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Abstract 

This thesis describes new FPGA-based architectures for computing biological se­

quence alignments using the Smith-Waterman algorithm and a simplified version of 

the BLAST algorithm. The Smith-Waterman system has been fully implemented, 

achieving maximum performance of 1.5 GCUPS (billions of cell updates per sec­

ond) for amino acid sequences and 5.3 GCUPS for nucleotides. It uses a new design 

based on partitioning the alignment into multiple sections, which allows our system 

to support query sequence lengths of up to 8192 symbols for both nucleotide and 

amino acid alphabets. This is longer than any previously published FPGA-based 

system. We also present a new architecture for computing a subset of BLAST on 

amino acid sequences at a projected rate of 100 GCUPS. This system has been fully 

designed and partially implemented. We experimentally confirm that our simplified 

BLAST implementation is equivalent to full BLAST with minor post-processing 

performed by a host PC. 
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Chapter 1 

Introduction 

1.1 A Brief Introduction to Sequence Alignment 

Comparison between sequences of nucleotides or amino acids is one of the most fre­

quently performed tasks in bioinformatics. Quite often, sequences with unknown 

functionality are compared with databases of known sequences; these are known 

as query and database sequences, respectively. From a biological viewpoint, se­

quences with high similarity are likely to have functional, structural, or evolution­

ary relationships. These similarity measurements are called sequence alignments, 

or simply alignments. 

Many different algorithms for performing alignments have been devised. Two 

of the more important algorithms are the Smith-Waterman algorithm [1] and Basic 

Local Alignment Search Tool, or BLAST [2]. BLAST is a heuristic algorithm that 

offers good accuracy at greatly reduced computational cost [3], and for this reason 

it has become the de facto standard for first-pass sequence database scans. Smith-

Waterman, while having greater computational complexity, is guaranteed to provide 

the most optimal local subsequence alignment between two sequences. It is often 

used to refine results of less accurate alignments, including BLAST, and it remains 

the primary alignment method in processes requiring very high accuracy. Due to the 

relative importance and popularity of these algorithms in bioinformatics and related 

fields, we chose to conduct research into improved hardware-based acceleration. 
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Figure 1.1: Growth of the NCBI GenBank database over time. 

1.2 Motivation 

Sequence alignments are computationally expensive tasks, and the sheer size and 

rate of growth of sequence databases are making software-driven alignments in­

creasingly impractical. A typical operation is to compare a newly-discovered se­

quence with every sequence contained in a database, the largest of which consist of 

thousands or millions of known sequences and billions of base pairs. Furthermore, 

these databases are experiencing exponential growth, doubling in size over periods 

of as little as 2 years. 

As an example of sequence database growth, Figure 1.1 shows the growth of the 

NCBI (National Center for Biotechnology Information) GenBank database, a major 

database of nucleotide sequences [4]. Other major databases, such as the Uniprot 

(Universal Protein) database [5] exhibit comparable volume and growth curves. 

Consequently, there is a high demand for alignment acceleration technology. In 

particular, application-specific hardware can achieve speedup ranging from tens to 

hundreds by performing parallel computation. This research seeks to meet that de­

mand by creating new hardware-based alignment systems for Smith-Waterman and 

BLAST that offer practical improvement over those already available. 
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1.3 Platform 

A reconfigurable platform is ideal for the task of accelerating Smith-Waterman and 

BLAST. One of the main reasons for this is that the same chip can be configured 

to run either algorithm. In addition, both algorithms can be run using nucleotide 

or amino acid symbol sets and a variety of parameters, such as substitution ma­

trices and gap insertion penalties. Accommodating these on a non-reconfigurable 

platform would be difficult. Consequently we chose to conduct this research on an 

FPGA (field-programmable gate array) platform. 

The platform we used for this research is the Opal Kelly XEM3010-1500P, 

which is an experimentation module based around a Xilinx Spartan-3 XC3S1500-

4FG320 FPGA. Our work with BLAST targets the larger Spartan-3 XC3S4000. A 

USB interface and multi-platform API (application programming interface) is pro­

vided for communication with a host PC. 

1.4 Achievements 

Our Smith-Waterman system is based on partitioning the alignment into one or 

more sub-alignments, in which the query sequence is aligned with a segment of 

the database sequence. These sub-alignments are joined together to obtain the final 

result. 

This architecture gives our design two major achievements. The first is that it 

allows our system to support very long query sequences - up to 8192 symbols for 

sequences of both nucleotides and amino acids. This is greater than any previously 

published FPGA-based implementation of Smith-Waterman. The second is that it 

makes our design less sensitive to the speed of the communication link, as each 

sub-alignment requires only a few symbols from the database sequence in order to 

proceed, during which time sequence data continues to be streamed over the link. 

Our system thus achieves higher efficiency than previous designs by reducing or 

completely eliminating the amount of time spent idle while waiting for new data. 

More detailed discussions of this aspect can be found in Section 2.8.2. 
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Our BLAST system provides a unique contribution in the simplified version of 

BLAST we use. By omitting certain aspects of BLAST that are difficult to imple­

ment in hardware, we obtain an algorithm capable of a much faster and simpler 

hardware implementation. Our system architecture of a single hit look-up unit, fol­

lowed by multiple parallel processing paths for determining which hits are candi­

dates to be passed on to a single extension unit, is completely novel. Our two-table 

design for hit look-ups provides more efficient memory use. Finally, our BLAST 

system is the first FPGA BLAST system to implement the two-hit condition for 

extension. 

1.5 Biochemical Terminology 

Several biochemical and biological terms are used throughout this document. The 

purpose of this section is to provide their definitions and clarify their meaning in 

the context of sequence alignments. 

A nucleotide is, from a chemical viewpoint, a molecule consisting of a hetero­

cyclic base, a sugar, and one or more phosphate groups. Nucleotides are the struc­

tural units of DNA and RNA. More generally, a nucleic acid is a macromolecule 

made up of nucleotides - DNA and RNA are the most common types of nucleic 

acid. In DNA, the four nucleotide bases are adenine (A), cytosine (C), guanine (G) 

and thymine (T). In RNA, thymine is usually replaced by uracil (U), which usually 

does not occur in DNA. Sequence alignments using nucleotide alphabets are almost 

always performed on DNA. As such, this document treats nucleotides as the set of 

A, C, G, and T, to the exclusion of U. Hence, any chain of nucleotides discussed in 

this document is referred to as DNA. 

An amino acid, when the term is used in biochemistry, refers to molecules with 

the general formula H2NCHRCOOH, where R is an organic substituent. The 

standard amino acids are a set of 20 amino acids which are directly encoded for 

protein synthesis by the canonical or standard genetic code, making them much 

more important in the study of proteins than general amino acids. This gives rise 

to the 20-symbol amino acid alphabet used to describe proteins and peptides in 

4 



sequence alignments. When the term "amino acid" is used in the document, it 

actually refers to the standard amino acids. 

Proteins and peptides are polymers made up of amino acids in a specific order. 

The exact distinction between the two is a point of some contention in the biochem­

istry community. In its most basic form, the difference is that peptides are short (as 

in they contain fewer amino acids) while proteins are long. Proteins are a topic of 

more interest in sequence alignments than peptides, because their bigger size often 

gives them secondary structural and functional properties that are absent in pep­

tides. Since the focus of this document is sequence alignments, the term "protein" 

is used to refer to any sequence of amino acids, even though shorter sequences may 

be more appropriately called peptides. 
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Chapter 2 

Smith-Waterman 

2.1 The Smith-Waterman Algorithm 

This section contains a brief overview of the Smith-Waterman algorithm and prior 

research conducted into methods of accelerating it. It is intended to give the reader 

sufficient background knowledge to fully understand the hardware architecture de­

vised in this research. For a full explanation of the algorithm, the reader is referred 

to [1] and [6]. 

The Smith-Waterman algorithm is a dynamic programming algorithm used to 

perform sequence alignments. It compares two sequences by computing the dis­

tance between them - the minimal cost of transforming one sequence into the other 

using substitution, insertion and deletion as elementary operations. Each operation 

has an associated cost. 

The mathematical model of Smith-Waterman used in this research is shown 

below: 

H(i,j) = max{0, E(i,j),F(i,j),H(i- l,j - 1) + Sbt(Ai,Bj)} 
(2.1) 

for 1 < i < m, 1 < j < n. 

E(i,j) = max{H{i, j - 1) - a, E(i,j - 1) - /?} 
(2.2) 

for 0 < i < m, 1 < j < n. 
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F(i,j) = max{H(i - l,j) - a, E(i - 1, j) - ft} 
(2.3) 

for 1 < i < m, 0 < j < n. 

Consider two sequences A and B with respective lengths of m and n. The 

Smith-Waterman algorithm calculates all elements of a matrix H, with dimensions 

mxn. H is referred to as the score matrix. A single element of the matrix, H (i, j), 

represents the similarity of two subsequences of A and B ending at respective po­

sitions i and j . 

Border values for all three equations are specified as H(i, 0) = E(i, 0) = 

H{0,j) = F(0,j) = 0 for 0 < i < m,0 < j < n. The Sbt(iJ) term refers 

to a substitution cost table. This table assigns every possible combination of sym­

bols an associated similarity score. Sbt(i,j) is the substitution value for the ith 

symbol in A and the j'th symbol in B. The terms a and /3 are gap insertion costs: a 

is the cost of the first gap, while successive gaps are assigned a cost of (3. This type 

of gap model is generally known as the affine gap model. The use of this model 

with Smith-Waterman is described in [6]. Generally, a has a greater magnitude to 

reflect the assumption that opening a new gap represents greater dissimilarity than 

extending an existing one. The biological reason for this is that insertions and dele­

tions often occur in blocks of multiple residues. Thus, two sequences may have 

multiple regions of high similarity separated by regions of low similarity. This gap 

model reduces the penalties incurred by long gaps, thus increasing the algorithm's 

sensitivity. The matrices E and F are intermediate variables used in the calculation 

of scores involving gapped sequences. 

A simple example of a Smith-Waterman alignment calculation is shown in Fig­

ure 2.1. Two sequences of nucleotides, ACGTTT and ACCTT, are aligned using 

the substitution matrix shown in Table 2.1. Matches are assigned a score of 5, 

mismatches a score of —4. The gap penalties are set to a = — 9 and ft = —2. 

The bolded elements indicate the trackback path from the maximal element 16 at 

H(5,5). The pair of segments with maximal similarity is: 
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Figure 2.1: Score matrix H for the sequences ACGTTT and ACTT. 

ACGTTT 

M i l l 
ACCTT-

This example contains a mismatched pair at (3,3) but no gaps. However, the 

effect of opening a gap can be seen at (2,3), (3,2), and (5,6). The score matrix in 

its entirety contains useful information for alignments between highly similar se­

quences, such as the positions of individual gaps and insertions. However, the vast 

majority of alignments are run with the goal of finding a handful of highly similar 

sequences from a database of many thousands. In this case, the only useful infor­

mation is the maximum score obtained. Sequences generating scores exceeding a 

certain threshold of interest are then investigated further. Because this is by far the 

most common use case, a hardware-accelerated implementation need only return 

this particular value to be useful. 
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Table 2.1: Substitution Matrix for the Example in Figure 2.1 

A 

C 

G 

T 

A 

5 

-4 

-4 

-4 

C 

-4 

5 

-4 

-4 

G 

-4 

-4 

5 

-4 

T 

-4 
-4 

-4 

5 

2.2 Parallel Computation 

A highly useful property of Smith-Waterman is that it is possible to compute many 

elements of H in parallel. Referring to Equations 2.1 - 2.3, we see that each element 

is derived from elements in the preceding row and column. In general, H(i,j) is 

dependent on H(c, d), where 1 < c < i and 1 < d < j . We also note that any 

given element H(i, j) can be computed concurrently with all elements in the diag­

onal H(i — n,j + n). These diagonals run from bottom left to top right through 

the matrix. Figure 2.2 shows the dependency network and diagonals of concur­

rently computable elements. As a consequence, elements along said diagonals are 

independent of one another and may be calculated simultaneously. In this way, the 

alignment is performed in m + n — 1 sequential steps, rather than the m x n steps 

needed to perform it serially. 

2.3 Prior Work 

The inherent parallelism of Smith-Waterman has been exploited in a number of 

previous designs. The most basic method of mapping the concurrent computation 

of diagonal elements is to use a linear systolic array of processing elements (PEs), 

in which one sequence is held statically within the array, while the other is shifted 

through sequentially. The PEs each compute one element of the matrix H per shift. 

At any given time, the elements of H being computed form an independent diagonal 

as described in Section 2.2. This process is illustrated in Figure 2.3. By registering 

the results of each PE, the array forms a modular pipeline to which additional PEs 

can be added without impacting the maximum clock frequency. 

9 



0 0 0 0 

Figure 2.2: Dependency network for H. Elements along the marked diagonals can 
be computed concurrently. 

For a PE to calculate H(i, j), it requires only the results obtained by itself during 

the last time step and from its predecessor in the array during the last two time steps. 

Thus, only local interconnections are required between the PEs. This is the main 

advantage of this architecture, as shorter connections allow the pipeline to be run at 

higher clock frequencies, and less die area is used for routing signals compared to 

an architecture with many global interconnections. 

2.3.1 Comparison of Our System with Previous Systems 

Some early efforts to implement hardware accelerated Smith-Waterman used appli­

cation specific systolic arrays, such as BioSCAN [7] and SAMBA [8]. The system 

in [7] uses a very long array of PEs implemented on ASICs, which is interfaced to 

a workstation using an expansion card. It is very simple in this regard; no partition­

ing or external controller is used. Due to sheer number of PEs, the system achieves 

very fast performance. However, it implements only a very rudimentary ungapped 

matching algorithm, which is likened to ungapped Smith-Waterman. However, it 

shares some commonality with our design in the linear PE array based architecture. 

10 



t ^ n ^ r m n ^ ^ 

H ' h — • • • K 

• 0 Q • • 
• 00'jZf D D 
\npjzfu a n 
mjzfn n a n 
• ' • n a n a 

Figure 2.3: Smith-Waterman computed on a linear array of processing elements. 

The system in [8] uses a 128 PE array implemented on ASICs, with an FPGA 

interface to an external memory chip. Long sequences are handled by partitioning 

along the query sequence. The partitioning algorithm is similar to ours, but only 

data from the last PE is saved to memory, which requires partitioning to take place 

along the query sequence. This results in a loss of flexibility as it places an upper 

bound on the database sequence length, and prevents the database sequence from 

being streamed, as in our system. Real performance is around 300 MCUPS, which 

is much slower than our system but represented a speed-up factor of 10-100 over 

the desktop PCs of the day, which in that respect is comparable to our system. 

In addition, this system implements the complete affine gap penalty and has a PE 

design very similar to ours. 

Other systems exploit this principle using SIMD (single-instruction, multiple-

data) systems. Two examples of such systems with a specific focus on biological 

11 
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alignments are presented in [9] and [10]. These systems are quite different from 

our own in that they use 2-dimensional arrays of systolic processors configured as 

Smith-Waterman PEs. Diagonals are computed literally on this grid by activating 

the appropriate processors at the appropriate time. Clusters of PCs, each equipped 

with an expansion card with a certain size grid ([9] uses 32x32), divide the work 

and share border values to continue the calculation. Although these processors 

achieve greater performance than our system (real performance figures for amino 

acid sequences of about 2.5 GCUPS are reported, compared to a peak of 1.5 GCUPS 

for our system), the 2-D array and PC cluster platform is inefficient and much more 

costly. 

An interesting approach described in [11] runs Smith-Waterman on high-end PC 

graphics cards, achieving parallel computation with OpenGL commands. However, 

this approach is entirely in software, albeit with creative use of commodity hard­

ware, and so has little in common with our system beyond the parallel computation 

principles. Performance also falls well short of modern FPGA implementations, 

including our own (< 1 GCUPS). 

There has also been some previous research performed using reconfigurable 

hardware. An early architecture presented in [12] uses the Splash-2 platform. Like 

[7], it simply uses a long systolic array without any additional logic or control, and 

computes edit distance rather than performing a full Smith-Waterman alignment. It 

does not have any provisions for sequences longer than the array - query sequences 

are limited to 384 symbols or less. 

TimeLogic has developed hybrid workstations with integrated FPGAs for ac­

celerating Smith-Waterman and other bioinformatics applications [13]. These sys­

tems are essentially workstation PCs with deeply integrated FPGAs for accelerating 

application-specific tasks. The FPGAs have the advantage of rapid access to the 

workstation's other resources such as RAM. Like [8], the alignment is computed 

on a systolic array, and intermediate results are written to RAM and read back into 

the array as needed. One advantage is that with access to a large pool of RAM, 

the maximum sequence size of this system is unlimited for practical purposes. The 

12 



disadvantage, of course, is that an entire workstation is needed to support the FPGA 

calculation. 

More recently published designs, running purely on FPGAs, include [14] and 

[15]. The system in [14] uses a pipelined PE design with 4 stages. This design re­

quires the system to work on 2 segments of the alignment simultaneously to avoid 

idle cycles. Long query sequences are handled by splitting the query into multi­

ple segments and aligning each against the entire database, as in [8]. One conse­

quence of the multi-threaded computation and partitioning is that some segments 

must overlap previous segments to avoid losing data, which causes a loss of effi­

ciency. In addition, the system only operates on DNA sequences. Performance is 

3.86 GCUPS on a Xilinx XCV2000E FPGA, but due to inefficiencies in this system, 

our system achieves equal or better performance with a smaller FPGA. 

The design presented in [15] is both the most recently published and the most 

similar to our own. This system uses a single-cycle PE design, with the main in­

novation being that each PE stores only the column of the substitution matrix cor­

responding to the query symbol rather than the entire matrix. Long sequences are 

handled by storing multiple columns per PE, giving this design a maximum query 

sequence length of 1512 symbols with affine gap penalties, compared to our limit 

of 8192. The performance of this system is about 3 times greater than ours, though 

it uses an FPGA about 3 times as large. 

The main contributions of our design are partitioning the database sequence and 

using block RAMs to achieve the longest maximum query length of any previously 

published FPGA architecture. The remainder of this chapter describes our design 

in greater detail. Our design also gives the unique benefit of desensitization to 

slow communications links, as well as the portability and economy of running on a 

lower-end FPGA. 

2.4 Our Design 

For our design, we sought to improve upon these earlier designs. One common 

deficiency lies in the maximum supported sequence lengths. As stated in Section 

13 



Query Sequence 

to 

ra 

T G 

n n • 0' 

PE register states saved / loaded 

• • • 
Figure 2.4: The alignment is partitioned into multiple sub-alignments in which the 
query sequence is aligned with database subsequences of length N, where JV is the 
length of the PE array. A dual-port RAM is used to join successive slices. 

2.3, one sequence must be stored statically inside the PE chain. As long as the 

PE chain is longer than one of the sequences, the alignment can be computed in a 

single pass of the other sequence through the PE chain. However, many identified 

sequences have lengths of hundreds or thousands of symbols, which is far too much 

for even the largest FPGAs [4]. Some way of handling sequences longer than the 

number of available PEs is obviously required. 

Our design addresses the limitation on query length by dividing the computa­

tion of H, E and F into multiple passes. Consider a linear PE array of length N, 

a query sequence A of length Q, and a database sequence B of length D. Com­

putation of the score matrix H is split into \D/N] sections, each with a query 

sequence of length Q and a database sequence of length N. Computation of each 

section is carried out by rotating the database sequence segment through the PE 

array continuously, while a separate controller component loads symbols from the 

query sequence into the PEs. The individual sections are joined together using a 

scratch buffer to store register states from each PE. Because the scratch buffer must 

handle a read and a write per clock cycle, a dual-port RAM is used. When a PE 
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performs a computation for an element adjacent to the "border" between sections, 

it writes its register state to the scratch buffer. Likewise, when the next section is 

evaluated, the PEs read their initial register states from the scratch buffer. These 

transactions are controlled by a central controller. With each initial state loaded 

into a PE, the appropriate query symbol for the current state of the calculation is 

loaded as well. In cases where Q > N, a single PE may load a previously saved 

state multiple times per slice. The query sequence is stored in a separate RAM. 

This process is illustrated in Figure 2.4. 

Dividing the alignment in this manner also desensitizes our design to slow com­

munications links. Before computation begins, the entire query sequence is trans­

ferred and stored in memory. Since the query sequence is typically much shorter 

than the database it is being aligned with, this delay is not significant compared 

to the total computation time. Once the first N elements of the database sequence 

have been transferred, computation of the first section of the score matrix begins. 

As long as the next N elements of the database sequence are received before the 

first section is complete, computation of the next section may begin without having 

to pause for more data. Thus, for sufficiently long query sequence lengths, the per­

formance of our system is limited by the rate of computation rather than the speed 

of the data link. However, for shorter query sequences, the system must pause at the 

end of each section until the next database segment is received. Pausing the system 

is accomplished by disabling all registers in the PE array. 

The FPGA we targeted for our architecture, the Xilinx Spartan-3 XC3S1500, 

features integrated block RAM modules that meet our memory requirements. The 

RAM used to store the query sequence, the dual-port RAM for storing intermediate 

PE states, and the I/O buffers are synthesized using these block RAM modules. 

Thus, no logic resources are consumed by memory and no off-chip memories are 

needed. 

All communications between the system and host PC pass through FIFO input 

and output buffers. Reserved command words are used to delimit the begin and end 

of the query and database sequences. Computation begins automatically once the 
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Figure 2.5: Top-level system architecture. This consists of N processing elements, 
a control element, and RAMs for storage and I/O buffering. 

system has received the first N symbols of the database, and upon completion the 

result is written to the output buffer. The Opal Kelly XEM3010-1500P development 

board uses a USB interface to communicate with the host. HDL modules for the 

USB interface and communication endpoints are provided in the Opal Kelly API. 

A top level diagram of our design is shown in Figure 2.5. 

2.5 The Processing Element 

In this section, we will examine the individual Smith-Waterman processing element 

(PE) in detail. A PE implements all the operations needed to compute one element 

H (i, j) of the score matrix per clock cycle, and forward the necessary results to the 

next PE in the array. In addition to the basic Smith-Waterman functionality, our PE 

design also reports the location of the maximal element. 

Figure 2.6 shows a simplified RTL schematic of the processing element. Ports 

on the left are inputs from the previous PE, and ports on the right are outputs to 

the next PE (except for the first and last PE in the array, which are connected to 

the controller). The ports at the top are inputs and outputs to the query and scratch 

RAMs. 

An input from the previous PE is equivalent to an input from the previous col-
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Figure 2.6: Simplified RTL schematic of the processing element. 
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umn of the result matrices. Hence, the inputs H_Lef t i n and E_In are equivalent 

to H(i, j — 1) and E(i, j — 1), respectively. Likewise, a delay of one clock cycle is 

equivalent to shifting one row down. The signal labeled H_Diagonal, equivalent 

to H(i — 1, j; — 1), is obtained by registering HLLef t i n . Note that the calculation 

of F is internal to the PE, since it is dependent only on prior results from the same 

column. 

In addition to calculating H, E, and F, each PE also stores a copy of the highest 

similarity score it has seen in the evaluation thus far. It is registered and output to the 

next PE along with the calculation results, and at each step it is compared with the 

current similarity scores. This is to ensure that the value of the best local alignment 

is propagated through to the controller. 

Calculation results are stored in a register file. This links the PEs together in a 

modular pipeline, so adding or eliminating PEs does not affect the maximum clock 

frequency of the pipeline. Results needed in future calculations are routed back into 

the PE for use during the next clock cycle. One consequence of this design is that 

it increases the number of sequential steps needed to perform the alignment from 

n+m—lton+m+1. One extra clock cycle is needed to compute the final value of 

H(i,j) using the results stored during the last cycle; another is needed to propagate 

the final result from the last PE to the output. The overall impact on performance is 

minimal - performance scales with N x -^- j - instead of N. 

When a PE performs a computation for an element adjacent to the "border" be­

tween two sub-alignments, its register state is written to the scratch RAM. Likewise, 

when the next section is evaluated, the PEs read their initial register states from the 

RAM and the new query symbol is loaded. Each PE has an input signal to control 

when register states are loaded from RAM. There is also a pause signal which dis­

ables all registers. This is used when the system must wait for more sequence data 

before proceeding. 
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2.5.1 Substitution Matrix Design 

To calculate the value of H(i, j), a PE requires a lookup from the substitution ta­

ble Sbt(Ai, Bj), which contains similarity scores for each possible combination of 

symbols in the two sequences. Because every PE must perform a lookup from this 

table each clock cycle, every PE contains its own local copy. 

Substitution tables in our system are described by a VHDL file containing 

nested c a s e statements. These VHDL files are generated automatically by a Py­

thon script, using scoring data provided in tabular form, much like that shown in 

Table 2.1. Thus, it is very easy to generate substitution matrices with arbitrary 

scores and an arbitrary number of symbols. The resulting hardware is in the form 

of distributed ROM synthesized from the reconfigurable portions of the FPGA. 

The decision not to use reprogrammable substitution matrices was motivated by 

several factors. A substantial amount of research has been conducted into substitu­

tion matrices, with the consensus that the choice of matrix has a significant effect 

on the accuracy and usefulness of alignment results for both nucleotide [16] and 

amino acid matrices [17], [18]. Furthermore, there is also some benefit in scaling 

the substitution scores dynamically, which can only be accomplished on fully repro­

grammable matrices. Two examples are varying substitution scores with respect to 

their positions in the sequences [19], as well as scaling the entire matrix depending 

on the total lengths of the sequences [16]. 

Therefore, it would be highly useful to have reprogrammable score tables, so 

that the score set best suited to a particular application could be loaded and used. 

This would be possible by storing the substitution matrix in a RAM, but this ap­

proach faces several disadvantages; particularly increased resource consumption. 

The most vital disadvantage is that fewer resources would be available for the 

scratch buffer or for PEs. If block RAM is used, less is available for the scratch 

buffer, which is contrary to our primary design goal of accommodating long se­

quence lengths. Furthermore, since block RAM modules on our platform have 1 

cycle of latency on reads [20], our PE design would have to accommodate this by 

implementing pipelining, which would thus increase scratch memory requirements, 
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reduce maximum sequence length, and require more complicated control logic. 

Distributed RAM (that is, RAM synthesized from the configurable logic por­

tions of the FPGA) faces similar disadvantages. Reprogrammable memory con­

sumes twice as many resources as ROM [20], and thus would greatly increase the 

footprint of each PE. This has an especially large impact on the resources consumed 

by the larger amino acid substitution matrices. Using distributed RAM for the sub­

stitution matrices would thus reduce the length of the PE chain by an unacceptable 

amount. 

In addition, as our system uses a reconfigurable platform, it is possible to syn­

thesize designs with any desired substitution matrix and rapidly reconfigure the 

hardware. Configuration files containing standard matrices such as the BLOSUM 

series [21 ] can be kept on the host PC, and used to reconfigure the device as needed. 

Granted, this method is not as flexible, but having a wide array of pre-synthesized 

matrices at the user's disposal partially negates this inflexibility. 

2.5.2 Gap Penalty Design 

Gap penalties are similar to the substitution matrix in that it is desirable to have them 

reconfigurable. Optimizing gap penalties for a specific application has been shown 

to significantly increase performance in Smith-Waterman [18]. Gap penalties them­

selves are implemented with subtracters, as shown in Figure 2.6, so making them 

reconfigurable is simply a matter of storing the gap penalty in a register. Unlike the 

substitution matrix, this does not result in any serious design issues. Gap penalties 

are reconfigured in all PEs simultaneously by a command from the controller. Each 

PE has control inputs for loading a and /?, as well as a dedicated input for the new 

gap penalty. 

2.6 The Controller 

The controller unit is a finite state machine (FSM) responsible for managing the 

input of data into the PEs and collecting results. This includes unpacking sequence 
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Figure 2.7: Controller states at various points in the alignment calculation for a 
system with iV = 4. 

data from an input pipe, managing transactions between the PEs and the query and 

scratch memories, and placing the final results in an output pipe. 

The states are soft-coded to take advantage of optimization efforts in the synthe­

sis tools. A list of the states used in the controller, along with brief descriptions for 

each, is shown in Table 2.6. In addition, Figure 2.7 illustrates the relationship be­

tween the controller state and progress of the calculation. A state transition diagram 

is shown in Figure 2.8. 

The state SW_DONE is the system's idle state. Transitions out of this state are 

triggered by reading a command word from the input pipe. Command words are 
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Table 2.2: Smith-Waterman controller states. 

State Label 

SWJDONE 

SW_GET_QUERY_LEN 

SW_LOAD_QUERY 

SW_RUN_LOAD 

SW_RUN_LOOP 

SW_RTJN_PRE_LOAD 

SW_RUN_PRE_LOOP 

SW_RUN_FLUSH 

S W_WRI TE_DB_LOCAT I ON 

S W_WRI TE_QUERY_LOCAT I ON 

SW_WRITE_SCORE 

SW_LOAD_ALPHA 

SW_LOAD_BETA 

SW_RESET 

Description 

System idle state. 

System is awaiting the length of the query 
sequence. 

System is receiving the query sequence and 
loading it into RAM. 

Alignment is running, with new database 
subsequence being loaded into PE array. 

Alignment is running, with database sym­
bols being looped from the end of the PE ar­
ray back to the beginning. 

Transitional state between SW_RUN_LOOP 
and SW_RUN_LOAD. 

Transitional state between SW_RUN_LOAD 
and SW_RUN_LOOP. 

State used at the end of a calculation to flush 
pending results from the PE chain into the 
controller. 

System is writing the DB sequence index of 
the maximum to the output pipe. 

System is writing the query sequence index 
of the maximum to the output pipe. 

System is writing the maximal alignment 
score to the output pipe. 

System is loading a new value to be used for 
the gap penalty a. 

System is loading a new value to be used for 
the gap penalty f3. 

System is resetting. All registers are set to 
their default values. 

available for the host to begin a query sequence ( c t r l S t a r t Q u e r y ) , begin a 

database sequence ( c t r l S t a r t D B ) , and load new values of a and /?, which are 

labelled ( c t r l L o a d A l p h a and c t r l L o a d B e t a respectively). 

Upon reception of c t r l S t a r t Q u e r y , the controller state transitions imme­

diately to SW_GET_QUERY_LEN. The next word from the input pipe is read and 
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Figure 2.8: Smith-Waterman state transition diagram. 

interpreted as the length of the incoming query sequence. The state then transi­

tions unconditionally to SW_LOAD_QUERY, in which words from the input pipe are 

read, unpacked into individual symbols and written to the query RAM. The previ­

ous query sequence, if one was present, is overwritten. This continues until a null 

symbol is detected by the controller, indicating the end of the sequence. The state 

then transitions back to SWJDONE. 

The states SW.LOAD.ALPHA and SW_LOAD_BETA are used in updating the 

gap penalty registers inside the PEs. Upon reception of c t r l L o a d A l p h a or 

c t r l L o a d B e t a , the corresponding state transition is made and the next word 

is read from the input pipe. This is the new value of a or f3. On the next clock 

cycle, the new value is loaded into the PEs, and then the system transitions back to 

SW_DONE. 

The reception of the command word c t r l S t a r t D B triggers an immediate 

transition to SW_RUN_LOAD, and begins the alignment calculation. The address 

pointers for the query and scratch memories are reset, and the controller loads the 

first query symbol and initial register state into the first PE. If this is the first segment 
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of the alignment, the initial register state is set to 0 instead of read from the scratch 

memory. On the next clock cycle, the controller feeds the first database symbol into 

the first PE, along with initial inputs of 0 for H_Lef t i n and E_ln. In addition, the 

controller loads the second query symbol and initial register state into the second 

PE. This pattern continues, with the controller loading query symbols and initial 

states into the PEs one step ahead of the database, until the last PE in the chain 

has been loaded. After this point, the system transitions to SW_RUN_PRE_LOOP. 

In the first occurrence of this state, the controller stops reading new symbols from 

the input pipe and begins writing PE register states to the scratch memory. Note 

that this is the point in the alignment at which the first cell at the boundary between 

two database segments is calculated (see Figure 2.7). In addition, the system is not 

ready to begin looping database symbols yet, as the first database symbol has only 

propagated through to the last PE. Two more cycles are needed - one to complete 

pending calculations in the PEs, and another to load a new query symbol and reg­

ister state into the first PE, as a PE cannot perform a calculation and load a register 

state at the same time. Note that as a consequence of this delay, a bubble is created 

in the PE pipeline where one PE in the chain is being loaded instead of calculat­

ing. In light of this delay, output from the last PE is routed through a register in 

the controller before being input into the first PE. The system then transitions to 

SW_RUN_LOOP. 

In SW_RUN_LOOP, database symbols and other outputs leaving the last PE are 

looped back into the input of the first PE. There is one read from the query and 

scratch memories per cycle, along with one write to the scratch memory. The ad­

dress pointers for each are incremented after each operation. Computation pro­

ceeds much as it did in SW_RUN_LOAD, with the controller loading query symbols 

and register states ahead of the database and writing boundary values to the scratch 

memory. The difference is that the inputs to the first PE come from the outputs of 

the last PE, instead of having database symbols read from the input pipe and the 

other inputs set to 0. 

The state transitions to SW_RUN_PRE_LOAD once the end of the query sequence 
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is reached. This state prepares the system for a return to the SW_RUN_LOAD state 

by resetting the query and scratch read address pointers, and performing a read 

from the input pipe to obtain new database symbols if necessary. It is otherwise 

equivalent to SW_RUN_LOOP. It transitions unconditionally to SWJRUN_LOAD. This 

cycle of four states, from SW_RUN_LOAD to SW_RUN_PRE_LOOP to SW_RUN_LOOP 

to SW_RUN_PRE_LOAD and then finally back to SW_RUN_LOAD, is repeated until a 

null symbol is received, indicating the end of the database sequence. 

In order to simplify the bookkeeping of address pointers, database sequence 

data, and the system structure, it is assumed that both the query and database se­

quence lengths are integer multiples of N, where JV is the number of PEs in the 

system. It is the responsibility of the host to round sequences up to the nearest 

multiple by padding with the symbol N, which has a negative similarity score when 

aligned with any symbol, including itself. A consequence of this assumption is that 

the end of the database will always be detected in the SW_RUN_PRE_LOAD state. 

When this happens, the system enters the SW_RUN_FLUSH state. This state flushes 

pending results out of the PE chain by counting down clock cycles from N. When 

the countdown reaches zero, the system transitions to a result writing phase. The 

first state is SW_WRITE_DB_LOCATlON, in which the database index of the max­

imum is written. SW_WRITE_QUERY_LOCATION and SW_WRITE_SCORE follow 

immediately afterwards, after which the system state returns to SW.DONE. The host 

can then initiate a new command. 

2.6.1 Location Finding 

One of the controller's features is the determination of the location (that is, the 

indices within the query and database sequences) of the maximal element within the 

score matrix. This information is useful for post-processing, because it reveals the 

subsequences of interest, and further examination can be concentrated in that area to 

the exclusion of the rest of the sequences. In alignments with multiple occurrences 

of a certain maximum, only the first one seen by the system is reported. 

Location finding is accomplished by having each PE tag new maxima with their 
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node IDs. The node ID is simply the position of the PE within the chain, from 0 

to N — 1. This node ID is propagated forward along with the maximum. When a 

new maximum reaches the controller, it is possible to determine exactly where it 

occurred from the accompanying node ID. 

The location in the query sequence is simple to determine, as it will always be 

some multiple k of N, plus the node ID. The value of k is tracked using a counter 

that increments when the query address pointer passes a multiple of N. 

The database location is found using another counter. This one counts the num­

ber of symbols that have been input to the PE chain. Because our system works 

by aligning iV-length database subsequences against the full query, it resets after 

reaching N — 1. When a new maximum arrives, the difference between N and the 

nodelD is subtracted from the counter to obtain the location. 

2.6.2 Pausing 

Communication with the host is conducted through a vendor-supplied pipe inter­

faces mated with FIFOs for both input and output (these components are described 

in more detail in Chapter 4.1). Because the database sequence is streamed from the 

host, it is possible for the system to process an iV symbol section of the database 

sequence before the next N symbols are available to be loaded. To deal with this 

contingency, some way of pausing the system is needed. 

The pause function is implemented by simply inverting the input FIFO empty 

signal. When this FIFO is empty, all registers in the system are disabled and retain 

their old values until the FIFO contains data again. 

One complication is that the block RAMs have one cycle of latency for reads, so 

additional logic is required to avoid missing a read during the pause/unpause cycle. 

The output of each RAM is connected to a register, and the registered output and 

direct output fed into a multiplexer. During normal operation, the direct data from 

the RAM is used. On the first cycle after a pause, the registered data is used. 
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2.7 Example 

This section describes an alignment between two very short sequences to illustrate 

the workings of our system. The query sequence will be AGGCTTA, the database 

sequence CGGCTTGCC, and the system will be a 5 PE system configured for nu­

cleotide sequences. The substitution matrix used scores 1 for a match and -3 for a 

mismatch. 

First, the host PC must pad the sequences up to the nearest multiple of N using 

the negative (N) symbol. This symbol has a negative substitution score with all 

symbols, including itself, so padding sequences with these has no effect on the re­

sult. The query and database sequence become AGGCTTANNN and CGGCTTGCCN 

respectively. 

Next, the host sends the c t r l S t a r t Q u e r y command word, followed by 1 

word containing the length of the query sequence in symbols (10), followed by the 

sequence itself. The query sequence is stored in the query memory. The alignment 

has not actually begun at this point, as the first iV symbols of the database sequence 

are needed to begin it. 

After sending the query sequence, the host sends the c t r l S t a r t D B command 

word, followed immediately by the database data. Reception of c t r l S t a r t D B 

causes all registers in the PE chain to reset, ensuring a clean slate. After the reset, 

the system loads the first PE with the first query symbol from the query RAM and an 

initial register state from the scratch RAM. We will call this time t — 0. However, 

since this is the first "section" of the alignment, the system intercepts the data from 

the scratch RAM and replaces it with all 0's, since this is the boundary value of the 

score matrix. 

On the next clock cycle, t = 1, the system does the same for the second PE, 

and inputs the first symbol of the database sequence into the first PE. The first PE 

calculates H(l,l) using the 2 symbols. 

At t = 2, the third PE is loaded with the third query symbol. The database sym­

bol initially in the first PE is shifted into the second PE, while the second symbol 
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Figure 2.9: The example system at time t = 7. 

in the database is loaded into the first PE. On this cycle, H(l, 2) and H(2,1) are 

computed. 

This cycle continues until t = 5, when the last PE is loaded with a query symbol. 

At this point, the controller switches to loop state, in which database symbols input 

to the first PE are taken from the output of the last PE, rather than using new symbols 

from the input pipe. At t = 6, the sixth symbol of the query sequence is loaded into 

the first PE. The database symbol shifted out of the last PE is registered in the 

controller. The reason for this is a PE cannot be loaded with a new state or query 
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symbol and perform a calculation at the same time. Thus, H(h, 2) is not actually 

calculated until the next clock cycle, t = 7. The state of the system at t — 7 is 

shown in Figure 2.9. 

At t = 11, the system begins loading new database symbols again. The first PE 

is loaded with the first symbol of the query sequence and the saved register state that 

the first PE was at immediately after completing the calculation of if (5,1). Since 

this is the second section of the alignment, the scratch buffer contains valid PE 

register states which are loaded prior to beginning a calculation of a second-section 

element of H. 

The process continues as above until t = 20, at which point there are no more 

database symbols to align and symbols shifted out of the last PE are simply dis­

carded. At t = 24, the last element of H is calculated, and at t = 25, the result is 

shifted into the controller and the alignment is complete. 

2.8 Synthesis and Evaluation 

2.8.1 Configurations 

Our design supports a wide variety of different configurations. Our build environ­

ment for this work is set up in such a way that all configurable parameters - symbol 

set and substitution matrix, score width, number of PEs, and maximum query depth 

- are read from a file by a build script, which then inserts them into the VHDL 

files and generates the binary file used to configure the FPGA. Our standard con­

figurations consist of one with a 12-bit score width, for general purpose use, and 

a 7-bit score width, which is intended for database scanning applications in which 

the goal is to identify sequences scoring above a certain threshold of interest. For 

nucleotides, a basic match/mismatch substitution matrix is used, while amino acid 

configurations use the BLOSUM62 matrix [21]. All configurations support a maxi­

mum query sequence length of 8192 symbols. Any query sequence length down to 

1 symbol is supported by padding the sequence with a negative (N) symbol, which 

has a negative substitution score with all symbols, including itself. Theoretical 
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Table 2.3: Smith-Waterman system configurations 
Nucleotide Amino Acid 

Score width (bits) 

PEs (N) 

Max. query length 

Fdk (MHz) 

Theoretical max. performance (GCUPS) 

12 

64 

8192 

46 

2.90 

7 

110 

8192 

49 

5.34 

12 

32 

8192 

40 

1.24 

7 

38 

8192 

41 

1.52 

maximum performance is calculated by multiplying N — 1 PEs active at any given 

time by Fcik. In practice, this limit can only be asymptotically approached as the 

lengths of the sequences tend to infinity, the reason being that the "corners" of the 

matrix, in which fewer than N — 1 PEs are active in the alignment, become less 

significant as the sequences become larger. 

Table 2.3 contains a summary of these configurations and their maximum clock 

frequencies. 

All four of these configurations consume 100% of the Spartan-3 XC3S1500-

4FG320's block RAM resources, and above 95% of the logic resources. Although 

it is possible to squeeze another PE or two out of all the above setups, doing so 

degrades the maximum clock frequency enough that the performance penalty from 

the slower clock overcomes the gain from the extra PEs. The final number of PEs 

for each design was chosen to maximize theoretical performance, as determined by 

(N - 1) x Fclk. 

2.8.2 Performance Testing 

Performance of the actual system was measured using test builds that counted the 

total clock cycles and idle clock cycles on the chip. These counts were written 

to the output pipe in place of location statistics. These changes did not otherwise 

impact the operation of the device, and the location was still calculated, though not 

reported back to the host. The critical path and maximum clock frequency were 

also unaffected. 

The test methodology was to first generate a random query sequence on the host 
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PC and write it to a buffer. Next, a random database sequence of a particular length 

is generated, and 150 consecutive copies are written to the buffer. All sequences 

are separated by 10 bytes of nulls (0x00). The device is reset, programmed with 

the binary under test, and then the entire buffer is send to the device with a single 

call of the W r i t e T o P i p e l n () API function in Python. The test is repeated using 

the same buffer 100 times, and the best, mean, and worst times are recorded. The 

purpose of calculating the mean is that data transfers to and from the device are 

performed using USB bulk data transfers, which do not provide guaranteed amounts 

of capacity or latency. Thus, we would expect some degree of randomness or jitter 

in the results, as the device could be left idle for significant amounts of time waiting 

for new data. 

Each configuration was subjected to two rounds of testing: one with a short 

query (length of 2 x N, which is the shortest supported length), and one with a long 

query of over 1000 symbols. The length of the long query was set to the multiple 

of N closest to and greater than 1000. Each round of testing consisted of several 

database runs, with database sequence lengths covering the same range as the query 

sequence. 

2.8.3 Performance Measurements and Analysis 

Figures 2.11-2.18 show the performance measurements for each of the four system 

configurations specified in Table 2.3. The sequence type, number of PEs, internal 

word size (score width), query sequence length, and clock frequency are also shown 

in the figure captions. Each system has two sets of plots - one with short query 

sequences and one with long query sequences as described in the previous section. 

The top plots in each figure contain the directly measured data - total computation 

time and idle time. The bottom plots show derived data. On the left is non-idle 

time, which is presented for comparison to idle time. The bottom right plot shows 

the performance of the system in CUPS. CUPS is a unit often used to describe the 

performance of alignment systems, which stands for cell updates per second. A 

cell update consists of a complete computation of one element of the score matrix 
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Table 2.4: Performance impact of various factors on our Smith-Waterman systems. 
Parameter Performance Effects 

Database length 

Query length 

Sequence type 

Score width 

Increases logarithmically with increasing length, due 
to lowered impact of "corners" in which not all PEs 
are active. 

Same as database length, with the added effect of 
increasing query length reducing average idle time. 
Thus query length has a much greater impact than 
database length. 

Higher for nucleotide than amino acid sequences due 
to reduced size and complexity of substitution matrix. 

Performance increases as score width is reduced due 
to increased number of PEs, and lower complexity re­
sulting in higher clock frequencies. 

H. Table 2.4 summarizes observations made from these plots. 

The observations show that all systems increase in CUPS performance as the 

database sequence increases in size. The reason for this is that at the beginning 

and end of the alignment, not all the PEs are used in the calculation. For the first 

N cycles of the calculation, the database has just begun to be shifted through the 

PE array, and the PEs that are later in the chain sit idle. The opposite situation 

happens during the last N cycles, during which the earlier PEs are idle. For shorter 

sequences, these "corners" of the score matrix make up a more significant part of 

the alignment. As the plots show, performance increases logarithmically as the 

database sequence grows. 

The same affect is also present for different lengths of query sequences, but 

the query sequence length has a more powerful primary effect on performance. 

Longer query sequences give the system more time to stream the next N database 

symbols over the communication link, resulting in less idle time and higher CUPS 

performance. Note that on average, idle times for runs with short query sequences 

are higher for runs on the same system with longer query sequences. Consequently, 

our system performs better the longer the query sequence becomes. 

Performance for nucleotide sequences is much higher than performance for 
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Figure 2.10: The ratio of transfer time to processing time. 

amino acid sequences. The reason for this is that amino acid systems have much 

fewer PEs and a slightly slower clock frequency, both effects of the larger alphabet. 

While the substitution matrix for nucleotide systems is only 5 x 5 , for amino acids 

it is 21 x 21 (both include an extra symbol "N", which scores negatively against ev­

erything). The larger matrix takes up a great deal more resources and is also slower, 

which adds to the system's critical path. 

The final factor examined is the score width, or internal word width of the PE 

chain. As described in Section 2.8.1, we used two different word sizes: 12 bits for 

general use, and 7 bits for high-speed computations at the risk of saturating the score 

values. Reducing the word size reduces the amount of logic resources needed for 

each PE, which allows us to fit more of them on the device. The 7-bit configuration 

for nucleotide sequences allows a much larger PE chain, giving a corresponding 

increase in performance proportional to the number of PEs. For amino acids, the 

effect is less significant due to the relatively inelastic resource usage of the ROM 

used for the substitution matrix. The increase from 32 to 38 PEs is only a 19% 

increase, while reducing the word size on the nucleotide systems increases the PE 

count from 64 to 110, a 72% increase. 

The observations also reveal a few odd irregularities with respect to the com-
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munications interface. Some degree of randomness is expected in the amount of 

time spent idle, due to timing inconsistencies in the USB bulk transfers used to 

stream the database sequence. However, with some particular sequence lengths, 

the system spends much more or much less time idle than with the adjacent se­

quence lengths. One notable example is in Figure 2.12, in which all test runs with 

a database sequence of length 320 completed without a single cycle spent idle, yet 

those for 256 and 384 spent between 0ms and approximately 20ms idle from run to 

run. Then, with a database length of 576 symbols, all runs spent around 20ms idle, 

even though the best runs for all other database sequence lengths achieved zero idle 

time. Since each test is repeated 100 times to measure the mean, we can conclude 

that this behaviour is consistent and systematic, suggesting that this is likely due to 

peculiarities in the vendor's API or USB driver. 

The results also confirm our expectations regarding the ratio of communication 

time to computation time. Theoretical ratios of communication time to computation 

time are plotted in Figure 2.10. This plot assumes a nucleotide system with 70 

PEs and a USB communication rate of 80 Mbit/s. Where the ratio exceeds unity, 

the system is communication-limited and must spend time idle while waiting for 

new data. Our observations confirm this analysis. In the best case test runs with 

long query sequences, the system spends no time idle and achieves performance 

approaching the theoretical maximum. However, with short query sequences, there 

is always an observed idle time and CUPS performance drops significantly. 

2.8.4 Comparison With Desktop Microprocessors 

As with all application-specific hardware, the performance of our system as com­

pared to a standard desktop PC microprocessor is an important benchmark. There 

must be a significant speed-up in order to justify the additional costs compared to a 

software solution. 

For the performance of a software system running on a desktop PC, we use 

a reference figure of 45 MCUPS reported in [11]. This is for a highly optimized 

C implementation of Smith-Waterman, running on a PC with an Intel Pentium 4 
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processor at 3.0 GHz. This figure applies to both amino acid and nucleotide se­

quences, since the size of the substitution table does not have a significant impact 

on performance with PC hardware. 

As Figures 2.11 - 2.18 show, the performance of our system varies greatly be­

tween sequence types, configurations, and sequence lengths, unlike the PC-based 

system. The reasons for this are explained in Section 2.8.3 and summarized in Table 

2.4. Because of this, we will consider the amino acid and nucleotide cases sepa­

rately. By comparing the average performance of our system against the 45 MCUPS 

reference, we see that our system achieves speed-up ranging from approximately 10 

to 30 for amino acid sequences and 20 to 100 for nucleotide sequences. 
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Figure 2.11: Measurements for a nucleotide alphabet system with 64 PEs, 12 bit 
score width, 128-length query sequences, and fak = 46 MHz. 
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Figure 2.13: 110 PE nucleotide system with 7-bit scores and 220 symbol query 
sequences. 
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Figure 2.15: 32 PE amino acid system with 12-bit scores and 64 symbol query 
sequences. 
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Figure 2.16: 32 PE amino acid system with 12-bit scores and 1024 symbol query 
sequences. 
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Figure 2.17: 38 PE amino acid system with 7-bit scores and 76 symbol query se­
quences. 
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Figure 2.18: 38 PE amino acid system with 7-bit scores and 1026 symbol query 
sequences. 
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Chapter 3 

BLAST Filter 

BLAST, or Basic Local Alignment Search Tool, is a sequence alignment algorithm 

like Smith-Waterman. Unlike Smith-Waterman, which is guaranteed to find the op­

timal subsequence alignment, BLAST is a heuristic algorithm that aims to find the 

best balance between sensitivity and computational cost [22]. Research is currently 

underway to develop a partial implementation of the NCBI BLAST algorithm on 

the same Spartan-3 based integration boards as our Smith-Waterman design. 

However, because the proposed BLAST design is too large to fit on the platform 

we used for our Smith-Waterman system, the Spartan-3 XC3S1500 FPGA, we have 

shifted our target FPGA to the Spartan-3 XC3S4000. 

Because some aspects of modern gapped BLAST are impractical to implement 

in a hardware-accelerated design, we have instead devised a partial implementation 

that aims only to identify word hits likely to lead to successful extensions as defined 

in the original algorithm. By simplifying the BLAST extension technique and two-

hit criterion, we obtain an algorithm highly adaptable to hardware that is capable 

of vastly higher computational rates than a full gapped BLAST implementation 

[23]. Despite these simplifications, the analysis in [23] and simulation results shown 

Section 3.6 demonstrate that with simple post-processing, our algorithm perfectly 

replicates the results of NCBI BLAST software. 

Since our design does not attempt to implement BLAST in its entirety, we call 

this design a BLAST filter since it filters out the vast majority of non-similar se­

quences. The sequences which pass the filter would then be passed on for post-
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processing, which combines redundant results before presenting them to the end 

user. 

3.1 Background Information 

BLAST was originally devised as an improvement to the earlier FASTA algorithm, 

with which it shares many similarities [24]. The original BLAST algorithm in [2] 

uses a two-stage process. In the first stage, a word of length W is taken from the 

database sequence. The query sequence is scanned for words (also of length W) that 

are sufficiently similar to the database word - these matches are called hits or seeds. 

The method used to calculate this similarity is direct comparison - the alignment 

scores of each symbol pair (Qj, Dj) are added, and if the sum exceeds a speci­

fied threshold, the match is considered a hit. Hits are passed to the second stage, 

in which the algorithm attempts to extend the hit in both directions, to determine 

whether the hit was part of a higher-scoring subsequence match. The extension in 

one direction continues until the running alignment's score drops a certain parame­

ter D below the maximum score yet obtained, and then the extension is continued 

in the other direction. D is called the drop-off threshold. The database word is then 

advanced one symbol, and thus the algorithm iterates through the database sequence 

until the end is reached. 

A revised version of BLAST adds a two-hit criterion that must be satisfied be­

fore extension on a hit is attempted [22]. The reason for this is that extensions are 

very slow compared to the hit detection stage, accounting for over 90% of the total 

processing time. Furthermore, many hits occur in isolation, and do not lead to suc­

cessful extensions. The two-hit criterion overcomes these deficiencies by passing 

a hit for extension only if a second hit has occurred on the same diagonal, the two 

hits are within A symbols of one another, and they do not overlap. Furthermore, the 

hit must not have been covered by the extension of a previously extended hit. 

There are also numerous extension algorithms that can be used with BLAST. 

Smith-Waterman is possible, but is rarely used in practice, because its exhaus­

tive nature makes it very slow and this exacerbates the extension bottleneck. The 
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ungapped extension algorithm simply compares corresponding symbols from the 

two sequences and adds their similarity score to a running total, like the algorithm 

used to detect hits. In [22], a heuristic extension algorithm allowing gaps (gapped 

BLAST) is specified. 

3.2 Initial Research 

A literal hardware implementation of BLAST is very challenging, since some key 

operations do not translate well to hardware. The best example of this is the ex­

tension, which can continue for an arbitrary length in either direction, causing long 

feedback loops and datapath control problems. Furthermore, the extension in the 

second direction must begin with the maximum score attained in the first direction, 

which makes effective parallelization impossible. In addition, hit detection tends to 

produce data in bursts - one database word may not occur anywhere in the query, 

while another could occur many times in succession, overwhelming the downstream 

components, and necessitating a complex system of queues and stalls. 

Preliminary research on this project, undertaken in [23], demonstrates that a 

partial implementation of BLAST, with simplifications to render it more hardware-

friendly, can act as a very high-speed filter to remove most non-extendable hits from 

consideration. The proposed low-complexity system is thus called a BLAST filter, 

and is intended to be used with software tools for pre- and post-processing to serve 

as a complete implementation of BLAST. 

It is estimated that the proposed system could compute alignments at the equiva­

lent rate of 100 GCUPS on our platform. This figure was estimated by assuming an 

average of 1 word (and thus 1 symbol) aligned per clock cycle, at a clock frequency 

of 100 MHz, against a maximum query size of 1024 symbols. This restriction on 

the query length is necessary to keep the average number of hits per word down to 

a manageable amount. 

In addition to this performance goal, we set the requirement that no extensions 

found by the complete NCBI BLAST software escape detection by our system. A 

small reduction in selectivity is tolerable. Simulations of our hardware described 
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in Section 3.6 show that our system achieves equal sensitivity and, with a simple 

post-processing step to eliminate redundant results, equal selectivity. We use the 

NCBI BLAST algorithm as our guideline, which is available in source and binary 

forms from their website at [25]. NCBI BLAST adheres closely to [22] but offers 

more configuration options that are not mentioned in the original paper. We will 

pursue an implementation with the default parameters using the ungapped extension 

algorithm. 

3.3 Scope of this Work 

The research presented in this document is limited the hardware implementation 

of our simplified BLAST, and not the development of the algorithm itself. The 

original reference paper for the algorithm, [23], was co-authored by the commer­

cial sponsors of this work, and is thus proprietary and not available for publication 

or viewing by third parties. However, the information salient to implementation, 

validation, and evaluation of the algorithm is included in this document. Where 

necessary, the aspects of the algorithm are described and experimentally validated, 

but it is stressed that this work does not include the development of the algorithm. 

3.4 Comparison with NCBI BLAST 

The BLAST algorithm described in this work is actually a subset of the BLAST 

algorithm maintained by NCBI. The portions of NCBI BLAST that would require 

a complex hardware implementation are omitted or reduced in scope by fixing the 

values of variable parameters or introducing hard maximum limits for others. This 

section describes the differences between NCBI BLAST and our algorithm, in order 

of processing. A table summarizing these differences can be found in Table 3.4. 

In the hit detection phase, the first difference is that our algorithm has a fixed 

word size of W = 3, while BLAST allows arbitrary word sizes. The threshold 

for hit detection is variable in both, though the range of values in our system is 

restricted by the number of bits used in arithmetic operations. Next, our algorithm 
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Table 3.1: Comparison between NCBI BLAST and our algorithm. 
Our Algorithm (BLAST subset) 

Parameters for word size and 2-hit 
filter maximum separation are fixed 
at the default NCBI BLAST values 
(W = 3 and A = 40 respectively). 

Threshold score for hit detection is 
fixed at the default value (11). 

The 2-hit filter passes hits that were 
covered by extensions of previous hits. 

Extensions are performed using the 
ungapped extension algorithm. 

Extensions continue for 50 symbols 
from the boundary of the original hit, 
or until the end of the sequence is 
reached. 

Maximum score is not passed from an 
extension in one direction to the exten­
sion in the other direction. 

NCBI (full) BLAST 

These parameters are variable. 

Threshold score can be varied. 

Hits that were covered by a previous 
extension are discarded. 

A variety of extension algorithms are 
available (both gapped and ungapped). 

Extensions end if the sequence end is 
reached, but otherwise may continue 
for an arbitrary number of symbols. 

The extension in the other direction 
is initialized with the maximum score 
achieved in the first direction. 

assumes a maximum of 63 hits for any given word, while BLAST can handle an 

arbitrary number of hits per word. 

In the two-hit filter phase, our system uses applies a fixed value of A = 40 

for the maximum distance between two hits. This value can be adjusted arbitrarily 

in BLAST. Furthermore, our algorithm ignores the criterion that a hit cannot have 

been contained within the extension of any previous hit. 

Finally, in the extension phase, the window size of our algorithm is fixed at 

N — 50, although it can easily be reduced or increased as high as N = 66. In 

full BLAST, the extension window size is not defined, as extensions continue until 

either the end of the sequence or until the drop-off criterion is met. Furthermore, 

our extension algorithm executes the extension in both directions simultaneously, 

using initial scores equal to the similarity score of the original word. The maximum 

score attained in one direction does not carry over to the other direction as it does 

in BLAST. 
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3.5 Comparison with Previous Designs 

Previous work on implementing BLAST in hardware has focused on accelerating 

individual stages of the algorithm, or producing a partial implementation rather than 

attempting a complete implementation. For instance, [26] implements a parallel hit 

scanning system on an FPGA intended to operate alongside a host PC. Hits are 

passed back to the host PC, where the remaining stages of the algorithm are per­

formed in software. There are also similar systems that run on hybrid systems: PCs 

or workstations with reconfigurable platforms deeply integrated. The Mercury sys­

tem is popular for these applications; two examples using this system are presented 

in [27] and [28]. These systems implement hit detection in hardware, then pass the 

results to software for the extension stages. Comparisons between these systems 

and ours are not generally applicable, since our system requires hit locations to be 

pre-computed and stored in memory. However, our design could benefit through 

integration with one of these systems, as it would make pre-computation of hits 

unnecessary. 

Another design, presented in [29], uses a massively parallel architecture and 

performs hit extension as well as detection. Each parallel processing unit contains 

a hit scanner, a hit extender, and a local copy of the query sequence. Words from 

the database sequence are directed to an idle unit, where the unit scans for hits 

and attempts extensions on those hits. However, it can only perform BLAST on 

nucleotide sequences and does not implement the 2-hit criterion described in [22]. 

Our design can perform BLAST only on amino acid sequences and does implement 

the 2-hit criterion. The designs also differ in that only a portion of the datapath in 

our design - namely, the 2-hit filter section - is parallel. Our design has only a single 

unit for hit look-up and hit extension. 

Another approach can be seen in [30], which implements a BLAST-like string 

matching algorithm on an FPGA. Although it is not a complete implementation of 

BLAST, this design implements a similar algorithm that first looks for matches of 

shorter substrings, then attempts to extend them. We have chosen to take a simi-
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lar approach, applying simplifications to the algorithm that allow us to implement 

all stages of the simplified BLAST in hardware. Both our design and [30] are es­

sentially single-pass BLAST approximations, though they differ in that [30] uses 

stream scanning to identify hits, which requires substitution matrices and logic, 

while our design is based on look-up tables and requires hit locations to be pre-

computed. In addition, [30] does not implement the two-hit filter rule. 

Overall, our design presents several original concepts. The two table design for 

looking up hits is more efficient than a single table design, as it allows memory 

savings by taking advantage of overlapping and redundant sets of hits. It is the 

first architecture to implement a 2-hit filter. The datapath design of a single hit 

source outputting to multiple parallel hit filters, which in turn output their results 

to a single extension unit, is a completely novel approach. Finally, like our Smith-

Waterman design, our BLAST design is distinguished by running on a portable, 

low-cost platform. 

3.6 Simulation and Validation 

In order to test the validity and performance of our algorithm and BLAST filter 

hardware, we created a software model of the hardware written in C. This software 

model performs a cycle-by-cycle simulation of the proposed hardware blocks. This 

section presents our findings for three different criteria: conformity of results to 

NCBI BLAST, performance and duty cycle, and the false positive rate of our two-

hit filter design. 

All of these simulations used randomly-generated sequences. Because amino 

acids appear with varying frequencies in actual proteins, our generated sequences 

use the same proportions as found in the UniprotKB/Swiss-Prot database. These 

statistics were obtained from the UniprotKB/Swiss-Prot database release notes [31]. 

3.6.1 Equivalence with NCBI BLAST 

The most important design goal of the BLAST filter is that the results it returns 

match the results returned by BLAST software as closely as possible. In particular, 
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there must be no loss in sensitivity - every region of similarity found by BLAST 

must have a corresponding result in our system. However, we can tolerate a loss 

of selectivity, meaning that the BLAST filter may return more results than BLAST 

software, including ones that are superfluous or insignificant. These results can 

easily be removed in post-processing, while a missed result is much more costly. 

To verify that our system will perform satisfactorily, we ran alignments on 100 

different sequence pairs on both NCBI BLAST and our software model. BLAST 

is public domain software and can be downloaded in source and binary forms from 

the NCBI website [25]. For these tests, we used the version 2.2.17 binary, running 

the b l 2 s e q executable. This program uses the b l a s t p algorithm for amino acid 

sequences. 

All query sequences were length 1024, the maximum supported by our system. 

Database sequences varied between 100 and 1000 symbols in length. Sequences 

were randomly generated, except for a segment of random length between 10 and 

100 that was rigged to be identical in both sequences. This was to guarantee at least 

one successful extension per test. The tests used a word size of 3, BLOSUM62 

scoring matrices, a hit threshold score of 11, a maximum two-hit window of 40, 

and ungapped extension. 

In all tests, our system and the NCBI software reported equivalent results. Our 

system, however, returned numerous redundant records for each region of similar­

ity, whereas the NCBI software reported each region only once. The reason for 

this is that a full implementation of BLAST will not attempt to extend hits that 

fall within the extension of any previous hit. Due to the difficulty of implementing 

this rule in hardware, our system simply ignores it. The result is that every sim­

ilar region is reported multiple times. Since our system does check that hits are 

non-overlapping, a similar region of length L is reported approximately -| times, 

as shown in Figure 3.1. Since these redundant results are trivial to remove in post­

processing, there is no real loss of selectivity to the end user. 

Despite the duplicate reports, our system generally agreed with the BLAST 

software on the score, length, and boundaries of the similar regions. Two conditions 
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Figure 3.1: The BLAST filter reports separate results for every word in a region of 
similarity, while the NCBI software reports it only once. The inner boxes show the 
original hit boundaries. 

were observed in which the results differed. The first is in long regions of similarity, 

specifically those longer than 53 symbols. Because our system has a maximum 

extension window of 50 symbols, it stops once this maximum is reached and reports 

the result. In other words, a single record will only cover up to 50 symbols from 

the boundary of the original 3-symbol hit. In software, extensions may continue 

indefinitely. However, the multiple hits reported by our system can be stitched 

together in post-processing to obtain a single record covering the entire similar 

region. 

The second condition occurs when a hit contains one dissimilar symbol pair, 

but the other two symbol pairs score highly enough to put the hit over the detection 

threshold. The result is that the dissimilar pair is included in the reported result, 

giving it a lower score and length longer by 1 symbol than the correct BLAST 

result, which filters out the negatively-scoring pair. Again, these are very easy to 

remove in post-processing, so this is not a major problem. 

Based on these results, we can conclude that with a post-processing step, the 

BLAST filter is every bit as accurate as ungapped BLAST running in software, and 

thus that our design meets our goals for sensitivity and selectivity. 
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3.6.2 Performance 

The maximum performance goal of 100 GCUPS for our BLAST filter is based on 

1 database symbol per clock being aligned over a 1024 symbol query sequence at a 

clock frequency of 100 MHz. However, this figure assumes that no stalls will occur 

- an unrealistic assumption, since any word with over 4 hits will result in stalls as 

the location LUT processes them at a rate of 4 per cycle. Furthermore, the 2-hit 

filters and extender have queues that will raise stalls when full. 

To test the true performance of our system, the software model was ran 1000 

times with random sequences, and the number and source of stalls was recorded. 

The query length for these tests was 1024 and the database length 1000. Long 

queries represent the worst case in terms of number of stalls raised, because each 

word will have more hits on average, which require more stalls to process. 

On average, each sequence incurred 94 stalls. Over 1000 symbols, this gives 

our system a duty cycle of 0.914. Thus, to achieve performance of 100 GCUPS 

with 1024-length queries, the clock frequency must be 107 MHz or greater. This 

speed is realistically attainable with our hardware design, provided it is aggressively 

pipelined. 

The vast majority of stalls (98%) were raised by the location LUT. This was to 

be expected, since any word with more than 4 hits will cause this block to stall, and 

words with many hits may even cause a multi-cycle stall (see Section 3.7.2 for full 

details). The remainder were raised by the 2-hit filter queue. The extender queue 

never raised a single stall throughout these tests. 

Consequently, we could raise the duty cycle of our system by having the location 

LUT process more hits in parallel, and having more 2-hit filters to process these hits, 

although a platform with more RAM resources would be required to do this. 

3.6.3 Two-Hit Filter False Positives 

One final characteristic of our system validated with the software model is the rate 

of hits falsely validated by the 2-hit filter. Because the database sequence length is 

unbounded, the diagonal array used to keep track of previous hits must be infinitely 
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deep in a perfect filter. To create a practical filter, we only store the bottom 12 bits of 

the database index, creating an array 4096 elements deep. For database sequences 

longer than this, there is a potential for aliasing resulting in a false positive. See 

Section 3.7.3 for a full explanation. 

Note that for the purposes of this section, a false positive refers only to hits 

falsely validated due to aliasing. Hits that are within the extension of a previous hit 

and pass through the filter are not considered false positives. 

A rough estimation of the proportion of hits validated by the 2-hit filter that are 

false positives can be obtained by considering an infinitely long database sequence. 

When a hit enters the 2-hit filter, it is falsely validated if any of the three previous 

hits on the same diagonal satisfy the condition 4096 x k — L < J < 4096 x k + L. 

We can assume the probability of false positive events in which k > 1 is negligible, 

simplifying the above equation to 4096 — L < J < 4096 + L. If we model hits as 

a Poisson process, the probability of at least one of the three previous hits meeting 

this condition is approximately: 

P » 2AL M + 4096A + i l ^ l ! J e-4096A ( 3 1} 

Where A is the rate of hits. Our simulations showed that on average, each word 

produces approximately 3 hits in a 1024-length query sequence, so A ~ 3/1024. 

The above equation thus evaluates to approximately 1.26 • 10~3, or about 1 hit 

in every 792. Experimental results for a variety of database sequence lengths are 

summarized in Table 3.6.3. Pfptotai is defined as the number of false positives as a 

proportion of all hits, while PfpvaUd is defined as the number of false positives as a 

proportion of hits that pass the 2-hit filter. 

These results show that our estimate for the false positive rate was accurate for 

long sequences. The false positive rate is lower in shorter sequences because there 

is zero probability of a false positive occurring in the first 4096 symbols of the 

database sequence. As a proportion of validated hits, the false positive rate plateaus 

at about 1 in 50. 
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In order to determine whether false positives impacted the speed or accuracy 

of our design, we repeated the tests in Sections 3.6.1 and 3.6.2 with database se­

quences of length 100000. There was no difference in the results, meaning that false 

positives do not occur at a rate sufficient to create a bottleneck at the extender, and 

no false positive hit ever lead to a successful extension that was not also covered by 

a legitimate extension. 

As a practical matter, false positives are of little concern with our system. One 

reason for this is that the vast majority (99.7%) of the sequences in the UniProtKB/ 

Swiss-Prot database are shorter than 2500 amino acids [31], and so will never lead 

to a false positive. In addition, as the simulations mentioned above show, our system 

can easily deal with the false positives generated by sequences much longer than 

even the longest database sequences - the longest sequence in UniProtKB/Swiss-

Prot is 34350 amino acids in length. Finally, unless the threshold score for a suc­

cessful extension is set very low, the extension of any falsely validated hit will also 

be covered by a legitimately validated extension, so a falsely validated hit appearing 

in the final results is an extremely unlikely event. It is worth noting that this never 

occurred in any of our simulations, although it remains theoretically possible. 
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3.7 Implementation 

Based on our experiences with Smith-Waterman, we decided to develop BLAST 

with decentralized, block-level control rather than with a single central controller. 

The Smith-Waterman controller ended up becoming unexpectedly complex, which 

reduced the clock frequency as well as made it more difficult to design, test, and de­

bug. Besides avoiding these implementation headaches, this decision was primarily 

motivated by the speed goal of 100 GCUPS. This goal would be highly difficult or 

impossible to obtain with a complex central unit. 

Another design feature arising from the need for a high clock frequency is the 

division of the system into simple blocks, separated by pipeline registers. Inter­

block flow control is achieved with data valid and stall signals wherever they are 

needed. Valid signals move forward through the pipeline, signalling to the next 

block whether or not the current set of results is valid. Stalls propagate backwards, 

indicating to prior blocks that the system is swamped and a stall is needed to prevent 

data from being overwritten. Obviously we wish to avoid stalls as much as possi­

ble; as such, blocks where bottlenecks can occur are equipped with queues capable 

of handling a temporary surplus of data. Note that this valid/stall control scheme 

eliminates the need for global pausing. If the system is awaiting more data, the first 

block simply de-asserts the valid signal. 

The individual hardware blocks will now be described, beginning with the first 

blocks in the datapath. 

3.7.1 Sequence Unpacker 

The datapath begins at the sequence unpacker, which is responsible for unpacking 

words from the input pipe and outputting individual symbols. Only the database 

sequence is handled this way; the query sequence is not needed until much later 

in the datapath. These symbols are loaded into a shift register to create the current 

database word. The word size W is fixed at 3, the default value for amino acids. 

The unpacker also counts the database position of the current word and forwards it 
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onward. 

Given the database word, we must first find the location of all the corresponding 

hits in the query sequence. This is done with a lookup table, with the word itself 

used to calculate the index. Given the numerical representations of the word sym­

bols S2SiSo, the index is calculated by S2 x 242 + Si x 24 + So- The reason for 

using 24 as a radix, rather than 20 for the number of amino acids, is to simplify the 

multiplication logic. The number 24 and its square, 576, both have only two 1 's in 

their binary representation, allowing us to multiply by these numbers very quickly. 

There are thus 243 = 13824 total indices, requiring 14 bits. 

Now is a good time to note that our system only supports amino acid alignments. 

The reason nucleotides are not supported is that the default wordlength for nucleo­

tides is W = 11. Using the 2-table system described above would thus require 

indices up to 411 = 4194304 and lookup tables several megabytes in size. This is 

many times beyond the capacity of our Spartan-Ill FPGA. Consequently there are 

no plans to adapt our system to nucleotide sequences any time in the near future. 

3.7.2 Look-Up Tables 

Hit locations are pre-computed in software and loaded in the tables before the start 

of the alignment. This must be done for each new query sequence (note that hit loca­

tions do not depend on the database). This is similar to the design in [29], which also 

detects hits using a look-up table pre-computed from the query sequence. Because 

this system is intended for use in first-pass database scans against huge databases, 

this pre-processing step should not pose a significant delay. 

Because our system now lacks a central entity for distributing data, both lookup 

tables are connected directly to the input pipe. To distinguish between datastreams 

meant for specific components, we have developed a SIRO module (serial in, ran­

dom out). Upon reception of a unique command word, these modules begin loading 

data from the pipe serially. This continues until an end word is detected. The device 

then works in RAM mode. As in Smith-Waterman, command words use a reserved 

bit to ensure that they do not appear in data. 
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Figure 3.2: The origin of the BLAST filter datapath, showing the sequence unpacker 
and hit LUTs. 

The reason for the 2-table configuration is that the number of hits from word to 

word is variable. As such, there is no way to look up a list of hits for a particular 

word in a single step without reserving a uniform maximum number of records 

for each word. This is obviously impractical, so instead we first look up a base 

address and number of hits from the first table, known as the address table. The 

actual locations are stored in the second table, which is called the location table. 

Empirically, it has been shown that the location table can be kept at a depth of 

214 = 16384 by taking advantage of redundancies (for instance, overlapping hit 

sets between different words). Furthermore, tests with random sequence data show 

that the maximum number of hits in a 1024-length query rarely exceeds 31. We 

therefore impose an upper limit of 26 — 1 = 63 hits, giving the address table output 

a width of 20 bits. Cases in which the complete hit set is too large or a single word 

has more than 63 hits must be handled by the pre-processing software. Hence, 

the total size of the address table is 13824 x 20 bits, while the location table is 

16384 x 10 bits - the location table contains the actual locations of hits within the 

query sequence, hence the 10 bits of width. 

In actuality, we split the location LUT is split into 4 parallel memories of 4096 x 
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Figure 3.3: Simplified block diagram of the complete BLAST filter. 

10 bits each. Thus, the location LUT can output up to 4 hit locations per clock 

cycle. The reason for this is maintaining throughput - if hits are processed serially, a 

serious bottleneck develops when a word has multiple hits. Analysis in [23] reveals 

that we can expect an average of 3 hits per cycle with random sequence data and a 

query length of 1024. 

One memory contains the locations of hits with memory addresses ending in 

binary 00, the other three containing hits located at 01,10, and 11 addresses. These 

memories are addressed simultaneously using the upper 12 bits of the output from 

the address LUT. However, the lower 2 bits are also input into this block, where they 

serve an important function. If we required each "row" across the four-memory 

table to contain only locations belonging to a particular hit, we could ignore the 

lower 2 bits entirely. However, this would make for very inefficient use of memory, 

as there would be unused cells if the number of locations was not a multiple of 4. 

Therefore to maximize efficiency, location sets are packed into the location LUT 
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without any explicit delimitation or other overhead. Sets can begin and end at any 

address. However, this introduces a new problem: how do we handle lookups that 

are split over 2 rows? 

The key to the solution is that the lower 2 bits indicate the memory in which 

the set starts. We can therefore use a small logic section to increment the address 

presented to each memory as appropriate, placing a "line wrap" in the read from the 

table. For example, if the set began at an address ending in 01, the reads from the 01, 

10, and 11 memories would use the upper 12 bits as supplied from the address LUT, 

but the 12 bits presented to the 00 memory would need to be incremented. This case 

is illustrated in Figure 3.4 - the memory locations being read are highlighted, with 

the 00 read taking place from one row further down from the others. 

This arrangement allows us to always look up 4 locations per cycle. In the 

event of a hit yielding more than 4 locations, a stall is requested until the number 

of locations remaining to be looked up is 4 or less. In this case, the upper 12 bits of 

the address are incremented after each cycle to advance to the next row in the table. 

If the number of locations is not a perfect multiple of 4, the last read will produce 

invalid data in the uppermost hits. These are dealt with by using data valid signals, 

which are generated from combinational logic taking the lower 2 address bits and 

the number of locations as input. 

A block diagram showing the sequence unpacker and lookup tables is shown in 

Figure 3.2. A more detailed diagram of the logical operation of the location LUT is 

shown in Figure 3.4. 

3.7.3 Two-Hit Filter 

The two-hit filter applies the BLAST two-hit criterion to incoming hits from the 

location LUT. If the criterion is satisfied, then the hit is passed on for extension. 

There are four filters working in parallel - one for each output quadrant from the 

LUT. 

As stated in Section 3.1, the two-hit criterion is that a hit is extended only if a 

previous hit has occurred on the same diagonal, the two hits are within A symbols 
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Figure 3.4: The BLAST location LUT. 

of one another, they do not overlap, and the hit is not contained in the ungapped 

extension of any previously extended hit. The default value of A in NCBI BLAST 

is 40. 

An exact hardware implementation of this step is problematic due to the need to 

check whether the current hit was covered by any previous extension. Applying the 

BLAST filter philosophy to the problem, we introduce our first heuristic to increase 

hardware-friendliness: pass the hit onward for extension if there is a hit within the 

group of last W hits on the same diagonal that is more than W and less than A 

symbols away. We choose to examine the W most recent hits to guarantee that a 

non-overlapping hit will be found if one exists - if successive database words lead 

to hits along the same diagonal, the W — 1 most recent hits will overlap, but the 

Wth will not. 

By not searching for hits covered by past extensions, our two-hit filter passes 

approximately one out of every 10 hits as opposed to one out of every 20 for a 

complete NCBI two-hit detector. Hence, an average of approximately 0.3 hits per 

cycle are passed for extension. This will lead to some redundant hits in the output, 
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but the volume of data reaching the extender is reduced to a manageable level. 

To simplify the hit detection logic, we describe hit locations using the diagonal 

co-ordinate and database position of the first symbol. To elaborate, given two hits 

at co-ordinates (ji, ii) and (j2 , 2̂)» where j is the position in the database and i the 

position in the query, they lie on the same diagonal iff j'2 ~ H = ji — ii-lt is more 

convenient to express a hit position in terms of the database co-ordinate j and the 

diagonal co-ordinate d = (j — i)\mod\Qs\, where \Qs\ is the size of the current query 

sequence. Using this co-ordinate system, the diagonal check is simply d\ = d2. 

Under this parametrization, given a hit at (j, d), our two-hit criterion is satisfied if 

there exists a hit (j1, d!) such that: 

W<j-j'<L, d = d' (3.2) 

One final issue that must be addressed is that the length of the database se­

quence is unbounded, and therefore so is the diagonal array used to keep track of 

the positions of previous hits. In order to reduce the depth of the array, we can store 

J = J\mod2k\Qs\ instead of j , where k is a positive integer. If \Qs\ = 1024, J is the 

number represented by the lower k + 10 bits of j . Even for small values of k,j = J 

for all but the longest database sequences. However, long databases can cause false 

positives. Analysis in Section 3.6 shows that for k = 2, we can expect a false pos­

itive rate of approximately 1 out of every 800 hits. From this we can conclude that 

the number of false positives allowed by this shortcut is insignificant. 

The hardware implementation of the two-hit filter consists of three dual-port 

block RAMs and a combinational logic unit. RAM 1 contains the locations of the 

last hits along each diagonal, while RAM 2 and RAM 3 contain the second and third 

last hits, thus covering all W previous hits. An incoming hit indexes loads from 

these RAMs, producing the locations of the last 3 hits along the same diagonal. 

The combinational logic then checks if the two-hit criterion is fulfilled. If so, the 

hit is passed on to the next block. The hit is also written to the first RAM, as it 

is now the most recently observed hit along its particular diagonal. Likewise, the 
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Figure 3.5: The BLAST two-hit filter module. 

hits previously stored in RAM are shifted to the next RAM over, with the last hit 

overwritten. This entire operation can be executed in a single clock cycle by setting 

the RAMs in read-before-write mode. Note that this design does not contain any 

feedback loops, and thus can be pipelined if necessary to achieve our speed goal. 

Figure 3.5 shows a block diagram of a single 2-hit unit. Note that the complete 

system has four of these running in parallel. 

In addition to the filter itself, an interface from the location LUT output is 

needed. The reason for this is that the two-hit filters partition the work according 

to which diagonal the hits lie on, while the hit locations coming from the location 

LUT are unsorted. In fact, it is possible for all 4 locations read in a given clock 

cycle to lie on the same diagonal, requiring them to be queued or to stall the system 

while a single filter services each hit sequentially. Obviously we would like to avoid 

the latter solution, so we have devised a two-hit filter queue that can accept up to 4 

inputs in a single clock cycle, and multiplexes them to a single output. 

The two-hit filter queue consists of 4 simple FIFO queues in parallel. The indi­

vidual queues are read in a round robin fashion. If any queue is almost full, it asserts 

a stall signal and takes priority until the stall signal is de-asserted. Data from empty 

queues is flagged invalid. Figure 3.6 shows a block diagram of a single two-hit 

filter queue module. Each of the 4 two-hit filters has a separate queue, with all 4 

outputs from the location LUT routed to each queue. Write control is accomplished 
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Figure 3.6: Simplified architecture of the two-hit filter queue. 

by looking at the lower 2 bits of the incoming location - locations ending in 00 go 

to the 00 queue, locations ending in 01 go to the 01 queue, and so on. If incoming 

data is marked as invalid, it is simply not written. 

Each of the 4 queues is implemented as a shift register look-up table (SRL). 

This design is much more efficient than dual-port memory. In Spartan-3 FPGAs, 

an SRL queue is equivalent to single-port distributed RAM in resource utilization 

[32], while dual-port memory consumes twice that [20]. 

These queues allow us to minimize stalls and maintain throughput. Since we 

can expect a roughly even distribution of hits across the 4 filters, as well as across 

the 4 individual FIFOs making up a queue, the probability of a stall is quite low even 

with short queues. A queue length of 16 is sufficient, though it should be possible 

to make them even shorter without significantly impacting system performance. 
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3.7.4 Extender 

The extender is responsible for performing the ungapped extensions on hits that 

pass the two-hit filter. Like the two-hit filter before it, we have modified the exten­

sion algorithm in order to have a simpler and faster hardware implementation. 

The NCBI BLAST ungapped extension algorithm first adjusts the boundary of 

the original hit to the highest scoring subsequence within the hit. Then, the left 

extension occurs until the running score drops a threshold D below the maximum 

observed score. Finally, the right extension is started using the running and maxi­

mum scores from the left extension as initial values. The extensions are performed 

sequentially, with drop-off threshold checks performed at every step. Also note 

that the left and right extensions are not independent of one another, and may con­

tinue for an arbitrary length. As mentioned earlier, these characteristics are highly 

inconvenient from a hardware perspective. 

Our simplified ungapped extension algorithm performs the extension by exactly 

iV steps in either direction, regardless of whether the drop-off condition is met. The 

right extension is initialized with the score of the original hit, rather than the run­

ning and maximum scores of the left extension. Thus the left and right extensions 

are independent. The extension is considered successful if the extension to either 

side reaches the end of the window without meeting the drop-off condition, or if 

the drop-off condition is met on both sides, the maximum observed score exceeds 

a certain threshold. Simulations in Section 3.6 have shown that any extension suc­

cessful with the NCBI ungapped extension algorithm is also successful with our 

algorithm, although our algorithm produces redundant results. We will use N = 50 

as a default. 

Our extension algorithm can be implemented as a tree structure which com­

pletes the extension in 2log2(N) steps. Figure 3.7 shows the extender architecture 

for a small (JV = 12) window size. This is possible because in an ungapped exten­

sion algorithm, each symbol comparison is independent of all others, and the results 

can be merged together to obtain the final result. Consider the running scores for 

two subsequences in an extension, Si and S2, and the maximal scores S\max and 
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Figure 3.7: Extender architecture. 

S^max- If we concatenate the subsequences, the running score of the concatenation 

is obviously 

S = S1 + S2 (3.3) 

The maximum score of the concatenation, as obtained by starting with sequence 

1 and calculating through to the end of sequence 2, is 

max(Simax, f x (S2max + SI)) (3.4) 
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The term / represents a drop-off flag. If the drop-off condition has been met, 

/ = 0, and if it has not been met, / = 1. Recall that the drop-off condition is 

determined by 8max — S > D. 

The extender is made up of several different types of unit, as shown in Figure 

3.7. However, all units perform basically the same function of calculating scores 

and checking the drop-off condition. The central unit handles the original hit of 

3 symbols and also takes the place of a 2nd level general unit. Two outputs are 

generated; one for a left extension and one for a right extension. The difference 

between the two is that the order of the symbols is reversed. Initial units do not have 

inputs for drop-off flags from previous units, since initially the drop-off condition 

is not met. General units do have these inputs. The final unit examines the result 

of the extension, and if the extension succeeded, sends the hit location to an output 

pipe queue along with the maximum and running scores. Pipeline registers are 

placed between each level of the tree. This allows a left extension to be started one 

cycle, and the right extension the next. Thus the extender can effectively compute 

a complete extension every 2 clock cycles. 

It must be noted that the extender requires several more elements besides the 

extension tree. The first element of the extender is a queue that combines the data 

streams from all four of the two-hit filters back to a single stream. The exact same 

4-to-l queue used in front of the two-hit filters, described in Section 3.7.3 and 

Figure 3.6 can also be used to queue hits awaiting extension. As we have already 

determined that an average of 0.3 hits pass the two-hit filters per cycle, the extender 

will not be a long-term bottleneck. However, it is still possible to fill the queue and 

cause a stall in extreme cases. 

Note also that the inputs to the extension tree are the similarity scores of every 

symbol within the extension window of both sequences. As a result, we need to 

retrieve the proper part of both the query and database sequences, and look up the 

scores for each pair of symbols. We now propose methods of doing so in a small, 

fixed number of cycles so as not to interfere with the rest of the system's operation. 

The query sequence is fairly easily handled because it is not used in any other 
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block, unlike the database sequence. It can be stored in a RAM within the greater 

extender architecture and the appropriate segment retrieved as needed. In order to 

store the query sequence in such a way that any given segment of length N + W 

can be quickly retrieved, we use five block RAMs of 256 depth and 72-bit width. 

These RAMs store an array of 256, 72 symbol subsequences. Each RAM stores a 

single bit of each of the 72 symbols, and as each amino acid symbol requires five 

bits, we have five RAMs. 

As we have imposed a maximum query length of 1024, the memory depth of 

256 allows us to store subsequences with a granularity of four symbols. Thus, 

address 0 would contain the sequence [Qo--Q7i], address 1 would contain [Q4..Q75], 

and so on. After the sequence has been read from memory, it must then be shifted 

a maximum of three symbols to the left to obtain the desired segment. It is also 

necessary to reverse the order of the symbols depending on whether they are for a 

left or right extension. 

With subsequence lengths of 72, this design supports extension window sizes 

N as large as 66. A 72-bit memory width was chosen because this results in the 

largest memory that will fit in a BRAM unit. All RAM units are placed in SIRO 

configurations so they can be easily loaded with the query sequence before the 

calculation begins. 

Several methods for retrieving the database sequence are under consideration. 

The simplest is to relay the entire database window through the system pipeline, 

from the sequence unpacker all the way to the extender. This makes the entire 

subsequences for both extension directions immediately available. However, it is 

also highly costly in terms of resources. It requires 103 symbols, or 515 bits, to be 

registered at every pipeline stage, as well as in each queue entry. However, since 

the BLAST filter is expected to consume only about one fifth of the FPGA's fabric 

resources [23], we can set aside a large amount as distributed RAM, or register 

files. One quarter of the Spartan-3 XC3S4000 yields about 108 kilobits of single-

port distributed RAM, enough for approximately 200 copies [20]. As long as queue 

lengths are limited, this design will easily fit within the device. It may also be 
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possible to conserve memory in queues using shift registers and hold/store logic, 

as successive database windows will be identical or contain a great deal of overlap. 

The relative simplicity and speed of this design make it the most desirable option. 

Another proposal is to place database symbols in a long shift register, and mul­

tiplex the appropriate set of symbols into the extender upon request, using a very 

large crossbar switch. Yet another is to use a block RAM setup like the one used to 

retrieve the query sequence. Both use far fewer resources than the pipeline option, 

but add a large amount of complexity. This complexity arises from the variable 

number of clock cycles that pass between the issue of a database word and the time 

the resulting hits reach the extender. 

Finally, once the appropriate subsequences are available, the similarity scores 

between each pair of symbols must be looked up. The proposed way of imple­

menting the substitution matrix is with dual-port block RAMs. Each table requires 

24 x 24 addresses and a depth of 5 bits, with the imposition that scores cannot ex­

ceed 31. This is not an issue with standard substitution matrices. The address into 

the RAM can simply be the concatenation of the two symbols. In dual-port mode, 

each RAM can handle two pairs of symbols at once, which reduces the number of 

RAMs needed and the initialization time. Arbitrary scoring matrices can be set by 

using the RAMs within SIRO modules. 

3.7.5 Resource Consumption 

Resource consumption was briefly discussed in Section 3.7.4. Here it will be ana­

lyzed in greater detail. 

Nominally, the BLAST filter is a very memory-intensive system. Large RAMs 

are needed for the address LUT, location LUT, and query sequence. In fact, these 

components alone consume so much memory that they became the prime motivator 

for moving from the Spartan-3 XC3S1500 to the larger XC3S4000, which has triple 

the block RAM modules. 

Table 3.3 shows estimated resource consumption of the BLAST system in both 

block RAMs and logic fabric (measured in configurable logic blocks, or CLBs). 
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Table 3.3: BLAST filter resource consumption estimates 

CLBs (excluding queues) 

CLBs (including queues) 

Block RAMs 

Usage estimation 

1204 

4116 

74 

Total available 

6912 

6912 

96 

Note that the first estimate for CLB use does not take queues or pipeline registers 

into account. Due to the large distributed RAM consumption of the queues and 

pipeline registers, they will be considered and discussed separately. 

Because we have exact knowledge of our block RAM requirements, we can 

very accurately predict the system's total block RAM consumption. Calculations in 

[23] estimate that the system will consume 74 out of 96 total block RAM modules. 

The estimate for CLB consumption is rougher, but we predict usage of about 1204 

out of 6912 exclusively for logic functions. The distributed RAM used in queues 

and pipelining will consume much more. 

Because our primary look-up table blocks use block RAMs and comparatively 

little supporting logic, we can afford to allocate a large proportion of the device's 

logic fabric as distributed RAM for the 2-hit filter queue, extender queue, and 

pipelining between blocks. Our system requires 20 queues of extremely large width: 

515 bits to carry the database segment towards the extender, plus 26 bits for the 

database index, and 10 bits for the query index, making a total of 551 bits. If all our 

queues are made 16 entries deep for optimal CLB utilization [32], the total memory 

requirement is 176320 bits. At 64 bits per CLB for a shift register look-up table 

(SRL) based queue, this translates to 2755 CLBs, which we can easily spare. 

Pipeline registers vary in width, depending on which blocks they are connect­

ing. However, all registers before the extender must carry the 515-bit database, 

meaning any other data consumes a relatively insignificant amount of memory. If 

we conservatively allocate 10000 bits for pipelining, an additional 157 CLBs are 

consumed, based on a rate of 64 bits of registers per CLB [20]. This brings the total 

to 4116. 

With these figures, we can conclude that the Spartan-3 XC3S4000 device can 
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(SIRO) 

Figure 3.8: The word AGQ being processed by the Address LUT. 

easily accommodate our BLAST filter design, with a large margin of safety for both 

logic and block RAMs. 

3.8 Example 

This section describes an example of the BLAST filter in operation to clarify the 

workings of each component. This example will cover a single database word oc­

curring somewhere in the middle of a complete alignment, and its consequent hits 

as they travel through the 2-hit filter, extender, and finally reach the output. 

The example begins with the word AGQ appearing at the database unpacker. 

This word is accompanied in parallel by its numerical index in the database se­

quence, which is used in later units. This word is passed to the index calcula­

tor, which indexes the word based on the lexicographical order of the standard 

amino acids - A is 0, G is 5, and Q is 13. Hence, the index of this word is 

A x 242 + G x 241 + Q, or 133. This index passes to the Address LUT to look 

up the base address and number of hits for this word stored in the Location LUT. 

The LUTs are pre-computed and loaded before the database scan begins, so let us 

assume that the Address LUT returns a base address of 0x16 F3 and 3 hits. The 

operations of the unpacker and Address LUT are shown in Figure 3.8. 

This address and hit count pass to the Location LUT, which stores the actual 

locations of the hits corresponding to the word AGQ. Since the base address ends 

in binary 11 , the base address is incremented by 1 to read the successive entries at 
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0x16F3 

Hit #1 

Figure 3.9: The base address and hit count from the Address LUT being used to 
look up hits from the Location LUT. 

Oxl6 F4, 0x16 F5, and 0x16 F6. Because there are only 3 hits, however, the hit 

loaded from 0x16F6 is flagged invalid - see Figure 3.9. 

Next, these hits are input to the 2-hit filters. Each filter deals with one quadrant 

of diagonals - one for diagonal addresses ending in each of binary 0 0 , 0 1 , 1 0 , and 

11 . A crossbar switch forwards each hit location to the appropriate filter by looking 

at the bottom 2 bits of their addresses. Two of the hits have diagonal co-ordinates 

ending in 0 0 - they are both written to queues belonging to the 0 0 filter. The third 

hit ends in 10 and so is written to that filter. The fourth hit, being invalid, is simply 

discarded. 

Next, the 2-hit filters check each hit for fulfilment of the 2-hit criteria. The 

diagonal co-ordinate of each is used as an address into 3 RAMs; the data in each 

RAM corresponds to query co-ordinates of the previous 3 hits on that diagonal. To 

pass, a hit must be no more than 40 symbols away from a previous hit, and not 

overlap any previous hit. The 10 hit passes and is forwarded to the extender queue, 

but the other two hits fail. In all cases, the new hit is stored in memory to compare 

with future hits. For illustration purposes, let us assume the succeeding hit occurs 

on diagonal co-ordinate 0x0418 and database co-ordinate 0x0032. Figure 3.10 

shows this hit passing through the filter. 



DBIndex = 0x0032 

3l»gon<.llnd»x - 0x0418 

ReadData = 0x0018 

D B I n d s x = 0x0032 

Diagonallndex = 0x0418 

Figure 3.10: The hit on diagonal 0x0418 and database index 0x0032 passes be­
cause a previous hit on diagonal 0x0418 occurredatDB index 0x0018, meaning 
they are 0x14 (20) symbols apart. 

Once in the extender, the query co-ordinate of the hit is read. This is used to 

load the query segments needed for the extension. The database segment is already 

present, since it has been moving through the datapath alongside the hit in shadow 

registers. On the first cycle, the left extension is done, so the segment to the left 

of the hit is read and input into the score matrices along with the left section of 

the database sequence. The same thing is done for the right extension on the next 

cycle. The resulting scores filter through the extension tree, and result in a score 

of 162, which exceeds the threshold of interest for this alignment. The score and 

co-ordinates of the hit are passed on to the output unit, where they wait in a queue 

until read by the host. 
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Chapter 4 

Common Components 

This chapter describes the common components used in both the Smith-Waterman 

and BLAST projects. A common top-level interface was used to provide commu­

nications between the host PC and the alignment algorithm on chip. In addition, 

the hardware and vendor-provided API is also briefly described in this section, and 

their impact on the implementations of both algorithms is analyzed. 

4.1 Host Interface 

The platform used in our Smith-Waterman research, the Opal Kelly XEM3010-

1500P development board, uses a Spartan-3 XC3S1500-4FG320 FPGA with fixed 

connections to a USB interface, SDRAM module, and PLL module. Our BLAST 

platform, the Opal Kelly XEM3050, is highly similar but contains a larger Spartan-

3 XC3S4000-FG676. The top-level design entity is provided by the vendor. This 

section describes the interface used to connect the external host with the alignment 

logic. 

A top level diagram of the host interface is shown in Figure 4.1. The USB Host 

encompasses several Opal Kelly endpoints, which are provided as pre-compiled 

HDL files. In VHDL, these components are instantiated with a generic specify­

ing their address, which serves as a unique identifier. These identifiers are used 

in the host side to interact with the modules via a provided software API. The 

API is available on Windows, Mac OS X, and Linux platforms, giving our sys-
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Figure 4.1: Top-level diagram of the host interface. 

tem portability across the vast majority of PCs. A typical function call to the API 

might be OKWri t eToPipe ln (0x15 , l e n g t h , b u f ) , which would write 

l e n g t h bytes from buf to the Pipeln module at address 0x15. 

The Opal Kelly pipe interfaces, OKBTPipeln and OKBTPipeOut, are used 

to provide bulk data transfers in and out of the system through the USB. These pipes 

have a hard-coded word size of 16 bits, hence many of our own components, such as 

the input and output FIFOs, use the same word size. The O K T r i g g e r l n module 

is used to provide external triggers, which are used in our design for debugging 

purposes. The modules OKWireln and OKWireOut provide virtual signals or 

variables that can be read from and written to by the host. These are used to enable 

or disable various components within the system, in the case of OKWireln, and 

provide status signals to the host in the case of OKWireOut. For details on these 

components, the reader is directed to [33]. 

The router is used to direct datastreams between the USB host, SDRAM, and 

algorithm. Data from the input pipe can be directed to either the SDRAM or 

algorithm, while the output pipe always receives data from the algorithm. The 

router also contains counters for the number of words passed to the algorithm and 

SDRAM; these are used for debugging. The SDRAM module requires a con­

troller, which is not currently implemented. However, future plans include using 

the SDRAM to enable even longer query sequence lengths in both Smith-Waterman 

and BLAST. 
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The algorithm module is either the Smith-Waterman or BLAST core. It uses a 

standard interface that both the Smith-Waterman and BLAST designs conform to. 

The purpose of designing our system in this way is so that the host and SDRAM in­

terfaces would be fully interchangeable between the Smith-Waterman and BLAST 

configurations. The standard interface also permits future algorithms could also be 

"dropped in" to the algorithm component. Besides the input and output pipes, ports 

for various status signals are provided, such as a count of the number of results 

waiting to be read, and overflow reporting for the input and output FIFOs. These 

FIFO modules perform data buffering and clock domain crossing for the algorithm. 

There are a total of three clock domains in this system: one for the USB host, 

one for the SDRAM, and one for the algorithm. However, since the USB host is 

provided by the vendor and has a fixed maximum clock frequency, the board pro­

vides a special maximum-frequency clock for it. Thus, we don't need to create 

our own clock for it. The SDRAM clock is present in our designs, but is uncon­

nected since the SDRAM module is unimplemented. The algorithm clock is used 

to drive the algorithm core. The frequency varies depending on the algorithm type 

and configuration, but can be easily set and adjusted through API function calls. 

4.2 Host Communication and Data Format 

Except for special-purpose debugging and diagnosis signals, all data passing be­

tween the host and the system goes through the OKBTPipeln and OKBTPipeOut 

interfaces. These interfaces' fixed word width of 16 bits was a major influence in 

our host-system communication design. 

On the input side, the MSB of each word is used to distinguish between com­

mands and data. If the MSB is set, the word is a command or delimiter. In Smith-

Waterman, these commands are used to signal the beginning of query and database 

sequences, for example. Although BLAST lacks a central control unit with which 

to interpret and execute commands, this bit serves a similar purpose of acting as a 

reserved bit to trigger writes to the serial-in random-out (SIRO) modules. 

If the MSB is cleared, the word is interpreted as data. The SIRO modules in 
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Figure 4.2: Input word data formats. 

BLAST simply take raw data as input. Biological sequence data is divided into 

'symbols', each representing one letter in the alphabet of nucleotides or amino 

acids. Nucleotides are 3 bits, and thus are packed in 5 to a word. Although there are 

only 4 nucleotides, which can be represented with 2 bits, it is useful to define extra 

special-purpose symbols. Among these are a symbol that scores negatively with all 

symbols, including itself, and a symbol for representing a gap. Hence we use 3 bits 

rather than 2. The 20-symbol amino acid alphabet requires 5 bits per symbol, and 

thus 3 symbols are delivered per data word. Like our nucleotide symbol set, the 

amino acid set also contains special-use symbols, but in this case their introduction 

does not cause symbols to use up extra bits. 

All sequence data is in little-endian format. Figure 4.2 illustrates the formats of 

a command word and both types of sequence data word. 

Results, as similarity scores and locations, are returned in raw format, in gen­

eral, each element of a single 'result' is sent as either 1 or 2 words, depending on 
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whether more than 16 bits are required. For example, in our Smith-Waterman sys­

tem, all result elements are transmitted as 2 words. The first contains the lower 16 

bits, while the second contains the upper 16 bits. 
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Chapter 5 

Conclusions 

This document describes research in which a new FPGA-based implementation of 

the Smith-Waterman algorithm was created, and a high-speed, low-complexity im­

plementation of simplified BLAST was proposed. Our Smith-Waterman design 

sets a new benchmark by handling longer sequences than any other previously pub­

lished FPGA implementation. It is also distinguished by running on a low-cost, 

portable platform with an inexpensive Spartan-3 series FPGA, while still achieving 

large speed-up factors over current microprocessors. As shown in Section 2.8.4, 

speed-up factors range from 10 to 30 for amino acid sequences and 20 to 100 for 

nucleotide sequences. 

Our proposed BLAST is unique in devising several new heuristics to allow more 

effective hardware acceleration. Our design presents several new approaches to 

BLAST hardware acceleration, most notably the parallel hit look-up and 2-hit fil­

tering stages of the algorithm. 

Future work will focus on integrating our platform's unused SDRAM module 

into our designs, which will allow even longer sequence lengths, and improved flex­

ibility handling the large amounts of data that sequence alignments entail. There 

are also several approaches to improve and extend our BLAST design, such as per­

forming parallel hit detection on chip rather than requiring hits to be pre-computed 

by the host. 

75 



Bibliography 

[1] T. F. Smith and M. S. Waterman. Identification of common molecular subse­

quences. Journal of Molecular Biology, 147(1): 195-197, 1981. 

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local 

alignment search tool. Journal of Molecular Biology, 215:403-410,1990. 

[3] H. Nash, D. Blair, and J. Grefenstette. Comparing algorithms for large-scale 

sequence analysis. In Proc. IEEE Intl. Symp. Bioinformatics and Bioengineer-

ing, volume 2, pages 89-96, November 2001. 

[4] National Center for Biotechnology Information. NCBI-GenBank flat file 

release 159.0 distribution release notes. Technical report, NCBI-GenBank, 

2007. 

[5] UniProt Consortium. The universal protein resource (UniProt). Nucleic Acids 

Research, 35 (Database Issue): 193-197,2007. 

[6] O. Gotoh. An improved algorithm for matching biological sequences. Journal 

of Molecular Biology, 162(3):705-708, 1982. 

[7] R. K. Singh, D. L. Hoffman, S. G. Tell, and C. T. White. BioSCAN: a net­

work sharable computational resource for searching biosequence databases. 

Comput. Appl. BioscL, 12(3): 191-196,1996. 

[8] P. Guerdoux-Jamet and D. Lavenier. SAMBA: hardware accelerator for bio­

logical sequence comparison. Comput. Appl. BioscL, 13(6):609-615,1997. 

[9] B. Schmidt, H. Schroder, and M. Schimmler. Massively parallel solutions for 

molecular sequence analysis. In IPDPS '02: Proceedings of the 16th Interna­

tional Parallel and Distributed Processing Symposium, page 201, Washington, 

DC, USA, 2002. IEEE Computer Society. 

76 



[10] A. Di Bias, D. M. Dahle, M. Diekhans, L. Grate, J. Hirschberg, K. Karplus, 

H. Keller, M. Kendrick, F. J. Mesa-Martinez, D. Pease, E. Rice, A. Schultz, 

D. Speck, and R. Hughey. The UCSC Kestrel parallel processor. IEEE Trans­

actions on Parallel and Distributed Systems, 16(1):80—92, 2005. 

[11] W. Liu, B. Schmidt, G. Voss, A. Schroder, and W. Muller-Wittig. Bio-

sequence database scanning on a GPU. In IPDPS 2006 Parallel and Dis­

tributed Processing Symp., volume 20, April 2006. 

[12] D. T. Hoang. Searching genetic databases on Splash 2. In Duncan A. Buell and 

Kenneth L. Pocek, editors, IEEE Workshop on FPGAsfor Custom Computing 

Machines, pages 185-191, Los Alamitos, CA, 1993. IEEE Computer Society 

Press. 

[13] Active Motif Inc. h t t p : / / w w w . t i m e l o g i c . c o m . 

[14] Y. Yamaguchi, T. Maruyama, and A. Konagaya. High speed homology search 

with FPGAs. In Proc. Pacific Symposium on Biocomputing, pages 271-282, 

2002. 

[15] T. F. Oliver, B. Schmidt, and D. L. Maskell. Reconfigurable architectures for 

bio-sequence database scanning on FPGAs. IEEE Transactions on Circuits 

and Systems II, 52(12):851-855, December 2005. 

[16] D. J. States, W. Gish, and S. Altschul. Improved sensitivity of nucleic acid 

database searches using application-specific scoring matrices. METHODS: A 

Companion to Methods in Enzymology, 3(l):66-70, August 1991. 

[17] S. F. Altschul. Amino acid substitution matrices from an information theoretic 

perspective. Journal of Molecular Biology, 219:555-565, 1991. 

[18] W. R. Pearson. Comparison of methods for searching protein sequence 

databases. Protein Science, 4:1145-1160,1995. 

[19] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving 

the sensitivity of progressive multiple sequence alignment through sequence 

weighting, position-specific gap penalties and weight matrix choice. Nucleic 

Acids Research, 22:4673^680, 1994. 

[20] Xilinx Inc. Spartan-3 FPGA Family: Complete Data Sheet. 

77 

http://www.timelogic.com


h t t p : / / w w w . x i l i n x . com. August 2005. 

[21] S. Henikoffand J. G. Henikoff. Amino acid substitution matrices from protein 

blocks. In Proc. Nat. Acad. Sci., volume 89, pages 10915-10919, 1992. 

[22] S. F. Altschul, T. L. Madden, A. A. Schaeffer, J. Zhang, Z. Zhang, W. Miller, 

and D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of pro­

tein database search programs. Nucleic Acids Research, 25(17):3389-3402, 

1997. 

[23] S. Bates, B. Knudsen, P. Meulemans, T. Rollingson, and O. Zaboronski. 100 

GCUPS low complexity BLAST filter for FPGA. 

[24] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence 

comparison. In Proc. Natl. Acad. Sci. USA, volume 85, pages 2444-2448, 

April 1988. 

[25] National Center for Biotechnology Information, 

h t t p : / / w w w . n c b i . n l m . n i h . g o v / . 

[26] K. Muriki, K. D. Underwood, and R. Sass. RC-BLAST: towards a portable, 

cost-effective open source hardware implementation. In Proc. 19th IEEE Intl. 

Symp. Parallel and Distributed Processing (IPDPS 2005), April 2005. 

[27] P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, K. Gyang, and 

J. Lancaster. Biosequence similarity search on the Mercury system. In ASAP 

'04: Proceedings of the Application-Specific Systems, Architectures and Pro­

cessors, 15th IEEE International Conference on (ASAP'04), pages 365-375, 

Washington, DC, USA, 2004. IEEE Computer Society. 

[28] A. Jacob, J. Lancaster, J. Buhler, and R. Chamberlain. FPGA-accelerated seed 

generation in Mercury BLASTP. FCCM, 0:95-106, 2007. 

[29] E. Sotiriades, C. Kozanitis, and A. Dollas. FPGA based architecture for DNA 

sequence comparison and database search. In Proc. 20th IEEE Intl. Symp. 

Parallel and Distributed Processing (IPDPS 2006), April 2006. 

[30] M. Herbordt, J. Model, Y. Gu, B. Sukhwani, and T. VanCourt. Single pass, 

BLAST-like, approximate string matching on FPGAs. In FCCM '06: Pro­

ceedings of the 14th Annual IEEE Symposium on Field-Programmable Cus-

78 

http://www.xilinx
http://www.ncbi.nlm.nih.gov/


torn Computing Machines (FCCM'06), pages 217-226, Washington, DC, 

USA, 2006. IEEE Computer Society. 

[31] Swiss Institute of Bioinformatics. UniProtKB/Swiss-

Prot protein knowledgebase release 54.1 statistics, 

h t t p : / / c a . e x p a s y . o r g / s p r o t / r e l n o t e s / r e l s t a t . h t m l . 

[32] Xilinx Inc. Using Look-Up Tables as Shift Reg­

isters (SRL16) in Spartan-3 Generation FPGAs. 

h t t p : / / w w w . x i l i n x . c o m / b v d o c s / a p p n o t e s / x a p p 4 6 5 . p d f . 

May 2005. 

[33] Opal Kelly Inc. Opal Kelly FrontPanel User Manual. 

h t t p : / / w w w . o p a l k e l l y . c o m . September 2005. 

79 

http://ca.expasy.org/sprot/relnotes/relstat.html
http://www.xilinx.com/bvdocs/appnotes/xapp465.pdf
http://www.opalkelly.com

