
MINT 709 Project Report Last revision: April 03, 2007

 Page 1 of 32

Burst Round Robin

A Linux Ethernet Bonding Implementation Study

Wilson Ka Wai Shieh

Master of Science in Internetworking

MINT 709 - Capstone Project

Department of Computer Science

Faculty of Science

University of Alberta

Edmonton, Alberta, Canada

MINT 709 Project Report Last revision: April 03, 2007

 Page 2 of 32

Table of Contents

Table of Contents 2

Abstract 3

Keywords 3

1. Introduction 3

2. Link Aggregation Examples 5

2.1 Multilink Frame Relay (MFR) 5

2.2 T1 Inverse Multiplexing / Multiple T1 Load Sharing 5

2.3 ISDN Channel Bonding 6

2.4 SuperPipe: next generation of high speed trunks 6

3. Bonding in Linux 8

3.1 The Linux Bonding Module 8

4. Burst Switching 10

4.1 Description 10

4.2 Pros and Cons 10

4.3 Project Goal 11

5. Implementation Details 12

5.1 The Linux Kernel 12

5.2 The Files 12

5.3 BRR Pseudo Algorithm 13

6. Experimental Results 14

6.1 Experimental Setup 14

6.2 Experiment Scenarios 15

6.3 Experimental Measurements 15

6.4 Experimental Results, Observations and Analysis 16

7. Related Work 25

8. Conclusion and Future Work 27

9. Appendices 28

9.1 Appendix A – File/Configuration 28

10. Acknowledgement 29

11. References 30

MINT 709 Project Report Last revision: April 03, 2007

 Page 3 of 32

Abstract

In this paper, we document the experience with several link aggregation schemes under

Linux. These are implemented in the bond kernel loadable module. We introduce a new

scheme called burst round robin (BRR). We evaluate two aspects of each scheme: load-

distribution and packet reordering.

Keywords

Link Aggregation, Bonding, Bursty Traffic, TCP, Flow, Bonding, Packet Reordering, Load

Balancing, Linux Kernel.

1. Introduction

Link aggregation refers to multiple Ethernet network cables or ports used in parallel to

increase the link speed beyond the limits of any single cable or port.

It is an inexpensive way to setup a high-speed network that can transfer a lot more data and

to allow several devices to communicate simultaneously at their full single-port speed.

Another advantage of link aggregation is that it is transparent and poses no impact on

protocols and interfaces beyond the end points. With its scalability, reliability and low-cost, it

is becoming very popular in today’s networks [1].

Having said all the advantages, the most significant challenge in implementing a link

aggregation scheme is load balancing - it is necessary to get the most efficiency out of

parallel links. However, maintaining load balance may introduce packet reordering. This can

cause problems to some popular protocols and applications that rely on in-order packet

delivery. Out of order arrivals may be interpreted as packet loss, which may result in packet

re-transmission. Out of order arrivals also cause jitter for real-time applications like VoIP.

Therefore, the challenge that we face is to preserve the order of the transmitted packet while

maintaining the load balance [18] to achieve the maximum efficiency with the bundle of

multiple links.

The focus of this paper will be on the link aggregation schemes implemented within Linux.

MINT 709 Project Report Last revision: April 03, 2007

 Page 4 of 32

These schemes include Round-Robin, Active-backup, XOR and much more. We will

introduce a new scheme that we will refer to as Burst Round Robin (BRR) as our attempt to

tackle the load balancing and packet reordering challenges. W e will evaluate the different

schemes and look at their performances on the two issues.

The remainder of the paper is organized as follow. In section 2 of this paper, we will look at

existing ideas that use multiple low speed lines to form a high bandwidth link, and how they

handle the load distribution. Section 3 will introduce the Linux Bonding modules, a description

of some of the existing bonding schemes. A new scheme Burst Round Robin will be

introduced in section 4, and we will discuss the idea behind BRR. Following that, section 5

will talk about the implementation of BRR in the Linux kernel. Section 6 will show the testing

done on the different schemes, their results and comparisons. We will also look at several

other related works in Section 7. Finally, this paper will end with a conclusion and discuss any

possible future work in Section 8.

MINT 709 Project Report Last revision: April 03, 2007

 Page 5 of 32

2. Link Aggregation Examples

The idea of bonding multiple links has been around for quite some time. Examples would

include Multilink Frame Relay, Fractional T1, SuperPipe, and ISDN channel bonding in

ISDN, etc. In the following subsections, we will look at these examples. One important

aspect of link aggregation is the load balancing issue; we will discuss how load balance is

addressed in the following examples.

2.1 Multilink Frame Relay (MFR)

Frame relay is designed to transmit data for intermittent traffic between local area networks

and between wide area network end-points. Data are organized in a unit called a frame,

which can be of various sizes. Multilink Frame Relay (MFR) is a protocol that combines

multiple independent links to provide a single logical link. Using MFR, frames can be

fragmented and distributed to the link bundle. Usually a round robin fashion is used, but it

does not guarantee sequence of the fragment arrivals due to various link speeds.

A method of distribution is registered as US patent 7184402 [2]. MFR fragments are

distributed to one of these links based on a distribution pattern that is based on the total

speed of the links and a minimum possible link speed that is supported by the system. A link

is selected when it is capable of transmitting the fragments in the fastest transmit time. The

fastest transmit time is calculated using the link speed and the transmit time for the link to

transmit a fragment allocated previously to the link. Each fragment is distributed to one of the

links based on the distribution pattern. This method greatly reduces the chance of out of

sequence arrivals.

2.2 T1 Inverse Multiplexing / Multiple T1 Load Sharing

T1 Inverse Multiplexing (Imuxing) combines multiple T1 circuits into one logical data pipe. [3]

Data flows are spread across the T1 circuits using a round robin method. It provides scalable

bandwidth and fault tolerance with a relative low cost than a high capacity link. A similar but

yet different idea to the T1 Inverse Multiplexing is known as Multiple T1 Load Sharing. One

MINT 709 Project Report Last revision: April 03, 2007

 Page 6 of 32

load sharing method “route caching” allots a particular T1 link to each session. With inverse

multiplexing, the total available bandwidth for an application will be the sum of all T1 link

bandwidth, whereas for load sharing, the bandwidth for an application is limited to one T1 link

bandwidth.

2.3 ISDN Channel Bonding

In [4], a ramp is described by Burren to allow up to thirty B-channels to be aggregated

together and form an Integrated Services Digital Network (ISDN) wide channel (U-channel).

Each B-channel is bidirectional channel carrying 64kbps, so the U channel can be up to 30 x

64Kbps. Packets data are transmitted byte-by-byte across all available channels in the wide

channel. The ramps, made up of 8 transputers, on the sending and receiving end ensure the

data are resembled in the correct order. This setup has allowed formation of larger bandwidth

channels in ISDN while maintaining a good load balancing amongst the channels and

preserving the data sequence.

2.4 SuperPipe: next generation of high speed trunks

In [5], Deepak introduced a new scheme called SuperPipe to implement a high-speed logical

trunk between a pair of core IP/MPLS switches to address the load-balancing issue that other

existing schemes face. Its idea is to increase the trunk capacity to 160Gbps by using multiple

channels. Incoming IP streams traffics are split by the Packet Distributor at the upstream

switch. Each packet is then distributed to one of the sixteen 10Gbps channels using a traffic-

meter-based packet dispatching algorithm basically, the channel with the lowest traffic meter

reading will be selected to transmit the packet. The packets are recombined at the

downstream switch by the Packet Aggregator. This provides a good load balance on the

available channels. In order to prevent packet reordering, each packet is sequenced at the

Packet Distributor, and there are 16 queues in the Packet Aggregator with a large enough

MINT 709 Project Report Last revision: April 03, 2007

 Page 7 of 32

buffer to absorb any out of sequence packets due to delays. This allows the Packet

Aggregator to recombine the packets and maintains their sequential orders.

From all the above examples, we notice that they all have a mechanism to handle the load

balancing and packet order issue. In the next section, we will look into the existing bonding

facility within Linux and see how multiple interfaces can be aggregated to form one logical

interface using different policies.

MINT 709 Project Report Last revision: April 03, 2007

 Page 8 of 32

3. Bonding in Linux

3.1 The Linux Bonding Module

Bonding (bonding.o), a Linux Kernel loadable module, first appears in the Donald Becker's

beowulf patches for Linux kernel 2.0. The bonding module can be enslaved to multiple

Ethernet interfaces under a common bond interface. It is possible to bond network interface

cards from different manufacturers and drivers. The bond and all the slaves will appear to

have the same hardware address (which is the primary slave’s MAC address), thus creating

one logical link. As of version 2.6.18.2, there are 7 different modes available in the bonding

module. The following section gives a brief description on each mode.

 Mode 0 – Round Robin Policy

Transmissions are received and sent out sequentially on each slave interface in the

bond starting from the first available one through the last and restart from the

beginning. It provides fault tolerance and load balancing. Although this scheme

provides the most complete use of each slave interface, the packets may arrive at the

destination out of order.

 Mode 1 – Active-Backup Policy

Transmissions are received and sent out through the first available slave interface in

the bond. This slave is always used until it fails, and in which case, another available

slave interface will be activated for transmission. This policy provides fault tolerance,

but has no load balance feature.

 Mode 2 – Exclusive-Or (XOR) Policy

This policy defaults to use a simple hash function:

(source MAC address XOR’d destination MAC address) modulo slave count

Using the hash function, one of the slave interfaces is selected for transmission for a

particular destination MAC address. This provides fault tolerance and load balancing.

One drawback of this scheme is that no bonding advantage can be gained when we

look at a single client-host environment, resulting in the same performance as a single

non-bonded link.

MINT 709 Project Report Last revision: April 03, 2007

 Page 9 of 32

 Mode 3 – Broadcast Policy

Transmissions are received and sent out to all bonded slave interfaces. This provides

fault tolerance but will put unnecessary load on to the slave interfaces.

 Mode 4 – IEEE 802.3ad Dynamic Link Aggregation Policy

This scheme aggregates groups with the same speed and duplex settings, the

transmit hash policy dictates which slave interface will transmit an outgoing traffic. A

switch that supports IEEE 802.3ad Dynamic link aggregation is a pre-requisite for

using this mode.

 Mode 5 – Adaptive Transmit Load Balancing Policy

Outgoing traffic distribution assignment is done based on the current load on each

slave. Incoming traffic is received by the current active slave.

 Mode 6 – Adaptive Load Balancing Policy

This mode is the same as mode 5 with the addition of Receive Load Balancing for IP

traffic using ARP negotiation.

The most commonly used policies are modes 0, 1, 2, and 3; we will be looking into these

modes in the subsequent sections.

The challenge of a packet distributor is to evenly spread the network load to all available

devices without sacrificing in-order packet delivery. Existing modes in Linux Kernel do

provide basic fault tolerance when combining separate interfaces, but does not provide

solution to the challenge mentioned above. In the subsequent section, we will discuss

another policy that can achieve both load balancing and in-order packet delivery.

MINT 709 Project Report Last revision: April 03, 2007

 Page 10 of 32

4. Burst Switching

4.1 Description

Burst Switching is a load balancing technique used to forward internet traffic using multiple

links based on flow-level burstiness. In [6], Shi, MacGregor, Gburzynski described a new

bonding scheme that aims to tackle the two main potential challenges that parallel links face:

load balancing and packet ordering within individual flows. They identified a condition in which

two adjacent packets within a same flow will not be reordered. The condition is that the arrival

time difference between the two adjacent packets (T i) must be greater than the product of the

total input buffer size (BSZ), overall system utilization (ρ) and the reciprocal of the physical

bandwidth (1/B).

The condition is: Ti> BSZ * ρ/B

Since the majority of internet traffic is accounted for by TCP flows, and bursts in TCP are very

common, they proposed that if the time between two adjacent bursts is big enough, it is

possible to switch the packets to another forwarding engine without ending up with reordered

packets.

4.2 Pros and Cons

Burst switching technique is simple, as it can distribute packets evenly to achieve a good load

balance in most cases. It also reduces re-ordering rate while keeping high throughput.

However, this scheme does not handle one single long live flow well if that is the only flow in

transit. In order to maintain the packet orders, Burst Switching has to sacrifice the load

balance aspect and will not be able to distribute packets amongst available channels. A better

scheme would be to schedule both potent flows and burst within flows [7].

Also note that the algorithm would require higher layer data depends on the definition of a

flow. For example, if we are to define a flow with transport layer data (e.g. port number), this

burst switching technique will not be suitable for non-TCP or non-UDP traffic. For other traffic,

the flow will be restricted to network layer data.

MINT 709 Project Report Last revision: April 03, 2007

 Page 11 of 32

4.3 Project Goal

The primary goal of this project is to implement the Burst Switching technique mentioned

above to the Linux packet scheduler via the kernel Bonding module, and to compare the

performance of this technique with existing bonding policies. In the upcoming sections, we will

describe the implementation details of Burst Round Robin, followed by the experiment

observations and analysis.

MINT 709 Project Report Last revision: April 03, 2007

 Page 12 of 32

5. Implementation Details

5.1 The Linux Kernel

To start off the implementation we decided to use the latest stable version of Linux kernel

from www.linuxkernel.org, version 2.6.18.2. The kernel source code was downloaded onto

the server and the kernel is configured and compiled.

5.2 The Files

/etc/rc.local (see Appendix A) is modified to load the bonding modules and enslaves available

Ethernet interfaces under a bond. This file is automatically executed when the machine

restarts.

The following files were modified to implement the new Burst Round Robin scheme:

/usr/src/linux-2.6.18.2/include/linux/if_bonding.h

/usr/src/linux-2.6.18.2/drivers/net/bonding/bonding.h

/usr/src/linux-2.6.18.2/drivers/net/bonding/bond_main.c

In if_bonding.h, a new directive is defined for the new mode Burst Round Robin (BRR), the

associated mode number is 7.

In bonding.h, a few structs are created to store the flow information; a few new fields are

added to existing structs to store additional information that we need to capture in order to

implement BRR.

The file bond_main.c is the main file that defines the bonding policies. The BRR is

implemented following the algorithm described below within the function bond_xmit_brr(). A

new module parameter interburst_threshold is introduced and to be used exclusively by BRR.

MINT 709 Project Report Last revision: April 03, 2007

 Page 13 of 32

5.3 BRR Pseudo Algorithm

The Burst Round Robin algorithm is based on the discussion in [6]. Packets from the same

burst in a flow will be queued to the same Ethernet port. A burst is identified by a configurable

parameter value “inter-burst threshold” if two adjacent packets from the same flow arrive

within this threshold, the new packet is in the same burst as the previous packet. Detail of the

algorithm is discussed below.

A flow table structure, implemented as a doubly linked list, is created to store certain

information from each incoming packet within a burst: source IP address, destination IP

address, source port, destination port, protocol id, last modified timestamp using the jiffies

value, and the name of the device in which the packet is queued for transmission. We use the

five-tuple: source IP address, destination IP address, source port, destination port, and the

protocol id as the identifier for a flow. As mentioned before, this limits our implementation to

work primarily with TCP or UDP traffic, for other traffic, the flow will be based on three-tuple:

source IP address, destination IP address, and the protocol id; this is very close to the XOR

mode implementation.

For each incoming packet, the flow table is searched based on the flow identifier. If an entry is

found and the difference between the current time and the last updated time on the entry is

less than the inter-burst threshold parameter, the packet will be queued to the same interface

device. If that difference is larger than the threshold, the timestamp is updated and a new

interface device is selected.

The interface device that has the earliest time since the last packet is queued will be selected.

If the flow table search returns no result, a new entry will be added to the table, one interface

device will be selected based on the same mechanism described above.

MINT 709 Project Report Last revision: April 03, 2007

 Page 14 of 32

6. Experimental Results

6.1 Experimental Setup

In this section we evaluate the performance of different Linux bonding policies as well as the

newly implemented Burst Round Robin policy. During the experiments, we used the following

hardware setup. On one end, there is a web server hosting many files with different sizes.

The web-server is a Sun blade server with an AMD Opteron 148 Processor running at 1GHz.

The operating system running on the server is Ubuntu Linux with kernel version 2.6.18.2 with

the additional implementation of the burst round robin policy (as described in previous

section) in place for the bonding module. Four Ethernet ports are enslaved under a bond.

Each port is linked to a Cisco Catalyst 3600 Series XL switch and configured to be full duplex

with low speed 10Mbps.

On the other side of the switch, a client laptop is connected with a high-speed link. It is an

Intel Pentium M 1.3GHz machine, running Microsoft Windows XP Professional. There is one

Ethernet port linked to the Cisco switch running full duplex with speed set to 100Mbps. All

these are setup within one VLAN. A simple depiction of the setup can be seen in Figure 1

below:

Client
WebServer

Four 10Mbps links

100Mbps link

Switch

Figure 1

MINT 709 Project Report Last revision: April 03, 2007

 Page 15 of 32

6.2 Experiment Scenarios

 A program named http_load [8,9] is used on the client laptop in the experiment. Http_load

allows multiple parallel http fetches using one single process. This feature makes the tool

favorable to perform testing on the bonding of multiple network interfaces. Overall throughput

for the parallel http fetches can be obtained.

The first round of test performed is to compare the result of Burst Round Robin using different

interburst thresholds as discussed in section 5.2.

On the server side, several different bonding schemes available in the Linux kernel are tested

along with the new burst round robin scheme implemented. The main focus of the

comparison is the load distribution and the number of out of order packets. Statistics from

each interface are used to obtain the load distribution (number of packets transmitted) for the

four links. Ethereal, a network packet sniffer, is used on the client side to obtain the header of

the received packets. This allows us to analyze the order of all incoming packets for individual

flow and obtain information regarding packet reordering. When we refer to packet order in this

paper, we are referring to the packet order for individual flows.

A utility named netem [10] is used to introduce delay on the server Ethernet links. We only

paid attention on the packets re-order issue in the native round robin and the burst round

robin mode and see how each of these schemes performs under network delay.

6.3 Experimental Measurements

In the experiments, we are obtaining a few different measurements; they include the

percentage of packet that is out of order, the throughput and the load balance amongst the

Ethernet links.

6.3.1 Out of Order Packets

We adopted the approached used in [11] to measure the rate of out of order packets. We use

the output from Ethereal gathered in the receiver end to compute the out of order rate. We

kept track of the maximum sequence number found in any received packet so far. When the

MINT 709 Project Report Last revision: April 03, 2007

 Page 16 of 32

next packet arrives, if the sequence number of this new packet is greater than the stored

maximum sequence number, it will replace the maximum sequence number; otherwise the

out of order counter will be incremented by 1. The scope of the sequence number comparison

is within each individual flow. The percentage of out of order packets will be based on the out

of order count and the total packets received for all flows.

6.3.2 Throughput

One of the outputs obtained from the http_load utility is the overall throughput for the parallel

http-fetches. The value is derived from the total data size received divided by the total

elapsed time.

6.3.3 Load Balance

On the server side, before and after each test run, we recorded the total transmitted packets

on each available Ethernet interface. The difference of the two values gives us the number of

packets sent out by a particular interface. We are also able to compute the load distribution

among all the links. We are also interested in the difference between the maximum and

minimum percentage load. For example, if the most-utilized interface transmitted 30% of all

the packets, and the least-utilized interface transmitted 20%, then the percentage difference

will be 10%. The higher the difference, the lesser balanced the load is.

6.4 Experimental Results, Observations and Analysis

6.4.1 Experiment 1

The first set of tests performed is to find out the effect different inter-burst thresholds has on

the performance of Burst Round Robin. The test is based on a 12 simultaneous parallel http-

fetch.

Looking at figure 2, it is observed that the throughput performance is very close for different

inter-burst threshold and different number of parallel http fetches. We can see that with inter-

MINT 709 Project Report Last revision: April 03, 2007

 Page 17 of 32

burst threshold of 4 milliseconds, it yields the lowest throughput compared other higher

threshold values. With 4 parallel fetches, it has the best throughput performance compared to

8 and 12 parallel fetches.

As for load distribution, it is the most balanced between the four links is for the 4 parallel

fetches. As we increase the number of parallel fetches, the balance is no longer 100% even,

but the load distribution is still considered relatively even. Figure 3 shows the summary of the

result. The y-axis is the percentage difference of the maximum and minimum link load: the

lower the value and the more balance the load is distributed.

There are a very small percentage 1% of packets that are out of order as long as the inter-

burst threshold is over 8 milliseconds, please refer to figure 4.

Throughput

0

1

2

3

4

5

0 10 20 30 40 50

Interburst threshold (millisecond)

M
B

/s

4 Files

8 Files

12 Files

Figure 2

MINT 709 Project Report Last revision: April 03, 2007

 Page 18 of 32

Load Balance

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

0 10 20 30 40 50

Interburst threshold (millisecond)

M
a
x
 %

 L
o

a
d

 D
if

fe
re

n
c
e

4 Files

8 Files

12 Files

Figure 3

Out of Order Packets

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0 10 20 30 40 50

Interburst threshold (millisecond)

%
 P

a
c
k
e
ts 4 Files

8 Files

12 Files

Figure 4

The results are as expected; a threshold of 4 milliseconds is too small. With such threshold,

almost every other few packets will be considered as a new burst and thus required an

assignment of a new device, resulting in low throughput, uneven load distribution and a high

percentage of out of order packets.

MINT 709 Project Report Last revision: April 03, 2007

 Page 19 of 32

6.4.2 Experiment 2

The second set of experiment is to compare the different available bonding modes: mode 0,

1, 2, 3, and 7, which are Balance Round Robin, Active Backup, Balance XOR, Broadcast and

Burst Round Robin respectively. For each mode, we run a parallel http-fetch of files (ranging

from 1 file to 20 files) from the server to the client. Note that for Burst Round Robin, we are

using an inter-burst threshold of 12 milliseconds. The results are summarized in the following

graphs.

0.00

1.00

2.00

3.00

4.00

5.00

0 5 10 15 20 25

Parallel Downloads

T
h

ro
u

g
h

p
u

t
(b

y
te

/s
e
c
)

Balance Round Robin

Burst Round Robin

Active Backup

Balance XOR

Broadcast

Figure 5

When there is 1 single file http fetch in our setup, the Balance Round Robin outperformed the

rest of the bonding modes by a factor of 4. This is as expected as Balance Round Robin

utilizes all available links even if there is only 1 file (1 flow). For the remaining modes, bonding

has no effect when there is only 1 flow.

For Active Backup, it always uses the same link as long as it does not fail, so we do not see

any changes in throughput for different number of flows. For Balance XOR, we see a constant

throughput as well because we only have one laptop (one address), which resulted in the

same Ethernet link being selected every time. For Broadcast, packets are sent to all available

links, so the throughput is the same as 1 file on 1 link.

MINT 709 Project Report Last revision: April 03, 2007

 Page 20 of 32

The more interesting modes to compare are Balance Round Robin and Burst Round Robin.

For Burst Round Robin, throughput increases as the number of parallel downloads increases

from 1 to 4. At 4 parallel downloads, throughput reaches its peak value, which is as expected

since all 4 links are utilized to distribute the packets for the 4 downloads. The Balance Round

Robin has a pretty even throughput in different number of downloads, as this scheme has no

dependency on the number of flows. The throughput of Balance Round Robin is always

slightly higher than that of the Burst Round Robin. Possible reasons account for this could be

the overhead involved in the Burst Round Robin with all the flow table searching, re-assigning

packets flow based on burst to different links.

Balance Round Robin/Broadcast - Load Balance

0%

20%

40%

60%

80%

100%

1 2 4 6 8 10 12 14 16 18 20

Parellel Downloads

%
 L

o
a
d

eth0 eth1 eth2 eth3

Figure 6

MINT 709 Project Report Last revision: April 03, 2007

 Page 21 of 32

Active Backup/Balance XOR - Load Balance

0%

20%

40%

60%

80%

100%

1 2 4 6 8 10 12 14 16 18 20

Parallel Downloads

%
 L

o
a
d

eth0 eth1 eth2 eth3

Figure 7

Burst Round Robin - Load Balance

0%

20%

40%

60%

80%

100%

1 2 4 6 8 10 12 14 16 18 20

Parallel Downloads

%
 L

o
a
d

eth0 eth1 eth2 eth3

Figure 8

For Balance Round Robin and Broadcast modes, the same number of packets is distributed

to all 4 available links; therefore you see an even load distribution in Figure 6.

As mentioned earlier on, Active Backup and XOR utilize only 1 link, so there is no load

balance between the 4 available links at all; all loads are piled onto a single link (Figure 7)

The Burst Round Robin provides a more distinctive load balance graph (Figure 8) compared

MINT 709 Project Report Last revision: April 03, 2007

 Page 22 of 32

with the rest. With 1 file, 3 links are used. When a new burst of the flow arrives, the link that

has been idle the longest will be selected. From the graph, we can see that there are actually

only 3 bursts in this particular flow.

As the number of parallel downloads increases to 2, all 4 links are used sometime in the

download. The two flows will be using two different links to start, and with the changes in

burst, other links will be utilized.

For the rest of this test, we incremented the number of parallel downloads by two each time.

We can see that if the number of parallel downloads is a multiple of 4 (i.e. 4, 8, 12, 16, and

20); the load distribution is very even, approximately 25% for each of the link. When the

number of downloads is 6, 10, 14 and 18, we see a small fluctuation on the load distribution, it

is still relatively even but not as close as 25% each.

0.00%

5.00%

10.00%

15.00%

20.00%

P
e
rc

e
n

ta
g

e
 o

f

P
a
c
k
e
ts

 R
e
o

rd
e
re

d

Bonding mode

Packet Reordering

Balance Round Robin

Active Backup

Balance XOR

Broadcast

Burst Round Robin

Figure 9

We look at the packet reordering by running a 12-file download:

Active Backup, Balance XOR and broadcast are all packet ordering tolerant.

Packet reordering only happens in Balance Round Robin and Burst Round Robin. Balance

Round Robin has close to 18.5% of packets that are out of order.

MINT 709 Project Report Last revision: April 03, 2007

 Page 23 of 32

The Burst Round Robin packet re-order rate is about 2.4%, significant less than Balance

Round Robin. The small re-ordering rate could be further reduced if we increase the inter-

burst threshold parameter value.

6.4.3 Experiment 3

The last set of tests is to compare the out of order rate on Balance Round Robin and Burst

Round Robin, particularly in different amounts of delay. Delays are introduced by a utility

netem on the 4 available links. The test is carried out with a 4-file parallel download. The

inter-burst threshold for Burst Round Robin is set to 12 milliseconds.

The following graphs summarize the results of the tests:

% Packets Out of Order

0.00%

10.00%

20.00%

30.00%

40.00%

0 20 40 60 80 100 120

Delay (millisecond)

%
 P

a
c
k
e
ts

Balance Round Robin

Burst Round Robin

Figure 10

MINT 709 Project Report Last revision: April 03, 2007

 Page 24 of 32

Throughput

0.000

1.000

2.000

3.000

4.000

5.000

0 20 40 60 80 100 120

Delay (millisecond)

M
B

/s

Balance Round Robin

Burst Round Robin

Figure 11

As we introduce delay to the parallel connections between the switch and the server, we

notice that for Balance Round Robin, the packet out of order rate increases as delay

increases from 0 ms to 50 ms. On the other hand, delay has no effect on Burst Round Robin

in terms of the packet reordering.

We also look at the effect of delays on the overall throughput for each of the bonding

schemes. Balance Round Robin significantly slowed down in throughput. It drops from 4.7

MB/s down to 0.2 MB/s when a delay of 100 ms is introduced. Burst Round Robin sustains a

relatively high throughput as delay goes up to 25 ms, then the throughput drops as delay

increases. Comparing the throughputs of these two schemes at a delay of 100 ms, Burst

Round Robin is about 5 times faster than Balance Round Robin.

MINT 709 Project Report Last revision: April 03, 2007

 Page 25 of 32

7. Related Work

There have been different efforts in the research community to improve the performance on

Linux channel bonding. In this section, we will look at other approaches researcher took to

increase the performance on link bonding.

One interesting direction is demonstrated in [12], where Andersen and Hanenkamp used a

number of different scheduling algorithms for heterogeneous interfaces (i.e. gigabit Ethernet

interface and fast Ethernet interface). They introduced the following bonding modes: N:1

mode, Least-Queue mode N:1/Primary mode, and the Cut-off-Least-Queue mode. Their

experiments showed great performance gain.

o N:1 mode – Since they are using interfaces with two different speeds, this mode is

implemented just like Balance Round Robin, but using a N:1 ratio. For example, if an

interface is 10 times faster than the other, N will be 10, 10 packets will be queued to

the faster interfaces for every packet queued to the slower interface.

o Least-Queue – Packets are directed to the device with the least queue length. If the

queue length is the same, the faster interface will be chosen.

o N:1/Primary – A threshold of packet size is set. If the packet size is below this

threshold, the N:1 strategy will be used. Otherwise, the larger packets will be queued

to the primary interface that has a higher bandwidth.

o Cut-off-Least-Queue – Large packets that exceed the size threshold will be sent to the

primary interface, and smaller packets will be queued using the Least-Queue scheme.

The mode is best suited for high volume of small packet traffic.

The different modes suggested above placed main focus on load balancing to achieve high

throughput, but it does not have any mechanism in place to prevent possible packet

reordering.

MINT 709 Project Report Last revision: April 03, 2007

 Page 26 of 32

Gabler suggested another bonding mode in [19], a new algorithm based on layers 3 and 4

data is created and is now widely used by network switch manufacturers and is also

implemented into the IBM AIX operating system. The channel assignment is done using the

following formula:

Channel = ((src port XOR dst port) XOR (src IP XOR dst IP)) modulo (number of channels)

This algorithm increases the hashing variability and reduces the chance of disproportional

load balance. This scheme resembles our Burst Round Robin in a few ways – mainly that it is

also utilizing flow information. But since it depends on the transport layer data as well, it has

the same limitation that it only works with TCP and UDP traffic. The main difference between

Burst Round Robin and Gabler’s new hashing algorithm is that our Burst Round Robin takes

advantages of the bursty characteristics and is able to further spread the load more evenly

amongst the links.

MINT 709 Project Report Last revision: April 03, 2007

 Page 27 of 32

8. Conclusion and Future Work

In this paper, we discussed a new link aggregation scheme - Burst Round Robin. This

scheme takes advantage of the characteristics of bursty Internet traffic. An implementation

was made in Linux kernel bonding module and a series of experiments were performed to

compare existing bonding modes with the Burst Round Robin. All the experiments have

shown good performance on the new scheme. Burst Round Robin appears to provide good

load balancing on the parallel connections, while maintaining an even load balance. It also

maintains high throughput and is resistant to out of order packet deliveries.

Some possible future work on this area would be to test the Burst Round Robin with a more

complicated environment and configuration setup. For example:

1) Implement bonded links in both the server and receiving machine with Burst Round Robin,

and connect them through a switch;

2) Server with Burst Round Robin implemented bonded links connects to a receiver with a

single 10 Gbps link via a switch;

3) Server with a single 10 Gbps link connects to a receiver with Burst Round Robin

implemented bonded link via a switch;

4) Replace the switch in previous example by a large network;

5) Use more realistic traffic patterns between sender and receiver, e.g. different flow sizes

and flow timings;

6) Increase delay on the receiver end;

7) Improve the efficiency of the implementation of the Burst Round Robin scheme:

 a) A dynamic inter-burst threshold that auto-adjusts based on the network traffic;

 b) Removal of flow table entry if an entry expires to reduce the size of the flow table.

MINT 709 Project Report Last revision: April 03, 2007

 Page 28 of 32

9. Appendices

9.1 Appendix A – File/Configuration

/etc/rc.local file:

#!/bin/sh -e

rc.local

This script is executed at the end of each multiuser runlevel.

Make sure that the script will "exit 0" on success or any other

value on error.

In order to enable or disable this script just change the execution

bits.

By default this script does nothing.

#added by WS

modprobe bonding mode=7 miimon=100

modprobe e100

ifconfig bond0 10.3.31.194 netmask 255.255.255.0 up

ifenslave bond0 eth0

ifenslave bond0 eth1

ifenslave bond0 eth2

ifenslave bond0 eth3

#end - added by WS

exit 0

MINT 709 Project Report Last revision: April 03, 2007

 Page 29 of 32

10. Acknowledgement

The project idea is from Dr. Weiguang Shi and his preliminary manuscript [13] on this topic.

Thank you to Dr. Mike H. MacGregor and Dr. Weiguang Shi for their help in shaping the

scope of this project. Thank you to the MINT program in University of Alberta for providing the

lab facility and test equipment.

MINT 709 Project Report Last revision: April 03, 2007

 Page 30 of 32

11. References

[1] Jon C. R. Bennett, Craig Partridge, and Nicholas Shectman, "Packet Reordering is Not

Pathological Network Behavior," IEEE/ACM Transactions on Networking, vol. 7, No. 6, pp.

789-798, December 1999.

[2] US patent 7184402 [online]. Available from:

http://linkgrinder.com/Patents/Method_for_mult_7184402.html [Accessed Nov 2006]

[3] Inverse Multiplexing, ComTest Technologies Inc. [online]. Available from:

http://www.comtest.com/tutorials/imux.html [Accessed Oct 2006]

[4] J. W. Burren. Flexible Aggregation of Channel Bandwidth in Primary Rate ISDN.

Symposium proceedings on Communications architectures & protocols, pp. 191-196, 1989.

[5] D. Mathur. SuperPipe: Next generation of high speed trunks. ACM International

Conference Proceeding Series; Vol. 90, Proceedings of the 2004 international symposium on

Information and communication technologies, pp. 38-43, 2004.

[6] W.Shi, M. H. MacGregor, and P. Gburzynski. A Scalable Load Balancer for Forwarding

Internet Traffic: Exploiting Flow-level Burstiness. Proceedings of the 2005 symposium on

Architecture for networking and communications systems, pp. 145-152, 2005.

[7] W. Shi, M. H. MacGregor, and P. Gburzynski. Load balancing for parallel forwarding,

IEEE/ACM Transactions on Networking, vol. 13, no. 4, 2005, pp. 790-801, 2005.

[8] Http_Load website [online]. Available from: http://www.acme.com/software/http_load/

[Accessed Dec 2006]

[9] Http_Load website [online]. Available from: http://www.orenosv.com/misc/ [Accessed Dec

http://linkgrinder.com/Patents/Method_for_mult_7184402.html
http://www.comtest.com/tutorials/imux.html
http://www.acme.com/software/http_load/
http://www.orenosv.com/misc/

MINT 709 Project Report Last revision: April 03, 2007

 Page 31 of 32

2006]

[10] Netem website [onlilne]. Available from: http://linux-net.osdl.org/index.php/Netem

[Accessed Jan 2007]

[11] W. Shi, L. Kencl. Sequence-Preserving Adaptive Load Balancer. Proceedings of the

2006 ACM/IEEE symposium on Architecture for networking and communications systems,

pp. 143-152, 2006.

[12] D. Andresen, S. Hanenkamp. Heterogeneous Channel Bonding Revisited. Proceedings

of the IASTED International Conference on Parallel and Distributed Computing and Systems

(PDCS 2003), pp. 387-392, 2003

[13] Weiguang Shi. Burst Round Robin: a Load Balancing Scheme for Link Aggregation.

[14] Linux Kernel Bonding Documentation. Available from:

http://lxr.linux.no/source/Documentation/networking/bonding.txt?v=2.6.18 [Accessed Sep

2006]

[15] A. Hendel. Link Aggregation Trunking. IEEE 802 – Training Session, November 11,

1997. Available from: http://www.ieee802.org/3/trunk_study/tutorial/ahtrunk.pdf [Accessed

Sep 2006]

[16] Linux Kernel website [online]. Available from: http://www.kernel.org/ [Accessed Sep

2006]

[17] Linux Kernel Newbies website [online]. Available from: http://kernelnewbies.org/

[Accessed Sep 2006]

[18] J. Bennett, C. Partridge, and N. Shectman, "Packet Reordering is Not Pathological

Network Behavior," IEEE/ACM Transactions on Networking, vol. 7, No. 6, pp. 789-798, 1999.

http://linux-net.osdl.org/index.php/Netem
http://lxr.linux.no/source/Documentation/networking/bonding.txt?v=2.6.18
http://www.ieee802.org/3/trunk_study/tutorial/ahtrunk.pdf
http://www.kernel.org/
http://kernelnewbies.org/

MINT 709 Project Report Last revision: April 03, 2007

 Page 32 of 32

[19] J. Gabler. Better Bonding Ethernet Load Balancing. Lawrence Berkeley National

Laboratory. Paper LBNL-58935. Sep. 2006

[20] Linux Channel Bonding SourceForge Project [online].

http://sourceforge.net/projects/bonding [Accessed Sep 2006]

http://sourceforge.net/projects/bonding

