11167

ICIATIONAL LIBRARY BIBLIOTHEQUE NATIONALE

OTTAWA OTTAWA
NAME OF AUTHOR.. BB DEL -V.RT7.4H.. ABREL )b T.ITF SELTH
TITLE OF THESIS. . .. .ueueunsnenn e e enaenesene e,

CMNONLTNEAR. EFFECTS

N BRLASMNAS. .
UNIVERSITY......... U NIVERAS T /.c6F. HLBERT/Q

DEGREE FOR WHICH THESIS WAS PRESENTED....fD}Z— Z>£ ..... ceaen

YEAR THIS DEGREE GRANTED........c0vvunns e cacactctraanaancan
Permission is hereby granted to THE NATIONAL LIBRARY

OF CANADA to microfilm this thesis and to lend or sell ‘copies
of the film.

‘ The author reserves other publication rights, and
neither the thesis nor extensive extracts from it may be
printed or otherwise reproduced without the author's

written permission.

(Signed)...;annO.L-:..%e.\.l..m.Z

PERMANENT ADDRESS : .
..-.Ca,iﬁo....(/.l/l.\:v.e..ﬁt'f:)
...Y’.'O\cu.(.’ceg...a%.gc.\:emg.&

DATED... Dec »... 2 ..... 197/. ch’u Lite :ﬁ E%)’)t -

NL-91 ¢(10-68) -



THE UNIVERSITY OF ALBERTA

'NONLINEAR EFFECTS IN PLASMAS

by

_ @ ABDEL~-FATTAL ABDEL-LATIF SAYED SELIM

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

-

DEPARTMENT OF PHYSICS

EDMONTON, ALBERTA:

SPRING, 1972.



UNIVERSITY oOf ALBERTA

FACULTY or GRADUATE STUDIES AND RESEARCH

PLASMAS submitteg by Abdel

—Fattah Abdel-~Latif Sayed

D. Rankin, Supervisor
S. Krishan, Co-Supervisor

A.B, Bhatia

%a. ot
i OB T L
G.L. Cumming

& C

'..‘.o..-

...--oool.

W.B, Thompson, Ex+t
Date'.................-..

ernal Examiner



ii

fiela theory.



iii

ACKNOWLEDGEMENTS

d thanks to pr. David

1 wish to exXpress mny unfeigne
Rankin for his untiring assistance and supervision in mak-

ccesSSe.

jeld of endeavour a su
som Krishan for sug-

ing this £
Y thankful to Dr.

T am sincerel
search project and al

g and directing this re so for

gestin
iscussions and remarks.

his meritorious a
ghout the

ancially supported throu

~ 7he author was £in
e.Teaching Assistantship

is study by a Graduat

course of th
University

£ Physics, of Alberta; The

£rom the pDepartment O
anada and the Univers

1 Research council of C
public of Egypt.
e to acknowledge the con

g-reading the final manu~

Nationa ity of

cairo, The Arab Re
tribution

Finally., 1 would 1lik

of Miss Mila Oliva Flores foxr proo

script of this thesis.



CHAPTER 4 A STABILITY MECHANISM FOR

ION ACOUSTIC WAVES
4.1 Introduction

4.2 Linear Dielectri

c Function and
crowth Rate

4.3 Nonlinear Dielectric Function
and Frequency shift

4.4 comparison

CHAPTER 5 FREQUENCY SHIFT IN ELECTRQMAGNETIC WAVES

5.1 Introduction

5.2 Wave—Particle Interaction

5.3 Two—Wave—Particle Interaction

5.4 gcattering Amplitude and Fregquency
shift

5.5 Amplitude pependent Frequency shift
a. Light waves

p. Whistlers and al1fvén Modes

REFERENCES
APPENDIX A

APPENDIX B

68

68

70

75

99

102
102
105

109

111

123

125

127
131

134



iii

ACKNOWLEDGEMENTS

unfeigned thanks to Dx. pavid

1 wish to express my
Rankin for his untiring assistance and supervision in mak-

avour a succesS.

ing this field of ende
Som Krishan for sug-

am sincerely thankful to Dr.

I
g this research project and also forx

gesting and directin
and remarks.

ritorious discussions
rted throughout the

his me
The author was financially SupP©

a Graduate‘Teaching Assistantship

urse of this study by
artment of Physics,
uncil of Canada and th

co
The

tniversity of Albertas

from the Dep
e University of

MNational Research CoO
e Arab Republic of Egypte.

cairo, Th
ould like to acknowled

Finally, I W

ge the contribution

'proof—readlng the final manu~

of Miss Mila Oliva Flores fox

script of this thesis.



ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF I1L.LUSTRATIONS

CHAPTER 1 INTRODUCTION

CHAPTER 2

CHAPTER 3

THEORY

2.1

Occupation Number Formalism
(second quantization)

- Bose statistics.

b. Fermi Statistics

Motion of a charged particle in a
Uniform Magnetic Field

Particle-Quasiparticle Interaction
Scattering of particles

The Scattering Matrix

Feynman Graphs

General Rules_for the calculations
of the Scattering Matrix Element

LINEAR AND NONLINEAR COLLISIONAL
DAMPING OF PLASMA WAVES

3.1

‘3.2
3.3

3.4

Introduction

Scattering Matrix for Linearxr and
Nonlinear Collision

Linear Collisional pamping of
Plasma Oscillations

Nonlinear Collisional Process

iv

Page
ii
iii

vi

12

14
18
20
24
29

36
45
a5
48

53

59



CHAPTER 4 A STABI

LITY MECHANISM FOR

ION ACOUSTIC WAVES

4.1

4.2

4.3

4.4

CHAPTER 5 FREQU

5.1
5.2
5.3

5.4

5.5

REFERENCES
APPENDIX A

APPENDIX B

Introduction

1.inearx Dielectric

Function and
crowth Rate

Nonlinear Dielectric Function
and Freguency shift

comparison

ENCY SHIFT IN ELECTROMAGNETIC WAVES

Introduction

Wave—Particle Interaction

Two—Wave-Particle Interaction

gscattering Amplitude and Frequency
shift

Amplitude Dependent Frequency shift

a. Light waves

pb. Whistlers and aAlfvén Modes

68

68

70

75

29

102
102
105

109

111

123

125

127

131

134



LIST OF ILLUSTRATIONS

Figure
1 Linear Landau damping
2 a. Coulomb interaction

b. Effective Coulomb interaction
Compton scattering
Nonlinear Landau damping (growth)

Particle—particle scattering

poson self-energy

3

4

5

6 Fermion self-energy

7

8 This shows process has no transition
9

Three wave interactions

10 Four wave interactions

11 Three wave interaction.example

of two plasmons and creation of anotherx

12 Linear collisional processes
13 Indirect linear Landau damping
14 Nonlinear collisional process
15 Indirect nonlinear scattering
16 Linear collisional processes?
refers to a heavy jon and the
electron.
17 Nonlinear collisional processes: The upper

1ine refers to a
one to an electron.

18 This figure shows the direc

> >, > > >
vectors 4d.4',4 and Q+q2
2

19 Nonlinear effects in the dielectri

c function
(square 1loop) -

: Annihilation

The upper line
jowexr one to an

heavy ion and the lower

rion of the wave

vi

Page
20
22
23
32
32
33
33
33
34
35

37

a2
50
51
52

53

54

61

65

76



20

21

22
23

24

25

26

Nonlinear effects in the dielectric
function (triangle lo0p) -

Schematic representation of the shift in the
phase velocity of the wave from the unstable

to the damping part of the electron distri-
bution

Electromagnetic wave—-particle interaction

Two-wave—particle interaction

The contribution to the scattering amplitude
due to four—plasmon—particle vertices. This

-
comes from p-K texrm.

The contribution to four—wave scattering
from two plasmon—particle vertices and
one two—plasmon—particle vertex. This

comes from A2 and p-R terms.

The contribution to four—wave scattering
from two—plasmon—particle vertices. This

comes from the A2 term in the Hamiltonian.

vii

77

96
109

110

114

119

121



CHAPTER I

INTRODUCTION

The linear theory in plasma physics had been adequate
for the understanding of small amplitude plasma oscillations
and indeed it was believed that the problem of the stable
confinement of plasma could be solved within this linear
theory. More recent theoretical development and experimen-
tal heasurements have demonstrated a whole chain of new
plasma instabilities and in fact the presence of instabili-
ties is the most characteristic attribute of this state of
matter.

The fundamental question as to how the instabilities
develop and whether or not they play a significant role in
plasma phenomena can only be answered by nonlinear theory.
In the past few years, the application of nonlinear theory
(Sturrock, 1957; Ginzburg and Zhelemiakov, 1958; Kadomtsev,
1965 and Vedenov, 1965) has undergone such vigorous develop-—
ment as to result in the formulation of some clear physical
concepts regarding these nonlinear mechanisms. However
while the achievements of the above authors were notable, the
range of nonlinear interactions was by no means completely
understood nor was a systematic methodology developed. In
addition to the class of problems in which the amplitude of

the wave fields is of primary concern, nonlinear theory can
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be used to explain mode conversion. fhis process is of funda-
mental importance since mode conversion leads to electromag-
netic radiation by which interstellar and solar plasmas, for
example, can be studied.

When considering the problem of nonlinear interactions,
the guantum mechanical calculations are more straightforward
and less difficult than the corresponding classical calcula-
tions. One of the most successful early methods of attacking
this problem, which is still used extensively today, is the
canonical transformation technique. However, one would prefer
a more systematic method of obtaining system properties and
it was shown in a series of revolutionary papers (Vedenov,
et al., 1962, 1963; Pines and Schrieffer, 1962) that quantum
field theory; previously restricted to elementary particlé
physics, provides such a systematic method. &an essential
role in the field theoretic treatment of the many body prob-
lem is played by the Green's function or propagator of the
system. The propagators can be calculated relatively more
easily by using the well known Feynman diagram technique
which has the additional advantage of providing a pictorial
representation corresponding to each term in the perturbation
expansion.

From the above point of view, the waves in a plasma
can be thought as being composed of guasiparticles (guanta of
waves). These quasiparticles interact with the particles of

the plasma and with each other and their interactions are
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described in terms of an interaction Hamiltonian. The inter-
action Hamiltonians for particles and plasmons (quanta of
plasma oscillations) and particles and phonons (gquanta of ion
sound waves) were obtained by Pines and Schrieffer (1962).
They used these together with the "Fermi Golden Rule" to
write the quasilinear equations. Pines and Schrieffer,

(1962) and Vedenov, et al. (1962) pointed out that the Landau
damping oxr growth process which forms the basis of quasilin-
ear theory, can be described as the competition between ab-
sorption:and stimulated emission of quantized plasma waves

Oor plasmons. Similarly; the quantum form of the equation
describing nonlinear Landau damping is discussed by Rosen-
bluth, et al., (1969); Ross, (1969); Harris, (1969) and
Krishan and Fukai, (1971).

The rate of change of particle distribution is de-
rived by Wyld and Pines (1962). They assumed that the ma-
trix element for a Coulomb collision, Are?/g? must be modified
by the factor e‘l(a,w) (Thompson, 1962) where € is the di-
electric function of the plasma, h& is the momentum transfer,
and Hw is the energy transfer in the collision. The egua-
tion of Wyld and Pines reduces to the well known Boltzman
equation in the classical limit. Quantum mechanical calcu-
lations for four-plasmons (Langmuir waves) in an unmagnetized
pPlasma have been carried out by Zakharov (1967) and for three
plasmon interactions for longitudinal and transverse waves by

Krishan (1968) and by Krishan and Selim (1968). Attention



should also be directed to the paper of Gailitis, et al.

(1966) in which, although the calculations are classical,

the language is quantum mechanical. This deals with the

interaction of plasmons, phonons and photons in an isotropic

plasma. A guantum mechanical theory of nonlinear phenomena

in a very strong magnetic field was developed by walters and

Harris (1967, 1968) . The three plasmon interaction of wal-

ters and Harris had prev1ously been derived classically by

Aamodt and Drummond (1964) .

In chapter 1I, the occupation numbeXx formalism (sec-—

ond quantizatlon) and the motion of charged partlcles in a

uniform magnetic field are introduced. The electromagnetlc

field in a plasma is guantized as has previously been done by

Kihara, Aono, and Dodo, (1962) ; Alekseev and Nikitin (1966)

and Harris (1969). The wave—partiele and'particle-particle

interaction Hamiltonians are derived and represented by

first order Feynman diagrams. The theory of the scattering

matrix and its representation by Feynman graphs are developed

and represented in a suitable form for studying the nonlinear

plasma interaction. General rules for the calculations of

the matrix elements (coupling constants) for higher orderx

diagrams are established.

Chapter IIX, deals with the transition matrix elements

for the scattering of two particles through effective Coulomb

field and the emission (absorption) of one and two plasmons

(waves) in an unmagnetized plasma. Using these matrix elements
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CHAPTER II

THEORY

2.1 Occupation Number Formalism (Second Quantization)

In the guantum mechanical investigation of systems
composed of large numbers of particles, it is beneficial
to use the occupation number formalism or 'second quanti-
sation"as it is often called. In this method, one seeks
a mathematical formalism in which the occupation number of
the states (and not the coordinates of the particles) play

the part of the independent variables.

a. Bose Statistics

Consider a system of N non-interacting particles
(bosons)lwith wave functions gl(;), 52(§), «ees, Which then
form a complete set of orthogonal and normalised wave func-
tions. The total wave function of this system is a sym-—
metrised sum of products of the functions gi(§)

N N I'Nlm T R VA N R N
.. =l 2 """ -
‘PNI'NZ (X seeerxy) Zspl(x;)gpz(x )

Yoo (X

. [}

- - N 2 pN N
(L)

Here Ni are the number of particles in the ith state,

pl,pz,...pN are the ordinal numbers of the states in which

the individual particles are, and the sum is taken over all



permutations of those suffixes, which are different. The

constant factor is chosen so that the function YN N .
, e
1 2

is normalized.

Let fa be the operator of some physical guantity

acting only on a function of ;a‘ consider the operator

F=1) £, (2)
o .

which is symmetrical with respect to all the particles and

whose matrix elements with respect to the wave functions (1)

will be determined. These matrix elements will be different

from zero for transitions which leave the numbers N1'Nz'°°"

unchanged cdrrésponding to the diagonal elements, OX, since

each of the operators fd acts only on one function in the

product (1), its matrix element can be different from zero

for transition whereby the state of a single particle is

changed, which implies that the number of particles in one

state is diminished by unity, while the number in another

state is correspondingly increased. Simple calculations

yield the non-diagonal elements

N, N -1

(F) = €., /MN:N (3)
Ni-erk ikv"mivk

where fik is the matrix element

£ix = Jzi(?:)fsk Facx (4)
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The diagonal matrix elements of F are the mean values of the

N and are given by

quantity F in the states WN
: 12

F =) £,,N; (5)
i
The operators F can be pictured as acting on the occupation

numbers Ni if one introduces operators a,. which decrease by

one the number of particles in the ith state and possess the

matrix elements

(a;) = VYN, (6)

The Hermitian conjugate operators a; obviously have the ma-

trix elements

(a*) = l@) * = /N (7)

i.e. they increase the number of particles by one. It is

easily shown that the operator F can be written as
+
F=) f£f.,a.a (8)
itk ik“i"k

The matrix elements of this operator are the same as those

of (3) and in fact this is the expression for F in the sec-
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ond quantisation form. Thus, one had been able to express an
ordinary operator (of the form (2)) acting on functions of
the coordinates, in the form of another operator acting on
functions of new variables, the occupation number Ni‘ This
result is easily generalized to operators pPertaining to more
than one particle at once.

From (6) and (7), one can prove the following com-

mutation relations

+ - + - + _
(aj,ax] = a;a - aga; = §;,
(9)
— + . _
[ailak] - [ailak] - o

+ sy s .
The operators ai‘and a; are known as annihilation and crea-—

tion operators.
Finally, it remains to express, in terms of the oper-

ators a; and a;, the Hamiltonian H of the pPhysical system of

N identical interacting particles that is actually being
considered. In the honrelativistic approximation H can be

represented in general form as follows

H = g H, +a£6 U(xa,xs) + ¥ U(xa,xs,xy) + . (10)

Here Ha is the part of the Hamiltonian which depends on the
2
coordinates of the oth particile only Ha = '.gﬁ V; + U(xa),

where U(xa) is the potential energy of a single particle in
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an external field. The remaining terms in (10) correspond to
the mutual interaction energy of the particles. In'the sec—

ond quantisation form, equation (10) becomes

+ . :
H= ) ata, + ) ik _+_+
. . + e
K ik ikfm [Ullmalakalam L
This gives the reguired expression for the Hamiltonian in the
form of an operatorxr acting on functions of the occupation

numbers. For a system of non-interacting particles,‘equation

(11) becomes

+
H=) H;2;2 (12)
itk ik“i"k

If the function Ei(§) is taken to be the eigenfunction of the

Hamiltonian of an jndividual particle, the matrix Hik is
diagonal, and its diagonal elements are the eigenvalues E; of

the enexrgy of the particle. Thus eguation (12) yields
E = § B3N (13)
1
steme.

This is the expression for the energy 1evels of the sy

The formalism which has been developed can be put in

a somewhat more compact form by introducing the operators

1

v = 3 agEy (YT =] afel O (14)
1 1

With the properties of a; and a;, it is clear that the oper-—
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ator VY(x) decreases the total number of particles in the

system by one, while W+(x) increases it by unity. One can

easily prove that these operators satisfy the commutation

rules
[¥(x) ¥ (x)1 = 8(x-x")

(15)
[¥(x) ,¥(x")1 = vt x), v (x)1 =0

The expression (é) for the operator (2) can be written,

using the operators (14) ., in the form

F = [w+(x)fw(x)d3x

+ I + 3

= } a;a, |¥;E¥d'x (16)
itk i%k)*iT vk

_ +

= I F5x®3i%

i,k
which is the same as (8).

Thus, the Hamiltonian H can be

written, using (16) and similar expressions, as follows

H = Ia3xw+(x)u(x)W(x) + [[daxdsx'w+(x)W+(x')U(x,x')W(x)W(x')

+ e e e . (17)

To clarify eguation (17) , suppose each particle of the given

system is described (at a given instant) by the same wave

: 2
function E (%) which is normalised so that %Ilg(;)l a3x = 1.
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Then, it is jmmediately evident that, if one replaces the

operators y(x) in (17) by g(i), this expression leads to the

mean energy of the system in the state consideréd. This

gives the following rule for deriving the Hamiltonian in the

second quantisation formalism. The expression for the mean

enexrgy is written in terms of the wave function of an indi-

vidual particler and this function is then replaced by the

operators ¥ (x) -

b. Fermi Statistics

The basic theorY of the method of second quantisation

remains unchanged for systems of identical particles obeying

Fermi statiétics. However the actual formulae for the matrix

elements of guantities and for the operators a; are different,

because unlike the case of Bo

se statistics the wave functions

are antisymmetric.

The matrix element of an operator ¥ of the type (2)

are in the present case

F = § £,40 (18)

for the diagonal elements, and

1,0 § (i+1,k-1)
(F) T K = £5, (-1 (19)
0.1

ik

for the off-diagonal elements. The factor (-1) appears to a
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ccupation numbers of all

the sum of the ©
Y (i +1,k-1) =

power equal to
h and the xth (

s between the it

i<k) .,

state
k-1
n_ and 0.,1. refer to n; = 0, Ty = 1 (n; peing the num-—
_& r i’ i i i i
r=i+1l
h state) .

mions in the it
the form (8) .

per of fer
e opefator F in

to represent th

will be replace

the operators a;
da as matrices whose elements are

in oxrder
a by Ci for fermions

which

must be define

0. 1. J(1,i-1)
(c) T = €t = e (20)
1. 0.
i i
These operators satisfy the following anticommutation rules:

4+ + + _
{ci,ck}— cick + ckc.l = 85p

(21)

obvious that the result of

not only on the
put also

tion (20}, it is

ators Ci depends

From the defini
num-

ction of the oper

(as in the cas

the a
e of Bose statistics),

ber nj itself
on the occupation numbers of all the preceding states.
with these properties of the operators C:.L and C;, the
(16) and

formulae (8) and (11) remain valid. The formulae
perators of physical quantities in

hich express the ©O
a ¥v" (x) defined PY

(17) W
(14) also

terms of the operators y(x) an
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hold good. The commutation rules (15) however changes into

the anticommutation relations

(w(x) ¥ (xNY = s (x=%")

v (X Y EDD AN A IR A (22)
charged particle in a Uniform Magnetic Field

wvistic Hamilton

cle of

Motion of a
jan for & parti

2.2
The non—relati
species 3 in 2 uyniform magnetic field is given by

.2
- i %1%

Hy = 7w, [ﬁj-vc A(x).x + eyo(x) (23)
where §j is the canonical momentum of the jth particle and
A (x) and o (x) are the vector and scalar potentials of the

to time independent zeroth oxrder

can be split in

ependent pertur

field which
pation term which in this

term and 2 time 4
ollective excitation of waves-

11 be due to ¢C

case Wi
Ry =& X 0 (24)
p(x) = ¢ + ¢1(x) (25)
ernal

potential due to 2 uniform ext

is the wvector
il(x) and ¢1(x) a

1a (p_ = 07
0

Herxe Ko
re the wvector and

magnetic fie
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scalar potential due to collective fields of transverse and

longitudinal waves respectively.

substituting (24) and (25) into (23) yields

— g {®) (1) (2)
Hj Hj + Hj + Hj | (26)
where
() _ 1 3.+ 3%,
H = Zm, By + =3 Ko) (26.a)
() 2 @ 2R
Hj 7,0 i(§j+ — Ko) Kl(x)
> > e .. .
. — .
T SECORN R - Ko)} +e it () (26.b)
(2) e;? >2
gl{?) = 31— A (x), (26.¢)

and Hén) is the unperturbed Hamiltonian. The first and sec-~

ond terms in equation (26.b) are responsible for the linear

interaction of particles of species J with the electromag-~

netic waves and the third term is responsible for the linear

interaction of particles with longitudinal fields. ng),

equation (26.c), will be responsible for the nonlinear wave-

particle interaction (electromagnetic waves) .

The vector and scalar potentials Kl(x) and ¢1(x) can

be expanded in Fourier series in a large box of volume V,

assuming the usual periodic boundary conditions (Harris, 1969)
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3> > -
i[q'x—wT(q)t]

-> - 2 - >
Alx) =} ZnEc — eq{Aqe
P VwT(q)FT(q)

> > ->
-i[g-x~w,(q)t]
; @1 )

+ A e
q

-> > > ->
athe, (@) ]1/2 ifqex-w. (q)t]
¢1(X) =3 - L {aqe L

& |VatFL(@

-i[JeF-wy (@) t]
+ Lo } (28)

+ a e

q

The reason for the factors in square brackets is discussed
later. The functions FT(E) and FL(E) are given by

> _ 11 2 ->
FT(CI) = \-2_0)-_8_0—) (NZET(N:Q)‘) m.:wT('&) ’ (29)

Fo(@ = \83_6 [meL(m.’&))‘m;wL(—&) . (30)
wL(a), wT(E) are the longitudinal énd transverse frequencies
respectively; sL(E,m), ET(a,w) are called the longitudinal
and transverse dielectric functions and aq, Aq are Fourier
coefficients; a; and A; are their complex conjugates. Fi-
nally., Zq is a polarization vector.

The transition from classical to guantum mechanics

(quantisation of electromagnetic fields) is made'by reinter-



preting aq and Aq as annihilation operator

and transverse fields (bosons

a+ and A* arx
a qd

e the corresponding crea

operators satisfy the commutation relations

The energy in the electromagnetic fie

waves) is given

This is not the

far as the particles of the medium mov

Hy = %"E Id’x{‘ET‘2+ |B\2}

total energy¥ associated with

wave, their energy must be properly included

enexrgye. Landau

17

s for longitudinal
) of momentum ﬁa and enexgy hwq;

tion operators. These

(9) .

14 (transverse

(31)

the wave; in soO

e in response to the

in the total

and Lifschitz (1960) have shown that in such

a dielectric medium the total energy is

c
]

i 3
2

i

This shows that

2
1 ak| [1_ 2
amc? [a=(3e| |5 % (oteg ) |

% {\ET‘Z\%E (meT(m))“":“’T N

the energy density which a w

in a vacuum must be corrected by.the factor

= FTCE) when it

moves in a medium of a diele

eT(m). Substituting equation (27) into (32)

the integration,

one obtains

-— > +
Up = I hog (@ AR,

o} 4

121"}

(32)

m=mT

ave would have

1 ] 2
\'z‘a Soleep @) \
w=wT
ctric constant

and performing

(33)
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similarly

U, = %?Id‘x\EL\z\%G(wsL(m))\m=wL

ja‘x\w\z\%;(weLM)‘\ (34)
.'.\)=u)L

3~

is the total energy in the elecktric field of longitudinal

waves. substituting (28) into (34) and performing the inte-

gration yields

_ +
U, = z ﬁmL(q)aqaa (35)
q

I+ is obvious that the terms in the square prackets of egua-

tions (27) and (28) provide the correct form for equations

(33) and (35) .

2.3 Particle—Quasiparticle Interaction

According to the theory developed in secC. 1, the total

interaction Hamiltonian between particles of species 3 and

longitudinal quasiparticles can be written in the second

quantisation formalism as

By e = Ia%w* x)e b, (¥ ) (36)

Here ¥ (x) and'W+(x) are the field operators which satisfy

the anticommutation relations (22) and ¢1(x) is the electro~

static potential given by (28). The field operators yY's can

be expanded in the annihilation and creation operators c,
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and Ci which satisfy (21)
k

¥y = ) C,E, (%) (37)
= k k

iz = § ClE, (0 (38)
i k k

where g+(§) is the solution of the sSchrodinger equation
k

(H - E,)E,(X) = 0O (39)
° kK k

and Ho is the unperturbed Hamiltonian. In unmagnetized

plasma'(Ko = 0) the unperturbed Hamiltonian is

given by
2
H = - R® g2 and (39) yields
0 ij
R
£, G = = ik°X (40)
k Vi :

substituting (28), (37). (38) and (40) into (36) and carrying

out the integration, one obtains

. = J M (@C] ,Cha, * u® (@)C, ,Coa% (41)
2.5 ° kK+q k 4 0 k+q k @

where

' * 4wth(qY 1/2
Mo(q) = Mo(q) = e, |——— (42)

I va?Fy (@)

The terms in the interaction Hamiltonian (41) can be

represented by Feynman diagrams as follows: the first term
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which contains Ci +Cay describes the process jin which a
k+tq k 4
X is destroyed, one is created in the

particle in the state
state §+§ and a quasiparticle of momentum ha is destroyed.
process.

The term containing C, *Ciei describes the inverse
k+qg k g :
These processes are represented by the diagrams jin Fig. 1 and
yield the soO called 'linear Landau damping’ .
x *+q
Pa™
-»> -»>
g9 q
%3 ;:
Fig. 1 Linear Landau damping
plasma

The interaction Hamiltonian foxr a magnetized
undergoing electromagnetic wave—-wave and wave—-particle inter-
tion in Feynman diagrams will be

actions and its representa

developed later in chapter V.

2.4 Scattering of Particles
consider 2 test particle of charge ej and mass mj
interacting with a plasma., the interaction Hamiltonian is
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given by
ee >
G =1 55 =V
s i

1nt ‘§ ;

(43)
sil

where V(§) is the electrostatic potential energy at the posi-

tion x of the test particle, and ;s is the position of the

ith particle of species s in the plasma. Only Coulomb intex-

actions are taken into account. The potential V(x) can be

expanded in a Fourier series in a box of volume V as follows

N N e
v = ) vi@e? (44)
g
where V(E) is given by
3 .
v = I ax e 19X g (%)
ATe.e -1q°;
=7y —+=e st (45)
s i vqg?
Thus, substituting (44) and (45) into (43) yields
> > >
ATe.e ige (x-x_s)
B, GO =11 ) o © = (46)
> s i vg?
q
The total interaction Hamiltonian in the second

quantization formalism is given by

Hy e = ) arxatx ¥ Gt (xE GO YE YD 4T
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substituting the field operatoxrs (37) ., (38) and the inter-

action Hamiltonian (46) into (47) and performing the inte-

grations, one obtains

+ &
H. = vccec, C C (483
ine = L L VTR AR
k,k" .4

where the coupling constant Vq is given by

ATte.e
v = 1S (49)
q qu

The jnteraction Hamiltonian (48) , can be represented by

-
Feynman graphs as follows: a particle jn the state i+q is
scattered into a state % by a particle initially in the

state i'—a which is scattered into a state ¥'. Momentum is

conserved in the processS. This is shown in Fig. 2(a).

% %
> > >

. + ' -

3 > ¥4 s

Fig. 2(a) Coulomb interaction

Fig. 2(a) is simply a scattering of a particle of species 3

with a particle of species S. In a many pody problem, this
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process represents only the first term in an infinite series

which represent the total scattering that takes plaée. If

the sum of the infinite series is represented by Vees where

the first term is Vq, one obtains in the random phase approx~

imation
vne Dol A D>
1- D
iTe_e.
que(qrw)
where )
e(@,w) =1 e D (51)

is obviously the dielectric function of the plasma nedium.

The effective field (50) is represented diagrammatically in

Fig. 2(b).

k kr
———
¥+q T -3

Fig. 2(b) Bffective Coulomb interaction
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2.5 The Scattering Matrix
The theory of the scattering matrix (S-matrix) can be
developed by introducing the interaction picture (I.P.) in

which the state vector ¥(t) is given by

L. BW(E) _
1A =55 = H; ¢

v (t) (52)
Thus, in the I.P. the state vectors have the time-dependence
of SchrSdinger pPicture with the interaction Hamiltonian Hint
instead of the total Hamiltonian. It is useful to obtain a
solution of this equation particularly suited to describing
scattering processes, with the initial state of the system
at t = = =

¥(-=) = ¥, = [i> . (53)

This state vector will completely specify the particles
pPresent initially (i.e. long before scattering occurs when
all particles are still far apart). Equation (52) then tells
how the state vector (53) changes with time. In particular,
it gives the final state V¥ (+w) = Ve = |£> at time t = «,
long after scattering is over and all particles are far apart

again. The S-matrix is defined as the operator which trans-

forms ¥ (-«) into ¥ (4«):

¥ (+) = SY (-=) (54)
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so that finding the S-matrix is equivalent to solving equa-
tion (52) which can be transformed into an integral equa-

tion as

. t
= o (=i)
v(t) = ¥(-=) + -7 I dtlnint(tl)v(tl) (55)

-0

Solving this equation by iteration, one obtains the S-matrix

+-c0 +-c0
- O § s J I :
s = ...l at ...at p{H_(t YH_(t )...H_(t )1}
nio nrhn e Lo 1 n I 1 I 2 I n (56)

Here the Dyson chronological product P{...} of n factors
means that the factors are not to be taken in the order in
which they are written in the P-bracket; but, operators

with later times stand to the left of operators with earlierxr

times. The equivalence of equation (56) holds for each term

n separately and is easily verified.

The S-matrix expansion (56) will effect many compli-
cated transitions. However, only certain terms will contrib-

ute to a given transition |i> - |£> as they must contain
just the right absorption operators to destroy the particles

present in |i> and that they must contain just the right

creation operators tolemit the particles present in |£>.

It is convenient to introduce what is called the nor-

mal product (N-product) and the Wick's chronological product

(T-product) . An operator which is a product of creation and

annihilation operators is called a normal product if all

creation operators stand to the left of all annihilation



26

operatoxrs. For example

N\?+W vty \ - —y'yty v = yFyty ¥ (57)
1 1 2 2. 1 2 1 2 1 2 2 1 )

+. such
2

1es and

The minus sign resﬁlting from the interchange W1++ b4
n operator first absorbs a certain numbeXx of partic
ause emission and

a
ts some particles. It does not ¢
one writes

then emi
Thus .,

reabsorption of intermediate particles.
(56) as a sum of normal

-matrix expansion
will effect 2 par
nted bY Feynman

each term in the S
gach of these ticular transition

ch can be represe

products.
graphs.

|i> - |€>, whi

The p-produc

ollows:

t 1is defined as £
the T—product is equal to the P-

(i) For +wo boson fields.,
product defined bY

p(x Vo )y, if t >t

1 2 1 2

P{¢(x1)¢(xz)} = (58)

' $(x Vo (x y, if t >t

2 1 2 1

if A(xl) iz one of the operators ?(xi) or W+(x1) and
e of the operator

a as (58) put th

then the P-
ined bY

(ii)
B(x ) is on
2

product is define

s ¥(x ) or v x )
2 2

e p-product is def

A(x )B(x y, if ¢ >t
1 2 1 2
(59)

T{A(xl)B(xz)} =
-B(x YA(x ). if t >t
2 1 2 1

of fermion operatoxrs,

commuting nature

cause of the anti
ows for the change

which all

Be
of sign when

the p-product.,
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interchanging two fermion fields, is more appropriate.

Thus, eguation (59) can be written in general as

T(A(x )B(x,) .-} = (-1)FP{A(x IB(x ).} (60)

where the exponent P is the number of interchanges of pairs

of fermion fields required to change from {A(xl)B(xz)...}

to the chronological order.

For theories in which the interaction Hamiltonian is

pilinear in the fermion field, one can simply replace the

P-product in the S—matrix expansion (56) by T-products,

since only even numbers of interchanges of pairs of fermion

fields are involved. Thus, egquation (56) becomes

s = °z° =2 J...Jdt ..dt T{H (£ YH (E)) H_(t )}
n=0 nih® 1° n i e AP S
(61)

From egquation (57), it is obvious that the N-product

of any set of operators has zero expectation value in the

vacuum state. For this reason, one can introduce the con-

traction or chronological pairing of two operators as fol-

lows:

Alx B(x ) = T{A(x )B (% )} - N‘—A(x )B(x )"\ (62)
1 2 1 2 = 1 2 _

Then the expectation value of the T-product in the wvacuum

state will be
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A (xl)ﬁ(xz) = <0|T{A(x1)B(x2)}|0> (63)

This is just a function that picks out cases of non-

vanishing commutators or anticommutators between the oper-—

ators in the product.

All one needs now is a general procedure for reducing

any more complicated T-products to N-products and pairings.

This cdmes from Wick's theorem which states that "any chro-

nological product is equal to the sum of all possible N-

products that can be formed with all possible pairings.“

This can be seen from the following example

r{aBcp} = N[ABCD| + N[A'—'BCD-_‘ + N‘__APB_(_:ﬁJ
+ N[EEB._\ + N»\_'AB'—&D._‘ + N\_AB'EEJ
+ N[ABéT;] + N[_XEEE} + N[ATE—E?)]

ey~ A (64)

The generalization of this egquation has been proven by

Wick (1950). Thus, one can write the mixed T-products OC~

curing in the gs-matrix (61) as a sum of N-products. Each

of these products corresponds to a definite process char-

acterized by the operators which are not contracted. In

the next section the contractions, as interpreted in terms

of virtual particles in intermediate states, will be discussed.
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Feynman Graphs
al products is

The expansion of the

2.6
s-matrix into norm

guite complex., even for terms of ijow order in n. The inter-
tly facilitated by

s of these various terms are grea

pretation
nman graphs. introduced in the previous sec—
he basic

the use of Fey
Y-\ qualitativ

tions (Eigs- 1 and 2)- e discussion of t
erxr g-matrix is given

ynman graphs for the second ord

jdeas of Fe
tion (61) yields

For n=2. egua

in this section.

s(z) = _(-"—1——- Hdt at T{H £, YHS ., gt )}
21h?2 2
_en? I[d"x S e L P ) e
22&2 1 2 int 1 int 2
iltonian

= atd®x and Hy (x) is +he Haml
int

Here X = (X,t)r at*x
(x) = ¥ (x)eyd

substituting Hint (x)?(x) into (65)

density-
one obtains
+
¥ (x Yo (x y¥Y(x )}
2 2 2
(66)
y's are the

s?) = _(_‘—El——g— Hd"x avx T{\y“'(x Yo (x ¥ (X
2“fl 1 2 1 1 1

jal enerdy¥:s

e ed is the electrostatic potent
-product is given by

HeXx

field ©

perators and the chronological T

+ + _ul \ Ty e X
T4 = Ny y | +
{W1¢1?1W2¢2?2} L 1¢1W1W2¢2 2 N W1¢1W1W2¢2?2
—— T . - y
+ NK"Y+¢ ¥ vt ¥ _‘ + N\_‘¥+¢ v v o ¥ X + u[\y"ow ¥ o wx
1 1 1 2 i1 1 2 2 2 1 1 1 2 2 2
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where wi =

as follows

s(2)

where

(2)
sa

(2)
Sp

s (2)

(2)
S

b S e = S
¢‘p‘y¢w

W(xi) and ¢i
(2) (2) (2)

+Sd +Se +Sf
" “ [+ +

ffd xld szLW1¢1W1W2¢2W2

— 2
— e ffd"‘x d“x {N
] 1 2

. oy
b 4
N 1¢1‘y1w2¢2‘y2]}

]
‘y1¢1‘y1‘y2¢2‘y2

T ——
“d"x a*x Njvty v vty w]
1 2 1 1 1 2 2 2

;”d“xa“x{[ ¢ww¢\v]

[ot I == ]}
+ NL?1¢1W1W2¢2W2

4 o l 3 I 1
ffd xld szL?1¢1W1W2¢ZW2

r—7======q—ﬂ
4 m
d x a x N
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ot T oot
+ N|¥ ¢ ¥ ¥7¢ vy
1 1 1 2 2 2

(67)

Egquation (66) can be written

(68)

(68.a)

(68.b)

(68.c)

(68.4)

(68.¢e)

(68.f)

and contractions over equal times operators have been omit-

ted as well as contractions which obviously vanished such as
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Ty — Lot )
¢ =Y o =Y ¢
1 2

2 1 2 1

il
<
o

[
e

=0 (69)

As shown in Fig. 1 the interaction Hamiltonian H, .
is represented by a graph consisting of a vertex with two
fermion lines and one boson line. The second order terms
S(z) will be described by graphs involving two vertices,
suitably joined together. Those transitions which a partic-
ular term Séz) can effect,'depend on the external fields
(that is, those which are not contracted) in this operator,
for it is those external fields which are responsible for
absorbing initial and creating final particles.

The term Ség), equation (68.a) involves only external
lines corresponding to two processes of the types in fig. 1
operating independently of each other and has n6 physical
meaning.

The operators Séz) describes Compton scattering as
well as other processes. Compton scattering is represented
by Feynman graphs as shown in figqg. 3(a) and (b). The con-
traction ;f;z is described by the line from the vertex t1 to
tz. For t1<t2 it describes the emission of a virtual fermion

at t1' its propagation to t2 and its absorption there. Thus,
—

<
W+w2 is called a fermion propagator, and it describes a vir-
b
tual intermediate state. The other two processes describe
the creation and annihilation of two bosons. This is known

as nonlinear Landau damping (growth) and respresented dia-
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grammatically by fig. 4(a) and (b). The factor 2! in the

denominator of eguation (68.b) will be cancelled due to

Y
v
Y
Y

(a) (b)

Fig. 3 Compton scattering

the equality of the two terms. In eguation (68.c) there are

four external fermion lines. The bosons occur only in the

(a) (b)

Fig. 4 Nonlinear Landau damping (growth)

|
contraction ¢1¢2 which is interpreted as a boson propagator.
The Feynman graph for this process is shown in fig. 5 and is

known as particle-particle scattering.
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Egquation (68.d) is represented diagrammatically in

fig. 6. This leads to the self energy of the fermion. Sim-

Fig. 5 Particle-particle scattering

ilar to (68.b), the two terms are equal by changing x, * x2
in the second term.

t t
1 2

Fig. 6 Fermion self-energy

Egquation (68.e) represented in fig. 7, similarly

describes a boson self energy, that is a modification of

Fig. 7 Boson self-energy
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boson energy due to its interaction with the fermion field.
This interaction enables the boson to create a virtual

fermion pair which subsequently absorbed again.

Fig. 8

Finally, fig. 8 shows the graph representing equation
(68.f). This has no external lines at all and consequently
does not cause any transitions.

This completes the analysis of the second order term
S(z) into normal products and the interpretation in terms of
Feynman graphs. The extension to a decomposition into higher
order contributions although, of course, more complicated,
Presents no essential difficulty and is described in the rest
of this section.

The Feynman graphs for three and four wave interac-
tions can be obtained from the third and fourth order terms

of the S-matrix. For n = 3, equation (61) gives

(3) _ (-4)3 N . N {
S = ~;?g? jfjd xld xzd xsT Hint(xl)Hint(xz)Hint(xa) (70)

where
{
T{H; , (x )H (xz)nintma)}=egr{(v‘{¢lw1)(‘i':¢2w2)(\Pjgg)}

(71)

int int
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eld the three wave interactions are

and the texrms which yvi

3

F oommiewpt e

. '_._...4.. AT, s, | $ - e ?2':‘, .__.’r-_:‘q..-v‘-»_._-—l
Tleneees=> %{N\?+ * Fooe lanlete ¥ ¥To ¥ Y ¥ }
{ ¥ 683 1¢1Y1W2¢2T2T3¢3 3 NL 1¢1 1 2¢2 2 a¢3 3
the summation over all
Equation (72

g the N-produc

actor © is due to

ntracted products.

g form after takin

where the £
)y can e

possible fully co
t of

n in the followin

writte
the contractions
[prat] bastom ] T | gorwi | T - Lapragd
T{......}=>6e?‘w+w vty vty o+ TR lN{¢ 6 o } (72.2)
jL 2 02z 2 3 3 L 13 3 2 2 1 1 2 3

) into (70) yields

T A - T —— o 3 :
Ty avTy ¥ Y yry }N{¢ o ¢ }

3 1 1 3 3 2 2 1 1 2 3

(73)

Substituting (72.2

(-i)%el
s(= ——————Jljgd“x avx \¥*
ﬁB 1 2‘_1223
ation (73) +here are three internal fermion lines
xternal posons.

ator) and three €

ree wave interact

In edu
The Feynman

n £ig. 9-

(three propag
jons. are shown i

graphs for these th

g Three wave interactions

Fig.
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Similarly, for n = 4, equation (61) yvields

g(®) _ (-i)*

I...fd“x c..d"x T{Hl(x YHL (x )H, (x )Hp (x )} (74)
41f1" 1 2 -~ 3 y

where the terms in the T-product which are responsible for

the four wave interactions are

| prwn ] T T3 a4 s T T [ ypar g J
T{......}=¢ci)24e?[w+w M ARARNAERERE N EREA
J 1 2 2 3 3 4 & 1 1 3 3 4% 4% 2 2 1
[ arugn 1 Crenr) Lo — - — Formm] | )t Eyrv I waarem 1 T
+ vy vty 'ty vty o oty vty vty vty 4 vty vty vy oty
1 4 L3 3 3 2 2 1 1 2 2 4 L, 3 3 1 1 3 3 2 2 4, uH 1
S IFL SFD E ] [ |
+ vty g N 75
1 s uwzwzwawawl ¢1¢2¢3¢u1 (75)

In this process, there are four fermion propagators and four
external bosons. As shown in equation (75) there are six
possible nonequivalent diagrams. Each of these.has 4! eguiv-
alent diagrams. Equation (75) is represented diagrammatically
in fig. 10. The choice of the direction of the bosons (figs.

9 and 10) depends on the problem under investigation.

2.7 General Rules For the Calculations of the Scattering
Matrix Element
The scattering matrix element for the three wave in-
teractions will be calculated as an example from which the
general rules for more complicated diagrams are established.
The scattering matrix for this process is given by (73) and

[aprag | .
the fermion Propagator Wth is calculated as follows:




Fig.

10

Four wave interac

tion

37
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e
]

<o|T{w+w }|o> = 0 if t >t
2 1 2 1 2

= -<0|y ¥"|o> if t <t
2 1 12
1 SiELT ik (3 -% )
= -3 Y e e T 2 (76)
->
k
1 i (k-%-E,t)
where the field operator y(x) = — L C,e ¥  has been
Vg kK

used and T = £t -t .
2 1

At this point, one needs an analytical expression for

a function with the following propérties (Ziman, 1969)

—iEi?
- >
g®,) =4 ¢ T>0 (77)
0 T<0
This can be constructed by a contour integration
4+
-iET
1 age -
9(E) = Zmi | e (78)
—® %

where the integral is along the real axis in the plane of

the complex variable E, and the small positive gquantity 8

is simply a convergence factor. Wwhen (78) is substituted

into (76), it yields the following formula for the fermion

propagator



39

v 1 +eo -i(R-% -Bt ) i(k-% -Et )
Wl . = - 377 z I dElG(E,EE)e e (79)
k —o
and
_ 1
GE/ER = goppris (79.2)

Similarly, one can write expressions for W2W3 and WZ?I.

For the specific example under investigation, one is
interested only in the contribution of (73) for the specified
initial and final state configuration. This is the annihila-
tion of two bosons at xl, x2 and the creation of another at
x3 (fig. 9). Hence, from the facto; ¢1¢2¢3 one chooses the
term that has this property. Since ¢: and ¢: annihilate

+ . . - -+
bosons and ¢3 creates another, one retains only ¢1¢2¢3 where

¢1 = ¢: + ¢T , etc. Therefore, the N-product in (73) yields
eBN[¢‘¢'¢¥J = I M (@M (g )M (g )ar a> az x
J 172 3 > x o 0 10 T2 70 T3' 7@ "qd 9

9,49 .9 3 2

1 2 3

. > > -> -> -> ->
a0 ey v (G, % ey € )G, K ey € )
e : (80)

where Mo(a) is given by (42).

T

Substituting the similar expressions for V¥ (n,m =

v
nm
1,2,3 and n # m), from (79) and (80) into (73), one obtains

g(3) _ (=i)?®

+
-1)M
pon (-1) o(ql)Mo(qz)Mo(qa)aE aa a»> x

' 3 1 q2
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. SdEldEszaiG(El,E—‘z )iG[Ez,E-]; )1G(E3,E]-; )
,k 1 2 3
1 2 3

[2“) \ ‘_5[k % -4 )s(’ﬁz—’i

5(8,"E, "y 1) s (B,

5> > L
-qz)s(ka_kz-‘-qs} *

-E, +wg )S(E -E Wy )

2 3

> > -> > > > > > >
+ 8 (kz—k l—ql) 8 gk 1—k R 2) s(k 3—k JHa 3) 3

s(E 1—E2+w—> )s(B,~E RCr

)«SE—E—-* (81)
1 | ( wy )

The G—functions inmply the conservation of momentum and
enexrgy¥ paxram mneters at each wvertex. Alternatlvely. (81L) gives
aftex performing the kz,ka,E2 and E3 integrations,

+
cn® 3 cum@n@ ym (a)as s B2 7
nd: = & > o b 0 2 0 3. g 9, 4
ql.q rq3 ) 3

E SdEKiG(E,Eﬁ)iG(E+m i++ )iG (B-w ,Ex
k

+ iG(E,E )iG(E+m—>1,E—> 3 )le(g—wa ExY )']

3
(21‘\‘7) 5(q +q -a )5((»-» 1+ma -—w> )

a (82)
3

where again the S—functions ensure th

e conservation
ntum and energy¥ cf the initi

jal and £inal

of mo-~

states-
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The scatter' i

ing matrix element Séa) is given by

s(D = <gls® 1w

(-i)3

PSS

(-1M (g M (g )M (g ) *
,ﬁs 0 1 V] 2 (1] 3

z ng K_iG (E ,EE} iG (E-"maz k+q ) iG (E—m—& . ,E—}E_a 1)
k

+ iG(®E ,E-]Z] iG (B+wZ

3 'BEYag )lG(E—ma k—q ]G(E -EBg )
1 1 2
where (83)

(2ﬂ) > > _

25— sla 79, a,) = 85 +&_.4 (84)

a 1 2 3
an
+ .
<£ i> = & 85

L, % ay 1t SRR N (85
ql'qz'qs 3 2 1

nhave been used.

From the preceding calculations, one can easily €S7
tablish general rules to obtain the scattering‘matrix ele-
ment (83) for the three wave interactions.

1. construct all 90551b1e nonequivalent diagrams (£ig- 11)
with jnitial q and final a plasmons.
2. consexrve momentum and energy parameters at each verteX.
3. The matrix element Sgj

i will e the mu
Qe (—__) fO

1tiplication of
r each wvertex anda (-1) for each fermion 1lOCP-
p. a factor Mo(q) for each vertex,



T e e

a2

c. a fermion propagator iG(E,E)) < i/(E-E»+16) for
k

each intermediate state (internal iine) «

d. G(Ei—Ef) due to the energy conservation of initial

and final state.

and the sum over the internal variable ¥ and the integra—

tion over the energy parameter E.

>
q

Fig. 11 Three wave interaction ex

ample: an-—

nihilation of two plasmons and creation of

another.

These rules are general for any diagrams which can jnclude

any number of external waves-

One can generalize these rules to include virtual
posons bY writing a boson propagator similar to that of

(3.¢) (iD(w,mq) = i/m—wqfi&) if the internal 1ines consist
of bosonsSe.

The relation between the scat

tering matrix element
and the transition matrix element Mfi

is given by (pavydovVv., 1969)
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(86)

rforming the BE-

1

integration
. -> -
->
M = Mo(ql)Mo(qz)Mh(qa) M = f(ké =
i E->++—+-> ->—m->—->+
£1 n? s | 7%, k+q ) (kT kT )
f(k+q )
E—r—r—w—»—E +——>—E->->
(Px+a, 9, ) GRed TVE, e, -3)
f(k-q )

+
{Ei al+w* -E> )( k_a +w*1+maz—E +q )

£ (K)
>+ - -— -
A T (RS, Ex-3.)

> >
£(k+q )

+

(E "' u)'* E+)( k+El m-&l maz E-"_a )

> > -
: f(k—qz)
+
B> +m—> -E> > +w>r T —E-»
Fk-a, %) (Fk-q, a, 9, ®+d ) |

To obtain a common factor f(i),

transformatlon k+q >k in the 2nd term, k—q
after taking the classic

term, etc. then

(87)

one makes the following

»% in the third

al limit
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_Z f(K)+vff(§’r)
x

_ hk? > >
B, = 2p; and bk = m;¥

one obtains upon expansion of the denominators up to the

order of h? in equation (87)

-> - -> 3 >
M = Mo(qx)Mo(qz)Mo(qa) a vfj(V)

v
2 -—) .—> -—P .-)‘ _-) .—>
my (wal q, v)(wa2 a, v)(ma3 qa, v)
(q,-3 a7 @G -drar @& -d)a? ]
(o3 —4,-9)  (0z 4,90 (s -2 -9) o
qa 3 q1 ql q2 2

This is the same result obtained by Harris (1969). These

calculations will be used later in chapter IV to find the

nonlinear dielectric function for the ion acoustic waves.
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CHAPTER IIX

L.INEAR AND NONLINEAR COLLISIONAL

DAMPING OF PLASMA WAVES

3.1 Introduction

The problem of electron oscillations in a plasma
neglecting interparticle collisions has been studied amongst
others by Landau (1946) , Bohm and Gross (1949), Van kampen
(1955) and Bernstein, Green and Kruskal (1957). The quali-
tative importance of collisional damping was pointed out by
Bohm ard Gross, where they noted that since Landau damping
was negligible for a (wave vector)-— O, collisional effects
must dominateé in this limit. Bhatnagar, Gross and Krook
(1954) have shown that in the presence of collisions, plasma‘
oscillations decay with a rate proportional to the colli-
sional fregquency, however, a complete calculation of this
effect was not carried out until Ichikawa (19605 examined
the effect of binary and tertiary corrections in high tem-—
perature plasma on the basis of the so—-called BBGKY equation
for a system of charged particles. similar calculations
based on the same equation have been carried by Willis
(1962). A formula for the dielectric function including the
effects of the binary Coulomb collisions has pbeen derived by
many authors during the sixties. Among these, Comisar

(1962) investigated the attenuation of longitudinal plasma
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oscillations by transforming the T,andaud (Fokker—?lanck)
ation in time. space and velocity to obtain an integral
equation for the transformation of the distribution func—
tion- Ogaswara (1963) used the Bolt ision integral
and expanded the distribution function in a complete set of
velocity dependent polynomials. puti and Jain (1965) have
used Comisar‘s method ro study the damping of longitudinal
as well as transverse plasma oscillations. Thourson and
1Lewis (1965) calculated the high frequency conductivity of
a fully ionized plasma by using the BBGKY hierarchy. They
assumned that the texrms representing coulomb potential can be
replaced by & cutoff coulonmb potential with & range equal o
the pebye 1ength-

More recently £his problem has been rreated by
Shkarofsky (l968), Matsuda (1969), and McBride (1969)
rhyough the use of the Fokker—Planck equatio

n OY the BBGKY
hierarchy. shka

rofsky studied the prob

jem of longitudinal
as well as transverse plasma waves PY using the rokker—
planck equation and also used the poltzman equation o study
the electron—neutral collision. Matsuda obtained the 4is-—
persion relation including collisional effects by applying
the BBGKY equation and the pair correl

ation functi
by Rostok

er's supperposition principle, (ROS

on given

toker's test
particle method}.

McBride solved the linearized xinetic
equation foxr the perturbed electron distribution function
for the case of longitudinal plasma oscillatio

ns along an
exte

rnal magnetic field, where the collision term iS speci~
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fied to be the ILandau (Fokker-Planck)collision integral.

The problem of collisional damping has also been
studied using guantum mechanical methods. DuBois, Gilini-
sky and Kivelson (1963) calculated the collisional damping
for longitudinal and transverse waves from the qonductivity
which is derived by using the diagrammatic techniques of
field theory. Similar work has been done for transverse
waves by Perel and Eliashberg (1962), Ron and Tzoar (1963)
and DuBois and Gilinisky (1964). For a basic understanding
of this technique one may refer to Chappel and Britten
(1966), Rauscher (1968), Harris (1969) as well as chapter
IT of this thesis.

In the present chapter, the guantum mechanical ap-
Proach is adopted and the collisional damping as arising out
of the scattering of two particles through effective Coulomb
field and emission (absorption) of one Plasmon is calcula-
ted directly without reference to the dielectric function or
the conductivity. In addition, the Scattering of a particle
pair with the emission (absorption) of two Plasmons will be
examined. This process may be called a nonlinear colli-
sional process similar to that of nonlinear Landau damping
which involves two Plasmons (fig. 4). In section 3.2, the
theory of chapter II is extended to calculate the scattering
matrix elements for the one and two wave processes. Sec-
tion 3.3 deals with the linear collisional damping of lon-

gitudinal oscillations and section 3.4 with the two waves
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nal process-

collisio
o Collision

Matrix for Linear and Nonlinea
phs foxr proces

n effective Cou

cattering

3.2 Sscattering
ses involving S

The Feynman gra
lomb field and

cles through &
followindg sS-

of two parti
jasmon are obtained from the

emission of one P
matrix
i) 2
(2) = i—ll—gid“x a*x T{n _ (xH_pF )} (1)
2112 1 2 w-p 1 P P 2
and Hp_p are the interaction gamiltonian densi-

e—particle and

where H

w—P
ties for wav particle—particle scattering
se are given by

respectively. The
H,_p = gt (xl)ejtb(xl)‘l’(xl) (2.3)
B = iw:w:v&z—;aws\yza“xa (2.D)
Substituting (2.a) and (2.D) jnto (1) yields
(2) o =2 Xd"x a*x a*x T{‘l’+e.¢ v oyt ox
1 2 3 131 2 3

21R?
(3)

V(\iz—ia\)wswz}

pe written as follows

The T—product can

T{‘l’+¢ v yretvE % vy ¥ }
11 1 2 3 2 3 3 2
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-
! 3)Y V¥ }
3 2

+

. r.. . P . e . .
2[§{w+¢ v vryty o
1 1 1 2 3
+ N{w+¢ ¥ vrytyio,3yuy )
11 1 2 3 3 2)

—
+ N(T+¢ ¥ vryty i, 3yw v }
1 1 1 2 3 3 2

| M |
+ N{w+¢ ¥ vttty (o, 3y v
1 1 1 2 3 3 2

— 1

L e
+ N{w+¢ ¥ viutva,3)y v )
17171 23 J

(4)

r\’;__ [E— . ._--.»—~—' -
+ N{w+¢ ¥ vrytyea, 3y v {J
17171 273 3 2y

where the factor

Substituting (4)

2 is due to the equal contraction terms.

into (3), one obtains

-— 3 2
s(2) _ (=i)2 fd“x d*x a*x [@+y W+W+V(2,3)W b4
1 2 3717387273 2 1

.h 2
| pirge | T3 rT
AR RIS LYY vy v, 3y ety
3 1 1 2 3 2 1 3 2 1 2 2
+ Similar terms 2++3]ej¢1J (5)

where the first term can be represented by Feynman graphs
according to the theory of chapter II as follows: at the

point x1 a fermion is annihilated ang another is created due
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to the emission (absorption) of a boson. The Created fermion

Propagates +t+o the point x3, and is then Scattereqd into its

final state Que to the Coulomb Collision fielag V(2,3). It

— Ez—-\’

can also be Seen that one fermion is annihilateg and another

These Processes are shown in

FPig. 12 (b) Linear collisional Process

3 1

ocess. These
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diagrams will be constructed in the momentum space and the

calculation of the s-matrix will be carried on in sec. 3.3-.

A diagram similar to that of Landau damping (fig. 1)

is obtained from the third term of (5)-. This is shown in

fig. 13. However this diagram is nonconsistent, pecause the

Fig. 13 Indirect linear Landau damping

coulomb potential becomes singular at the plasmon fregquency -

The similar terms in (5) yield diagrams similar to that of

figs. 12 and 13 where the pliasmon is emitted (absorbed) by

a different species of fermions.

A process of pair particle scattering via the Coulomb

field, with the emission of two plasmons, can be obtained

from the third order term of the S-matrix which contains two

wave-particle interaction Hamiltonians and only one particle-

particle interaction Hamiltonian. This is given by
s(a) = (=i)° r...jd“x ...d"x T{H (x )YH (x )H (x X )}
3th? ] 1 4 w-p 1 Cw-p T2 PTP 3 T

(6)

ous chapter, the

As has been discussed in the previ



52

T-product contains connected as well as non significant dis-

connected diagrams. Each of the connected diagrams has 3! = 6
equivalence. In addition there will be several nonequivalent
diagrams that must be added. Keeping only the connected dia-

grams, (6) yields

- 3 [y 3
s _ (=i)? f...fd"x c..dbx [w*w vy wrety sy y
ﬁ:‘l 1 4 1 2 2 3 3 4 1 L3

TET o TE g
*ty gty Yty 3,4y v v o+ uty vy vttty s, gy v
1 3 2 2 4 1 L' 2 1 1 3 3 4 2 4

() [ S ] | e ] ! 3
v ¥y vrytyz e w4 vy vty vty s, ay ey
3 1 1 4 2 4 1 2 4 3 4

3 1 2

= T.

Y¥ vy v(3,4)vty
1 4 4

y yty V(3,4)\1/':\y + similar terms 3<«-4 ST
4 -

Processes. These can be represented diagrammatically by six

noneguivalent diagrams. Only the process describing the first

Fig. 14 Nonlinear collisional Process
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term is shown in fig. 14. The six diagrams will be con-

structed later in section 3.4 The indirect nonlinear scat-
tering is described by the last two terms and is shown dia-

grammatically in fig. 15. The similar terms will yield

Fig. 15 Indirect nonlinear scattering

diagrams similar to that of figs. 14 and 15 where the plas-

mons are emmitted by a different species of particles.

3.3 Linear Collisional Damping of Plasma Oscillations

The scattering matrix for the linear process is easily

calculated by transforming diagrams 11(a) and (b) to the

momentum space. In doing so, one has to bear in mind the

conservation of momentum and energy of the initial and £final

states as well as the conservation of momentum and energy

parameters at each vertex. This is shown in fig. 16.
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F+g'+4 k+q %

Q'

(b)

Fig. 16 Linear collisional process: The
uppex i1ine refers to & heavy ion and the

jower one to an electron.

There are four diagrams 1ike the one shown in £fig-.
16 (a) - Of these, half will be those in which the plasmon will
be emitted by the heavy jon. such diagrams give a negligible
contribution (of the order m/mi); thus only contributions due
to diagrams which emit plasmons at the electron 1ine will be
considered. Following the s-matrix rules of chapter II, one

can immediately write the s-matrix element for the processes

shown in fig. 16 as follows

-4)2 2 .
sé;)= an & l)z Mo(a) 2“e_, \’ L N S
- ] ] 1] - L I
h vg'?e(q’ 0 ) LF Ei+§‘ B Ei+a

x S(Ei-Ef)
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xnown and there is
ntegrate. The

xceed £he

rVation of

where the
vertices e

'nternal v

no
cause the
the conseée

Fyrom

one obtains

factoTr (2m) is be

nunbeX of 1
energy¥ parameters at each verteX:
B = Ei*a+a. - ma (8.a)
= B> ¥ wr g8.b
3 ( )}

(8) yields

subs
S(z) & 2“1\ M.(q) ane? \. 1
£i Vq‘zeda yu') \}Ek*q+q mEfEk*q )
+/’(E = i ;\G(Ei—-Ef) (9)
x 4 k+d
putting Pk = m§ and expanding (9) in power of 1. one obtains
by virtue of the Sey’ Mgy relationship ((86) of Cchapter 1)
2 - *.”t
Mgy = M @ s g (10
° qu‘ze(q‘.m‘) (mafq'v)z
ected: since these

s of i nave peen negl
jcal 1imite.

heyr power
unbeX

the M

jcally as

where hig
chandgée of WX

g 5’
n ve written schemat

=
ns of momentum ng ca



{(11)

2 ->
e N lrfu?+$+$')fu?'-§')(l-fu?))(l-f(xW) x
kK, kv, )
(N3+1) - f(J'c’)f(iZ')(1—f(i€+€§+$'))(1—f(1?'—$'))1vq/
6(}3—» -> Z+E>, +'—w->—E->—E+’)
k+g+qg K'-qg 9 "k "k

Expanding the fr'g and
r (12) becomes;

AN . >
TS = % I Im [(<3+8}')-M 2
: i
k' 1 ]
’

2 o f(k )(Nq+l)
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- oEx» OEx

2. 3E(KY) 2 > > k _ 2, .k
- Q=== £(kK)N_|8(q+q' - —= - ' - w> (13
Rt GG |8 (qHT" == = G e 3 )

Taking Nq >> 1 and substituting

_ hk?
E = 30— (14.a)
£k = mv (14.b)
N
q 3%
d3 [ ] .
I - vf——41; (14.4)
3 (2m)
Yy OERIE(K') > vzfd3vd3v'f($)f($'), (l4.e)
kK, %'

into (13), one obtains in the classical limit

6
_ 1 9Ny - _Ype Mmu, f cos2pd3q’ f d3vd3v!’

2y = =
LC Ny dt m* niF, 7@ e@ 0] ) (-3

-+ > > >, 3
. [LQ;q LAEW) g3y - DL.22FY) £
ov i v
< 8(qr eV - G+ -V + wa) (15)

where y; ., is the rate at which the wave amplitude decays,
a-ﬁ' = qq'cose,ﬁ and V' are the electron and ion velocities

respectively. The volume of the box in which the system is



quantized tends to infinity SO that the sums go over into

integrals, hence (14.4) ana (14.e). Finally, £(¥) ang £(V")

distribution, (15) becomes

6 2
2y - _ “pe wg f cos?egi3q 'd3vd3v'f(3)f(3')
LC (2")2‘, 2 naF qnzle(q-’w.),'z (w —5'3)“
e °o g g

-6(5"\7'—(3‘*3')'3"‘&’3) (1e)
Performing first the 3'—integration, then using the
asymptotic expansion method (Frieg and Conte, 1961) to per-

> . . )
form the v—lntegration, one obtains

wb log2v?2
ZYLC = - pe A f dg' coszesinede(l+ —_— sinZg)
(2#)3/2nové wqu la'] wé

(17)

which yields after Performing the g9' and @ integrations

w® = qZV'Z' q! v
Yo . = - pe 1 /12 + &2 €fon[Z maxVe (18)
Lc 4m3/2n 3 w2F 3 3 w? “pe
A °o'e "g gl q
3g2v?]
Substituting 2 = w? (14 €| ang
4 “pe w?
pe

] ->
F_ = l——(me(q,w) !
q w ) w=w

q
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(0 w? 3g2vZy
— %6 m\_— _TEEE 1+ ____;E \
w? w? 1Y o=
q

wi_ . avivhe
1+ %0 2 e b=
w? !
a
3%V
= 21 *+ ——;—— into (18) yields
_ “pe
L 2«72 oy ]
New = = “Ype V2 . 2vz T Vel gn 9 max € (19)
nc gn3/%n w3 3 3 w2 Woe
o © re

jous calculations (DuBois, Gil-

es with prev
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1963) shka
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plasmons by the heavy ions will make 2 negligible contribu-

tion, and also there are six nonequivalent diagxrams which
will give & significant contribution. These diagrams are
described py the first six rerms of (7) which in t

he momen~
tum space yields the diagrams shown in fig. 17-
Following the rules of the scattering matrix explained

in chapter 11, and the previous section, one can easily write

é?) = _(_"__l)—a—— M (qa M (a ) ame?
1 K3 0 1 0 Vq'ze(q',w')

\( " +d, +3' Y, “Ex+q +q )( k+a +3, +gq' w% —og “E+g')

.2
+ —F>Fw. —Byp4 ;‘.—>+"m +"m' el
Pk Ta, +& )( a,” krq, +3 ,)
22
+ -+ -B>, Et—i- + =S Ol -
Erog, Txrq ) UK Oq "Pa, ¥+g +d,)
+ iz |
[Ek+q +q +q I.A)q1 T+ q +q )(El—z+wq2 k“'az)
+

B -
K4q +q +g a, *+q +q') Ck E%+q

iz
B T e —=Fe . —Br.% ) )
( > W > u)ql + 1)X

S(Ei*Ef) (20)
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-
a
1

Fig.

17 NonlineaXr collisional process: The

upper 1ine refers to a heavy jon and the

iowexr one to an electxron.
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2
= 25—, hk = mY into (20), exXpanding

€ order of K2, and using relation

(86) of chapter II, one obtains

ﬁ h - 1/2
R Ya g > -
2 Aq ,q ,3',9) (21)

M., =

fi 2v;2 4 2 > ' 2 2
4n?vy F F
no g s(q rw') q1 1q2 ”2

where
{ar+[q2+23 . (3 +3'>]}
-5 -> -> -> 1 1 1 2
A(q g :Q',V) = -

2 AZX (A +a )
1 2 1 2

" 2 e
{q2+[q2 +2q2 (q1+q' ) J}

A2X (A +2a )
2 1 2 1

-> -> - > > -> -> 2
-+ 4 2 ',
{<q1 q,) +F(q1+q2) +23 (@,+3 )] }

A A (X +2 )2
1 2 1 2

2, -> 2,1 5 > > - > -> 2 Z, > > -
{ql(ql+q2) +qu+2q1 (a_+3 )JL(q1+q2) +2g (q1+q2)]}
AZ(X +x )2
1 1 2
2 ,> -> 2 2 -> . >t gL -> 2 -)-.. -> > .
{qz (q1+q2) +l:q2+2q2 (ql +q )J L(q2+q1) +2q (q2+q1)l}
+
AZ(X +2 )
2 1 2
{9 [az+23 - (@, +3")]+qz [aZ+2g - (§2+§">J}
- _"_“.“___________________________*__-_—-—-—-—-—- (21.a)
A2A2
1 2

and
v (21.b)
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In obtaining (21), terms of order K°, and ¥ vanished
identically and that of order *? yielded the correct clas-

sical limit of the matrix element. Inserting the sgquare of

(21) into the rate equation for Nq vields
1

ON->
d9 .
—_t = 20 y |Mfi|2{(N-> +Nx ) E(R)E(R")
n2 +2 3,8, 9, 2
>
+ N> N> [(3 +gq +q')-af(k) f(i')—§'°3£éﬁll f(f)]}-
1 2 ! 2 ok ok’

8 (Ep+Eg, +u  +w (22)

Reteg Yoq TERG +F 43 TR -30) -

which can be rewritten after converting summations into

.integrations and taking the classical limit

3I(J 7} (2w)-5w;e “g 3 3 3 3
atl = l-lda g d g'd vd v'x
16n‘0 q2F 2 .
0 1 q1
Az(al:azra'ls)wq wq
2 [(I(c’i Y+— T(F ) )E(W)E(T")
1 wq 2

qZF q|k|a(al'wl)|2

2 q 2

-> - -
. I(a )I(qz) {q1+q2+q LAE (V) f( 'y - gl af(V BE(V') £ )}}
1 wW=> m > .
qz v m; av!

8 (3" V' +ug +ug - (& +F,+3")-9), (23)
1 2
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where I(ai) = ﬁwa N> is the plasmon energy in the mode Ei'
i “i .
considering the special case of longitudinal waves where

wa = ma o wpe, and assuming that the electrons and ions
1 2

obey a Maxwellian distributions as before, (23) yields after

performing the velocity integrations

“S5p2 3 3 ep2¢T = 2
2y e = 1 3131(:5) _ 2m “vpe a qzi 3 A+(q,q2.q )
I(q) 64\/21\'Ven20 qzqzq' h ‘q+q2+q' | le(a" ,w') ]2
I(q,) I3 ) ‘
. [1+ pre ] -2 2 (24)
I(q) mv;

where Y is the nonlinear collisional damping (growth) ,
N1C

-> ->

A% (3,3 ,a") = (q-32)2|$+32|2q'2cosze

o>

+ 8(3-4 ) (@-a") <az-a'> |a+’ciz|q-cose
+ 16(3-3')2(32-3')2 (25)

and 8 is the angle between E+§2 and 3' as shown in fig. 18.

substituting (25) into (24) and performing the a'—

integration one obtains
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5 3 >
2Y _ 1 3% (@ - __(2__“__). ®pe K maxvex Sd qu(q'qz)
NLC 1@ ot 64V/2TV D Wpe qzqi
() 1)
Kl"' _*2 }" 2 —'—"'—" ’ (26)
_ I(q) mvZ
where
R s y2|&+a,\*
2 2 2

-Bwqq2(3'323\3+§2\2(% cosacosh +c05(¢2-¢))

+ 2 2 | 4+ {32 2 2
8ng qz\q qz\ \3 cos?acos 8

8 22 2 s n2 2
_— +

+ 705 (sin acos*B sin?Bgcos o)
+___—8

105 Sin2a51n28c05(¢2—¢)

T%% sinzasinze[i+2cosz(¢2—¢)}} (27

The angles o and B are shown in Fig. 18 and ¢« ¢2 are the
azimuthal angles of E and az respectively. Tn oxrder ro per—
form the Ez—integration, the plasmon enexgy I(Ez) will be
considered independent of Ez, and 1is replaced by T(E) the
average wvalue of I(Ez). This approximation is good enough
for plasmons which are not far removed from equilibrium.
Furthermore. the integration over 32 will be cut off at dp’
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the Debye wave vectoXx. Thus:, foxr an average enexgy spectrum,

(26) gives

- 37/2 %1072 n3/%w q° v =

2 _ 1 4ate) o pe ln& max e\K._ T \

NLC T at 21 (n 22)2 Woe XT
oD

(28)
where terms of order g? have been neglected.

The nonlinear contribution in (28) is of a higheXx oxrder
in the plasma parameter (noxg)’l. iIn equilibrium the plas~—

mons obey Boseé aistribution giving T = T and rendexring

YNLC c. When the plasmons are s1lightly pelow OY above the
equilibrium level of energy: the above equation shows that
there is growth or decay respectively. in either case, the
nonlinear collisional process tries to restore equilibrium.
This is quite visible from the solurion of the differential

equation (28) which yields

2
-—2 3/2 3 [}
exp{(74x10 /21/5){? / wpe//(nokn) Xln(q maivey/wpe)t}
_ _ —2 1\'3/2(1) q' <
1- (T /xT* @ i) exe 74%x107° —____Be.gn(rJ%EE_egt}
o ° 212 (noké)z pe

=l \Hl

(29)
where I 18 the equilibrium value of T(e) at £ = 0.
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CHAPTER 1V

A STABILITY MECHANISM

FOR ION ACOUSTIC WAVES

4.1 Introduction

The problem of linearly unstable ion acoustic modes
has been studied by Kadomtsev (1965) and more recently by
Sloan and Drummond (1970) . The ion acoustic waves become
unstable when the component of electron beam velocity in the

direction of wave propagation exceeds the phase velocity

T
cg = /ﬁs (Jackson, 1960), where T is the electron tempera-
Vi
ture and m; is the ion mass. In this case, direct electron-

jon Coulomb interactions are negligible as has been discussed

by Kadomtsev and Pogutse (1967). Radomtsev argued that non-

1inear Landau damping of ion acoustic waves by the ions re-—

sembles the damping of Langmuir waves by the electrons, and

therefore, he suggested ion nonlinear damping as the mechan-—

ism for terminating the instability of the ion acoustic

modes . Thus, the electron nonlinear Landau growth was thought

to be of little significance for ion acoustic instability.

This result was later used by Sagdeev (1967) to calculate the

well-known Sagdeev formula for anomalous resistivity. Sloan

and Drummond (1970), gquestioned the validity of Kadomtsev's

latter assumption and therefore, the anomalous resistivity
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1ished in the Phys. of Fluids, 1971-1972) . In section 2,

the frequency and growth rate of the waves for the linear
approximation is derived and section 3 contains the calcula-

tions of the nonlinear dielectric function and the amplitude

dependent frequency shift. In section 4 a comparison between

the result obtained in this chapter and that estimated by

Sloan and Drummond (1970) is made.

4.2 Linear Dielectric Function and Growth Rate

In the Feynman diagram representation as shown in
chapter II, the bare Coulomb potential as well as the ef-
fective potential (which takes into account the screening of

the Coulomb field) are given by

4me?
v.= e = 22 = (1)
C t::)- <:i: vq?

BN
eff /"

where e is the electronic charge,

~ (2)
vg?e (q,w)

Vv is the volume of the

system, E is the wave vector for the gth Fourier component

and e(a,w) is the linear dielectric function of the plasma.

In findinggﬂa,w) in the random phase approximation, one

adds an infinite series such as

Veff =
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+ —— .l —— - + P e TEPRY ww-
+ e ——— —
_______ ame?
vg?

R > R - (3)

by using the Dyson equation. From eguations (2z) and (3) it is

obvious that the linear dielectric function can be written as

T @

J

where j is the summation over the plasma species with ref—-

erence to electron and ion loops. The 'bubble' in the series

which is the second term in (4) will be calculated by using

the S-matrix theory which has been developed in chapter II.
Accordingly, use will be made of the following rules:

(@D in the expression of the second order matrix element a

2
factor if?— appears in the product for each Coulomb line,
vg
(2) a factor iG(E,Ei) = -

E-Eo+id appears for each internal
kK

particle line, where Ef and E are energy and energy

parameters of the particle in units of h.

.
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(3) sum over the internal wvariable ¥ and integrate over the
internal enexrgy parameters E,

(4) multiply by (-1) for each fermion loo0Pp and introduce
G(Ei—Ef) which appears in the theory and serves to con<
serve energy between initial and final states,

(5) use the relationship ((86) of chapter II) between the
s and ﬁ matrices to £ind the matrix elements of the
second, third, fourth and other texrms in (3).

Applying these rules to the calculation of e(d, ),

one ob-
tains
e @Gow) = 1 - ame? ) 1 £ de (5)
’ vqr Ly TR | EEEe) e ER gt i0) .
j.k
performing the E-integration yields
> > >
£.(k £. +
e(,w) = 1 - dne_ 2 (E*li—;+ =) + (E+jiﬁm?;+) (6)
vath % k k+q k+a k
14
A considerable simplification can be made by the linear

. > > D> . . s
transformation k¥+g+k in the second term since, in any event,

+he summation is over all values of i. Thus, there is a
common factor fj(ﬁ) which is the number of particles in the

state %¥. Therefore, (6) yields

7

2
c@w) = 1 - =] [asvfj<z> — - L
a3 EETURNERT
- 3 3

by substituting Eﬁ = Zm and KK = mj3 after changing k-

b i e S T -
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summation into v integration, (7) thus simplifies into

> 2 £, (V)
e(q,w) = 1 - Z %e— fd"'v ——L_)—_;——— (8)
J j (w—-g-v) 2

The distribution functions for electrons streaming

N . > . . .
with velocity u and ions with zero mean velocity are

—1/2 (Vv-1) 2

> n Ve
£f_(v) = 0 e (9)
e ,, 3/2
(2ﬂve)
-1/2 X
N n vi2
fi(V) = ————3—:7Z e (10)
(2wv§)

where Ver V; are the electron and ion thermal velocities
respectively. Substituting (9) and (10) into (8) and per-
forming the velocity integrations by asymptotic expansion
(Fried and Conte, 1961), the linear dielectric function for
a wave of frequency w and wave vector 3 is given by

2

—>.+_ . w 1
e(G,w) =1+ —1__ [1 - i jg 4z “)— P (11)
qzlée q e w?2
= 2 1/2 -
where ADe (Te/4ﬂe no) » the Debye wave-length and wpi’

the ion plasma frequency. The dielectric function given by
(11) is identical to the results obtained by standard tech-
niques. The frequency w can be written as w = ma +iya,

which when substituted in the equation



P

c wave- Solving (12) foxr ma and Yq
yxelds
Te
wg = 3 By = 9€s (13
i
= 1.32 G5 - +) (14)
Yq 8 v w
e
whexe Ygq o for q-u ~ ma'corresponds to growth of the wave-
This means rhat the jon acoustlc node is unstable in & cone
of a- space centered apout the directlon of the arit
a Wt

2f (R
an@ = = 2 e e
3t s %i\M |2 @4 3 8 (BTL mq‘E;?
N > aie(x’n .
= 2ﬁ(—38&3v\M 12N -~ S(q-v—m*)
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into (15) and performing the velocity integration, one obtains

> >
1 dN(—’g) = Dy = A [n%V]‘M | 2 (q.u-wa)
0

Yy = LN (16)
N () at q mv; AVe
which is the same as equation (14) if one substitutes
Ame?fiw] 1/ 2 3 N
Moo= ———ﬂquF+ , FE = \?6 (we (4, 0)) w=u (16.a)
g

In calculating'Fa, the linear dielectric function and
the linear frequency of the waves have often been used. How-—
ever, for the case of unstable oscillations, one should use
the nonlinear frequency of the waves and the nonlinear di-
electric function in calculating Fa. These modifications

reduce the coupling constant and consequently the growth rate.

4.3 Nonlinear Dielectric Function and Freguency Shift

In order to calculateithe nonlinear dielectric func-
tion ENL(m'a)' one has to know the nonlinear processes (J.
Coste, 1969). Tge basic processes responsible for the non-
linearities in the medium are those where the bare Coulomb
potentials represented by dotted 1ines in (3), is replaced
by the effective potentials which are represented by beaded
l1ines and the simple loops in the same equation are replaced
by the square and triapgular loops shown in figs. 19 and 20.

Then, following the method of the previous section, one ob-

tains a formula for ENL(w,a).
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In the nonlinear 1imit, the effective potential VNL
is given by the sum of an infinite series as shown diagram-

matically in the following equation

QY
Q¥
QY

-q’.I -&l'
+ 1
'&l "&n
av "q"n
+ Z 4 ——————— =TT
1 "
g i (17)
where
3'
Y = Sum of the diagrams in fig. 19,
-> .
a'.3 (18)
and
a-
Y = Sum of the diagrams in fig. 20.
-
q' v 3

(19)




summing the infinite series (17), one obtains

NL

N/
AN
:
k

-> . > .
d’ 3 g’ .3

_ _4me?

— (20)
vg ENL

where sNL(E,m), the nonlinear dielectric function is given by

> > > >
- g q' q q'
> . ->

a'.3J q',3

In the above equation €1, is the linear dielectric function

given by (11),

=

2

Sum of the diagrams in fig. 19/Veff,

MO@ = o =
> . 1
3-
¥ ISy =a = sum of the diagrams in fig. 20/Veff'
>, - ,
g’ 3 (23)

and the numerators of (22) and (23) are the transition matrix

elements of the interactions shown in figs. 19 and 20. These

matrix elements can be calculated with the help of the rules

developed in chapter II. Let Sé;; £ be the S-matrix element

corresponding to the diagrams in fig. 19, then one can write
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2 2
iy h 2 4te‘*fAws,
Sa(lo) = (=i) I 4'n'e_) -l - N('q)‘l)(_l) x
" l_queL(q,w)J 5,4 |va’ F2u

N

s Jae — i

. g+is) (E—m—q*,—Ei_a,+i5) 2 (E—w—wa. _Ei-a—3'+i5)

1
+ Similar term with W, > - wEiJS(Ei_Ef) (24)

where (-i/h)"*, due to the four vertices in the diagram;
(4we2/queL), is the effective Coulomb field;
)1/2

(4ne2ﬁma,/vq'2Fa, » is the coupling constant due to wave-
particle interaction; (-1), is because of the single fermion
loop, the four energy denominators are due to the four vir-
tual particle lines and N(a'), is due to integration over the
énergy parameter of the virtual Plasmons because, there are
N(a') Plasmons in the state a'. Thus, the summation over the
Plasmons states a' simply becomes the summation over the wave
vector 5'. Finally, the summation j is over the electron and
ion loops, and the last term is due to the existence of plas-—
mons propagating in the opposite direction, i.e. a plasmon
can be emitted where it was absorbed before and vice versa
without violating the conservation of momentum and enerqgy
parameters.

Similarly, one can write the Scattering matrix elements

for diagrams b and c.
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2 - 2
_iye 72 2 are?hw>,
s{) = - 51§—¥X P \T—T;——ﬂ— NG (-1
Hh Vv Vi F .
vater] 3,3 L7 3’
N
{ P fam L .
T (E-Eg+ié) 2 (E—ma.—E—E_a,+15) (E+w—E-]z+a+16)
4+ similar terms with wa, - —wa;}B(Ei—Ef) (25)
. 2 AmreZhwr
Sg.) _=i Vﬂez X ) 2T i@ -
.ﬁu 2 - v v2
Yq L j.a' 4 FE .\
I e t '
T .[ (BE-Eg+id) (E—wa.-E—};_aﬁlé) (E_wa'+w_3§—3‘+§+16)
x
(E+m-E§+af16)
e e e e ._XS (Ei—Ef) (26)
performing the E-integration in (24) one obtains
(%) - -ﬁw+,N(a‘
S (—2ﬂi)S(E.—Ef)
2 5, Va'*FZ. *
j.a' q
>
f.
) [ 5 (R
T \.(E]-;-w-&. —Ex-g ) 2 (Eg-w—wg, -“Bg-3-3' )

L

£, (k-39
(E—]z_a ' _a+m-E—]2_—&, )2 (E'ﬁ—+ a+w—c>1, +w—E-];)

+
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£,(k-3")

(EK—E'"“‘EQ—E'-E)Z(EE—§'+w3"EE)

fj<E—§'>

(Ei_3,+w$,—Eﬁ)z(Eﬁ_a,—w-Ek_a._a)

+ .. . ... 6(Ei—Ef) (27)

In equation (27), transforming i—a'-a + K in the second term
and f-a' + k in the third and fourth terms, pPermits rewriting

equation (27) with a common factor fj(ﬁ)

2 >
2 2 HoN(g')
WU ST E L SR ey
h Vg eId j'a, Vg Fa. 3
1
(Ef—wﬁ'-Ef-E')z(Ef_w-wa'—Ek—E'—a)
+ 1
- 2 -
(E§+w Ef+$) (Ei+wa,+w Eﬁ+a,+§)
_ 1
—— 2 -
(Ep-w Ei_a) (EK+wa, E§+a,)
- 1 1
- 2 —-—w—-
(EE+wa, E§+a,) (Ei w EK_S)J
+ ... ... IG(Ei-Ef) ’ (28)
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E-1 integration and making the neces™

performing the
(25) and (26) yleld

Similarly.
. . R
sary transformation in k, egquations

2 Fw N (@) o
s Shahbnal B N CFLEDEFRS B

s = ane? [4me? )
b “ 2 >, Vq'2F> >
e |vateg] 5,5 Y% Ta K

1
- - 2 -
K (Bg-wg ~Bp-gr) ” FETY B,

k-

1

(Eﬁfm-E§++) (Ei—ma.—Ei_a.)

1

+
(Bgtug: —E—ﬁ+q (E—>+waz.+w-—Ey+q. +3

)

1
- 2 - -
E]-Z——c? (Byw wge Ex_ge - 1

(Ei-w

. \S(Ei—Ef) (29

|

2 , =2 bozN@" |
S(“) = Ame ATTe z q' Z (—Zﬂi)f.(]-z)
C qu eL a' Vql 2Fa‘ _}2 )

1
w=By, —>) (Eg=wg: rw—By_ a.+q)

“ (E}'E—ma|—Ei >.) (E’*“’

1

(Bgteg "EEag ) (E-’+w"E']2+‘*) (Bgrwg, OB g

+
)
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1
+
(Ei+wa.—E§+a,) (E'}Z—“’—E]’E—E) (E}'E+w3'—w—E]-E+E‘—§)
+ 1
Ewg FR+g) Ep-w-Ex-g) ‘ETZ"‘”E'—‘”'EI'Z-E‘—E)
F e e e e = . G(Ei—Ef) (30)
. _ hk? > >
one substitutes Ek = Sm.’ hk = mjv

In the classical 1limit,

and changes the k-summation into integration to obtain

2 o> N(&")
e a

o 2 1. 2
S;u) = (2;1) 4Trea ‘\4TT<§ ] ¥ " Idavfj )
K v
h varep| 5,3" q' FZ
~ 1
-_>‘._> qIZ 2 - > Fey . ‘Hh > 2\
(mc—f' AR = ] ez (a+a*) v+——-2mj (g+q"') }
. 1
—_».+_hq2 2 2z > e h > Ty 2
[u) a V-3 ] [w+w3. (a+q’) v‘-2m.(q+q )
j j
_ 1
> ha?) [y, g -3-EL 0
[u) dq v+2mj] [m—>| q'-v 2m j
+ - ”
_." -_)—E'S_'._ 2 ——>o+ ﬁq
{wa. q’ v 2m ] w=d VI om
B (31)
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. s 12 ﬁw*.N(a') .
(-2n1} Ane Awe z ~ Jdavf.(v)
q' FE, J

2 ->
va eL jrq'

I 1
] xqg?}
53 (o395
J

1
. > h 23y} 2 _ ' __q__}
(m-& . V-—z%l—} (NEI" q v+ B

1
: H 2, >y 2
.?;’—ﬁ——‘i——l : (m-&-m-q:. - (3+3") '?’r—-i-ﬁjj(cﬁ'q' ) ]
3

1 |
. [m— ]2 m-l-w(-i."(q-l'q )'V+-——j(q+q ) }_l

(32)

(
+ . - \6 .—Ef) ’
]

. 1% . mwzN@) T
gl*) = (-2w1) are? [4ame? 7 y __EE;___—— Id3vfjﬁ$)
c ns queJ 5,5 9 Fae

1
12 . > B 2z 2z
( > > hg? {mi"-a'.$+§%'—-] [w_wa,-(q- y-v 2m (g-g9')° ]
3 J

w=a VTom

1
: 2 > >
Hg? 2y 2. ha' T s, - (O ')-v———(q+q ) ]
tw"a“_;‘z%;] [“’3' g -3 3E—] [ (&+3 w

<+
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e and

fyom ar p and C respectively by making the gransform’ q-:— —q

and ® = -w
2 gz N@E | N
49 — Sd""vfj(v)

- 2 -
21:1.) 41re ‘zme xz S
-> 1
g’ q

1

—p—-‘o_g—-—' -y V-
&wq q' vt j}‘q w(q Q)

+ ///__,}__//
>, .->_ A > _ZN2
~ -'Z'il_j—(q q) \

\m—q-v+2m &m—» —w—(a'-9)

- 1
2312 ,,_‘_»ﬁg|2\

{ » - h '
\mqv——g-—-ZmJ iw—a. q'-Vv 2m;

_ 1

A
v+ mj (q‘ —q) \
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F e e e e = * S(E.-E_.)s (34)
2 > []
o(*) - (T2piy 4med ame Rug @) \jdavf &)
e Ha3 VqZEL 5.8 q'ZFa' \'
- :
2 23
T N
\. 4 J 3
+ 1
-> v 2
[w-q v+_£.l_} [ma,—q‘ .$+ﬁ_§g__m' ]
3
1
'+ v 2

2 > A ,,
(wa.—a‘ '3-%%—_—) lwa.-w- (@' -d) -v-ix-;j-(q‘ -q) 2}
3

2m..

5a- : — ]
2 { .
[w—a-$;ﬁ j]ztma.-w-(a--a>-¢+zgj(a _E)z}J

) - 35
S(E; Ef) v (35)

~2 ﬁw-»,N(_cE')
S(l-ir) = (—21\’1) Ame? ‘fﬂ'ez ‘ 2 q ‘Idszj (";)
d

e |va’eg] 5,3 9FE

1

- 2
\’ [w-q‘ 'V+—°-—-] (w—* -3 °V+—1——] [w* +o- (3+a") -v+-—— (G+d") }
L 3109 3 9 ™3
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1
[w d V+2mj] [wa:. q'-v 2mj W w=(gq'-q) *v 2m_(q Q)

. 1

( > > Ag2)f >, > h '2 > x> B 2 2]
_Z.o-hd - ound - + o\ — ’
[m g-v ij]lwa, q'*v ij w3.+ (g'+q) v 2m_(q +q)

+ 1 T
( > hg?) >, > Hh v2 >, > > R Zi_ZTy2
|@-a V—Zm'][wa.—q AL yau [wa. w= (' -q) *v+z—(a'—q)

3 J 3

F i e e e e . ‘G(Ei—Ef) (36)

By adding the S-matrix elements as obtained from the. six dia-

grams in fig. 19 one obtains the transition matrix element M1'

Tn the above relations, the factor (-2mi/h) which appears in

the S-matrix will be cancelled. Since hwa.N(a') is a clas-

sical guantity defining the wave energy I(E') and the clas-

sical limit of the M-matrix has to be independent of H, one

has to expand the denominators in equations (31) - (35) up

to the order of h®. 1In doing so, terms of order of Kh°, B and

%2 must vanish identically. After some tedious algebra, this

trivial condition has been verified and therefore, the matrix

element M1 is given by

v w

>

£F - vy f

w = —SEf_y =) _%ég_LJdavfj($)Aj(313',3) (37)
nva®ey 3 T3 3y T g

q
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3,03 -
A.(G,E',$) = 839°9 “cose+4 q“q'z‘ 2 - 1
J x3x|3 lXIZ(A|2_x2)2 XZX'Z(X'Z—KZ)

+ g2gq'" 2 + 1 cos?9
AZ(va_xZ)Z KZA'Z(X'Z-AZ)

16q3ql 3
Axi(le_xZ)z

cos®6 , (38)
A= w - 4V, A= whe o~ g v, _ (38.2)

and 6 is the angle between a and a'.
Following the same rules, one can write the S-matrix
elements for processes shown in fig. 20 and consequently the

transition matrix element M .
2

2 2 et
S(S) - (_i)s 4.n.e2 E dTe ﬁwa|N(q') " 4.“.e2
> - >
a ns queL a'#q Vq'zFa. tV|q+q‘|ze(q+E',m+wa.)

33

{ z JdE (E-Ez) (E—w—Ey —>:;- (Bow-wx,—By_>,_Z
3,k k k-q q' "k-q'-9g

)

) jdE'(E'—E+)(E'—w—E+li)(E'—m-w* B ..2)
s, k' k k-q q' k-a'-q

+ Similar terms with wa, - -wa;}G(Ei—Ef) (39)

where the factors,(4ﬂe2/queL), is due to the effective Cou-~

lomb field; [4ﬂe2ﬁmq'/Vq'2F§,]l/2, is the wave—-particle
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Z/V\§+3‘\2e(3+3‘ gV i the ef-
een the two trian

, WFW

g constant; Ame

omb field 1ine betw

couplin
gles and

enom—

fective Coul
The six energy 4

(-i)®/n%, due to the five vertices-
x virtual fermion 1ines. and the

s are due to the si
e sqguare process -

of fig-

inator
eaning as in th

tgimilar terms' have the same MW
nlso, the s-matrix element due to diagram (b)

2

20 is
>
(s) (-i)® qme? 12 are?huz N (d') Ame
= s a— P-4
sb 1:.5 \V 2 z " 2 AV '>+'+|\2 "++| W)
3 |va®ey, 3 #a vg' *Fye |q+q | 2elara’ (TG

x

:'\_3
C E—w—Ei_E)(E—w-wa.—Ei_a._a)

{_2 IdE E-Eg) (

. ->
ik
s 3
L IdEl(E"E+)(E‘+w—E*l+)(E'+m+w+ B> =~ »)X "
s,k k k+q &' TER+q'+a
- . |8(E;~Eg) (40)

and making

performing the E'-integration in (39) and (40) .
n of ﬁ—a'—a - i, etCe.r and sub-

the necessary transformatio
and changing the k-summation

= 2m.’
3

one obtains b

2
stituting By Ik nk = m.$
J
into integration, Y adding

-
(5) q(8) —omis [(4Te®)? fiw>,N(@") 1
= P B0 vatey | §'#4 veqr2Fz. arat 1’ c (+a" swruge)

L L | a'#d a 0 qd
—:"é-—— S__/_—_T—/iE—__——_/ x
27h? 5. (E-Ex (E’w'Eﬁ_a)(E—w—ma,—Ei_a,_E)



91

2
ave &) (B s -
f s ms) (w_q.$)(wa._q-.$)(w+wa'_($+q.),v)

e~

(G- @+3) g , 13- @G+3) 192 , _F-3' @43 ®
(0=-&-3) (W, =q" 7) Wz, = (G+3") -V

+ . . . 0 L. Jé(Ei—Ef) (41)

Similarly, the sum of diagrams (c) and (d) yvield

2 ; >,
sés)+sé5)=(‘?;i)r(4we2)2 hwg-N(q*)* 1
L queL E,#a qu-2Fa'|q+ql' e(q+q',w+wa,)
—3 )y f dE 5
27h? i, (E-Ei)(E+w‘Eﬁ+a)(E+w+wa,—EK+a,+a)
h 2 1

X faavf ) (2~ > > 3y -3
s s (ms (w-q-?)(ma.-q"z)(w+w3.-(a+Q')'V)

9' - @+dq? , F-@+dDa'? | _(G-3') udr) 2 ]
(w=3F %) (03 =g -9) whoz, = (F+g") -3
+ . . . . . . G(Ei—Ef) (42)

By adding (41) and (42) and carrying out the same procedure

as for the previous case, one obtains

- (4me?) 2

2 hw>,N(g')
M = — -4
2 {queL(q,w)J

> g'?F>,

q'#q g
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->
£.(V) 12
1 3 J ~
T T2 o> Z Jd v 2 Y1i'
|a+q" | €(Q+a" yutez ) L3 m )
1 £.(3) 2|
+ z atv A— v (43)
> o, >
la-a* |%e(@-q"  w-wz) 3 m? 2§
where
Y = 1 4'-(G+a")g® |, d-(F+3')qgr? + 2°3' (g+g"
y D AT x AT AT
¢ - (3. G-3nq® , 3-@F-3nq'? , 33 G- 2]
2 T XA (=AD) L x AT AT |

(44)
and A,A' are defined by (38).

The matrix element M2 can be obtained directly from
the calculations given in the last section of chapter II if
one recognizes that each diagram in fig. 20 is the square of
three-wave interaction (apart from some coupling constant
factors). Substituting (36) and (43) into (22) and (23)

respectively yield

4

1 W5 I(c_i') 3 > > > >
o =—2L _y2pi gy ____fa vEL (DAL (F,E7 %), (45)
1 n vgle 3 mj V2, J J
0 L g'#g 4 q’
and
3 >
_ (4me?) I(g') 1
C!z = _V 2€ _»Z o 'ZF 'l—)-+—>-.l2 (->+->' N ) X
aq L g'#g g aq' Lq q e(g+qg’ ,w mqu (46)
a3ve. (V) 2 a? VE ¥y )2
fj ],y R Ly
: 2 1 > T2 > > 2
3 m la-a'|2e(a-q' ,w- W )LJ
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These equations occur as equations (15) and (18) in the work

of Selim and Krishan (1971—1972).

The velocity integrals in (45) and (46) are calculated

by the asymptotic expansion method (Fried and Conte., 1961)

where the ion integrals converge asymptotically in the 1limit

.
Ei << 1. On the other hand the electron i

ntegrals converge
s

——

- in oxrder to perform
e .

c
asymptotically in the limit S << 1.

the velocity integrals, one assumes for simplicity that a'
1ies within a cone of angle 60 << 1 about the a direction

which is nearly parallel to the direction of the electron

beam velocity- Fuxrthermore, the calculations will be re-~

stricted to a spectrum which is nearly constant within an

interval about dpj and zero outside, where dp is the ion Dbe~

bye wave number. Also it will be assumed that the energy 1is

of the form

I(&',t) = I(£)8(8-6 ) (47) o

This choice of spectrum is more general than that of SagdeeVv

and GaleeVv (1969) . where they have considered only twoO

spectxrum 1ines in E'—space.
gsubstituting egquations (9), (10) and the spectrum
distribution (47) into (45) and (46

the velocities and wav

|
{
|
i
) and integrating'over i
{

e vector a', one obtains i
1
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2 T ‘3/2
a = 1 2247w2 1 () _e o , (48)
1 gzr2 ¢ 27N, mv2 (T; 0
De "1, e
and
3/2
2 T
o = 1 ngﬂ I(t) (?e} (Ja._ (49)
2 quBeeL D mv; i 0
where ND = 23 n0A3De is the number of electrons in Debye

sphere. In obtaining the result for al and az, terms of
order higher than (q/qD) have been neglected and to keep
(48) anag (49) accurate up to order I (t) only, the linear
wave frequency is substituted. Since 60 << 1, one can

easily see that, the contribution from the triangle dia-

factor (1/60) and, therefore, the former will be retained.

Substituting (49) into (21) yields

3/2
enp, = €.- —L1 _ 256m2 1(¢) (E} (50)
NL LT J%a2 SNLE vz T,

function given by equation (11). Solving €quation (50) for

ENL = 0 as has been done in the Previous Section, ang re-

taining only terms of order I(t), one obtains

wa = qcs + Awa (51)

where the frequency shift Awg is given by
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2 T 3/2
pwy = 12872 I(t) [ e]

9N, 0 T, dCg (52)
D i

2
mv
o e

Next, to obtain the function Fa in the nonlinear approxima-
tion, one has to differentiate (21) first with respect to w,
and then, substituting w = dCg4 and performing the 4'-integra-

tion. Egquations (21), (45), (46) and

9
Fa = l%E(NSNL(E'w))‘w=wa (53

yvield (appendix A)

(2/qc) ¢ 3/2
g - gl {1 2g2a) v B o], 0
L 9 *pe 307
where
3/2
a2 1) [Te -
o D MV i

2
e

substituting (54) into (16.a) yields the modified

matrix element

- 4'rre2hw-* 2 3/2 B s
3 j2e T2 T0G _ ameth e qe | (1- 256 o /2, 128 | (s6)
0 quFa 392
o

then, inserting (56) and (51) into (16) to get

[ 1t c 128c
-Y-a = ‘/11'/8 qcs(;;—ll] \ (l— _2_'—;’9 U.) 3/2+ ,:_L_z_g_ al X {l— _E)_ S G}
e

(57)



96

Thus, since I(t) increases with time. one notices

that the factox within the square pracket (which is obtained

from the nonlinearities associated with the matrix element)
increases and consequently the growth rate decreasesS- AlsO.

the expression in the curly pracket (where the 1ast term is
due to the frequency shift) decreases as I(t) increases until

the wave energy¥ assymtotically approaches its maximum wvalue,

I 90 N oLy Y2

Tnax , oD (- -1) &_}_} (58)
2 2 c T

nv 128™ =) e

making the growth vanish and thereby stabilizing the waves

This is SO pecause +he phase velocity ©

£ an jnitially un~

° S
1'01d phase New phase
velocity velocity
93f (v
e( )>0 Bfe(v)<0
v XY
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stable wave has shifted from the unstable part of the electron
distribution to the damping part. This is shown schematically
in fig. 21.

As a result of the instability there will be some
heating of the plasma particles over any finite time. To dis-
cuss this heating mechanism, one writes the rate egquations
for electrons, as well as ions, from which the rise in tem-—
peratures can be estimated in the stationary state. The rate

equations for particles can be written as

—-L—-af ] (3) 2m M > > > >
= = =1 Im Iz{[}N(q)+1)f.(k+q)(1—f.(k)]
K2 > o J 3
q
- N(@Ey (®) (1-£5 (k+Q) )_} 8 (B, 3= 0q Ex)
+

[y(&)fj(i—a)(l-fj(i))

(N (Q)+1) £5 (%) (1-£5 (k-3) ).ll 8 (Ei-wq—E-]E_a) } (59)

where ﬁo is the modified matrix element (55) and EE is ex-

pressed in unit of fi. By expanding f(iia), Ei+a, and the o-

. . . . k2 > -
function in powers of h, and substituting Eﬁ = Smo ! Kk = mjv,
3
(59) yields to the lowest order in h
-

9f. (V) - 2

3 _ 27 -~ 2 - l > 9 > > >

l— =2y R 1PN@ [ (§5) £ 8(IVmug)

m. -> ov
J 4a
2 (2 2 > P _l
+ q? (G—=)£(V) 8" (qev=w,) (60)
v a’l
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I(d,t) into (60),

Substituting the value of ﬁo and hqu(a)
and changing the a-summation into integration, one'obtains

the rate equations for the Plasma particles

->
°of (v) Tv? —1 3 2
e _ e ( 128 } f d > [ > 3 -> > >
Tw Moo S r @ @D 3 53T

ot m 302 (2m) 2 oy N

+ a2 (@ )osr (FF-0 [ (61)
av. € q

afi(3) wv; ms 2 128 -17 g3 -
T T we G [+ 128 o) 2 1 g,
i 3e§ (2m) 3
94 2 > > - -+ 9 -> > >
[3-——) £f.(V)S(qv-w )+q2(q-——]f.(v)6'(q°v—w )]
[ v N q s’ i q
{62)

Multiplying both sides of equations (61) and (62) by mv? and
miv2 respectively and integrating the result over velocity

Space, one obtains the rates of change of temperature

9T c -1 3
e m 3u?(t) V21 ©s [ 128&] f d3qg >
Pt T T3 a3 - L s [;4 1280 I(q) (geu-w>)
ot 3 at 3n Ve 36§ (2m) 3 q

(63)
12
Ts _ vam (Te) (T 1282)~ [ 43q >
35 T I (T & 1+ ==== 9T (q) (64)
0 i i 3ej (2m) 3

To eliminate the first term in (63), multiply (61) by Vv and

integrate over the velocity to obtain

S5 —1f 43

9 (mu2?) = - Y271 1+ 128a 4’9 _u (3*3—w+)q1(3), (65)

at n v
0 362 (2m)? Vo g
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then, substituting (65) into (63) yvields

oT - > -

e _ Y2n 128a)"! 3 (q-ua-wx)?

—t _ 3n [1+ ;;;‘} dlq 4 (&) (66)
° 0 (2m) 3 e’

Solving (64) and (66) for EE >> 1, one obtains

T, )vs (f_) 5‘7 L—:—;-]s ‘_r/s -

where T is the jnitial electron temperature.
0
Since the maximum value of the l1ast factor is unity.

one can write

u/s
l (——) (—)

e

(68)

This result is different f£rom the one obtained by Sagdeev

(1965) where it was shown that

Tl cs
T < (E_) - (69)

n and Drummond (1970) that

However it has been shown by Sloa

(69) is incorrect-

4.4 Comparison
The stabilization theory discussed in the previous

sections can be strengthend by proving that the amplitude
d in the previous

dependent term in the growth rate obtaine
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gection is jaxger than the electron nonlinear 1andau growth
obtained py Sloan and Drummond (1970). Fyxom equation (5) of
the abo

wve reference. one obtains

->
dN(g) [ b3 mna3 pe et - - ‘ 2 ng" 3:Ee(V)
= ag"a vN(q)N(q“)AS(w —q'evY¥> w2 Ba @ — (70)
ax o pe 3V
. A}
where w' = wrw"” s a‘ = E+E“, A= 11: Egi%%giil, and B 1is given
*

by equation (6) of the apove reference: Substituting the
value of s(q‘,m‘) jnto By

and calculating B, one gets

gl

A= — (7L
1 [
w'da kDe .
2 ql“ W i
B = e De puw'w" s (72)
n? v;
then. inserting (7 and (72) into (70) yields
N INC2
(
an@ - g || e GE T sl a7
) AV
The numnber of plasmons in the state.a“ 3 given by
" " \E"'u\z
can = =S y Byl o R @ (74
3w 81 m“q“Z)\z
De
Substituting (748) into (73) and per

forming the velocity inte~
gration, (73) pecones
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->
1 aN(a) -
N(a) at NL

qc 3 >u
= VZ‘I; ( VS)S a C],2 I(g 2) (a:n a-w') (75)
oxDe aq'a mv g

performing the a“-integration by takindg. as before. the spec—

tyum form I(G") = T(E)8(6-8 ) (72) yields
- a T \1/2
Yo © YL 3’% I(e) {ﬁi} ) (76)
D mvé i 0
where
gc
- T _s -
Y f; - (u cs) (77)

e

From (57) the dominant nonlineaXx term in the growth

rate is given by

: Ta/z
= -y lzent I (S
C L

T (78)
362ND mv; i

Comparing (76) with (78) , one obtains

(79)
°

Thus, the nonlinear term due to the electron nonlineaXx Lan-—

dau growth is negligible-
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CHAPTER v

FREQUENCY sHIFT IN

ELECTROMAGNETIC WAVES

5.1 Introduction

The Krylov—Bogoliubov—Mitropolskii (1947, 1961) tech-
nigues familiarx in nonli

used bY mnany
authors to stu

dy the pehaviour of some types of plasma waves .
In particular, MontgomexyY and Tidman (1964) con

sidered the
nonlinear propagation of an electromagnetic wave in & cold
plasma and found an expression for the second order fre~
guency shift for poth travelling and standing waves. Tidman
and Sstainex (1965) have calculated fregquency and wave num-
per shifts forx nonlinear waves in 2 finite temperature
plasma considering both cyclotron waves and electron plasma
oscillations. Boyd (1967) obtained an amplitu

de frequency
shift for e

xtraordinary waves, i-€- with a propagation vec—
tox perpendicular to the direction of the external magnetic
field.

siuijter and Montgomery (1965) and Das (1968) used
the same technigues to obtain the amplitude dependent fre-
quency shift for pboth 1ight waves and extraordinary modes
for which the relativistic corrections are jncluded- all
the above authors pased their calculations on the dynamical
equations for & cold plasma together with Maxwell's equa~
tions. This method will be first priefly described. Then
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the guantum mechanical method will be employed to calculate

the frequency shift in 1ight, whistlers and Alfvén waves .

The non—relativistic equation for momentum conservation is

given by

3 L 23V L@+ L >
5E + v.gi + E(E + 2 vAB) = O (1)

and the corresponding Maxwell's equations are

>
VeE = 4ne(n°—N),

(2)
. . 1 3B
VAE+-—-§—E=0, (3)
1 3B _ AT oY
VAB = T 3 2T env, (4)

where N is the electron numbex densitys v, the electron

velocity: E,%, the electric and magnetic fields and n is

the uniform packground positive jon density. To the above

set of equations: the Krylov—Bogoliubov—Mitropolskii (KBM)

perturbation expansion is applied

N = n°+en(°?(a,¢)+e2n(‘)(a,¢)+.... (5)
T = o+e$(°’(a,¢)+623(1)(a,¢)+.... (6)

207
i

0+s§°(a,¢)+92§(‘)(a,¢)+.... (7)
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3 = §°+e§(°)(a,¢)+e2§("(a,¢)+.... (8)

in which the perturbation coxrrection terms are £

unctions
of the wave amplitude 2 and the phase b and € << 1, is the
expansion parameter. In the KBM theory one uses
%% = w+ezA(a)+0(ea), (9)
22 - c2p(a)+0(e®) s (10)

in which A (the frequency shift of that mode under jnvesti-

gation) and D are determined by the requirement that there

be no secular terms (terms «¢) in the perturbation expansion.

in (1969) ., Tam developed a perturbation scheme bY

which a small amplitude dispersion effect can be accounted

for. This scheme.based on the method of Krylov, BogoliuboVv

and Mitropolskii (1961), takes advantage of the fact that

the frequency of a nonlinear oscillato

tude of oscillation. Accordingly. for small amplitude

plasma waves s the frequency s wave number and amplitude can

be represented py a power series in the energY density of

the waves as follows:

w = m°+m2(a)a2+mq(a)a“+.... (1)

where the first term is the linearized result and the ad~

r depends on the ampli-
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aitional terms represent the effect of nonlinearity. Tam
applied the above technigque to the investigation of whistler
modes - He concluded that., if whistlers are propagating

parallel to the external magnetic field, the £freguency shift
is zeroOr and that the linearized solution is exact for the

full nonlinear two—component cold plasma- However, it has

been demonstrated by selim and Krishan (1971) that these

observations are incorrectsi and later sudan (1L971) prOVed
that Tam's result is restrictive.

in this chapter, 2 general theory has been developed

for the studying of whistlexrs. al1fvén and transverse waves .
The various physical processes responsible foxr the amplitude
dependent frequency shift are represented by Feynman graphs
using the theory developed in chapter T1. The wave—particle
and two—wave—particle interaction Hamiltonians are obtained

in sections 2 and 3 respectively. section 4 contains the

calculation of the scattering matrix element and a general

formula for the amplitude dependent freqgquency shift. These

shifts for 1light, whistlers and Alfvén waves are given in
section 5-

5.2 Wave—Particle Interaction

The first two texms given by (26.0) of chapter it

represent the electromagnetic wave—particle interaction.

The corresponding interaction Hamiltonian can be written in

the second quantisation formalism
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e . r e

= + e _i—» > T
Hy e % 53%— }w (x)&(Pj+ = Ao(x)) A (%)

e .
- . -> “ J > —\ 3
+ R () - = Ko(x)l v (x)d®x | (12)

> . .
Here, Ko(x) is the vector potentlal due to uniform external

magnetic field directed along the z—axis such that K°(§) =

(—Boy,o,o), and ¥'s are the field operators

v = I o B,z (13)
n,k

v = I Ch% £ %) (14)
n,k

+
> Co>
Ck n and %¥,n are the an

nihilation and creation operators of
r

particle in state kX with gquantum pnumber n, and gn x is the
14

solution of the schrodinger eguation

X Yﬁ.yii K-.z > =EBE_ > 15)
ij T3 c 0. En,k n,kgn,k (

and is given by (Landau and 1ifshitz, 1958)

1(kxx+kzZ)

>
(x) = Gh(y-yc)e (16)

[md e

Enk ik,

The Harmonic oscillator function Gn(y

—yc) has the form

'm.m ./h —{m.w_./2B(y"Y y 2]
- = J cJ - . c3 c
G, (y-¥) PP H ( [f50.3/8 v))ee

(17)
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whistler mode have a clockwise polarization, while Alfvén
and light waves can be polarized in the clockwise or counter-
clockwise direction. Substituting (16) and (20) into (19)

and performing the x and z integrations, one obtains

V2
) - -2 3 anhc® ] +
int 2mc S VwT(q)FT(q)J

c c A
kx,kz,n,n' kx'kz+q’n k'kz’n q

de [(mwce) G, ¥~y ) (y-¥ )G, (¥-¥)
5 -
+ ﬁGn(Y—Yc)§§ Gn.(y—yc)J+ H-C. (21)

To perform the y-integration, one can make use of the fol-

lowing relations:

MWoe ve n'+1 m*
( h ) (y—yc)Gn,(y—yc) =Tz Ghr+1 +j5_ Cpr-at (22)
W
I _ — ce [ m _ mEx
oY Gy ly=vg) = J h [J2 Cn-1 2 Gn+l]' (23)
, MW
where Gn(y—yc) = Gn[a(y—yc)], o= —. Inserting (22) and
(23) into (21) yields
gme? L V2
mTc mw .
Hint = ~ Zzi ) Vo (q)Fc?q) C; k_+g,n%k_,k_,n'"d
A,k sk n,n'| 0T T i x'"z = x'"z’
{fdy/n Gn(y-yc)Gn,_l+Idy/n +1 Gn(y—yc)Gn.+l}+H.C.
Using the integral (24)
fdyGn (y-y )G, . (y-¥Y ) = Sh,n'’ (25)

one obtains
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oh 53 gncimw 0
H = - 5oc e _.C Aq
int NS G Kk, en Vo (@ Fo (@ Kok raommd kyrkgr?
chzmwce(n+l) +
-+ _________————-—_———

C C Agit H-C. (26)
VwT(q)FT(CI) kx'kz"'q'n_”' kx'kz'n

in (26) the first term is due to the clockwise polarization,

and the second term to counterclockwise. These two terms are

represented diagramatically in f£ig- 22(a) and (b) respectively.

kx,kz+q,n—l kx,kz+q,n+l

kx'kzrn kxikzln

(a) ()

Fig. 22 Electromagnetic wave—particle interaction

5.3 Two-Wave—Particle Interaction

The interaction Hamiltonian given by equation (26.3)

of chapter IT is responsible for wave—wave—particle inter-

actions. in the second quantisation formalism, this inter-—

action Hamiltonian can be written



110

3 > e? > * > 3
. = e . 2
Hi ¢ SW (x —_— (A1 il)W(x)d x (27)
(20) xe~

given by (135« (14 and

where the y's and Kl(x) are
spectively. Substituting these equations into (27) and per~
forming the integration one obtains
2 - —-1/2
welh \ v/
H. - re By w_ (g)w (a*)F () F (Q')X
t Vv m
in G.a’ 'kx'kz'nL T T T
+ + + +_+
C C AR +C C A B
Y_n.kx.k;q‘—q n/kyrky @ q' n.kx.kz-q—q‘ n,kyr¥y qa'
+ H-C. (28)
(28) can be represented by Feynman diagrams as follow: The
. s + + . _
term containing Cn.kx.kz+q‘—qcn.kx,kiAqu describes the Pro
x_is annihilated,

cess in which one particle in the state DK%

(a) (p)

rig. 23 Two—wave—particle interaction
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the state n,kx,kz+q‘-q; an electromag—
ith momen~

created in
is destroye

and one is
ol
momentum Aaa

pnetic wave with
similarly the second texrm describes the
othex with

-> s
um hg 318 created.
troying one particle and creating an
These processes

rocess of des
etic waves-

P

the cre

ation of two electromagn
are shown in £ig-. 23(a) and (b)-
1itude and Freguency shift

attering Anp
n a second ©

5.4 Sc
dex to obtai
+ be considered.

in OXY
eraction nus

fouxr wave int
ten (Harris,

1 Hamiltonian can be writ
(29)

guency shift, 3
1969)

The tota
H=H +H"'
L]

_ 1 +
H - 2 —2-hu) a Aq a
1 1

(30)

+ H-C.

(31)
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where A; = A , W , W w and w are the frequencies of
1 a5 q1 q2 a, qk

the four waves in the absence of interactions- The perturbed

frequencies are contained implicitly in H' which includes all

the possible four—-wave interactions.

gince H' contains expressions involving four plasmons.

the appropriate Feynman representation must include diagrams

with four external»plasmons. These are given by three aif-

ferent types- First, diagrams similar to that of fig. 10 in

which there should be always two plasmons annihilated and two

created. The conservation of momentum must be satisfied and

the guantum numbers obey selection rules given by the intexr—

action Hamiltonian (26) at each vertexX. second, since there

are creation and annihilation of two plasmons at the same

wvertex as shown in fig. 23 due to the term (K-K*), it is pos-—
sible tO construct diag

rams similar to that of fig. 9 with

two plasmons at one vertexX and one at each of the other two

vertices. Third, l1o0PS: corresponding +o the second order

matrix elements, with two plasmons at each vertex are also

possible. Retaining only terms containing the annihilation

of two plasmons and creation of another in (29), one obtains

g ql ql ql q qz qz qz
1 2
+ 3 Lo A + 3 Lne_ AL A
2 3<13q 2 q 4a
3 M y
uw L
4+ _+ + +
+ MAAAA + MAAA
2 q 4da_ 4 d 2 2 g 49a_4d Aq
1 2 3 u 1 2 3 H
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+ +
+ Y M A_A_A  + H-C. 32
Z 3Aq1 qz qa q“ ( )

If the waves are taken to be monochromatic i.e. q1=q =q =q“

(Montgomery and Tidman, 1964), (32) becomes

1 + +a
H = =h A A + MA AA + He
2 g gg aPaPqPq c
1 + 2M +
= =ha A 4+ — A A + He-C
20BgRq (g Y B Bgly)

= = + + H-C.
ﬁAqu( 9 Amq) H-C (33)

where Awq is the fregquency shift, given by

b = 2 ata = 2M g N(q) = 2MI(D) (34)
a B Tga g2, a A2w
q a

and M is the sum of the matrix elements for the three possible
processes discussed earlier and it has to be at least of order
of RZ.

The matrix element for the first process shown in fig.

24 for the clockwise polarization can be written as

- By (-i)* Bm w42
Mp = - (5P I G (-1)
I 2Tl A 2m quFq J
rdEr n(n+1)i*

Kok, ,nJ L(E-Ek o) 2 (Brw -

q Ex =zt n-l)(E wq k,—q., n+l)
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(kx,kz—g;n+l)

3

(kx,kz+q;n—l)

(a)

d
‘LLLL\ kx,kz+q;n—l

k
b 4

k

Fig. 24

K

'k

-l

n
z’

oy

A kx,kz+2q;n—2

kx,szq;n—l
(b)

kx,kz—q,n+l

<

2 20

B

k_,k_,n

erkz—qﬂ’l"'l

(c)

The contribution to the scattering

amplitude due to four—-plasmon-particle ver-

tices.

This comes from E-K term.
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n(n-1)i"

- - 2 -
(e Ekz,n)[E+wq Ekz+q,n—lj (E+2wq Ekz+2q,n—2)

2 s 4
+ (n+1l) "1

- 2 iy - 2
(E Ekz,n) (E wq Ekz—q,n+l) ]

(35)

where the factor (-h/2wi) comes from the relation between the

S and M matrix. The source of various factors, as have been

explained in chapter IT. The three different terms in the

pracket are due to the three different diagrams in fig. 24.

performing the E-integration, (35) yields

e Y rSTiju)c.' 2
My < § (5E; \ Vo Fq ) h n(n+1)f(kx'kz'n)

kxplfz,n L

{_ l
E +w -
( kz,n wq

2 —
Ekz+q,n—1) (Ekz,wq Ekz—q,n+l)

- 1 1

p— - - 2
(Ekz,n+wq Ekz+q,n-l)(Ekz,n Cy Ekz—q.n+l] S

n(n+l)f(kx,kz+q,n—l)

—_ - 2 - -
(Ekz+q,n—l wq Ekz,n) (Ekz+q,n—1 qu Ekz-q,n+1)

n(n+l)f(kx,kz—q,n+l)

- 2 -
(Ekz—q,n+1+“’q Ekz,n) (Ekz—q,n+1+2‘” E 1)

‘n(n-1)£ (erkzln)

- 2 -
(Ekz,n+wq Ekz+q,n—13 (Ekz,n+2wq Ekz+2q,n—2)



aAfter making the necessary transE

+
example kz aq kz and

n(n—l)f(k 'K +q,n—l)
(Ekz+q.n—1—mq_Ekz )’ Ex +q.n—l wgPr +2q,n"2

_ 2 (n+1) :E(kx.kz.n) _ 2(n+l)2f(kx,kz—q,n+l)
JE— 3 » - 3
(Ek n mq Ekz—q,n+l) _(Ekz~q,n+l+mq Ekz,n]

(36)
ormation in kz and n (fox

n-1 > n in the third texrm, etce) s

(36) can be rewritten

-3 (e e \Snm.wc[\zz
o 3ed ohE (k1K ™) *
3 2™y Vo F \ % kP x'z
X_ n (nt+l)
(Ek Wy B+ 1)’ (Ek wy By —q,n+l)

- /M
(B -E (B E 2
k ,n q kz+q,n—l g kK —q,n+1

+ //-’(Eﬂ) (nt+2)

- 2 — -
Z,n q Ekz—q,n+1} (Ekz,n 20)c_x_ Ekz—Zq,n+2)

i
y
1
L3
3
i
3
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+ n(n-t)
(Ekz,n+wq—EkZ+q,n—l) (By wq—Ekz+2q,n—-2)

I ¢ - & R e _________ni/
. — . 3
(Ekz,n wq Ekz—q,n+1] (Ekz,n+wq k +q,n—l)

sk?2 Bk (37)
- . = z Z =
substituting Ek n wcj(n+1/2) + S’ m v

]
(37) pecomes

and changing

he summation into integration.,

. Stm_. w
M. = 28 ) = ___3——91 dvf(v)
I 3 (2m) f-w F
n(ntl) _ n (n+1)
qz}Z{ ﬁq2\ { _ A 2}{ B 2]2
A, = 290 Iy F o A ng?) (h, + 52—
( 3 2mj j. ijJ b ij 3 2mj
_ (n+1)(n+2) + n(n-1)
2\2 2 { 2Y) 2 2
Zﬁg _ hg _ 2hg
2( } { 2m . } Z\XJ m.} K 3 2m_.
3 3
+ (n+1)? _ n? )
G B
J 3 30
where Aj = wq + wcj - av, (38.a)

since the matrix element must be of order of »2, one has to
expand the denominators of (38) up to the orderxr of B® to
obtain
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Tm 2 AadvE. (v
M = niat § (o) [emites 3
1 3 ij VW w F m.AY
g 4g J 3
2 bap2 2 2
r 5gq hwcjn 5 a'h wi4n
1 - -2 + 10 2 % )n
L §%3%5 2 mZwZ.AZ ™5
J CJ J
A 2
5 Zm%; + 16[2m X ) (39)

Sﬁbstituting ﬁwc n =

N

mjvi and taking the classical limit,

one obtains

2 2x72 bert T
[ﬁ] =a’ ] =) i = Y G LA N P 52 VZ -3 2 =
e 2 ? m. [ W LA 2 32
a2l o 3 3 Vv quq mjxj i c3™3 © wly jJ
(40)

Following the same procedures, one can write the matrix

element for the second process shown in fig. 25.

Mpp = 3 ()7 7 TS Gy’ s (o
I 2Tl h 3 mjV 2m:J qu g

s 3

Z JdE ni
k sk, ,n (E—Ekz;n)Z(E+wq-

Ekz+q,n—l)

(41)

+ (n+1)i? ' i
(B-E

kz,n} (B-wg—Ey =g n+1)

Performing the E-integration yields
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/ Fxr e r? \

kx,kz—q,n+l

Fig. 25 The contribution to four-wave scat-
tering from two plasmon—-particle vertices
and one two-plasmon-—particle vertix. This

comes from A2 and P+A terms.
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_ Te? e 28'T”"cj
Myr = & § v (ij) Vo 2

_ nf(kx,kz,n)
a°a k,.,k,,n (Ekz

- 2
,n+wq Ekz+q’n_lJ

. nf(kx,kz+q,n—l) _ (n+l)f(kx,kz,n)

—_y - 2
(Ekz+q,n—l wq Ekz,n) (Ek

—w_-E, )2
z,n q kz g,n+1

(n+1)f(kx,kz—q,n+1) 1
(B

3 (42)
kz—q,n+l+wq_Ekz,n) g

Making the necessary transformation to obtain a common factor

f(kx,kz,n), one obtains

. 2 2 8Tmw .
M =h8 ) I &2 =) f(k_,k_,n)
IT 3 v 2mj quFq kx'kz'n x""z
n + n+1

X
r__Tﬂ

- 2
(Ek ,n+wq Ekz+q,n-lJ (Ek

-0 -E _ )2
z zln g kZ d,n+1

n+1 + n 1 =

— — 2 - 2|
kz’n wq Ekz_qln+1J (Ek ’n+wq Ekz+q’n—l) J

= °

2

(43)
This means that the contribution due to fig. 25(b) exactly
cancels that of fig. 25(a).

The matrix element due to the third possibile process

shown in fig. 26 is given by

2
M

2
_ B (=1) [_me2n 7]

- - B9 : (-1) x
IIT 2wi B2 UnijquJ
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i 2 s 2
) de = ~ + 2. 1 (44)
ken (E_Ekz,n) (E—Ekz,n)(E+2wq_Ekz+2q,n)
q kx’kz'n q
q kx’kz'n q
(a)
a

kx,kz+2q,n q
()

Fig. 26 The contribution to four-wave scat-
tering from two—plasmon-particle vertices.

This comes from the A2 term in the Hamiltonian.

performing the E-integration in (56), it is obvious

that the first term is equal to zero. This means that the

process shown in fig. 26(a) gives zexo contribution. Thus,

only process 26 (b) contributes to Mgy which becomes

o 2 f(kx,kz,n)

M =hn ] [_————-“ez l
IIX d m.Vw F ;
J g Al kyekyem (Ekz,n+2wq—Ekz+2q,n]
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N f(kx,kz+2q,n) \

(45)
E -2w —B
( kz+2q,n mq kz,n]x

Making the transformation kz + 29 * kK in the second texrm and

flk 2
- . = 2z = pcs -
substituting Ekz,n wcj(n+l/2) + 2mj, ﬁkz mjv, into (45)
and changing summation into integration, one ©

M L -
&_lll} =3 Y_;Eii—__\ZSdavf.($) 9’
ﬁZ Y 3

%0 ! Enj/qu?q

ptains

—— (46)
mj(mq—qu)

adding (40) and (46) yields the total matrix element whicn 18
given by

N

w__ = 2
Fﬂé} =3 _%l.___zﬂ———; Sasvfj($) x
h*) g0 3 Wy 16n0ijFq
4w? a?vi 5 @ v, 1
— 1‘7/"5»’;’7*—/‘;'
+w _.—av W N w2 A5 -gqv
(gteey™ ) c3’3 c3”3 (g™

47)
and, then substituting (47 into (34) , on€ obtains an expres~
sion for the amplitude dependent frequency shift.

21 (&) w* . a3vE. ()
Doy g rlal 21 S ———;}———-x Y(q,vz,v*,mc.) (48)
8n2VF . w? 3 3
o 49 q
where
_ Aw? . q?vi gVl
T P I MR PP B 5 27
+ =gV .
(mq woy™d z) wcjxj w2

i R .

i
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1 (49)

- 2
(wq qu)

<+

5.5 Amplitude Dependent Frequency Shift

a. Light Waves
For the circularly pPolarized high frequency electro-~

2

magnetic wave (wé = wle * q?c?, wg >> wcj)’ Propagating par-

allel to the external magnetic fiela, only the last term in

(49) is significant (this corresponds to the contribution

from the Process shown in fig. 26(b)) as compared to the con-
tribution from fig. 24. Therefore, exXpression (48) becomes
4 3 >
2 w!. aivf, (v)
Awq =g f(g) ) ?4 ] . (50)
2 s -
8n°V'Fq J wq mj(wq qu)

If the contribution to the frequency shift from higher order

terms has to be considered, one will have to sSum the series

T ————— i ——

(51)

where the first term is given by (50), anag the beaded line



e e T T

e e
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refers to the screened Coulo

mb potential. Therefore, summing

the series, one obtains

-1

‘1—-—‘<1>

(52)

Hence, the modified expression for the frequency shift in the

light wave will be

4 3 T
Aw, g°I(q) vy Bl
8n2vF2 j w?
0 ad o1

P |

[}—*--‘<::::> (53)

mj(mq“qu)

Since, for a cold plasma f(z) = n°5(3), (53) yields (see ap-~

pendix B)

. y 24g2¢2

re = @iIl)  Zpe Bugrd ©

T 2 s 2 2 .2
mVF +

l6n0 a wq wq q‘c

q2e2w2 2 2
- 2% e gy fan ate’) (54)

where £ is the electric field associated with the light wave.
The same result can be obtained for a wave polarized in the

counterclockwise direction.

Comparing (54) with expression (50) of Montgomery and

Tidman (1964) one obtains
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Aw 2,22
8 3w?
q
where Aw is the frequency shift in the above reference which
is due to the linearly polarized transverse wave. Thus, it
is obvious that the result obtained in this subsection is

nearly the same as that of Montgomery and Tidman except for a

2
small factor of % (1+ Si%i] .
Bwq

b. Whistlers and Alfvén Modes

It has been seen that processes shown in figs. 25 and
26(a) do not give rise to a frequency shift either for light
waves, whistler or Alfvén modes. However, the processes shown
in figs. 24 and 26(b) do yield nonzero contribution as shown
by (48) for a cold as well as hot plasmas. Performing the

3—integration in (48) for a cold plasma, one obtains

- 4y 2 % 2 [N
Aw = g2I(q) “pe®ce + Ypi®ci + Yoe (56)
3,2 4 _ u 2
2n°quFq ,m(wq+wce) mi(wq wci) 4quJ

where the second term is due to ion contribution and the last

term is due to the process shown in fig. 26(b).

For whistlers, where Way << wq << Woe 7 (56) yields
i
2 (V)
Awy = —L L) _pe (57)
P
8n°Vmwq q mq
; ing Il _ 1EI?% | i
Substituting Y ZT into (57), one obtains the frequency

VF2
g
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shift for whistlers

2 .2, 2
g e‘w
bo = — fe K (58)
m
“q

where E is the electric field associated with the whistler

2.2
mode and w_= 9-S° ]wce], is the 1linear frequency.
2
e
Similarly, one can obtain from (56) the frequency

shift for Alvén modes where ® << W,

q2e2m2
Awp = ——RC g2 (59)
16m2p 5
q
again, E is the electric field in Alfvén mode, Wy = 9V, and
Vy = j32/4wh:ﬂ; the Alfvén velocity.

The frequency shift for electromagnetic waves propa-
gating at an angle 6 with respect to the external magnetic

field can be obtained similarly.

Doy
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APPENDIX A

The nonlinear dielectric function ENL given by egua-

tion (21) of chapter IV can be written
ent. = °L eL(al+ az) (A.1)

where o and o, are given by egquations (45) and (46) of the
same chapter

wk

o = —* I 1@y

i 3 - > >, >
§ a? o a2 . oo Id vfj(V)Aj(q,q ')y (A.2)
n Vqey 4 #a q'*FZ. 3 3

->

o = —tame?)? 1@« N
2 qugL(a,m) 3 A3 q‘zFa. \E+E'\2€(a+a':w+wa') (A.3)
d3vf . (3) 2 d3Vf . (;’7) 2
J v \\ + L { J ¥ }
{ § I m2 1 13-4 | 2e(3-G" sw-wg:) : m3 :
J q’ 3 i

and Aj and Yl, Y2 are given by (37) and (44) respectively.
Since o gives negligible contribution as it has been
seen from (48) and (49) , there is no necessity for finding

3%(eLa;). Egquation (A.3) yields after performing the velocity

integrations

I(gq") [ 1
va?le m*v® >, > q'?Fx \3+E'|ze(a+a' wtw,)
L e q'#q ql 14 ql
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{

1L+ qq' (g+a') Ke - L gig;_‘}z
k mwa.(w+wa, ma wrwX e
1a-4" | e (a-d' rw-wge) q’ q'

q a'
CREEN = }\ o 8)
1

2
gubstituting a' Fa. = 2/xge and

2
w
G ez = L -2 (A.5)
a 1ara g (mtwa.)z
into (A.4) one obtains
1 1 (m+w* )?
"
2 qzx%eeL o i 2 2mv (m+w+.) —\q+q \zc
O B q' (a+a') L+ a' 4 (gra } }
W . (w+w+.) w Wy W, }
a q a' G
(=g ) * {1+ qq' (g=ga*)
— W
(m_ma) _\q \20 u)u)—>,(w wq)
.-
Yq - G g;g;_}} \ (A.6)
w wge m—wa. B

Multiply (A.6) bY €1, and differentiate with respect to w
then substitute ® = gcC and ma, = q'cg to get
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2 (ea) = - 16 5 (g [ larta™r?® , _(g-g")°®
2 242 2 2,02 4 2. 12 4
g ADenOV E.#a mv g g‘q cse° a“‘qg cseq

(A.7)

Performing the a'~integration, using the spectrum distribu-

tion (47), one obtains

3 2 T Ty ¥
3 (egu) = - qi 212 256w3 (:) [Ts] (A.8)
s g ADe 3NDe0 mv i

Differentiate (A.l) with respect to w and retaining only

terms of order I(t), to get

_ ]
Fa = o w (;NL)|m=w+
q
de 3
= o 55 lmuy T g 36 510,
(A.9)
2 3/2
_ 2055 1 25672 I(t) (Te) ]
- w—q> 3 + 24 2 3 2 _T—
wa (qcs)q ADe 3ND6° mv, i ]
Equation (50) yields for eNL = 0.
2 3/2.
Wpi _ 1 1- 25612 1(t) (Te) (A.10)
w3 232 N[O | mv2 TiJ ’
q g De vO e .
Substituting (A.10) into (A.9), one obtains
35 ]
Fa = w—quj——z——-z—z-——— {(l— 2—2—6. a) ! + 123 OL} , (A.1l)
et ADe(qcs) 390 |

and o = (nz/ooun)(J:(t)/mv;)(Te/-ri)af‘2 (A.12)
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APPENDIX B

The common ratio of the infinite series given by equa-

tion (51) of chapter Vv can be written as

Second term 1n the series (B.1)

= = first term

where the first term is given by

U.)“ q2h2 > 3
M o= —ES—— J £vid v (B.2)
VF -
lGn0 qwqm (mq qu)
and
- 2 2 _3y3 2
Second term = 2:1][mgz ? } (=1) ane
aqa4g hd 4q2Ve(29,2wq)
r Z }’ iz - 2
de
E-E B+2 -E
\k ,k _,n ( k'n)( a k+2q'n)
x'7z"
6 2 2 -
_ wpeh 4 1 [f a’ve () (B.3)
3y7y 2 F2 - 2
64mn0qu a e(zq,qu) (wq qu) ]
substituting (B.2) and (B.3) into (B.1) , one obtains
wz 3
H“"‘O = (ge .J a3veE (v) (B.4)
in e (2g,2w ) . - 2 -
0 qa (uq av,)
This yields foxr a cold plasma
wze 4 1
£ - (B.5)

e o> =
2
4wq €(2q,2wq)




and

[1—-—~»~<:>]=1—g)12’—‘2 1

2
2
4mq e(2d., wq)

where the dielectric function for light waves is

wz
€(2gq,2w_) = 1 - -Be
q 40)2
q

Ssubstituting (B.7) into (B.6) yields

{l— ]’1_ 3 1+g2c?/3w?
:::::: 3

1+q2c2/wa
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