
University of Alberta

HARDWARE ACCELERATION OF BIO-SEQUENCE ALIGNMENT ALGORITHMS

ON FPGAs

by

' ~ \
Kevin Cushon x ^ /

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Spring 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45801-3
Our file Notre reference
ISBN: 978-0-494-45801-3

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

•*•

Canada

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

This thesis describes new FPGA-based architectures for computing biological se­

quence alignments using the Smith-Waterman algorithm and a simplified version of

the BLAST algorithm. The Smith-Waterman system has been fully implemented,

achieving maximum performance of 1.5 GCUPS (billions of cell updates per sec­

ond) for amino acid sequences and 5.3 GCUPS for nucleotides. It uses a new design

based on partitioning the alignment into multiple sections, which allows our system

to support query sequence lengths of up to 8192 symbols for both nucleotide and

amino acid alphabets. This is longer than any previously published FPGA-based

system. We also present a new architecture for computing a subset of BLAST on

amino acid sequences at a projected rate of 100 GCUPS. This system has been fully

designed and partially implemented. We experimentally confirm that our simplified

BLAST implementation is equivalent to full BLAST with minor post-processing

performed by a host PC.

Acknowledgements

I would like to thank my supervisor Stephen Bates for his guidance, encouragement,

help, and financial support throughout my studies, as well as Bruce Cockburn, my

co-supervisor, and Lukasz Kurgan and Jon Schaeffer, who made up my examination

committee. I would also like to thank Peter Meulemans and Tim Rollingson at

Arithmatica Ltd. and Bjarne Knudsen at CLCbio for their contributions and advice.

Finally, I would like to thank Logan Gunthorpe for making my nightmare of a

codebase manageable with his magic Python scripts.

Table of Contents

1 Introduction 1
1.1 A Brief Introduction to Sequence Alignment 1
1.2 Motivation 2
1.3 Platform 3
1.4 Achievements 3
1.5 Biochemical Terminology 4

2 Smith-Waterman 6
2.1 The Smith-Waterman Algorithm 6
2.2 Parallel Computation 9
2.3 Prior Work 9

2.3.1 Comparison of Our System with Previous Systems 10
2.4 Our Design 13
2.5 The Processing Element 16

2.5.1 Substitution Matrix Design 19
2.5.2 Gap Penalty Design 20

2.6 The Controller 20
2.6.1 Location Finding 25
2.6.2 Pausing 26

2.7 Example 27
2.8 Synthesis and Evaluation 29

2.8.1 Configurations 29
2.8.2 Performance Testing 30
2.8.3 Performance Measurements and Analysis 31
2.8.4 Comparison With Desktop Microprocessors 34

3 BLAST Filter 40
3.1 Background Information 41
3.2 Initial Research 42
3.3 Scope of this Work 43
3.4 Comparison with NCBI BLAST 43
3.5 Comparison with Previous Designs 45
3.6 Simulation and Validation 46

3.6.1 Equivalence with NCBI BLAST 46
3.6.2 Performance 49
3.6.3 Two-Hit Filter False Positives 49

3.7 Implementation 52
3.7.1 Sequence Unpacker 52
3.7.2 Look-Up Tables 53
3.7.3 Two-Hit Filter 56

3.7.4 Extender 61
3.7.5 Resource Consumption 65

3.8 Example 67

4 Common Components 70
4.1 Host Interface 70

4.2 Host Communication and Data Format 72

5 Conclusions 75

Bibliography 76

List of Tables

2.1 Substitution Matrix for the Example in Figure 2.1 9
2.2 Smith-Waterman controller states 22
2.3 Smith-Waterman system configurations 30
2.4 Performance impact of various factors on our Smith-Waterman sys­

tems 32

3.1 Comparison between NCB1 BLAST and our algorithm 44
3.2 Simulated 2-hit filter false positive rates for a variety of database

lengths 51
3.3 BLAST filter resource consumption estimates 66

List of Figures

1.1 Growth oftheNCBIGenBank database over time 2

2.1 Score matrix H for the sequences ACGTTT and ACTT 8
2.2 Dependency network for H. Elements along the marked diagonals

can be computed concurrently 10
2.3 Smith-Waterman computed on a linear array of processing elements. 11
2.4 The alignment is partitioned into multiple sub-alignments in which

the query sequence is aligned with database subsequences of length
N, where N is the length of the PE array. A dual-port RAM is used
to join successive slices 14

2.5 Top-level system architecture. This consists of N processing ele­
ments, a control element, and RAMs for storage and I/O buffering. . 16

2.6 Simplified RTL schematic of the processing element 17
2.7 Controller states at various points in the alignment calculation for a

system with N = 4 21
2.8 Smith-Waterman state transition diagram 23
2.9 The example system at time t = 7 28
2.10 The ratio of transfer time to processing time 33
2.11 Measurements for a nucleotide alphabet system with 64 PEs, 12 bit

score width, 128-length query sequences, and fdk = 46 MHz 36
2.12 Measurements for a nucleotide alphabet system with 64 PEs, 12-bit

score width, and 1024-length query sequences 36
2.13 110 PE nucleotide system with 7-bit scores and 220 symbol query

sequences 37
2.14 110 PE nucleotide system with 7-bit scores and 1100 symbol query

sequences 37
2.15 32 PE amino acid system with 12-bit scores and 64 symbol query

sequences 38
2.16 32 PE amino acid system with 12-bit scores and 1024 symbol query

sequences 38
2.17 38 PE amino acid system with 7-bit scores and 76 symbol query

sequences 39
2.18 38 PE amino acid system with 7-bit scores and 1026 symbol query

sequences 39

3.1 The BLAST filter reports separate results for every word in a region
of similarity, while the NCBI software reports it only once. The
inner boxes show the original hit boundaries 48

3.2 The origin of the BLAST filter datapath, showing the sequence un-
packer and hit LUTs 54

3.3 Simplified block diagram of the complete BLAST filter. 55

3.4 The BLAST location LUT 57
3.5 The BLAST two-hit filter module 59
3.6 Simplified architecture of the two-hit filter queue 60
3.7 Extender architecture 62
3.8 The word AGQ being processed by the Address LUT. 67
3.9 The base address and hit count from the Address LUT being used

to look up hits from the Location LUT 68
3.10 The hit on diagonal 0x0418 and database index 0x0032 passes

because a previous hit on diagonal 0x0418 occurred at DB index
0x0018, meaning they are 0x14 (20) symbols apart 69

4.1 Top-level diagram of the host interface 71
4.2 Input word data formats 73

Chapter 1

Introduction

1.1 A Brief Introduction to Sequence Alignment

Comparison between sequences of nucleotides or amino acids is one of the most fre­

quently performed tasks in bioinformatics. Quite often, sequences with unknown

functionality are compared with databases of known sequences; these are known

as query and database sequences, respectively. From a biological viewpoint, se­

quences with high similarity are likely to have functional, structural, or evolution­

ary relationships. These similarity measurements are called sequence alignments,

or simply alignments.

Many different algorithms for performing alignments have been devised. Two

of the more important algorithms are the Smith-Waterman algorithm [1] and Basic

Local Alignment Search Tool, or BLAST [2]. BLAST is a heuristic algorithm that

offers good accuracy at greatly reduced computational cost [3], and for this reason

it has become the de facto standard for first-pass sequence database scans. Smith-

Waterman, while having greater computational complexity, is guaranteed to provide

the most optimal local subsequence alignment between two sequences. It is often

used to refine results of less accurate alignments, including BLAST, and it remains

the primary alignment method in processes requiring very high accuracy. Due to the

relative importance and popularity of these algorithms in bioinformatics and related

fields, we chose to conduct research into improved hardware-based acceleration.

1

Grmith of GenBank

8 0 4 1 8 p • 1 - • 1 • ' I 1 ' 1 • > 1 ' • 1 > • 1 >-

7etie -

ee*ie •

5e*w •

1
1 40*18 •

1
3etlB -

2e*ia •

le»18 -

g I . I . . 1 . . 1 . 1 1 :,---, 1— T~ i 1—_t_j-—1__ , 1 J
91/05 81/88 81/91 81/94 81/97 81/88 81/83 81/86

date <nn/y(|>

Figure 1.1: Growth of the NCBI GenBank database over time.

1.2 Motivation

Sequence alignments are computationally expensive tasks, and the sheer size and

rate of growth of sequence databases are making software-driven alignments in­

creasingly impractical. A typical operation is to compare a newly-discovered se­

quence with every sequence contained in a database, the largest of which consist of

thousands or millions of known sequences and billions of base pairs. Furthermore,

these databases are experiencing exponential growth, doubling in size over periods

of as little as 2 years.

As an example of sequence database growth, Figure 1.1 shows the growth of the

NCBI (National Center for Biotechnology Information) GenBank database, a major

database of nucleotide sequences [4]. Other major databases, such as the Uniprot

(Universal Protein) database [5] exhibit comparable volume and growth curves.

Consequently, there is a high demand for alignment acceleration technology. In

particular, application-specific hardware can achieve speedup ranging from tens to

hundreds by performing parallel computation. This research seeks to meet that de­

mand by creating new hardware-based alignment systems for Smith-Waterman and

BLAST that offer practical improvement over those already available.

2

1.3 Platform

A reconfigurable platform is ideal for the task of accelerating Smith-Waterman and

BLAST. One of the main reasons for this is that the same chip can be configured

to run either algorithm. In addition, both algorithms can be run using nucleotide

or amino acid symbol sets and a variety of parameters, such as substitution ma­

trices and gap insertion penalties. Accommodating these on a non-reconfigurable

platform would be difficult. Consequently we chose to conduct this research on an

FPGA (field-programmable gate array) platform.

The platform we used for this research is the Opal Kelly XEM3010-1500P,

which is an experimentation module based around a Xilinx Spartan-3 XC3S1500-

4FG320 FPGA. Our work with BLAST targets the larger Spartan-3 XC3S4000. A

USB interface and multi-platform API (application programming interface) is pro­

vided for communication with a host PC.

1.4 Achievements

Our Smith-Waterman system is based on partitioning the alignment into one or

more sub-alignments, in which the query sequence is aligned with a segment of

the database sequence. These sub-alignments are joined together to obtain the final

result.

This architecture gives our design two major achievements. The first is that it

allows our system to support very long query sequences - up to 8192 symbols for

sequences of both nucleotides and amino acids. This is greater than any previously

published FPGA-based implementation of Smith-Waterman. The second is that it

makes our design less sensitive to the speed of the communication link, as each

sub-alignment requires only a few symbols from the database sequence in order to

proceed, during which time sequence data continues to be streamed over the link.

Our system thus achieves higher efficiency than previous designs by reducing or

completely eliminating the amount of time spent idle while waiting for new data.

More detailed discussions of this aspect can be found in Section 2.8.2.

3

Our BLAST system provides a unique contribution in the simplified version of

BLAST we use. By omitting certain aspects of BLAST that are difficult to imple­

ment in hardware, we obtain an algorithm capable of a much faster and simpler

hardware implementation. Our system architecture of a single hit look-up unit, fol­

lowed by multiple parallel processing paths for determining which hits are candi­

dates to be passed on to a single extension unit, is completely novel. Our two-table

design for hit look-ups provides more efficient memory use. Finally, our BLAST

system is the first FPGA BLAST system to implement the two-hit condition for

extension.

1.5 Biochemical Terminology

Several biochemical and biological terms are used throughout this document. The

purpose of this section is to provide their definitions and clarify their meaning in

the context of sequence alignments.

A nucleotide is, from a chemical viewpoint, a molecule consisting of a hetero­

cyclic base, a sugar, and one or more phosphate groups. Nucleotides are the struc­

tural units of DNA and RNA. More generally, a nucleic acid is a macromolecule

made up of nucleotides - DNA and RNA are the most common types of nucleic

acid. In DNA, the four nucleotide bases are adenine (A), cytosine (C), guanine (G)

and thymine (T). In RNA, thymine is usually replaced by uracil (U), which usually

does not occur in DNA. Sequence alignments using nucleotide alphabets are almost

always performed on DNA. As such, this document treats nucleotides as the set of

A, C, G, and T, to the exclusion of U. Hence, any chain of nucleotides discussed in

this document is referred to as DNA.

An amino acid, when the term is used in biochemistry, refers to molecules with

the general formula H2NCHRCOOH, where R is an organic substituent. The

standard amino acids are a set of 20 amino acids which are directly encoded for

protein synthesis by the canonical or standard genetic code, making them much

more important in the study of proteins than general amino acids. This gives rise

to the 20-symbol amino acid alphabet used to describe proteins and peptides in

4

sequence alignments. When the term "amino acid" is used in the document, it

actually refers to the standard amino acids.

Proteins and peptides are polymers made up of amino acids in a specific order.

The exact distinction between the two is a point of some contention in the biochem­

istry community. In its most basic form, the difference is that peptides are short (as

in they contain fewer amino acids) while proteins are long. Proteins are a topic of

more interest in sequence alignments than peptides, because their bigger size often

gives them secondary structural and functional properties that are absent in pep­

tides. Since the focus of this document is sequence alignments, the term "protein"

is used to refer to any sequence of amino acids, even though shorter sequences may

be more appropriately called peptides.

5

Chapter 2

Smith-Waterman

2.1 The Smith-Waterman Algorithm

This section contains a brief overview of the Smith-Waterman algorithm and prior

research conducted into methods of accelerating it. It is intended to give the reader

sufficient background knowledge to fully understand the hardware architecture de­

vised in this research. For a full explanation of the algorithm, the reader is referred

to [1] and [6].

The Smith-Waterman algorithm is a dynamic programming algorithm used to

perform sequence alignments. It compares two sequences by computing the dis­

tance between them - the minimal cost of transforming one sequence into the other

using substitution, insertion and deletion as elementary operations. Each operation

has an associated cost.

The mathematical model of Smith-Waterman used in this research is shown

below:

H(i,j) = max{0, E(i,j),F(i,j),H(i- l,j - 1) + Sbt(Ai,Bj)}
(2.1)

for 1 < i < m, 1 < j < n.

E(i,j) = max{H{i, j - 1) - a, E(i,j - 1) - /?}
(2.2)

for 0 < i < m, 1 < j < n.

6

F(i,j) = max{H(i - l,j) - a, E(i - 1, j) - ft}
(2.3)

for 1 < i < m, 0 < j < n.

Consider two sequences A and B with respective lengths of m and n. The

Smith-Waterman algorithm calculates all elements of a matrix H, with dimensions

mxn. H is referred to as the score matrix. A single element of the matrix, H (i, j),

represents the similarity of two subsequences of A and B ending at respective po­

sitions i and j .

Border values for all three equations are specified as H(i, 0) = E(i, 0) =

H{0,j) = F(0,j) = 0 for 0 < i < m,0 < j < n. The Sbt(iJ) term refers

to a substitution cost table. This table assigns every possible combination of sym­

bols an associated similarity score. Sbt(i,j) is the substitution value for the ith

symbol in A and the j'th symbol in B. The terms a and /3 are gap insertion costs: a

is the cost of the first gap, while successive gaps are assigned a cost of (3. This type

of gap model is generally known as the affine gap model. The use of this model

with Smith-Waterman is described in [6]. Generally, a has a greater magnitude to

reflect the assumption that opening a new gap represents greater dissimilarity than

extending an existing one. The biological reason for this is that insertions and dele­

tions often occur in blocks of multiple residues. Thus, two sequences may have

multiple regions of high similarity separated by regions of low similarity. This gap

model reduces the penalties incurred by long gaps, thus increasing the algorithm's

sensitivity. The matrices E and F are intermediate variables used in the calculation

of scores involving gapped sequences.

A simple example of a Smith-Waterman alignment calculation is shown in Fig­

ure 2.1. Two sequences of nucleotides, ACGTTT and ACCTT, are aligned using

the substitution matrix shown in Table 2.1. Matches are assigned a score of 5,

mismatches a score of —4. The gap penalties are set to a = — 9 and ft = —2.

The bolded elements indicate the trackback path from the maximal element 16 at

H(5,5). The pair of segments with maximal similarity is:

7

A C G T T T

0

0

0

0

0

0

0

5
>

0

0

0

0

0

0

10

0

0

1

\
1

0

0

6
>

0

0

0

0

0

0

Mi
1 1

0

0

0

0

5
\

5 16

0

0

0

0

5

7

Figure 2.1: Score matrix H for the sequences ACGTTT and ACTT.

ACGTTT

M i l l
ACCTT-

This example contains a mismatched pair at (3,3) but no gaps. However, the

effect of opening a gap can be seen at (2,3), (3,2), and (5,6). The score matrix in

its entirety contains useful information for alignments between highly similar se­

quences, such as the positions of individual gaps and insertions. However, the vast

majority of alignments are run with the goal of finding a handful of highly similar

sequences from a database of many thousands. In this case, the only useful infor­

mation is the maximum score obtained. Sequences generating scores exceeding a

certain threshold of interest are then investigated further. Because this is by far the

most common use case, a hardware-accelerated implementation need only return

this particular value to be useful.

8

Table 2.1: Substitution Matrix for the Example in Figure 2.1

A

C

G

T

A

5

-4

-4

-4

C

-4

5

-4

-4

G

-4

-4

5

-4

T

-4
-4

-4

5

2.2 Parallel Computation

A highly useful property of Smith-Waterman is that it is possible to compute many

elements of H in parallel. Referring to Equations 2.1 - 2.3, we see that each element

is derived from elements in the preceding row and column. In general, H(i,j) is

dependent on H(c, d), where 1 < c < i and 1 < d < j . We also note that any

given element H(i, j) can be computed concurrently with all elements in the diag­

onal H(i — n,j + n). These diagonals run from bottom left to top right through

the matrix. Figure 2.2 shows the dependency network and diagonals of concur­

rently computable elements. As a consequence, elements along said diagonals are

independent of one another and may be calculated simultaneously. In this way, the

alignment is performed in m + n — 1 sequential steps, rather than the m x n steps

needed to perform it serially.

2.3 Prior Work

The inherent parallelism of Smith-Waterman has been exploited in a number of

previous designs. The most basic method of mapping the concurrent computation

of diagonal elements is to use a linear systolic array of processing elements (PEs),

in which one sequence is held statically within the array, while the other is shifted

through sequentially. The PEs each compute one element of the matrix H per shift.

At any given time, the elements of H being computed form an independent diagonal

as described in Section 2.2. This process is illustrated in Figure 2.3. By registering

the results of each PE, the array forms a modular pipeline to which additional PEs

can be added without impacting the maximum clock frequency.

9

0 0 0 0

Figure 2.2: Dependency network for H. Elements along the marked diagonals can
be computed concurrently.

For a PE to calculate H(i, j), it requires only the results obtained by itself during

the last time step and from its predecessor in the array during the last two time steps.

Thus, only local interconnections are required between the PEs. This is the main

advantage of this architecture, as shorter connections allow the pipeline to be run at

higher clock frequencies, and less die area is used for routing signals compared to

an architecture with many global interconnections.

2.3.1 Comparison of Our System with Previous Systems

Some early efforts to implement hardware accelerated Smith-Waterman used appli­

cation specific systolic arrays, such as BioSCAN [7] and SAMBA [8]. The system

in [7] uses a very long array of PEs implemented on ASICs, which is interfaced to

a workstation using an expansion card. It is very simple in this regard; no partition­

ing or external controller is used. Due to sheer number of PEs, the system achieves

very fast performance. However, it implements only a very rudimentary ungapped

matching algorithm, which is likened to ungapped Smith-Waterman. However, it

shares some commonality with our design in the linear PE array based architecture.

10

t ^ n ^ r m n ^ ^

H ' h — • • • K

• 0 Q • •
• 00'jZf D D
\npjzfu a n
mjzfn n a n
• ' • n a n a

Figure 2.3: Smith-Waterman computed on a linear array of processing elements.

The system in [8] uses a 128 PE array implemented on ASICs, with an FPGA

interface to an external memory chip. Long sequences are handled by partitioning

along the query sequence. The partitioning algorithm is similar to ours, but only

data from the last PE is saved to memory, which requires partitioning to take place

along the query sequence. This results in a loss of flexibility as it places an upper

bound on the database sequence length, and prevents the database sequence from

being streamed, as in our system. Real performance is around 300 MCUPS, which

is much slower than our system but represented a speed-up factor of 10-100 over

the desktop PCs of the day, which in that respect is comparable to our system.

In addition, this system implements the complete affine gap penalty and has a PE

design very similar to ours.

Other systems exploit this principle using SIMD (single-instruction, multiple-

data) systems. Two examples of such systems with a specific focus on biological

11

file:///npjzfu

alignments are presented in [9] and [10]. These systems are quite different from

our own in that they use 2-dimensional arrays of systolic processors configured as

Smith-Waterman PEs. Diagonals are computed literally on this grid by activating

the appropriate processors at the appropriate time. Clusters of PCs, each equipped

with an expansion card with a certain size grid ([9] uses 32x32), divide the work

and share border values to continue the calculation. Although these processors

achieve greater performance than our system (real performance figures for amino

acid sequences of about 2.5 GCUPS are reported, compared to a peak of 1.5 GCUPS

for our system), the 2-D array and PC cluster platform is inefficient and much more

costly.

An interesting approach described in [11] runs Smith-Waterman on high-end PC

graphics cards, achieving parallel computation with OpenGL commands. However,

this approach is entirely in software, albeit with creative use of commodity hard­

ware, and so has little in common with our system beyond the parallel computation

principles. Performance also falls well short of modern FPGA implementations,

including our own (< 1 GCUPS).

There has also been some previous research performed using reconfigurable

hardware. An early architecture presented in [12] uses the Splash-2 platform. Like

[7], it simply uses a long systolic array without any additional logic or control, and

computes edit distance rather than performing a full Smith-Waterman alignment. It

does not have any provisions for sequences longer than the array - query sequences

are limited to 384 symbols or less.

TimeLogic has developed hybrid workstations with integrated FPGAs for ac­

celerating Smith-Waterman and other bioinformatics applications [13]. These sys­

tems are essentially workstation PCs with deeply integrated FPGAs for accelerating

application-specific tasks. The FPGAs have the advantage of rapid access to the

workstation's other resources such as RAM. Like [8], the alignment is computed

on a systolic array, and intermediate results are written to RAM and read back into

the array as needed. One advantage is that with access to a large pool of RAM,

the maximum sequence size of this system is unlimited for practical purposes. The

12

disadvantage, of course, is that an entire workstation is needed to support the FPGA

calculation.

More recently published designs, running purely on FPGAs, include [14] and

[15]. The system in [14] uses a pipelined PE design with 4 stages. This design re­

quires the system to work on 2 segments of the alignment simultaneously to avoid

idle cycles. Long query sequences are handled by splitting the query into multi­

ple segments and aligning each against the entire database, as in [8]. One conse­

quence of the multi-threaded computation and partitioning is that some segments

must overlap previous segments to avoid losing data, which causes a loss of effi­

ciency. In addition, the system only operates on DNA sequences. Performance is

3.86 GCUPS on a Xilinx XCV2000E FPGA, but due to inefficiencies in this system,

our system achieves equal or better performance with a smaller FPGA.

The design presented in [15] is both the most recently published and the most

similar to our own. This system uses a single-cycle PE design, with the main in­

novation being that each PE stores only the column of the substitution matrix cor­

responding to the query symbol rather than the entire matrix. Long sequences are

handled by storing multiple columns per PE, giving this design a maximum query

sequence length of 1512 symbols with affine gap penalties, compared to our limit

of 8192. The performance of this system is about 3 times greater than ours, though

it uses an FPGA about 3 times as large.

The main contributions of our design are partitioning the database sequence and

using block RAMs to achieve the longest maximum query length of any previously

published FPGA architecture. The remainder of this chapter describes our design

in greater detail. Our design also gives the unique benefit of desensitization to

slow communications links, as well as the portability and economy of running on a

lower-end FPGA.

2.4 Our Design

For our design, we sought to improve upon these earlier designs. One common

deficiency lies in the maximum supported sequence lengths. As stated in Section

13

Query Sequence

to

ra

T G

n n • 0'

PE register states saved / loaded

• • •
Figure 2.4: The alignment is partitioned into multiple sub-alignments in which the
query sequence is aligned with database subsequences of length N, where JV is the
length of the PE array. A dual-port RAM is used to join successive slices.

2.3, one sequence must be stored statically inside the PE chain. As long as the

PE chain is longer than one of the sequences, the alignment can be computed in a

single pass of the other sequence through the PE chain. However, many identified

sequences have lengths of hundreds or thousands of symbols, which is far too much

for even the largest FPGAs [4]. Some way of handling sequences longer than the

number of available PEs is obviously required.

Our design addresses the limitation on query length by dividing the computa­

tion of H, E and F into multiple passes. Consider a linear PE array of length N,

a query sequence A of length Q, and a database sequence B of length D. Com­

putation of the score matrix H is split into \D/N] sections, each with a query

sequence of length Q and a database sequence of length N. Computation of each

section is carried out by rotating the database sequence segment through the PE

array continuously, while a separate controller component loads symbols from the

query sequence into the PEs. The individual sections are joined together using a

scratch buffer to store register states from each PE. Because the scratch buffer must

handle a read and a write per clock cycle, a dual-port RAM is used. When a PE

14

performs a computation for an element adjacent to the "border" between sections,

it writes its register state to the scratch buffer. Likewise, when the next section is

evaluated, the PEs read their initial register states from the scratch buffer. These

transactions are controlled by a central controller. With each initial state loaded

into a PE, the appropriate query symbol for the current state of the calculation is

loaded as well. In cases where Q > N, a single PE may load a previously saved

state multiple times per slice. The query sequence is stored in a separate RAM.

This process is illustrated in Figure 2.4.

Dividing the alignment in this manner also desensitizes our design to slow com­

munications links. Before computation begins, the entire query sequence is trans­

ferred and stored in memory. Since the query sequence is typically much shorter

than the database it is being aligned with, this delay is not significant compared

to the total computation time. Once the first N elements of the database sequence

have been transferred, computation of the first section of the score matrix begins.

As long as the next N elements of the database sequence are received before the

first section is complete, computation of the next section may begin without having

to pause for more data. Thus, for sufficiently long query sequence lengths, the per­

formance of our system is limited by the rate of computation rather than the speed

of the data link. However, for shorter query sequences, the system must pause at the

end of each section until the next database segment is received. Pausing the system

is accomplished by disabling all registers in the PE array.

The FPGA we targeted for our architecture, the Xilinx Spartan-3 XC3S1500,

features integrated block RAM modules that meet our memory requirements. The

RAM used to store the query sequence, the dual-port RAM for storing intermediate

PE states, and the I/O buffers are synthesized using these block RAM modules.

Thus, no logic resources are consumed by memory and no off-chip memories are

needed.

All communications between the system and host PC pass through FIFO input

and output buffers. Reserved command words are used to delimit the begin and end

of the query and database sequences. Computation begins automatically once the

15

Block RAMs for Query Sequence and Partial Results

rr

Smith-Waterman
Controller

Link to USB
Transceiver & Host

PC

Figure 2.5: Top-level system architecture. This consists of N processing elements,
a control element, and RAMs for storage and I/O buffering.

system has received the first N symbols of the database, and upon completion the

result is written to the output buffer. The Opal Kelly XEM3010-1500P development

board uses a USB interface to communicate with the host. HDL modules for the

USB interface and communication endpoints are provided in the Opal Kelly API.

A top level diagram of our design is shown in Figure 2.5.

2.5 The Processing Element

In this section, we will examine the individual Smith-Waterman processing element

(PE) in detail. A PE implements all the operations needed to compute one element

H (i, j) of the score matrix per clock cycle, and forward the necessary results to the

next PE in the array. In addition to the basic Smith-Waterman functionality, our PE

design also reports the location of the maximal element.

Figure 2.6 shows a simplified RTL schematic of the processing element. Ports

on the left are inputs from the previous PE, and ports on the right are outputs to

the next PE (except for the first and last PE in the array, which are connected to

the controller). The ports at the top are inputs and outputs to the query and scratch

RAMs.

An input from the previous PE is equivalent to an input from the previous col-

16

Query__ln NodeDataln NodeDataOut

Figure 2.6: Simplified RTL schematic of the processing element.

17

umn of the result matrices. Hence, the inputs H_Lef t i n and E_In are equivalent

to H(i, j — 1) and E(i, j — 1), respectively. Likewise, a delay of one clock cycle is

equivalent to shifting one row down. The signal labeled H_Diagonal, equivalent

to H(i — 1, j; — 1), is obtained by registering HLLef t i n . Note that the calculation

of F is internal to the PE, since it is dependent only on prior results from the same

column.

In addition to calculating H, E, and F, each PE also stores a copy of the highest

similarity score it has seen in the evaluation thus far. It is registered and output to the

next PE along with the calculation results, and at each step it is compared with the

current similarity scores. This is to ensure that the value of the best local alignment

is propagated through to the controller.

Calculation results are stored in a register file. This links the PEs together in a

modular pipeline, so adding or eliminating PEs does not affect the maximum clock

frequency of the pipeline. Results needed in future calculations are routed back into

the PE for use during the next clock cycle. One consequence of this design is that

it increases the number of sequential steps needed to perform the alignment from

n+m—lton+m+1. One extra clock cycle is needed to compute the final value of

H(i,j) using the results stored during the last cycle; another is needed to propagate

the final result from the last PE to the output. The overall impact on performance is

minimal - performance scales with N x -^- j - instead of N.

When a PE performs a computation for an element adjacent to the "border" be­

tween two sub-alignments, its register state is written to the scratch RAM. Likewise,

when the next section is evaluated, the PEs read their initial register states from the

RAM and the new query symbol is loaded. Each PE has an input signal to control

when register states are loaded from RAM. There is also a pause signal which dis­

ables all registers. This is used when the system must wait for more sequence data

before proceeding.

18

2.5.1 Substitution Matrix Design

To calculate the value of H(i, j), a PE requires a lookup from the substitution ta­

ble Sbt(Ai, Bj), which contains similarity scores for each possible combination of

symbols in the two sequences. Because every PE must perform a lookup from this

table each clock cycle, every PE contains its own local copy.

Substitution tables in our system are described by a VHDL file containing

nested c a s e statements. These VHDL files are generated automatically by a Py­

thon script, using scoring data provided in tabular form, much like that shown in

Table 2.1. Thus, it is very easy to generate substitution matrices with arbitrary

scores and an arbitrary number of symbols. The resulting hardware is in the form

of distributed ROM synthesized from the reconfigurable portions of the FPGA.

The decision not to use reprogrammable substitution matrices was motivated by

several factors. A substantial amount of research has been conducted into substitu­

tion matrices, with the consensus that the choice of matrix has a significant effect

on the accuracy and usefulness of alignment results for both nucleotide [16] and

amino acid matrices [17], [18]. Furthermore, there is also some benefit in scaling

the substitution scores dynamically, which can only be accomplished on fully repro­

grammable matrices. Two examples are varying substitution scores with respect to

their positions in the sequences [19], as well as scaling the entire matrix depending

on the total lengths of the sequences [16].

Therefore, it would be highly useful to have reprogrammable score tables, so

that the score set best suited to a particular application could be loaded and used.

This would be possible by storing the substitution matrix in a RAM, but this ap­

proach faces several disadvantages; particularly increased resource consumption.

The most vital disadvantage is that fewer resources would be available for the

scratch buffer or for PEs. If block RAM is used, less is available for the scratch

buffer, which is contrary to our primary design goal of accommodating long se­

quence lengths. Furthermore, since block RAM modules on our platform have 1

cycle of latency on reads [20], our PE design would have to accommodate this by

implementing pipelining, which would thus increase scratch memory requirements,

19

reduce maximum sequence length, and require more complicated control logic.

Distributed RAM (that is, RAM synthesized from the configurable logic por­

tions of the FPGA) faces similar disadvantages. Reprogrammable memory con­

sumes twice as many resources as ROM [20], and thus would greatly increase the

footprint of each PE. This has an especially large impact on the resources consumed

by the larger amino acid substitution matrices. Using distributed RAM for the sub­

stitution matrices would thus reduce the length of the PE chain by an unacceptable

amount.

In addition, as our system uses a reconfigurable platform, it is possible to syn­

thesize designs with any desired substitution matrix and rapidly reconfigure the

hardware. Configuration files containing standard matrices such as the BLOSUM

series [21] can be kept on the host PC, and used to reconfigure the device as needed.

Granted, this method is not as flexible, but having a wide array of pre-synthesized

matrices at the user's disposal partially negates this inflexibility.

2.5.2 Gap Penalty Design

Gap penalties are similar to the substitution matrix in that it is desirable to have them

reconfigurable. Optimizing gap penalties for a specific application has been shown

to significantly increase performance in Smith-Waterman [18]. Gap penalties them­

selves are implemented with subtracters, as shown in Figure 2.6, so making them

reconfigurable is simply a matter of storing the gap penalty in a register. Unlike the

substitution matrix, this does not result in any serious design issues. Gap penalties

are reconfigured in all PEs simultaneously by a command from the controller. Each

PE has control inputs for loading a and /?, as well as a dedicated input for the new

gap penalty.

2.6 The Controller

The controller unit is a finite state machine (FSM) responsible for managing the

input of data into the PEs and collecting results. This includes unpacking sequence

20

n n j z f n n n D n o o a .0' o n o o D D D D D D . 0 D
,D ,.0"'n • • • D • • • ..0"'n • • • • D D D D D ^ D D
jzf'a n • • • • • D jzf'a • • • • • • • • • jzfn • •
' • • • • • • • • jzf'a • • • • • a • • • jzf'n • D •
o o a o a o a a ' • • • • • • • • • • • ' • a n n n
• • • • • • • • n a n a n n n n n n D D n n n n
D D D O D D D D D D D D D D D D 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 D D D D D D D D D D D D D D D D

SW_RUN_LOAD SW_RUN_PRE_LOOP SW_RUN_LOOP

aooDOoo..0'" o o o o o o o a D D O D o a o a
a a a o o a jzf'a D O D O D D O O O O D O O O O O
a o a a D jzf'o o a o o o a o o..0"' 0 0 0 0 0 0 0 0
D O D O ,.0"O 0 0 0 O O O O O ,0'"O O O D O D O O O
0 a a o'a a • 0 o..0'a o 0 • • • • 0 0 jzf'a o a o
o o o a a o o o .0" 0 a a o o o a • o jzfa a o 0 0
a a o o n o o o ' o o o o o o a o o jzTn o o o a a
D O O O O D O O O O O O O D O O 0"'O O D O 0 O O

SW_RUN_PRE_LOAD SW_RUN_LOAD SW_RU N_PRE_L0OP

a o o D o o o a o n o o o o a a o o o o o n a o
D D D D D D D D O O O O O D O O O D O D O O O O
D O O O O D O O O O O O O D O O O O D O D O O O
D D D D D D D D O D O D O O O O O O D O D O O O
a o a o , 0 ' " a a o O O D O O D D D D D D D D D D D
O O D .0" D O O O DDDDDDDJZf O O O D O O O O
o D jzf'a a a o a a a a o o o jzf'n D D D D D D D D
a jzf'n D o a a a a a o a a jzf'D a a a o a a a o a

SW_RUN_LOOP SW_RUN_FLUSH SW_DONE

Figure 2.7: Controller states at various points in the alignment calculation for a
system with iV = 4.

data from an input pipe, managing transactions between the PEs and the query and

scratch memories, and placing the final results in an output pipe.

The states are soft-coded to take advantage of optimization efforts in the synthe­

sis tools. A list of the states used in the controller, along with brief descriptions for

each, is shown in Table 2.6. In addition, Figure 2.7 illustrates the relationship be­

tween the controller state and progress of the calculation. A state transition diagram

is shown in Figure 2.8.

The state SW_DONE is the system's idle state. Transitions out of this state are

triggered by reading a command word from the input pipe. Command words are

21

Table 2.2: Smith-Waterman controller states.

State Label

SWJDONE

SW_GET_QUERY_LEN

SW_LOAD_QUERY

SW_RUN_LOAD

SW_RUN_LOOP

SW_RTJN_PRE_LOAD

SW_RUN_PRE_LOOP

SW_RUN_FLUSH

S W_WRI TE_DB_LOCAT I ON

S W_WRI TE_QUERY_LOCAT I ON

SW_WRITE_SCORE

SW_LOAD_ALPHA

SW_LOAD_BETA

SW_RESET

Description

System idle state.

System is awaiting the length of the query
sequence.

System is receiving the query sequence and
loading it into RAM.

Alignment is running, with new database
subsequence being loaded into PE array.

Alignment is running, with database sym­
bols being looped from the end of the PE ar­
ray back to the beginning.

Transitional state between SW_RUN_LOOP
and SW_RUN_LOAD.

Transitional state between SW_RUN_LOAD
and SW_RUN_LOOP.

State used at the end of a calculation to flush
pending results from the PE chain into the
controller.

System is writing the DB sequence index of
the maximum to the output pipe.

System is writing the query sequence index
of the maximum to the output pipe.

System is writing the maximal alignment
score to the output pipe.

System is loading a new value to be used for
the gap penalty a.

System is loading a new value to be used for
the gap penalty f3.

System is resetting. All registers are set to
their default values.

available for the host to begin a query sequence (c t r l S t a r t Q u e r y) , begin a

database sequence (c t r l S t a r t D B) , and load new values of a and /?, which are

labelled (c t r l L o a d A l p h a and c t r l L o a d B e t a respectively).

Upon reception of c t r l S t a r t Q u e r y , the controller state transitions imme­

diately to SW_GET_QUERY_LEN. The next word from the input pipe is read and

22

SW LOAD ALPHA

' _ -

SW_RESET

SW DONE

•

1 >
SW RUN LOAD

•

SW_RUN_PRE_LOOP

SW LOAD BETA

SW_WR)TE_SCORE

i i

-

SW_WRITE_QUERY„LOCATION

SW_RUN_PRE_LOAD

SW_WRlTE_DB_LOCATION

i i

Figure 2.8: Smith-Waterman state transition diagram.

interpreted as the length of the incoming query sequence. The state then transi­

tions unconditionally to SW_LOAD_QUERY, in which words from the input pipe are

read, unpacked into individual symbols and written to the query RAM. The previ­

ous query sequence, if one was present, is overwritten. This continues until a null

symbol is detected by the controller, indicating the end of the sequence. The state

then transitions back to SWJDONE.

The states SW.LOAD.ALPHA and SW_LOAD_BETA are used in updating the

gap penalty registers inside the PEs. Upon reception of c t r l L o a d A l p h a or

c t r l L o a d B e t a , the corresponding state transition is made and the next word

is read from the input pipe. This is the new value of a or f3. On the next clock

cycle, the new value is loaded into the PEs, and then the system transitions back to

SW_DONE.

The reception of the command word c t r l S t a r t D B triggers an immediate

transition to SW_RUN_LOAD, and begins the alignment calculation. The address

pointers for the query and scratch memories are reset, and the controller loads the

first query symbol and initial register state into the first PE. If this is the first segment

23

of the alignment, the initial register state is set to 0 instead of read from the scratch

memory. On the next clock cycle, the controller feeds the first database symbol into

the first PE, along with initial inputs of 0 for H_Lef t i n and E_ln. In addition, the

controller loads the second query symbol and initial register state into the second

PE. This pattern continues, with the controller loading query symbols and initial

states into the PEs one step ahead of the database, until the last PE in the chain

has been loaded. After this point, the system transitions to SW_RUN_PRE_LOOP.

In the first occurrence of this state, the controller stops reading new symbols from

the input pipe and begins writing PE register states to the scratch memory. Note

that this is the point in the alignment at which the first cell at the boundary between

two database segments is calculated (see Figure 2.7). In addition, the system is not

ready to begin looping database symbols yet, as the first database symbol has only

propagated through to the last PE. Two more cycles are needed - one to complete

pending calculations in the PEs, and another to load a new query symbol and reg­

ister state into the first PE, as a PE cannot perform a calculation and load a register

state at the same time. Note that as a consequence of this delay, a bubble is created

in the PE pipeline where one PE in the chain is being loaded instead of calculat­

ing. In light of this delay, output from the last PE is routed through a register in

the controller before being input into the first PE. The system then transitions to

SW_RUN_LOOP.

In SW_RUN_LOOP, database symbols and other outputs leaving the last PE are

looped back into the input of the first PE. There is one read from the query and

scratch memories per cycle, along with one write to the scratch memory. The ad­

dress pointers for each are incremented after each operation. Computation pro­

ceeds much as it did in SW_RUN_LOAD, with the controller loading query symbols

and register states ahead of the database and writing boundary values to the scratch

memory. The difference is that the inputs to the first PE come from the outputs of

the last PE, instead of having database symbols read from the input pipe and the

other inputs set to 0.

The state transitions to SW_RUN_PRE_LOAD once the end of the query sequence

24

is reached. This state prepares the system for a return to the SW_RUN_LOAD state

by resetting the query and scratch read address pointers, and performing a read

from the input pipe to obtain new database symbols if necessary. It is otherwise

equivalent to SW_RUN_LOOP. It transitions unconditionally to SWJRUN_LOAD. This

cycle of four states, from SW_RUN_LOAD to SW_RUN_PRE_LOOP to SW_RUN_LOOP

to SW_RUN_PRE_LOAD and then finally back to SW_RUN_LOAD, is repeated until a

null symbol is received, indicating the end of the database sequence.

In order to simplify the bookkeeping of address pointers, database sequence

data, and the system structure, it is assumed that both the query and database se­

quence lengths are integer multiples of N, where JV is the number of PEs in the

system. It is the responsibility of the host to round sequences up to the nearest

multiple by padding with the symbol N, which has a negative similarity score when

aligned with any symbol, including itself. A consequence of this assumption is that

the end of the database will always be detected in the SW_RUN_PRE_LOAD state.

When this happens, the system enters the SW_RUN_FLUSH state. This state flushes

pending results out of the PE chain by counting down clock cycles from N. When

the countdown reaches zero, the system transitions to a result writing phase. The

first state is SW_WRITE_DB_LOCATlON, in which the database index of the max­

imum is written. SW_WRITE_QUERY_LOCATION and SW_WRITE_SCORE follow

immediately afterwards, after which the system state returns to SW.DONE. The host

can then initiate a new command.

2.6.1 Location Finding

One of the controller's features is the determination of the location (that is, the

indices within the query and database sequences) of the maximal element within the

score matrix. This information is useful for post-processing, because it reveals the

subsequences of interest, and further examination can be concentrated in that area to

the exclusion of the rest of the sequences. In alignments with multiple occurrences

of a certain maximum, only the first one seen by the system is reported.

Location finding is accomplished by having each PE tag new maxima with their

25

node IDs. The node ID is simply the position of the PE within the chain, from 0

to N — 1. This node ID is propagated forward along with the maximum. When a

new maximum reaches the controller, it is possible to determine exactly where it

occurred from the accompanying node ID.

The location in the query sequence is simple to determine, as it will always be

some multiple k of N, plus the node ID. The value of k is tracked using a counter

that increments when the query address pointer passes a multiple of N.

The database location is found using another counter. This one counts the num­

ber of symbols that have been input to the PE chain. Because our system works

by aligning iV-length database subsequences against the full query, it resets after

reaching N — 1. When a new maximum arrives, the difference between N and the

nodelD is subtracted from the counter to obtain the location.

2.6.2 Pausing

Communication with the host is conducted through a vendor-supplied pipe inter­

faces mated with FIFOs for both input and output (these components are described

in more detail in Chapter 4.1). Because the database sequence is streamed from the

host, it is possible for the system to process an iV symbol section of the database

sequence before the next N symbols are available to be loaded. To deal with this

contingency, some way of pausing the system is needed.

The pause function is implemented by simply inverting the input FIFO empty

signal. When this FIFO is empty, all registers in the system are disabled and retain

their old values until the FIFO contains data again.

One complication is that the block RAMs have one cycle of latency for reads, so

additional logic is required to avoid missing a read during the pause/unpause cycle.

The output of each RAM is connected to a register, and the registered output and

direct output fed into a multiplexer. During normal operation, the direct data from

the RAM is used. On the first cycle after a pause, the registered data is used.

26

2.7 Example

This section describes an alignment between two very short sequences to illustrate

the workings of our system. The query sequence will be AGGCTTA, the database

sequence CGGCTTGCC, and the system will be a 5 PE system configured for nu­

cleotide sequences. The substitution matrix used scores 1 for a match and -3 for a

mismatch.

First, the host PC must pad the sequences up to the nearest multiple of N using

the negative (N) symbol. This symbol has a negative substitution score with all

symbols, including itself, so padding sequences with these has no effect on the re­

sult. The query and database sequence become AGGCTTANNN and CGGCTTGCCN

respectively.

Next, the host sends the c t r l S t a r t Q u e r y command word, followed by 1

word containing the length of the query sequence in symbols (10), followed by the

sequence itself. The query sequence is stored in the query memory. The alignment

has not actually begun at this point, as the first iV symbols of the database sequence

are needed to begin it.

After sending the query sequence, the host sends the c t r l S t a r t D B command

word, followed immediately by the database data. Reception of c t r l S t a r t D B

causes all registers in the PE chain to reset, ensuring a clean slate. After the reset,

the system loads the first PE with the first query symbol from the query RAM and an

initial register state from the scratch RAM. We will call this time t — 0. However,

since this is the first "section" of the alignment, the system intercepts the data from

the scratch RAM and replaces it with all 0's, since this is the boundary value of the

score matrix.

On the next clock cycle, t = 1, the system does the same for the second PE,

and inputs the first symbol of the database sequence into the first PE. The first PE

calculates H(l,l) using the 2 symbols.

At t = 2, the third PE is loaded with the third query symbol. The database sym­

bol initially in the first PE is shifted into the second PE, while the second symbol

27

Loading

i^l r^l m r̂ n tz

4 1 G U «—

• • • • • • • • • •
l" 0" 0" .0'"..0̂ .,0" D • • •

.0' • • • • •
• • • • D

G

0
0 ,
0 ,

* *
» •

_l ^ U
"~tf* 1 7'
* »
_ JC.—

••" 0 J2..0 0 0 0 O 0 0
m'jzfjzfjzfn o o o o o o
0 O 0 0 O 0 0 0 0 0 0

Figure 2.9: The example system at time t = 7.

in the database is loaded into the first PE. On this cycle, H(l, 2) and H(2,1) are

computed.

This cycle continues until t = 5, when the last PE is loaded with a query symbol.

At this point, the controller switches to loop state, in which database symbols input

to the first PE are taken from the output of the last PE, rather than using new symbols

from the input pipe. At t = 6, the sixth symbol of the query sequence is loaded into

the first PE. The database symbol shifted out of the last PE is registered in the

controller. The reason for this is a PE cannot be loaded with a new state or query

28

symbol and perform a calculation at the same time. Thus, H(h, 2) is not actually

calculated until the next clock cycle, t = 7. The state of the system at t — 7 is

shown in Figure 2.9.

At t = 11, the system begins loading new database symbols again. The first PE

is loaded with the first symbol of the query sequence and the saved register state that

the first PE was at immediately after completing the calculation of if (5,1). Since

this is the second section of the alignment, the scratch buffer contains valid PE

register states which are loaded prior to beginning a calculation of a second-section

element of H.

The process continues as above until t = 20, at which point there are no more

database symbols to align and symbols shifted out of the last PE are simply dis­

carded. At t = 24, the last element of H is calculated, and at t = 25, the result is

shifted into the controller and the alignment is complete.

2.8 Synthesis and Evaluation

2.8.1 Configurations

Our design supports a wide variety of different configurations. Our build environ­

ment for this work is set up in such a way that all configurable parameters - symbol

set and substitution matrix, score width, number of PEs, and maximum query depth

- are read from a file by a build script, which then inserts them into the VHDL

files and generates the binary file used to configure the FPGA. Our standard con­

figurations consist of one with a 12-bit score width, for general purpose use, and

a 7-bit score width, which is intended for database scanning applications in which

the goal is to identify sequences scoring above a certain threshold of interest. For

nucleotides, a basic match/mismatch substitution matrix is used, while amino acid

configurations use the BLOSUM62 matrix [21]. All configurations support a maxi­

mum query sequence length of 8192 symbols. Any query sequence length down to

1 symbol is supported by padding the sequence with a negative (N) symbol, which

has a negative substitution score with all symbols, including itself. Theoretical

29

Table 2.3: Smith-Waterman system configurations
Nucleotide Amino Acid

Score width (bits)

PEs (N)

Max. query length

Fdk (MHz)

Theoretical max. performance (GCUPS)

12

64

8192

46

2.90

7

110

8192

49

5.34

12

32

8192

40

1.24

7

38

8192

41

1.52

maximum performance is calculated by multiplying N — 1 PEs active at any given

time by Fcik. In practice, this limit can only be asymptotically approached as the

lengths of the sequences tend to infinity, the reason being that the "corners" of the

matrix, in which fewer than N — 1 PEs are active in the alignment, become less

significant as the sequences become larger.

Table 2.3 contains a summary of these configurations and their maximum clock

frequencies.

All four of these configurations consume 100% of the Spartan-3 XC3S1500-

4FG320's block RAM resources, and above 95% of the logic resources. Although

it is possible to squeeze another PE or two out of all the above setups, doing so

degrades the maximum clock frequency enough that the performance penalty from

the slower clock overcomes the gain from the extra PEs. The final number of PEs

for each design was chosen to maximize theoretical performance, as determined by

(N - 1) x Fclk.

2.8.2 Performance Testing

Performance of the actual system was measured using test builds that counted the

total clock cycles and idle clock cycles on the chip. These counts were written

to the output pipe in place of location statistics. These changes did not otherwise

impact the operation of the device, and the location was still calculated, though not

reported back to the host. The critical path and maximum clock frequency were

also unaffected.

The test methodology was to first generate a random query sequence on the host

30

PC and write it to a buffer. Next, a random database sequence of a particular length

is generated, and 150 consecutive copies are written to the buffer. All sequences

are separated by 10 bytes of nulls (0x00). The device is reset, programmed with

the binary under test, and then the entire buffer is send to the device with a single

call of the W r i t e T o P i p e l n () API function in Python. The test is repeated using

the same buffer 100 times, and the best, mean, and worst times are recorded. The

purpose of calculating the mean is that data transfers to and from the device are

performed using USB bulk data transfers, which do not provide guaranteed amounts

of capacity or latency. Thus, we would expect some degree of randomness or jitter

in the results, as the device could be left idle for significant amounts of time waiting

for new data.

Each configuration was subjected to two rounds of testing: one with a short

query (length of 2 x N, which is the shortest supported length), and one with a long

query of over 1000 symbols. The length of the long query was set to the multiple

of N closest to and greater than 1000. Each round of testing consisted of several

database runs, with database sequence lengths covering the same range as the query

sequence.

2.8.3 Performance Measurements and Analysis

Figures 2.11-2.18 show the performance measurements for each of the four system

configurations specified in Table 2.3. The sequence type, number of PEs, internal

word size (score width), query sequence length, and clock frequency are also shown

in the figure captions. Each system has two sets of plots - one with short query

sequences and one with long query sequences as described in the previous section.

The top plots in each figure contain the directly measured data - total computation

time and idle time. The bottom plots show derived data. On the left is non-idle

time, which is presented for comparison to idle time. The bottom right plot shows

the performance of the system in CUPS. CUPS is a unit often used to describe the

performance of alignment systems, which stands for cell updates per second. A

cell update consists of a complete computation of one element of the score matrix

31

Table 2.4: Performance impact of various factors on our Smith-Waterman systems.
Parameter Performance Effects

Database length

Query length

Sequence type

Score width

Increases logarithmically with increasing length, due
to lowered impact of "corners" in which not all PEs
are active.

Same as database length, with the added effect of
increasing query length reducing average idle time.
Thus query length has a much greater impact than
database length.

Higher for nucleotide than amino acid sequences due
to reduced size and complexity of substitution matrix.

Performance increases as score width is reduced due
to increased number of PEs, and lower complexity re­
sulting in higher clock frequencies.

H. Table 2.4 summarizes observations made from these plots.

The observations show that all systems increase in CUPS performance as the

database sequence increases in size. The reason for this is that at the beginning

and end of the alignment, not all the PEs are used in the calculation. For the first

N cycles of the calculation, the database has just begun to be shifted through the

PE array, and the PEs that are later in the chain sit idle. The opposite situation

happens during the last N cycles, during which the earlier PEs are idle. For shorter

sequences, these "corners" of the score matrix make up a more significant part of

the alignment. As the plots show, performance increases logarithmically as the

database sequence grows.

The same affect is also present for different lengths of query sequences, but

the query sequence length has a more powerful primary effect on performance.

Longer query sequences give the system more time to stream the next N database

symbols over the communication link, resulting in less idle time and higher CUPS

performance. Note that on average, idle times for runs with short query sequences

are higher for runs on the same system with longer query sequences. Consequently,

our system performs better the longer the query sequence becomes.

Performance for nucleotide sequences is much higher than performance for

32

4

„, 3.5
£
i-
c" 3
to
(0

8
E 2.5

Q_
O I 2
i-
J5
% 1,5
2

f -

o 1
o
15

0
0 100 200 300 400 500 600 700 800 900

Query Size (Number of Symbols)

Figure 2.10: The ratio of transfer time to processing time.

amino acid sequences. The reason for this is that amino acid systems have much

fewer PEs and a slightly slower clock frequency, both effects of the larger alphabet.

While the substitution matrix for nucleotide systems is only 5 x 5 , for amino acids

it is 21 x 21 (both include an extra symbol "N", which scores negatively against ev­

erything). The larger matrix takes up a great deal more resources and is also slower,

which adds to the system's critical path.

The final factor examined is the score width, or internal word width of the PE

chain. As described in Section 2.8.1, we used two different word sizes: 12 bits for

general use, and 7 bits for high-speed computations at the risk of saturating the score

values. Reducing the word size reduces the amount of logic resources needed for

each PE, which allows us to fit more of them on the device. The 7-bit configuration

for nucleotide sequences allows a much larger PE chain, giving a corresponding

increase in performance proportional to the number of PEs. For amino acids, the

effect is less significant due to the relatively inelastic resource usage of the ROM

used for the substitution matrix. The increase from 32 to 38 PEs is only a 19%

increase, while reducing the word size on the nucleotide systems increases the PE

count from 64 to 110, a 72% increase.

The observations also reveal a few odd irregularities with respect to the com-

33

_ — , , , __j ;,;,r ;„;,;„„;; i ' . ' . . " " . • — ~

_i i i i i i L

munications interface. Some degree of randomness is expected in the amount of

time spent idle, due to timing inconsistencies in the USB bulk transfers used to

stream the database sequence. However, with some particular sequence lengths,

the system spends much more or much less time idle than with the adjacent se­

quence lengths. One notable example is in Figure 2.12, in which all test runs with

a database sequence of length 320 completed without a single cycle spent idle, yet

those for 256 and 384 spent between 0ms and approximately 20ms idle from run to

run. Then, with a database length of 576 symbols, all runs spent around 20ms idle,

even though the best runs for all other database sequence lengths achieved zero idle

time. Since each test is repeated 100 times to measure the mean, we can conclude

that this behaviour is consistent and systematic, suggesting that this is likely due to

peculiarities in the vendor's API or USB driver.

The results also confirm our expectations regarding the ratio of communication

time to computation time. Theoretical ratios of communication time to computation

time are plotted in Figure 2.10. This plot assumes a nucleotide system with 70

PEs and a USB communication rate of 80 Mbit/s. Where the ratio exceeds unity,

the system is communication-limited and must spend time idle while waiting for

new data. Our observations confirm this analysis. In the best case test runs with

long query sequences, the system spends no time idle and achieves performance

approaching the theoretical maximum. However, with short query sequences, there

is always an observed idle time and CUPS performance drops significantly.

2.8.4 Comparison With Desktop Microprocessors

As with all application-specific hardware, the performance of our system as com­

pared to a standard desktop PC microprocessor is an important benchmark. There

must be a significant speed-up in order to justify the additional costs compared to a

software solution.

For the performance of a software system running on a desktop PC, we use

a reference figure of 45 MCUPS reported in [11]. This is for a highly optimized

C implementation of Smith-Waterman, running on a PC with an Intel Pentium 4

34

processor at 3.0 GHz. This figure applies to both amino acid and nucleotide se­

quences, since the size of the substitution table does not have a significant impact

on performance with PC hardware.

As Figures 2.11 - 2.18 show, the performance of our system varies greatly be­

tween sequence types, configurations, and sequence lengths, unlike the PC-based

system. The reasons for this are explained in Section 2.8.3 and summarized in Table

2.4. Because of this, we will consider the amino acid and nucleotide cases sepa­

rately. By comparing the average performance of our system against the 45 MCUPS

reference, we see that our system achieves speed-up ranging from approximately 10

to 30 for amino acid sequences and 20 to 100 for nucleotide sequences.

35

Computation Time

1

40000

35000

30000

25000

20000

15000

10000

5000

0

-

i
* T

; 1 If
i

Computation Ti

i i

me •—

I

1

;-|l
,

200 400 600 800 1000

Database Length (symbols)

Non-tdle Time

3
O

40000

35000

30000

25000

20000

15000

10000

5000

0

3000

2500

2000

1500

500

11 I! I I'l

Idle time •—

I, I U
200 400 600 800 1000

Database Length (symbols)

Overall Performance

" l

MCUPS

200 400 600 800 1000

Database Length (symbols)

200 400 600 800 1000

Database Length (symbols)

Figure 2.11: Measurements for a nucleotide alphabet system with 64 PEs, 12 bit
score width, 128-length query sequences, and fak = 46 MHz.

Computation Time Idle Time

80000

70000

60000

50000

40000

30000

20000

10000

0
200 400 600 800

Database Length (symbols)

Non-Idle Time

200 400 600 800

Database Length (symbols)

Computation Time

+

•i\-
. : +

1000

80000

70000

60000

50000

40000

30000

20000

10000

0

3500

3000

2500

2000

1500

1000

500

-T

I i „

- s i "

Idlt sT me

-

200 400 600 800

Database Length (symbols)

Overall Performance

200 400 600 800

Database Length (symbols)

1000

I...

j j

£ I

N

-
.

i
H

P
-

PS

- i -

Figure 2.12: Measurements for a nucleotide alphabet system with 64 PEs, 12-bit
score width, and 1024-length query sequences.

36

Computation Time Idle Tim©

40000

35000

30000

25000

20000

15000

1O000

5000

0

10000

8000

6000

4000

2000

0

Computation Time "—<—•

i r • : , - i ; J -
11 -

400 600 800 1000 1200

Database Length (symbols)

Non-Idle Time

+ I*

Non-Idle Time •—

+;
i + ; • • •

+

•

400 600 800 1000

Database Length (symbols)

40000

35000

30000

j| 25000

1 20000

£ 15000

~~ 10000

5000

0
i !

Idle Time

11 i; I \ r

6000

5000

4000

3000

2000

1000

0

200 400 600 800 1000

Database Length (symbols)

Overall Performance

1200

MCUPS i

400 600 800 1000
Database Length (symbols)

Figure 2.13: 110 PE nucleotide system with 7-bit scores and 220 symbol query
sequences.

Computation Time Idle Time

60000

-^ 50000 -

| 40000

H
§ 30000

1
o. 20000
E

° 10000

40000

35000

30000

25000

20000

15000

10000

5000

0

i

Con- puta t ionl "ime

-

60000

50000

"§[40000

e 30000

| 20000

10000

400 600 800 1000

Database Length (symbols)

Non-Idle Time

Non-Idle Time '

2

400 600 800 1000
Database Length (symbols)

Idle Time '

400 600 800 1000

Database Length (symbols)

Overall Performance

5000

4000

3000

2000

1000

! ' ' 'MCUPSV—<—<

|

-

• • • -

;
1 X • • ;

400 600 800 1000
Database Length (symbols)

Figure 2.14: 110 PE nucleotide system with 7-bit scores and 1100 symbol query
sequences.

37

40000

35000

30000

25000

20000

15000

10000

5000

0

10000

8000

6000

4000

2000

0

i i
+

200

I
- I

• I

* 1

200

Computation Time

Computation Time >—̂—<

4 ILI U l I ||l I I [I-
400 600 800 1000

Database Length (symbols)

Non-ldte Time

Non-Idle Time >—i—'

l ; - - •]

* *

400 600 800 1000

Database Length (symbols)

s
F
P

i

1
=

40000

35000

30000

25000

15000

10000

5000

0

2000 r

1500

1000

500

Idle Time

Idle Time '—'—<

|-T T i \ -

: tirirni: .I

: • • • -

ill Iil-
200 400 600 800 1000

Database Length (symbols)

Overall Performance

! : ! MCUPS ' — ^

j)] -

: j ; : T .. ,

•f : [ti
;

-

200 400 600 800 1000

Database Length (symbols)

Figure 2.15: 32 PE amino acid system with 12-bit scores and 64 symbol query
sequences.

Computation Time Idle Time

160000

140000

120000

100000 -

80000

60000 -

40000

20000 -t

0

Computation t ime '

if;
l - i -

9S -••

400 600 800

Database Length (symbols)

Non-Idle Time

1000

1
1
5 I-U

O
N

140000

120000

100000

80000

60000

40000

20000

0

*

200

!

.t..*l

400

Non-Idle Time *

600 800
Database Length (symbols)

! ^

• • • -

1000

o
5

160000

140000

120000

100000

80000

60000

40000

20000

0

Idle time >

T IT ' rmJTTTlTTTiT

400 600 600
Database Length (symbols)

400 600 800 1000
database Length (symbols)

Overall Performance

1500

1000

500

j ' MCUPS »—*^-

- • • - j ! • • • • -

l j [lUL i i i jm
- \ j \ | -

Figure 2.16: 32 PE amino acid system with 12-bit scores and 1024 symbol query
sequences.

38

Computation Time Idle Time

45000
40000
35000
30000
25000
20000
15000
10000
5000

0

Computation Time '

11 II* I :i:.i:
200 400 600 800

Database Length (symbols)

Non-Idle Time

1000

a
»
•fe

T l
5

N
on

8000

6000

4000

2000

I

- + j * *-

i Non-Idle Time >-

*
+

*

. • .

--

200 400 600 800
Database Length (symbols)

1000

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

O
2

"Tirrirn J

Idle Time >—>—<

200 400 600 800
Database Length (symbols)

Overall Performance

2000

1500

MCUPS '

200 400 600 800 1000
Database Length (symbols)

Figure 2.17: 38 PE amino acid system with 7-bit scores and 76 symbol query se­
quences.

Computation Time Idle Time

160000

140000

120000 -

100000

80000

60000

40000

20000

0

Computation Time '

til a H M

200 400 600 800

Database Length (symbols)

Non-Idle Time

1000

140000

120000

100000

80000

60000 -

40000

20000

0
- - •

i

• • !

+

Non-idle Time >~

i

....

400 600 800

Database Length (symbols)

160000

140000

120000

100000

80000 •

60000

40000

20000

0

1000

500

Idle Time '

tin in hin i ri
200 400 600 800

Database Length (symbols)

Overall Performance

1000

400 600 800

Database Length (symbols)

Figure 2.18: 38 PE amino acid system with 7-bit scores and 1026 symbol query
sequences.

39

Chapter 3

BLAST Filter

BLAST, or Basic Local Alignment Search Tool, is a sequence alignment algorithm

like Smith-Waterman. Unlike Smith-Waterman, which is guaranteed to find the op­

timal subsequence alignment, BLAST is a heuristic algorithm that aims to find the

best balance between sensitivity and computational cost [22]. Research is currently

underway to develop a partial implementation of the NCBI BLAST algorithm on

the same Spartan-3 based integration boards as our Smith-Waterman design.

However, because the proposed BLAST design is too large to fit on the platform

we used for our Smith-Waterman system, the Spartan-3 XC3S1500 FPGA, we have

shifted our target FPGA to the Spartan-3 XC3S4000.

Because some aspects of modern gapped BLAST are impractical to implement

in a hardware-accelerated design, we have instead devised a partial implementation

that aims only to identify word hits likely to lead to successful extensions as defined

in the original algorithm. By simplifying the BLAST extension technique and two-

hit criterion, we obtain an algorithm highly adaptable to hardware that is capable

of vastly higher computational rates than a full gapped BLAST implementation

[23]. Despite these simplifications, the analysis in [23] and simulation results shown

Section 3.6 demonstrate that with simple post-processing, our algorithm perfectly

replicates the results of NCBI BLAST software.

Since our design does not attempt to implement BLAST in its entirety, we call

this design a BLAST filter since it filters out the vast majority of non-similar se­

quences. The sequences which pass the filter would then be passed on for post-

40

processing, which combines redundant results before presenting them to the end

user.

3.1 Background Information

BLAST was originally devised as an improvement to the earlier FASTA algorithm,

with which it shares many similarities [24]. The original BLAST algorithm in [2]

uses a two-stage process. In the first stage, a word of length W is taken from the

database sequence. The query sequence is scanned for words (also of length W) that

are sufficiently similar to the database word - these matches are called hits or seeds.

The method used to calculate this similarity is direct comparison - the alignment

scores of each symbol pair (Qj, Dj) are added, and if the sum exceeds a speci­

fied threshold, the match is considered a hit. Hits are passed to the second stage,

in which the algorithm attempts to extend the hit in both directions, to determine

whether the hit was part of a higher-scoring subsequence match. The extension in

one direction continues until the running alignment's score drops a certain parame­

ter D below the maximum score yet obtained, and then the extension is continued

in the other direction. D is called the drop-off threshold. The database word is then

advanced one symbol, and thus the algorithm iterates through the database sequence

until the end is reached.

A revised version of BLAST adds a two-hit criterion that must be satisfied be­

fore extension on a hit is attempted [22]. The reason for this is that extensions are

very slow compared to the hit detection stage, accounting for over 90% of the total

processing time. Furthermore, many hits occur in isolation, and do not lead to suc­

cessful extensions. The two-hit criterion overcomes these deficiencies by passing

a hit for extension only if a second hit has occurred on the same diagonal, the two

hits are within A symbols of one another, and they do not overlap. Furthermore, the

hit must not have been covered by the extension of a previously extended hit.

There are also numerous extension algorithms that can be used with BLAST.

Smith-Waterman is possible, but is rarely used in practice, because its exhaus­

tive nature makes it very slow and this exacerbates the extension bottleneck. The

41

ungapped extension algorithm simply compares corresponding symbols from the

two sequences and adds their similarity score to a running total, like the algorithm

used to detect hits. In [22], a heuristic extension algorithm allowing gaps (gapped

BLAST) is specified.

3.2 Initial Research

A literal hardware implementation of BLAST is very challenging, since some key

operations do not translate well to hardware. The best example of this is the ex­

tension, which can continue for an arbitrary length in either direction, causing long

feedback loops and datapath control problems. Furthermore, the extension in the

second direction must begin with the maximum score attained in the first direction,

which makes effective parallelization impossible. In addition, hit detection tends to

produce data in bursts - one database word may not occur anywhere in the query,

while another could occur many times in succession, overwhelming the downstream

components, and necessitating a complex system of queues and stalls.

Preliminary research on this project, undertaken in [23], demonstrates that a

partial implementation of BLAST, with simplifications to render it more hardware-

friendly, can act as a very high-speed filter to remove most non-extendable hits from

consideration. The proposed low-complexity system is thus called a BLAST filter,

and is intended to be used with software tools for pre- and post-processing to serve

as a complete implementation of BLAST.

It is estimated that the proposed system could compute alignments at the equiva­

lent rate of 100 GCUPS on our platform. This figure was estimated by assuming an

average of 1 word (and thus 1 symbol) aligned per clock cycle, at a clock frequency

of 100 MHz, against a maximum query size of 1024 symbols. This restriction on

the query length is necessary to keep the average number of hits per word down to

a manageable amount.

In addition to this performance goal, we set the requirement that no extensions

found by the complete NCBI BLAST software escape detection by our system. A

small reduction in selectivity is tolerable. Simulations of our hardware described

42

in Section 3.6 show that our system achieves equal sensitivity and, with a simple

post-processing step to eliminate redundant results, equal selectivity. We use the

NCBI BLAST algorithm as our guideline, which is available in source and binary

forms from their website at [25]. NCBI BLAST adheres closely to [22] but offers

more configuration options that are not mentioned in the original paper. We will

pursue an implementation with the default parameters using the ungapped extension

algorithm.

3.3 Scope of this Work

The research presented in this document is limited the hardware implementation

of our simplified BLAST, and not the development of the algorithm itself. The

original reference paper for the algorithm, [23], was co-authored by the commer­

cial sponsors of this work, and is thus proprietary and not available for publication

or viewing by third parties. However, the information salient to implementation,

validation, and evaluation of the algorithm is included in this document. Where

necessary, the aspects of the algorithm are described and experimentally validated,

but it is stressed that this work does not include the development of the algorithm.

3.4 Comparison with NCBI BLAST

The BLAST algorithm described in this work is actually a subset of the BLAST

algorithm maintained by NCBI. The portions of NCBI BLAST that would require

a complex hardware implementation are omitted or reduced in scope by fixing the

values of variable parameters or introducing hard maximum limits for others. This

section describes the differences between NCBI BLAST and our algorithm, in order

of processing. A table summarizing these differences can be found in Table 3.4.

In the hit detection phase, the first difference is that our algorithm has a fixed

word size of W = 3, while BLAST allows arbitrary word sizes. The threshold

for hit detection is variable in both, though the range of values in our system is

restricted by the number of bits used in arithmetic operations. Next, our algorithm

43

Table 3.1: Comparison between NCBI BLAST and our algorithm.
Our Algorithm (BLAST subset)

Parameters for word size and 2-hit
filter maximum separation are fixed
at the default NCBI BLAST values
(W = 3 and A = 40 respectively).

Threshold score for hit detection is
fixed at the default value (11).

The 2-hit filter passes hits that were
covered by extensions of previous hits.

Extensions are performed using the
ungapped extension algorithm.

Extensions continue for 50 symbols
from the boundary of the original hit,
or until the end of the sequence is
reached.

Maximum score is not passed from an
extension in one direction to the exten­
sion in the other direction.

NCBI (full) BLAST

These parameters are variable.

Threshold score can be varied.

Hits that were covered by a previous
extension are discarded.

A variety of extension algorithms are
available (both gapped and ungapped).

Extensions end if the sequence end is
reached, but otherwise may continue
for an arbitrary number of symbols.

The extension in the other direction
is initialized with the maximum score
achieved in the first direction.

assumes a maximum of 63 hits for any given word, while BLAST can handle an

arbitrary number of hits per word.

In the two-hit filter phase, our system uses applies a fixed value of A = 40

for the maximum distance between two hits. This value can be adjusted arbitrarily

in BLAST. Furthermore, our algorithm ignores the criterion that a hit cannot have

been contained within the extension of any previous hit.

Finally, in the extension phase, the window size of our algorithm is fixed at

N — 50, although it can easily be reduced or increased as high as N = 66. In

full BLAST, the extension window size is not defined, as extensions continue until

either the end of the sequence or until the drop-off criterion is met. Furthermore,

our extension algorithm executes the extension in both directions simultaneously,

using initial scores equal to the similarity score of the original word. The maximum

score attained in one direction does not carry over to the other direction as it does

in BLAST.

44

3.5 Comparison with Previous Designs

Previous work on implementing BLAST in hardware has focused on accelerating

individual stages of the algorithm, or producing a partial implementation rather than

attempting a complete implementation. For instance, [26] implements a parallel hit

scanning system on an FPGA intended to operate alongside a host PC. Hits are

passed back to the host PC, where the remaining stages of the algorithm are per­

formed in software. There are also similar systems that run on hybrid systems: PCs

or workstations with reconfigurable platforms deeply integrated. The Mercury sys­

tem is popular for these applications; two examples using this system are presented

in [27] and [28]. These systems implement hit detection in hardware, then pass the

results to software for the extension stages. Comparisons between these systems

and ours are not generally applicable, since our system requires hit locations to be

pre-computed and stored in memory. However, our design could benefit through

integration with one of these systems, as it would make pre-computation of hits

unnecessary.

Another design, presented in [29], uses a massively parallel architecture and

performs hit extension as well as detection. Each parallel processing unit contains

a hit scanner, a hit extender, and a local copy of the query sequence. Words from

the database sequence are directed to an idle unit, where the unit scans for hits

and attempts extensions on those hits. However, it can only perform BLAST on

nucleotide sequences and does not implement the 2-hit criterion described in [22].

Our design can perform BLAST only on amino acid sequences and does implement

the 2-hit criterion. The designs also differ in that only a portion of the datapath in

our design - namely, the 2-hit filter section - is parallel. Our design has only a single

unit for hit look-up and hit extension.

Another approach can be seen in [30], which implements a BLAST-like string

matching algorithm on an FPGA. Although it is not a complete implementation of

BLAST, this design implements a similar algorithm that first looks for matches of

shorter substrings, then attempts to extend them. We have chosen to take a simi-

45

lar approach, applying simplifications to the algorithm that allow us to implement

all stages of the simplified BLAST in hardware. Both our design and [30] are es­

sentially single-pass BLAST approximations, though they differ in that [30] uses

stream scanning to identify hits, which requires substitution matrices and logic,

while our design is based on look-up tables and requires hit locations to be pre-

computed. In addition, [30] does not implement the two-hit filter rule.

Overall, our design presents several original concepts. The two table design for

looking up hits is more efficient than a single table design, as it allows memory

savings by taking advantage of overlapping and redundant sets of hits. It is the

first architecture to implement a 2-hit filter. The datapath design of a single hit

source outputting to multiple parallel hit filters, which in turn output their results

to a single extension unit, is a completely novel approach. Finally, like our Smith-

Waterman design, our BLAST design is distinguished by running on a portable,

low-cost platform.

3.6 Simulation and Validation

In order to test the validity and performance of our algorithm and BLAST filter

hardware, we created a software model of the hardware written in C. This software

model performs a cycle-by-cycle simulation of the proposed hardware blocks. This

section presents our findings for three different criteria: conformity of results to

NCBI BLAST, performance and duty cycle, and the false positive rate of our two-

hit filter design.

All of these simulations used randomly-generated sequences. Because amino

acids appear with varying frequencies in actual proteins, our generated sequences

use the same proportions as found in the UniprotKB/Swiss-Prot database. These

statistics were obtained from the UniprotKB/Swiss-Prot database release notes [31].

3.6.1 Equivalence with NCBI BLAST

The most important design goal of the BLAST filter is that the results it returns

match the results returned by BLAST software as closely as possible. In particular,

46

there must be no loss in sensitivity - every region of similarity found by BLAST

must have a corresponding result in our system. However, we can tolerate a loss

of selectivity, meaning that the BLAST filter may return more results than BLAST

software, including ones that are superfluous or insignificant. These results can

easily be removed in post-processing, while a missed result is much more costly.

To verify that our system will perform satisfactorily, we ran alignments on 100

different sequence pairs on both NCBI BLAST and our software model. BLAST

is public domain software and can be downloaded in source and binary forms from

the NCBI website [25]. For these tests, we used the version 2.2.17 binary, running

the b l 2 s e q executable. This program uses the b l a s t p algorithm for amino acid

sequences.

All query sequences were length 1024, the maximum supported by our system.

Database sequences varied between 100 and 1000 symbols in length. Sequences

were randomly generated, except for a segment of random length between 10 and

100 that was rigged to be identical in both sequences. This was to guarantee at least

one successful extension per test. The tests used a word size of 3, BLOSUM62

scoring matrices, a hit threshold score of 11, a maximum two-hit window of 40,

and ungapped extension.

In all tests, our system and the NCBI software reported equivalent results. Our

system, however, returned numerous redundant records for each region of similar­

ity, whereas the NCBI software reported each region only once. The reason for

this is that a full implementation of BLAST will not attempt to extend hits that

fall within the extension of any previous hit. Due to the difficulty of implementing

this rule in hardware, our system simply ignores it. The result is that every sim­

ilar region is reported multiple times. Since our system does check that hits are

non-overlapping, a similar region of length L is reported approximately -| times,

as shown in Figure 3.1. Since these redundant results are trivial to remove in post­

processing, there is no real loss of selectivity to the end user.

Despite the duplicate reports, our system generally agreed with the BLAST

software on the score, length, and boundaries of the similar regions. Two conditions

47

NCBIBLAST BLAST Filter

DB

Query

DB

Query

Figure 3.1: The BLAST filter reports separate results for every word in a region of
similarity, while the NCBI software reports it only once. The inner boxes show the
original hit boundaries.

were observed in which the results differed. The first is in long regions of similarity,

specifically those longer than 53 symbols. Because our system has a maximum

extension window of 50 symbols, it stops once this maximum is reached and reports

the result. In other words, a single record will only cover up to 50 symbols from

the boundary of the original 3-symbol hit. In software, extensions may continue

indefinitely. However, the multiple hits reported by our system can be stitched

together in post-processing to obtain a single record covering the entire similar

region.

The second condition occurs when a hit contains one dissimilar symbol pair,

but the other two symbol pairs score highly enough to put the hit over the detection

threshold. The result is that the dissimilar pair is included in the reported result,

giving it a lower score and length longer by 1 symbol than the correct BLAST

result, which filters out the negatively-scoring pair. Again, these are very easy to

remove in post-processing, so this is not a major problem.

Based on these results, we can conclude that with a post-processing step, the

BLAST filter is every bit as accurate as ungapped BLAST running in software, and

thus that our design meets our goals for sensitivity and selectivity.

48

3.6.2 Performance

The maximum performance goal of 100 GCUPS for our BLAST filter is based on

1 database symbol per clock being aligned over a 1024 symbol query sequence at a

clock frequency of 100 MHz. However, this figure assumes that no stalls will occur

- an unrealistic assumption, since any word with over 4 hits will result in stalls as

the location LUT processes them at a rate of 4 per cycle. Furthermore, the 2-hit

filters and extender have queues that will raise stalls when full.

To test the true performance of our system, the software model was ran 1000

times with random sequences, and the number and source of stalls was recorded.

The query length for these tests was 1024 and the database length 1000. Long

queries represent the worst case in terms of number of stalls raised, because each

word will have more hits on average, which require more stalls to process.

On average, each sequence incurred 94 stalls. Over 1000 symbols, this gives

our system a duty cycle of 0.914. Thus, to achieve performance of 100 GCUPS

with 1024-length queries, the clock frequency must be 107 MHz or greater. This

speed is realistically attainable with our hardware design, provided it is aggressively

pipelined.

The vast majority of stalls (98%) were raised by the location LUT. This was to

be expected, since any word with more than 4 hits will cause this block to stall, and

words with many hits may even cause a multi-cycle stall (see Section 3.7.2 for full

details). The remainder were raised by the 2-hit filter queue. The extender queue

never raised a single stall throughout these tests.

Consequently, we could raise the duty cycle of our system by having the location

LUT process more hits in parallel, and having more 2-hit filters to process these hits,

although a platform with more RAM resources would be required to do this.

3.6.3 Two-Hit Filter False Positives

One final characteristic of our system validated with the software model is the rate

of hits falsely validated by the 2-hit filter. Because the database sequence length is

unbounded, the diagonal array used to keep track of previous hits must be infinitely

49

deep in a perfect filter. To create a practical filter, we only store the bottom 12 bits of

the database index, creating an array 4096 elements deep. For database sequences

longer than this, there is a potential for aliasing resulting in a false positive. See

Section 3.7.3 for a full explanation.

Note that for the purposes of this section, a false positive refers only to hits

falsely validated due to aliasing. Hits that are within the extension of a previous hit

and pass through the filter are not considered false positives.

A rough estimation of the proportion of hits validated by the 2-hit filter that are

false positives can be obtained by considering an infinitely long database sequence.

When a hit enters the 2-hit filter, it is falsely validated if any of the three previous

hits on the same diagonal satisfy the condition 4096 x k — L < J < 4096 x k + L.

We can assume the probability of false positive events in which k > 1 is negligible,

simplifying the above equation to 4096 — L < J < 4096 + L. If we model hits as

a Poisson process, the probability of at least one of the three previous hits meeting

this condition is approximately:

P » 2AL M + 4096A + i l ^ l ! J e-4096A (3 1}

Where A is the rate of hits. Our simulations showed that on average, each word

produces approximately 3 hits in a 1024-length query sequence, so A ~ 3/1024.

The above equation thus evaluates to approximately 1.26 • 10~3, or about 1 hit

in every 792. Experimental results for a variety of database sequence lengths are

summarized in Table 3.6.3. Pfptotai is defined as the number of false positives as a

proportion of all hits, while PfpvaUd is defined as the number of false positives as a

proportion of hits that pass the 2-hit filter.

These results show that our estimate for the false positive rate was accurate for

long sequences. The false positive rate is lower in shorter sequences because there

is zero probability of a false positive occurring in the first 4096 symbols of the

database sequence. As a proportion of validated hits, the false positive rate plateaus

at about 1 in 50.

50

ed 2-hit filter false
Database length

<4096

5000

10000

15000

20000

25000

30000

35000

positive rates
*fptotal

0

4.97

1.07

1.05

1.13

1.24

1.28

1.26

io-4

IO"3

io-3

10~3

io-3

IO"3

IO"3

for a variety o
•ifpvalid

0

8.69 • IO"3

0.0184

0.0180

0.0193

0.0211

0.0217

0.0214

In order to determine whether false positives impacted the speed or accuracy

of our design, we repeated the tests in Sections 3.6.1 and 3.6.2 with database se­

quences of length 100000. There was no difference in the results, meaning that false

positives do not occur at a rate sufficient to create a bottleneck at the extender, and

no false positive hit ever lead to a successful extension that was not also covered by

a legitimate extension.

As a practical matter, false positives are of little concern with our system. One

reason for this is that the vast majority (99.7%) of the sequences in the UniProtKB/

Swiss-Prot database are shorter than 2500 amino acids [31], and so will never lead

to a false positive. In addition, as the simulations mentioned above show, our system

can easily deal with the false positives generated by sequences much longer than

even the longest database sequences - the longest sequence in UniProtKB/Swiss-

Prot is 34350 amino acids in length. Finally, unless the threshold score for a suc­

cessful extension is set very low, the extension of any falsely validated hit will also

be covered by a legitimately validated extension, so a falsely validated hit appearing

in the final results is an extremely unlikely event. It is worth noting that this never

occurred in any of our simulations, although it remains theoretically possible.

51

3.7 Implementation

Based on our experiences with Smith-Waterman, we decided to develop BLAST

with decentralized, block-level control rather than with a single central controller.

The Smith-Waterman controller ended up becoming unexpectedly complex, which

reduced the clock frequency as well as made it more difficult to design, test, and de­

bug. Besides avoiding these implementation headaches, this decision was primarily

motivated by the speed goal of 100 GCUPS. This goal would be highly difficult or

impossible to obtain with a complex central unit.

Another design feature arising from the need for a high clock frequency is the

division of the system into simple blocks, separated by pipeline registers. Inter­

block flow control is achieved with data valid and stall signals wherever they are

needed. Valid signals move forward through the pipeline, signalling to the next

block whether or not the current set of results is valid. Stalls propagate backwards,

indicating to prior blocks that the system is swamped and a stall is needed to prevent

data from being overwritten. Obviously we wish to avoid stalls as much as possi­

ble; as such, blocks where bottlenecks can occur are equipped with queues capable

of handling a temporary surplus of data. Note that this valid/stall control scheme

eliminates the need for global pausing. If the system is awaiting more data, the first

block simply de-asserts the valid signal.

The individual hardware blocks will now be described, beginning with the first

blocks in the datapath.

3.7.1 Sequence Unpacker

The datapath begins at the sequence unpacker, which is responsible for unpacking

words from the input pipe and outputting individual symbols. Only the database

sequence is handled this way; the query sequence is not needed until much later

in the datapath. These symbols are loaded into a shift register to create the current

database word. The word size W is fixed at 3, the default value for amino acids.

The unpacker also counts the database position of the current word and forwards it

52

onward.

Given the database word, we must first find the location of all the corresponding

hits in the query sequence. This is done with a lookup table, with the word itself

used to calculate the index. Given the numerical representations of the word sym­

bols S2SiSo, the index is calculated by S2 x 242 + Si x 24 + So- The reason for

using 24 as a radix, rather than 20 for the number of amino acids, is to simplify the

multiplication logic. The number 24 and its square, 576, both have only two 1 's in

their binary representation, allowing us to multiply by these numbers very quickly.

There are thus 243 = 13824 total indices, requiring 14 bits.

Now is a good time to note that our system only supports amino acid alignments.

The reason nucleotides are not supported is that the default wordlength for nucleo­

tides is W = 11. Using the 2-table system described above would thus require

indices up to 411 = 4194304 and lookup tables several megabytes in size. This is

many times beyond the capacity of our Spartan-Ill FPGA. Consequently there are

no plans to adapt our system to nucleotide sequences any time in the near future.

3.7.2 Look-Up Tables

Hit locations are pre-computed in software and loaded in the tables before the start

of the alignment. This must be done for each new query sequence (note that hit loca­

tions do not depend on the database). This is similar to the design in [29], which also

detects hits using a look-up table pre-computed from the query sequence. Because

this system is intended for use in first-pass database scans against huge databases,

this pre-processing step should not pose a significant delay.

Because our system now lacks a central entity for distributing data, both lookup

tables are connected directly to the input pipe. To distinguish between datastreams

meant for specific components, we have developed a SIRO module (serial in, ran­

dom out). Upon reception of a unique command word, these modules begin loading

data from the pipe serially. This continues until an end word is detected. The device

then works in RAM mode. As in Smith-Waterman, command words use a reserved

bit to ensure that they do not appear in data.

53

Pipeln

Sequence Unpacker

Stall

DBWord

Valid

Address
LUT

(SIRO)

Stall

BaseAddr (14 bits)

NumOfLocations (6 bits)

Location
LUT

(SIRO)

Stall

HltLocationOO

LocationOOValid

HitLocationt 1

Locationl 1 Valid

Figure 3.2: The origin of the BLAST filter datapath, showing the sequence unpacker
and hit LUTs.

The reason for the 2-table configuration is that the number of hits from word to

word is variable. As such, there is no way to look up a list of hits for a particular

word in a single step without reserving a uniform maximum number of records

for each word. This is obviously impractical, so instead we first look up a base

address and number of hits from the first table, known as the address table. The

actual locations are stored in the second table, which is called the location table.

Empirically, it has been shown that the location table can be kept at a depth of

214 = 16384 by taking advantage of redundancies (for instance, overlapping hit

sets between different words). Furthermore, tests with random sequence data show

that the maximum number of hits in a 1024-length query rarely exceeds 31. We

therefore impose an upper limit of 26 — 1 = 63 hits, giving the address table output

a width of 20 bits. Cases in which the complete hit set is too large or a single word

has more than 63 hits must be handled by the pre-processing software. Hence,

the total size of the address table is 13824 x 20 bits, while the location table is

16384 x 10 bits - the location table contains the actual locations of hits within the

query sequence, hence the 10 bits of width.

In actuality, we split the location LUT is split into 4 parallel memories of 4096 x

54

Pipeln

Sequence
Unpacker

Extender
Queue

2-Hit Filter 00 U.

2-Hit Filter 01

2-Hit Filter 10

2-Hit Filter 11 U

Query
Sequence

(SIRO)

Sbt.
Matrices

Address
LUT

(SIRO)

Location
LUT

(SIRO)

PipeOut

Figure 3.3: Simplified block diagram of the complete BLAST filter.

10 bits each. Thus, the location LUT can output up to 4 hit locations per clock

cycle. The reason for this is maintaining throughput - if hits are processed serially, a

serious bottleneck develops when a word has multiple hits. Analysis in [23] reveals

that we can expect an average of 3 hits per cycle with random sequence data and a

query length of 1024.

One memory contains the locations of hits with memory addresses ending in

binary 00, the other three containing hits located at 01,10, and 11 addresses. These

memories are addressed simultaneously using the upper 12 bits of the output from

the address LUT. However, the lower 2 bits are also input into this block, where they

serve an important function. If we required each "row" across the four-memory

table to contain only locations belonging to a particular hit, we could ignore the

lower 2 bits entirely. However, this would make for very inefficient use of memory,

as there would be unused cells if the number of locations was not a multiple of 4.

Therefore to maximize efficiency, location sets are packed into the location LUT

55

without any explicit delimitation or other overhead. Sets can begin and end at any

address. However, this introduces a new problem: how do we handle lookups that

are split over 2 rows?

The key to the solution is that the lower 2 bits indicate the memory in which

the set starts. We can therefore use a small logic section to increment the address

presented to each memory as appropriate, placing a "line wrap" in the read from the

table. For example, if the set began at an address ending in 01, the reads from the 01,

10, and 11 memories would use the upper 12 bits as supplied from the address LUT,

but the 12 bits presented to the 00 memory would need to be incremented. This case

is illustrated in Figure 3.4 - the memory locations being read are highlighted, with

the 00 read taking place from one row further down from the others.

This arrangement allows us to always look up 4 locations per cycle. In the

event of a hit yielding more than 4 locations, a stall is requested until the number

of locations remaining to be looked up is 4 or less. In this case, the upper 12 bits of

the address are incremented after each cycle to advance to the next row in the table.

If the number of locations is not a perfect multiple of 4, the last read will produce

invalid data in the uppermost hits. These are dealt with by using data valid signals,

which are generated from combinational logic taking the lower 2 address bits and

the number of locations as input.

A block diagram showing the sequence unpacker and lookup tables is shown in

Figure 3.2. A more detailed diagram of the logical operation of the location LUT is

shown in Figure 3.4.

3.7.3 Two-Hit Filter

The two-hit filter applies the BLAST two-hit criterion to incoming hits from the

location LUT. If the criterion is satisfied, then the hit is passed on for extension.

There are four filters working in parallel - one for each output quadrant from the

LUT.

As stated in Section 3.1, the two-hit criterion is that a hit is extended only if a

previous hit has occurred on the same diagonal, the two hits are within A symbols

56

Base Addr[13:2]

BaseAddr[1:0]

NumOfLocations

Add ress /

O u t p u t

Va l id

Log ic

S I R 0 1 0 1 I SIR0 11

Valid[3:0] HitLocationOO HitLocationOI HitLocationIO HitLocationH

Figure 3.4: The BLAST location LUT.

of one another, they do not overlap, and the hit is not contained in the ungapped

extension of any previously extended hit. The default value of A in NCBI BLAST

is 40.

An exact hardware implementation of this step is problematic due to the need to

check whether the current hit was covered by any previous extension. Applying the

BLAST filter philosophy to the problem, we introduce our first heuristic to increase

hardware-friendliness: pass the hit onward for extension if there is a hit within the

group of last W hits on the same diagonal that is more than W and less than A

symbols away. We choose to examine the W most recent hits to guarantee that a

non-overlapping hit will be found if one exists - if successive database words lead

to hits along the same diagonal, the W — 1 most recent hits will overlap, but the

Wth will not.

By not searching for hits covered by past extensions, our two-hit filter passes

approximately one out of every 10 hits as opposed to one out of every 20 for a

complete NCBI two-hit detector. Hence, an average of approximately 0.3 hits per

cycle are passed for extension. This will lead to some redundant hits in the output,

57

but the volume of data reaching the extender is reduced to a manageable level.

To simplify the hit detection logic, we describe hit locations using the diagonal

co-ordinate and database position of the first symbol. To elaborate, given two hits

at co-ordinates (ji, ii) and (j2 , 2̂)» where j is the position in the database and i the

position in the query, they lie on the same diagonal iff j'2 ~ H = ji — ii-lt is more

convenient to express a hit position in terms of the database co-ordinate j and the

diagonal co-ordinate d = (j — i)\mod\Qs\, where \Qs\ is the size of the current query

sequence. Using this co-ordinate system, the diagonal check is simply d\ = d2.

Under this parametrization, given a hit at (j, d), our two-hit criterion is satisfied if

there exists a hit (j1, d!) such that:

W<j-j'<L, d = d' (3.2)

One final issue that must be addressed is that the length of the database se­

quence is unbounded, and therefore so is the diagonal array used to keep track of

the positions of previous hits. In order to reduce the depth of the array, we can store

J = J\mod2k\Qs\ instead of j , where k is a positive integer. If \Qs\ = 1024, J is the

number represented by the lower k + 10 bits of j . Even for small values of k,j = J

for all but the longest database sequences. However, long databases can cause false

positives. Analysis in Section 3.6 shows that for k = 2, we can expect a false pos­

itive rate of approximately 1 out of every 800 hits. From this we can conclude that

the number of false positives allowed by this shortcut is insignificant.

The hardware implementation of the two-hit filter consists of three dual-port

block RAMs and a combinational logic unit. RAM 1 contains the locations of the

last hits along each diagonal, while RAM 2 and RAM 3 contain the second and third

last hits, thus covering all W previous hits. An incoming hit indexes loads from

these RAMs, producing the locations of the last 3 hits along the same diagonal.

The combinational logic then checks if the two-hit criterion is fulfilled. If so, the

hit is passed on to the next block. The hit is also written to the first RAM, as it

is now the most recently observed hit along its particular diagonal. Likewise, the

58

Dlagonallndax

Figure 3.5: The BLAST two-hit filter module.

hits previously stored in RAM are shifted to the next RAM over, with the last hit

overwritten. This entire operation can be executed in a single clock cycle by setting

the RAMs in read-before-write mode. Note that this design does not contain any

feedback loops, and thus can be pipelined if necessary to achieve our speed goal.

Figure 3.5 shows a block diagram of a single 2-hit unit. Note that the complete

system has four of these running in parallel.

In addition to the filter itself, an interface from the location LUT output is

needed. The reason for this is that the two-hit filters partition the work according

to which diagonal the hits lie on, while the hit locations coming from the location

LUT are unsorted. In fact, it is possible for all 4 locations read in a given clock

cycle to lie on the same diagonal, requiring them to be queued or to stall the system

while a single filter services each hit sequentially. Obviously we would like to avoid

the latter solution, so we have devised a two-hit filter queue that can accept up to 4

inputs in a single clock cycle, and multiplexes them to a single output.

The two-hit filter queue consists of 4 simple FIFO queues in parallel. The indi­

vidual queues are read in a round robin fashion. If any queue is almost full, it asserts

a stall signal and takes priority until the stall signal is de-asserted. Data from empty

queues is flagged invalid. Figure 3.6 shows a block diagram of a single two-hit

filter queue module. Each of the 4 two-hit filters has a separate queue, with all 4

outputs from the location LUT routed to each queue. Write control is accomplished

59

Sta l l_Req Input 1 Input 2 Input 3 Input 4

Queue Full 1 £
MUX

Output

Figure 3.6: Simplified architecture of the two-hit filter queue.

by looking at the lower 2 bits of the incoming location - locations ending in 00 go

to the 00 queue, locations ending in 01 go to the 01 queue, and so on. If incoming

data is marked as invalid, it is simply not written.

Each of the 4 queues is implemented as a shift register look-up table (SRL).

This design is much more efficient than dual-port memory. In Spartan-3 FPGAs,

an SRL queue is equivalent to single-port distributed RAM in resource utilization

[32], while dual-port memory consumes twice that [20].

These queues allow us to minimize stalls and maintain throughput. Since we

can expect a roughly even distribution of hits across the 4 filters, as well as across

the 4 individual FIFOs making up a queue, the probability of a stall is quite low even

with short queues. A queue length of 16 is sufficient, though it should be possible

to make them even shorter without significantly impacting system performance.

60

3.7.4 Extender

The extender is responsible for performing the ungapped extensions on hits that

pass the two-hit filter. Like the two-hit filter before it, we have modified the exten­

sion algorithm in order to have a simpler and faster hardware implementation.

The NCBI BLAST ungapped extension algorithm first adjusts the boundary of

the original hit to the highest scoring subsequence within the hit. Then, the left

extension occurs until the running score drops a threshold D below the maximum

observed score. Finally, the right extension is started using the running and maxi­

mum scores from the left extension as initial values. The extensions are performed

sequentially, with drop-off threshold checks performed at every step. Also note

that the left and right extensions are not independent of one another, and may con­

tinue for an arbitrary length. As mentioned earlier, these characteristics are highly

inconvenient from a hardware perspective.

Our simplified ungapped extension algorithm performs the extension by exactly

iV steps in either direction, regardless of whether the drop-off condition is met. The

right extension is initialized with the score of the original hit, rather than the run­

ning and maximum scores of the left extension. Thus the left and right extensions

are independent. The extension is considered successful if the extension to either

side reaches the end of the window without meeting the drop-off condition, or if

the drop-off condition is met on both sides, the maximum observed score exceeds

a certain threshold. Simulations in Section 3.6 have shown that any extension suc­

cessful with the NCBI ungapped extension algorithm is also successful with our

algorithm, although our algorithm produces redundant results. We will use N = 50

as a default.

Our extension algorithm can be implemented as a tree structure which com­

pletes the extension in 2log2(N) steps. Figure 3.7 shows the extender architecture

for a small (JV = 12) window size. This is possible because in an ungapped exten­

sion algorithm, each symbol comparison is independent of all others, and the results

can be merged together to obtain the final result. Consider the running scores for

two subsequences in an extension, Si and S2, and the maximal scores S\max and

61

*
'

'

*
^

*

Central

Initial

Initial

Initial

Initial

Initial

Initial

M U X

General

General

General

General

General

General Final

Figure 3.7: Extender architecture.

S^max- If we concatenate the subsequences, the running score of the concatenation

is obviously

S = S1 + S2 (3.3)

The maximum score of the concatenation, as obtained by starting with sequence

1 and calculating through to the end of sequence 2, is

max(Simax, f x (S2max + SI)) (3.4)

62

The term / represents a drop-off flag. If the drop-off condition has been met,

/ = 0, and if it has not been met, / = 1. Recall that the drop-off condition is

determined by 8max — S > D.

The extender is made up of several different types of unit, as shown in Figure

3.7. However, all units perform basically the same function of calculating scores

and checking the drop-off condition. The central unit handles the original hit of

3 symbols and also takes the place of a 2nd level general unit. Two outputs are

generated; one for a left extension and one for a right extension. The difference

between the two is that the order of the symbols is reversed. Initial units do not have

inputs for drop-off flags from previous units, since initially the drop-off condition

is not met. General units do have these inputs. The final unit examines the result

of the extension, and if the extension succeeded, sends the hit location to an output

pipe queue along with the maximum and running scores. Pipeline registers are

placed between each level of the tree. This allows a left extension to be started one

cycle, and the right extension the next. Thus the extender can effectively compute

a complete extension every 2 clock cycles.

It must be noted that the extender requires several more elements besides the

extension tree. The first element of the extender is a queue that combines the data

streams from all four of the two-hit filters back to a single stream. The exact same

4-to-l queue used in front of the two-hit filters, described in Section 3.7.3 and

Figure 3.6 can also be used to queue hits awaiting extension. As we have already

determined that an average of 0.3 hits pass the two-hit filters per cycle, the extender

will not be a long-term bottleneck. However, it is still possible to fill the queue and

cause a stall in extreme cases.

Note also that the inputs to the extension tree are the similarity scores of every

symbol within the extension window of both sequences. As a result, we need to

retrieve the proper part of both the query and database sequences, and look up the

scores for each pair of symbols. We now propose methods of doing so in a small,

fixed number of cycles so as not to interfere with the rest of the system's operation.

The query sequence is fairly easily handled because it is not used in any other

63

block, unlike the database sequence. It can be stored in a RAM within the greater

extender architecture and the appropriate segment retrieved as needed. In order to

store the query sequence in such a way that any given segment of length N + W

can be quickly retrieved, we use five block RAMs of 256 depth and 72-bit width.

These RAMs store an array of 256, 72 symbol subsequences. Each RAM stores a

single bit of each of the 72 symbols, and as each amino acid symbol requires five

bits, we have five RAMs.

As we have imposed a maximum query length of 1024, the memory depth of

256 allows us to store subsequences with a granularity of four symbols. Thus,

address 0 would contain the sequence [Qo--Q7i], address 1 would contain [Q4..Q75],

and so on. After the sequence has been read from memory, it must then be shifted

a maximum of three symbols to the left to obtain the desired segment. It is also

necessary to reverse the order of the symbols depending on whether they are for a

left or right extension.

With subsequence lengths of 72, this design supports extension window sizes

N as large as 66. A 72-bit memory width was chosen because this results in the

largest memory that will fit in a BRAM unit. All RAM units are placed in SIRO

configurations so they can be easily loaded with the query sequence before the

calculation begins.

Several methods for retrieving the database sequence are under consideration.

The simplest is to relay the entire database window through the system pipeline,

from the sequence unpacker all the way to the extender. This makes the entire

subsequences for both extension directions immediately available. However, it is

also highly costly in terms of resources. It requires 103 symbols, or 515 bits, to be

registered at every pipeline stage, as well as in each queue entry. However, since

the BLAST filter is expected to consume only about one fifth of the FPGA's fabric

resources [23], we can set aside a large amount as distributed RAM, or register

files. One quarter of the Spartan-3 XC3S4000 yields about 108 kilobits of single-

port distributed RAM, enough for approximately 200 copies [20]. As long as queue

lengths are limited, this design will easily fit within the device. It may also be

64

possible to conserve memory in queues using shift registers and hold/store logic,

as successive database windows will be identical or contain a great deal of overlap.

The relative simplicity and speed of this design make it the most desirable option.

Another proposal is to place database symbols in a long shift register, and mul­

tiplex the appropriate set of symbols into the extender upon request, using a very

large crossbar switch. Yet another is to use a block RAM setup like the one used to

retrieve the query sequence. Both use far fewer resources than the pipeline option,

but add a large amount of complexity. This complexity arises from the variable

number of clock cycles that pass between the issue of a database word and the time

the resulting hits reach the extender.

Finally, once the appropriate subsequences are available, the similarity scores

between each pair of symbols must be looked up. The proposed way of imple­

menting the substitution matrix is with dual-port block RAMs. Each table requires

24 x 24 addresses and a depth of 5 bits, with the imposition that scores cannot ex­

ceed 31. This is not an issue with standard substitution matrices. The address into

the RAM can simply be the concatenation of the two symbols. In dual-port mode,

each RAM can handle two pairs of symbols at once, which reduces the number of

RAMs needed and the initialization time. Arbitrary scoring matrices can be set by

using the RAMs within SIRO modules.

3.7.5 Resource Consumption

Resource consumption was briefly discussed in Section 3.7.4. Here it will be ana­

lyzed in greater detail.

Nominally, the BLAST filter is a very memory-intensive system. Large RAMs

are needed for the address LUT, location LUT, and query sequence. In fact, these

components alone consume so much memory that they became the prime motivator

for moving from the Spartan-3 XC3S1500 to the larger XC3S4000, which has triple

the block RAM modules.

Table 3.3 shows estimated resource consumption of the BLAST system in both

block RAMs and logic fabric (measured in configurable logic blocks, or CLBs).

65

Table 3.3: BLAST filter resource consumption estimates

CLBs (excluding queues)

CLBs (including queues)

Block RAMs

Usage estimation

1204

4116

74

Total available

6912

6912

96

Note that the first estimate for CLB use does not take queues or pipeline registers

into account. Due to the large distributed RAM consumption of the queues and

pipeline registers, they will be considered and discussed separately.

Because we have exact knowledge of our block RAM requirements, we can

very accurately predict the system's total block RAM consumption. Calculations in

[23] estimate that the system will consume 74 out of 96 total block RAM modules.

The estimate for CLB consumption is rougher, but we predict usage of about 1204

out of 6912 exclusively for logic functions. The distributed RAM used in queues

and pipelining will consume much more.

Because our primary look-up table blocks use block RAMs and comparatively

little supporting logic, we can afford to allocate a large proportion of the device's

logic fabric as distributed RAM for the 2-hit filter queue, extender queue, and

pipelining between blocks. Our system requires 20 queues of extremely large width:

515 bits to carry the database segment towards the extender, plus 26 bits for the

database index, and 10 bits for the query index, making a total of 551 bits. If all our

queues are made 16 entries deep for optimal CLB utilization [32], the total memory

requirement is 176320 bits. At 64 bits per CLB for a shift register look-up table

(SRL) based queue, this translates to 2755 CLBs, which we can easily spare.

Pipeline registers vary in width, depending on which blocks they are connect­

ing. However, all registers before the extender must carry the 515-bit database,

meaning any other data consumes a relatively insignificant amount of memory. If

we conservatively allocate 10000 bits for pipelining, an additional 157 CLBs are

consumed, based on a rate of 64 bits of registers per CLB [20]. This brings the total

to 4116.

With these figures, we can conclude that the Spartan-3 XC3S4000 device can

66

Sequence Unpacker

A G Q

DBWord = AGQ Address
LUT

(SIRO)

BaseAddr = 0x16F3

NumOfLocations = 3

Valid = 1

Location
LUT

(SIRO)

Figure 3.8: The word AGQ being processed by the Address LUT.

easily accommodate our BLAST filter design, with a large margin of safety for both

logic and block RAMs.

3.8 Example

This section describes an example of the BLAST filter in operation to clarify the

workings of each component. This example will cover a single database word oc­

curring somewhere in the middle of a complete alignment, and its consequent hits

as they travel through the 2-hit filter, extender, and finally reach the output.

The example begins with the word AGQ appearing at the database unpacker.

This word is accompanied in parallel by its numerical index in the database se­

quence, which is used in later units. This word is passed to the index calcula­

tor, which indexes the word based on the lexicographical order of the standard

amino acids - A is 0, G is 5, and Q is 13. Hence, the index of this word is

A x 242 + G x 241 + Q, or 133. This index passes to the Address LUT to look

up the base address and number of hits for this word stored in the Location LUT.

The LUTs are pre-computed and loaded before the database scan begins, so let us

assume that the Address LUT returns a base address of 0x16 F3 and 3 hits. The

operations of the unpacker and Address LUT are shown in Figure 3.8.

This address and hit count pass to the Location LUT, which stores the actual

locations of the hits corresponding to the word AGQ. Since the base address ends

in binary 11 , the base address is incremented by 1 to read the successive entries at

67

BaseAddr[13:2l

B a s e A d d r = 0 x 1 6 F 3

BaseAddr[1:0]

NumLocations = 3

Address /

Output

Valid

Logic

0b1101

SIRO00 SIRO01

0x16F4 0x16F5

Hit #2

SIRO10 SIR0 11

0x16F6

Hit #3 Invalid Data

0x16F3

Hit #1

Figure 3.9: The base address and hit count from the Address LUT being used to
look up hits from the Location LUT.

Oxl6 F4, 0x16 F5, and 0x16 F6. Because there are only 3 hits, however, the hit

loaded from 0x16F6 is flagged invalid - see Figure 3.9.

Next, these hits are input to the 2-hit filters. Each filter deals with one quadrant

of diagonals - one for diagonal addresses ending in each of binary 0 0 , 0 1 , 1 0 , and

11 . A crossbar switch forwards each hit location to the appropriate filter by looking

at the bottom 2 bits of their addresses. Two of the hits have diagonal co-ordinates

ending in 0 0 - they are both written to queues belonging to the 0 0 filter. The third

hit ends in 10 and so is written to that filter. The fourth hit, being invalid, is simply

discarded.

Next, the 2-hit filters check each hit for fulfilment of the 2-hit criteria. The

diagonal co-ordinate of each is used as an address into 3 RAMs; the data in each

RAM corresponds to query co-ordinates of the previous 3 hits on that diagonal. To

pass, a hit must be no more than 40 symbols away from a previous hit, and not

overlap any previous hit. The 10 hit passes and is forwarded to the extender queue,

but the other two hits fail. In all cases, the new hit is stored in memory to compare

with future hits. For illustration purposes, let us assume the succeeding hit occurs

on diagonal co-ordinate 0x0418 and database co-ordinate 0x0032. Figure 3.10

shows this hit passing through the filter.

DBIndex = 0x0032

3l»gon<.llnd»x - 0x0418

ReadData = 0x0018

D B I n d s x = 0x0032

Diagonallndex = 0x0418

Figure 3.10: The hit on diagonal 0x0418 and database index 0x0032 passes be­
cause a previous hit on diagonal 0x0418 occurredatDB index 0x0018, meaning
they are 0x14 (20) symbols apart.

Once in the extender, the query co-ordinate of the hit is read. This is used to

load the query segments needed for the extension. The database segment is already

present, since it has been moving through the datapath alongside the hit in shadow

registers. On the first cycle, the left extension is done, so the segment to the left

of the hit is read and input into the score matrices along with the left section of

the database sequence. The same thing is done for the right extension on the next

cycle. The resulting scores filter through the extension tree, and result in a score

of 162, which exceeds the threshold of interest for this alignment. The score and

co-ordinates of the hit are passed on to the output unit, where they wait in a queue

until read by the host.

69

Chapter 4

Common Components

This chapter describes the common components used in both the Smith-Waterman

and BLAST projects. A common top-level interface was used to provide commu­

nications between the host PC and the alignment algorithm on chip. In addition,

the hardware and vendor-provided API is also briefly described in this section, and

their impact on the implementations of both algorithms is analyzed.

4.1 Host Interface

The platform used in our Smith-Waterman research, the Opal Kelly XEM3010-

1500P development board, uses a Spartan-3 XC3S1500-4FG320 FPGA with fixed

connections to a USB interface, SDRAM module, and PLL module. Our BLAST

platform, the Opal Kelly XEM3050, is highly similar but contains a larger Spartan-

3 XC3S4000-FG676. The top-level design entity is provided by the vendor. This

section describes the interface used to connect the external host with the alignment

logic.

A top level diagram of the host interface is shown in Figure 4.1. The USB Host

encompasses several Opal Kelly endpoints, which are provided as pre-compiled

HDL files. In VHDL, these components are instantiated with a generic specify­

ing their address, which serves as a unique identifier. These identifiers are used

in the host side to interact with the modules via a provided software API. The

API is available on Windows, Mac OS X, and Linux platforms, giving our sys-

70

Local Interface

Input
Pipe

Output
Pipe

Status signals
Algorithm

Figure 4.1: Top-level diagram of the host interface.

tem portability across the vast majority of PCs. A typical function call to the API

might be OKWri t eToPipe ln (0x15 , l e n g t h , b u f) , which would write

l e n g t h bytes from buf to the Pipeln module at address 0x15.

The Opal Kelly pipe interfaces, OKBTPipeln and OKBTPipeOut, are used

to provide bulk data transfers in and out of the system through the USB. These pipes

have a hard-coded word size of 16 bits, hence many of our own components, such as

the input and output FIFOs, use the same word size. The O K T r i g g e r l n module

is used to provide external triggers, which are used in our design for debugging

purposes. The modules OKWireln and OKWireOut provide virtual signals or

variables that can be read from and written to by the host. These are used to enable

or disable various components within the system, in the case of OKWireln, and

provide status signals to the host in the case of OKWireOut. For details on these

components, the reader is directed to [33].

The router is used to direct datastreams between the USB host, SDRAM, and

algorithm. Data from the input pipe can be directed to either the SDRAM or

algorithm, while the output pipe always receives data from the algorithm. The

router also contains counters for the number of words passed to the algorithm and

SDRAM; these are used for debugging. The SDRAM module requires a con­

troller, which is not currently implemented. However, future plans include using

the SDRAM to enable even longer query sequence lengths in both Smith-Waterman

and BLAST.

71

The algorithm module is either the Smith-Waterman or BLAST core. It uses a

standard interface that both the Smith-Waterman and BLAST designs conform to.

The purpose of designing our system in this way is so that the host and SDRAM in­

terfaces would be fully interchangeable between the Smith-Waterman and BLAST

configurations. The standard interface also permits future algorithms could also be

"dropped in" to the algorithm component. Besides the input and output pipes, ports

for various status signals are provided, such as a count of the number of results

waiting to be read, and overflow reporting for the input and output FIFOs. These

FIFO modules perform data buffering and clock domain crossing for the algorithm.

There are a total of three clock domains in this system: one for the USB host,

one for the SDRAM, and one for the algorithm. However, since the USB host is

provided by the vendor and has a fixed maximum clock frequency, the board pro­

vides a special maximum-frequency clock for it. Thus, we don't need to create

our own clock for it. The SDRAM clock is present in our designs, but is uncon­

nected since the SDRAM module is unimplemented. The algorithm clock is used

to drive the algorithm core. The frequency varies depending on the algorithm type

and configuration, but can be easily set and adjusted through API function calls.

4.2 Host Communication and Data Format

Except for special-purpose debugging and diagnosis signals, all data passing be­

tween the host and the system goes through the OKBTPipeln and OKBTPipeOut

interfaces. These interfaces' fixed word width of 16 bits was a major influence in

our host-system communication design.

On the input side, the MSB of each word is used to distinguish between com­

mands and data. If the MSB is set, the word is a command or delimiter. In Smith-

Waterman, these commands are used to signal the beginning of query and database

sequences, for example. Although BLAST lacks a central control unit with which

to interpret and execute commands, this bit serves a similar purpose of acting as a

reserved bit to trigger writes to the serial-in random-out (SIRO) modules.

If the MSB is cleared, the word is interpreted as data. The SIRO modules in

72

C o m m a n d W o r d

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

Command Payload

N u c l e o t i d e Da ta W o r d

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IT] I I I I I I I I I I I I I I

Symbol 4 Symbol 3 Symbol 2 Symbol 1 Symbol 0

A m i n o A c i d Data W o r d

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
_ _ | | | | . | | | | | . | | |

' ; ' I ' ; '
Symbol 2 Symbol 1 Symbol 0

Figure 4.2: Input word data formats.

BLAST simply take raw data as input. Biological sequence data is divided into

'symbols', each representing one letter in the alphabet of nucleotides or amino

acids. Nucleotides are 3 bits, and thus are packed in 5 to a word. Although there are

only 4 nucleotides, which can be represented with 2 bits, it is useful to define extra

special-purpose symbols. Among these are a symbol that scores negatively with all

symbols, including itself, and a symbol for representing a gap. Hence we use 3 bits

rather than 2. The 20-symbol amino acid alphabet requires 5 bits per symbol, and

thus 3 symbols are delivered per data word. Like our nucleotide symbol set, the

amino acid set also contains special-use symbols, but in this case their introduction

does not cause symbols to use up extra bits.

All sequence data is in little-endian format. Figure 4.2 illustrates the formats of

a command word and both types of sequence data word.

Results, as similarity scores and locations, are returned in raw format, in gen­

eral, each element of a single 'result' is sent as either 1 or 2 words, depending on

73

whether more than 16 bits are required. For example, in our Smith-Waterman sys­

tem, all result elements are transmitted as 2 words. The first contains the lower 16

bits, while the second contains the upper 16 bits.

74

Chapter 5

Conclusions

This document describes research in which a new FPGA-based implementation of

the Smith-Waterman algorithm was created, and a high-speed, low-complexity im­

plementation of simplified BLAST was proposed. Our Smith-Waterman design

sets a new benchmark by handling longer sequences than any other previously pub­

lished FPGA implementation. It is also distinguished by running on a low-cost,

portable platform with an inexpensive Spartan-3 series FPGA, while still achieving

large speed-up factors over current microprocessors. As shown in Section 2.8.4,

speed-up factors range from 10 to 30 for amino acid sequences and 20 to 100 for

nucleotide sequences.

Our proposed BLAST is unique in devising several new heuristics to allow more

effective hardware acceleration. Our design presents several new approaches to

BLAST hardware acceleration, most notably the parallel hit look-up and 2-hit fil­

tering stages of the algorithm.

Future work will focus on integrating our platform's unused SDRAM module

into our designs, which will allow even longer sequence lengths, and improved flex­

ibility handling the large amounts of data that sequence alignments entail. There

are also several approaches to improve and extend our BLAST design, such as per­

forming parallel hit detection on chip rather than requiring hits to be pre-computed

by the host.

75

Bibliography

[1] T. F. Smith and M. S. Waterman. Identification of common molecular subse­

quences. Journal of Molecular Biology, 147(1): 195-197, 1981.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215:403-410,1990.

[3] H. Nash, D. Blair, and J. Grefenstette. Comparing algorithms for large-scale

sequence analysis. In Proc. IEEE Intl. Symp. Bioinformatics and Bioengineer-

ing, volume 2, pages 89-96, November 2001.

[4] National Center for Biotechnology Information. NCBI-GenBank flat file

release 159.0 distribution release notes. Technical report, NCBI-GenBank,

2007.

[5] UniProt Consortium. The universal protein resource (UniProt). Nucleic Acids

Research, 35 (Database Issue): 193-197,2007.

[6] O. Gotoh. An improved algorithm for matching biological sequences. Journal

of Molecular Biology, 162(3):705-708, 1982.

[7] R. K. Singh, D. L. Hoffman, S. G. Tell, and C. T. White. BioSCAN: a net­

work sharable computational resource for searching biosequence databases.

Comput. Appl. BioscL, 12(3): 191-196,1996.

[8] P. Guerdoux-Jamet and D. Lavenier. SAMBA: hardware accelerator for bio­

logical sequence comparison. Comput. Appl. BioscL, 13(6):609-615,1997.

[9] B. Schmidt, H. Schroder, and M. Schimmler. Massively parallel solutions for

molecular sequence analysis. In IPDPS '02: Proceedings of the 16th Interna­

tional Parallel and Distributed Processing Symposium, page 201, Washington,

DC, USA, 2002. IEEE Computer Society.

76

[10] A. Di Bias, D. M. Dahle, M. Diekhans, L. Grate, J. Hirschberg, K. Karplus,

H. Keller, M. Kendrick, F. J. Mesa-Martinez, D. Pease, E. Rice, A. Schultz,

D. Speck, and R. Hughey. The UCSC Kestrel parallel processor. IEEE Trans­

actions on Parallel and Distributed Systems, 16(1):80—92, 2005.

[11] W. Liu, B. Schmidt, G. Voss, A. Schroder, and W. Muller-Wittig. Bio-

sequence database scanning on a GPU. In IPDPS 2006 Parallel and Dis­

tributed Processing Symp., volume 20, April 2006.

[12] D. T. Hoang. Searching genetic databases on Splash 2. In Duncan A. Buell and

Kenneth L. Pocek, editors, IEEE Workshop on FPGAsfor Custom Computing

Machines, pages 185-191, Los Alamitos, CA, 1993. IEEE Computer Society

Press.

[13] Active Motif Inc. h t t p : / / w w w . t i m e l o g i c . c o m .

[14] Y. Yamaguchi, T. Maruyama, and A. Konagaya. High speed homology search

with FPGAs. In Proc. Pacific Symposium on Biocomputing, pages 271-282,

2002.

[15] T. F. Oliver, B. Schmidt, and D. L. Maskell. Reconfigurable architectures for

bio-sequence database scanning on FPGAs. IEEE Transactions on Circuits

and Systems II, 52(12):851-855, December 2005.

[16] D. J. States, W. Gish, and S. Altschul. Improved sensitivity of nucleic acid

database searches using application-specific scoring matrices. METHODS: A

Companion to Methods in Enzymology, 3(l):66-70, August 1991.

[17] S. F. Altschul. Amino acid substitution matrices from an information theoretic

perspective. Journal of Molecular Biology, 219:555-565, 1991.

[18] W. R. Pearson. Comparison of methods for searching protein sequence

databases. Protein Science, 4:1145-1160,1995.

[19] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving

the sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Research, 22:4673^680, 1994.

[20] Xilinx Inc. Spartan-3 FPGA Family: Complete Data Sheet.

77

http://www.timelogic.com

h t t p : / / w w w . x i l i n x . com. August 2005.

[21] S. Henikoffand J. G. Henikoff. Amino acid substitution matrices from protein

blocks. In Proc. Nat. Acad. Sci., volume 89, pages 10915-10919, 1992.

[22] S. F. Altschul, T. L. Madden, A. A. Schaeffer, J. Zhang, Z. Zhang, W. Miller,

and D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of pro­

tein database search programs. Nucleic Acids Research, 25(17):3389-3402,

1997.

[23] S. Bates, B. Knudsen, P. Meulemans, T. Rollingson, and O. Zaboronski. 100

GCUPS low complexity BLAST filter for FPGA.

[24] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence

comparison. In Proc. Natl. Acad. Sci. USA, volume 85, pages 2444-2448,

April 1988.

[25] National Center for Biotechnology Information,

h t t p : / / w w w . n c b i . n l m . n i h . g o v / .

[26] K. Muriki, K. D. Underwood, and R. Sass. RC-BLAST: towards a portable,

cost-effective open source hardware implementation. In Proc. 19th IEEE Intl.

Symp. Parallel and Distributed Processing (IPDPS 2005), April 2005.

[27] P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, K. Gyang, and

J. Lancaster. Biosequence similarity search on the Mercury system. In ASAP

'04: Proceedings of the Application-Specific Systems, Architectures and Pro­

cessors, 15th IEEE International Conference on (ASAP'04), pages 365-375,

Washington, DC, USA, 2004. IEEE Computer Society.

[28] A. Jacob, J. Lancaster, J. Buhler, and R. Chamberlain. FPGA-accelerated seed

generation in Mercury BLASTP. FCCM, 0:95-106, 2007.

[29] E. Sotiriades, C. Kozanitis, and A. Dollas. FPGA based architecture for DNA

sequence comparison and database search. In Proc. 20th IEEE Intl. Symp.

Parallel and Distributed Processing (IPDPS 2006), April 2006.

[30] M. Herbordt, J. Model, Y. Gu, B. Sukhwani, and T. VanCourt. Single pass,

BLAST-like, approximate string matching on FPGAs. In FCCM '06: Pro­

ceedings of the 14th Annual IEEE Symposium on Field-Programmable Cus-

78

http://www.xilinx
http://www.ncbi.nlm.nih.gov/

torn Computing Machines (FCCM'06), pages 217-226, Washington, DC,

USA, 2006. IEEE Computer Society.

[31] Swiss Institute of Bioinformatics. UniProtKB/Swiss-

Prot protein knowledgebase release 54.1 statistics,

h t t p : / / c a . e x p a s y . o r g / s p r o t / r e l n o t e s / r e l s t a t . h t m l .

[32] Xilinx Inc. Using Look-Up Tables as Shift Reg­

isters (SRL16) in Spartan-3 Generation FPGAs.

h t t p : / / w w w . x i l i n x . c o m / b v d o c s / a p p n o t e s / x a p p 4 6 5 . p d f .

May 2005.

[33] Opal Kelly Inc. Opal Kelly FrontPanel User Manual.

h t t p : / / w w w . o p a l k e l l y . c o m . September 2005.

79

http://ca.expasy.org/sprot/relnotes/relstat.html
http://www.xilinx.com/bvdocs/appnotes/xapp465.pdf
http://www.opalkelly.com

