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ABSTRACT 

Forests are one of the important natural resources, because of their benefits toward the 

economy and ecosystem services including goods, climate control, pollution reduction, carbon 

storage, wildlife habitat protection, nutrient cycling, social and cultural benefits. Hence, 

sustainable development requires assessment of forest structure with the goal of efficient 

resource management. The goal of this thesis is to investigate forest structure using Light 

Detection and Ranging (LiDAR) technology. LiDAR is an active remote sensing method that is 

suitable for this purpose due to its capability to capture both distribution and three-dimensional 

structure of canopies into a 3D point cloud with millions of points. This thesis introduces new 

simple algorithms for automatic processing of the point cloud data collected by ground-based 

LiDAR and simple assessment of forest structure. Also, the major challenges in handling the 

huge amount of data generated by LiDAR are discussed and proper solutions are offered and 

examined. In this light, chapter one reviews the background and capabilities of the LiDAR 

technology. In chapter two, an algorithm is developed for processing LiDAR data to generate 

Digital Terrain Model (DTM). Chapter three targets separation of photosynthetic components 

from non-photosynthetic components using a combination of distance and intensity attribute 

which are both provided by LiDAR. A comprehensive qualitative/quantitative error analysis is 

also presented along with the chapters on DTM and separation methods. Chapter four deals with 

Leaf Area Index (LAI) which makes one of the important assessment parameters of any forest. 

The drawbacks of current methods for calculation of LAI including the application of uniform 

voxels of arbitrary size and ignoring the effect of LiDAR scan resolution are discussed. Then, 

LAI is calculated by non-uniform voxels based on local sampling resolution of LiDAR. This 

technique avoids using the common radiative transfer model and gap fraction model which 
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involve a high level of approximation. Hence, LAI is calculated directly from the LiDAR data 

and without intermediate auxiliary models. Finally, chapter five reviews the main contributions 

and significance of this study. Collectively, ground-based LiDAR is demonstrated as a suitable 

technology for forest survey. The 3D point cloud data from LiDAR can be processed by proper 

algorithms to generate DTM, separate leaves from wood, and calculate LAI with high precision. 
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CHAPTER 1 

Introduction 

   

1.1 Background 

The life cycle on planet earth is dependent upon forest ecosystems. Forests cover about 

30% of Earth’s land area (~4.03 billion hectares) (FAO 2010). The forests are responsible for 

50% of terrestrial photosynthesis and contain 80% of the total plant biomass on the earth (FAO 

2010, Beer et al. 2010; Kindermann et al. 2008). Forests are one of the most important 

components in global CO2 exchange in terrestrial ecosystems with main reservoirs on soils and 

standing biomass (Zheng et al. 2007). Furthermore, forests offer high levels of biodiversity and 

provide a wide variety of direct and indirect goods and ecosystem services to humanity such as 

fiber, timber, food, medicine, fresh air and water, control of climate and disease, protection of 

habitats, soils, watersheds, fisheries, and also cultural, spiritual and recreational benefits (Jackson 

et al. 2005; McKinley et al. 2011; Millennium Ecosystem Assessment, 2005; Gullison et al., 

2007). In addition, forests constitute a fundamental source of raw materials, both for industry and 

for rural societies that depend on forest products to meet basic living needs (FAO, 2006). 

Understanding the forest canopy structure is a key factor for ecosystem assessment, 

management, modeling, and monitoring (Sexton et al. 2009). A forest canopy is a complex 

volume that it is composed of leaves, twigs, branches, and stems with gaps between them 

(Andersen et al. 2006). Canopy structure is described by several parameters such as canopy 

height, Diameter at Breast Height (DBH), crown height, crown volume, plant area, etc. These 

aforementioned parameters affect the interaction between the atmosphere and land surface, 

especially in the case of interception of precipitation, radiation absorption, and photosynthetic 

activity (Baldocchi and Harley, 1995; Parker, 1995). As an example, the canopy height which is 

an initial canopy parameter can affect the microclimate, the wildlife habitat value, and the plant 

composition (Welden et al. 1991; Kruger et al. 1997; Raupach, 2004; James, 1971). Also, the 

leaf area which is a significant canopy parameter is an indicator of the global carbon cycle 

(Beland et al. 2014). 
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Ecosystem service management requires the forest resource information at different scales 

from national to stand-scale and also at various user levels, from global governmental decision 

making to operational forest management (Liang et al. 2016). At the national scale and global 

level, the main goal of a forest inventory is to collect and assess data of some forest attributes 

such as biodiversity, stem volume, and biomass. On the other hand, at the forest stand scale, data 

collection is necessary for forest operations and finding timber harvesting potential. Based on the 

required accuracy and the available resources, forest inventory techniques include field 

measurements and remote sensing tools. Conventionally, field measurements have been done 

using simple tools, such as calipers and clinometers, and the progress of forest inventories has 

been slow. Recently, advanced remote sensing techniques enable researchers to measure 

properties and monitor processes of ecosystems quickly, accurately, and in different scales 

(Prince and Goward, 1995; Goetz et al. 2000; Running et al. 2000; Zheng et al. 2004). With the 

advent of the ground-based Light Detection and Ranging (LiDAR) in the past two decades, 

significant changes have occurred in forest inventory.  

 LiDAR has been a promising active remote sensing tool to deliver various parameters of 

the canopy in detail. LiDAR can be used to effectively estimate the 3D canopy parameters as an 

alternative to conventional passive methods (Yu et al. 2004; Næsset, 1997; Hyyppa¨ et al. 2001; 

Næsset et al. 2004; Reutebuch et al. 2005; Omasa et al. 2006). Due to the three following 

reasons, LiDAR emerged as a suitable and effective alternative for field measurements 

inventory:  

(1) Field inventory is time-consuming and labor- intensive both in data collecting and data 

interpreting;  

(2) The LiDAR accuracy is higher than the conventional techniques;  

(3) LiDAR provides more details on tree attributes which are important for forest management 

and decision-making at any scale (Liang et al. 2016).  

Typical remote sensing methods represent the forest ecosystem attributes in two-

dimensional space while LiDAR technology offers 3D forest structure attributes such as canopy 

structure, crown volume, biomass, stem density, sub-canopy topography, vertical foliage 

diversity, and leaf area index through direct and indirect retrievals (Behera and Roy, 2002).  

          The LiDAR scanner emits a laser beam in the spectrum of visible to near-infrared light 

(Beland et al. 2014). When the pulse hits the surface of an object, part of energy reflects back to 
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the scanner and based on the time interval between the pulse emission and reception, the distance 

between the object and the instrument is calculated. Finally, the 3D coordinate of each point of 

the surrounding objects will be calculated and collected in a Point Cloud Data (PCD) set.  

  Various LiDAR sensors use different laser's wavelength, power, pulse duration, pulse 

repetition rate, beam size and divergence angle. The wavelength of the laser for ground 

applications usually is between 500 to 1064 nanometers (Lefsky et al. 2002). LiDAR can be used 

in three platforms: spaceborne LiDAR such as Deformation, Ecosystem Structure, and Dynamics 

of Ice (DESDynI) and Ice, Cloud, and Land Elevation Satellite (ICESat) with a resolution of 50-

150 m (NCR, 2007), airborne LiDAR with a resolution of 0.1–1 m and ground-based (terrestrial) 

LiDAR with a resolution of 0.05–10 cm. 

Ground-based LiDAR emits small laser pulses with high rate and small angular resolution. 

The current Terrestrial Laser Scanner (TLS) systems usually have a high spatial resolution in the 

range of millimeters at several meters from the scanner, for example, ±2 mm at 25 m. The 

smallest angular resolution in both horizontal and vertical direction is less than 0.01 degree 

(Liang et al. 2016). The intensity of the return beam depends on several factors including the 

power of the transmitted laser pulse, the portion of the laser pulse that is captured by an object, 

and the reflected pulse which is backscattered toward the sensor (Lefsky et al. 2002). 

From the aspect of signal processing and sampling, LiDAR systems are classified into the 

discrete return or full waveform (Dubayah and Drake, 2000; Wulder et al. 2008, 2012). Discrete 

return LiDAR systems usually record only one (first or last), two (first and last), or a few returns 

per pulse footprint (Lim et al. 2003; Wulder et al. 2008). The result of discrete return scanning is 

a 3D cloud of points where the points of lower altitude show the land surface (Lim et al. 2003; 

Wulder et al. 2008). Also, the distance between the surface of an object and the LiDAR scan 

station is calculated based on the flight time of the pulse. In contrast, a full waveform LiDAR 

system measures the quantity of energy reflected toward the sensor for a series of equal time 

intervals. Full-waveform LiDAR systems deliver a vertical vegetation profile and normally have 

a larger footprint of 10 m to 100 m (Lefsky et al. 2001; Harding et al. 2001). The large peaks in a 

full waveform profile are interpreted as discrete objects. Therefore, within a forest ecosystem, 

full waveform systems record the total waveform for structural analysis, while discrete return 

systems record clouds of points showing intercepted topographies (Lefsky et al. 2001; Harding et 

al. 2001). 
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Applications of LiDAR in forestry are generating Digital Terrain Model (DTM), 3D forest 

structure assessment, and assessment of the forest attributes such as volume and aboveground 

biomass (Lefsky et al. 2002). 

Generating a DTM with traditional surveying techniques such as photogrammetry and field 

measurement creates a high accuracy DTM. However, it is time-consuming and labor-intensive 

(Lefsky et al. 2002). Generating DTM by LiDAR is of commercial benefits (Flood and Gutelis, 

1997). Recently, LiDAR has been applied in DTM generation (Chen et al. 2016; Nurunnabi et al. 

2016; Beumier and Idrissa, 2016; Maguya et al. 2014; Reutebuch et al. 2003).  

Canopy structure is the vertical and horizontal distribution of all the foliage elements with 

a variety of shape, size, and orientation of different species groups above-ground in a forest stand 

(Norman and Campbell, 1989; McIntosh et al. 2009). Canopy structure contains substantial 

information about the state of development of plant communities and canopy function (Lefsky et 

al. 1999; Brownd and Prker, 1994). Forest structure assessment is of ultimate significance for 

resource management and sustainable development. The investigation into the 3D canopy 

structure is necessary for their accurate quantitative assessment (Martínez et al. 2009).  

 LiDAR has been used increasingly as an effective tool to provide data on aboveground 

biomass in forest areas (Wulder et al. 2012a, 2012b). Margolis et al. (2015) estimated above 

ground biomass using LiDAR in the boreal forest of North America. Zhou and Hemstrom (2009) 

used LiDAR data to develop a model for estimation of tree biomass on forest land in the Pacific 

Northwest (USA). Other studies focused on estimating aboveground biomass in the forest using 

airborne LiDAR data are performed by Chang et al. (2012) and Kim et al. (2012). 

 

1.2 Thesis Objectives and Hypotheses 

The current study aims to develop new methods for analyzing ground-based LiDAR data to 

assess the structure of the boreal forest and overcome some of the current limitations of this new 

technology for forest research and management. In this context, the three main specific 

objectives and hypotheses of my doctoral dissertation are: 

1- To develop a simple model for extracting Digital Terrain Model (DTM) in a dense 

boreal forest with high spatial resolution using ground-based LiDAR data, and evaluate the effect 

of surface topography on DTM retrievals. To carry out this task, I am proposing to use non-linear 
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median digital filters and local slope analysis. The processing steps are selecting lowest altitude 

points, applying median filters of high order (>15). In addition, to find the optimum order of 

median filter, a new criterion is developed which monitors the gradient in slope of DTM profile. 

It is hypothesized that the PCD collected by terrestrial provides sufficient information on land 

properties for extraction of DTM with spatial resolution as small as 20 cm using the above-

mentioned processing steps.  

2- To assess the potential of terrestrial LiDAR data for detection of photosynthetic 

components from non-photosynthetic components and to develop an automatic, simple, and 

efficient algorithm for separating photosynthetic components from the non-photosynthetic 

components. It is hypothesized that both intensity and (x, y, z) coordinates provided by the 

terrestrial LiDAR for each point in the PCD are required for extraction of a suitable scale with a 

single threshold value for separation of leaves from wood.   

3- To develop a new method to calculate LAI from LiDAR PCD directly and simply by 

addressing the drawbacks of previous methods in literature such as radiative transfer model. It is 

hypothesized LAI can be calculated directly (without using radiative transfer model) from 

terrestrial LiDAR PCD using non-uniform voxelization based on local spatial scan resolution.    

  

1.3 Thesis Outline 

In order to achieve the goals and hypotheses associated to this doctoral dissertation, I have 

divided this work into three chapters. The following is the description of each individual 

contribution. 

 

Chapter 2.  Retrieving a Digital Terrain Model (DTM) in a boreal forest using ground-

based LiDAR. In this chapter, a new simple algorithm is developed for automatic DTM 

generation in MATLAB® software based on median filtering along with a new score for 

assessment of the quality of DTM profile based on local slope. The input of the algorithm is a 

high spatial resolution PCD which is slightly post processed. The algorithm is applied to cross-

sections of boreal forests in north of Canada with surface areas up to 40 × 40 m2. Also, qualita 
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tive and quantitative (omission/commission) errors associated with DTM profile are 

calculated and analyzed. This chapter is ready for submission as a publication. The authors are 

Leila Taheriazad, Arturo Sanchez Azofeifa, and Hamid Moghadas. Extraction of a Digital 

Terrain Model (DTM) from point cloud data of ground-based LiDAR. 

 

Chapter 3.  Automatic separation of photosynthetic and non-photosynthetic components in 

a point cloud data from a boreal forest canopy. A new simple efficient algorithm is developed 

for automatic separation of photosynthetic and non-photosynthetic features in a canopy. The 

algorithm input is the raw PCD collected by terrestrial LiDAR from a Canadian boreal forest. 

The algorithm uses point intensity provided by LiDAR. The raw intensity is processed using the 

distance of a point to the scan station. It is shown that photosynthetic and non-photosynthetic 

features of a PCD can be separated with a very low commission and omission error using the 

proposed method. This work is ready for submission as a publication. The authors are Leila 

Taheriazad, Arturo Sanchez Azofeifa, and Hamid Moghadas. Automatic separation of 

photosynthetic and non-photosynthetic components in point cloud of ground based LiDAR using 

intensity parameter. 

 

Chapter 4. Calculation of leaf area index in a Canadian boreal forest using ground-based 

LiDAR. The 3D PCD collected by terrestrial LiDAR has been used to extract canopy structure 

parameters such as Leaf Area Index (LAI). To calculate LAI, state of the art methods divide the 

PCD into smaller equisize cubic collections called voxels (Hancock et al. 2014; Hosoi et al. 

2013; Côté et al. 2012; Song et al. 2011; Hosoi and Omasa, 2009; Wang et al. 2008;). Then, they 

take advantage of auxiliary mathematical models such as radiative transfer and gap fraction 

model in order to calculate LAI. The mentioned methods are prone to a high level of error. 

Besides, the effect of LiDAR scan sampling resolution is ignored in present studies. Chapter 4 is 

dedicated to enhancing current methods for extracting LAI from LiDAR PCD by considering the 

effect of scan sampling resolution in voxelization, offering an improved voxel system, and 

without using radiative transfer or gap fraction model. This can simplify the computations while 

improving the calculation accuracy. This chapter is ready for submission as a publication. The 

authors are Leila Taheriazad, Arturo Sanchez Azofeifa, and Hamid Moghadas. Adaptive 

voxelization for direct calculation of leaf area index using terrestrial LiDAR.  
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1.4 Significance 

The results and findings of the studies in this thesis are to be used to broaden the 

knowledge of monitoring in forest ecosystems with the purpose of sustainable resource 

management. As monitoring forests with traditional inventory is time-consuming, labor-intensive 

and costly, remote sensing technologies such as LiDAR have been receiving much attention. 

However, processing the huge amount of data and images collected by LiDAR for extraction of 

forest ecosystem parameters isn’t a straightforward task. This thesis focuses on algorithms for 

automatic and effective extraction of the forest parameters. These algorithms are of commercial 

value since they can be integrated with LiDAR scan stations for on-site application toward 

sustainable management and development.      
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CHAPTER 2 

 

Retrieving a Digital Terrain Model (DTM) in a Boreal Forest Using Ground-Based LiDAR  

 

2.1 Introduction 

 

Digital Terrain Model (DTM) is the 3D demonstration of the ground surface. According to 

Miller and LaFelamme (1985), DTM represents the ground surface points which are statistically 

continuous and has known (x, y, and z) Cartesian coordinates. Geometrically, DTM maps x, y 

coordinates as a function of terrain elevation z = f (x,y). Here, the terrain is defined as the 

boundary surface between the solid ground and the air (Pfeifer and Mandlburger, 2009; Sithole 

and Vosselman, 2004). There are several other terms for description of terrain such as Digital 

Terrain Elevation Model (DTEM), Digital Elevation Model (DEM), Digital Height Model 

(DHM), and Digital Ground Model (DGM), which should be carefully used (Petrie and Kennie, 

1990). Among those, only DEM is the same as DTM. But the other terms should not be mistaken 

with DTM (El-Sheimy et al. 2005; Pfeifer and Mandlburger, 2009).   

DTM is widely used in Global Positioning System (GPS), Geographical Information 

System (GIS), and forestry. Traditionally, data collection for DTM is carried out by field 

measurement and photogrammetry which are time-consuming and labor-intensive (Kraus and 

Pfeifer, 1998). Furthermore, in remote and dense forested areas, these methods are not possible. 

As an alternative, airborne and satellite-based technologies such as optical satellites, satellite 

altimetry, and Interferometric Synthetic Aperture Radar (InSAR) are used (Bamber and Rivera, 

2007; Haugerud and Harding, 2001; Raber et al. 2002; Maguya et al. 2014; Reutebuch et al. 

2003). These airborne and satellite-based technologies offer limited spatial resolution and very 

low precision (Herzfeld et al. 1993; Moholdt et al. 2010). 

Recently, Light Detection and Ranging (LiDAR) technology has been widely used in 

landscape and environmental assessment, road management, indoor modeling, urban mapping, 

urban street maintenance, and geology (Kraus et al. 2006; Chehata et al. 2009; Yu et al. 2010; 

Hong et al. 2015; Jones, 2006; Wang et al. 2010; Jaboyedoff et al. 2012). LiDAR is an active 

remote sensing system which is minimally affected by the external light conditions. Airborne 
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LiDAR can offer a decimeter precision that outperforms satellite techniques (Woolard and 

Colby, 2002; Arnold et al. 2006; Chen, 2007; Roering et al. 2009). The accuracy of DTM by 

airborne LiDAR in forested areas is equal to photogrammetry in open areas (Kraus and Pfeifer 

1998). However, weak signal return from the sky to ground and rolling of LiDAR platform may 

cause miscalculation in surface features (Liu, 2008; Pope et al. 2013). Chen et al. (2016) used 

airborne LiDAR data to generate urban DTM; Nurunnabi et al. (2016) have extracted surface 

points from mobile laser scanning data; a high-resolution terrain model under a conifer forest 

canopy was produced by Reutebuch et al. (2003); Beumier and Idrissa (2016) extracted DTM 

from DSM using airborne laser scanning in urban area; Maguya et al. (2014) has driven DTM in 

steep forested terrain from airborne LiDAR data; Tyagur and Hollaus (2016) create an automatic 

DTM for road environment of the nature reserve. As an alternative, ground-based LiDAR has the 

potential to provide precise DTM with high spatial resolution even from dense forest-covered 

grounds due to its fixed platform and high-density point cloud (Slob and Hack, 2004; Prokop, 

2008; Entwistle et al, 2009; Ergun, 2010; Abellán e al. 2014). Another important feature of 

ground-based LiDAR is its quick scan which outperforms other technologies; as an example, the 

Leica Scan Station C10 has a data acquisition rate of 50000 samples/sec and acquisition time of 

6 min and 45 sec.  

The initial step in processing ground-based LiDAR data is separating ground and non-

ground points. However, this procedure is challenging in dense environments such as forest due 

to occlusion effect (Tyagur and Hollaus, 2016). Occlusion happens where some portions of the 

ground are missing because of other features such as trunks, branches or leaves (Bauwens et al. 

2016).  

Many algorithms have been developed for LiDAR ground filtering during the past decade. 

Sithole and Vosselman (2004) examined and compared several ground filtering algorithms for 

processing airborne LiDAR data. Zhang and Whitman (2005) used three algorithms to separate 

ground and non-ground points from airborne LiDAR data. Bartels and Wei (2010) have 

developed an unsupervised classification algorithm (skewness balancing) for separation of 

ground and non-ground point.  

Different filters for generating DTM are classified into four major classes: morphological, 

surface-based, progressive densification and segmentation (Pfeifer and Mandlburger, 2009; 

Nurunnabi et al. 2016). The International Society for Photogrammetry and Remote Sensing 
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(ISPRS) Working Group 3 (WGIII) has compared these filters and shown that the performance 

of different filters is not the same for various landscape topology (Pfeifer and Mandlburger, 

2009; Sithole and Vosselman, 2004). These filter classes are elaborated as follows. 

 

Morphological filters and its variants: The basic of the DTM morphological filter is 

derived from mathematical morphology presented by Haralick and Shapiro (1992). In this 

method, the ground points are first separated based on lowest z-value within the data set and then 

followed by an auto-regression analysis to refine the initial results (Shan and Sampath, 2005). 

Since the size of the object elements on the ground can affect the result of this method, Kilian et 

al. (1996) improved it by applying a group of morphologic functions with a diversity of size to 

detect the ground points. 

Vosselman (2000) and Sithole (2001) developed a variant of morphological filter named 

slope-based filter to consider the local relief. This filter works based on the terrain slope 

threshold (Sithole, 2001). This method is not applicable to steep areas (Vosselman, 2000; 

Sithole, 2001; Zak˘sek and Pfeifer, 2006). Morphological filters have been used by Kilian et al. 

1996; Vosselman, 2000; Lohmann et al. 2000; Zhang et al. 2003; and Filin and Pfeifer, 2006. 

Some variants of morphological methods are terrain slope (Axelsson, 1999; Sithole, 2001), local 

elevation difference (Wang et al. 2001), and Despike Virtual Deforestation (VDF) algorithm 

(Haugerud and Harding, 2001; Raber et al. 2002).  

 

Surface-based filters: Surface-based filters work based on the assumption that initially, all 

points belong to the ground surface and gradually the points that are not fit to the general surface 

model will be removed. The general surface model is created to approach the DTM (Pfeifer and 

Mandlburger, 2009). Kraus and Pfeifer (1998) developed an iterative robust interpolation 

surface-based filter using linear least squares interpolation to describe the surface in wooded 

areas. In the linear-prediction methods (Kraus and Pfeifer, 1998; Pfeifer et al. 1999) a surface 

was divided into several patches and computed with equal weights for all points. Lee and 

Younan, (2003) generated DTM in commercial forestland with variable terrain, canopy densities, 

and heights near Bellingham, WA. They demonstrated that although the linear prediction 

methods are the robust methods to generate a DTM, they are not capable of generating an 
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effective one in steep or varying slopes. Lee and Younan, (2003) have improved the linear 

prediction methods with adaptive processing methods.  

Polynomial function algorithms are another surface method which has been used to extract 

ground points. In this method, the ground surface is assumed as a continuous surface and points 

with a defined vertical distance are selected as the ground points (Kraus and Pfeifer, 1998; 

Elmqvist, 2002). Since using the above algorithms requires complex computation and is applied 

only to continuous terrain surface, a Triangulated Irregular Network (TIN) for discontinuous 

terrain surface and easier computation is developed by Vosselman, 2000; Axelsson, 2000; 

Vosselman and Mass, 2001; and Haugerud and Harding, 2001. 

 

         Progressive densification filters: Algorithms in progressive densification class reconstruct 

the grounds points progressively (Sohn and Dowman, 2002). Axelsson (2000) developed a 

Triangular Irregular Network (TIN) algorithm to generate the DTM. In this method, the lowest 

elevation points in large grid cells are assigned as the ground point. Next, the ground points are 

triangulated to construct a reference surface. Then, by investigating through the TIN for each 

triangle, an additional ground point is determined. This process will continue till no more points 

can be added to the TIN.     

 

     Segmentation-based filters: Segmentation is defined as collecting and clustering points with 

similar attributes (Nardinocchi et al. 2003; Jacobsen and Lohmann, 2003; Tóvári and Pfeifer, 

2005; Sithole, 2005). This method is suitable for analyzing of LiDAR PCD rather than individual 

points. In Segmentation algorithms, the whole homogeneous area is classified into segments 

based on the local geometry of points such as slope, height or twist in a neighborhood instead of 

single points in point cloud data set. Each point in the same segment belongs to the same class. 

Briefly, this algorithm uses the geometric information to classify points (Filin and Pfeifer, 2006). 

 

Other algorithms: Sithole and Vosselman; Pfeifer and Mandlburger, 2009; and Nurunnabi 

et al. 2016; have shown that many of above-mentioned methods work well in flat areas with less 

vegetation and small constructions but they don't perform efficiently in complex environments, 

steep sloped terrain, dense vegetation, ramp, sharp edges and multiple buildings. To resolve 

these issues in boundaries and areas with a high twist, the Locally Weighted Regression (LWR) 
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with many suitable statistical properties has been proposed by Cleveland and Loader (1996). 

Parametric filtering models may result in misclassification in steep slopes. Hence, the local 

weighting is more efficient. Nurunnabi et al. (2016) proposed a new algorithm based on robust 

LWR (RLWR). In this algorithm for each point, a locally weighted interpolation function has 

been used. Many algorithms for ground filtering to generate DTM have been explored; an 

overview of some of them is given in Table 2.1.     

All the above-mentioned studies applied airborne LiDAR for the generation of DTM in a 

forest area. For the first time, the present study investigates the potentials of terrestrial LiDAR 

remote sensing for DTM extraction in a dense forest where the ground points are barely visible. In 

such conditions, quick and simple generation of DTM is a challenging task. A new algorithm is 

developed here for automatic extraction of DTM based on the correction of the local slopes. The 

algorithm mathematical tools are different from the above-mentioned techniques. This simple 

algorithm uses median filters and Angle Score (AS). The AS parameter is calculated based on the 

variations in DTM local surface gradients for automatic monitoring of the performance of 

median filter and finding the optimum filter order. In this chapter, experimental design and 

methodology are presented in section 2. The result and discussion are described in section 3 and 

4, respectively. The conclusion is drawn as section 5.   

   

2.2 Materials and Methods 

 

2.2.1 Study Area and Data Explanation 

The study area in this project is a plot with 50 m × 50 m in size and located in northwestern 

Alberta, Canada (Latitude: 56.744223◦ N; Longitude: -118.344673◦ W; Altitude: 871 m) at the 

Peace River Environmental Monitoring Super Site (PR-EMSS) which consist of an old-growth 

stand of Trembling Aspen (Populus tremuloides) with a broad leaf deciduous canopy (Figure 

2.1). The supersite is situated in the joint industry-research forestry region. The PCD was 

collected using a ground-based LiDAR -Leica Scan Station C10- and the scanning process was 

performed in summer and fall seasons of 2014 to 2016. The characteristics of the Leica Scan 

Station C10 are summarized in Table 2.2.  
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2.2.2 Experimental Design and Methodology 

The schematic field setup is depicted in Figure 2.2. The rectangular plot study was scanned 

from four locations in order to find the comprehensive PCD. Meanwhile, five targets were set as 

reference points to align the four scans. The target locations were made observable in most of the 

scans. Scanner locations are indicated alphabetically. T1 to T5 shows the location of reference 

targets with white and blue squares. In this study, the distance between stations was 25 m and the 

distance between reference targets and stations was 11 m. The reference targets for co-

registration are depicted in Figure 2.3. To have a comprehensive and integrated point cloud in 

the co-registering process, at least three reference targets are required. All reference targets 

should be observable from all scan stations. During the installation of reference targets, steep 

relief was avoided to minimize the occlusion effect by understory. In this plan, north is shown. 

All four scans from the plot study were co-registered using the standing targets. The collection, 

registration, and processing of PCD were performed in the Cyclone 8.1 software and MATLAB 

Software (MATLAB R2016b).  

The Leica Scan Station C10 scanner emits laser beam pulses at 532 nm (green laser) and 

captures high resolution of point cloud data in 360
o
 coverage of the environment. It has high 

intensity and its effective range varies from 300 m to 134 m at 90% and 18% albedo respectively 

(Leica guide). The Leica C10 is provided with a dual-axis compensator to correct the horizontal 

angle and balance the device when the instrument is not leveled (Cothrun, 1995). In addition, 

Leica Scan Station C10 is equipped with a high-resolution camera which provides an RGB 

image with point cloud data.  

Final accuracy of point cloud data can be affected by several parameters such as operation, 

co-registration, and geo-referencing (GSA_BIM Guide, 2009). By co-registering, a multiple 

LiDAR scanning data is transferred into a single PCD with a reference coordinate system. In this 

process, having a sufficient number of matched points which are arranged in pairs is necessary to 

have the high precision of co-registration.  

 

2.2.3 Co-Registration  

There are two approaches to the co-registration process: with and without reference targets. 

The target base approach is the most popular method as it is easy to use and more accurate than 
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the target-free approach (GSA_BIM Guide, 2009). The target-free approach is utilized when 

reference targets are not available. In this method, natural features are used in a point cloud for 

co-registering (Jaw and Chuang, 2008). For target-based co-registration, blue and white square 

planar targets have been used to match the points.  

 

2.2.4 Data Preprocessing  

Before any data processing, all noisy data in the point cloud such as sun beam noise and 

any devices in the field were filtered manually in the Cyclone software to have the better quality 

of PCD. Figure 2.4 shows some samples of these interrupting noise and removal of them in 

Cyclone. After filtering the noisy points, an algorithm is implemented in MATLAB to create 

DTM.  

 

2.2.5 DTM Generation and Algorithm 

In the present study, an algorithm was developed in MATLAB to create the DTM. The 

algorithm flowchart is shown in Figure 2.5. The initial step is to make a template for data 

processing in PCD by generating a mesh grid network with arbitrary step size (∆) in the x-y 

plane. Then, in each grid, the point with the lowest elevation (z) is detected and assumed as a 

draft ground point. The draft collection of ground points needs to be further processed since it 

still contains many points from foliage which result in spike noise in its profile. For the first 

time, the proposed algorithm applies median filters for the effective elimination of spike noise 

and creating DTM. The median filter is a nonlinear digital filter (Roncella et al. 1991).This filter 

goes through the draft ground point collection one-by-one using a square matrix window of size 

[M×M] and replaces each data point with the median of neighbors inside the window.  

The algorithm starts with M = 3. DTM is analyzed and M increases to the next odd number 

(M = 5). To study the effect of filter order, the algorithm is applied to the PCD from an area of 

41×41 𝑚2 with a grid spacing of 0.2×0.2 m
2
. Spike noise around the boundaries of DTM is the 

most difficult one to remove and is usually handled by increasing the filter order. For M = 3, M = 

5, M = 7, and M = 27, boundary spike noise is effectively removed. 
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In order to find the optimum M, the algorithm calculates an Angle Score (AS) for DTM at 

each M, in addition to visual inspection of the DTM profile. AS is defined as the maximum DTM 

profile slope angle among all pixels. The pixel slope angle is calculated by the derivative of 

DTM profile in main planes of x-z and y-z. Hence, the gradient of DTM has to be calculated 

along both x and y axes as in equation (1), (2) respectively: 

 

𝐴𝑆𝑀,𝑦 =
𝜕(𝐷𝑇𝑀𝑀)

𝜕𝑦
                                      (1) 

         

𝐴𝑆𝑀,𝑥 =
𝜕(𝐷𝑇𝑀𝑀)

𝜕𝑥
                                       (2) 

 

Then, for the whole DTM, a single AS is defined as equation (3): 

 

                             𝐴𝑆𝑀 = arctan ( max {𝐴𝑆𝑀,𝑥, 𝐴𝑆𝑀,𝑦} )          (3)       

     

If the variation of AS is smaller than 1° when M increases by two units, the optimum M is found 

and the algorithm stops. This is verified by equation (4): 

 

𝑖𝑓         |𝐴𝑆𝑀 − 𝐴𝑆𝑀−2| < 1° → 𝑀 𝑖𝑠 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑎𝑛𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑓𝑙𝑜𝑤𝑐ℎ𝑎𝑟𝑡 𝑠𝑡𝑜𝑝𝑠        (4) 

 

 2.2.6 Accuracy Assessment 

To evaluate the performance of filtering method and examine the errors, both qualitative 

and quantitative approaches have been used (Zhang, 2003; Serifoglu et al. 2016). In the 

qualitative method, the errors are checked by comparing the distinct features before and after 

filtering. It is not practical to compare all filtered and unfiltered points for finding the errors. 

Hence, Zhang et al. (2003), and Zhang and Whitman (2005) suggest a random selection of a 

sample of data sets for the test. To examine the errors in a qualitative approach, a random sample 

of test points is chosen and then two sets of data including filtered and non-filtered are compared 

to see if the points are correctly separated (Zhang and Whitman 2005; Serifoglu et al. 2016).  
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In the qualitative approach in this study, a sample of test points with a predefined radius of 

sample area with an obvious feature such as tree trunk or device box is selected. Since the 

LiDAR scanner in this study (Leica C10) is capturing the points in high density, a sample test 

point with 1-meter radius is selected in this qualitative approach.  

Quantitative errors are categorized to omission (type Ι) and commission (type ΙΙ) errors. 

Type Ι (omission error) refers to ground points which have been removed mistakenly and type ΙΙ 

(commission error) relates to non-ground points that classify as ground points (Zhang and 

Whitman 2005; Serifoglu et al. 2016). In the quantitative evaluation, the method proposed by 

Zhang et al. (2003) and Zhang and Whitman (2005) was used to examine the ground filtering 

results. Three sample sets of points, each including different points with high, medium and low 

density and with the area of 1 m
2 

are subset randomly from the whole point cloud. In sample set 

1, the slope is heavily covered by understory vegetation. Sample set 2 is covered by low 

vegetation and located in a flat area. Sample set 3 is located in steep slope with distinguishable 

big tree trunks and low understory vegetation. To evaluate the accuracy of test points, the 

method proposed by Sithole and Vosselman (2004) is used here. In this method, two types of 

error are proposed. Error type Ι or omission error and error type ΙΙ or commission error as below:  

 

                                          Error type Ι = 
𝑎

𝐺𝑃
                                        (5) 

                                          Error type ΙΙ = 
𝑏

𝑁𝐺𝑃
                                     (6) 

                               

where a stands for the number of ground points separated as non-ground (omission error) and b 

stands for the number of non-ground points classified as ground (commission error). GP shows 

the total number of ground points and NGP shows the total number of non-ground points 

(Montealegre et al. 2015). 

In previous studies, most filters focus on minimizing type II errors (as shown in Table 2.3), 

rather than type I errors because in type I errors, many valid ground points are removed, while 

type II errors attempt to remove as many object points as possible, even objects that are small 

and close to the ground by choosing the proper filter parameters (Elmqvist, 2002; Roggero, 

2001; Sohn, and Dowman, 2002; Wack and Wimmer, 2002; Brovelli et al. 2002; Sithole and 

Vosselman, 2004; Pfeifer and Mandlburger, 2009).  
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2.3 Results 

 

The result of co-registration precision for each pair of stations is shown in Table 2.4.  From 

each station, at least three reference targets were observable. The Root Mean Square Error 

(RMSE) ranges from 0 to 3 mm among stations for the co-registering process. The maximum 

RMSE (3 mm) happened between station 1 and 3 using T2 as a reference target. It was because 

of the larger distance between station 3 and T2 (13 m). LiDAR PCD in this study is made of 

50,000,000 points (Figure 2.6 a). Figure 2.6 shows the color-coded PCD. Figure 2.6 b helps to 

separate some above ground objects with arbitrary elevation. Figure 2.6 c shows a portion of 

PCD with color-coded intensity and Figure 2.6 d is the real color image scan.  

To study the effect of filter order, the algorithm is applied to the PCD from an area of 

41×41 𝑚2 with a grid spacing of 0.2×0.2 m
2
. Figure 2.7 shows the 2D and 3D view of the DTM 

without median filtering which includes strong spike noise all over the profile. Figure 2.8 shows 

how the noise is minimized by applying the median filter, resulting in a smooth profile. Spike 

noise around the boundaries of DTM is the most difficult one to remove and is usually handled 

by increasing the filter order. For M = 3, M = 5, M = 7, M = 13, M = 17, and M = 27, boundary 

spike noise is effectively removed, as depicted in Figure 2.8.  

Mongus et al. (2012) demonstrated that the separation of vegetation from their neighboring 

ground points on the steep slopes is limited as the vegetation points are not necessarily higher 

than ground points. The spike noise in Figure 2.7 demonstrates high density of understory 

vegetation or steep slopes that cover the ground points. To remove these types of noise, applying 

a median filter is necessary. Comparing Figure 2.7 and Figure 2.8 shows how applying different 

median filter removes noise in generated DTM at the edges where there is not enough data to 

interpolate or where the ground points are covered by the vegetation objects such as fallen dead 

trunks. However, for each ∆ value, M has to be adjusted. To demonstrate this effect, for a test 

area of 41×41 m
2
 and for constant M = 7, DTM is acquired for ∆ = 0.2 and 0.5 m (Figure 2.9). In 

Figure 2.10 a, it is observed that M = 7 is not enough for a resolution of 0.2 m since there are 

some large spikes and the elevation is not uniform in many spots. However, the resolution of 0.5 

m has achieved a better color uniformity (Figure 2.10b) and the effective removal of spike noise 

in the graph for the resolution of 0.5 m is observed. 
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Figure 2.11 shows Angle Score (AS) as a function of the order of the median filter (M) in 

fall and summer seasons. As can be seen, AS decreases as M increases. As Figure 2.11 shows, the 

AS of DTM has very small variations for M >27 in both fall and summer seasons. Such trend can 

also be observed in in Figure 2.12. In Figure 2.11 the red dashed circle highlights the change in 

the trend of AS for M ≥ 27. Since AS doesn’t vary much for M > 27, therefore it can be 

concluded the best median filter for creating DTM with the grid size of 0.2 m is of order 27 

(Figure 2.13). With M = 27 and ∆ = 0.2, the 3D DTM of an m × m land area is generated in both 

fall and summer season and depicted in Figure 2.14.   

 

2.3.1 Qualitative Evaluation Results 

The non-ground objects in this study area include tree trunks, fallen trees and some devices 

such as Wireless Sensor Network (WSN) nodes, soil flux box, and LiDAR Box. The result of the 

qualitative evaluation is shown in Figure 2.15. Figure 2.15a shows the raw data with high 

density. As it can be seen in Figure 2.15 c, the ground points (yellow dots) are separated very 

well from non-ground points such as the tree trunk and the red box.  

 

2.3.2 Quantitative Evaluation Results 

To analyze the commission error, several combinations of land features including point 

density, cover type, and terrain slope were applied. The commission error of the proposed 

algorithm is summarized in Table 2.5. The point density for sample sets varies from 33,849 

points/m
2

 to 14,697 points/m
2 

from low to high density. The total commission error (type ΙΙ) is 

0.07%. To analyze the effects of the point density, cover type, and terrain slope parameters on 

error rates, three comparative experiments, which are depicted in Figure 2.16, were performed. 

The circles in this figure indicate some instances of commission error. Based on equation (1) the 

numbers of non-ground points (b in equation 1) for sample sets with high, medium and low 

density are 11, 4 and 56 respectively. 

Point Density: The effect of the changes in point density on the performance of the 

proposed algorithm was evaluated quantitatively (Table 2.5). Theoretically, if the LiDAR 

resolution decreases, separating the ground surface from the objects is more difficult (Sithole and 
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Vosselman, 2004). Point density evaluation results indicate that the commission error decreased 

with increasing point density from 0.171% to 0.009%. The results in Table 2.5 indicate that the 

set area with highest point density (sample set 1) had the lowest commission error of 0.009%.   

Cover Types: We also compared the performance of the proposed algorithm within each of 

the test areas. As can be observed in Figure 2.16 and the results from Table 2.5, the performance 

of the proposed filter was better in the area covered with grasses, dead tree trunks, and fallen 

branches than those covered with single trees in terms of commission error. However, our results 

do not allow us to draw firm conclusions on the effect of the cover type on the algorithm 

performance. 

Terrain Slope: The influence of the terrain slope was assessed using three classes: smooth 

slopes ranging from 0 to 5∘, medium slopes from 5 to 20∘, and steep slopes higher than 20∘ 

(Figure 2.16). Point`s height differences is a key assumption to separate the ground surface from 

objects. Therefore, points above their neighbors are supposed to belong to objects, but this 

assumption becomes difficult in steep slopes (Sithole and Vosselman, 2004). Hence, most 

filtering methods had difficulties on steep slope higher than 15
◦
 and their error rates increased 

with the terrain complexity (Kraus and Pfeifer, 1998; Axelsson, 2000; Evans and Hudak, 2007; 

Vosselman, 2000; Zhang et al. 2003; Streutker and Glenn, 2006). The commission error in this 

study significantly increased with the change in slope. In summary, it can be concluded that the 

steep slopes with low point density result in the largest error (sample set 3). 

 

2.4 Discussion 

 

LiDAR has been shown as a powerful and cost-effective tool for data collection with the 

purpose of DTM generation in forest area (Vosselman and Maas, 2010). Every forest LiDAR 

scan results in millions of points representing leaves, branches, trunks, and the ground surface. 

DTM generation necessitates classification of the points and extraction of ground surface points 

from the whole PCD. This study tried to develop a new algorithm for the classification of 

discrete return LiDAR PCD into two classes of ground and non-ground points, in a Boreal forest 

environment. In this study, error associated with LiDAR classification on different data contexts, 

such as point density, terrain slope, shadowing effect, and land cover type of LiDAR data, was 
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assessed. Furthermore, the effect of two parameters including grid size (∆) and the order of 

median filter (M) on the effectiveness of the proposed algorithm is discussed in both fall and 

summer seasons. The absence of severe biases in classified ground returns (with total 

commission error of 0.07%) suggests that the proposed algorithm is an effective method to 

generate DTM in this environment with ground-based LiDAR.   

LiDAR sampling resolution is inversely proportional to the distance between the scan 

station and the objects. Hence, further objects are sampled with lower point density. For the 

special application of DTM generation in large land extents, this results in reduced number of 

ground points on the border areas of each scan and reduces the accuracy of interpolation and 

surface fitting. The corners of the generated DTM in Figure 2.12 and Figure 2.14 depict this 

effect. It implies that even median filtering can’t eliminate this effect completely. As a future 

research, to address this problem, several reference targets can be added to the scan plot in the 

maximum reachable distance by LiDAR. Since reference targets are highly reflective, they add 

reference points to PCD boundaries which are advantageous in surface fitting and removing the 

border spike noise. 

Terrain slope strongly affects the accuracy and quality of the generated DTM. Zhang and 

Lin (2013) pointed out that the ground points in steep slopes may be classified as plants as 

located at the same height, increasing commission errors. Meng et al. (2010) demonstrated that 

methods based on the slope may mislabel ground points as non-ground in areas with slopes 

larger than the maximum ground slope threshold. On this topic, the study area, with various 

situations, from flat areas to steep ones, is challenging to process because of the difficulty in 

choosing suitable slope and elevation thresholds. In this study, implementation of the proposed 

algorithm for steep slopes resulted in the higher error. This is shown in Table 2.5 and Figure 2.16 

where the commission error in the steep slope is much higher than the flat area.     

Vegetation density determines the ratio of ground to plants returns (Evans and Hudak, 

2007). Evans and Hudak (2007) demonstrated that the effect of point density on filter 

performance is also influenced by vegetation types such as grasses, shrubs, or trees. The point 

density is not only dependent on the amount of emitted laser pulses but also by the existence or 

lack of vegetation. Meng et al. (2010) showed that the commission error increases due to the 

presence of attached and low objects such as small seedlings, stumps, and shrubs, which produce 

the classification of points as the ground surface. Evans and Hudak (2007) showed that their 
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filtering algorithm had the best performance in the low vegetation condition. However, in this 

regard, our results demonstrate that the effects of the vegetation are most likely minor compared 

to the errors introduced by the complexity of the scene, such as low point density on steep 

slopes. 

The shadowing effect is another factor that causes the ground points to be missed behind or 

underneath the trees and understory. To minimize the shadowing effect, scans are performed on 

four different stations. Nevertheless, shadowing effect is still present and reduces DTM 

accuracy. Besides, having a discrete return LiDAR in this study (Leica C10) makes the scans 

more prone to shadowing. To avoid this, other studies apply multi-wavelength LiDAR (Morsdorf 

et al. 2009; (Sheng et al. 2003). 

        The proposed algorithm developed in this study successfully generated DTM from LiDAR 

PCD in a forest area using median filtering. The quality of DTM is controlled by two parameters 

in the algorithm which is the mesh grid size (∆) and the order of median filter (M). ∆ represents 

the DTM resolution which can be as small as the spatial resolution of LiDAR scan. Due to the 

high point density of LiDAR PCD, ∆ can be reduced down to several centimeters. ∆ is usually 

selected based on the application in demand. However, it should be noted that small ∆ can result 

in longer processing time even for limited land areas. The proposed algorithm has been 

compared for ∆ of 0.2 m and 0.5 m in Figure 2.9 with a fixed value of M. As can be observed, 

larger ∆ results in lower spike noise. Regardless of the value selected for ∆, a certain level of 

spike noise will be present in the generated DTM.  

On the other hand, M is an odd integer larger than 2 which defines the size of median filter 

operation window. The median filter is applied for the elimination of the spike noise from the 

initially extracted PCD. As Figure 2.7 shows, the unfiltered 2D and 3D DTM profile have a high 

level of spike noise. In the algorithm, a parameter is defined for quantifying and comparing the 

noise level as Angle Score (AS). Smaller ∆ results in stronger spikes and higher Angle Score. 

Higher M values are more effective in removal of spike noise. Figure 2.8 demonstrates the 2D 

DTM for the unfiltered data in fall for M values of 3, 5, 7, and 27 and in summer for M values of 

3, 13, 17, and 27. The strong spike noise in unfiltered data is gradually reduced as the order of 

median filter increases from 3, to 5, 7, 13, and 17 and finally removed for a M value of 27. 

However, higher M values require a much longer time to run the algorithm. Also, too large 

values of M may flatten the DTM by mistakenly removing all slopes. Hence, an optimum M 

http://www.sciencedirect.com/science/article/pii/S003442570900176X#bib30
http://www.sciencedirect.com/science/article/pii/S003442570900176X#bib30
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should be found for the required ∆, based on the available processing systems. With a regular 

desktop computer, for the study plot in this chapter, the optimum M value was 27. Finding this 

optimum M was of critical value for DTM generation. To find it, AS was calculated in DTM for a 

wide range of M, with a fixed ∆. For M values larger than 27, there is ignorable variation in AS 

(Figure 2.11). Figures 2.8, 2.11, 2.12, 2.13, and 2.14 show that the performance of the algorithm 

does not change in different seasons. The slight difference in 3D and 2D DTM between the 

profiles of summer and fall is because the scan stations were not exactly in the same position for 

summer and fall.     

  

2.5 Conclusion 

 

An algorithm based on median filtering and surface fitting was offered for effective 

automatic generation of DTM from ground-based LiDAR point cloud of a boreal forest. To 

assess the algorithm, qualitative and quantitative error analyses were carried out. The accuracy 

analysis of filtering results from the random sample datasets showed that only 0.07% errors were 

committed by the filter algorithm. Also, the errors associated with LiDAR classification on 

different data contexts, such as point density, terrain slope, shadowing effect, and land cover type 

of LiDAR data, were assessed. Furthermore, the performance of the proposed algorithm was 

tested for various design parameters such as the order of median filter and mesh grid size. The 

algorithm worked very well in the low complexity of land features such as smooth slopes, light 

vegetation and high density of visible ground points. In conclusion, to complement the results 

shown in this study, it would be useful to devote future research on the analysis of the error 

distribution in DTM generation, as this error can be transmitted consequently into derived 

products including Canopy Height Models (CHMs), hydrological indices, vegetation biomass, 

Leaf Area Index (LAI), and carbon storage (Fisher and Tate, 2006; Pirotti and Tarolli, 2010, 

Farid et al. 2008; Gonzalez et al. 2010). Also, for modeling of LiDAR data, development of 

more accurate algorithms and methods is still necessary. 
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Tables Legends 

 

Table 2.1 Overview of some algorithms to generate DTM 

 

Table 2.2 Leica Scan Station C10 Specifications. 

 

Table 2.3 Quantitative comparisons of filters for type II and type I errors. 

 

Table 2.4 Results of co-registration for four stations. 

 

Table 2.5 Effect of point density, land cover, and terrain slope on filter performance. 
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Figures Legends 

 

Figure 2.1 (a) Research site and field survey map location (b) terrestrial LiDAR observation at 

summer and (c) fall season. 

 

Figure 2.2 Schematic of field setup in the study area in Peace River. 

 

Figure 2.3 Reference target for co-registering of scanning data; (a) in field implementation (b) 

reference target after scanning (c) the coordinate of the central point of reference target is 

recognizable in the point cloud.  

  

Figure 2.4 Removal of noise points for DTM model; (a) Tower (b) Sun beams in the field (c) 

Box and other devices in the field. 

 

Figure 2.5 Summary of the processing and analysis steps of the proposed approach to generate 

DTM using LiDAR data.   

 

Figure 2.6 Point cloud data schematic; (a) by perspective view (b) with elevation information 

(interval: 1m) (c) with intensity information (d) with color information from the scanner. 

 

Figure 2.7 Schematic view of the DTM without median filtering; (a) 2D view (b) 3D view of 

unfiltered DTM. 

 

Figure 2.8 2D view of DTM by applying a median filter of different orders; (a) fall season for M 

= 3, 5, 7, and 27 (b) summer season for M = 3, 13, 17, and 27. 

 

Figure 2.9 2D view of DTM acquired for ∆ = 0.2 m and ∆ = 0.5 of constant M = 7 for the test 

area. 

 

Figure 2.10 3D view of the DTM for the test area of 41×41 m
2
 in fall season for resolution of (a) 

0.2 m and M = 7 (b) 0.5 m and M = 7.  
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Figure 2.11 Relationship between the order of the median filter (M) and Angle Score (AS) to find 

the optimum median number in; (a) fall season (b) summer season. 

 

Figure 2.12 2D view of DTM without filtering and by applying a median filter of different 

orders; (a) fall season for M = 27, 29, 31, and 33 (b) summer season for M = 27, 29, and 31. 

 

Figure 2.13 2D view of Unfiltered DTM and DTM with applying a median filter of M = 27 for ∆ 

= 0.2 m in; (a) fall season (b) summer season. 

 

Figure 2.14 3D view of DTM by applying a median filter of M = 27 for ∆ = 0.2 m in; (a) fall 

season (b) summer season. 

 

Figure 2.15 Qualitative evaluation for separating ground points by the proposed algorithm; (a) 

raw data with high density in a sample set (b) ground points (yellow dots) and non-ground points 

(c) separated ground points.  

 

Figure 2.16 Commission errors in; (a) high (b) medium (c) low density in 3 sample sets. The red 

circles in this figure indicate some of the commission errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

Table 2.1 Overview of some algorithms to generate DTM 

Algorithm description Authors 

Linear Prediction Kraus and Mikhail, 1972 

Hierarchical Robust Interpolation Sithole and Vosselman, 2004 

Maximum Local Slope (MLS) Filter Zhang and Whitman, 2005 

Skewness Balancing  Bartels et al. 2006 

Elevation Threshold with Expanding Window 

(ETEW) Filter 

Whitman et al. 2003 

Iterative Progressive Morphological Filter (PM) Zhang et al. 2003 

Spline Interpolation Brovelli et al. 2002 

Hierarchical Modified Block Minimum Wack and Wimmer, 2002 

Progressive TIN densification Sohn and Dowman, 2002 
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Table 2.2 Leica Scan Station C10 Specifications. 

Scan Station C10 Specifications 

General 

Instrument type 
Compact, pulsed, dual-axis compensated, very high-speed laser 

scanner 

Camera 
Auto-adjusting integrated high-resolution digital camera with 

zoom video 

System Performance 

Accuracy of single measurement  

 

Position*               6 mm 

Distance*              4 mm 

Angle (horizontal/vertical) 60 µrad / 60 µrad (12” / 12”) 

Laser Scanning System 

Type Pulsed; proprietary microchip 

Color Green, wavelength = 532 nm visible 

Laser Class 3R (IEC 60825-1) 

Range 300 m @ 90%; 134 m @ 18% albedo (minimum range 0.1 m) 

Scan rate Up to 50,000 points/sec, maximum instantaneous rate 

Scan resolution 

Spot size 

 

Point spacing 

 

From 0 – 50 m: 4.5 mm (FWHH-based); 7 mm (Gaussian-

based) 

Fully selectable horizontal and vertical; <1 mm minimum 

spacing, through full range; single point dwell capacity 

Field-of-View 

Horizontal  

Vertical  

 

360° (maximum) 

 270° (maximum) 

Environmental 

Operating temp. 0° C to 40° C / 32° F to 104° F 

Storage temp. -25° C to +65° C / -13° F to 149° F 

Lighting Fully operational between bright sunlight and complete darkness 

Physical 

Scanner  

Dimensions (D x W x H)  

Weight 

 

238 mm x 358 mm x 395 mm / 9.4” x 14.1” x 15.6” 13 kg / 28.7 

lbs, nominal (w/o batteries) 

* At 1 m – 50 m range, one sigma 
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Table 2.3 Quantitative comparisons of filters for type II and type I errors. 

Participant, 

Year 

Elmqvist 

(2002) 

Sohn 

(2002) 

Roggero 

(2001) 

Brovelli 

(2002) 

Wack 

(2002) 

Sithole 

(2004) 

Pfeifer 

(2008) 

type II error % 2 12 1 2 2 1 3 

type I error % 21 6 33 31 10 29 8 
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Table 2.4 Results of co-registration for four stations. 

Constraint ID Scan World 

number 

Scan World 

number 

Error 

T2 Station 1 Station 3 0.003 m 

T4 Station 1 Station 3 0.002 m 

T1 Station 1 Station 4 0.002 m 

T2 Station 1 Station 4 0.002 m 

T2 Station 2 Station 3 0.002 m 

T1 Station 1 Station 3 0.002 m 

T2 Station 1 Station 2 0.002 m 

T4 Station 1 Station 2 0.001 m 

T2 Station 2 Station 4 0.001 m 

T1 Station 1 Station 2 0.001 m 

T4 Station 2 Station 3 0.001 m 

T1 Station 2 Station 4 0.001 m 

T1 Station 2 Station 3 0.001 m 

T3 Station 1 Station 2 0.001 m 

T3 Station 1 Station 4 0.001 m 

T3 Station 2 Station 3 0.001 m 

T3 Station 1 Station 3 0.001 m 

T1 Station 3 Station 4 0.001 m 

T3 Station 2 Station 4 0.001 m 

T2 Station 3 Station 4 0.001 m 

T3 Station 3 Station 4 0.000 m 
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Table 2.5 Effect of point density, land cover, and terrain slope on filter performance. 

Sample 

Groups 

Level of Point 

Density 
Land Cover 

Terrain 

Slope 

Commission 

Error % 

Set 1 High 
Dense 

understory 
Smooth slope 0.009 

Set 2 Medium 
Grass and open 

area 
Flat 0.028 

Set 3 Low 
Single trees 

and open area 
Steep slope 0. 171 
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                                                                             (a) 

 

                                  

                                                 (b)                                                 (c) 

 

Figure 2.1 (a) Research site and field survey map location (b) terrestrial LiDAR observation at 

summer and (c) fall season. 
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Figure 2.2 Schematic of field setup in the study area in Peace River. 
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                                           (a)                                    (b)                             (c) 

 

Figure 2.3 Reference target for co-registering of scanning data; (a) in field implementation (b) 

reference target after scanning (c) the coordinate of the central point of reference target is 

recognizable in the point cloud. 
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                                                                           (a) 

 

                           

                                                                           (b)       

     

                 

                                                                           (c) 

 

Figure 2.4 Removal of noise points for DTM model; (a) Tower (b) Sun beams in the field (c) 

Box and other devices in the field. 
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Figure 2.5 Summary of the processing and analysis steps of the proposed approach to generate 

DTM using LiDAR data.   

Importing data in Cyclone 8.1 software

Collecting data in 3D format (x, y, z, I) by 

ground LiDAR

Remove noise from point cloud and

 Co-registering data

Extracting data in ASCII format 

from Cyclone

Read ASCII files into MATLAB

Generate a uniform rectangular mesh grid 

network in x-y plane using the maximum 

and minimum (domain) of the x/y 

coordinates of Point Cloud Data (PCD)

Examine each mesh grid with PCD and find 

all data points related to it

Detect the point with minimum z 

and add it to DTM

To get rid of spike noise, apply median 

filter with order M (starting 3) to the DTM

Draw DTM surface to inspect spike noise

Increase M until noise level is acceptable
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 (a) 

 

 (b) 

 

(c) 

 

(d) 

 

Figure 2.6 Point cloud data schematic; (a) by perspective view (b) with elevation information 

(interval: 1m) (c) with intensity information (d) with color information from the scanner. 
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 (a) 

 

 

 

 

 

(b) 

 

 

Figure 2.7 Schematic view of the DTM without median filtering; (a) 2D view (b) 3D view of 

unfiltered DTM. 
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 (a) 

 

 

 

 

 

(b) 

 

 

Figure 2.8 2D view of DTM by applying a median filter of different orders; (a) fall season for M 

= 3, 5, 7, and 27 (b) summer season for M = 3, 13, 17, and 27. 
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Figure 2.9 2D view of DTM acquired for ∆ = 0.2 m and ∆ = 0.5 of constant M = 7 for the test 

area. 
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(a) 

 

 

 

 

 

(b) 

 

 

Figure 2.10 3D view of the DTM for the test area of 41×41 m
2
 in fall season for resolution of (a) 

0.2 m and M = 7 (b) 0.5 m and M = 7. 
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(a) 

 

 

 

(b) 

 

 

Figure 2.11 Relationship between the order of the median filter (M) and Angle Score (AS) to find 

the optimum median number in; (a) fall season (b) summer season. 
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 (a) 

 

 

 

 

 

(b) 

 

 

Figure 2.12 2D view of DTM without filtering and by applying a median filter of different 

orders; (a) fall season for M = 27, 29, 31, and 33 (b) summer season for M = 27, 29, and 31. 
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(a) 

 

 

 

 

 

(b) 

 

 

Figure 2.13 2D view of Unfiltered DTM and DTM with applying a median filter of M = 27 for ∆ 

= 0.2 m in; (a) fall season (b) summer season. 
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(a) 

 

 

 

 

 

 

 

(b) 

 

 

Figure 2.14 3D view of DTM by applying a median filter of M = 27 for ∆ = 0.2 m in; (a) fall 

season (b) summer season. 
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(a) 

 

(b)                                                      (c) 

 

Figure 2.15 Qualitative evaluation for separating ground points by the proposed algorithm; (a) 

raw data with high density in a sample set (b) ground points (yellow dots) and non-ground points 

(c) separated ground points. 
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   (a)                                            

                                               

   (b)                                             

 

(c) 

 

Figure 2.16 Commission errors in; (a) high (b) medium (c) low density in 3 sample sets. The red 

circles in this figure indicate some of the commission errors. 
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CHAPTER 3 

 

Automatic Separation of Photosynthetic and Non-Photosynthetic Components in a Point 

Cloud Data from a Boreal Forest Canopy 

 

3.1 Introduction 

 

Accurate assessment of the canopy structure is required for sustainable forest management, 

modeling of ecosystem functions, global level ecosystem interactions, and the interactions 

between the land surface and the atmosphere (Sellers et al. 1997; Béland et al. 2011). Among the 

canopy structure parameters, the green biomass and the leaf area index (LAI) are two important 

parameters which define the effective received sunlight and the photosynthesis process. Hence, 

both parameters depend on the configuration and the quantity of the leaves (Parker, 1995).  

Remote sensing technologies offer a powerful tool for analysis of the canopy structure and 

calculation of its parameters. Among various remote sensing systems, Light Detection and 

Ranging (LiDAR) offers an advanced high-resolution platform which provides a 3D Point Cloud 

Data (PCD). The LiDAR PCD is an inhomogeneous mixture of all forest features including 

wood and foliage which has been widely used for extraction of green leaves (Omasa et al. 2007; 

Hosoi and Omasa, 2006, 2009; Hopkinson et al. 2013; Greaves et al. 2015; Lin and Herold, 

2016; Lovell et al. 2003; Morsdorf et al. 2006; Zheng et al. 2013, 2016; Ma et al. 2016a, b). For 

this purpose, the points belonging to the leaves have to be identified from the whole PCD, 

initially. This is a challenging task since a single tree may include millions of points representing 

foliage and wood which are irregularly scattered and intermixed. Some of the studies avoid the 

complexity associated with separation of foliage points and calculate the Plant Area Index (PAI) 

which includes both the leaf area and the wood area, instead of pure LAI (Takeda et al. 2008; 

Olivas et al. 2013; Pueschel et al. 2014). Also, some of the studies calculate the total biomass 

instead of green biomass (Askne et al. 2017; Margolis et al. 2015). 

There are three techniques for separation of photosynthetic and non-photosynthetic 

materials in a tree PCD. In the first technique, the points are imported into a 3D demonstration 

software, and the PCD features are separated manually by the operator using visual color-based 
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recognition and based on geometrical distribution of points (Watt et al. 2005; Hosoi et al. 2010; 

Holopainen et al. 2011; Hauglin et al. 2013). This method is time-consuming and prone to user 

error since one needs to deal with millions of scattered points forming various geometries. This 

method has made the woody materials to be a key error source in estimating LAI (Whitford et al. 

1995; Chen et al. 1997; Liu and Jin, 2017). Hosoi and Omasa (2007) showed that woody 

materials could contribute to LAI estimation errors from 4.2% to 32.7% depending on tree 

canopies.  Clawges et al. (2007) found that the ratio of wooden material of a tree to the whole 

tree area ranged from 24% to 58%. Moorthy et al. (2008) demonstrated that considering woody 

material results in an improvement of initial PAI estimation with a root mean square error 

(RMSE) of 1.13 to LAI retrievals with a RMSE of 0.68; hence, the accuracy of LAI assessment 

could be highly improved if the woody material could be separated completely from the foliage.  

Hence, other techniques are developed to perform this task automatically. The second 

technique utilizes statistical tools such as eigenvalues, conditional probability functions and 

Gaussian mixture models for the identification of leaf geometry (Hebert and Vandapel 2003; 

Vandapel et al. 2004; Lalonde et al. 2006; Ma et al. 2016). The leaf geometry technique is only 

based on geometry identification which is different for wood and leaf features. As a simple 

intuitive alternative, the third technique based on “intensity” parameter has recently been 

proposed (Eitel et al. 2009, 2010, 2011, 2014, Donoghue et al. 2007; Beland et al. 2011, 2014). 

Intensity parameter is provided by LiDAR for every point in PCD along with its Cartesian 

coordinates (x, y, z).  

The intensity of the reflected laser beam which is received at the LiDAR depends on 

several factors including (i) the constituent materials of the hit point, (ii) laser wavelength, (iii) 

incidence angle at the hit point, and (iv) the distance between laser scanner and the hit point 

(Pozar, 2006). The effect of each mentioned factor needs to be studied. (i) Constituent materials: 

Since leaves have higher chlorophyll and water content compared to woody material, their 

absorption of the laser beam energy is totally different (Gao, 1996; Sims and Gamon, 2003; Sims 

and Gamon, 2003; Lim et al. 2003; Pfennigbauer and Ullrich, 2010; Béland et al. 2011; Wu et al. 

2013; Beland et al. 2014; Ma et al. 2016); (ii) Laser wavelength: The wavelength is governed by 

the laser transceiver. Various LiDAR products may apply a single or multiple wavelengths (Li et 

al., 2013). Multiple-wavelength LiDAR offers more information about hit point features which is 

of benefit for separation of wood and leaf, at the expense of the higher cost of apparatus. The 
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apparatus used in the present dissertation is a Leica C10 which supports a single wavelength 532 

nm laser (green light). Usually, each study dedicated to the separation of wood and foliage offers 

instructions, equations, and curves which are specific to its laser device wavelength; (iii) 

Incidence angle: The incidence angle of a laser beam depends on the relative orientation of the 

beam with the leaf or wood extent. Since the PCD from Leica C10 scanner doesn’t provide any 

information about the surface vectors of leaf or wood, this factor is ignored in the present study. 

This factor is also ignored in the current state of the art, under the assumption of Lambertian 

scattering; (iv) Distance: The power of laser beam is inversely proportional to the squared 

distance between the source and the hit point (Pozar, 2006). Hence, each LiDAR instrument 

supports a limited range of distance depending on the sensitivity of its receiver which is 

mentioned in its datasheet (Horaud et al. 2016). For the Leica C10, the maximum distance is 300 

m according to its data sheets.  

Current state of the art on separation of leaf from wood based on laser intensity parameter 

take advantage of the raw intensity parameter returned by LiDAR (Béland et al. 2011; Beland et 

al. 2014). These studies don’t distinguish the effects of constituent materials and distance which 

are two independent factors. Since the different points forming a tree PCD are at different 

distances from the scan station, the raw intensity isn’t an appropriate scale for separation of leaf 

from wood.  

This chapter proposes an algorithm for automatic separation of leaves from wood in 

terrestrial LiDAR PCD by discriminating the factors of distance and constituent materials. 

Initially, the physical process of reflection of laser beam over tree features is studied and a model 

is developed. Then, the effect of distance is compensated in the raw LiDAR intensity using 

square law to calculate the absorption intensity. The absorption intensity is demonstrated to be a 

suitable scale for separation of leaf from wood. The proposed simple intuitive algorithm doesn’t 

need the leaf-off PCD or calibration of intensity by distance sweeping of spectral white panels 

(Béland et al. 2011; Beland et al. 2014). The rest of this chapter is organized as follows; Section 

2 presents the study area and methodology. The result and discussion are described in sections 3 

and 4, respectively. Finally, Section 5 concludes the chapter.   
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3.2 Materials and Methods 

 

3.2.1 Study Area and Site Characteristics 

A rectangular study plot with the size of 50m × 50m was set up in the Peace River 

Environmental Monitoring Super Site (PR-EMSS), which is forest stand of Trembling Aspen 

(Populus tremuloides) with a broad leaf deciduous canopy. This plot was surveyed between 

August 2014, and Oct 2014. The area is a hilly terrain, located at latitude 56° 44' 39" North and 

longitude -118° 20' 40" West, at an altitude of 871 m. 

In the study plot, the PCD was collected using a Leica Scan Station C10 at four stations. 

Tree height and Diameter at Breast Height (DBH) were also collected for all trees using 

TruPulse 200 laser Rangefinder and a measuring tape.  

 

3.2.2 Instrument and in Situ Measurements Description 

The ground-based LiDAR, also known as Terrestrial Laser Scanning (TLS), was the Leica 

Scan Station C10 (Leica Geosystems AG, Heerbrugg, Switzerland). The Leica is emitting laser 

beam pulses at 532 nm (green laser) within a 360
◦
 × 270

◦
 field of the view window. Leica is a 

discrete return LiDAR (only first return points are used to characterize the object at a given 

location). The information that is provided by Leica includes coordinates data (x, y, z), and 

intensity. It uses the beam’s travel time to compute the distance to the targets. For a 90% albedo 

target, the instrument can detect a return signal from 300 m away, and at 18% albedo, it can 

detect a return signal at 134 m. The Leica C10 can also be used for short range targets up to a 

minimum distance of about 0.1 m. The trees in this study were scanned from six locations to 

minimize the occlusion effect. The scans were performed in leaf-on (summer 2014) and leaf-off 

(fall 2014) seasons. At the medium resolution, each scan took about 10–15 min to complete. For 

all scans, the Leica C10 was placed on a leveled survey tripod about 1.5 m above ground to 

avoid the covering effect of the dense understory. After scanning, any pair of scans was aligned 

to common reference targets using the Cyclone 8.1 software. All processing of the LiDAR PCD 

were performed in MATLAB Software (R2016b).  
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The average tree density computed in the study area was 675 trees ha
−1

, the large majority 

of which are mature trees with a DBH more than 5 cm. For this study, a set of Trembling Aspen 

trees were selected within a plot of 50 m × 50 m in the study area to carry out the LiDAR 

measurements as well as field measurements. In this study, the proposed method was applied on 

21 trees.    

      

3.2.3 Algorithm Steps 

An algorithm for the automatic separation of photosynthetic from non-photosynthetic 

components in LiDAR PCD is developed in this study. The algorithm doesn’t require any 

information on temporal characteristics such as seasonal data, laser wavelength, or tree distance. 

The algorithm steps are summarized in Figure 3.1 and elaborated as follows.  

 

I. The tree PCD in the leaf-on season (containing leaf and wood) is loaded into the 

algorithm. PCD includes the point coordinates along with point intensity (x, y, z, I) which 

forms the 4th column of PCD matrix. I is a Real number in the range of (-2047, +2048). 

II. The range of I is changed from (-2047, +2048) to (0, +1) scale using a simple linear 

equation (1): 

 

𝐼𝑛𝑜𝑟𝑚 =
𝐼

4095
+

2048

4095
                                  (1) 

 

III. The intensity of the received laser beam from the hit point depends on the total power 

loss that it undergoes in its two-way travel from the laser source to hit point and also in 

the return path from hit point to the laser source and the target. The laser beam power loss 

originates in path loss and absorption loss (Figure 3.2). The path loss is proportional to 

squared distance (𝑅2) which is known for every point in PCD (Pozar, 2006). In Figure 

3.2, the path loss is demonstrated by two red arrows extending from LiDAR to the hit 

spot on the leaf and from hit spot to the LiDAR. However, the absorption loss depends 

on water and the surface physical properties such scattering characterization and pigment. 

Since the leaf and wood tend to have different ranges of water, pigment, and scattering 

characterization, absorption loss can be used to identify leaf from wood (Pozar, 2006). In 
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Figure 3.2, this is demonstrated by the orange bouncing arrow over the leaf. In order to 

separate wood from the leaf, the absorption loss should be distinguished from the path 

loss. To achieve the intensity only due to absorption loss (𝐼𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛), 𝐼𝑛𝑜𝑟𝑚 should be 

multiplied by squared distance as equation (2): 

 

𝐼𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 𝐼𝑛𝑜𝑟𝑚. 𝑅2                             (2) 

 

The distance can be simply calculated for each specific point based on its recorded 

Cartesian coordinate (x, y, z) which is presented by LiDAR, as in equation (3): 

 

                                                𝑅 =  √𝑥2 + 𝑦2 + 𝑧2                                 (3) 

 

         Hence: 

𝐼𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 𝐼𝑛𝑜𝑟𝑚 . (𝑥2 + 𝑦2 + 𝑧2)        (4) 

 

IV. To separate wood from leaf, the threshold intensity (𝐼𝑡ℎ) should be found. For 𝐼 > 𝐼𝑡ℎ, 

either leaf or wood is separated. There are two ways to meet this purpose: 

 

A. Beland Threshold: Beland et al. (2011) developed a method for finding a threshold value 

for separating leaf from wood (Figure 3.3). Their method is based on the raw LiDAR 

intensity (I) and needs the PCD in both leaf-off (𝑃𝐶𝐷𝑑𝑟𝑦: leaf-off) and leaf-on season 

(𝑃𝐶𝐷𝑤𝑒𝑡: leaf-on). They draw the graph of the number of laser returns for each recorded 

intensity in both seasons. Finally, the threshold intensity for separation is found by 

balancing two areas representing leaf returns classified as wood (LW) and wood returns 

classified as leaves (WL). This is shown in Figure 3.3a. The steps are elaborated as 

follows: 

      

i. The abundance graph of intensity is drawn for both 𝑃𝐶𝐷𝑤𝑒𝑡 and 𝑃𝐶𝐷𝑑𝑟𝑦 (Figure 

3.3a). In this graph, the horizontal axis is I and the vertical axis is the number of 

points (N). This results in two different curves of 𝑁𝑤𝑒𝑡(𝐼) 𝑎𝑛𝑑 𝑁𝑑𝑟𝑦(𝐼) for leaf-on 
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and leaf-off season, respectively. Since I is not continuous, the values should be 

discretized to smaller ranges. As an example, to divide I range into 100 steps, the 

step width should be calculated as in equation (5): 

 

𝐼𝑠𝑡𝑒𝑝 =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

100
                                (5) 

 

ii. Using the abundance equations, two summation curves should be drawn and 

compared. The summation functions (𝜎) are defined as in equation (6) and (7): 

 

𝜎𝑑𝑟𝑦(𝐼𝑛) = ∑ 𝑁𝑑𝑟𝑦(𝐼𝑛)𝐼𝑛
𝐼𝑚𝑖𝑛

                       (6) 

 

𝜎𝑑𝑖𝑓𝑓(𝐼𝑛) = ∑ {𝑁𝑤𝑒𝑡(𝐼𝑛) − 𝑁𝑑𝑟𝑦(𝐼𝑛)𝐼𝑚𝑎𝑥
𝐼𝑛

}      (7) 

  

                     𝐼𝑡ℎ is the intersection of 𝜎𝑑𝑟𝑦 and 𝜎𝑑𝑖𝑓𝑓 curves (Figure 3.3b). This reference does not 

present any justification for their method. 

 

B. Fine Tuning: As an alternative to Beland's method (2011), 𝐼𝑡ℎ can be simply found by 

fine tuning; The first step is to use an initial guess for 𝐼𝑡ℎ which might be the median 

value of 𝐼𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 as in equation (8): 

 

𝐼𝑚𝑒𝑑𝑖𝑎𝑛 =
𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛

2
                                  (8) 

 

      Then, the points with 𝐼𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 < 𝐼𝑡ℎ are separated. 

   

3.2.4 Accuracy Assessment 

To evaluate the performance of the separation method, both qualitative and quantitative 

analyses were employed. The qualitative method can be implemented using 3D point cloud 

demonstration softwares such as CloudCompare. In the software, two PCDs are loaded 

simultaneously and with different colors: the whole PCD and the separated points. This allows 
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for visual comparison of the separated point (Zhang and Whitman 2005; Serifoglu et al. 2016). 

For quantitative assessment, the Sithole and Vosselman (2004) method is used. In this method, 

error type Ι (omission error) and error type ΙΙ (commission error) are calculated as in equation 

(9):  

 

                                          Error type Ι = 
𝑎

𝐺𝑃
 

                                                                                                             (9) 

                                          Error type ΙΙ = 
𝑏

𝑁𝐺𝑃
 

 

where a is the number of green points separated as non-green, b is the number of non-green 

points classified as green, GP is the total number of green points, and NGP is the total number of 

non-green points (Montealegre et al. 2015). 3D point cloud demonstration softwares such as 

CloudCompare can be used for counting different classes of points and finding the above-

mentioned parameters. Zooming and fencing functions in the software allows for the required 

modifications in the original raw PCD and manual separation of the leaves. The high scan 

resolution of LiDAR preserves the actual geometry of leaf and wood features. 

 

3.3 Results 

 

In this section, the proposed algorithm is run on tree PCDs in the summer season, to 

examine its efficacy in the separation of leaf from wood. For these trees, the absorption loss 

ranges from 0 to 500 (mostly below 300). Initially, the optimal threshold of 𝐼𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 is found 

by fine-tuning. A wide range of intensity thresholds including 250, 200, 90, 86, 70, 50, and 20 

was applied. This is depicted in Figure 3.4 with a gradual transition from a small subset of leaves 

to the whole tree PCD. Leaves belong to the higher values of intensity and wood belong to the 

lower values of intensity. Next, the Optimum Intensity Threshold (OIT) has to be determined by 

minimizing both commission and omission errors. To do this, the proposed algorithm was run 

over 21 trees to find the errors. Figure 3.5 shows the commission and omission errors for three 

sample trees (i, r, b) in study plot. As an example, for tree i, the omission error ranges from 2.4% 

to 99% and the commission error ranges from 0.0008% to 82.8% (Figure 3.5a). The minimum 
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omission error of 2.4% corresponds to a low commission error of 0.82% and also the OIT of 80 

(Figure 3.4e). For tree r and tree b, the OIT value is 90 and 75, respectively (Figure 3.5 b,c). 

For a visual demonstration of the efficacy of OIT = 80, in Figure 3.6 the separated green-

colored points are compared and overlaid on the whole PCD of the tree (the background PCD in 

the RGB color in two dimensions). This Figure shows the overlaying from the top view. Figure 

3.7 shows the overlaying from the side view. A section of the tree crown is selected in Figure 

3.7a. The separated green points are depicted in Figure 3.7b. For comparison, the separated green 

points are overlaid on the background PCD (RGB color) in Figure 3.7c. It can be visually 

assessed that the algorithm has been successful in its task. As can be seen in Figure 3.6 and 3.7, 

the trunk and small branches in the crown are completely removed.  

For comparison, Beland`s method (2011) is applied over normalized intensity which is in 

the range of (0, 1). Figure 3.8 shows the graphs for determining the intensity threshold for the 

same sample single tree. According to Beland`s method, the intersection of leaf-on and leaf-off 

intensity curves indicates the OIT for separating leaf from wood which is 0.19. In Figure 3.9, 

different normalized intensity threshold values are applied on the sample tree PCD to separate 

leaf from wood. As can be seen, all of the threshold values ranging from 0.6 to 0.1 have resulted 

in the separation of a mixture of wood and leaf including a portion of the trunk and also a portion 

of the crown. Even applying OIT value of 0.19 does not separate leaf and wood effectively. 

Figure 3.10 compares separation based on fine-tuning of absorption intensity with OIT value of 

80 and Beland’s method on normalized intensity with OIT value of 0.19.   

To have a comprehensive analysis of Beland`s method, it is also applied to absorption 

intensity which ranges from 0-500 (Figure 3.11). Both leaf-on and leaf-off PCD`s of the tree 

were available for this purpose. In Figure 3.11, the intersection of leaf-on and leaf-off curves 

result in OIT value of 38 which is far off the OIT of 80, found by fine-tuning and error analysis. 

Figure 3.12 demonstrates the optimal threshold calculated based on minimum commission and 

omission errors for 21 trees in the stand level. It can be observed that the OIT value varies for 

different individual trees. But it is in the range of 75-92 for all trees. 
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3.4 Discussion 

 

The objective of this study was to develop an effective method for separating 

photosynthetic from non-photosynthetic components using the intensity information of laser 

points in ground-based LiDAR PCD. The core contribution of this method was the introduction 

of a parameter which is calculated solely based on the information collected by LiDAR. This 

parameter is absorption intensity which is different from the raw point intensity provided by 

LiDAR for each point in PCD. The absorption intensity was shown to be a suitable scale for 

separation of foliage from wood and it is calculated by considering the effect of distance on the 

laser beam (Eitel et al. 2009; Thoren and Schmidhalter, 2009). This is also shown in Figure 3.4 

where the points are arranged and separated.  

The proposed method differs from existing methods, such as the visual color-based and 

geometrical distribution of points recognition (Watt et al. 2005; Hosoi et al. 2010; Holopainen et 

al. 2011; Hauglin et al. 2013), and the statistical methods (Hebert and Vandapel 2003; Vandapel 

et al. 2004; Lalonde et al. 2006; Ma et al. 2016). The proposed method is also different from 

other methods using LiDAR intensity parameter such as Beland et al. (2011). In this chapter, 

Beland’s method was comprehensively elaborated. For comparison, the tree PCD were classified 

using both Beland`s method (2011) and the proposed algorithm (see Figure 3.10). Beland’s 

method was applied to two different intensity scales including normalized intensity and 

absorption intensity which both were unsuccessful in separation (Figure 3.9 and Figure 3.11). It 

can be seen from Figure 3.8 that the intersection of leaf-on and leaf-off graphs with normalized 

intensity gives a threshold of 0.19 which is not suitable for separation of leaf from wood (see 

Figure 3.9g) where most of the separated green points belong to the tree trunk. As Figure 3.11 

shows, the intersection of leaf-on and leaf-off curves with absorption intensity result in OIT 

value of 38 based on Beland`s method while in Figure 3.10d,  with a threshold value of 38, the 

trunk PCD are included in separated green points.  

Beland’s method involves several theoretical and practical limitations. For example, it 

requires data collection in both leaf-on and leaf-off season which is costly and labor-intensive 

especially for remote forests. On the other hand, Beland’s threshold depends on the number of 
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laser returns for every intensity value. This is not a suitable criterion for separating wood from 

leaf. Also, Beland (2011) presents graphs and equations that relate the raw point intensity (I) 

recorded by LiDAR to the intensity due to absorption loss at different distances. To carry out this 

task, they had to put several spectral panels with different absorption losses (very low/ low/ 

medium/ high/ very high) as reference target at different distance range of 5 to 30 m. Hence, the 

preparation of their mathematical model is a cumbersome, challenging and labor intensive task. 

Despite all the mentioned drawbacks, Beland’s study is a significant part of the literature on 

separation. 

The commission and omission error of the proposed algorithm were calculated for the 21 

trees in the study plot. As an example, the commission and omission errors are shown in Figure 

3.5 for three sample trees. The minimum omission error of 2.4% corresponds to a low 

commission error of 0.82% for tree i. However, in Beland`s method, there are many instances of 

commission errors in separated green points in trunk and branches. Comparison of the two 

methods indicates that much more non-photosynthetic points in Beland`s method are incorrectly 

classified as photosynthetic components (Figure 3.9 and Figure 3.10 c). Figure 3.12 shows that 

OIT is in range of 75-92 for the study area. 

In this study, the data was collected in the summer and fall seasons in August and October 

for comparison of methods and it is a single time observation. Hence, there may be temporal 

variation in different months during growing season. The application of the proposed algorithm 

in different months will be helpful for the further development of this method. This method was 

applied successfully in the study plot in a boreal forest for broad leaf trees, to separate leaf from 

wood components. Further work is needed to explore the response of other broad leaf species or 

needle leaf tree species. 

 

3.5 Conclusion 

 

The LiDAR intensity parameter which is provided by terrestrial LiDAR can be used as an 

effective parameter for separation of wood and foliage in PCD. To carry out this task, the effect 

of propagation and absorption of the laser beam has to be studied comprehensively and 

distinguished. The laser intensity related to absorption loss has to be extracted from raw point 
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intensity provided by LiDAR using the effect of path loss. This method separates wood from 

foliage based on a new intensity scale. The threshold intensity can then be found by fine-tuning 

the absorption intensity. Based on this method, an algorithm was developed and implemented in 

MATLAB. The algorithm was run for separation of leaf and wood in PCD of a single tree with 

very low commission and omission error.  
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Figures Legends 

 

Figure 3.1 Procedures used to separate photosynthetic of non-photosynthetic material from 

LiDAR Point Cloud Data (PCD). 

 

Figure 3.2 Schematic of the path loss and the absorption loss. (R) is the distance between the 

scanner and the hit point.  

 

Figure 3.3 Histogram-based approach for separating leaf from wood from leaf-on and leaf-off 

TLS point cloud; (a) In the leaf-on season histogram, there are two distinguishable areas, one (L) 

represents the leaf reflectance and (WL) refers to wood returns categorized as leaves. In the leaf-

off season histogram, (W) represents the wood returns while the (LW) area shows leaf returns 

classified as a wood return (b) To identify the threshold value between the leaf and wood 

materials in the histogram, the regression value of WL and LW areas must be in balance. 

 

Figure 3.4 Photosynthetic components separated by proposed algorithm representation, using 

Terrestrial Laser Scanner (TLS) data with different intensity thresholds. Raw point cloud for; (a)  

a single tree, and photosynthetic components point cloud separated with (b) threshold 250 (c) 

threshold 200 (d) threshold 90 (e) threshold 80 (f) threshold 70 (g) threshold 50 and (h) threshold 

20.  

 

Figure 3.5 Accuracy assessment (commission and omission errors) of the point cloud 

classification versus intensity threshold for; (a) tree i (b) tree r (c) tree b, at Peace River, EMSS. 

 

Figure 3.6 Results of the separation between wood and foliage based on the Optimum Intensity 

Threshold (OIT) from the top view; (a) The whole PCD of the tree (black and brown dots) (b) 

the separated leaf points (green dots) and (c) overlaying the separated leaf points on the whole 

tree PCD.   

 

Figure 3.7 Results of the separation between wood and foliage based on the Optimum Intensity 

Threshold (OIT) from a side view; (a) The whole PCD of the branch (black and brown dots) (b) 
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the separated leaf points (green dots) and (c) overlaying the separated leaf points on the whole 

branch PCD.   

 

Figure 3.8 Illustration of intensity laser return within the range of (0-1); (a) regression analysis 

(b) intensity profile. 

 

Figure 3.9 Photosynthetic components separated by Beland`s method (2011), using Terrestrial 

Laser Scanner (TLS) data with different normalized intensity thresholds; (a) Raw point cloud for 

a single tree and photosynthetic components point cloud separated with (b) threshold 0.6 (c) 

threshold 0.5 (d) threshold 0.4 (e) threshold 0.3 (f) threshold 0.25 (g) threshold 0.19 and (h) 

threshold 0.1.  

 

Figure 3.10 Comparison of Beland`s method and fine-tuning performance for separation leaf 

and wood; (a) The whole tree PCD (b) separated points based on fine-tuning of absorption 

intensity with OIT value of 80 (c) Beland`s method on normalized intensity with OIT value of 

0.19 (d) Beland`s method on absorption intensity with OIT value of 38.   

 

Figure 3.11 Illustration of absorption intensity for leaf-on and leaf-off seasons for a single tree; 

(a) regression analysis (b) intensity profile, the intersection of leaf-on and leaf-off curves result 

in OIT value based on Beland`s method. The blue dashed line shows the OIT value of 38 by 

Beland`s method and the red dashed line shows the OIT value of 86 by fine-tuning method.  

 

Figure 3.12 The optimal intensity threshold (OIT) for 21 trees in the stand level.  
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Figure 3.1 Procedures used to separate photosynthetic of non-photosynthetic material from 

LiDAR Point Cloud Data (PCD). 

Importing data in Cyclone 8.1 software

Collecting data in 3D format (x, y, z, I) by 

ground LiDAR
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Figure 3.2 Schematic of the path loss and the absorption loss. (R) is the distance between the 

scanner and the hit point. 
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Figure 3.3 Histogram-based approach for separating leaf from wood from leaf-on and leaf-off 

TLS point cloud; (a) In the leaf-on season histogram, there are two distinguishable areas, one (L) 

represents the leaf reflectance and (WL) refers to wood returns categorized as leaves. In the leaf-

off season histogram, (W) represents the wood returns while the (LW) area shows leaf returns 

classified as a wood return (b) To identify the threshold value between the leaf and wood 

materials in the histogram, the regression value of WL and LW areas must be in balance. 
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Figure 3.4 Photosynthetic components separated by proposed algorithm representation, using 

Terrestrial Laser Scanner (TLS) data with different intensity thresholds. Raw point cloud for; (a)  

a single tree, and photosynthetic components point cloud separated with (b) threshold 250 (c) 

threshold 200 (d) threshold 90 (e) threshold 80 (f) threshold 70 (g) threshold 50 and (h) threshold 

20. 
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(a) 

 

 

Figure 3.5 Accuracy assessment (commission and omission errors) of the point cloud 

classification versus intensity threshold for; (a) tree i, at Peace River, EMSS. 
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(b)  

 

 

Figure 3.5 Accuracy assessment (commission and omission errors) of the point cloud 

classification versus intensity threshold for; (b) tree r, at Peace River, EMSS. 
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(c)  

 

 

 

Figure 3.5 Accuracy assessment (commission and omission errors) of the point cloud 

classification versus intensity threshold for; (c) tree b, at Peace River, EMSS. 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

0 50 100 150 200 250 300

E
rr

o
r 

%
 

Intensith Threshold 

Error type I

Error type II



81 

 

 
 

 

Figure 3.6 Results of the separation between wood and foliage based on the Optimum Intensity 

Threshold (OIT) from the top view; (a) The whole PCD of the tree (black and brown dots) (b) 

the separated leaf points (green dots) and (c) overlaying the separated leaf points on the whole 

tree PCD.   
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Figure 3.7 Results of the separation between wood and foliage based on the Optimum Intensity 

Threshold (OIT) from a side view; (a) The whole PCD of the branch (black and brown dots) (b) 

the separated leaf points (green dots) and (c) overlaying the separated leaf points on the whole 

branch PCD.   
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Figure 3.8 Illustration of intensity laser return within the range of (0-1); (a) regression analysis 

(b) intensity profile. 
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Figure 3.9 Photosynthetic components separated by Beland`s method (2011), using Terrestrial 

Laser Scanner (TLS) data with different normalized intensity thresholds; (a) Raw point cloud for 

a single tree and photosynthetic components point cloud separated with (b) threshold 0.6 (c) 

threshold 0.5 (d) threshold 0.4 (e) threshold 0.3 (f) threshold 0.25 (g) threshold 0.19 and (h) 

threshold 0.1. 
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Figure 3.10 Comparison of Beland`s method and fine-tuning performance for separation leaf 

and wood; (a) The whole tree PCD (b) separated points based on fine-tuning of absorption 

intensity with OIT value of 80 (c) Beland`s method on normalized intensity with OIT value of 

0.19 (d) Beland`s method on absorption intensity with OIT value of 38.   
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Figure 3.11 Illustration of absorption intensity for leaf-on and leaf-off seasons for a single tree; 

(a) regression analysis (b) intensity profile, the intersection of leaf-on and leaf-off curves result 

in OIT value based on Beland`s method. The blue dashed line shows the OIT value of 38 by 

Beland`s method and the red dashed line shows the OIT value of 86 by fine-tuning method. 
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Figure 3.12 The optimal intensity threshold (OIT) for 21 trees in the stand level. 
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CHAPTER 4 

 

Calculation of Leaf Area Index in a Canadian Boreal Forest Using Ground-Based LiDAR 

 

4.1 Introduction 

 

Forests are important natural resources due to their benefits toward the economy and 

ecosystem services including climate control, wildlife protection, and pollution reduction (Law 

et al. 2001; Barr et al. 2004). Hence, forest assessment is of ultimate significance for resource 

management and sustainable development. Research into the 3D canopy structure is the key to 

the accurate quantitative assessment of forests (Martínez et al. 2009). Canopy structure is the 

vertical and horizontal distribution of all the foliage elements with a variety of shape, size, and 

orientation of different species groups above-ground in a forest stand (Norman and Campbell, 

1989; McIntosh et al. 2009).  

The distribution, orientation, and area of leaves are the most important biophysical 

properties of a canopy which determine the interaction of a given sunbeam with plant 

chlorophyll and hence the amount of intercepted light at a canopy (Barclay, 2001). Hence, a 

single assessment parameter is needed to represent the leaf area and configuration in order to 

quantify the interaction of plant with light. Leaf Area Index (LAI) is an important forest 

parameter which is based on the total effective single sided area (with the unit of m
2
) of live 

photosynthetic leaf material in a tree per horizontal unit ground area (m
2
),

 
considering the 

overlap, shadowing and clumping effect among leaves (Watson, 1947; Chen and Black, 1992; 

Breda, 2003; Asner et al. 2003; Weiss et al. 2004; Schleppi et al. 2007; Nasahara et al. 2008; 

Hosoi and Omasa, 2009). LAI is dimensionless and it can be calculated for a single tree or the 

whole forest. In addition, LAI is an accurate indicator of forest dynamics and ecological 

processes such as balance of the global carbon exchange, energy cycle in photosynthesis, 

evapotranspiration mechanisms, precipitation interception, and water/nutrient cycling (Chen et 

al. 2005; Dufrene et al. 2005; Dietz et al. 2006; Duchemin et al. 2006; Cleugh et al. 2007; Zheng 

et al. 2007; Gobron, 2008 and Duursma et al. 2009; Yue et al. 2013; Sainte-Marie et al. 2014).  
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The current state of the art presents various direct and indirect techniques for calculation of 

LAI. Direct invasive methods include manual clipping, counting and measuring the size of 

leaves which is time-consuming and labor-intensive even for a single tree (Norman and 

Campbell, 1989; Hosoi and Omasa, 2009; Olsoy et al. 2014).  Due to the huge quantity of 

vegetation material in the forests, direct measurement becomes impractical in large scale (Béland 

et al. 2011). Thus, as a preferred alternative, non-invasive indirect and remote sensing methods 

have been developed (Hosoi and Omasa, 2009; Olsoy et al. 2014). 

Recently, remote sensing methods have become popular in forest assessment. These 

powerful techniques enable accurate, indirect, simple, low-cost, and nondestructive data 

collection from canopy structure for estimation of LAI in different spatial resolutions (Riano et 

al. 2004; Feng et al. 2006; Styers et al. 2014; Kim et al. 2015). Point quadrat is the first indirect 

method that was developed by Warren-Wilson in 1960. In this method, a probe with a sharp head 

is inserted into the vegetation and then the number of intersection of leaves or stems with the 

probe is counted. LAI can be estimated based on the measured contact frequency. This method is 

also labor-intensive and prone to an unavoidable error margin (Norman and Campbell, 1989). A 

more advanced indirect approach is the gap fraction method which is carried out by optical 

sensors such as the LICOR LAI-2200 Plant Canopy Analyzer and fish-eye lens cameras (Hosoi 

and Omasa, 2009). These commercial optical sensors are widely applied since they allow 

nondestructive, automatic and less laborious assessments. The calculations of the mentioned 

optical sensors are based on the assumption of random distribution of vegetation. The mentioned 

automatic techniques are associated with several limitations and drawbacks; first, the assumption 

of random distribution of vegetation is not completely true for all canopies and every section of a 

forest. This exposes these methods to a certain level of error (Hosoi and Omasa, 2009); second, 

their estimation is local and can’t be extended spatially (Weiss et al. 2004; Gobron, 2008); third, 

they cannot separate non-photosynthetic materials such as trunks and branches from 

photosynthetic materials such as leaves. Hence, instead of accurate calculation of Leaf Area 

Index, Plant Area Index (PAI) is found. PAI is not an appropriate estimation of LAI since trunks 

and branches may have a considerable contribution to the total leaf area; fourth, these 

instruments cannot be effectively used for irregular canopies like savannas (Ryu et al. 2010). 

Among different remote sensing instruments, Light Detection and Ranging (LiDAR) has 

been demonstrated to be the most effective tool for this purpose (Béland et al. 2011; Zheng et al, 



99 

 

2012b). LiDAR generates 3D Point Cloud Data (PCD) representing every feature in the forest 

with an extremely high resolution (Hosoi and Omasa, 2009). The first attempt to retrieve LAI 

from LiDAR data was conduct with airborne LiDAR (Lefsky et al. 1999; Lovell et al. 2003; Lim 

et al. 2003; Riano et al. 2004; Houldcroft et al. 2005; Morsdorf et al. 2006). However, the 

airborne LiDAR systems can’t offer a comprehensive PCD due to the aircraft speed and the 

resulting low sample density. Hence, ground-based LiDAR is preferred for this purpose (Lovell 

et al., 2003). 

Many methods are proposed for processing the PCD from ground-based LiDAR for 

extraction of LAI (Zheng et al. 2013, 2016; Ma et al. 2016a, b). The two building blocks of these 

methods are the voxelization of PCD and the algorithm for automatic calculation (Leblanc et al. 

2014). To voxelize, the PCD is confined within a large box and divided to an array of equi-size 

smaller boxes which are called 3D voxels (Hosoi et al. 2013). Then, a radiative transfer model is 

used to calculate several intermediate parameters such as extinction coefficient and gap fraction 

and finally calculate LAI from the intermediate parameters (Chen and Black, 1991; Eriksson et 

al. 2005; Widlowski et al. 2014; Fang et al. 2014; Beland et al. 2014a).  

The current state of the art on the extraction of LAI based on voxelization of LiDAR PCD 

is prone to many sources of error. First, it ignores the laser spatial sampling resolution. Standard 

LiDAR datasheets mention a sampling resolution at a specific distance. However, the sampling 

resolution is not only an effective parameter; it varies as a function of the distance between the 

station and the hit spot. This effect is emphasized for taller trees and longer distances. This 

causes the inter-distance of samples to be larger for remote spots. In the present methods, the 

sampling resolution is assumed to be constant and the voxel size is defined as a constant value. 

However, the voxel size has to be a function of sampling resolution and hence the distance of 

each voxel from the scan station. Second, the large confining box around the whole PCD doesn’t 

conform to the tree crown shape (Hosoi et al, 2007). This generates a huge number of redundant 

voxels which are assumed and counted as empty voxels and directly result in miscalculations. 

Third, the auxiliary models such as the radiative transfer model are approximate since they are 

based on the assumption of randomly distributed points in the PCD. However, this assumption is 

not true since the probability of the existence of leaves is much higher around branches and 

stems. Besides, the configuration of branches follows a specific pattern for each species. Hence, 
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this assumption in radiative transfer models exposes LAI calculations to an extra level of error 

(Olivas et al, 2013).  

   The main motivation of the present chapter is to address these drawbacks and offer an 

improved voxelization scheme along with a dedicated algorithm for the calculation of LAI. First, 

a mathematical model is offered to analyze and calculate the LiDAR spatial sampling resolution 

as a function of distance and to define the voxel size based on it. For the first time, the proposed 

method refrains from using voxels of fixed size for all of the trees of any distance from the scan 

station and all the features at various heights in a tree. Instead, the PCD of an individual tree is 

divided into adaptive voxels which gradually vary in lateral size from the bottom of the trunk to 

the top of crown. Second, the proposed voxelization scheme doesn’t need a large outer confining 

box. Instead, the PCD is vertically sliced and then divided to an array of pixels. Also, the 

redundant voxels are minimized and the number of empty voxels doesn’t affect the calculations. 

Third, LAI is calculated directly from each voxel. Hence, the errors associated with radiative 

transfer model, gap fraction, and extinction factor are avoided.  

The proposed method is applied to the field measurement data from a Canadian boreal 

forest and the results are comprehensively analyzed. This chapter is organized as follows: 

Section 2 discusses the material and methods, Section 3 presents the results. The numerical 

results and instructions are extensively discussed in Section 4. Finally, a conclusion is drawn in 

Section 5. 

 

4.2 Materials and Methods 

 

4.2.1 Site Characteristics and LiDAR Measurements   

The study area in this research is located in northwestern Alberta, Canada at the Peace 

River Environmental Monitoring Super Site (PR-EMSS) which is part of an industry-research 

forestry region for Ecosystem Management Emulating Natural Disturbance (EMEND) project. 

The study area generally is boreal mixed wood plains, located at a latitude of 56.744223◦ N and a 

longitude of -118.344673◦ W. The PR-EMSS study area lies within stand of Trembling Aspen 

(Populus tremuloides) with a broad leaf deciduous canopy. 
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The Trembling Aspen tree leaves are lozenge in shape and relatively flat. A sample of tree 

leaf is shown in Figure 4.1. In this study, 21 trees were randomly selected within an area of 50 m 

× 50 m to carry out the LiDAR measurements as well as direct measurements. Terrestrial LiDAR 

measurements were acquired in both leaf-on and leaf-off conditions in the summer and fall 2014-

2016. In order to explore the effect of the number of scan stations on LAI estimation and the 

reduction of occlusion effect a combination of six scans was used. The number of points for each 

scan was counted and related LAI for each scan permutation was calculated. The approximate 

tree height of this stand is 25.84 m (standard deviation, S.D. = 1.36 m) and the average elevation 

of this stand is 871 m. The collection, registration, and processing of PCD were performed in the 

Cyclone 8.1 software and MATLAB R2016. 

 

4.2.2 Theory and Method 

LAI is a significant parameter in the assessment of forest canopy structure. This subsection 

discusses the issues associated with the LAI calculation methods and explains how they are 

addressed in our proposed method.  

 

4.2.2.1 Auxiliary Models 

 

The process starts with confining the PCD inside a box. Then, it is divided into a multitude 

of horizontal slices (as depicted in Figure 4.2 a,b), and each slice is voxelized in order to simplify 

the handling of raw data. Next, for each slice, the gap fraction (P) and extinction coefficient (G) 

are calculated. P, G, and LAI are inter-related by radiation transfer model equation (1), as 

 

𝐿𝐴𝐼(𝑧) = −
𝑐𝑜𝑠 (𝜃)

𝐺(𝜃)
𝑙𝑜𝑔 (𝑃(𝜃, 𝑧))                (1) 

where z is the slice height and 𝜃 is the zenith angle showing the direction of solar beams. For 

perpendicular direct sun light beam (parallel to z-axis) 𝜃, is set to 0 and the equations are further 

simplified. In this study, only 𝜃 = 0 situation is considered. The case of oblique incidence can be 

analyzed based on present simplified model without loss of generality. It shall be the topic of 
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future work. Also, it should be noted that LAI can be calculated either in each slice as a function 

of z or for the whole canopy. 

Using equation (1), LAI is indirectly calculated. Voxelization allows for the calculation of 

G and P at each slice. Voxel size is usually picked arbitrarily (Hosoi and Omasa, 2007; Song et 

al. 2011). Based on the above-mentioned method, some voxels shall be non-empty and include 

data points (ON). But, some are empty and without data points (OFF). P is calculated based on 

the number of empty voxels (nOFF) and non-empty voxels (nON) as equation (2): 

 

𝑃(𝑧) =
𝑛𝑂𝐹𝐹

𝑛𝑂𝐹𝐹+𝑛𝑂𝑁
                                       (2) 

The main box fitted to PCD doesn't conform to the actual shape of the tree crown. This 

creates many empty voxels which are out of actual tree crown boundaries. Consequently, error in 

nOFF directly affects the calculation of P. To demonstrate this, a sample horizontal cut is depicted 

from the top view and in 2D in Figure 4.2 c. Hence, an alternative to the box method should be 

sought to remove the extra OFF voxels or a technique should be used which does not rely on the 

ratio of nOFF to nON. 

G depends on the number, configuration, and coordinates of data points inside each voxel. 

To simplify calculations, G is assumed constant for a specific species in some studies (Zhao et al. 

2015). However, some studies try to calculate G based on PCD. Two other auxiliary models are 

offered for this purpose. However, both add extra complexity to the analysis and their 

estimations contribute to the error in LAI (Beland et al. 2011). In the first model, G is described 

using an extra parameter 𝜒 as (Ross, 1981): 

 

                              𝐺(𝜃; 𝜒) = 𝜒. cos(𝜃) + (1 − 𝜒).
2

𝜋
. sin(𝜃)      (3) 

where θ is the zenith angle. The second model uses Miller's formula:  

∫ 𝐺(𝜃) . sin(𝜃) . 𝑑𝜃
𝜋/2

0
= 0.5                    (4) 

which requires solving an inverse problem with complicated numerical integration over few 

selected discrete zenith annuluses to find G. 
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In the case of large areas of forests, canopy assessment using the auxiliary models requires 

a large volume of computations. To avoid that, in the proposed method, LAI can be simply and 

directly calculated from PCD using its straightforward definition as: 

 

𝐿𝐴𝐼 =
𝑆𝑙𝑒𝑎𝑓

𝑆𝑔𝑛𝑑
                                                (5) 

where 𝑆𝑙𝑒𝑎𝑓 is the effective light receiving area of the leaves, and 𝑆𝑔𝑛𝑑 is the ground surface 

area. To find 𝑆𝑔𝑛𝑑, PCD is projected on xy-plane and a 2D Convex Hull (CH) is drawn around it. 

The proposed algorithm in this study is designed for calculation of 𝑆𝑙𝑒𝑎𝑓.  

 

 4.2.2.2 LiDAR Spatial Sampling Resolution 

 

The spatial sampling resolution (𝑟𝑒𝑠𝑅) of the Leica C10 LiDAR scan station is 4 mm at 50 

m, according to its datasheet. However, 𝑟𝑒𝑠𝑅 depends on the distance (R) between the scan 

station and the hit spot. Despite its significance, none of the present methods in the literature 

have considered this factor in their LAI calculations. To consider this effect for LAI calculation, 

a mathematical model should be developed. Ground-based LiDAR scans the surrounding space 

with predetermined azimuth and zenith angle steps. As depicted in Figure 4.3, with an angular 

resolution of Δ𝛹, the arc length (𝑟𝑒𝑠𝑅) is calculated as equation (6): 

                             𝑟𝑒𝑠𝑅 = 𝑅. ∆Ψ                                             (6) 

At close distances (~ several meters), the change in res is small and irrelevant in calculations. 

However, this parameter should be considered in calculations for forest trees. In the ideal case of 

having an error-free scanning system with infinitesimal beam diameter (light ray), using equation 

(6), res can be approximated. Considering ∆Ψ = 60 μrad based on Leica C10 

datasheet, 𝑟𝑒𝑠𝑅=30𝑚 = 1.8 𝑚𝑚. However, the practical values of res are larger because of non-

ideal scanner and randomly-oriented leaves. Hence, to have a better estimation of resolution, a 

PCD from forest scan is studied. In the PCD, 20 adjacent pairs of points in different distances 

from LiDAR (3 m < R < 50 m) are selected. The selected points are along both azimuth and 

zenith direction. The distance between points in each pair (res) is calculated. Then, the resolution 
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of the points belonging to each distance is averaged, and the graph of resolution versus distance 

is drawn. Using interpolation, this equation is extracted: 

                             𝑟𝑒𝑠(𝑅) = {
0.47(𝑅 − 3) + 3             3 < 𝑅 < 18

1.33(𝑅 − 18) + 10        18 < 𝑅 < 50
         (7) 

where R is in m and res is in mm. Hence, this equation can be used for the resolution in azimuth 

and elevation directions. According to equation (7), res can be as large as 5 cm which is 

comparable to the diameter of leaves. Considering the diamond-like shape of leaves and the fact 

that leaf diameter (D) is its largest dimension (Figure 4.4), a far leaf may merely be missed in a 

scan. Nevertheless, closer leaves might be represented by tens of points. This is ignored in 

previous studies and it can cause a major error in the calculation of G especially for voxels which 

carry 1 or 2 points. Hence, both D and res should be involved in the voxelization, slicing and 

also the calculation algorithm. To avoid these complexities, some studies use a value of 0.9 for G 

(Macfarlane et al. 2007). Zheng and Moskal (2012a) recommend the voxel size to be 1.5 times 

res. However, the variation of resolution is not studied and uniform voxels are usually applied. 

The effect of sampling resolution becomes even more dramatic at far distances due to the 

divergence of the laser beam. For the Leica C10, the beam diameter (d) is 4.5 mm right at the 

output. At the focal distance which is 25 m, d decreases to 3 mm and then increases for farther 

distances. At 50 m, d shall be 4.5 mm again. Hence, d as a function of distance can be calculated 

using equation (8):   

                                    𝑑 = {
0.06(𝑅 − 25) + 3       𝑅 > 25 
0.06(25 − 𝑅) + 3       𝑅 < 25

                  (8) 

where d is in mm and R is in m. Thus, d might be comparable with res. To consider all practical 

measurement aspects and minimize the resulting calculation errors, both res and d have to be 

involved in the algorithm. 

 

 

4.2.3 Algorithm Steps 

 

The following algorithm is designed for calculation of 𝑆𝑙𝑒𝑎𝑓. 
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Step I: To get the crown PCD (cPCD), the algorithm for separation of photosynthetic from non-

photosynthetic features in the previous chapter is applied to the whole PCD. The tree crown 

starts at around a height of 18 m, for the species under study. 

Step II: cPCD is horizontally sliced with a thickness equal to the average diagonal size of the 

leaf (D) which is around 5 cm in our study to find cPCDk (Figure 4.4). Index k denotes the slice 

number. Then, each 𝑐𝑃𝐶𝐷𝑘 is projected over xy-plane. 

Step III: The 2D 𝑐𝑃𝐶𝐷𝑘  is pixelized for further analysis. The points are constrained inside a 

rectangular outer boundary which is constrained between (𝑋𝑚𝑖𝑛𝑘
, 𝑋𝑚𝑎𝑥𝑘

) and (𝑌𝑚𝑖𝑛𝑘
, 𝑌𝑚𝑎𝑥𝑘

). 

The pixel size has to depend on sampling resolution. However, since the slice data points are at 

different distances from the scan station, the middle point of that slice is picked (
𝑋𝑚𝑖𝑛𝑘+ 𝑋𝑚𝑎𝑥𝑘

2
, 

𝑌𝑚𝑖𝑛𝑘+ 𝑌𝑚𝑎𝑥𝑘

2
, 𝑧𝑘) and its distance to the scan station is calculated. Then, the resolution is acquired 

using equation (7) and a pixel size (𝑢 × 𝑢) of 10𝑟𝑒𝑠𝑘 × 10𝑟𝑒𝑠𝑘 is selected. Each voxel is 

denoted by index of (𝑖, 𝑗, 𝑘) where i and j shows its number along x and y axes.  

Figure 4.5 shows the schematic pixelization with two select slices from lower and upper 

height in the crown which is pixelized with different sizes. At each slice, using equation (7) and 

(8), the conditions of (u, D) ≫ d should be controlled. If for a specific type of tree and distance, 

𝐷 ≫ 𝑑 doesn’t hold, the slice thickness should be increased to 10𝐷. Also, if 𝑢 ≫ 𝑑 doesn’t hold, 

the lateral size of pixels is increased to 50𝑟𝑒𝑠𝑘 × 50𝑟𝑒𝑠𝑘. 

Step IV: The plant area of each pixel (𝑆𝑖𝑗𝑘) is calculated based on the number (𝑛𝑖𝑗𝑘) and 

configuration of points inside each pixel as: 

a) 𝑛𝑖𝑗𝑘 = 0 : This pixel doesn’t contribute to plant area. 

b) 𝑛𝑖𝑗𝑘 = 1 : 𝑆𝑖𝑗 = 1 × 𝑆0 where 𝑆0 is the area of a single average leaf. To run the 

algorithm, the first step is defining parameter D for the study area which is the 

average diagonal size of leaves. For 27 leaf samples from different trees and 

various spots in the study area, D is 52 mm. This also determines the slice 

thickness of 52 mm and also the single leaf area which is 𝑆0 = 0.00081 𝑚2. 
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c) 𝑛𝑖𝑗𝑘 = 2 : The distance between the two points (L) should be measured. If L > 

D, then 𝑆𝑖𝑗𝑘 = 2 × 𝑆0, otherwise 𝑆𝑖𝑗 = 1 × 𝑆0.  

d) 𝑛𝑖𝑗𝑘  ≥ 3: In case of 3 points, they are checked for collinearity. If they aren’t 

collinear, 2D ConvexHull (CH) is used to find the area. Since the laser is single 

return, many of the leaves might be occluded behind the features at the front. 

Using CH can partially compensate for occlusion. 

Step V: 𝑆𝑙𝑒𝑎𝑓 is calculated by summing the individual plant area of all pixels in all slices as: 

                              𝑆𝑙𝑒𝑎𝑓 = ∑ ∑ 𝑆𝑖𝑗𝑘𝑖,𝑗𝑘                                    (9) 

Note that, in the proposed method, the number of OFF voxels/pixels doesn’t affect the 

calculations, contrary to the common methods of calculation of P in radiative transfer models.  

 

4.3 Results 

 

In this Section, the proposed algorithm is applied to the PCD from field measurements and 

its different aspects are investigated and evaluated. Before running the algorithm, the PCD has to 

be processed to separate the photosynthetic features as elaborated in Chapter 3.  

 

4.3.1 LAI Estimation for an Individual Tree 

A typical individual tree is scanned from six stations (A-B-C-D-E-F) as illustrated in 

Figure 4.6. The tree PCD is shown in Figure 4.7 a,b from the side and top view. The points are 

color-coded for improved visual representation based on the height where warmer colors are 

assigned to lower heights and cooler colors indicate higher points. The visualization is carried 

out using Cyclone with the Color Map Elevation Map features in View tab. It is worth 

mentioning that Cyclone offers a wide variety of visual representation such as "Colors from 

Scanner", "Intensity Map", "Single Color", and "Image Texture Map", which should be selected 

based on the specific application and project. The imported PCD (Figure 4.7 b) includes both 

branches and leaves which look like an actual tree. This implies the validity of the LiDAR scans. 
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The results from Table 4.1 show that the LAI values increased from 1.91 to 3.24 as the number 

of scan stations increased from one to six, respectively. Table 4.1 demonstrates that at least four 

stations are required for a comprehensive scan. Increasing the number of stations to five and six 

does not change the number of points and LAI value significantly. Also, it can be visually 

verified that the tree point collection is complete and the point density is almost uniform over all 

sides of the tree. This is due to using four scan stations which offer a comprehensive data set of a 

tree and minimizes the occlusion effect. The PCD from single station usually lacks the part of 

tree features which are on the opposite side of scan station and results in lower point density at 

the opposite side. Figure 4.8 compares LAI calculated by TLS and other optical sensors such as 

LICOR LAI-2000 Plant Canopy Analyzer, Tracing Radiation and Architecture of Canopies 

(TRAC), and Digital Hemispherical Photography (DHP) (Gower et al. 1997; Chen et al. 1997a; 

Kucharik et al. 1997, 1998; Davidson et al. 2000; Barr et al. 2004; Bourque and Quazi, 2008; Ma 

et al. 2016a). The LAI value of 3.2 provided by four stations in this study is close to the value 

calculated using TLS by Ma et al. (2016a). This verifies the proposed algorithm.  

Since the algorithm works based on vertical slicing, it is advantageous to inspect the point 

collections at the different slices before algorithm implementation. There are two ways to do 

this: MATLAB code and Cyclone fencing feature which should agree. The crown section of the 

selected individual tree is divided into 175 slices which are 52 mm thick. Here, slice number 81 

(k = 81) is selected and the points enclosed in this section are separated and extracted by Cyclone 

and shown in Figure 4.7 c from the top view. It is noteworthy that the outer boundaries of Figure 

4.7 c coincide with outer boundaries of Figure 4.7 b. This verifies the slicing procedure carried 

out in Cyclone since the points of slice 81 are a small subset of the large collection of points. 

The first step to analyze PCD is the slice point density distribution graph which is depicted 

in Figure 4.9. The number of points in each slice is assigned to the horizontal axis while the slice 

number is shown on the vertical axis. The slice point density graph reveals the approximate 

shape of the tree crown on the vertical profile and varies between 1 and 6998 points. These 

minimum and maximum values directly depend on the slice thickness, scan properties, and tree 

species. The number of points for slices up to around 5 is small and almost uniform. However, 

for the higher slices, the number of points increases and reaches a maximum around slice 111. 

After that, the number of points decreases up to the top slice. This trend is generally true for most 

of the trees in our field area. 
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The next step is the lateral pixelization of each horizontal slice which is done 

independently for each slice. The z coordinate of the points in each slice is ignored and hence a 

2-Dimensional collection of points is achieved which is easier to deal, than a 3Dimensional PCD. 

The lateral size of pixels (𝑢 × 𝑢) in each slice is defined based on the scan resolution (𝑟𝑒𝑠𝑘) of 

LiDAR which depends on both technical aspects and the distance of scan station to the tree 

stand. To perform this step, the middle spot of each slice is found and its distance to scan station 

(R) is calculated as in equation (12): 

 

                                                𝑅 = √𝑋𝑚𝑖𝑑𝑘
2 + 𝑌𝑚𝑖𝑑𝑘

2 + 𝑍𝑚𝑖𝑑𝑘
2         (12) 

 

The scan station is assumed to be at the center of coordinates (0, 0, 0). For an individual 

tree, 𝑟𝑒𝑠𝑘 is drawn for all slices based on equation (12) in Figure 4.10. Hence, the average scan 

resolution for slices changes from 11.46 to 20.86 mm for the lowest to highest slices. This is 

equivalent to overall 9.4 mm change in scan resolution which shifts the pixel lateral size (𝑢 × 𝑢) 

by 94 mm among slices and causes considerable change in calculated results. The proposed 

adaptive voxelization technique tunes the voxel volume over the PCD from bottom to top of the 

crown and increases it by 231%.      

During the next step, the distribution of the points at each slice defines the leaf content and 

its effective leaf area. The algorithm is run on six different PCD's which complement each other 

including the data from a different combination of scan stations such as A, AC, ABC, ABCD, 

ABCDE, and ABCDEF. There are other possible combinations which are not included here due 

to brevity. LAI results and a total number of points for these six PCSs are summarized in Table 

4.1. Increasing the number of stations provides a more comprehensive PCD from the tree with a 

higher number of points which allows better LAI assessment.  

To find out the optimum lateral size of an adaptive voxel, the proposed algorithem was run 

for different lateral size (𝑢 × 𝑢) of (10resR×10resR), (20resR×20resR), and (30resR×30resR) 

(Table 4.2). Optical estimates of LAI for trembeling aspen by DHP is 1.67, by TRAC is 2.4, by 

Plant Canopy Analyzer is 2.1, and TLS estimates of LAI for aspen is 3.32 (Ma et al. 2016a; Barr 

et al. 2004)). The results in Table 4.2 showed the optimum lateral size of each pixel is 𝑢 = 10resR 

that gives the LAI value in the acceptable range based on literature for TLS (3.2). To find the 
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effect of fixed voxel size and comparing it with adaptive voxel, the proposed algorithm is 

modified and the results are shown in Table 4.3. By changing the fixed voxel size from 10𝑟𝑒𝑠̅̅̅̅̅ to 

20𝑟𝑒𝑠̅̅̅̅̅ and 30 𝑟𝑒𝑠̅̅̅̅̅, the LAI value increases from 3.96, to 7.35 and 9.07, respectivaly. 𝑢 = 10𝑟𝑒𝑠̅̅̅̅̅  

results in the estimation error of 19.2% which is much higer than the case for 𝑢 = 10resR which 

leads to an estimation error of 3.6%.  

According to Table 4.1, the increase of scan stations from 1 to 6 increases the number of 

points from 180,608 to 581,791 which is 3 times. This verifies the significant effect of occlusion. 

However, the increase of scan stations from 1 to 6 increases LAI from 1.91 to 3.24 which is 

almost twice. This shows the robustness of the proposed adaptive voxelization method.  

Usually, a fixed value is picked for voxel size which is kept independent of surrounding 

conditions. In this work, however, for the first time, an adaptive voxel size (10𝑟𝑒𝑠𝑘 × 10𝑟𝑒𝑠𝑘 ×

𝐷) is proposed based on the engineering features of the scan station, the scan size and the tree 

leaf properties (Figure 4.11). To prove the effectiveness of present study and inspect the 

appropriateness of the proposed parameters, they are changed in the algorithm to inspect the 

results and compared with previous results. The sensitivity analysis is as follows: 

a) Efficacy of parameter 𝒖 = 𝟏𝟎. 𝒓𝒆𝒔𝒌 

To show that selecting 10 is the optimum coefficient of resolution for LAI results, it is changed 

to 20 and 30 in the algorithm ((20𝑟𝑒𝑠𝑘 × 20𝑟𝑒𝑠𝑘 × 𝐷) and (30𝑟𝑒𝑠𝑘 × 30𝑟𝑒𝑠𝑘 × 𝐷)) and it is 

run over PCD from four scan stations. The results are summarized in Table 4.2. Using larger 

adaptive voxels increases the calculated LAI value and renders it out of valid ranges reported in 

the state of the art (Ma et al. 2016a; Barr et al. 2004). This proves that the 10-fold coefficient is 

appropriate for LAI calculations, although 20-fold and 30-fold coefficients make larger voxels 

and quicker voxelization.   

b) Comparison of adaptive and constant voxeling 

To show the efficacy of the adaptive method, voxels with constant sizes of (10𝑟𝑒𝑠̅̅̅̅̅ ×

10𝑟𝑒𝑠̅̅̅̅̅ × 𝐷), (20𝑟𝑒𝑠̅̅̅̅̅ × 20𝑟𝑒𝑠̅̅̅̅̅ × 𝐷) and (30𝑟𝑒𝑠̅̅̅̅̅ × 30𝑟𝑒𝑠̅̅̅̅̅ × 𝐷) are applied over the PCD from 

four stations and the results are summarized in Table 4.3. All these LAI values are out of 

acceptable range for trembling aspen.  
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4.3.2 LAI Estimation for the Stand Level 

          Our study field includes many trees. In the PCD from six scan stations, 21 trees are 

separated and individually assessed. The height and DBH of those individual trees were 

measured, and the LAI was calculated using the proposed algorithm. These trees have a height of 

25.85 ± 1.36 m (average ± standard deviation), a DBH of 31.79 ± 7.13 cm. The LAI for the 

mentioned stand is 3.13 ± 0.10. Figure 4.12 shows DBH versus tree height (R
2
 = 0.66). Figure 

4.13 illustrates the correlation between the LAI and DBH (R
2
 = 0.82) Figure 4.14 shows the 

relationship between the LAI and tree heights. (R
2
 = 0.84). 

 

4.4 Discussion 

 

To show the performance and the effectiveness of the proposed method for forest 

assessment, the sensitivity of LAI to the major parameters such as fixed and adaptive voxel size 

should be studied. Also, a comprehensive study requires investigation of the major sources of 

error in measurement and calculations. 

The main enhancement in the proposed voxelization/algorithm compared to the state of the 

art is incorporating the effect of LiDAR sampling resolution and intuitive selection of voxel size 

(slice thickness and pixel lateral size) based on physical and geometrical specifications of the 

canopy under study. We have also avoided auxiliary models such as radiative transfer model 

which expose calculations to a high margin of approximation in order to be able to calculate 

forest parameters directly based on common straightforward textbook definitions. The proposed 

method takes advantage of some select instructions on clumping/occlusion effect or laser beam 

diameter in previous studies on LiDAR-based LAI by incorporating them in the algorithm 

(Beland et al. 2014b). For minimizing the clumping effect, the voxels are instructed in literature 

to be small enough to avoid large gaps between branches and crowns. This is considered in the 

present method by building voxels of size (𝑢 × 𝑢 × 𝐷) with 𝑢𝑘 = 10. 𝑟𝑒𝑠𝑘. This is an adaptive 

method since 𝑟𝑒𝑠𝑘 is a function of the distance between the scanner and the hit point. 𝑟𝑒𝑠𝑘 is 

calculated based on the analysis of the distances between sampled points inside the PCD. Hence, 

no further action is required to find  𝑟𝑒𝑠𝑘. Furthermore, the under-sampled leaves are 

recommended to be considered in leaf area calculations for minimizing the occlusion effect. This 
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is assured by rules in algorithm Step IV where a ConvexHull is used or even a single point can 

represent a single leaf. Besides, the voxel dimensions are instructed in the literature to be much 

larger than the laser beam diameter (d). This is controlled in the proposed algorithm by 

calculating the beam diameter at each step as a function of distance and imposing several logical 

conditions to control that (𝑢, 𝐷) ≫ 𝑑 at Step III. In all LiDAR studies in literature, the laser 

beam diameter is assumed constant and they have not considered its effect.  

About the number of scan stations for data collection, current literature recommends 3 or 4 

stations which result in more comprehensive PCD and a better representation of canopy (Zheng 

and Moskal, 2012). It is observed that the increase in the number of stations changes the total 

number of points in PCD and also the LAI. The algorithm is run on six different PCD's from 

different combinations of scan stations: A, AC, ABC, ABCD, ABCDE, and ABCDEF. There are 

other possible combinations which are not included here due to brevity.  

At the stand level, 21 trees were analyzed. The coefficient of variability in DBH and height 

is 22% and 5.3%, respectively. The difference among DBH is caused by their age. The of the 

trees is almost similar which is expected for a forest stand. The coefficient of variability in LAI 

is 3.2%. This shows almost similar crown features and leaf configuration for the study plot. 

There is a strong correlation between LAI and DBH (R
2
 = 0.82) and also between LAI and tree 

height (R
2
 = 0.84). This means that the taller trees and the trees with thicker trunk are expected to 

have higher LAI.   

 

4.4.1 Adopting the Algorithm for Other Sites 

 

The proposed algorithm in this study is applied on trembling aspen in a boreal forest stand 

in north of Alberta. By adopting some of variables in the algorithm it can be applied on other 

PCD data in other species and other forest stand. For example, for other laser scanning systems 

based on the sampling resolution and beam diameter the lateral size should be obtained and 

equation 7 and 8 should be rewritten. Also for parameter D in this algorithm based on the shape 

of the leaves in any species equations 7 and 8 should be modified. Since LAI will change during 

the growing season, to have the annual average of LAI it is better to measure LAI several times 

during the growing season. 
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4.5 Conclusion 

 

This study presented a general, intuitive, and simple technique based on adaptive 

voxelization to estimate LAI using the point cloud data from ground-based LiDAR. For the first 

time, the effect of laser spatial sampling resolution was studied theoretically and experimentally 

as a function of distance and incorporated into the voxelization/algorithm for processing the 

point cloud data based on adaptive voxels which vary in size based on their location. This 

technique directly calculates LAI without the need to auxiliary models such as radiative transfer 

which deals with intermediate parameters such as gap fraction and extinction factor. These 

results in simplification of calculations and removal of the error margin associated with auxiliary 

models to allow higher precision. Furthermore, the present technique calculates the laser beam 

diameter and incorporates it inside the algorithm.  

This method was applied to a boreal forest for comprehensive analysis of canopy structure. 

The results show that one scanning station is not appropriate for delivering the spatial 

distribution of point density to estimate the LAI. We recommend using at least 4 scan stations to 

keep the LAI measurement and calculation error within minimum error while minimizing the 

occlusion effect. It verifies the previous findings for our proposed technique (Zheng and Moskal, 

2012). 

The application of the proposed method to a cross-section of forest from a single and 

multiple scan stations shall be the subject of a future work, where we shall compare the 

calculated canopy parameters of different individual trees with forest stands of various areas. In 

the present study, only perpendicular sunbeam radiation over canopy (𝜃 = 0) is studied and 

oblique sunbeam shall be the topic of a future research. 
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Tables Legends  

 

Table 4.1 Leaf Area Index for multiple scan stations for an individual tree. 

 

Table 4.2 Leaf Area Index for different u. 

 

Table 4.3 Fixed size voxels for LAI calculation. 
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Figures Legends 

 

Figure 4.1 Illustration of Populus tremuloides leaf in a boreal forest. 

 

Figure 4.2 Conventional voxelization method; (a) Confining box boundary (b) Horizontal slices 

(c) ON and OFF voxels in a slice which includes many redundant OFF pixels. The slice 

boundary is shown in dashed gray line. 

 

Figure 4.3 2D schematic of sampling resolution on a target leaf. 

 

Figure 4.4 Sample leaf of Populus tremuloides and its sizes. 

 

Figure 4.5 Side view of the tree crown pixelization schematic in proposed algorithm. 

 

Figure 4.6 Schematic of an individual tree scanning from six stations (A-B-C-D-E-F) around it.  

 

Figure 4.7 Illustrations of the LiDAR point clouds for a single tree in Cyclone; (a) Side view (b) 

Top view (c) Point cloud acquired from slice 81. 

 

Figure 4.8 LAI calculations of six stations for a single tree and comparison with LAI values 

obtained by TLS and other optical sensors. The black dots represent the LAI measured in this 

study by LiDAR using one to six scan stations. The dashed red line shows the LAI value (3.32) 

from TLS, the dashed blue line is the LAI value (2.4) from TRAC, the dashed purple line shows 

the LAI value of 2.1 from the LAI-2000 Plant Canopy Analyzer, and the dashed green line is the 

LAI value (1.67) by DHP.    

 

Figure 4.9 Point density profile along a single slice. The number of points processed at each 

slice.  

 

Figure 4.10 Sampling resolution at the middle voxel in mm used for defining u in each slice. 
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Figure 4.11 Different voxelization techniques; (a) fixed size voxels (u × u × D) (b) voxels of 

adaptive size (u1 × u1 × D), (u2 × u2× D), and (u3 × u3× D) depending on their distance from scan 

station. 

 

Figure 4.12 Diameter at Breast Height (DBH) versus Leaf Area Index (LAI) for the 21 sampled 

Trees derived from PCD data in summer season. 

 

Figure 4.13 Scatter plot of LAI as a function of DBH with a linear regression line (21 trees) in 

summer season. 

 

Figure 4.14 Scatter plot of LAI as a function of tree height with a linear regression line (21 

trees) in summer season. 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 

 

Table 4.1 Leaf Area Index for multiple scan stations for an individual tree. 

Number of 

Scan stations 

number of 

points 
LAI 

A 180608 1.91 

AC 359662  2.52 

ABC 412077  2.91 

ABCD 534941  3.2 

ABCDE 579992  3.23 

ABCDEF 581791  3.24 
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Table 4.2 Leaf Area Index for different u. 

u 10 resR 20 resR 30 resR 

LAI 3.2 5.81 7.92 
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Table 4.3 Fixed size voxels for LAI calculation. 

u 10 𝒓𝒆𝒔̅̅ ̅̅ ̅ 20 𝒓𝒆𝒔̅̅ ̅̅ ̅ 30 𝒓𝒆𝒔̅̅ ̅̅ ̅ 

LAI 3.96 7.35 9.07 
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Figure 4.1 Illustration of Populus tremuloides leaf in a boreal forest. 
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                                               (a)                                       (b) 

 

 

(c) 

 

Figure 4.2 Conventional voxelization method; (a) Confining box boundary (b) Horizontal slices 

(c) ON and OFF voxels in a slice which includes many redundant OFF pixels. The slice 

boundary is shown in dashed gray line. 
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Figure 4.3 2D schematic of sampling resolution on a target leaf. 
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Figure 4.4 Sample leaf of Populus tremuloides and its sizes. 
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Figure 4.5 Side view of the tree crown pixelization schematic in proposed algorithm. 
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Figure 4.6 Schematic of an individual tree scanning from six stations (A-B-C-D-E-F) around it. 
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                                (a)                                                         (b) 

 

 

(c) 

 

Figure 4.7 Illustrations of the LiDAR point clouds for a single tree in Cyclone; (a) Side view (b) 

Top view (c) Point cloud acquired from slice 81. 
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Figure 4.8 LAI calculations of six stations for a single tree and comparison with LAI values 

obtained by TLS and other optical sensors. The black dots represent the LAI measured in this 

study by LiDAR using one to six scan stations. The dashed red line shows the LAI value (3.32) 

from TLS, the dashed blue line is the LAI value (2.4) from TRAC, the dashed purple line shows 

the LAI value of 2.1 from the LAI-2000 Plant Canopy Analyzer, and the dashed green line is the 

LAI value (1.67) by DHP. 
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Figure 4.9 Point density profile along a single slice. The number of points processed at each 

slice. 
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Figure 4.10 Sampling resolution at the middle voxel in mm used for defining u in each slice. 
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Figure 4.11 Different voxelization techniques; (a) fixed size voxels (u × u × D) (b) voxels of 

adaptive size (u1 × u1 × D), (u2 × u2× D), and (u3 × u3× D) depending on their distance from scan 

station. 
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Figure 4.12 Diameter at Breast Height (DBH) versus Leaf Area Index (LAI) for the 21 sampled 

Trees derived from PCD data in summer season. 
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Figure 4.13 Scatter plot of LAI as a function of DBH with a linear regression line (21 trees) in 

summer season. 
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Figure 4.14 Scatter plot of LAI as a function of tree height with a linear regression line (21 

trees) in summer season. 
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CHAPTER 5 

 

Contributions, Conclusions, and Future Work 

 

5.1 Conclusions  

The main objective of this Ph.D. dissertation was to develop new algorithms to assess the 

forest structure properties using terrestrial LiDAR data in a Canadian boreal forest. In this 

context, this study mainly focuses on developing new algorithms for creating high-resolution 

Digital Terrain Model (DTM) in a dense forest, separating photosynthetic and non-

photosynthetic components in Point Cloud Data (PCD) and finally a calculation of the Leaf Area 

Index (LAI) which is a significant forest structure parameter. The main contributions, 

conclusions, and related future work for each chapter in the present thesis are summarized as 

follows;  

 

Chapter 2. Retrieving a Digital Terrain Model (DTM) in a Boreal Forest Using Ground-Based 

LiDAR  

The PCD collected by discrete Ground-based LiDAR from a forest has the potential for 

generation of DTM with a high spatial resolution due to its fixed platform and high data density 

(Slob and Hack, 2004; Prokop, 2008; Entwistle et al, 2009; Ergun, 2010; Abellán e al. 2014). 

This is generally a challenging task since discrete LiDAR only records the first reflection of a 

laser beam and hence ground points under the vegetation might be missed (Tyagur and Hollaus, 

2016). However, appropriate application of mathematical tools in our proposed algorithm solves 

this problem. A new simple algorithm in MATLAB® software was developed for automatic 

DTM generation. It utilizes median filtering for retrieving missed ground points and introduces a 

new score for assessment of the quality of DTM profile which is based on local slopes. The input 

of the algorithm is the high spatial resolution PCD which is slightly post-processed for removing 

noise such as sun glare. The errors associated with LiDAR classification on different data 

contexts, such as point density, terrain slope, shadowing effect, and land cover type, were 

assessed. The accuracy analysis of filtering results from the random sample datasets showed that 
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only 0.07 % errors were committed by the filter algorithm. The algorithm was successful in 

processing the PCD from various cross-sections of a plot study at the Peace River Environmental 

Monitoring Super Site, Peace River (PR-EMSS), Alberta. Our study plot consists of a terrain 

with different surface areas offering very low qualitative and quantitative (omission/commission) 

errors.  The algorithm performance was acceptable in the low complexity of land features such as 

smooth slopes, light vegetation and high density of visible ground points. This work is the first 

application of discrete ground-based LiDAR on a forest area for DTM. 

The core of the proposed algorithm can be modified for generation of other topographic 

maps such as Canopy Height Model (CHM) and Canopy Surface Model (CSM). These maps are 

essential for forest management and industrial planning (Fisher and Tate, 2006; Farid et al. 2008; 

Gonzalez et al. 2010). However, generation of DTM is a prerequisite for CHM and CSM.  

 

Chapter 3. Automatic Separation of Photosynthetic and Non-Photosynthetic Components in a 

Point Cloud Data from a Boreal Forest Canopy 

Accurate separation of photosynthetic and non-photosynthetic components is an essential 

step for calculation of significant canopy assessment parameters such as leaf area index and also 

green biomass (Beland et al. 2011). Without separation of photosynthetic from non-

photosynthetic components, a different parameter (plant area index) is calculated instead of leaf 

area index (Takeda et al. 2008; Olivasa et al. 2013; Pueschel et al. 2014). 

This chapter is focused on developing an algorithm for automatic, simple, and efficient 

separation of photosynthetic from non-photosynthetic materials. The algorithm doesn’t require 

the collection of extra information on temporal characteristics such as seasonal data, laser 

wavelength, or tree distance. The algorithm is based on an absorption intensity parameter which 

is calculated for every point using its raw intensity and its distance to the station. To evaluate the 

performance of the filtering method and examine the errors, both qualitative and quantitative 

analyses were employed in this study (Sithole and Vosselman, 2004). The separated 

photosynthetic PCD is ready for processing by the algorithm developed in chapter 4 for 

calculation of LAI.  

 

        Chapter 4. Calculation of Leaf Area Index in a Canadian Boreal Forest Using Ground-

Based LiDAR  
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LAI is an indicator of forest dynamics and ecological processes such as balance of the 

global carbon exchange, energy cycle in photosynthesis, evapotranspiration mechanisms, 

precipitation interception, and water/nutrient cycling (Chen et al. 2005; Dufrene et al. 2005; 

Dietz et al. 2006; Cleugh et al. 2007; Zheng et al. 2007; Gobron, 2008; Duursma et al. 2009; Yue 

et al. 2013; Sainte-Marie et al. 2014). The current state of the art offers algorithms for LAI 

calculation from ground-based LiDAR PCD. These methods divide the PCD into smaller 

equisize cubic collections called voxels. Then, they take advantage of intermediate auxiliary 

mathematical models such as radiative transfer and gap fraction model for indirect calculation of 

LAI (Chen and Black, 1991; Eriksson et al. 2005; Hosoi and Omasa, 2009; Widlowski et al. 

2014; Fang et al. 2014; Beland et al. 2014a). The mentioned methods are complicated and prone 

to a high level of error. A common denominator from these studies is that the effect of LiDAR 

scan sampling resolution is ignored.  

In this chapter, these aforementioned drawbacks are addressed and a new algorithm is 

developed. Instead of using auxiliary models, LAI is calculated directly. This algorithm 

calculates LAI simply. The green PCD generated by the separation algorithm in chapter 3 is 

delivered to the LAI algorithm developed in this chapter. In the proposed algorithm, the PCD of 

an individual tree is divided into adaptive voxels which gradually vary in lateral size from the 

bottom of the trunk to the top of crown; the proposed voxelization scheme doesn’t need a large 

outer confining box. Instead, PCD is vertically sliced and then divided to an array of pixels. 

Also, the redundant voxels are minimized and the number of empty voxels doesn’t affect the 

calculations. LAI is calculated directly from each voxel, in order to remove the errors associated 

with radiative transfer model, gap fraction, and extinction factor. 

The results of the present study also show that one scanning station is not appropriate for 

delivering the spatial distribution of point density to estimate LAI. With an increase of scan 

stations from 1 to 6 the LAI changes from 1.91 to 3.24. LAI values from 4 stations are well 

within the range of 3.32 presented in the literature for boreal forests. We recommend using at 

least 4 scan stations to keep the LAI measurement and calculation error within minimum error 

while minimizing the occlusion effect. The results from this chapter also showed that using 

larger adaptive voxels results in very large LAI values. With adaptive voxeling (𝑢 = 10. 𝑟𝑒𝑠𝑘), 

the average voxel size is 96% larger that the voxels of fixed size (𝑢 = 10𝑟𝑒𝑠̅̅̅̅̅). Hence, the total 

number of voxels required to process the whole PCD is lower. This is of ultimate significance 
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especially in case of assessment of a forest stand with a wide area which shall result in a point 

cloud with tens of millions of points. 

 

 

5.2   Limitations to Research Projects 

There are several sources of error that affect the accuracy of LiDAR measurements. 

Potential sources of error are the water drops, wind, sun-glare, co-registration, and topography.  

Water drops: The presence of water drops on leaves, branches, and trunk originating from 

dew or rain shower can severely affect the reflection of the laser beam and disrupt the PCD. 

Hence, some points might be eliminated from PCD due to absorption of the laser in water. Even 

if the laser beam survives the extra attenuation, the point intensity is highly affected by the water 

droplet. This can affect the procedure of separation of photosynthetic from non-photosynthetic 

components.  

Wind: Wind breeze can cause slight trembling and movement of leaves and thin branches. 

This can result in an inaccurate PCD or generate extra points which cause a problem in data 

processing.  

Sun glare: Sunbeam contains all wavelengths of visible light including 532 nm. While 

scanning, as the laser transmitter/receiver points toward the sun, a lot of energy are received 

which adds a huge amount of points in an approximately conical shape to the PCD. Hence, the 

data collection is recommended to be carried out on cloudy days. As an alternative, the points 

belonging to sun glare can be manually omitted from PCD before the processing steps. 

Co-registration: When an operator tries to manually collect the PCD's gathered from 

several stations into a single PCD, several reference targets are used. This manual operation in 

Cyclone or Cloud Compare® software might involve some level of error depending on operator 

skills.  

Topography: For forest stands over hilly areas, some tree features might be missed by 

LiDAR laser beams. This results in an incomplete PCD which leads to inaccurate canopy 

parameters. Especially in case of DTM generation, some land extents might be missed.   
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5.3 Future Work  

5.3.1 Retrieving Canopy Height Model (CHM) and Above Ground Biomass (AGB) 

Forest attributes such as canopy height can be directly retrieved from LiDAR data. 

Retrieving canopy height provides data to estimate canopy volume and above-ground 

biomass. The vertical structure of forest ecosystems also provides opportunities for enhanced 

forest management, monitoring, and planning. As a future work, a canopy height model can be 

developed to estimate above-ground biomass. Also, future research can be dedicated to the 

analysis of the error distribution in DTM generation, as this error can be transmitted 

consequently into derived products including Canopy Height Models, vegetation biomass, Leaf 

Area Index (LAI), and carbon storage.  

 

5.3.2 Enhancing the Algorithm Performance in the Context of Noise Removing and Leaf 

Identification Features 

Current versions of the algorithms require slight pre-processing of the PCD. As an 

example, sun-glare is manually omitted from the PCD. This is a simple task which can be carried 

out by any software with the 3D visual representation of point clouds. As a future work, with the 

objective of having fully automated algorithms, instead of manual sun-glare removal, an extra 

module can be designed and added to the beginning of current algorithms. This extra module 

should have the ability to detect sun-glare points based on their usual overall geometry, point 

intensity, or point elevation and omit them from the PCD.  

As another future work, to enhance the algorithm performance, several extra modules can 

be added to the code. As an example, machine learning techniques can be applied for leaf 

identification inside each voxel. To do this, a sample leaf is scanned by LiDAR at several 

different angles of 0°, 45°, and 90° in relation to laser beam direction. Then, the leaf identifier 

module is trained by prototype PCD from scanned leaves. Finally, this module can search inside 

every voxel and find the leaves based on their specifications.  
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5.3.3 Correcting for the Angle of Incidence and the Wind Effect 

As a future work, the methods developed in this chapter can be improved to consider more 

practical settings such as the incidence angle of the laser beam and the wind effect. In the current 

state of the art, these factors are ignored due to the complexity in considering their effect in the 

PCD. To consider the effect of beam angle, the physical phenomena of laser beam reflection 

over biomass should be studied and modeled. This phenomenon generally depends on the texture 

of the target surface which might be soft, stiff, or rough, the laser beam diameter, and the normal 

vector of the target surface. Since the PCD offers a high point density data, the hitting surface 

can be identified using neighboring points and the normal vector can be calculated by analytical 

geometry techniques. This procedure can be added to current algorithms as an extra module. 

The wind can also strongly disturb the recorded PCD. As an example, if wind gusts cause 

movement of a single leaf, laser beam might hit it in more points than usual. This will result in 

more points in PCD, higher leaf area and consequently the calculated leaf area index will be 

larger. As a future project, the effect of wind can be minimized by identifying repeated points in 

PCD. The signature of every single point is its point intensity. This can be done by examining 

the intensity of a point and comparing it with adjacent points.    

 

5.3.4 Expanding the Sample Species and Sites 

The application of the proposed method to a cross-section of the forest from a single and 

multiple scan stations shall be the subject of a future work, where we shall compare the 

calculated canopy parameters of different individual trees with forest stands of various areas. In 

the present study, only perpendicular sunbeam radiation over canopy (𝜃 = 0) is studied. Oblique 

sunbeam shall be the topic of a future research. 

As a future industrial direction, the three algorithms developed in this thesis can be 

integrated into the software of commercial LiDAR scan stations for simple access, quick 

processing, and widespread use. 
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