qu » (2.3.6)
where
Q. = %-<0§§’U§f)'] - “éa)-]ﬂéf)) (2.3.7)
is an antisymmetric tensor and
gle) . gle) , g(e) (P) _ (P)c(e) (2.3.8)

af aB oy “yB ay YB

is the co-rotational derivative of E(e) that is the material derivative

oB °?
referred to a Cartesian coordinate system which participates in the
rotation of the material in C.2 at the point considered and which in-
stantaneously coincides with the fixed coordinate system. Thus Eég)
is independent of the spin of C.2.
Using equations (2.3.3) and (2.3.4) the co-rotational deri-

vative of E(e) becomes
oB

E(e) . E( ) R ax1 Bx (P) 1 3X1 aX (P)

]
o8 aB 2 3 ax,Y “e *72 8)( axB “yo

Bxi oX. (P) aX aX 1 (P) 9X, OX.

= “‘.———._Al L __l-_—l. .
d1J Xy 9Xg 2 dya axY axB "2 dyB axY 3y (2.3.9)

An elastic rate of deformation tensor which is independent

of the spin of C.2 is given by
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a(e) - Xa Mg o(e)
ij ax ax aB i

and from equation (2.3.9)

(e) _ *
d1J d i dij (2.3.10)
ax 90X, Y X,
1 s (P) 27§ B8 (P) %%
where d?i =3 daB BX + axj daB 5§;- . (2.3.11)

The tensor d$j is independent of the rotation of C.2 and
the spin of C.2 and C.3. It has the property that dkk = 0 for elastic-
plastic flow with no plastic volume change. Thus d?j is a possible
definition for plastic rate of deformation and it is shown in section
3.7 that it is a suitable definition for plastic rate of deformation

for an elastic-plastic material which is elastically isotropic.
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CHAPTER II1

HYPERELASTICITY AND THERMOELASTIC CONSIDERATIONS
FOR AN ELASTIC-PLASTIC MATERIAL

3.1 Introduction

The constitutive equations (1.2.2) for the classical Hookean
elastic material are based on a rather restricted definition of
elastic behavior. In fact Hookean elastic behavior is a special
case of a much broader concept of elasticity; the existence of a
stress free natural state and the unique dependence of the stress
on the deformation gradients relative to the natural state and on
temperature. Anelastic material possesses a perfect memory of the
natural state. In this chapter elastic materials [47] which possess
an elastic potential or strain energy function are considered and

these materials are described as hyperelastic.

3.2 Kinematics

Let C.1 be the undeformed configuration or natural state
of an elastic body. To be consistent with the notation introduced in
Chapter Il the deformed configuration of the body is called C.3 and
since the body is purely elastic no reference is made here to con-
figurations C.2 and C.4 discussed previously in connection with elastic-

plastic materials.
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Let g], 52, and 53 be the coordinates of a material point
referred to a curvilinear convected coordinate system [48], that is
a coordinate system whose coordinate surfaces -consist of the same
material particles at all times during the deformation. Let the
coordinates of a particle referred to a fixed rectangular Cartesian
coordinate system be XK and Xy in C.1 and C.3 respectively. The con-

vected coordinate system is defined by
X = X (81585065) (3.2.1)

where XK are single valued, continuous functions of the Ei’ and the

motion of the body is given by

Xg = xi(g],£2,53,t) , (3.2.2)
where the X; are continuous and single valued functions of gi for
any fixed t.

If r is the position vector of a particle P in C.3 referred
to the origin of the fixed Cartesian coordinate system and R is the
position vector of the same particle in C.1, the displacement vector

is

u=r-R. (3.2.3)
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From equations (3.2.1) and (3.2.2) it follows that
R = R(E; £ 085)
T = P(E)46y,85,t)

and U= U(g)4Ey,Eq,t)

If the vectors E} are unit vectors along the coordinate

axes of the Cartesian coordinate system then*

and r= X e -

The local covariant bases vectors at an arbitrary point Po in C.1 and

P in C.3 for this curvilinear coordinate system are then

K
G‘i- i = (ax—-i) eK 3
’ 0§ PO
- _ - ax\ =
and 9= r ;= (——;J e (3.2.4a,b)
’ ot P

*The same_Cartesian coordinate system is used to describe C.1 and C.3
so that e and ex refer to the same vectors, however the lower and
upper case subscripts are both used so as to be consistent with the
summation convention.
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respectively, where the comma followed by the subscript i denotes
partial differentiation with respect to &; and the subscripts on the
parentheses denote the points at which the enclosed quantities are
evaluated.

The contravariant base vectors in C.1 and C.3 are defined

by the inner products

.
(=]
n
(o]
o

and gj

Thus the components of the metric tensors.in C.1 and C.3, referred

to the convected coordinate system are

. i3 K oK
6 = B g 2 BB (3.2.5a,b)
X" ax booaet ol
. i K ..k
and g1J = ik_éa_k . g]J = a—x1-§-x—J (3.2.6a,b)
X 3x & 3

so that the lengths dS and ds of an infinitesimal line element in C.]

and C.3 are given by

dS

Tyed
G, jdg de”

and ds® = g ;dg’agd -
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The difference of the squares of the lengths is

2

ds? - ds? = yijdeidgj :

where Yij = %'(gij'eij) (3.2.7)

s a strain tensor. From equations (3.2.5b), (3.2.6b), (2.2.6a), and
(3.2.7) it follows that

Yij = EKL iﬁ;-gf; (3.2.8)
and from equations (3.2.3), (3.2.4), and (3.2.7)
Vig = 7 LEHT )+ (G4T )6, .
The material derivative of this equation is
Yis © %-(vj;i+vi;j) : (3.2.9)

where v; are the covariant components of the velocity vector in C.3
referred to the local basis _g'1 and a subscript following a semi-colon

indicates covariant differentiation with respect to 51 in C.3. That is
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where the Christoffel symbols P?i are evaluated from the metric tensor
gij'

The components of Yij in equation (3.2.9) are the components
of the rate of deformation tensor dij referred to the convected co-
ordinate system.

Mixed tensors may be formed from Yij
the metric tensors from C.1 and C.3 to raise one index. The following

in two ways by using
definition is adopted

i Lk
YT g

1 ik i
Three independent invariants of YIj are of interest. They
are also the principal invariants of Green's deformation tensor [49]
oX; 3X,

C D m—— —

KL X axL

~

and Finger's deformation tensor [50]

@
@
L’x

X,
B.. = —l.
1) K

QL
Q
><

K

and are the coefficients of the powers of n in the expansion of the

determinant
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Tyl

Iné "

i i ik
+ .= ., + .
3, .2 i
an” + I]n + Izn + I3 ‘ 0.

It follows that

=3 +’ZYkk ) Gijgij ’
I,=3+ 4Ykk + 2(Ykkvmm-ykmvmk)

=7 (112-6“"63"9”9,,,,.,) :

and I = det(Gimng) = g/G ,
where G = det(Gij) and g = det(gij) .

3.3 Stress Tensor and Equations of Motion

The Cauchy stress tensor, which is symmetric, has components
°ij referred to a Cartesian coordinate system. Consider the contra-
variant and mixed components of this tensor referred to the convected
coordinate system in C.3. From the transformation law for second order

tensors these components are

r'”5=i§-:15? 044 » (3.3.1)

S
ax' ax
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-

J
and 7 =2 X%

s ags ij

@
x

It follows that t'> is symmetric.
If T is the stress vector acting on a surface in C.3 with

unit normal vector n where

then

-= e = r —s
T °ij"iej T "9 .
Cauchy's first law applied to an arbitrary material volume

V with closed surface S in C.3 is

f T ds + f py(b-a)dv = 0 , (3.3.2)
S v

where b is the body force vector per unit mass, a is the acceleration

vector and Py the density in C.3. Equation (3.3.2) is an analogue of

Newton's second law and may be derived from an energy balance on the

volume V using invariance requirements under rigid body motions [51].

Applying Greens theorem [52] to the surface integral in

equation (3.3.2) gives

r rt -
[ 1", # pglb )55 a0 = 0 .
v
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Since the volume V is arbitrary and the vectors Es form a basis in
C.3, Cauchy's first equation of motion in terms of components re-

ferred to the basis g° in C.3 is

1rs;r + py(b-a) = 0 . (3.3.3)

3.4 The Constitutive Equations for an Hyperelastic Material

The rate at which the surface forces do work on S plus the
rate at which the body forces do work on the mass in the volume V

minus the rate of increase of the kinetic energy of the mass in V is

H = f T . vdS + Jp351‘av - Jp3zuvau (3.4.1)

- ro_.s _ s
f T A ds + IDB(bs as)v dv.
S v

Converting the surface integral into a volume integral yields, after

rearrangement

N r : . S r.s
i [ 0Ty v oy - oga Vs + TTv®, T av.
v

The first term in the integrand is zero by equation (3.3.3) so that
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and from the symmetry of the stress tensor

or using equation (3.2.9)

Also from equations (2.3.1), (3.2.8), and (3.3.1) this may be written
as

H = f oijdijdv

Materials for which the stress t'° at a point is a single

valued function of the deformation at that point, as given by Yij’ and
for which

Yes = 03 E (3.4.2)

where E at a point is a continuous single valued differentjable

function of Yij’ are called hyperelastic materials and the function E

s called the elastic potential or strain energy function per unit
mass.

Since E = E(Yij) ,
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it follows that
(3.4.3)

where all nine components of Y;; are taken to be independent for the

J
purpose of partial differentiation. From equations (3.4.2) and (3.4.3)

the stress tensor is

8= g oF
3 BYrs
Expressed in terms of W, the elastic potential per unit
volume in C.1, this becomes

Trs = —-‘I—-—aw__. s (3.4.4)

VT} ps

where W = p]E, and Py is the density in C.1.
In general for a homogeneous isotropic hyperelastic body,
W is a function only of the invariants I], 12, 13, and it can be shown

that [53]
7% = 96" + v b 4 pg"S (3.4.5)

where o =
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p=a/ig (3.4.6)

and brs = I GY‘S _ Gerns

1 mn °

The constitutive equation (3.4.5) referred to a fixed

Cartesian coordinate system is

05 * pGij + (<I>+I]‘1’)Bij - “'BikBkj . (3.4.7)
9X. OX.
= 1 ]
where Bij axM axM

are the components of Finger's strain tensor [50].

For an incompressible material

and p, which represents an hydrostatic pressure, cannot be determined
from equation (3.4.6) but must be found from the equilibrium equation
and the boundary conditions for the particular problem.

Two particular forms of the elastic potential W for elastically

incompressible materials are that postulated by Mooney [54] for which
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W= C](I]-3) + C2(12-3) R
and that for a neo-Hookean material for which
W= C(I]-3) .

For small strains the constitutive equation for a neo-Hookean material
reduces to that for an incompressible Hookean elastic material with a
Young's modulus of 6C. A theoretical derivation of the form of W for
a neo-Hookean material is shown in a book by Treloar [55] on the physics
of rubber elasticity.

The above discussion does not include the effects of
temperature or temperature gradients. A more general analysis in
section 3.6 which considers thermal effects shows that for at least

two particular types of loading an elastic potential W does exist.

3.5 Energy Balance and the Entropy Inequality

The principle of conservation of energy states that in a
material volume V with surface S in configuration C.3, the rate of
change k of the kinetic energy plus the rate of change u of the in-
ternal energy, must equal P the sum of the rate at which the surface
tractions do work on S and the rate at which the body forces do work
on the mass in V, plus the rate at which all other energy such as
heat, electrical, or chemical energy is added to the volume V.

In the present discussion only heat energy is considered in the last
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term. This principle may then be written as

f<+[1=P+Q (3.5.1)

where Q is the rate at which heat is added to the volume V.
Rearranging equation (3.5.1) and recalling the definition

of # in equation (3.4.1) gives

U=H+g,
D =
v v S
+ J p3h av , (3.5.2)
v

where U is the internal energy per unit mass, q; are the components
of the heat vector per unit area at a point on S with unit normal L
and h is a heat source per unit mass in V.

Conservation of mass gives that

%Jp3dv=o,
v

so that equation (3.5.2) becomes, after converting the surface integral

*A superposed dot and D/Dt both denote material differentiation.
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to a volume integral,

: 29,
J (o3l - o5y 5 + - pgh) dv
v

and since the volume V is arbitrary, the energy equation becomes,

in local form

aq

. ; )
p3U - O',ijd_ij + -é?]- - p3h =0. (3.5.3)
Denoting by S the entropy per unit mass and the temperature

by T, (T>0), the following entropy inequality is postulated

D h id
WJD3SdV‘ZIp3TdV-f—f—dS.
v Vv S

This is known as the Clausius-Duhem inequality [56], and it states that
the total rate of increase of entropy in the body is greater than or
equal to the rate at which entropy flows through the surface S, plus the
rate at which entropy is produced by sources within the body. The in-

equality simplifies to

axi

el

. -1

2 axi ?

s

' h
P3S2p37-

|

and using the energy equation (3.5.3) this becomes
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.. q.
il

Expressed in terms of A, the Helmholtz free energy per unit mass [57]

defined by
A=U-TS, (3.5.5)
equation (3.5.4) becomes

e q.
- py(A + TS) + o .d, 1T

ij%; - 'TI-—-ax—]'Z_O . (3.5.6)

3.6 Thermoelasticity

A theory of elasticity based on the general definition of
elasticity but which includes thermal effects is known as thermo-
elasticity [68]. The constitutive equations for materials included
in this theory may be written as

9X.

= 1
O'_'J U]J(Ts BXK) s

AT, =~ ) ,

x>
1]

S(T, =5)

w
th

- 9o _ 1
and qk = qk (T’ ax‘ ) ax ) °
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The principle of material indifference gives

>
I

- A(T ’EKL)

and S S(T sE

KL) '

The material derivative of the free energy A using equatién

(2.3.1) is

A ax]. 3xj .
aEKL BXK BXL 1]

Substitution into the entropy inequality (3.5.6) gives

. 9X. 0X, q.
A o, A 1] -]
- 035+ SIT + (055-p4 e W 3K Gy T o 20 - (3:6.1)
Since T and dij may be chosen arbitrarily, with the restriction

that dij be symmetric, inequality (3.6.1) implies that

S=- 3T ° (3.6.2)
IX. o9X.
_ i dA '
%13 7 °3 3K, T, (3.6.3)
and
q1 ol
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Considering the internal energy as a function of § and EKL

the entropy inequality (3.5.4) implies that

= U
T'aS’

9X. 9X.
=5 1 _J 93U
and ;i = P3 BXK aXL BEKL . (3.6.4)

Equations (3.6.3) and (3.6.4) indicate that

oA
( )
BEKL T

u
= (x4
BEKL S

where the subscripts on the brackets indicate variables which are
held constant for the differentiation. The constitutive equations
(3.6.3) and (3.6.4) are valid for any type of Toading. In particular
however, equation (3.4.4) with W = p]A is a special case of equation
(3.6.3) for an isothermal process and with W = pU 1t is a special

case of equation (3.6.4) for an isentropic process.

3.7 Thermoelastic Considerations for an Elastic-Plastic Material

Consider an elastic-perfectly plastic body with the con-.
figurations C.1, C.2, and C.3 defined in section 2.1. For convenience

the Piola-Kirchoff stress tensor [59] referrcd to c.2,

Py 9X, 9X
P s - R (3.7.1)
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and the stress tensor with components

= r(P) p(P)g (3.7.2)

SkL = Rak’ ReL'Sqge

where the proper orthogonal tensor Réi) is defined in section 2.3,
are introduced. The assumption from classical plasticity that the
plastic volume change be zero is retained so that in equation (3.7.1)
Py appears since it equals Py

Unlike SaB’ the components of SKL remain unchanged during
a rigid body motion of C.2. If it is assumed that the elastic
moduli and specific heats are unchanged by previous plastic defor-

mation, the result
- (e)

is obtained since for unloading from the elastic-plastic state the

body behaves as a hyperelastic material. Furthermore the constitutive

assumptions
A = A(T,Eéf),EéE)) (3.7.4)
and s = s(r,e(8) e{P))

are made.* Green and Naghdi [23] and Kestin [60] have assumed that the

*A and S might depend on the plastic strain history as well as on E&E).
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entropy -is independent of the plastic strain, for the finite and small
strain elastic-plastic theories respectively, however there seems to be
no physical basis for this assumpti‘on.

For elastic unloading of the body from C.3 the entropy inequality
(3.5.6) becomes ) |

4le)

<. O q.
ij 13 _ T
-(A+TS) + 5 5,7 %, 2 0 (3.7.5)

since df; = 0. From the definitions of S, and d%) it follows that

1 (e) _ 1 e(e)
3 1Jd1\] p'l SO‘B EO‘B

and from equations (2.3.6) and (3.7.2) this becomes

al (e) . 1 ¢ ¢(e)
P3 udu ]SKLEKL

since QKL = 0 when there is no plastic deformation occurring. Equation

(3.7.5) may then be written as

de ple) % o1
- (A+TS) + o SkLErL PR >0.

From equation (3.7.4) it follows that for elastic unloading

1 - 9A 2 3A “(e)
A 3T T+ ——(—-)— EKL (3.7.6)
aEKL
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so that the entropy inequality for unloading is, after substitution

of (3.7.6)

3A : 5A 1 (e) 9 T
-(57 + SIT + (- +—5§, )E >0 . (3.7.7)
) 3Eéf) P KL p3T ax

Both f and ééf) may be chosen arbitrarily for elastic unloading or

reloading before further yielding so that equation (3.7.7) gives

BA)

AT s (3.7.8)
Tete) ¢(p)

KL = p.' (;(E)-T E(P) ’ (3.7,9)

and -;——10.

Equations (3.7.8) and (3.7.9) give the Maxwell relation

aSKL
- D] (—'(—)')T E(P) (—BT_)E(G) s

and from equation (3.7.3) this may be written

e ORI U (3.7.10)
BEKL N

where wKL is a tensor valued function of the temperature and the elastic

strain.
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A similar analysis using the form (3.5.4) of the entropy

inequality gives

If the further assumption is made that the specific heat at constant

strain [61]

ce = (%) - 1%
PO ) T e ()

is independent of previous plastic straining then

2 - o(T.E{E)) (3.7.11)
e(e) g(P)
where ¢ is a scalar function of the temperature and the elastic strain.

Equations (3.7.10) and (3.7.11) show that

P
() (3.7.12)

s = s ele)) + 5P

where S(e) and S(P) are the elastic and plastic parts of the entropy

respectively.

From equations (3.7.8) and (3.7.9) the free energy may be

written as

A = A(E)(T,Eéf)) + A(P)(T,Eéf)) (3.7.13)
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where A(e) is the elastic free energy and

A(P) = . TS(P) + A(P)(EI((E))

is the plastic free energy and A(P) is a function of the plastic strain
and possibly the plastic strain history. From equations (3.7.8),
(3.7.9), (3.7.12), and (3.7.13)

) (e)
(&) é%Tfi. (3.7.14)

d S ale) (3.7.15)
an =p o oo
KL 1 BELEE

The equation

. (e) . (e) .
_ 9A oA
ale) - e Ee) + B
L

is valid whether or not plastic deformation is occurring and from

equations (3.7.14) and (3.7.15) it becomes

ale) o 1g

» Eéf)- s(e)y

KL

For isothermal deformation

Ale) - (o)
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where ﬁ(e) F SKLééE) is the rate of increase of elastic strain energy

per unit volume in C.1. If the material is elastically isotropic SKL

and E(e) are coaxial as are S_, and E(e). Thus from equation (2.3.8)
KL oB oB

the result

~(e) _ o ele) _ ~(e)
SKLEKL” = Sogfas’ = SugEos

is obtained for an elastically isotropic material so that

(&) o g ple) _P1 - (e)
R (3.7.16)

The total rate of stress.work per unit volume in C.1 is

W=, 4
B N

so that from equation (2.3.10)

where ﬂ( = — g, .d*. (3.7.17)

is the rate of plastic energy dissipation per unit volume in C.1. If
the material is elastically anisotropic then the rate of increase of

elastic strain energy and the rate of plastic energy dissipation are



not given by equations (3.7.16) and (3.7.17).

Elastically isotropic materials only are considered in the

remainder of this thesis.

55
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CHAPTER 1V

YIELD CONDITIONS AND FLOW RULES FOR PLASTIC
DEFORMATION WITH FINITE ELASTIC STRAINS

4.1 Introduction

A flow rule is developed in section 4.2 which is based on the
assumption that the materials to be considered satisfy Drucker's
postulate [30]. The further assumptions of the existence of a yield
function, no work-hardening, incompressibility,* elastic isotropy, and
isothermal deformation are made. In section 4.3 the theory is limited
to the discussion of materials whose elastic behavior is neo-Hookean
and two yield conditions which are related to the classical von Mises
yield condition are discussed. In section (4.4) a simplification which

results from the further assumption of plastic isotropy is indicated.

4.2 A Plastic Flow Rule

In the classical elastic-plastic theory for perfectly plastic

solids it is assumed that there exists a yield condition
f(oij,T) =0 (4.2.7)

with the elastic domain defined by f(oij,T) <0 .

*Ehe]theory may be generalized to include finite elastic volume change
76].
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If a material is plastically isotropic the form of the function f at

a point must be independent of any rigid body rotation of the body

and f is then a function of the invariants of the stress tensor.
However for a plastically anisotropic material there are

two situations for which the form of the yield function f(oij,T) is

not satisfactory. If the elastic strains just prior to yield are

small as in classical elasticity but the rotations are large, as in

the problem of the elastica [6], or if the material undergoes finite

elastic strains and rotations, the form of the yield function at a

point in a plastically anisotropic material must depend on the rotation

of the material element at that point. The yield condition is then of

the form
floy,sT) = 0 (4.2.2)

proposed by Green and Naghdi [23]. The stress oL is given by

9L = RikR5 05 »

where RiK is a proper orthogonal tensor representing a pure rotation
and is obtained from the polar decomposition of the total deformation

gradient. That is

it = RiklUg o
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where UKL is a symmetric positive definite tensor representing a pure
stretch deformation. Thus Oy are the components of the stress tensor
at a point referred to a Cartesian coordinate system which has under-
gone the same rotation as the material element at that point.

If large plastic deformations occur fhe yield condition for
a plastically anisotropic material is of the form (4.2.2) regardless
of the magnitude of the elastic strains.
| The deformation rate tensors dij’ d§§), and d$j may also be
referred to coordinates which have undergone the same rotations as

the material elements so that

d(e)

L d " 0] = RygRy, [y (j) 9351

and since RiK is an orthogonal tensor it follows that

oy L 0fE) g 1 = 1309 d(e) df51 -

Consider a body which is both elastically and plastically
incompressible and elastically isotropic. Assume that a yield function
f(oKL,T) exists and suppose that at time t° the body is in equilibrium
at the temperature T and homogeneous stress ozL which lies inside the
yield surface but sufficiently close to the yield surface that the ad-
dition of the stress necessary to move the stress point to the yield

surface results only in infinitesimal additional elastic strains. Let
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an external agency apply isothermally an additional stress to the body

so as to move the stress point, as shown in Figure 4.1, to GﬁL at time t*,
and then along the yield surface to the point cét at time t'' = t* + §t,
and finally back to the original stress ch at time t. In the special

loading case considered here the restriction is made

“ YIELD SURFACE

Figure 4.1
A Diagrammatic Representation of the

Isotropic Yield Surface in Stress Space

that the plastic strains occurring during the time interval [t*,t'']
are infinitesimal and since the elastic strains are similarly re-
stricted, changes in the configuration of the body during the cycle
may be neglected.

According to Drucker's postulate the work done by the external
agency during any complete cycle of loading and unloading is non-negative,
The total work done per unit volume by both the original stress and

the external agency is given by
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t
W= J OKLdKLdT
+0
’ (e)
_ e
= J cKL(dKL +dEL) dr.
+0

Since the plastic deformation occurs only from time t* to
t*+8t, and dEl = 0 at all other times, the expression for the total

work done is

terot

- (e),.

W= Cb O 9 * | L IR I
t*

where gﬁ denotes integration around the complete cycle of Toading
and unloading.
Since the material is elastically isotropic and incompressible

it follows from the discussion in section 3.7 that

(}L)GKLdéE)dT_ = p3§b daale) = g ,

and thus

W= | oKLdELdT.

Furthermore since the changes in configuration of the body may be neg-

lected it follows that the work done by the initial stress ch is given
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0
cKLdKLdT .
t*

Thus the net work done by the external agency during the complete

cycle is
t*+6t
o _ 0
t*
From Drucker's postulate
w-uw >0
lim w-0°
so that 5t+0 8t >0,
consequently
0
(OEL'GKL) dEL i 0 ’ (4.2.3)

where UEL is a stress point on the yield surface associated with the
plastic rate of deformation tensor dﬁL and OEL 1s any stress point

near GﬁL’ on or just inside the yield surface. Equation (4.2.3) implies
that the vector representing diL in nine dimensional stress space is

normal to the yield surface so that
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of

acKL ’

% = A

5 (4.2.4)

where A is" a non-negative factor of proportionality. Foraplastically

isotropic material this flow rule may be written as

(4.2.5)

* =
dij A

Equations (4.2.4) and (4.2.5) and the assumption of plastic
incompressibility imply that the yield function must be independent

of the hydrostatic pressure.

4.3 Two Yield Conditions and Associated Flow Rules

The remainder of this thesis is restricted to the discussion
of elastic perfectly-plastic materials whose elastic behavior is neo-

Hookean. That is, there exits an elastic potential given by

w=cle 3 (4.3.1)

e)

where the invariant Ig » analogous to I] defined in section 3.2, is

the first principal 1nvariant of the tensor

c{e) < pele) 4
af a

aB B

so that
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- opple)
W= 2cE "/ .

The von Mises yield condition is

% 044015 - k=0, (4.3.2)
where k is the yield stress in pure shear. In the classical small
strain elastic-plastic theory the condition (4.3.2) is equivalent to
the condition that yielding occurs when the elastic shear strain
energy reaches a critical value. The maximum shear strain energy
yield condition is not equivalent to (4.3.2) for a material which may
undergo finite elastic strains and the two yield conditions are hence-
forth referred to as the maximum shear strain energy yield condition
and the von Mises yield condition respectively.

The flow rule for a plastically isotropic material which
obeys the von Mises yield condition is, from equations (4.2.5) and
(4.3.2),

d¥. = ) (4.3.3)

]
iJ oij ’
For the maximum shear strain energy yield condition yielding
occurs when the elastic strain energy (equal to the shear strain energy
since elastically incompressible materials only are considered) reaches

a critical value W*.
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From equation (3.4.5) for a neo-Hookean material

1{e)s

fels..1. (4.3.4)

o} = 2c[riep(e) i3

1
i ia - Jjo 3

Using this constitutive equation and equation (4.3.1), the elastic
shear strain energy may be expressed as a function of the invariants

of the stress deviator tensor. Define two new stress invariants*

1 1
Ky = —50:, 0!, = —5 J.,
2 8C2 iJ ij 4C2 2
and Ky = “l§'°5°°‘k°&i = ‘l§'Jé
24c° 19J 8C
It may be shown that
¢ = 11 _ (e (4.3.5)
2 531 2 +3-
and (=1 - L1(e)(e) 2 () (4.3.6)
3 34 2 T . «Je

Using equation (4.3.5) to eliminate Iée) from equation (4.3.6)

and rearranging gives

3
K 1%6) ] %-I(e) + 3(1-K,) = 0

2 1

*K2 and K3 are called stress invariants even though they are dimension-

1e§sd'since they are derived from the stress deviator invariants Jé
an
3 -
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W 1 /W 3 -
or Kz('(-:"*‘ 3) o) (E'i‘ 3) + 3(]-K3) =0,
Consequently the maximum shear strain energy yield condition for a
neo-Hookean material is
W* *
Fekylle+3) - g B+ 3)3 4 301k = 0 (4.3.7)
and it may be verified that f < O when W < W* .

Also if yielding occurs after infinitesimal elastic strains

then from equation (4.3.4)

] 1 1

W = §E'Gijcij s

and W* << C . Therefore the yield condition (4.3.7) becomes

2

W* W*=y
3K2 - 3—C—+0(C—2—) =0

2
so that if terms O(H%—) are neglected this yield condition reduces to
C

the von Mises yield condition.
The yield function f for the maximum shear strain energy
yield condition is a function of the two stress invariants K2 and K3,

and since the material is incompressible, the associated flow rule
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(4.2.5) for this yield condition is

*
85:)] (4.3.8)
C 4C2 8C3 C "ij

4.4 A Further Simplification Due to Isotropy

Using equation (2.3.11) the flow rule for a plastically iso-
tropic material is

P P of
ey e

[]
1]
A significant simplification of this flow rule results if the elastic

deformation gradient tensor is expressed in the polar form

rle) | V(e) rle)

ia Ja °

where R§§) is the previously defined proper orthogonal tensor repre-
senting the rigid body rotation of C.3 relative to C.2 and Vgﬁ) is a

symmetric positive definite tensor such that

vigh(e) - eledgle) (4.4.1)

With the use of equation (4.4.1) the constitutive equation
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(4.3.4) becomes

= 2c[v{ely(e SURR AU (e)v(e))a ;] (4.4.2)
and the expression for d1J becomes
-1
* P P
d]J 2 [V(e)d( ) (e) (E) ém)vé:) ] . (4'4_3)
where aib) - mleplelg(P) (4.4.9)

From the constitutive equation (4.4.2) the tensors o%j and
Vgﬁ) are coaxial and since the materials considered are plastically
isotropic, f is a function of the stress invariants and the tensors

o%j and d*j are also coaxial. It may thus be deduced from equation
(4.4.3) (see Appendix A) that the tensors d*j and d( ) are also co-

axial so that equation (4.4.3) reduces to

. q(P)
d¥s = dg3 (4.4.5)

for a plastically isotropic material.

Furthermore since

= yle)ple)(P)
F1K V1§ Jg oK

FR)EP)T, H)e(p)Ty

d(P) (
2 ak KB BK Ka

and
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it follows from equation (4.4.3) and (4.4.4) that

-1.

1. -1
P) 1 : 1
dg;i) =7 (‘Vgﬁ) VIE?;) - V§§) Vl£$) ¥ V1‘§) FkLFLmvég)
1.
syl elyle)y (4.4.6)

jk kL' Lm mi
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CHAPTER V

SIMPLE SHEAR PROBLEM

5.1 Introduction

Simple shear of a cuboid is considered in this chapter.
The sides in C.1 are parallel to the axes of a fixed Cartesian co-
ordinate system. After deformation the position of- a particle

originally at XK is given by

x] = X] + KX2 )
Xp = X5 s
and x3 = X3 .

This is a homogeneous isochoric deformation and the parameter

K= tan 6, where 6 is the angle of shear as shown in Figure 5.1, is

used as a time scale. The deformation is assumed to occur isothermally.
The total deformation gradient and its total derivative with

respect to the time like parameter K are

1 K 0 001 0
[Fd= Jo 1 of and [%iK]-= 0 0 o . (5.1.1a,b)
0 0 1 000
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Figure 5.1
Simple Shear of a Cuboid

The deformation is completely specified by the parameter K.

| The material is assumed to be elastic-perfectly plastic
and to exhibit neo-Hookean behavior for loading up to the yield point
and for unloading from an elastic-plastic state. Both the von Mises
and the maximum shear strain energy yield conditions are considered.

The elastic-plastic simple shear problem consists of finding

the stress deviator tensor and the elastic stretch tensor Vgg) as
functions of the parameter K. Complete solutions are found numerically

for both yield conditions.
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5.2 Solution Prior to Yielding

Until the yield condition is reached the cuboid remains
elastic so that upon removal of the stress it returns to configuration
C.1. The elastic solution was obtained by Rivlin [63] for both com-
pressible and incompressible hyperelastic materials.

From equations (4.4.1), (4.4.2), and (5.1.1a)

2

+K® K 0 . 1 00
2
' - K
[Gij] =2C (K 1 0] -2c(1 + 7;) 0 1 0
0 0 1 0 0 1
so that
. 4c 2
o1 = 3K,
N - . _ 2t 2
Opp =933 = -3 K,
ciz = 2CK , (5.2.1a,b,c)

and all other stress deviator components are zero. .
If the stress on one of the faces of the cuboid is specified
then the components of the stress tensor may be determined from equations
(5.2.1a,b,c).
Consider first the von Mises yield condition (4.3.2) which

using equations (5.2.1a,b,c) becomes
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3 2

+ 3K2 - z-(éo =0 .

K4

Solving for the value of K at yield gives
1/ AN
tzV/9+3 (E') ) . (5.2.2)

For the maximum shear strain energy yield condition Ky

N w

K, = (-

*
must be determined as a function of %T . From equation (5.1.1a) it

follows that

8 2542,

consequently at yield

W* _ 2
T+3-3+Ky
or Ky =y %; . (5.2.3)

A basis for comparison is needed for the solutions with
the two yield conditions and the yield stress in simple tension is
chosen arbitrarily to be this basis.

For this purpose consider the uniform extension [64] of a
block of an incompressible neo-Hookean material due to a force parallel

to the X1 direction. The deformation is specified by
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Xq = AX]
=1
Xy = ¢ﬁ"x2 ’
and Xa = —]‘X
3 /K 3

so that the deformation gradient has components

A 0 0
[FiK]= 0 1//F 0 . (5.2.4)
0 0 1//&

It follows from equation (4.3.4) that

FZCA2+p 0 0
] P
[cij] = 0 - tp 0
2¢
i 0 0 T +p-‘

If the faces parallel to the direction of extension are stress free

then

and oy7 = 2¢(a% - ]K) . (5.2.5)
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The yield stress Y in simple tension for a von Mises material

is given by
Y=k, ' (5.2.6)

Consequently if the material is neo-Hookean up to yielding, it will
yield in simple tension when the extension is the solution Ay of the

equation

A

3_/3 (k
y 2

E) Ay -1=0 s (5.2-7)
which results from equations (5.2.5) and (5.2.6).

Using equation (5.2.4) the invariant I%e)is found to be

() 2,2
I] = A© + 7 (5.2.8)
for uniform extension. Thus if a material whose yielding is governed
by the maximum shear strain energy yield condition is to yield in
simple tension at the same stress and therefore at the extension AY
*
found from equation (5.2.7), the material constant (%TQ must satisfy

the equation

- = +=—-3. (5.2.9)
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In the remainder of this chapter and in Chapter VI, all
the stresses are non-dimensionalized by division by the shear yield
stress k. The valuesof k used for the materials obeying the maximum
strain energy yield condition are those determined from equations
(5.2.7) and (5.2.9) for von Mises materials which have the same yield

stress in simple tension.

5.3 Material Obeying the von Mises Yield Condition

The elastic-perfectly plastic solution is first obtained
for a material which is neo-Hookean up to the yield point and during
unloading from the yield point, which is determined by the von Mises
yield condition.

Using equations (4.4.2) and (4.4.6) the flow rule (4.3.3)

becomes

@7 L @ e CORENON

2 2
S el VAL SO (5.3.1)

which is written in matrix notation with the superscript T denoting
the transpose, I the identity matrix, and tr(.) the trace of the
argument matrix. The non-negative parameter A in equation (5.3.1)
differs from that in equation (4.3.3) by a factor k.

The von Mises yield condition after substitution of

equation (4.4.2) becomes
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)4 )2

2 2
trl—2 v L Zgr(y(e)) (7 L T2y Lo 2 g

(k/C)
and taking the total derivative with respect to the time 1ike para-

meter K gives

4 2
o Lerr(®) - Lefve)1 2 0

3. 2 .

or er(@y(®)) L Lo (@ yley(edy Lo L (55,9
The elastic solution (5.2.1) is valid until K reaches Ky

as determined from equation (5.2.2). For K = Ky the matrix y(e)

and the components of the stress deviator are known. For K > K

Y
(e) are determined from the system of non-linear

the components of V
ordinary differential equations (5.3.1) and (5.3.2) using the value
of y(e) at K = Ky as the initial condition. The numerical method

used to obtain a solution is described in section (5.5).

5.4 Material Obeying the Maximum Shear Strain Energy Yield Condition

The solution for the simple shear of a cuboid of -a neo-
Hookean elastic-perfectly plastic material which obeys the maximum
shear strain energy yield condition is obtained in a manner similar
to that discussed in the previous section for the von Mises yield
condition.

Substitution of equation (4.4.2) into the expressions (4.3.5)



and (4.3.6) for the stress invariants K2 and K3 gives

4 2
7 [er(y(e)) - Lerf(y(e));

6 4
and Ky = %-[tr(y(e) ) - tr(y(e) )tr(V(e) )
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(5.4.1)

(5.4.2)

Using equations (4.4.2), (4.4.5), and (4.4.6) the flow rule (4.3.8)

becomes

NOROBORION MONES HONENONESNON

~ ~ -~

* 2 2 2
A(%){(NT+ 3)[y(e) - %- tr(y(e) 1] - 3[\1(e) ) _;_

2 2
(@ - a2,

)172

(5.4.3)

and the maximum shear strain energy yield condition (4.3.7) is, after

substitution of equations (5.4.1) and (5.4.2)

. 4 2 *
;__ (ﬂc-+ 3)[tr(y(e) ) - ]g trz(y(e) )] - % (

6 4 2 2
R R T R T NC

3
+3) +3
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Taking the total derivative with respect to K gives

. 3. 2 .
(e + 3)Ler(r 748y - Lgn(y(e%)gpylelyled)

3
4 2 .
+ [er(ye)) - L erd(y(e)%)epqyledyle,
5. 3. 2
- 3tr(y (€Y (8)) 4 pen(y(e)yledy (o)) C g (5.4.4)

Equations (5.4.3) and (5.4.4) are solved numerically for
y(e) as a function of K using the value of.y(e) at yield as the initial

condition.

5.5 Numerical Solution

The two systems of non-linear ordinary differential equations
(5.3.1), (5.3.2) and (5.4.3), (5.4.4) are sufficiently complex that
closed form solutions do not appear possible. Instead a numerical
technique, which is described in this section, was used to obtain
the solutions.

The following discussion is for the elastic-perfectly plastic
solution for the von Mises material and the same method was used for
the material with the maximum shear strain energy yield condition.

Consider the matrix equation (5.3.1). Since both sides are
symmetric 3 x 3 matrices it represents six independent equations with
seven unknowns; the six independent components of y(e) and the para-

meter A. The yield condition provides the additional equation (5.3.2)
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for the determination of A.

The Runge-Kutta method [65], generalized for a system of
simultaneous first order differential equations was used to solve
equations (5.3.1) and (5.3.2). Consider a system of m differential

equations.

Sy =g e, (M@ m)y
F v = @y M@ )y
L ytm o glmee (@) 0 )y (5.5.1)

For an integration step size At, the standard fourth order Runge-Kutta

th

formula at the n™" integration step is

y4i = {00y At i), )+ 2n{) + n{D) 4 o(atf)

where

n{1) = g(1) (1,1 w12, oyimy
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b« gD 1 21 2841 00, 4800, st (o)

2 n A B 2
0 40, + a0 0002+ 4ofD, ol S0

n{ 1) =-g(i) (tn+At,yr(]]) + Athg]), yr(12)+ Athgz), ...,yr(:")+ Athgm)).

The derivation [65] of these formulae is lengfhy and is not included
here.

The system of differential equations (5.3.1) and (5.3.2)
cannot be put in the form (5.5.1) since Q(e) cannot be written ex-
plicitly as.a function of K and y(e). For given values of K and
y(e) however, it is possible to determine the value of the matrix
Q(e) from equations (5.3.1) and (5.3.2) by guessing a value for A
and solving equation (5.3.1) as a system of algebraic equations for
the components of Q(e). The resulting values of Q(e) and the given
values of y(e) are then substituted into equation (5.3.2). If the
latter equation is not satisfied, then the value of A is varied until
the resulting matrix Q(e) does satisfy equation (5.3.2). It is thus
possible to determine the value of the matrix Q(e) as a function of
V(e) and K so that from a numerical point of view the system of

equations (5.3.1) and (5.3.2) is equivalent to a system of the form
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Q(e) - g(K,y(e))

even though the explicit form of the matrix function G cannot be found.

Thus the fourth order Runge-Kutta formula for this problem,

th

in matrix notation at the n~ integration step is

vie) o yle) |
n+] v (H + 2H2 + 2H + H4), (5.5.2)
R (e)
where ﬂ] = §(K Yn )
~2 = 2 * 3 2 1

Hy = 6(k + 8, yle) &Ky

2 2) ]

Hy = G(K+AK, yée)+ 5K Hs)

and AK is the integration stepsize.

A computer program was written employing the above method
to solve numerically the systems of equations for both yield conditions.
Solutions were found for various values of k/C and the corresponding
values of %; » With total integration intervals extending to values of
K as high as two.

The results are shown graphically in Figures 5.3 to 5.8.

Estimates of the truncation error due to neglect of terms
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O(AKS) in equation (5.5.2) are available [66], but since they are for
the most general case, that is a system such as (5.5.1), they tend to
be pessimistic and rather difficult to apply to a complex system such
as (5.3.1) and (5.3.2). An indication of the truncation error may
be obtained however by changing the integration step size AK,

A11 the simple shear solutions found were obtained using
step sizes of 0.01 and 0.005. A comparison of the corresponding re-
sults shows complete agreement to four significant figures in the
values of y(e) and the maximum difference observed in the values of
the non-dimensionalized stress deviator is ]0'4.

In an attempt to reduce the possibility of round off error
affecting the results, double precision (16 significant figures) was
used for all calculations and it is assumed that the effects of round

off-error are negligible.

5.6 Discussion

The results indicate that as k/C becomes smaller the normal
Stresses become smaller and are negligible for k/C << 1. Also for
k/C << 1 the results approach those obtained from the classical elastic-
perfectly plastic theory.

For the von Mises yield condition the stress deviator com-
ponent 053 approaches zero for values of K large compared with Ky
and if 033 = 0 then O = - 0yy = oi] for large K. The maximum
shear strain energy yield condition gives quite different normal

stress effects during elastic-plastic flow. The relation °é2 = cé3
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which holds for elastic deformation prior to yielding also holds for
elastic-plastic deformation for all K and if 033 = 0 then Gpp = 0
and o1 < - 3053 .

One further result is of interest. Figure 5.2 which for
simplicity considers only the Xy and Xo directions, shows a typical
stress deviator system in C.3 during elastic-plastic flow for either
the von Mises or maximum shear strain energy yield conditions. The

figure shows the configuration C.2 which results from irrotational

Figure 5.2

Direction of Maximum Shear Stress and the Orientation

of C.2 Resulting from Irrotational Elastic Unloading

elastic unloading from C.3 with o being the angle through which lines
of constant X2 rotate during unloading from C.3 to C.2. The angle ¢

indicates the direction of maximum shearing stress in C.3. From the
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graphs of %-c%j versus K it is seen that ¢ approaches a constant value
for large K since the stress deviator components approach constant
values. It is found however that o approaches ¢ as K becomes large
compared to Ky so that C.2 tends to align itself so that the axes

ox? are in the directions of the maximum shearing stress.
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CHAPTER VI

TORSION OF A CYLINDER

6.1 Introduction

The problem of the torsion of a cylinder is closely related
kinematically with the simple shear problem of Chapter V. There is
the added complication however that the deformation is non-homogeneous
so that use of the equilibrium equation is necessary.: As for the
simple shear problem the deformation, which is assumed to occur iso-
thermally, is specified and the stresses required to maintain the
deformation are found using the constitutive equations developed
previously for finite strain elastic-perfectly plastic problems.

Consider a cylinder of Tength £ and radius a as shown in

Figure 6.1. "—_—_zifé::::j
‘)“ -
i

Figure 6.1

Torsion of a Cylinder
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The X3 axis of the fixed Cartesian coordinate system coin-
cides with the axis of the cylinder and the coordinate system (r,0,z)
is a cylindrical polar coordinate system as shown.

The deformation is such that planes perpendicular to the
axis of revolution remain plane and all material particles in any
such plane move in concentric circles with centre on the axis of
revolution. This is an isochoric non-homogeneous deformation,

Let (£1.£2,£3) be the coordinates of a particle referred

to a convected coordinate system

E]'rs
£,°6,
and £3 =2z,

where r, 8, and z are the coordinates of the particle in C.3. The

Cartesian coordinates of the particle in C.3 are
X = £] cos £2 s
Xo = &2 sin &2 s

and X3 = &5 . (6.1.1)
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Let ¢ be the angle of twist per unit Tength of the cylinder.
The coordinates of the particle in C.1 referred to the Cartesian

coordinate system are
X = &, cos(£,-05)
Xy = &1 sin(g,-¢85)
and Xy = £y (6.1.2)
It follows from equations (3.2.5) and (3.2.6) that the metric

tensors in C.1 and C.3, referred to the convected coordinate system

have covariant and contravariant components

1 0 0
[6;1= [0 (g (k)
0 -(g))? 1+(g))?
1 o 0]
[Gij] = (0 ¢2+(E%02 ¢ (6.1.3)
CHEE
1 0 0

[9;;= |0 (g% of ,
0 0 1
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and
10 o0
[g¥1= |o (17g1)% of . (6.1.4)
o 0 1

Consider a particle at 0" in C.3 as shown in Figure 6.2.
Let ox; be a local Cartesian coordinate system with origin o' and with

axes in the directions of the tangents to the convected coordinate

X1

Figure 6.2

Local Cartesian Coordinate System

curves passing through o'. If FiK is the deformation gradient tensor
at o' referred to the coordinate system ox;, it may be deduced from
equation (3.2.5a) that FiKFjK are the physical components of the metric

tensor 'Y at ke point o'. These physical components are given by
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(i3) _ /-—~
G /'E ,

where the bars under the repeated indices i and J indicate that. there

is no summation on these indices. Thus

1 0 0
697« o 1402 g0 .
0 &e 1

This indicates that for the deformation defined by equations . (6.1.1)
and (6.1.2) each material element in the cylinder undergoes a simple
shear deformation with the parameter K, as defined in Chapter V, equal

to E-ld).

6.2 Stresses Prior to Yielding and in the Elastic Region After Yielding

The solution for the stresses required to maintain a state
of torsion in a right circular cylinder of a neo-Hookean material was
first obtained by Rivliin [63]. This solution shows that a deformation
given by equations (6.1.1) and (6.1.2) can be maintained by surface
tractions on the ends of the cylinder without body forces or other
surface tractions. '

Consider a right circular cylinder composed of a neo-Hookean
elastic-perfectly plastic material, subjected to the deformation de-
scribed in section 6.1. Assume that yielding has occurred in the

region a 5-51 < a and that for 0 5.51 < o the material remains elastic.
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Since K = £,¢ it follows from equations (5.2.2) and (5.2.3)

that
1. 3.1 k2, 1/2
a=l- 341 /54 38?
sl-2%3 C
and a=-(]5/HC:

for materials which obey the von Mises and the maximum shear strain
energy yield conditions respectively.

In the elastic region the convected stress tensor is given

by
19 = 2 61 + pgld

since the material is assumed to be neo-Hookean prior to yielding.

From equations (6.1.3) and (6.1.4) this leads to

\

e B ooy,

W22 o pe[e2 + o+,
()% (&)
r (6.2.1)
23 = 209,
and 112 = T]3 =0 .

J




Substitution of the stresses (6.2.1) into the equilibrium

equations in cylindrical polar coordinates (Appendix B) gives

op_ _ 2C¢2£.| =0,

851
Pp_ .
a£2 0,
and -BL = 0
853 ’
from which
dp(&,)
] 2. _
dg1 - 2Co gl =0 .

Integration with respect to 3 yields
p(g;) = Coé(g)% + ¢,

where the integration constant <1 is determined from the condition
that the radial stress r]] is a continuous function of the radius.
Let o* be the as yet unknown radial stress at the elastic-plastic
boundary 1 = and let %33 be the stress tensor at a point referred
to the local Cartesian coordinate system ox% at that point. That is

Oi.

j are the physical components of the convected stress tensor. Thus
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o1 * 2C+p
_ 2
= 2C + C(g'lq)) + c'|
so that o]](a) = g%
A - 2.2
implies that ¢y = o* - 2C - Ca"¢“ .

In the elastic region then, the stress solution in non-dimensionalized

form is
M ¢ * 933 )
e lD - @Oz B,
J22 _ 3¢ (1)2 Lyt
k Tk v - 3 K
L (6.2.2)
g
3
23 -2y,
and iB:fE.:o
K K ’ )

where y = a¢. The solution prior to yield is obtained from (6.2.2)

by setting o = a and o* = 0 .

Let Ne and Me be the total end force and twisting moment re-

spectively acting of the ends of the cylinder in the elastic region
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0<& <o, Thus

f 2“51 33 ¢

0
(o
and f 2'"5] 23dE]
0

so that substituting for 033 and g,3 from equation (6.2.2), performing

the integration and putting in non-dimensionalized form gives

e _ £ 2/a4 o* (a2
Ez""”[' ka (a) + K (a)]
and ﬁ?.:"_cﬂi(ﬁ)“
ka k ‘a’ °

6.3 Stresses in the Elastic-Plastic Region

As shown in section 6.1, the deformation of each material
element in the cylinder is equivalent to a simple shear deformation.
Thus in the elastic-plastic region the stress deviator tensor 01J
referred to the local Cartesian coordinate system is known in tabu-
lated form from the simple shear solution found in Chapter V.

The total stress tensor is given by

= !
% T %ij T P4y o

where p = %’ckk is the unknown mean normal stress which must be
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determined from the equilibrium equations. This yields

3 ] ] t 1 -
3y (O11*) + g (04y-03) = 0 (6.3.7)
and dp__3p .
%, " o,

Integration of equation (6.3.1) gives

3
st e [ Lioji00) - oy o)Tep + ,

and since the surface £, = a is assumed to be stress free
1

»a
cy = |
S

and p(E]) = - Gi](g]) +f % -”(p) - Uzz(p)Jdp .
E

[og1(e) - 05,(p) 1do

O |—

Thus in the elastic-plastic region the stress solution is obtained

from

Opp = céz-ci] + f %-[oi](p) - oéz(p)]dp . > (6.3.2)
&1
Tp3 = 53
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The constant o* defined in section 6.2 is obtained from the
above also and is
°*=°n/

a
= [ L1oj1(6) - o321 5 .
o

The total end force and twisting moment respectively, acting

on-the ends of the cylinder are given in non-dimensionalized form by

o g€
L _92_+j can(2h) & e (6.3.3)
ka ka &/a
and y 5]/3 g ) E
g
M. _e_+J en(2h) B a2 (6.3.4)
ka ka &/a

6.4 Numerical Solution

The solution to this problem is necessarily a numerical one
since it is based on the previously obtained numerical solution to the
elastic-plastic simple shear problem. The latter solution gives the
stress deviator tensor as a function of the parameter K and since for
the torsion problem K = (é})w the integrals in equations (6.3.2) may
be evaluated numerically using the tabulated values for c%j .

A computer program has been written to do the numerical
integrations in equations (6.3.2), (6.3.3), and (6.3.4). The integrations
are preformed using the sixth order Gaussian quadrature technique [67]

described in Appendix D. The stress 933 is determined at a finite
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number of discrete points along a radius at intervals of A(%%Q equal.
to 0.05. The computation proceeds from E]/a =1 to E]/a = o/a so
that at any of the computation points in the elastic-plastic region
the integral in equation (6.3.2) is given as a sum of the previously
calculated integral plus the integral over the last A(£1/a) interval.

Since the solution for the stress deviator tensor which
appears in the integrand is known only for discrete values of
K= (g]/a)w, it is necessary to perform an interpolation to deter-
mine the values-at the intermediate values of K as required by the
Gaussian quadrature routine. This interpolation is dane using the
fifth order Newton forward formula discussed in Appendfx E.

The use of the Gaussian quadrature method for the integrations
in equations (6.3.3) and (6.3.4) requires also that interpolations be
made between the tabulated values of the stress solution 05 It is
not possible to use Newton's forward formula to perform this interpo-
lation near (g]/a) = 1 since the higher differences require stress
points outside the actual cylinder. This difficulty may be overcome
by using a backward difference formula but the additional problem
arises that the interval [o/a,1] may not at times just after yielding
contain enough stress points to allow the use of a fifth order inter-
polation formula. Since the stress solution is quite smooth, first,
second, and third order interpolation formulae are used, with the first
and second order formulae being used only when the number of stress

points in the interval [a/a,1] prohibits the use of the third or
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higher order formulae.

6.5 Discussion

Some of the numerical results obtained for both the von Mises
and the maximum shear strain energy yield conditions are shown graphically
in Figures 6.3 to 6.15. The solutions have been found for values of
k/C equal to 0.1, 0.5 and 1.0 and for the equivalent values of W*/C with
y taking the values 0.75 and 1.5.

The shapes of the stress/k versus r/a curves are of course
quite similar to the shapes of the stress deviator/k versus K curves
of the simple shear solution.

For values of k/C << 1 the stress solution is that of the
classical small strain elastic-perfectly plastic theory.

As the deformation parameter y reaches values of two or
three times that of k/C, the normal end force and the twisting moment
approach constant values and ultimately they become independent of
subsequent twisting as does the twisting moment in the classical
theory when almost the entire cylinder has yielded.

It is also observed that as k/C goes from 0.1 to 1.0 the
resulting change in the value of M/ka3 for large y is only of the
order of magnitude of 0.1 whereas the resulting change in the value
of N/ka2 for large ¢ is of the order of magnitude of 10. That is,
as in the simple shear problem it is the normal stress effects which

change radically as the value of k/C increases.
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CHAPTER VII

EXPANSION OF A THICK SPHERICAL SHELL

7.1 Introduction

The problem of the expansion of a spherical shell has received
considerable attention due to its technological importance. The classical
Hookean elastic solution was obtained in 1852 by Lamé [68] and the solu-
tion for an hyperelastic material was obtained in 1950 by Green and
Shield [69]. The first correct solution for the elastic-perfectly
plastic problem was found by Reuss [5]. In that analysis the total
deformations were assumed to be small. Hil1l [70], [71] obtained a
solution to the elastic-perfectly plastic problem for large total
deformations but retained the assumption that the elastic strains
are small.

A solution is obtained in this chapter for the stress
distribution in an expanded thick spherical shell composed of a
material whose elastic behavior is neo-Hookean and which yields
according to any isotropic yield condition. Due to spherical sym-
metry the stress at any point in the shell is a uniaxial compression
-0 superimposed on a hydrostatic tension so that all isotropic yield
conditions become o = Y where Y is the uniaxial yield stress.

Since the deformation of the sphere is non-homogeneous ,

residual stresses result from unloading from an elastic-plastic state.
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A solution for the residual stresses is also found.

The assumption of incompressibility greatly simplifies the
problem. In-the elastic-plastic region of the shell, the yield
condition and the equilibrium equation are sufficient to determine
the stress solution and it is not necessary to consider the plastic

flow rule developed in Chapter IV.

7.2 Preliminary
Referring to Figure 7.1 let (r,6,6) be a spherical polar

coordinate system and ox; a Cartesian coordinate system.

3

Figure 7.1
Thick Spherical Shell and

Spherical Polar Coordinate System
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Four configurations of the shell, C.1, C.2, C.3, and C.4,
as defined iq section 2.1, are considered.

For a given state of deformation C.3, the solution if no
yielding has occurred, is that found by Green and Shield [69]. Since
the stresses are highest at the inner surface, it is assumed that
yielding begins there. After the onset of yielding Tet a be the radius
of the elastic-plastic boundary which is spherical due to symmetry
and let the radii of this material surface in C.1 and C.4 be A and «
respectively. Similarly let R and x be the radii of the spherical
surfaces in C.1 and C.4 which contain the same material particles as
the spherical surface in C.3 with radius r. The inner and outer radii
of the shell are then denoted by (R;.R,), (risrp) and (1y,1,) in con-
figurations C.1, C.3, and C.4 respectively.

Define the function Q by

R.3.3
and Qr) = [1 + - - 13 (7.2.1)
r

The value of Q at r = " is denoted by Q] and is a measure of the total

deformation of the shell in C.3.
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Let (51,52,53) be the coordinates of a particle referred to

a convected coordinate system [48] defined by

E-':Y‘,
52=et
Ey= 6

where (r,8,6) are the coordinates of the particle in C.3. The co-
variant and contravariant components of the metric tensor referred to
the convected coordinate system are (G ,G1J) ( ,G1J) (g ,gIJ) and
(913’9 ) in configurations C.1, C. 2, C 3, and C. 4 respect1ve1y
Referred to the Cartesian coordinate system the coordinates

of a particle in C.3 are

x] = E] sin 52 cos £3 s

E] sin 52 sin 53 s
x3 = E] cos £2 s

and in C.1 the coordinates are

X] = E]Q sin €2 cos 53 s
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X2 = E]Q sin 52 sin 53 s
X3 = E]Q cos 52 .
From equations (3.2.5) and (3.2.6) and the equation
@€ .1 .3 .
r(=-0, (7.2.2)

the contravariant components of the metric tensor in C.1 and C.3 are

found to be
4 o 0o ]
6'd1= |o -5}3? 0 (7.2.3)
rQ
0 0 = 2] 7
| r-Q%sin ej
and -
1 o 0
[6¥1=| 0 12 o _ (7.2.4)
0 0 1
B resin=e |

7.3 Elastic Region

Let 'Y be the components of the stress tensor in C.3 re-
ferred to the convected coordinate system. The stress in the elastic

region a < r < ry is determined from the constitutive equation



Tij = 2CGij + pgij

From equations (7.2.3) and (7.2.4) this gives

=2t e,
1% = _EQE.Y J% = sin%erS3 ,
r-Q
and T]Z = 113 = T23 =0,

The equilibrium equations (Appendix C) are

T]] 1-r 122 -r sin28133 + %-T]] =0,
122 9 - sinecoseT33 + coterzz =0,
33  _
and T 3" 0.

Substitution for the stresses in equation (7.3.4) gives

dp _ 59.[95:293113
dr r QZ )

Equations (7.3.5)
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(7.3.1)

(7.3.2)

(7.3.3a,b,c)

(7.3.4)

(7.3.5)

(7.3.6)

(7.3.7)

and (7.3.6) are satisfied identically due to symmetry.

Using equation (7.2.2), the first equilibrium equation (7.3.7)
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becomes

dp _ 3
@ = 0,

integration of which gives
. 4
p=-20Q" +4CQ + C3 s (7.3.8)

where Cg is a constant of integration.

It is further assumed that the outer surface of the shell

11

is stress free so that t' =0 at r = ry.

Letting
Qz = Q(rz)
it follows from (7.3.1) that
4 -

ZCQ2 + p(rz) =0
and from (7.3.8)

¢, = - €Q,% - 4cq

3 2 2"

Thus
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p = - c(a*0,%) + cla-g,) |
and the mixed components of the convected stress tensor, which in this

problem are identical to the physical components, are after being

non-dimensionalized

k= Eeheh ¢ G0y (7.3.9)
and Tzz/k' = 59-3%-- %n (Q4+024) + Eg-(Q-Qz)
= Pk (7.3.10)

At the elastic-plastic boundary
Tp=-T7° Y,

where Y = 2k', k' being the Tresca yield stress in pure shear. Thus

from equations (7.3.9) and (7.3.10) the equation

03+ + Q" -1=0 (7.3.11)

is obtained, where 03 = Q(a). The value of Q3 which must lie in the
interval (0,1) may be found numerically from equation (7.3.11) for a

given value of k'/C. Once 03 is known, the value of a is found from
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equation (7.2.1) which at r = a may be rearranged to give

3
1 (9 }1/3 .

a:—-

R
The stresses in the elastic region and the radius of the

elastic-plastic boundary can thus be found for any given state of

deformation as specified by Q].

-7.4 Elastic-Plastic Region

The yielded region of the shell in C.3 is given by
rHsrs< a,

and in this region the elastic strains are found using C.2 as the
natural state. It has been noted previously that in general C.2
corresponds to a non-Euclidean space so that the components Gij
cannot be found by a transformation of the metric tensor from
Cartesian coordinates to the convected coordinates as was done for
Gij and gij. Instead the neo-Hookean constitutive equation, the
equilibrium equations, the incompressibility of the material, and
the plastic yield condition determine the components of Gij.

In the elastic-plastic region of the shell, rpsr<a,
the stress is determined by the yield condition and the equilibrium
equation.

Spherical symmetry gives that
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dt 2 N 22 . 2, 33 _
- + FT - rt -rsintettt =0
or dT]] 2,2 1
dr - F(T Z-T -I) = 0 . (7‘4“])

and after integration is

with

The constant of integration Cy is determined from the condition
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that r]] be continuous-at r = a. The resulting stress solution is
ks i)+ E (0% - 0% + 8 (0, - 0y
Pkt = Pk =k w2

The components of the metric tensor Gij in C.2 may now be

found. In the yielded region the natural state is C.2 so that
11 = 261 + pglld (7.4.2)

12 .13 23

and therefore G'“, G'~, and G“° are zero.

The condition that the deformation from C.2 to C.3 occur

without volume change gives
g/G =1
where g = det(gij) and G = det(Gij) so that
611622433 rsin%e = 1 . (7.4.3)

Substitution of equation (7.4.2) into the second equilibrium

equation (7.3.5) gives

'%‘%%‘* 20622cot6 - 2CG33sinecose =0
r
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and since 3p/36 is zero from symmetry

33

6°3 = 6%2/5ing. (7.4.4)

Thus from equations (7.4.3) and (7.4.4) it follows that

22 1
6% = : (7.4.5)
P2 6T

The yield condition and equations (7.4.2), (7.4.4), and (7.4.5) give

1 1
20(—= - 6'1) = 2k
(/GW )
or 6'32 . '-‘C— @672 1., . (7.4.6)

This implies that G]] is constant throughout the yielded region and

comparison of equations (7.3.11) and (7.4.6) shows that

(7.4.7)

The constant value of G]]

determined from equation (7.4.7) is hence-
forth denoted by .

A complete solution for the stresses in the shell has thus
been found for any given state of deformation in C.3. It remains now

to determine the residual stresses which result from removal of the
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internal pressure.

2.5 Residual Stresses

It is convenient to introduce another convected coordinate
system defined in a manner similar to the definition of the coordinates

gi. Define the coordinates g% by

£ = 4,
&, =6,
and £3 = ¢

where (2,6,4) are the coordinates of a particle in C. 4 referred to the
spherical polar coordinate system. Furthermore let G"J G'1J and
9.13 be the contravariant components of the metric tensor referred to
the convected coordinates E' in C.1, C.2, and C.4 respectively, and
denote by t ij the contravariant components of the stress tensor
in C.4 referred to this convected coordinate system.

Since the components of the metric tensor in C.2 referred
to the gi coordinate system are known, the components G'ij may be

found from

G'iJ _§____€__
AT
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and since

[d ]
K a 00
[3%—] =10 1 o
13
0 0 1]
if follows that
dn, 2 ]
(5 0 0
H1= [ 0 0
r2%7‘
0 0 1
- rzvﬁ“sinze

1T 0 0
vijq L )
[g]1= 10 = 0
A
1
0 0
| %sing |

The elastic deformation between C.2 and C.4 is isochoric o)

that

gI/GI = ] ,




where g =.det(g%j) and G' = det(G%j)

and therefore

2
dv _ (r
%

dr

Letting T = x/r, the condition of incompressibility gives

1/3
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(7.5.1)

(7.5.2)

Thus the components of G'Ij are, after use of equations (7.4.6) and

(7.5.1)
}14- 0 0
.. 2
ddq o I k'
[G J = 0 )12 (Y + C) 0
|
) Té(y *%—)
dzsinze

In the region of the shell in C.4 which consists of the ma-

terial which yielded in C.3, the elastic strains are referred to the

natural state C.2 so that
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and therefore

SLLEP) L+ p (7.5.3)
T
22 T8 k' 2 33
and th A S (v %)+ -92- = sin‘et>° | (7.5.4)
n n

The equilibrium equations (7.3.5) and (7.3.6), referred to
the g% coordinates are satisfied identically due to symmetry, and the

first equilibrium equation gives

d (1,,d 4 .2 K'y . 4Cy _
2CYH(¥Z)+EIP[-TT(y+T)+EX--O. (7.5.5)

From the definition of T and equation (7.5.1)

so that from equation (7.5.5)

d . 4ty (13-1)2 | aer?
dn n T4 n

and thus

3 .
T 1-T

T -
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Integration gives

3 ' 2
p = Gyl 4 2L LT
T (T-1)
+ ik_i. tan-] (———2T+]) + C5 . (7.5.6)
V3

The radial stress at the inner surface of the sphere in C.4
is zero so that from equations (7.5.3) and (7.5.6) the integration
. constant C; may be determined. This results in the following stress

solution for the region 2, < x < a,

et

S T B R B
t]/k "kl (;A"TT)'*'kl (T T])
1
(147472)(1,-1)2
2 1
t3Inl 7 3
(14T,#7,%) (T-1)
2T +1
+ 2 rtan”! (Y Cotan? (1] (7.5.7)
V3 -/3 -
and
2 '
t22/k' - t33/k' - t]]/k' - gﬁlz-+ 3%1;.(Y + %TJ . (7.5.8)

kK'T

where Ty = T(x;) .

The value of a is known from the solution in C.3 and a, which

11

appears in T, is to be determined from the continuity of t' ' at 1 = a.



In the region a < 2 < 1, the elastic strains in C.4 are re-
ferred to the natural state C.1 so that the neo-Hookean constitutive

equation in this region is
ti‘j = ZCGI']J + p9|1\j .

The components of G'ij , in analogy to the components of G1j

are found to be

. 0
.. ]
vija _ |0 - 0 s
('] = 1°S
]
0 0 ————r—
nzszsinze

where S = R/n .

that

S =

The stresses are found in a manner similar to that used to

obtain the stresses in the elastic region of C.3.

a3.43 |1/3

.]+
n

t]]/k' = & (54-524) + ﬁ-‘.:- (5-5,)

From the incompressibility of the material it follows

This gives

137

(7.5.9)
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2 003 a0 20 C b By . AC
and to/k' = t7H/k! = ETEE - (S +52') T (S-Sz) , (7.5.10)

where S2 = S(az) .
If the value of a is known, equations (7.5.7), (7.5.8),

(7.5.9), and (7.5.10) specify comp]ete]y}the stress solution. Con-

1

tinuity of t'° at 2 = a gives

1 1
Y=g - =) + &7 - 7))
;;I n* N
" (1+T3+T32)(T]-1)2 ” L 2T | 2T
+ 3C Tn [ 2 2] + [tan (—_')' tan- (_‘)]
(11, 2)(1,-1)% v ST i
- (534-524) - 4(35-5,) = 0, (7.5.11)

where T3 = T(a) and Sy = S(a). The only unknown in equation (7.5.11)

is a and it may be found using a numerical procedure. The computer
program which was written to evaluate the numerical results for this
problem uses an interval halving technique [72] to solve equation (7.5.11)

for a.

7.6 Possibility of Further Yielding on Unloading

It is found that the assumption that yielding does not occur
during unloading from C.3 is not always valid. The alterations re-
quired in the residual stress solution when yielding does occur are

discussed in this section.
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If it is found using the analysis of section 7.5 that the
yield condition is violated by the residual stress solution then the
solution in the region 2, < 2 < a must be considered in two parts.

In C.4 the region in which further yielding occurs upon unloading

is assumed to be given by

The stress solution in the region

is given by equations (7.5.3), (7.5.4), and (7.5.6) but the integration
constant C5 now has a different value which is yet to be determined.

At n = b the stresses satisfy the yield condition

ty-t,= 2k, (7.6.1)

which gives

+ bkt r-0

o T4 + o T , (7.6.2)

where Ty = T(b). The value of T, may be found from equation (7.6.2)

using a numerical procedure.



Using equation {7.5.2) the following equation is obtained

which determines the value of b.

In the yielded region, IR < b, using the yield condition
(7.6.1) and following an analysis similar to that used to obtain the

stresses in the elastic-plastic region of C.3 gives

1 . o n
t',/k' = -41n (ZT) ,

2 2 3 = Ay
and t 2/k =t 3/k = -4-1n(n]) 2 .

The new value of the integration constant Cg in equation

1

(7.5.6) is found from continuity of t' ' at o = b so that in the region

b < n < a the stress solution is

e B e s -

T T4 4
+30n [ 5 5] + — [tan” (=—) - tan" (——)
(]+T4+T4 Y(T-1) V3 -/3 -3
+4 0 (G5)
1
2 00 W3 pu b ., 2T N
and t/k' =tk =t K H Ea- (Y ) -

I

140
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The condition that the radial stress be continuous at 2~ = a

gives
C 1 ] 4Cy (1 ]
( = ) + T ( - "")
& T," T, K 3T
2 2
(14T +T ) (T,-1) 2T +1 2T ,+1
+ % Tn ? 32 : 5] * L [tan! (2 - tan1(—4 )]
(1+T4+T4 )(T3-1) V3 -/3 -/3
a 4 . 4 _ .

&

in which a is the unknown. Once a is found from equation (7.6.3) the

complete residual stress solution is known.

7.7 Discussion

A computer program was written to evaluate numerical results
for the stress solutions obtained in this chapter. These results are
shown in Figures 7.2 to 7.18.

The stress solutions in C.3 for various values of Q] and the
associated residual stress solutions are given for shells with RZ/R]
equal to 2 and 10, with values of k'/C equal to 0.1, 0.5, and 1.0.

Figures 7.14 and 7.15 which give P/k' versus u/R] where
P and u are the internal pressure and the displacement of the inner
surface respectively. Al11 the shells considered are seen to become
unstable before they become fully plastic. That is, a point is reached

during loading at which the internal pressure required to maintain a



given deflection decreases with increasing deflection. For example a
shell with RZ/R1 = 10 and k'/C = 1.0 does not become fully plastic
until u/R] equals 8.186 but becomes unstable at about u/R-I = 1.8.
Thus the large elastic strains associated with values of k'/C of

the order of 0.1 to 1.0 result in significant changes in the surface
area of the shells which have a considerable weakening effect.

The expansion of a shell beyond the elastic 1imit results
in a strengthening of - the shell after unloading in that a higher
internal pressure is required to cause yielding in the shell upon
renewed loading because of the residual stresses in C.4. For the
classical elastic-plastic problem, Hi11 [70] has noted that a shell
may not be strengthened by more than a factor of two. That is
P*/Po < 2 where P, is the internal pressure in the state C.3 for
which the material at the inner surface will be just on the point of
yielding if the internal pressure is removed, and Po is the internal
pressure at which yielding begins during the first loading of.the
shell. In the small strain theory where superposition of stress solu-
tions is possible, P, is also the pressure at which yielding occurs
during a second loading of the shell., Reuss [11] has shown that this
maximum strengthening can be obtained only if R2/R1 > 1.701.

The solution found in this chapter reduces to that from the
small strain theory. Using k'/C equal to 0.001 which is of the same
order of magnitude as that for most metals, the solution found here

gives P*/P0 equal to 2.00 and a critical shell thickness given by

142
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1.81. For shells with R2/R] of the order of 1 and with k'/C << 1
the values of a.and a are almost identical and a small numerical
error in the value of a is likely to produce significant errors in
the residual stress solution. It is believed that this is the reason
for the small discrepancy in the critical shell thickness when
k'/C = 0.001.

In Figures7.16 to 7.18, for shells with k'/C equal to
0.1, 0.5, and 1.0 respectively, curves are drawn which give uO/R]
and u*/R] as functions of R2/R] where Uy is the inner displacement
in C.3 at which yielding first occurs and u, is the inner displace-
ment in the state C.3 at which yielding first occurs upon unloading.
The ratio P*/Po is also plotted as a function of R2/R].

It is seen that unlike in the small strain theory P*/Po is
not constant but decreases with increasing k'/C and for a given k'/C
decreases with increasing RZ/Rl’ reaching a constant value as R2/R]
becomes of the order of 10 or more. Similarly the value of R2/R]
below which no yielding can occur upon unloading is also dependent

on k'/C becoming larger as k'/C increases.
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- CHAPTER VIII

CONCLUDING REMARKS

As indicated in Chapter I, the motivation for the development
of a theory for elastic-plastic flow with finite elastic strains is
twofold. Firstly there is the possibility of finite elastic volume
change occurring in certain explosive metal forming processes and the
work of Lee [25], [26], [27] is concerned in part with this phenomenon.
Some of the work in this thesis is also applicable to this problem since
although the assumption of elastic incompressibility is made in Chapters
IV to VII, the kinematics in Chapter II and the thermo-elastic considerations
for an elastic-plastic material in section 3.7 are not so restricted and
may be used as a starting point of a general theory in which elastic
incompressibility is not assumed. Furthermore the development of the
flow rule (4.2.4) may be generalized [76] to include the possibility of
finite elastic volume change,

Even though the development of such a theory is possible it
is felt that the solution of actual boundary value problems using such
a theory may be intractable since it is in general extremely difficult
to obtain solutions in the theory of finite strain elasticity for com-
pressible materials.

Two problems of interest for which such a theory may be re-

quired are the propagation of one dimensional elastic-plastic waves in
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a plate due to an explosive charge on one of the plate surfaces and the
explosiye expansion of a spherical cavity in an infinite elastic-plastic
medium. Lee [26], [27] has discussed the first problem and the latter
has been considered by Hunter and Crozier [77] as well as in a com-
prehensive review by Hopkins [78]. Only small elastic strains are
considered in these two works.

The development of a more general theory for elastic-plastic
materials is also the result of indications that some elastomers and
polymers, for certain ranges of temperature, exhibit permanent set
after finite elastic shear strains with little if any elastic volume
change. This is in contrast to the previously mentioned class of
problems in which the reverse situation occurs, that is elastic-plastic
flow with finite elastic volume change and small elastic shear strains.
The possibility exists that an elastic-plastic theory in which finite
elastic shear strains are considered may provide a useful approximation
to the behavior of such materials and the work of Chapters IV to VII,
in which elastic incompressibility is assumed, has been done with these
materials in mind.

The assumption is made in Chapter IV that the materials con-
sidered are rate independent and satisfy Drucker's postulate. At pre-
sent there is no evidence to indicate that for inelastic deformation
the elastomers mentioned necessarily belong to this class of materials
and although in the limited testing cited in Chapter I there was no

indication that these materials were not in this class the question re-
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mains the subject of further experimental work. Furthermore the two
yield conditions discussed in Chapter IV are not based on experimental
evidence and also remain to be investigated experimentally, Temperature
is known to have a significant effect on the properties of these ma-
terials and any testinglmust certainly take this into account especially
with regard to the assumption of rate independence. It is concluded
therefore that considerabje experimental work is required before the
work of Chapters IV to VII may be Tinked with the physical behavior of
any real materials.

Although the theory presented here is limited to perfect
plasticity there is no difficulty in principle in including work-
hardening in the development. There is no experimental evidence how-
ever to indicate that the work-hardening of the elastomers mentioned
is or is not significant.

The neo-Hookean material has been chosen as the mode] for
elastic behavior in Chapters IV to VII because it provides a reason-
able approximation for the elastic behavior of some elastomers and
because it simplifies the mathematical analysis. The inclusion in
the theory of more elaborate models for incompressible elastic be-
havior such as the Mooney material, although likely to result in in-
Creased difficulty in solving actual problems, presents no difficulty
in principle.

Elastic* solutions are known for a number of deformations

*Here the term elastic refers to the general finite strain theory
and not the classical Hookean theory,
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which are included in the five families of deformations [73] which are
possible in any isotropic incompressible elastic material** under the _
action of surface tractions only. Among these are the extension, in-
flation, and torsion (or shear) of a hollow cylinder, and the bending
of a cuboid. An elastic-plastic solution to a problem cannot be found
unless the elastic solution is known and these existing elastic solu-
tions provide a number of problems which may be solvable using a finite

strain elastic-plastic theory such as that developed here.

**For a specific elastic material there may exist deformations which
can be maintained by surface tractions alone but which are not in-
cluded in these five families.
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APPENDIX A

A THEOREM USED IN SECTION 4.4

The following theorem which is used to simplify the plastic
flow rule developed in Chapter IV is now proved.
Theorem: If A, B, and C are square symmetric matrices with B positive

definite, and the principal directions of A and B coincide, and if

1 1

A=BCB™ +B'CB (A.1)
then the principal directions of.the matrix C coincide with those of
A and B.
Proof:
Let x ( a column vector) be in the direction of any one of

the eigenvectors of A, and therefore by hypothesis it is in the di-

rection of one of the eigenvectors of B

~.

Thus there exist scalars

A and A such that

Ax = Ax (A.2)
Bx = Ax (A.3)
-1, _ 1

and B™'x =T X (A.4)
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From equations (A.1), (A.2), (A.3), and (A.4)

There exists a scalar a and a vector y such that
Cx = ax +y

where yx=0. (A.6)

= 20x + (3 By + 287y) . (A.7)
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Premultiplying equation (A.7) by AxT and using the condition
(A.6) gives

y'By + 23Ty =0,

and since B is positive definite Y must be the null vector so that

{g]
(2.9
n
Q
x

That is, x is an eigenvector of C. Consequently each of the eigen-

vectors of A or B has the same directior. as one of the eigenvectors

of C so that ﬁ, g, and 9 are coaxial.
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APPENDIX B

EQUILIBRIUM EQUATIONS IN CYLINDRICAL POLAR COORDINATES

Consider the cylindrical polar coordinate system shown in

Figure B.1.
X
} 3
>r<
/ 2
r
X1
Figure B.1

Cylindrical Polar Coordinate System

Let the quantities gi be defined by
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r"«‘;],
g = 52 s
and zZ= 53

An element of length ds is given by

ds2 = dr2 + r2d62 + dz2 R

so that the metric tensor referred to the cylindrical polar coordi-
nates gi has components
1A 1 2 33
L7 YA M
g
and all other components are zero.
The Christoffel symbols

.i

_ 1 im
Tk =729 (gkm,j+9jk,m'9mj,k)

are thus

2 2

- =1 T _
12 TSy Tp=-r, (8.1)

r

and all other F}k are equal to zero.
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Cauchy's first equation of motion (3.3.3) reduces to the
equilibrium equation

L I
T 5 0

for a quasi-static process in the absence of body forces. That is

N T kd ik

J -
T ’1+Fk1T +l"k11.' '0

so that using equations (B.1) the equilibrium equations in cylindrical

polar coordinates are

1 21 31 1 11 22
T R + 7T ,2 + T )3 + ¥t o o-rio=0,
T]Z’] + 1_22’2 + T32’3 + §_T12 =0,
13 23 33 1 13
T 1 + T )2 + T )3 +—=-1 =90
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APPENDIX C

EQUILIBRIUM EQUATIONS IN_SPHERICAL POLAR COORDINATES

Consider the spherical polar coordinate system in Figure C.1.

173

/

7
~, \

\¢

Figure C.1

Spherical Polar Coordinate System

Let the quantities Ei be defined by

Y‘=£],
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and ¢ =

1]
¥y
w

An element of length ds is given by

dsz 2 2.2 2

= dr® + r®de® + p sin26d¢2

so that referred to the spherical polar coordinates gi the metric

tensor has components

. 2
9]] =91 = 1, 9p0 = -%5 = r2 S r251n 8
with all other components zero.

The Christoffel symbgﬁs are thus found to be

2 ]

T _ 1 _ . 2 = 1
F22--Y‘,I‘33--Y‘S1n9,1-']2-r,

2 _ . 3 _1 3 _
I33 = - sinécose, I3 = F-and Tyg = cote
with all others being zero.

Thus the equilibrium equation

L 4

1
T ¥ 0
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becomes, referred to the spherical polar coordinates 51 ,

31 21,2 1N _ 22 33 _

T .]+'r .2+‘r ’3+cote'r +r‘T - rt -rsinzer 0,
112 + 122 + 132 + 4 T]Z + co’cE)rz'2 - s1necose-r33 =0,
’] ,2 )3 r
13 23 33 4 13 23

and T ’]+.r ’24"1‘ ',3+'FT +2cot6:r =0,
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APPENDIX D

GAUSSIAN QUADRATURE INTEGRATION

The Gaussian quadrature method of numerical integration,
which is known for its simplicity and accuracy, is discussed briefly
in this appendix. )

As a preliminary however, the Lagrangian interpolation poly-
nomial [74] for unequally spaced data must be considered.

If data Yi2 Ygs cees Y, are known at points X1s Xos uny X
which are not necessarily equally spaced then a polynomial ¢n_](x)
which is of degree n-1 may be fitted through these points. Such a

polynomial is the Lagrangian interpolation polynomial

(x-xz)(x-x3) e (x-xn)
(x]-xz)(x]-x3) ces (x]-x67’y1

¢n_'| (x) =

(x-x])(x-x3) . (x—xn)
+ — y
(xz-x])(xz-x3) ce e (xz-x;7' 2

(x-%;)(x=x5) ... (x-x._1)
+ y
(Xn-X{)(xn-xz) ces (xn-xn_{) n

or ¢p-1(x) = E (D.1)
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where the Lagrangian coefficients Li(x) may be written as

_ 8(x)
Lix) = (x=x; JBT(X7)

and

B(x) = (x-x])(x-xz)(x-x3) “e (x-xn) . (D.2)

Since an integral

b
I-= J f(s) ds
a
may always be put in the form
+1
I= I f(x) dx (D.3)
by the change of variable
X 2s - (a+b ,

only the integral (D.3) is considered in the following.
The question arises, how may the integral I be put in the

form
+]
f(x)dx = w]y(x]) + wzy(xz) + ...+ wny(xn) (D.4)
-1
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so that it is exact for f(x) as high a degree polynomial as possible.
For n points X1s Xgs «ev 5 Xy @ polynomial ¢n_](x) of
degree n-1 determined by equation (D.1) may be fitted through the
corresponding ordinate points. If the integrand f(x) is a polynomial
of degree n-1 or less then ¢n_](x) and f(x) are identical. However if

f(x) is a polynomial of degree 2n-1 or less it may be written as
f(x) = ¢n_](x) + B(x) zn_](x) ) (D.5)

where B(x) is a polynomial of degree n as given by (D.2) and zn_](x)

is a polynomial of degree n-1. Integration of (D.5) gives

+]
n
f f(x)dx = J wiy(xi) tR_p
1 i=1
where +]
wi = [ L0 o (0.6)
and +1

Rn-] B I] B(x)Zn_](x) dx .

The term Rn_] is the error which results from representing the
function f(x) by the polynomial ¢n_](x) . A sufficient condition
that R,.1 be zero is that B(x) be a Legendre polynomial of degree n

since the Legendre polynomials, which may be found from
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1 d" ;.2 .n
P (x) = — — (x"-1
n(x) 2nn!dxn( )",
have the property that
+1
Pn(x) xMdx = 0
-1

for all m< n .
If B(x) is chosen equal to Pn(x) then the values ofvx]. X3

..» X are known-since they are the roots of the polynomial Pn(X).

n
If data are chosen at these n points and the weighting coefficients

w; are found from equation (D.6), the integration formula (D.4)

will be exact if f(x) is a polynomial of degree 2n-1 or less. This
partly explains the accuracy of the method since most other integration
formulae using n data points are exact only if the integrands are
polynomials of degree n-1 or less.

The roots X; of the Legendre polynomials and the weighting

factors W; are readily available in tabulated form [75].
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APPENDIX E

NEWTON'S INTERPOLATION FORMULAE

Let Yo» ¥1s -4 ¥, be the values of the function f(x) at
n+1 points Xgr X sees X which are equally spaced by a distance h.
It is possible to approximate the function f(x) by a polynomial ¢n(x)
of degree n so that values of f(x) at intermediate values of x may be
estimated. This is the basis of Newton's interpolation formulae.

The derivation of these formulae is simplified by the use
of three operators, E the shift operator, A the forward-difference

operator, and V the backward-difference operator. These are defined

by
E f(x) = f(x+h) ,
Af(x) = f(x+h) - f(x) ,
and vf(x) = f(x) - f(x-h) .

Integer powers of the operators A and V are defined by

AME(x) = Am']f(x+h) - Am']f(X) ’
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and v OV(x) = Vm']f(x) - Vm-]f(x-h) ,

where m is an integer,

Furthermore integer powers of E are defined by

Emf(x) = f(x+mh)

and extending this to non-integer powers gives

E*f(x) = f(x+ah)

where o is any real positive number.

Two important relations between the operators E, A, and v
are

A = (E-1) (E.1)

and V= (l-E']) .

These are easily verified using the definitions of the operators E,
4, and V,

Consider the following expansion based on equation (E.1)

E* = (142)®
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=1+M+ﬂ%uf+ﬂ%¥ﬂﬂﬁ+n. (E.2)

If o is equal to an integer value n, the above series is finite with

n+1 terms. Applying the operator (E.2) at the point y(xo) gives-

y(xg teh) =[1 + aa + 91%%11 I

a(a-]).ﬁi(a-n+1) A" y(x;) + R(x) (E.S)

where

R = [Hesplgiestl pelelfeonal) oy yt,y)

Denoting by ¢n(x) the first term on the right hand side of equation
(E.3) gives

y(xytah) = ¢ (x) + R(x) .

If a=n, the term R(x) is zero since the series (E.2) termi-

nates after n terms so that the expression

y(x tah) = ¢ (x)

where



187

o(x) = [+ an + BEIL 20y eloecesiloontl) ymyy ) (g0

is exact. Equation (E.4) is called Newtons forward interpolation

formul ae.

A similar expansion of
E* = (1-y) @
gives y{x tah) = ¢_(x) + R(x)

where

op(x) = [1+ oy + 2lel) 2oy aletl)eeilotned) gnyy iy ) (g 5)

Equation (E.5) is called Newton's backward interpolation formula.



