
On Coding Schemes for Straggler Mitigation in
Distributed Computing

by

Muhammad Fetrat Qharabagh

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science
in

Communications

Department of Electrical and Computer Engineering

University of Alberta

© Muhammad Fetrat Qharabagh, 2023

Abstract

One of the main challenges in distributed computing are straggling servers i.e.

servers that have a temporary or permanent delay in sending the result of

the computations assigned to them. One of the proposed methods to address

the straggler problem is to use forward error correction codes to encode the

subtasks before distributing them among workers where the results of the

lagging servers are treated as erasures. This method is referred to as coded

distributed computing (CDC). In this thesis we study CDC in general and

address two straggler related issues.

First we consider a master-worker setting to perform a matrix-vector mul-

tiplication. The main focus in prior CDC approaches for this problem is on

minimising the computation time using a family of codes known as minimum

distance separable (MDS) codes. The assumption is that the encoding and

decoding times in the master are negligible. However, when the task is large

or the number of workers is high, and the encoding/decoding can not be done

offline, this time might no longer be small compared to the computation time.

Hence, we introduce a new family of binary locally repairable codes (BLRCs)

specifically designed for CDC. Being binary removes the costly multiplication

operations in the encoding/decoding process and the locally repairable na-

ture of the code further reduces the decoding complexity. Therefore, due to

the lower encoding/decoding complexity in our codes, the overall time delay

is lower than the conventional MDS scheme. Second, we consider a general

master-worker setting where each worker is assigned with multiple subtasks.

ii

Accordingly, we propose a CDC scheme based on the systematic MDS codes.

Then we derive and calculate the analytical probabilities of finishing the coded

distributed computation before a deadline in our scheme and obtain the cor-

responding optimal subtask loads and the code rate. The overall goal is to

reduce the computation time compared to conventional schemes for multi-

subtask-per-worker distributed computing.

iii

Preface

The work in Chapter 3 are under review for possible publication in IEEE

Transactions on Communications under the title “A Family of Binary Locally

Rapairable Codes for Coded Distributed Computing”. Additionally, we intend

to submit the contributions in Chapter 4 for possible publication in IEEE

Communications Letters under the title “A New Coded MMC Distributed

Computing Scheme: Analysis and Optimization”. The main contributor to

both of the works is the author of this thesis.

iv

To my family

for their love and never ending support

v

A distributed system is one in which the failure of a computer you didn’t even

know existed can render your own computer unusable.

– Leslie Lamport

vi

Acknowledgements

First, I want to sincerely thank my supervisor Prof. Masoud Ardakani for his

unwavering support and providing me with a vast amount of knowledge to

complete my degree. I would like to also thank my sister for her valuable

insights that helped improve this thesis.

Besides my supervisor, I would like to thank my thesis committee memebers

Dr. Behrad Gholipour, Dr. Bruce Cockburn, and Dr. Hai Jiang for dedicating

their time to this thesis.

Last but not the least, I want to express my deep gratitude for the love my

family have for me and the support they provide to me. Without their efforts

I could not continue my journey. Also, I want to thank all my friends for their

kind support.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Distributed Computing . 3
1.3 Bottlenecks of Distributed Computing 5
1.4 Coded Distributed Computing 6
1.5 Thesis Overview . 8

2 Background Material 10
2.1 Distributed Computing Systems 10

2.1.1 System Model . 11
2.1.2 Challenges . 13

2.2 Forward Error Correction Codes 15
2.2.1 Mathematical Background 16
2.2.2 Block Codes . 17
2.2.3 Linear Codes . 17
2.2.4 Maximum Distance Separable (MDS) Codes 19
2.2.5 Locally Repairable Codes (LRCs) 20

2.3 Coding in Distributed Computing 21
2.3.1 Challenges . 23
2.3.2 Related Work . 24

3 A Family of Binary Locally Repairable Codes for Coded Dis-
tributed Computing 27
3.1 Introduction . 27
3.2 System Model and Preliminaries 31

3.2.1 Matrix-Vector Multiplication Formulation 31
3.2.2 Probabilistic Model of Time Delay 33
3.2.3 Distributed Computing Model 34

3.3 Proposed BLRC for Distributed Computing 38
3.3.1 Linear Codes Preliminary 38
3.3.2 Construction of the Proposed BLRC 39
3.3.3 Encoding with the Proposed BLRC 44
3.3.4 Decoding the Proposed BLRC 46

3.4 Experiments and Numerical Results 51
3.4.1 Modelling Task Completion 51
3.4.2 Encoding Cost for the Proposed BLRC 53
3.4.3 Decoding Cost for the Proposed BLRC 53
3.4.4 Simulation Results for the Overall Process 54

3.5 Conclusion . 59

viii

4 Coding for a Multi-task Distributed Computing System 60
4.1 Introduction . 60
4.2 System Model . 63
4.3 HCDC scheme . 66
4.4 Finishing Time Analysis . 68

4.4.1 Finishing Time Distribution of a Single Task 68
4.4.2 Finishing Time of A Number of Tasks by a Worker . . 68
4.4.3 Finishing Time Distribution of the Main Task 69
4.4.4 Optimizing the Completion Time 72
4.4.5 Subtasks per Worker 73

4.5 Experimental Results . 74
4.5.1 Finding the Optimal k in the HCDC Scheme 75
4.5.2 HCDC Performance versus Single-task Scheme 77
4.5.3 HCDC versus Conventional MMC Schemes 79
4.5.4 HCDC versus Hierarchical Coded Distributed Computing 80

4.6 Conclusions . 81

5 Conclusions and Future Directions 83
5.1 Conclusion . 83
5.2 Future Directions . 84

References 87

ix

List of Tables

3.1 Decoding operations for an MDS code and the proposed BLRCs 54
3.2 Time delay (in sec.) of the BLRC and MDS schemes in different

phases under the assumption of a straggling master 56
3.3 Time delay (in sec.) of the BLRC and MDS schemes in different

phases for a non-straggling master 56

x

List of Figures

1.1 Cloud Computing . 2

2.1 The MapReduce model . 12
2.2 Distributed computation of g(x) = Ax 13
2.3 Coded Distributed computation of g(x) = Ax with the assump-

tion that worker 2 will straggle. In this figure gi(x) = Aix and
E(·) and D(·) denote the encoding and the decoding operations. 23

3.1 The Tanner graph of the proposed BLRC; local and global check

nodes have been denoted by u
(·)
L and u

(·)
G respectively 41

3.2 The Tanner graph of the proposed (n, k, r) = (12, 6, 3) BLRC
code . 42

3.3 Comparison of the encoding time (in sec.) between (20,13,3)
Spanning BLRC[59], our BLRC, (20,13,3) LRC[66], and two
MDS codes . 53

3.4 The overall time delay (in sec.) of the BLRC and MDS schemes
for different N. 58

3.5 The combined time delay (in sec.) of the encoding and decoding
phases (the master’s time delay) in the BLRC and MDS schemes
for different N. 58

4.1 Distribution of subtasks in a single-subtask model. In this fig-
ure, the red color is used for information subtasks and the blue
color for redundant subtasks 65

4.2 Distribution of subtasks in an HCDC scheme with the assump-
tion that 1 < k < N . In this figure, the red color is used for
information subtasks and the blue color for redundant subtasks 67

4.3 Probability of finishing the main task before the deadline td for
different k. Here each curve corresponds to a specific µ. 76

4.4 Expected finishing time of the main task for different k. Each
curve corresponds to a specific µ. 77

4.5 k in the HCDC scheme for different µ. The blue curve shows the
values of k obtained by maximizing the probability of finishing
the main task before td and the orange curve shows the values
of k that are obtained by minimizing the expected completion
time of the main task . 78

4.6 Comparison of the average finishing time of the main task be-
tween single-task and HCDC schemes 79

4.7 Rate of the successful completion of the main task in single-
task and HCDC schemes over different probability of permanent
failure in the workers . 80

4.8 Comparison of the expected finishing time between the HCDC
and the conventional MMC schemes with k = N and k = 2N . 81

xi

4.9 Comparison of the expected finishing time between the HCDC
and the HCC schemes . 82

xii

Chapter 1

Introduction

1.1 Motivation

In today’s data-driven world, the demand for processing capacity is rising

rapidly. The ever-increasing size of datasets and the emergence of new ap-

plications, like machine learning and big data analysis are key factors driving

this exponential growth.

Machine learning has revolutionized numerous industries, including finance,

healthcare, marketing, and manufacturing [52]. Its ability to uncover pat-

terns, extract insights, and make accurate predictions relies heavily on pro-

cessing power. Machine learning algorithms require substantial computational

resources to process vast datasets, conduct complex calculations, and optimize

models. As organizations increasingly embrace machine learning to enhance

decision-making, automate processes, and improve customer experiences, the

demand for processing capacity will only continue to surge.

Similarly, the advent of big data has ushered in a new era of information

processing. With the proliferation of Internet-connected devices, social me-

dia platforms, and sensor technologies, organizations are generating colossal

amounts of data on a daily basis. Big data analysis aims to extract valuable

insights and actionable intelligence from these massive datasets. However, the

processing of such large volumes of data necessitates significant computational

power. Analyzing complex data structures, running advanced data analytics

algorithms, and performing real-time processing on massive datasets require

robust processing capacity.

1

Figure 1.1: Cloud Computing

Handling vast amounts of data and computations using single processors

presents significant challenges. First, single processors, whether CPUs or

GPUs, have finite processing power and can only execute a limited number of

instructions per unit of time. As data sizes increase, the time required to pro-

cess them becomes impractical, resulting in slow and inefficient computations.

Moreover, the memory capacity of single processors is limited, constraining

the amount of data that can be stored and processed at any given time. Ad-

ditionally, single processors lack fault tolerance and redundancy. In case of

a hardware failure or system crash, all data and computations are at risk of

being lost or corrupted.

As a result, large-scale computing has gained a lot of attention, and so-

lutions like cloud computing are becoming increasingly popular. Cloud com-

puting follows a basic procedure where users provision and access computing

resources, managed by a cloud service provider, through the Internet. Ini-

tially, users request the desired resources, such as virtual machines, storage, or

applications, which are then allocated from the provider’s infrastructure. The

allocated resources are virtualized, allowing for efficient utilization and scala-

bility. Users can remotely access and utilize the provisioned resources, paying

only for the actual usage on a pay-as-you-go basis. The cloud provider handles

maintenance, security, and updates, ensuring high availability and reliability.

Cloud computing is considered an excellent solution for large-scale com-

2

puting due to its scalability, flexibility, and cost-effectiveness. It enables users

to effortlessly scale their resources to handle varying workloads and avoids

the need for significant upfront investments in hardware and infrastructure.

Additionally, it offers high availability, fault tolerance, and robust security

measures, making it an attractive option for organizations seeking efficient

and reliable computing solutions at scale.

On the other hand, cloud computing often utilizes distributed computing

principles to achieve its goals. Cloud service providers rely on distributed

computing architectures to manage and allocate resources across their vast

networks of servers. They use distributed computing techniques to distribute

workloads, balance the load, and ensure high availability and fault tolerance.

In fact, it is by leveraging distributed computing that cloud providers can offer

scalable and resilient infrastructure to their users. Hence, it is very important

to develop efficient, reliable, and secure distributed computing methods.

1.2 Distributed Computing

As mentioned in the previous section, when the amount of computation is very

large, or there is a tight deadline to finish a task, a single processor may not

be able to handle it. In such cases, multiple processors may be exploited to

finish the task. Two of the common approaches are parallel computing and

distributed computing. In both approaches, a single problem is divided into

smaller sub-problems, and each subproblem is assigned to a separate process-

ing unit. In the end, the results are gathered and the main task is recovered.

Although there is no clear dividing line between parallel and distributed com-

puting, there are some distinctions between them.

In parallel computing, processors are usually located at a close distance

from each other and have been designed to jointly execute computational tasks.

In addition, the communication between processors is reliable and predictable.

For distributed computing, on the other hand, processors may be far apart and

inter-processor communication can become a significant bottleneck. In other

words, communication delays may be unpredictable and the communication

3

links may be unreliable. Moreover, the topology of the system may change

during the computation due to failures or repairs in communication links and

the removal or addition of processors.

In spite of the challenges, distributed computing offers several potential

advantages. First, the nodes in a distributed computing system can be geo-

graphically dispersed and may vary in terms of hardware specifications, oper-

ating systems, and software configurations. It also offers scalability. As the

workload or data size increases, additional nodes can be added to the system

to handle the increased demand. Furthermore, distributed computing pro-

vides fault tolerance and resilience. In case of a hardware failure or system

crash on a particular node, the distributed system can continue functioning

by redistributing the workload to other available nodes.

There are two major models in distributed computing: Master/worker and

peer-to-peer (P2P)[29]. In the peer-to-peer distributed computing model, all

nodes in the network are considered equal and can act as both clients and

servers. They collaborate and share resources directly with each other without

a central coordination entity. However, in a master/worker model, a central

master node delegates tasks to multiple worker nodes for parallel execution.

After data and computational functions are provided to the helpers by the

master, each worker node performs its assigned task and reports the results

back to the master node. When workers finish their tasks, the master collects

the processed tasks and finalizes the computation. Depending on the mas-

ter/worker scheme deployed, workers can be assigned a single task or multiple

smaller ones. They also may only communicate with the master or need to

communicate with each other as well. Compared to the P2P model, this model

is simple to implement and can be efficient for large-scale problems. However,

it can be a performance bottleneck if the master node becomes overloaded. In

Chapter 3 we will propose a scheme that addresses such a potential bottleneck.

4

1.3 Bottlenecks of Distributed Computing

Although distributed computing is an excellent solution for large-scale comput-

ing tasks several bottlenecks can limit the overall performance and efficiency

of the system. Hence, identifying and addressing these bottlenecks is crucial

for optimizing distributed computing systems.

One of the major bottlenecks is the communication bottleneck. Network

latency, limited bandwidth, and congestion can impact the speed and effi-

ciency of data transfer and communication between nodes. Excessive data

shuffling between compute nodes, high network traffic or sub-optimal network

configurations can exacerbate this bottleneck. Security bottleneck is another

major concern in distributed computing where vulnerability to eavesdroppers

and attackers threatens the overall performance and efficiency of the system.

There are other sources of failures as well but one of the most pressing

issues in distributed computing is the straggling bottleneck. The workers that

take significantly longer to complete their assigned computations compared

to others are called stragglers. Stragglers slow down the overall execution

time of the system and can create a bottleneck that affects the efficiency and

scalability of distributed computing systems.

Several factors can cause the workers to straggle. For example, distributed

computing systems often consist of nodes with varying computing capabilities

and if some nodes have lower processing power or more limited resources, this

could lead to the straggler phenomena. Similarly, an uneven distribution of

data among nodes can lead to stragglers. Communication delays or congestion

in the network can be another reason why the timely exchange of data and

coordination between nodes is disrupted. Stragglers can also occur due to

node failures or hardware issues.

The critical issue in the straggling problem is that even if the computation

depends on the computation result of a single straggling worker, the entire

process should wait for the result of that worker in order to finalize the over-

all computation. In fact, it was demonstrated empirically in [77] that this

straggler effect can prolong the job execution time by as much as five times.

5

Therefore, stragglers can have significant implications on distributed comput-

ing systems. They can lead to resource underutilization. While some nodes

are waiting for straggling tasks to complete, other resources remain idle. They

can also hinder scalability. As the system grows in size or handles larger work-

loads, the presence of stragglers can limit the ability to efficiently scale and

distribute tasks across nodes.

To address the problem of stragglers, various techniques can be employed,

such as task duplication, speculative execution, load balancing algorithms, and

fault tolerance mechanisms. These approaches aim to mitigate the impact of

stragglers and improve the overall performance and reliability of distributed

computing systems. Some of these techniques, such as task duplication, al-

though they are able to create an acceptable robustness to stragglers, they can

encounter issues like excessive overhead. An alternative choice that is able to

maintain a balance between fault tolerance and overhead is coded distributed

computing.

1.4 Coded Distributed Computing

In order to address major bottlenecks of distributed computing, different con-

cepts from the coding theory have been leveraged [24], [36], [38], [39]. These

ideas in the literature are often categorized as Coded Distributed Computing

(CDC). In fact, CDC is a broad term that is used to refer to the distributed

computing systems that at least in one stage of their computation, use cod-

ing theory to address their bandwidth bottlenecks, enhance their security, or

provide robustness and fault tolerance in their application.

To address the bandwidth bottleneck, some of the proposed CDC ap-

proaches add extra local computations for more network bandwidth [38], [41].

For some design parameter r, the same subtasks are placed in r carefully

chosen workers, injecting r times more local computations. The redundant

computations in return create local information in the distributed nodes that

provide the opportunity for coded multicast. This makes possible transmis-

sion of packets during the shuffle phase that are simultaneously useful for r

6

workers. In other words, such CDC schemes trade r times more computations

for an r times gain in local bandwidth consumption.

Coding theory is also applied to help the distributed computing systems to

meet the following constraints: (1) Privacy constraints such that sets of collud-

ing workers cannot infer anything about the input dataset in the information-

theoretic sense, and (2) security constraints that states the computation must

be accomplished successfully even if some workers return purposefully erro-

neous results. In this regard, methods like the BGW scheme [5] are adopted

that apply the Shamir secret sharing scheme [60] to generate coded data shares

with security guarantees and compute the function on the coded shares.

Other than the mentioned applications of coding theory, another major

problem for which coded distributed computing techniques have been consid-

ered is reducing the effect of the stragglers. The main idea is to divide the

input data into smaller fractions. Then use forward error correction codes from

coding theory to encode these fractions to obtain a larger number of them, in-

troducing some redundancy. The encoded data fractions are then distributed

among separate worker nodes. Due to the introduced redundancy during the

coding process, now in case some of the workers become stragglers, the remain-

ing workers still have enough information to recover the intended computation

result. The amount of redundantly added computation or overhead in this ap-

proach is less than the cloning methods and, if selected carefully, even 5% extra

helpers can mitigate the straggling effect and reduce the latency [1]. Moreover,

this coded approach was shown to significantly outperform the state-of-the-art

cloning approaches in straggler mitigation capability, and minimize the overall

computation latency. In this thesis, our focus will be on the coded distributed

computing methods that are proposed to mitigate the effect of the stragglers.

From now on when we use CDC, we refer to this specific category. Later in

Chapter 2 we will discuss the working procedure of the CDC in detail.

7

1.5 Thesis Overview

As discussed in the previous section, coded distributed computing can increase

the reliability of the distributed systems. However, it increases the amount

of required computation as it adds two pre-processing and post-processing

stages. In the pre-processing step, the divided chunks of the data are encoded

and in the post-processing, the result of non-straggling workers are decoded

to extract the necessary information for the final result.

Note that the main idea in distributed computing is that each worker

node spends its resources on the local fraction of the data that it receives.

But the pre-processing and the post-processing need to be done on the en-

tire input data or the collection of individual computation results due to the

information-theoretic dependencies between them. As a result, these steps

must be performed by a central node, i.e. the master node.

In some applications, the encoding of the input data and the decoding of

the results are performed offline, meaning that the time required to perform

these operations by the master is not a concern. As a result, the current CDC

approaches ignore this time and only focus on improving the computation

time. Nevertheless, in a large group of applications, where the encoding and

the decoding cannot be done offline, the required time for these two stages not

only is non-negligible but also can be a significant bottleneck in the overall

execution time. Training of large-scale machine learning applications is in this

category where due to iterative model updates, there is a constant need for

the encoding and decoding of the model parameters and the results.

In this thesis, as our first contribution, we consider distributed matrix-

vector multiplication and the potential encoding/decoding bottleneck. Unlike

most of the previous work, in addition to the time spent on computation, we

consider the time for encoding and decoding as well. In fact, in our work,

the overall execution time is the sum of the time in three stages: encoding,

computation, and decoding. Then we propose a new code and a new scheme

to reduce the overall execution time.

In contrast to the majority of the codes used for CDC, our code is bi-

8

nary. Hence, it removes costly multiplication operations from the encoding

and decoding stages. Furthermore, in our scheme, after the input data is di-

vided into smaller parts, these fractions are put into disjoint groups. Then the

scheme creates two sets of dependencies in the encoded data. The first set of

dependencies is within each group. later in Chapter 3 we will call these local

dependencies. The second set of dependencies is the information-theoretic re-

lationship between the data fractions of different groups. Later we will refer to

these as global dependencies. This structure further reduces the decoding time

since a smaller number of dependent coded blocks of data would be required

to recover the result of a specific straggling worker. As a result of our scheme,

the master’s workload for encoding and decoding drops significantly and is no

longer a bottleneck. Additionally, the overall execution time is lower than the

conventional scheme.

In our second contribution, we consider a CDC setting in which instead of

large tasks, each worker receives multiple smaller ones. These smaller subtasks

are executed in order and the results are reported to a master node as soon as

any of them is completed. When the input data is divided so that each worker

receives only a single task, designing the load of each task and the optimal

code rate to minimize the computation time is straightforward. However, for

multiple tasks, this is not an easy problem. For instance, one worker might be

able to finish all of its subtasks while another worker still struggles to finish its

first computation. To this end, we analytically model the multiple-task CDC

and derive the optimal load of the subtasks and the code rate, accordingly.

The rest of this thesis is organized as follows: In Chapter 2 we provide some

background material on coding theory, distributed computing, and CDC. In

Chapter 3 we consider distributed matrix-vector multiplication and introduce

our new CDC scheme to reduce the encoding/decoding time and, consequently,

the overall execution time. In Chapter 4, we study a multiple-task CDC setting

and derive the optimal task loads and code rate for it. Finally, in Chapter 5,

we conclude our contributions and recommend future research directions.

9

Chapter 2

Background Material

2.1 Distributed Computing Systems

A distributed system refers to a collection of autonomous computers or nodes

connected through a network that work together to achieve a common goal.

In a distributed system, each node operates independently and has its own

memory and processing power. The nodes communicate and coordinate with

each other by passing messages or sharing data, allowing them to collabo-

rate and perform tasks collectively. Recently distributed storage systems and

distributed computing systems have gained a lot of attention [50], [61].

In this thesis, we only study distributed computing systems. In distributed

computing systems the main goal is to minimize the computation time of a

task. To achieve this goal, one needs to find a distributed computing scheme

that suits the requirements of the problem the best. Some attributes of the

DCS play an important role in finding the optimal scheme. These include but

are not limited to the number of computing nodes, their memory, processing

power, and communication links.

The key idea in distributed computing is to divide the main task into

smaller subtasks, assigning them to multiple distributed processors, and ag-

gregating the processed data to finalize the main computation task. Usually,

a central node, which is called the master, receives the main computation

task and executes it by employing other computing nodes in the network,

called workers. The master collects the individual results and delivers the fi-

nalized computation. In most cases, the master is also responsible for doing

10

the required pre-processing and post-processing of the data. This structure is

usually known as the master-worker or master-helper model. Although there

are distributed models with multiple masters [65] or without any master, such

as peer-to-peer models [67], the common model in practice and the literature

for distributed computing is the master-worker model due to its efficiency and

low-complexity implementation.

2.1.1 System Model

One of the models that can be implemented in the form of a master-worker set-

ting is MapReduce [12]. The MapReduce framework is designed for processing

large-scale data sets in parallel across a distributed cluster of computers. It

was originally introduced by Google and has become widely used for big data

processing. MapReduce consists of three stages: Map, Shuffle, and Reduce.

In the Map stage, the input dataset is divided into chunks by the master.

These chunks of data are assigned to the available worker nodes. Workers also

receive the map function which is applied to their assigned data to produce

some intermediate results. These results are generated in parallel. In the

shuffle stage, the results of the computations from the map stage are exchanged

among the workers. Depending on the network, workers may have direct

communication with each other, or the only way for their communication be

through the master. In those cases, the master may engage in the shuffle phase

and function as a relay.

Finally, in the reduce stage, the master provides each worker with the

reduce function. Workers treat the results that they received in the shuffle

stage as a new input and by applying the reduce function, produce the final

outputs. The master is responsible for collecting the final results from the

worker nodes. In Fig. 2.1 the master-worker model of the MapReduce scheme

is depicted.

MapReduce provides a general architecture that can inspire the design

of similar master-worker models to compute different large-scale problems.

Consider a distributed computing system that consists of one master and k

workers. The goal of the master is to compute a job g(x), where x is the input.

11

Figure 2.1: The MapReduce model

We assume that g(x) can be decomposed into k tasks, i.e. g1(x), . . . , gk(x) and

that the tasks are linear, i.e. agi(x) + bgj(x) = (agi + bgj)(x). The master

assigns each task to a worker and collects the result of each computation after

they are completed. The master then maps the set of tasks {gi(x)}k1 by ϕ(·)

to the main job g(x) = ϕ(g1(x), . . . , gk(x)).

One example is matrix-vector multiplication where we want to multiply

matrix A ∈ Rm×p to vector x ∈ Rp. Hence, the intended computation or the

job that is required from the master is g(x) = Ax, g(x) ∈ Rm. The master

divides this job into k tasks and assigns each task to a worker node. The

i-th task here is gi(x) = Aix where gi(x) ∈ Rm
k and Ai ∈ Rm

k
×p is the i-th

submatrix in a horizontally decomposed matrix A. So the master needs to

send submatrix Ai and vector x to the i-th worker. The i-th worker then

starts computing gi(x). After all the tasks {gi(x)}k1 are completed, the master

must collect the results. In this example ϕ(·) simply concatenates the results

of the tasks {gi(x)}k1 and obtains g(x). The system model for matrix-vector

multiplication is illustrated in Fig. 2.2.

12

Figure 2.2: Distributed computation of g(x) = Ax

2.1.2 Challenges

DCSs can face many challenges that might render them useless in practice. In

fact, if not implemented carefully, decentralized computing which is considered

a solution for computing a large-scale task in the shortest possible time, can

turn into a problem itself.

As a necessity, distributed computing systems rely on efficient and reli-

able communication channels to exchange data and coordinate tasks among

multiple interconnected nodes. However, communication links, especially in

wireless networks, are not completely reliable. When a communication link

fails, it disrupts the flow of information and prevents reporting the result of

the nodes that have finished their tasks. Moreover, in some of the networks,

the computing nodes are not fully committed. In many of the mobile and

fog computing networks, nodes participate in the distributed computing but

might leave the network or start higher priority tasks before finishing their

computation and reporting their results [6], [14]. When a single or more com-

puting nodes do not complete their tasks, if the divided tasks are disjoint and

share no information in common, the main task will never be completed.

Even when the computing nodes are fully dedicated, there is no guarantee

that all of them will complete their tasks in a timely manner or at all. In

fact, it is common that in a distributed computing system a few nodes can be

expected to have excessive delays in finishing their tasks due to various factors

including hardware failure, ongoing processes in the memory, and software or

13

algorithmic inefficiencies. These nodes are called stragglers. Straggler nodes

impose negative consequences on the performance of distributed computing

tasks and can cause extreme delays in the completion of the whole computing

task. In other words, in the absence of the proper measures, the main task

can not be completed unless every single subtask is finished first. This means

the master and other computing nodes have to wait for the slowest computing

node. This is in contrast to the original goal of distributed computing, which

is completing a task in the shortest possible time. One might argue that the

master can re-assign the unfinished tasks to other nodes that have finished

their tasks. Nonetheless, this will at least double the computation time.

The key to solving the straggling problem is in reducing the dependency

of the system on the result of a single node. One of the promising solutions is

introducing some form of redundancy in the distributed tasks. The redundancy

gives the system the ability to finish the computation even if some nodes fail.

This implies that the subtasks in a distributed computing system should not

be merely the divided parts of the main task, but should be related to each

other. One of the simplest relations between the tasks is when each task is

cloned multiple times [70]. Therefore, if one node straggles, the system can

obtain the result from another non-straggling node assigned the same task.

Nonetheless, the computational overhead of this method is very high despite its

low complexity. Therefore, depending on the requirements and characteristics

of the DCS, better alternatives are possible.

For instance, another technique to introduce redundancy is to create an

information-theoretic relationship between the subtasks before distributing

them. This way, the tasks are not exact replicas of each other but contain

information about one another such that in the case of straggling or failure

of a node, the system is able to obtain its result without having direct access

to it. In this context, a common approach is considering the output of the

straggling nodes as erasures. Treating the result of the straggling nodes as

erased information forms an analogy between the straggling problem and bit

erasure in faulty communication links. This inspires the use of the techniques

in coding theory against the straggling problem in a similar manner.

14

In the following we will first briefly study the coding solutions that are

used to create robustness against the bit erasure in communication links and

then discuss how they can be leveraged to create fault tolerance in DCSs.

2.2 Forward Error Correction Codes

In communication channels, due to noise, interference, fading, or other channel

impairments, some of the information bits might be erased or received with

an error. One of the most widely adopted techniques to address this issue

is channel coding. There are two primary types of channel coding schemes:

error detection codes and error correction codes. Error detection codes, detect

the presence of errors in the received data such that if an error is detected,

the receiver can request re-transmission of the data. On the other hand, error

correction codes not only detect errors but also have the ability to correct

them. These codes introduce redundancy in such a way that the receiver can

identify and correct a certain number of errors, improving the reliability of the

communication.

In order to code a block of information with k bits, n, n ≥ k new bits

are created from them. We note that the amount of information in the n

newly generated bits is equal to the information that could be transmitted

just by the original k bits. Hence, the n − k new bits are redundant. This

process is called coding with a (n, k) code where n is referred to as code length.

Although the concept of coding was originally developed for communication

channels, its applications are not limited to communications. Recently, error

correction codes have been used in distributed storage systems and DCSs to

protect data against node failures. Before discussing the details of using error

correction codes for DCSs, we will review the relevant mathematical concepts

in coding theory as well as a number of families of the codes that will be of

use throughout this thesis.

15

2.2.1 Mathematical Background

Definition 2.1. group: A group consists of a set G equipped with a map

⊤ : (G×G) 7→ G and ⊤−1 : G 7→ G and an identity element e ∈ G so that the

following axioms hold:

1. ∀(gi, gj) ∈ G (gi⊤gj ∈ G).

2. ∀(gi, gj, gk) ∈ G (gi⊤gj)⊤gk = gi⊤(gj⊤gk).

3. ∀gi ∈ G gi⊤e = gi.

4. ∀gi ∈ G ∃g−1
i such that gi⊤g−1

i = e.

G is an Abelian or commutative group if an additional axiom is satisfied:

∀(gi, gj) ∈ G gi⊤gj = gj⊤gi

The group defined in Definition 2.1 is either an additive group when the

operation (⊤) is addition denoted as (+), or a multiplicative group when the

operation is multiplication denoted as (∗).

Definition 2.2. Field: A set F with an addition operation “ + ” and a multi-

plication operation “ ∗ ” represents a field, denoted (F,+, ∗), if

1. (F,+) is an Abelian group with additive identity “0”,

2. (F\{0}, ∗) is an Abelian group with multiplicative identity “1”,

3. For all a, b, c ∈ F, (a+ b) ∗ c = a ∗ c+ b ∗ c.

If the set F has a finite number of elements q, then it is called a finite or Galois

field denoted as GF (q) or Fq where q is the order of the field.

Remark 2.1. If q is a prime number, the field GF(q) coincides with the ring

of integer residues modulo q, also denoted by Zq.

16

2.2.2 Block Codes

An (n,M) (block) code over a finite alphabet F is a nonempty subset C of size

M of F n. The parameter n is called the code length and M is the code size.

The dimension or information length of the code is defined by k = log|F | M ,

and the rate of C is R = k/n. We will also call n−k
k

the overhead of the code.

Each element in a code is called a codeword. After knowing the character-

istics of a code like code length and its dimension, it is important to quantify

the difference between its codewords. To this end, we will use the following

definitions.

Hamming distance

Let F be an alphabet. The Hamming distance between two codewords x,y ∈

F n is the number of coordinates on which x and y differ. We denote the

Hamming distance by d(x,y).

Hamming weight

Let F be an Abelian group. The Hamming weight of e ∈ F n is the number of

nonzero entries in e. We denote the Hamming weight by w(e). based on this

definition, for every two words x,y ∈ F n we have: d(x,y) = w(x− y)

Minimum distance

let C be an (n,M) block code over F . The minimum distance of C is the

minimum Hamming distance between any two distinct codewords of C; i.e, the

minimum distance d is given by d = min
c1,c2∈C:c1 ̸=c2

d(c1, c2). An (n,M) code with

minimum distance d is called an (n,M, d) code.

2.2.3 Linear Codes

Definition 2.3. An (n,M, d) code C over a field F =GF(q) is called linear if

C is a linear subspace of F n over F ; namely for every code words c1, c2 ∈ C

and two scalars a1, a2 ∈ F we have a1c1 + a2c2 ∈ C

17

The dimension of a linear (n,M, d) code C over F is the dimension of C as

a linear subspace of F n over F . If k is the dimension of C, then it is called a

linear [n, k, d] code over F , and n− k is the redundancy of the code.

We associate two matrices with a linear code: a generator matrix and a

parity-check matrix. The generator matrix of a linear [n, k, d] code over F ,

denoted by G is a k × n matrix whose rows form a basis of the code. Please

note that the generator matrix of a linear code is usually not unique. The

rank of G is equal to the dimension of C, k. One can use the generator matrix

to map an information word u = (u1u2 . . . uk) to a codeword of C by y = uG

where y = (y1y2 . . . yn) ∈ F n. Since rank(G) = k, this mapping is one-to-one.

A parity-check matrix of C denoted by H, in the most common case where

rows are independent, is an (n − k) × n matrix over F such that for every

c ∈ F n, c ∈ C ⇐⇒ HcT = 0

Theorem 2.1. Let H be a parity-check matrix of a linear code C ̸= {0}. The

minimum distance of C is the largest integer d such that every set of d − 1

columns in H is linearly independent.1

Binary linear codes

Binary linear codes are linear block codes where the codewords are generated

by taking linear combinations (modulo-2 addition) of the information bits. In

other words, a linear code defined over the field F =GF(2) is called a binary

linear code. Binary linear codes have many advantages over non-binary coun-

terparts. The fact that they operate on a two-symbol alphabet (0s and 1s)

simplifies the encoding and decoding processes and reduces their complexity.

Moreover, the use of binary symbols allows for straightforward circuit imple-

mentations, logical operations, and arithmetic computations.

Systematic linear block codes

A linear code is called systematic if it has a generator matrix in the form

of G = [Ik,P] ∈ Fk×n
q . Systematic linear codes are characterized by their

1For the proof, we refer the interested reader to [51]

18

ability to encode a message in a systematic form, where the original message

appears as a contiguous portion of the encoded codeword, i.e. when coding

the information word u with a systematic generator matrix, the code word

takes the following form: y = (u,uP). This feature makes their encoding and

decoding less complex.

2.2.4 Maximum Distance Separable (MDS) Codes

Since every two distinct codewords in a code C with minimum distance d differ

on at least d locations, C is able to recover up to d − 1 erasures. This means

that if a [n, k, d] linear code is used to encode k information symbols into n

coded symbols, any n−d+1 coded symbols would suffice to recover the original

k information symbols.

One of the fundamental bounds in coding theory is the Singleton bound.

The Singleton bound for an [n, k, d] linear code states that: d ≤ n − k + 1

[64]. Any linear code that attains the Singleton bound, namely it satisfies

the equality d = n − k + 1, is a maximum-distance separable (MDS) code.

This means if k information symbols have been coded with an MDS code and

are sent through an erasure channel, any set of k coded symbols is enough

to recover the original information symbols. Hence, MDS codes are optimal

in that sense. Please note that the Singleton bound and MDS are general

concepts for every block code. However, here we made our statements specific

to linear codes.

Reed-Solomon codes

An important family of linear MDS codes is the family of Reed-Solomon codes.

Let α1, α2, . . . , αn be distinct elements of F =GF(q). A [normalized general-

ized] Reed-Solomon code over F is a linear [n, k, d] code with the parity-check

matrix:

19

1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n

This construction requires that the code length n be at most the field size q.

One of the disadvantages of Reed-Solomon codes is that even if one erasure

happens, k coded symbols need to be accessed to reconstruct the erased sym-

bol. In the next subsection, we will see that this number can be reduced by

using another linear family of codes.

2.2.5 Locally Repairable Codes (LRCs)

Locally repairable codes (LRCs) are a family of linear codes originally proposed

for distributed storage systems. They are characterized by their ability to

repair or recover from erasures or errors in a localized manner. In LRCs, the

codeword is divided into multiple sub-blocks, and each sub-block is associated

with a set of local parity symbols. When a symbol is erased or lost, the

corresponding local parity symbols can be used to reconstruct the missing

symbol. This localized repair property allows for efficient and targeted recovery

operations.

Definition 2.4. (symbol locality, code locality). Let C be a code over Fq and

let us denote the the i-th coded symbol of C by yi and its locality by Loc(yi).

Loc(yi) is defined as the minimum number of other coded symbols required to

reconstruct yi. In mathematical terms, Loc(yi) is the size of the smallest set

Ii ⊂ {j}n1\{i} that satisfies
∑
l∈Ai

αlyl = 0 for a fixed set of coefficients αl ∈ Fq

where Ai = Ii ∪ {i}. A code C is said to have locality r if max
i∈{i}n1

{Loc(yi)} ≤ r.

A linear code C with code length n and dimension k that has locality r

where r ≤ k is called a locally repairable code and is usually denoted as a

[n, k, r] code.

20

2.3 Coding in Distributed Computing

As discussed previously, one of the serious bottlenecks facing the DCSs is

the straggling problem. One way to look into the straggling problem is to

consider the information (computation results) in the straggling workers as

erasures. Consequently, an appealing solution to the issue can be the solution

suggested to protect the information in the erasure channels in telecommuni-

cation, namely introducing some redundancy through coding.

The key idea here is that after dividing the original task into a number

of smaller subtasks and before distributing them among the worker nodes,

the subtasks are encoded. Accordingly, it is the coded subtasks that will be

distributed among the worker nodes for computation. This idea has been also

used in distributed storage to protect the stored data against node failures and

erasure, i.e. The data is encoded prior to being stored in the storage nodes. In

case of node failure where a part of the stored data is lost, it is the redundancy

introduced during the coding process and stored in other nodes that are used

to recover the lost data.

In distributed storage, the output data is exactly in the form of input

coded data. As a result the decoding algorithm that could be applied on the

encoded input to obtain the original data, is valid for the output data as well.

In contrast, after the encoded data is distributed among worker nodes in a

distributed computing system, the output of each worker node is no longer the

input subtask, but the result of its computation. However, if the computation

on the input is linear, the corresponding decoding algorithm of the coding

performed on the input data is still valid over the computation results. In

other words, the same decoding algorithm can be applied to the output of

worker nodes to obtain the final results in the form of the final result of an

uncoded computation.

Let us go back to the master-worker distributed computing setting intro-

duced in Subsection 2.1.1. Let us again assume that the original task g(x) can

be decomposed into k subtasks i.e. g(x) = ϕ(g1(x), . . . , gk(x)) where ϕ(·) is a

function that maps the subtasks to the original task. Also, we assume that the

21

subtasks are linear, i.e. agi(x) + bgj(x) = (agi + bgj)(x). In coded distributed

computing, the master uses a linear [n, k, d], n > k code on the subtasks to

encode them, h = E([g1(x), . . . , gk(x)]), where E encodes the k original sub-

tasks into n new ones, h = [h1, h2, . . . , hn]. The master then distributes the

new subtasks among n worker nodes.

The worker nodes start to compute their assigned subtasks. After a while,

some of the worker nodes finish their subtasks and send the results to the mas-

ter while other workers either still have not managed to finish the computation

or face problems in communicating their results to the master. On the other

hand, from our previous discussions on the error correction codes, we know

that a [n, k, d] code gives the ability to recover d−1 erasures. This means that

now that the subtasks are coded, the master does not need to wait for the

result of all the subtasks. In fact, the master has enough results to finalize the

computation even if d− 1 worker nodes straggle or never report the result of

their computation. In other words, the master waits only for the result of the

fastest workers and when a sufficient number of them report their results, the

master considers the rest as erased data. Hence, using codes in DCSs provides

robustness against permanent failures, speeds up the process, and solves the

straggling issue.

After receiving the results from a sufficient number of workers, hS ⊂

{h1, h2, . . . , hn}, the master decodes the results according to the code used

for the encoding of the subtasks in the beginning, [g1(x), . . . , gk(x)] = D(hS).

Then the master maps the decoded subtasks to the original task g(x) =

ϕ(g1(x), . . . , gk(x)) and finalizes the computation.

As an example, let us consider a coded distributed matrix-vector multipli-

cation, g(x) = Ax, with an MDS code. Initially, the master will decompose the

matrix-vector multiplication into k subtasks. For convenience, let us assume

k = 4. To create four subtasks, the master will decompose A to four horizontal

blocks. Consequently, the subtasks are g1(x) = A1x, . . . , g4(x) = A4x where

Ai is the i-th block of A. Let us also assume that the code master will use

to encode the subtasks is a [5,4,2] MDS code. Such an MDS code is able to

recover only one erasure. To encode the subtasks the master will take the four

22

Figure 2.3: Coded Distributed computation of g(x) = Ax with the assumption
that worker 2 will straggle. In this figure gi(x) = Aix and E(·) and D(·) denote
the encoding and the decoding operations.

decomposed blocks of A and do element-wise operations to have five encoded

blocks. One simple example is element-wise addition. The master keeps the

four blocks as they are and creates the fifth block by adding all the blocks

element-wise, i.e. Ā1 = A1, . . . , Ā4 = A4, and Ā5 = A1+A2+A3+A3. As a

result, the new subtask that master will assign to the i-th worker is hi = Āix.

The master has now to only wait for four workers to send their results since

any combination of four subtasks out of five gives the master the information

it needs to finalize the computation of g(x) = Ax. However, in four out of

all five possible orders that the workers might finish their computation, the

master needs to execute one more extra step, namely decoding of the received

results. The only case that the master can skip this step is when the first

workers to finish are the ones assigned with {hi}41. When the master recovers

{gi(x)}41 either after the decoding step or directly, it concatenates them and

finalizes the computation of the original task. Fig. 2.3 shows the procedure

described above.

2.3.1 Challenges

The use of coding in distributed computing solves the straggler problem to a

great extent. However, this comes with a cost. The fact is that coding the

tasks introduces redundancy which in turn imposes extra computation on the

DCS. On the other hand, the computation resources available to the system are

23

limited and now a part of these resources will be occupied by redundancy. This

means the system will divide the original task into larger portions compared to

the uncoded case where the task is divided among all the available resources.

Furthermore, the coding introduces two extra pre-processing and post-

processing steps, namely the encoding and the decoding of the tasks, that are

not required in an uncoded scheme. Since the encoding and the decoding re-

quire access to all the tasks, they usually are carried out by a central node or

the master. Nonetheless, the goal of distributed computing was to reduce the

computational burden of a central processor. It is true that in some applica-

tions the encoding and the decoding can be done offline, i.e. in an independent

time but there are many other applications that there is a constant need for the

encoding and decoding of the new tasks in an online manner. Hence, it is pos-

sible that the encoding and decoding steps will become the new bottlenecks.

We will address this issue in the next chapter.

2.3.2 Related Work

Many coding solutions have been proposed for different problems in distributed

computing. These can be categorized based on many factors. The purpose

of coding, for instance, can be mitigating the straggler problem, reducing

communication load between the nodes, or enhancing security. The features

of computing nodes and the distributed system, the type of code, and the type

of computation are other factors to classify the coding solutions.

Mitigating the straggler problem with codes has been the subject of interest

in many types of large-scale computation. Matrix multiplication is one of the

most widely studied cases as matrix-vector and matrix-matrix multiplications

are essential operations in numerous applications such as machine learning,

deep learning, and ranking algorithms in search engines [7]. In matrix-vector

multiplication, the matrix is divided into smaller blocks that are coded and

distributed among the workers while oftentimes, the replicas of the vector are

sent to the workers in the original form [15], [56]. Similarly, in the matrix-

matrix multiplications, both matrices are divided into smaller blocks and are

coded before distribution. The code is designed so that the minimum num-

24

ber of small coded multiplications need to be completed for the final result

[17], [37], [75]. The Fast Fourier transform (FFT)[76] and the convolutional

operation [16] are two other types of operations studied in this context.

Distributed systems can have very different dynamics and so do the coding

schemes proposed for them. In the majority of the coded distributed schemes,

the assumption is that in the distributed system all the workers have the same

characteristics and have an equal likelihood of exhibiting straggling behavior.

In such distributed systems, referred to as homogeneous, equally sized coded

subtasks are distributed amongst workers. On the other hand, there are dis-

tributed systems, referred to as heterogeneous systems, where the worker nodes

possess different computational capacities and memory. In heterogeneous sys-

tems, equal load allocation can significantly exacerbate the straggling problem.

Hence, optimal load allocation in heterogeneous clusters has been proposed in

[34] and [49] propose Heterogeneous Coded Matrix Multiplication (HCMM) al-

gorithm for performing distributed matrix multiplication over heterogeneous

clusters.

The type of code in a coded scheme can also depend on the requirements

of the system. While some works develop their schemes for a general linear

code, others specifically determine the type of code they use. Many of the

coded schemes proposed to alleviate the straggling problem are based on MDS

codes [33], [36], [37], [48]. MDS codes have an advantage over other codes in

terms of their overhead to provide a specific minimum distance. Moreover,

they are optimal in the sense that they require the minimum number of coded

elements, precisely equal to the number of information elements prior to the

coding for the restoration of the mentioned information elements. However,

there are studies that adopt other codes especially when, in addition to the

computation time, the encoding and the decoding times are also important.

In this regard, [56] introduces a coded scheme based on Luby transform (LT)

codes under inactivation decoding and [4] propose polar coded distributed

matrix multiplication, both enjoying low encoding and decoding complexity.

As mentioned earlier, the applications of coding in distributed computing

are not limited to straggler mitigation. For instance, [38], [40] repeat the in-

25

termediate computations to create coded multicasting opportunities to reduce

communication load, establishing a fundamental trade-off between communication-

computation. Later, a unified coding framework was suggested in [39] that

combines the coded scheme of [38], [40] and the coded scheme of [36] that

generates redundant intermediate computations to combat against straggling

servers, giving the ability to stand at any point of a trade-off between the

two extreme cases of minimizing either the load of communication or the la-

tency of computation individually. Furthermore, coding solutions are also

employed for the security and privacy of distributed computing. For example,

[47], [74] practice Lagrange encoding to provide resiliency against stragglers,

security against Byzantine (or malicious) workers, and (information-theoretic)

privacy of the dataset amidst possible collusion of workers while [8] focus

on information-theoretically secure distributed matrix multiplication with the

goal of characterizing the minimum communication overhead.

In the rest of this thesis, we will focus on employing coded schemes for

reducing the straggler effect. In Chapter 3 we introduce a coded scheme based

on a new family of binary locally repairable codes that mitigate the straggler

problem with a low encoding and decoding complexity and in Chapter 4 we

aim to minimize the computation time of a distributed system in which workers

are assigned multiple tasks.

26

Chapter 3

A Family of Binary Locally
Repairable Codes for Coded
Distributed Computing

3.1 Introduction

Recent advancements in technology have brought applications that require a

massive amount of computation. Terabytes of data are processed by machine

learning and data analysis tools. In many cases it is impractical for individual

computers to handle such huge operations. As a result, cloud services and

distributed computing, which distribute a massive task among many workers

using the concept of parallelization, are gaining unprecedented popularity [11].

Achieving the theoretical gains of parallel computations requires many

practical considerations. In particular, when a huge computation is distributed

across multiple computing devices (workers), factors such as software/hardware

failures, communication delays, and maintenance result in varying completion-

time across different workers. This means nodes with the same task load

and identical hardware configuration will not experience identical computa-

tion time. In such a setup, the slow workers are referred to as “stragglers”.

Stragglers can hinder the overall computation process. In other words, in or-

der to complete the whole task, one needs to wait for the slowest workers to

finish their part. This issue is widely referred to as the “straggler problem” in

the literature. Fortunately, there are solutions to reduce the stragglers’ effect.

One conventional approach to address this problem is repetition [1], [57],

27

[69]. In repetition, multiple instances of a task are created and distributed

among different workers such that in the case of a straggling worker, the exact

completed replica of its task could be obtained from another worker. However,

due to memory constraints and unwanted recalculation of the tasks already

completed, this approach is not efficient.

Recently, error correction codes have been proposed to address this issue

[16], [21], [36], [37], [39], [56], [73]. The authors of [36] use an (n, k) maximum

distance separable (MDS) code to create n−k redundant tasks for a job broken

into k subtasks. The n coded tasks are distributed among workers and the

original task can be reduced as soon as any set of k tasks is received by the

master.

The approach in [36] eliminates the need to wait to receive the exact replica

of a missing task. In addition, it is optimal in the sense of recovery threshold,

meaning that it requires the minimum number of received subtasks to complete

a computation. Hence, it alleviates the straggler problem and reduces the

computational delay. However, the encoding and decoding complexity of the

MDS codes, especially multiplication in higher-order finite fields, can be a

challenge. Google multiplies matrices of dimensions in the order of 1010 ×

1010 when finding the rank of pages in their search engines [28]. In such

scenarios where the matrix is very large, the delay incurred by the encoding

and the decoding may overshadow the advantage of using MDS codes for their

minimum recovery threshold.

Coding is also used for serving other purposes in distributed computing.

For instance, coding is used in [24], [38] to alleviate bandwidth bottlenecks,

heterogeneous servers are considered in [13], [19], [32], and optimizing the

throughput via coding is considered in [72]. Also [30] studies coded distributed

optimization and [14], [45], [54] propose coded federated learning schemes.

Binary codes are a family of error-correction codes that enjoy low com-

putational costs in the encoding and decoding phases due to the absence of

multiplication operations. Hence, when coding complexity is a bottleneck, us-

ing binary codes can be an attractive option. [9] uses binary codes for coded

distributed matrix multiplication with such an objective. In addition, fur-

28

ther complexity reduction can be achieved using the concept of locality. Code

locality is defined as the maximum number of coded symbols required to recon-

struct any missing coded symbol [44]. Locally repairable codes (LRCs) have

recently gained a lot of attention in distributed storage systems (DSS)[10],

[22], [26], [31], [35], [46], [53], [66], [68], [71]. The reason for this interest is

that for an LRC with a low locality, the number of required accesses to the

storage nodes in order to restore a missing symbol is small. Likewise, in dis-

tributed computing, instead of needing the whole code structure, using LRCs

allows for recovery from a missing subtask using the local structure. This can

significantly reduce the decoding complexity.

In this chapter, we propose the use of binary locally repairable codes

(BLRCs) for a coded distributed computing scenario. BLRCs enjoy the ad-

vantages of both binary and locally repairable code families [23], [58], [59],

[63]. Previously, [25], [27], [59] introduced binary locally repairable codes for

DSS that are optimal with respect to Singleton-like bound1. This is because

the optimization goal for DSS is reducing the storage overhead. However,

since the optimization goal in coded distributed computing is the time delay

of the process, being optimal with respect to singleton-like bound might not

be the first priority in coded distributed computing. In fact, the encoding and

decoding complexity often play a more important role in the overall time de-

lay and one might sacrifice optimality with respect to Singleton-like bound to

minimize encoding/decoding complexity. We propose a new family of BLRCs

with such a design goal. In our coded distributed scheme using our proposed

family of BLRCs, the master can easily handle the encoding process just by

implementing a few XOR operations in the binary field. This applies to the

recovery process of the main task as well. The locally repairable nature would

reduce the decoding complexity even further. After a sufficient set of subtasks

are collected, the master uses the local redundancies to recover any missing

1Singleton-like bound states that the minimum distance d of a (n, k, r) LRC is bounded
as [22], [44]:

d ≤ n− k − ⌈k
r
⌉+ 2.

29

data blocks, and only in the cases that there are no sufficient local redundan-

cies, it uses the global relationships between subtasks to recover the missing

ones. Hence, in most cases, the high-complexity global structure is not used.

Our contributions in this chapter are as follows:

• To the best of our knowledge, we are the first to suggest using LRCs for

distributed computing systems. By prioritizing the local redundancies

for the recovery of missing subtasks, we reduce the decoding (recovery)

complexity. As a result, the decoding time and hence the overall com-

pletion time is reduced.

• We introduce a new family of BLRCs specifically designed for coded

distributed computing scenarios. This family of codes enjoys very low

encoding and decoding complexity. The locality and the length of the

introduced codes are flexible and can be adjusted based on the require-

ments of the distributed setting.

• For a code length of n and locality of r such that (r + 1)|n, our code

has g = n
r+1

local groups and a minimum distance of d = 4. We prove

that among all BLRCs with this local structure, and the same minimum

distance, our proposed BLRCs need the minimum number of XORs for

the encoding process. Furthermore, given the number of XORs for en-

coding, we prove that our code has the best code rate among those with

the same local structure and minimum distance.

• We also suggest a decoding scheme that guarantees that the recovery

process will be completed with the minimum number of XORs. Exper-

iments show that our scheme reduces the combined time delay of the

encoding and decoding phases up to more than 99% in some cases com-

pared to the MDS codes.

• It is known that MDS codes have the lowest recovery threshold and

hence the optimal computation time. However, we show that in spite

of a longer computation time, our BLRCs have a total time delay that

30

is much lower than a system based on MDS codes. This is due to the

significant time delay reduction in the encoding and decoding phases.

The rest of this chapter is organized as follows. In Section 3.2, we present

our distributed computing system model. In Section 3.3, we introduce our

family of BLRCs and analyze its features. We also prove two senses of op-

timality for our codes and discuss their minimum-complexity encoding and

decoding procedures. In Section 3.4, we simulate different distributed com-

putation scenarios and show the time delay performance of our codes. Finally,

in Section 3.5 we conclude this chapter.

Notations: Matrices and vectors are denoted by upper and lower boldface

letters. F2l shows a finite field with cardinality 2l. Calligraphic upper case

letters show a set and |S| denotes the cardinality of the set S. Finally, {i}n1
represents the set of all integers from 1 to n.

3.2 System Model and Preliminaries

Matrix-vector multiplications are among the most fundamental operations in

distributed computing systems. The linear nature of matrix-vector multipli-

cation makes it a suitable candidate for coded distribution. In this section, we

give details about the considered matrix-vector multiplication, our assump-

tions about the distributed setting, and the three main phases of the coded

distributed computation.

3.2.1 Matrix-Vector Multiplication Formulation

We consider a matrix-vector multiplication problem where matrix A ∈ Fm×p
2l

is multiplied to N vectors x1,x2, . . . ,xN ∈ Fp
2l
. Here F2l is an extended binary

field. In many cases, N = 1, but we consider a more general setup where

N is not necessarily 1. For instance, in gradient descent algorithms, in each

forward pass, a new weight matrix A representing the parameters of the model

is multiplied by many vectors representing features of the data points in a batch

of size N.

31

We consider a scenario in which there is a master that, with the help of n

nodes called workers, finishes the multiplication taskY = [Ax1,Ax2, . . . ,AxN].

We assume the computational capacity of the master is the same as each of the

workers. The master partitions the rows of the matrix A into k submatrices

each consisting of m
k
rows and p columns:

A = [A1;A2; . . . ;Ak].

By such a partitioning, the original task Y is the concatenation of subtasks

Yi, i ∈ {i}k1:

Y = [Y1;Y2; . . . ;Yk],

where Yi = [Aix1,Aix2, . . . ,AixN]. The master uses an encoding matrix to

linearly encode k blocks of A into n new submatrices:

Ā = [Ā1; Ā2; . . . ; Ān],

where Ā ∈ Fnm
k
×p

2l
. We assume that vectors x1,x2, . . . ,xN are known to

all the workers. The master sends submatrix Āi to the i-th worker where

i ∈ {1, 2, . . . , n}. Upon receiving the submatrix, the i-th worker starts to com-

pute Ȳi = [Āix1, Āix2, . . . , ĀixN] and returns the result after finishing the

calculation of the products. The encoding matrix that the master uses is built

based on an (n, k) linear code, where k and n are the numbers of information

symbols and code length, respectively.

In this work, it is assumed that encoding cannot be done offline and hence

its complexity cannot be ignored. There exist scenarios where matrix A does

not change over time, hence it can be encoded once and offline. However, in

many practical scenarios (e.g., gradient descent optimization of deep neural

networks), A changes frequently and thus its encoding cannot be done offline.

As an example, consider a regression problem in machine learning solved by a

gradient descent algorithm. That is, given x and y, we are interested to solve

Ax = y for A. Let Ai be the estimated A in iteration i. In each iteration, we

need to find ŷi = Aix (a matrix-vector multiplication) in order to obtain the

mean square error of our estimation. Since Ai depends on the loss function, it

32

cannot be known beforehand, and hence, it cannot be pre-encoded. Therefore,

the encoding time in such a problem cannot be ignored.

3.2.2 Probabilistic Model of Time Delay

The shifted exponential distribution has been widely used to model the com-

putational delay among the workers [21], [36], [39], [56]. Following the liter-

ature, we assume that the time it takes a worker to complete its task is an

independent random variable that follows a shifted exponential distribution

denoted by T . Since our setting is homogeneous, i.e., all the workers have the

same computational capacity, they all follow the same distribution with the

cumulative distribution function (CDF):

FT (t;σ) =

{
1− e−(

t
σ
−1), for t ≥ σ

0, otherwise
, (3.1)

where σ is a parameter for scaling the distribution based on the computa-

tional load of the tasks. Like [18], we assume that the time units required for

completing an addition and a multiplication, denoted by σA and σM , are in

O
(

l
64

)
and O(l log2 l) over F2l , respectively. Please note that while we assume

a binary code, the matrix-vector multiplications are performed in an extended

binary field.

The shift in the shifted exponential distribution is the minimum time for

completing a task. The tail of the distribution models unpredictable delays,

i.e., the straggling behavior.

Let us denote the completion time of worker i, i ∈ {i}n1 , by Ti. Ran-

dom variables T1, . . . , Tn are independent and identically distributed with CDF

FT (t;σ). We denote the time delay for the i-th fastest worker by T(i). By the

i-th order statistic analysis [3] one could simply verify that T(i) is a Gamma-

distributed random variable with the expectation:

µ(σ, n, i) ≜ E[T(i)] = σ

(
1 +

n∑
j=n−i+1

1

j

)

33

3.2.3 Distributed Computing Model

Similar to [2], [33], our scheme is based on a master and n workers, all with

the same computational capacity. The master starts the process by splitting

the matrix A into k blocks and encoding them into n new blocks with some

redundancies introduced. Then it sends each of the coded blocks to the cor-

responding worker. The workers start the computation of subtasks and when

they finish, immediately send the results back to the master. The moment the

master receives enough results to recover the original computation, it halts the

ongoing processes. We denote by S ⊂ {i}n1 the set of indices of the workers

that have produced sufficient coded results for the master to recover the main

task. The master starts to decode these encoded blocks Ȳi, i ∈ S, to obtain

all the information blocks Yi, i ∈ {i}k1.

While most existing work ignores the encoding and decoding time of the

master, and models the waiting time entirely based on the computation time

of the helpers, in this work, we take into consideration the time delays incurred

by the master during the encoding and decoding of the subtasks. When m

or p are large the encoding operations can be quite costly and ignoring the

encoding time is not an accurate assumption, especially when the master has

similar computation abilities as helpers. Likewise, when m, n, or N are large,

the decoding time cannot be neglected.

Hence, the overall distributed computing process proceeds in three phases;

encoding, computation, and decoding.

Encoding phase

In this phase, the master divides matrix A into k submatrices and uses an

encoding matrix E ∈ Fnm
k
×m

2 to obtain the coded matrix Ā:

Ā = EA. (3.2)

The encoding matrix is built based on the systematic generator matrix G

of a linear code. Let Im
k
be the m

k
× m

k
identity matrix, E is calculated as:

E = GT ⊗ Im
k
, (3.3)

34

where ⊗ denotes the Kronecker product. In our scheme, we choose the gener-

ator matrix G to be systematic in order to reduce the encoding and decoding

complexity. A systematic generator matrix for an (n, k) linear code is of the

form [Ik×k|Pk×(n−k)], as a result, the first k blocks in the matrix Ā are exactly

the same k blocks in the matrix A. Hence, when the master receives any of the

product sets {Āixj : j = 1, . . . , N} from worker i, i ∈ {1, . . . , k}, no decoding

will be required. We call these blocks information blocks and the remaining

n − k blocks are referred to as redundant blocks. In an ideal case, where the

first k blocks to be received by the master are the k information blocks, the

process of distributed computing ends without decoding. Otherwise, some of

the received redundant blocks will be used to retrieve the missing information

blocks.

We model the time delay for completing the encoding phase for the master

by considering two potential scenarios. In the first scenario, the master can

suffer straggling behavior in the same way as the workers, hence the time delay

is modeled by a shifted exponential distribution with a parameter σencode. In

the second scenario, however, the master has a stable behavior and the time

delay is a deterministic value scaled by the encoding load, i.e., the time delay

is equal to σencode, or equivalently, the time shift in the shifted exponential

distribution.

We will discuss σencode for our BLRC scheme in Section 3.3. Here, we focus

on MDS codes. Here, σencode will be the weighted sum of all the addition

and multiplication operations performed to calculate the product EA with σA

and σB as the weights, respectively. Assuming a systematic generator matrix,

GMDS, the first k blocks in Ā do not require any operation and are directly

obtained. The remaining n−k blocks correspond to the product of last (n−k)m
k

rows of E and p columns of A. Please note that each row in the last (n− k)m
k

rows of E is sparse and has only k non-zero elements. This operation hence

requires p
(
(n− k)m

k
· k
)
multiplications and p

(
(n− k)m

k
· (k − 1)

)
additions.

Thus, σencode for an MDS code would be:

σencode, MDS = pm(n− k)σM +
pm(k − 1)(n− k)

k
σA.

35

We later use these parameters in our simulations and show how our proposed

code significantly reduces the time delay incurred by the encoding phase in

the master.

Computation phase

At this stage each worker i receives its Āi from the master and starts calcu-

lating Ȳi. When a worker finishes all its subtasks, it immediately sends them

back to the master. We model the time for completing the subtasks in each

worker by a shifted exponential distribution with parameter σcomputation being

the weighted sum of the total number of additions and multiplications per-

formed in the calculation of the products. We already know that Āi ∈ F
m
k
×p

2l

and xj ∈ Fp
2l
, j ∈ {1, . . . , N}, so in the worker i, m

k
rows of Āi each with

length p are multiplied to N vectors of the same length. Thus σcomputation for

each worker is calculated as follows:

σcomputation = N
(m
k
pσM +

m

k
(p− 1)σA

)
. (3.4)

Parameter σcomputation is calculated regardless of the coding scheme. The dif-

ference between an MDS code and a BLRC in this phase is in their correspond-

ing minimum recovery thresholds. We define the minimum recovery threshold

(MRT) as follows:

Definition 3.1. The minimum recovery threshold in an (n, k) erasure code is

the minimum number of coded blocks required to recover the original k infor-

mation blocks.

When MDS codes are used, any combination of the first k blocks received

by the master is enough to recover all the original k information blocks. Hence,

MRT for MDS codes is k. However, if a BLRC is used there is no guarantee

that the first k received blocks are sufficient to recover the missing information

blocks. In fact, by using the proposed BLRCs, we slightly sacrifice the time

delay of the computation phase in return for a significant gain in the time

delay of the encoding and decoding phases such that the overall time delay is

less than that of the MDS case.

36

Decoding phase

In this phase, the master uses available coded results to recover the k informa-

tion blocks. In the case of a systematic code, the master has received a number

of original information blocks and some other redundancies. The master does

not perform decoding for the information blocks it receives. On the other

hand, the information blocks that are missing need to be recovered based on

the redundant blocks. We will model the time delay of the decoding phase for

the master, in the same manner we described for the encoding phase with two

possible scenarios: steady behavior and the straggling behavior of the master.

The proposed BLRC scheme in this work aims to reduce the complexity of the

decoding phase by, firstly, using only XOR operation to create redundancies

and, secondly, wisely dividing them into local and global groups. The de-

coding procedure, the computational complexity of the decoding, the number

of XORs required, and the σdecode for the proposed BLRC will be discussed

further in Section 3.3. For MDS codes, the decoding process can be complex

and costly especially when the number of vectors to be multiplied is high or

the dimensions of matrix A are very large. This is in part because all the k

information blocks are included in generating each of the redundant blocks.

The other reason is the multiplication operations required in the decoding pro-

cess. Depending on the MDS code used and the decoding algorithm, one can

face different computational costs. We assume that the MDS code used is a

Reed-Solomon (RS) code. To the best of our knowledge, the lowest complexity

algorithm for decoding RS codes is FFT-based decoding with complexity in

O (r log r) [42]. We take the number of estimated addition and multiplica-

tions required for a given code of length n from empirical results in [56] to be

2 + 8.5n log2 (0.867n) and 2 + n log2 (4n), respectively. Thus we can calculate

the σ parameter associated with the MDS decoding as:

σdecode, MDS = N
m

k

(
2 + 8.5n log2 (0.867n)

)
σA +N

m

k

(
2 + n log2 (4n)

)
σM

37

3.3 Proposed BLRC for Distributed Comput-

ing

In this section, we propose a BLRC family with a minimum distance of four

and locality r. We discuss the flexibility of our proposed code in terms of the

locality and the code length. Then we analyze the complexity and computa-

tional cost of the encoding and decoding phases of a coded distributed scheme

that uses our family of BLRC. Finally, we prove two senses of optimality for

our proposed codes.

3.3.1 Linear Codes Preliminary

Before we go into the detailed construction procedure of our proposed BLRC,

we lay out definitions of some terms that will be used frequently.

Definition 3.2. The locality of an (n, k) erasure code, denoted r, is defined

as the maximum number of coded symbols required to reconstruct any missing

coded symbol.

Definition 3.3. BLRCs are a family of linear block erasure codes that operate

on the binary field and have the locality r < k where k is the number of

information symbols.

Definition 3.4. For a linear erasure code C, the minimum Hamming distance

of any two arbitrary codewords is defined as its minimum distance. In other

words, we have:

d = min {d(u,v) : u,v ∈ C,u ̸= v},

where d(·, ·) denotes the Hamming distance.

It is shown that in a linear code with minimum distance d, any d − 1

erasures can be recovered [51]. If we denote the parity check matrix of an

(n, k, d) linear code C with H ∈ F(n−k)×n
q , the minimum distance of C is equal

to the minimum number of columns of H that are linearly dependent[51].

Definition 3.5. The Tanner graph of an (n, k) code is a bipartite graph

G(V ,U , E), where V and U are two disjoint sets of vertices connected by edges

38

in E . Here, V is the set of n variable nodes and U is the set of n − k check

nodes. The i-th node in V is adjacent to the j-th check node in U if and only

if Hij is nonzero.

Based on the above definition, each vi ∈ V represents a coded symbol and

the nodes from V that are connected to a specific check node from U form

a linearly dependent set. In the case of binary codes, the result of the XOR

among all the variable nodes connected to a check node is equal to zero.

3.3.2 Construction of the Proposed BLRC

In this section, we introduce the procedure to build our proposed BLRC. Two

of the important features for every linear erasure code are the minimum dis-

tance and code rate. The trade-off between the code rate and the minimum

distance is an important factor to be considered in code design. Specifically,

when the code is binary, a high minimum distance would require a great sac-

rifice in the code rate.

In distributed computing, coding is mainly used to combat stragglers [36],

i.e. computing devices that finish their tasks with delay. Also, when a strag-

gler becomes a “permanent straggler” (e.g., due to hardware failure), their

task is failed forever and the code’s ability to restore their permanently lost

computation becomes important. However, in most practical distributed sys-

tems, the probability of straggler behavior is low and permanent stragglers are

very rare, meaning that a large minimum distance may not be required. For

instance, 3-replication coding with a minimum distance of d = 3 is commonly

used for its enough robustness against straggler behavior [26], [53]. As an

example, consider a computation that takes a few minutes and is distributed

among n = 20 computing nodes. It is very unlikely that more than three

nodes experience hardware failures in such a scenario. Hence, we choose the

minimum distance of our code to be d = 4. This way, reasonable robustness

against stragglers is achieved.

As mentioned before, the other factor that is important is the locality of

the code. To enforce a locality of r, we start building our code by creating and

39

repeating a specific local structure of r+1 coded symbols. This local structure

has been adopted by many previous works [59], [62], [66] and we will call any

BLRC with this local structure a “well-structured” code.

Definition 3.6. If we denote the length of a locally repairable code with n

and its locality with r, and call g = n
r+1

the number of local groups, then a

well-structured code is a code that its parity check matrix could be written as:

Hwell-structured =

v1 0 . . . 0
0 v2 . . . 0
...

...
. . .

...
0 0 . . . vg

HG

where vi ∈ F1×(r+1)

q for i ∈ {i}g1, 0 shows a vector of r + 1 zeros, and HG ∈

F(n−k−g)×n
q . Here vi constructs the i-th local check node, creating the ability to

locally recover one erasure. A well-structured code is depicted in Fig. 3.1.

Our proposed well-structured code, depicted in Fig. 3.1, guarantees the

local recovery of one erasure. Now, to increase the recovery capacity to three

erasures (i.e., d = 4), we devise a special global structure between members

of different localities. Later, we will show that our choice of global structure

guarantees the minimum number of XOR operations for the encoding and de-

coding among all the possible well-structured codes with a minimum distance

d = 4. Hence, our design minimizes the coding complexity.

In our code, like any other well-structured code, (r+1)|n. This way, we can

divide the variable nodes in the Tanner graph into g = n
r+1

groups. Each of the

first g− 1 groups contains r+1 nodes out of which r of them are information

symbols. The last node, in each group, is the XOR of the other r information

symbols. These r + 1 nodes together are connected to a local check node,

hence the XOR of all of them amounts to zero. This guarantees the locality

of r for our code. The g-th group has also the same structure but unlike the

previous groups, the first r variable nodes are not information symbols. In

fact, the i-th, i ∈ {i}r1, node in the g-th group contains the XOR result of the

i-th nodes from all the previous groups and together they are connected to a

40

Figure 3.1: The Tanner graph of the proposed BLRC; local and global check
nodes have been denoted by u

(·)
L and u

(·)
G respectively

check node that we call it a global check node. The (r+1)-th node in the g-th

group like the previous groups is the XOR of the previous r nodes in the same

group. One can see that the (r + 1)-th node in the g-th group is in fact the

XOR of all the information symbols in the graph too. Note that in our code,

the choice of r is flexible, and the only constraint on n is that (r + 1)|n. This

results in

k = (g − 1)r,

where g = n
r+1

. Now that we have the Tanner graph of our proposed BLRC,

building a parity check matrix based on it would be possible. Let us break the

parity check matrix into two blocks as:

HBLRC =

(
HL

HG

)
∈ F(n−k)×n

2 , (3.5)

where HL ∈ Fg×n
2 and HG ∈ F(n−k−g)×n

2 are associated with the local and

global check nodes, respectively. Based on the structure of the local check

nodes,

HL = Ig ⊗ 11×(r+1) ∈ Fg×n
2 , (3.6)

where 1 denotes a matrix of all ones. On the other hand

HG = 11×g ⊗ [Ir 0r×1] ∈ F(n−k−g)×n
2 , (3.7)

where 0 denotes a matrix of all zeroes. By expanding the building blocks of

HBLRC, it will have the following form:

41

Figure 3.2: The Tanner graph of the proposed (n, k, r) = (12, 6, 3) BLRC code

HBLRC =

1stLocal Group︷ ︸︸ ︷
1 . . . 1 1
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

2ndLocal Group︷ ︸︸ ︷
0 . . . 0 0
1 . . . 1 1
...

. . .
...

...
0 . . . 0 0

1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

. . .

gthLocal Group︷ ︸︸ ︷
0 . . . 0 0
0 . . . 0 0
...

. . .
...

...
1 . . . 1 1

1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

HL

HG

(3.8)

Example 3.1. As an example, let us build an (n, k, r) = (12, 6, 3). The rela-

tion between the H matrix and the corresponding Tanner graph of the proposed

(12,6,3) BLRC is illustrated in Fig. 3.2. Based on the figure, the parity check

matrix of the code is:

H =

1stLocal Group︷ ︸︸ ︷
1 1 1 1
0 0 0 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0

2endLocal Group︷ ︸︸ ︷
0 0 0 0
1 1 1 1
0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0

3rdLocal Group︷ ︸︸ ︷
0 0 0 0
0 0 0 0
1 1 1 1

1 0 0 0
0 1 0 0
0 0 1 0

.

Proposition 3.1. The minimum distance (d) of the proposed BLRC family is

d = 4.

Proof. Let us show each column in HBLRC with h
(j)
i where i, i ∈ {i}r+1

1 , shows

the position of the column in the local group and j, j ∈ {j}g1, shows the local

42

group that the column belongs to. Based on the structure in (3.8) we notice

that each column has two parts; one part is in HL and the other part is in

HG. Let us denote the part of h
(j)
i in HL with h

(j)
i,L and the part in HG with

h
(j)
i,G. One can immediately see that:

(1) h
(j)
i,G ⊕ h

(j)
l,G ̸= 0, ∀i ̸= l,

(2) h
(j)
i,L ⊕ h

(l)
i,L ̸= 0, ∀j ̸= l.

As discussed in Subsection 3.3.1, in the parity check matrix of a linear code

with minimum distance d = 4, every d−1 = 3 or a smaller number of columns

must be linearly independent. To prove this, first, we note that there is no

column in HBLRC that is a vector of all zeros. Let us start with any linear

combination of two columns. HG in (3.8) is composed of g blocks of matrix

[Ir 0r×1] and each local group has one such matrix. If two columns belong

to the same local group, since no two columns of [Ir 0r×1] are identical, the

result of the combination will not be zero (please see (1) above). If the two

columns are from different localities, since in HL different local groups have

different nonzero rows, the result again will not be zero (please see (2) above).

For the combination of three columns, there are three possibilities; First, the

three columns belong to the same local group. In this case, due to the fact

that the block [Ir 0r×1] in each local group is composed of an identity matrix

and a zero vector, the combination of no three columns will be zero. The

second case happens when two columns are from one local group and the

other column is from a different group. In this case, we know that each local

group in HL has a different nonzero row, hence the result is nonzero. The last

case is when three columns are each from a different local group, in this case

again, because of the same reason mentioned for the second case, i.e. different

nonzero rows for each local group, the combination will not be zero. On the

other hand, if we consider the first two columns of one local group and the

first two columns of any other group, the combination of the four columns is

zero (h
(i)
1 ⊕ h

(i)
2 ⊕ h

(j)
1 ⊕ h

(j)
2 = 0 , ∀i, j ∈ {l}g1, i ̸= j). This proves that the

minimum distance for our proposed BLRC is d = 4.

43

Remark 3.1. An (n, k, d) linear code with locality r is said to be d-optimal if

there exists no (n, k, d+ 1) code with the same locality[27]. By this definition,

our proposed BLRCs are d-optimal for k ∈ {k}101 . This can be easily verified

using the online table [55]. For larger k, depending on the locality r, there are

many other cases in which our codes are d-optimal (e.g., n = 20, k = 12, r = 3

or r = 4).

Remark 3.2. In the design of LRCs for distributed storage systems, satisfy-

ing the Singleton-like bound with equality is an important objective. This is

because being optimal with respect to the Singleton-like bound results in the

minimum storage overhead. However, satisfying this bound might not be a

design objective for coded distributed computing. In distributed computing,

reducing the time delay of the overall process is usually the main objective. As

such reducing the encoding and decoding complexity of the codes might be a

more important goal.

3.3.3 Encoding with the Proposed BLRC

As discussed, to reduce the computational complexity, we use a systematic

generator matrix. We use the Tanner graph From Fig. 3.1 to obtain the

generator matrix. Let us separate the variable nodes in the Tanner graph of

Fig. 3.1 into two groups; information symbols and redundancies. We build

matrix G with k rows and k+n columns. Each row represents an information

symbol and each column shows the relation of the corresponding variable node

with the information symbols. IfGij = 1, it means the i-th information symbol

is present in the XOR operation that results in the j-th variable node. Hence,

one can obtain G as:

GBLRC, systematic = [Ik GL GG], (3.9)

where GL = [Ig−1 1(g−1)×1]⊗ 1r×1 and GG = 1(g−1)×1 ⊗ Ir build the columns

for local and global redundancies respectively.

Example 3.2. Based on Fig. 3.2, the systematic generator matrix of the

44

BLRC code in Example 3.1 is as follows:

G =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1 0 1
1 0 1
1 0 1

0 1 1
0 1 1
0 1 1

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

.

By substituting the systematic generator matrix of the proposed BLRC

into (3.3), we obtain the corresponding encoding matrix, E. We, then use E

in (3.2) to finish the encoding process.

To obtain the σ parameter associated with the computational cost of the

encoding, we should count the number of all XOR operations between the

elements of the original k blocks of the matrix A. Each block in A has m
k

rows with a length of p. This means the total number of binary additions for

operating an XOR between two blocks of the matrix A is pm
k
. Based on the

Tanner graph, the total number of XOR operations to obtain all the local and

global redundant variable nodes is calculated as follows:

CXORencode = g(r − 1)︸ ︷︷ ︸
Local Redundancy

+ r(g − 2)︸ ︷︷ ︸
Global Redundancy

, (3.10)

so the total number of binary additions is pm
k
CXORencode and consequently the

parameter σ becomes:

σencode, BLRC =
(
p
m

k
CXORencode

)
σA. (3.11)

Here, (3.11), quantifies the relation between the code parameters and the

complexity of encoding. In the next propositions, we use this relation to show

how our code has the minimum encoding complexity among all well-structured

BLRCs with the same parameters and that for this minimum complexity, the

code rate of our proposed code is optimal.

Proposition 3.2. Among all well-structured BLRCs with the same length n,

locality r, and the minimum distance d = 4, our proposed BLRC requires the

minimum number of XORs to generate.

45

Proof. Any well-structured BLRC code has the same structure as HL of (3.8)

in their parity check matrix H. Let us now focus on HG. Reducing the number

of ones in HG, directly reduces the encoding complexity. Our code has exactly

r ones in each section of HG below a local group (please see (3.8) for a local

group). We claim that at least r ones are needed in each section of HG under

a local group. To see, this, note that with less than r ones, regardless of

the number of rows in HG, the pigeon-hole principle states that at least two

columns of HG (and hence two columns of H) are the same. This contradicts

the assumption that d = 4.

Theorem 3.1. Among all the well-structured BLRCs with the same length n,

locality r, minimum distance d = 4, and CXOR encode = g(r− 1) + r(g− 2), our

proposed BLRC has the highest code rate.

Proof. Again, any well-structured BLRC code has the same structure as HL

of (3.8) in their parity check matrix H. Hence, we only focus on HG. Since

the code has the same CXORencode as our code, the number of ones in HG of

this code is the same as our code. All that we need to show is that the number

of rows in HG, denoted by s here, cannot be less than r. Let us consider the

local group with the minimum number of ones in its HG rows. This minimum

in the best-case scenario is r when all ones are distributed uniformly among

the local groups. Now, we have r ones to be placed in a block of r+1 columns

and s rows. To avoid two equal columns (which would contradict d = 4), we

need to place exactly a single one in every column and leave one column as all

zeros. Now If s < r, there will be at least two equal columns. Hence, s is at

least equal to that of our code, i.e., s = r.

3.3.4 Decoding the Proposed BLRC

The main motivation for using BLRCs, in this work, was to reduce the coding

complexity. Hence, in this section, we put our focus on developing a decoding

process that requires a small number of XORs. The challenge is that, as

previously mentioned in Subsection 3.2.3, the MRT of the proposed BLRC

is not deterministic. In other words, unlike MDS codes where any k coded

46

symbols are enough to recover the k original information symbols, in our BLRC

depending on the set of coded symbols received by the master, MRT varies

between k and n− 3 received symbols.

The decoding process has two separate stages. In the first stage, a blueprint

for the optimal decoding process is constructed. This construction is done on

a prototype matrix. This is to avoid operating on large matrices and vectors

of the actual distributed problem. When the decoding blueprint is ready, the

master can operate on actual large matrices and vectors, knowing that the

steps require the minimum number of XORs.

Phase one of the decoding process is therefore as follows. After receiving

the k-th coded block at the master, we check if the received set is decodable.

If not, the master keeps receiving new coded blocks until the received set

becomes decodable. This decodable set corresponds to a submatrix of G that

is full rank. Let us call it GS . Since there may be linearly dependent columns

in this submatrix, we remove any global redundancy that does not affect the

decodability of the set. When g > r+1 (i.e., the degree of global check nodes

is larger than that of local check nodes), this choice ensures that we end up

with a decodable set, whose corresponding submatrix of G has the minimum

possible number of ones. This submatrix is the prototype that will be used

to form the decoding blueprint. In the following, we show how to construct

a decoding blueprint with the minimum possible number of XORs from this

sub-matrix.

Let us call the set that the master keeps as the final decodable symbols,

a necessary set. We denote this set by K and its corresponding submatrix of

G by GK ∈ Fk×|K|
2 . To construct the decoding blueprint, we start by picking

up the columns of GK in the order of their corresponding Hamming weights,

i.e. in the order of their number of ones, w. It is clear that the support2

of the column with the largest w is not a subset of the support of any other

column. So we take the next column with the second highest w. Without

loss of generality, let us assume this is the i-th column of GK shown by gi.

2We define support of a vector g of length k as Supp(g) = {i ∈ {i}k1 |gi ̸= 0}, where gi is
the i-th element of the g.

47

Now we check every other column in GK to find another column, gj, that

gi’s support is a subset of the latter’s. If such gj exists, we replace gj with

gj⊕gi and start the process all over again. We know that each column in GK

initially represents a coded symbol and the ones in each column correspond

to the information symbols used to form this coded symbol. So replacing gj

with gj ⊕ gi is equivalent to canceling out the information symbols already

available in gi. On the other hand, if we are not able to find gj such that

Supp(gi) ⊂ Supp(gj), we move on to the column with the third highest w and

so on. We repeat the same procedure onGK in an iterative manner until all the

redundant symbols are decomposed into their building information symbols,

i.e., GK has a single one in each of its columns. A look-up table of all the

XOR operations performed above is the decoding blueprint that the master

must follow to finish the decoding. The complexity of obtaining this blueprint

(i.e., running Algorithm 1) is ignored in this work because it involves vectors

and matrices that are significantly smaller than the actual data vectors and

matrices. Please also note that the rank of GK in the binary field is k. As

can be deducted from the above discussion, since our algorithm starts from

the column with the highest Hamming weight and goes down, it cancels out

the maximum possible number of overlapping information symbols in other

columns at each step.

The decoding algorithm is presented below where ⊕ shows the binary ad-

dition (equivalent to the XOR) of two columns:

48

Algorithm 1 Decoding for the Proposed BLRC

1: Result: obtaining the number of XORs in the decoding process, recover-
ing k information symbols

2: Initialization: XOR counter=0
3: Input: GK
4: while change occurs in GK do
5: for w = k, k − 1, . . . , 1 do
6: for i = 1, 2, . . . , |K| do
7: if Hamming weight gi = w then
8: for j = 1, 2, . . . , |K|, j ̸= i do
9: if Supp(gi) ⊂ Supp(gj) then
10: gj ← gj ⊕ gi

11: XOR counter← XOR counter + 1
12: Break all the loops and start the outmost loop again
13: end if
14: end for
15: end if
16: end for
17: end for
18: end while

Proposition 3.3. Given a necessary set K, Algorithm 1 recovers all the miss-

ing information symbols with the minimum number of XOR operations

Proof. GK in Algorithm 1 is composed of zeros and ones. The goal of the

algorithm is to convert this matrix into a matrix whose columns have at most

a single one. Since our algorithm removes the maximum number of ones per

XOR, it requires the minimum number of XORs.

Let us clarify Algorithm 1 with an example.

Example 3.3. Consider the matrix A divided into tree blocks as below:

A =

 A1

A2

A3

 .

Let us use generator matrix G defined below to encode these blocks:

G =

1 1 1 1
0 1 1 0
0 0 1 1

 .

49

Doing so, we will obtain the coded matrix Ā as below:

Ā =

Ā1 = A1

Ā2 = A1 ⊕A2

Ā3 = A1 ⊕A2 ⊕A3

Ā4 = A1 ⊕A3

 .

For the purpose of simplicity, we avoid the multiplication of the coded matrix

with target vectors. Now consider a case where only the first three coded blocks

have arrived at the master. This means the master will have access to the first

three columns of G. To recover A1, A2, and A3, the master uses Algorithm 1

to make a decoding blueprint. Since k = 3, the master will look for a column

of G with a Hamming weight (from now on just weight) of ω = 3 which is the

third column, g3 (lines 5, 6, and 7 in Algorithm 1). It is obvious that the

support of g3 is not the subset of any other column (line 9). So the master will

look for a column with ω = 2, i.e. g2 (lines 5, 6, and 7). Now it will check

if there is a column that the support of g2 is a subset of the support of that

column. In this example, Supp(g2) ⊂ Supp(g3) (line 9). The master then will

replace g3 with g3 ⊕ g2. Hence the updated G will be:

G =

1 1 0
0 1 0
0 0 1

 ,

and by applying this step of the decoding blueprint on Ā, we get the updated

Ā:

Ā =

 Ā1 = A1

Ā2 = A1 ⊕A2

A3

 .

Because a change happened in G the master starts the algorithm from line 5,

setting ω = 3. After similar steps, the algorithm discovers that Supp(g1) ⊂

Supp(g2) and replaces g2 with g2⊕g1. This step will end the algorithm as the

updated G will be:

G =

1 0 0
0 1 0
0 0 1

 ,

which is the identity matrix. Following the blueprint operation, Ā will also

50

change to:

Ā =

 Ā1 = A1

A2

A3

 ,

which concludes the decoding.

Based on the above algorithm, it becomes clear that depending on the

received symbols, the number of XORs required to recover the original k in-

formation symbols is different. Hence, to find the σ parameter associated with

the decoding process we need to find the average number of XOR operations.

The simulation to find the average number of XORs will be discussed in Sub-

section 3.4.3. Let us assume that the average number of XOR operations for a

decoding scenario is CXORdecode. Since each received coded block in the matrix-

vector multiplication has m
k
rows and there are N vectors to be multiplied the

σ parameter is calculated as:

σdecode, BLRC =
(
N
m

k
CXORdecode

)
σA. (3.12)

Now that we have all the σ parameters associated with three phases of encod-

ing, computation, and decoding for both MDS and BLRC schemes, we can

obtain the average time delay of these three phases for each scheme and com-

pare them. The total time delay of the distributed scheme is the sum of the

delays in different phases.

3.4 Experiments and Numerical Results

3.4.1 Modelling Task Completion

As was discussed in Subsection 3.2.2, we use shifted exponential distribution

to model the time delay for completing a task and denote it by the random

variable T . The shifted exponential distribution is scaled with a parameter σ

which is proportional to the computational cost of the task. So far, we have

calculated σ for encoding, decoding, and each of the partial multiplication

tasks that workers perform in MDS and BLRC frameworks. In our system

model, the encoding and decoding tasks are done by the master. As we men-

tioned before, we consider two possible behaviors for the master. In the case

51

that its performance is stable, the time delay incurred by the encoding and de-

coding is a constant value equal to σencode and σdecode respectively. Otherwise,

the master is assumed to show straggling behavior. This means to find the

average time delay τ in each of these phases, one needs to find E[Tencoding] and

E[Tdecoding] where random variables Tencoding and Tdecoding have a CDF as (3.1)

with parameters σencode and σdecode respectively. We will obtain this average

time delay by the Monte Carlo Method.

In the computation phase, n workers with the same computational capacity

start computing tasks with σ parameter equal to (3.4), simultaneously. On the

other hand, we know that in an MDS framework, as soon as any k subtasks

are completed, the computation process is over and the original task can be

recovered. Hence, if we denote the time delay of completing subtask i ∈ {i}n1
by Ti, where Ti follows the CDF in (3.1), the average time delay of the whole

computation phase would be the expected value of T(k) that represents the

k-th order statistic of Ti. Hence,

τcomputaion = E[T(k)] = σcomputation

(
1 +

n∑
j=n−k+1

1

j

)
. (3.13)

For the numerical results, we generate n random variables all following the

shifted exponential distribution to represent the time delays of the n work-

ers. Then we find the time delay corresponding to the k-th fastest worker.

We repeat the above procedure until we have a reliable average of all the in-

stances as an approximation to the average time delay of the computation

phase τcomputation. In the BLRC framework, however, the MRT is not k and is

not even a fixed number as it depends on the received set. Since there are nu-

merous possibilities in the order of receiving the subtasks, we find the average

time delay of the computation phase for the BLRC scheme through numerical

simulations. Like the case for MDS, we create a scenario in which we assume

each of the n workers is assigned a subtask whose completion time is a gener-

ated random variable following a shifted exponential distribution. As a result,

the master receives subtasks from the workers in an order determined by these

random variables. The master stops the process immediately after it has a

decodable set by sending a message to all workers. The completion time of the

52

Figure 3.3: Comparison of the encoding time (in sec.) between (20,13,3)
Spanning BLRC[59], our BLRC, (20,13,3) LRC[66], and two MDS codes

last subtask received is recorded as the computation time of this realization.

We repeat this for many realizations until we have a reliable average for the

τcomputation.

3.4.2 Encoding Cost for the Proposed BLRC

In order to show the performance of our proposed BLRC for the encoding time

delay and compare it with some of the LRCs and BLRCs that are optimal with

respect to Singleton-like bound, the encoding time for a matrix, A ∈ Fm×p
2l

,

for p = 900 and a varying range of m is measured and depicted in Fig. 3.3.

In this figure, the (20,17) MDS code has the same d = 4 as our code and the

(20,12) MDS has a similar code rate to our code. It is clearly seen that our

proposed BLRC has the lowest encoding time among all.

3.4.3 Decoding Cost for the Proposed BLRC

In Subsection 3.3.4 we described the decoding procedure for the proposed

BLRC. We also mentioned that based on the set of received symbols the num-

ber of required XOR operations may vary. As a result, we should use the

53

Table 3.1: Decoding operations for an MDS code and the proposed BLRCs
Code Additions/XORs Multiplications
(20,12,3) BLRC 194.803 -
(20,12,4) BLRC 194.701 -
(20,12) MDS 4484 783
(20,17) MDS 3165 552

average number of required XORs in (3.12). To find the average number of

XORs required we set up a scenario in which a set of coded symbols arrive

at the master in a randomly generated order. Assuming the decoding process

described in Section 3.3.4, we find the average number of XORs by the Monte

Carlo method. Table 3.1 contains a comparison between the number of oper-

ations in the decoding of multiplying an example matrix A ∈ F204×204
2l

with

only one vector where the matrix is coded with the proposed BLRCs and two

MDS codes, one with the same code rate and the other with the same d.

The simulation results in Table 3.1 show that using the proposed BLRCs

instead of MDS codes, not only has removed the costly multiplication oper-

ations but also has reduced the large number of additions required by MDS

codes to just a few XORs. In the next subsection, we will see the effect of

such a significant reduction in the number of operations on the time delay of

the encoding and decoding phases.

3.4.4 Simulation Results for the Overall Process

In this subsection, we provide the time delay incurred in each of the three

phases of a coded distributed computing problem that is solved based on the

proposed BLRC scheme. For comparison, we also provide the same delay

information for a scheme that uses an MDS code. Finally, we will compare

the overall time delay of the two schemes.

We consider the multiplication of matrix A with m = 30600 rows and

p = 2040 columns to N = 200 vectors of length p. Here m and p are chosen to

be a multiple of 12 and 17 in order to make direct comparisons with MDS codes

of the same length and with the same minimum distance or code rate possible.

More specifically, we use two BLRC schemes with k = 12 and localities r = 3

54

and r = 4. This means in BLRC schemes, we initially divide matrix A into

12 blocks. The code length in both cases is equal to 20. We compare our

(n, k) = (20, 12) BLRCs with an MDS code that has the same length and rate.

In other words, it is a linear (20, 12) MDS code. We also compare our BLRCs

with a (20,17) MDS code that has the same length and minimum distance as

ours but a higher code rate. The minimum distance, d, of an MDS code is

equal to n − k + 1. As a result, for an MDS code with n = 20 to have d = 4

the k should be equal to 17 which means for this case the A is initially divided

into 17 blocks.

As discussed before, two phases namely, the encoding and decoding, that

are done by the master are simulated in two ways. First, with the assump-

tion that the master has a straggling behavior similar to each of the workers,

and second, with the assumption that the master has a steady behavior. The

results of our simulations are presented in Table 3.2 and Table 3.3 for a mas-

ter with a probability of straggling behavior and for a non-straggling master,

respectively.

From the results in Table 3.2 we can see that although the time to complete

the computation phase for the (20,12) MDS is lower than the (20,17) MDS

code, the second code has generally a better performance with a lower overall

time delay. Comparing the BLRCs to the (20,17) MDS, the time to complete

the encoding phase has dropped from 29.308 s to only a fraction of a second for

BLRCs resulting in more than 99.6% reduction in the encoding time delay for

either of the BLRCs. The same reduction, even in greater magnitude happens

in the decoding phase where using our proposed BLRCs has reduced the time

delay from 7.438s for the (20,17) MDS code to only 0.007s corresponding to a

99.9% decrease. However, in the computation phase, the simulation results for

the BLRCs show approximately a 10% and 8% increase in the time delay com-

pared to the (20,12) and (20,17) MDS codes, respectively. This is the sacrifice

we make by not using a code with the minimum recovery threshold such as an

MDS code. The simulation results also show that the significant reductions in

the time delay of the encoding and decoding phases, not only completely com-

pensate for the small increase in the time delay of the computation phase, but

55

Table 3.2: Time delay (in sec.) of the BLRC and MDS schemes in different
phases under the assumption of a straggling master

Code Encoding Computation Decoding Overall
(20,12,3) BLRC 0.106 171.452 0.007 171.566
(20,12,4) BLRC 0.107 171.259 0.007 171.373
(20,12) MDS 77.468 155.488 10.554 242.995
(20,17) MDS 29.308 157.685 7.438 194.057

Table 3.3: Time delay (in sec.) of the BLRC and MDS schemes in different
phases for a non-straggling master

Code Encoding Computation Decoding Overall
(20,12,3) BLRC 0.055 171.452 0.003 171.510
(20,12,4) BLRC 0.055 171.259 0.003 171.317
(20,12) MDS 40.237 155.488 5.463 201.188
(20,17) MDS 15.091 157.685 3.856 176.632

cause a notable 13.10% reduction in the overall time delay of the distributed

computation task compared to the best-performing MDS code. In addition,

results in Table 3.3 for a non-straggling master, point to an approximately

3% reduction in the overall time delay of the process using BLRCs instead of

the (20,17) MDS code. This shows regardless of the master’s behavior, the

proposed BLRC scheme outperforms the MDS counterparts.

In order to better understand the importance of the BLRC scheme in re-

ducing the delay of the encoding and decoding phases we simulate the matrix-

vector multiplication for different numbers of vectors (N) that are being mul-

tiplied by the matrix A. In Fig. 3.4, the overall time delays, τoverall, of MDS

and BLRC schemes have been demonstrated for matrix-vector multiplication.

The codes and assumptions are the same as TABLE 3.2. Because of their sim-

ilar performance, only one BLRC (the BLRC code with r = 3) is compared to

MDS codes. The matrixA used for the performance evaluation has m = 10200

rows and p = 1020 columns. We change the number of vectors from N = 1 to

N = 1000. We can see that for the entire range of N the overall time delay

of the BLRC scheme is below its MDS counterparts. However, for smaller

N , the difference is much larger. For example for multiplying a single vector

(N = 1), using the proposed BLRC reduces the overall time delay by 96.81%

56

compared to the (20,17) MDS code. For moderate N , the performance of the

BLRC scheme is still much better than the MDS. For N = 64 vectors which is

a number in the range commonly used for batch size in the gradient descent

algorithm with extensive applications in machine learning and optimization in

general, the overall time delay of the BLRC code is more than 35% lower than

the best-performing MDS code. It means a distributed optimization process

using BLRC is completed in only two third of the time it takes for an MDS

scheme. For larger N the difference in the time delay shrinks and the gap

between the curves closes for extremely large values of N . The reason for

this behavior is that, unlike σcomputation and σdecode, σencode in BLRC and MDS

schemes is independent of N . Hence, when N is small, the dominant term

in the overall time delay of the MDS schemes is the delay for encoding. The

same should have happened to the BLRC scheme but since the encoding delay

has already been reduced by orders of magnitude, it does not dominate the

overall time delay. As N increases, the time delay in two other phases becomes

comparable with the encoding phase of the MDS schemes. For large values of

N , the dominant term in the time delay belongs to the computation phase and

the curves approach each other. Yet, the lower delay in the decoding phase

of the BLRC compared to MDS schemes keeps the overall delay of the former

below the latter.

To better demonstrate the effect of using a BLRC scheme on reducing the

master’s workload, in Fig. 3.5, we present the combined time delay of the

encoding and the decoding phases for different N . The figure clearly shows

that through the entire range of N , the BLRC scheme has a significantly lower

time delay compared to the MDS schemes. In fact, for different N , a master

that uses a BLRC code can finish its task in approximately 0.3% of the time

a master using the best MDS code will finish. In most of the applications,

since the master is not on the cloud, reducing its workload is of particular

importance, hence using our proposed BLRC will be extremely advantageous

over MDS codes.

57

Figure 3.4: The overall time delay (in sec.) of the BLRC and MDS schemes
for different N.

Figure 3.5: The combined time delay (in sec.) of the encoding and decoding
phases (the master’s time delay) in the BLRC and MDS schemes for different
N.

58

3.5 Conclusion

In this work, for the first time, we proposed the use of BLRC codes for coded

distributed computing systems. We introduced a new family of BLRC codes

specifically designed for this purpose. By significantly reducing the encoding

and decoding complexity, our proposed BLRCs reduce the overall time de-

lay compared to solutions based on widely adopted MDS codes. Unlike MDS

codes, our BLRC has two types of redundancies to recover the missing blocks:

Local redundancies and global redundancies. This structure, in addition to

the binary nature of the code that eliminates a need for multiplications, sig-

nificantly reduces the encoding/decoding complexity.

We showed that among all BLRCs with a widely adopted local structure

(called well-structured BLRCs in this work) and the same minimum distance,

our proposed codes require the minimum number of XOR operations for the en-

coding. We also proved that it had the highest code rate among well-structured

codes with the same encoding complexity. In addition, we suggested an effi-

cient decoding algorithm for the proposed codes that guarantees the minimum

number of XOR operations for the decoding process. Through extensive exper-

iments, we showed the success of the proposed BLRCs in significantly reducing

the master’s workload during the encoding and decoding, as well as a lower

overall time delay compared to MDS codes.

59

Chapter 4

Coding for a Multi-task
Distributed Computing System

4.1 Introduction

The straggler problem in distributed computing has motivated solutions that

encode the tasks before distributing them among the worker nodes, giving

the system the ability to recover the results of the straggling workers [36]. A

common model for distributed computing systems is the master-worker model.

In the coding schemes proposed for the master-worker model, the master di-

vides the main task into smaller subtasks and encodes them, increasing the

number of total subtasks due to the introduced redundancy. In the conven-

tional schemes, the master allocates a single subtask to each of the workers,

meaning that the number of encoded subtasks should not exceed the number

of workers. However, this type of task allocation makes the system prone to

over-computation and under-utilization.

For instance, if a worker finishes its task much earlier than the others, it

remains idle till the master finalizes the computation, or if all the workers

finish their subtasks at almost the same time, many redundant computations

will be carried out without actually being needed to finalize the computation.

Another drawback of the conventional schemes is the limited straggler toler-

ance. Error correction codes can only recover a limited number of erasures.

Hence, in a distributed computing system where the subtasks are encoded with

error correction codes, if the number of stragglers for any reason exceeds the

60

number of erasures that the code can recover, the master will not be able to

complete the main task. To address the above-mentioned issues, multi-message

communication (MMC) model has been proposed [2], [20], [33], [43].

In the MMC model for distributed computing, each worker receives more

than one subtask and is able to send the master multiple messages. More

specifically, the master assigns a series of subtasks to each worker and the

workers execute their subtasks in the order they are received one at a time.

Moreover, the workers do not wait for the completion of all their subtasks to

report the results. Instead, they send the result of computing each subtask

as soon as it is finished. Various schemes have been proposed for the MMC

model and it has been deployed in many large-scale distributed computing

problems [2], [20], [33], [43]. As an example, for a distributed matrix multipli-

cation, [33] divides the main task into a number of subtasks larger than the

number of workers, encodes them with a maximum distance separable (MDS)

code, and assigns multiple subtasks to each worker. Since the subtasks are

much smaller than the single-task case, even the stragglers manage to com-

pute some of these subtasks, hence, being exploited in the overall process.

Although the MMC model reduces the computation time compared to the

single-task case, the larger number of subtasks in this model increases the en-

coding and decoding time. The scheme in [2] considers this issue in distributed

matrix multiplication and proposes a scheme based on systematic MDS codes.

Similar to [33], they divide the main task into a number of subtasks larger than

the number of workers. However, due to the use of systematic MDS codes,

the encoding time is improved. More importantly though, when the coded

subtasks are assigned to the workers, the information subtasks are prioritized

over the redundant subtasks. Considering the fact that tasks are executed in

sequential order, this form of subtask assignment will make sure that among

the completed subtasks a larger number are information subtasks. Completed

information subtasks do not need to be decoded and the master only decodes

a few redundant subtasks, hence, compared to a random subtask assignment,

the decoding time is greatly reduced as well.

The scheme in [2] is promising but it does not answer some important

61

questions about the subtask assignment that are crucial to minimizing the

computation time. The computational load of the subtasks, the number of

information subtasks, and the total number of coded subtasks that are assigned

to each worker are factors that play an important role in the computation time

of a task. However, [2] assumes a fixed number of information subtasks and

entirely focuses on the order of assigning them to the workers. In fact, the

optimal value for quantities such as the number of information subtasks, and

the total number of coded subtasks strongly depends on the characteristics

of the distributed nodes such as their computational power as well as the

computational complexity of the subtasks.

In this work, we adopt the MMC model and propose a new task assign-

ment scheme based on systematic MDS codes. In our scheme, each worker

receives a total number of coded subtasks equal to the number of information

subtasks, where these subtasks are executed in order. Our scheme avoids any

presupposition on the number of information subtasks. Instead, we model the

computation time in each worker and obtain the probability of completing

the overall computation before a deadline. Then we determine the number

of information subtasks and consequently the computation load of each coded

subtask as well as the total number of coded subtasks assigned to each worker

to maximize the probability of meeting a specific deadline or to minimize

the expected completion time. Although our model assumes that the total

number of subtasks assigned to each worker is equal to the number of infor-

mation subtasks, our probabilistic analysis also gives us the ability to calculate

the probability of completing a subtasks of a specific priority in each of the

workers before the main computation is finalized. In cases that the encoding

time is a bottleneck one can accept a Small sacrifice in computation time and

avoid creating and assigning redundant subtasks to the priorities that have

a less completion probability. Hence, our analysis also allows for adjusting

the trade-off between the number of redundant subtasks required for optimal

performance and the encoding time. Since in our scheme, the optimum value

of the number of information subtasks can be more than, equal to, or less

than the number of available workers, i.e. each worker may receive more than

62

a single, a single, or no information subtasks, we name our proposed scheme

hybrid coded distributed computing (HCDC).

The contributions of this work can be summarized as follows:

• We propose a new coded distributed computing scheme based on sys-

tematic MDS codes, called HCDC, for the MMC model that addresses

the over-computation and under-utilization problems that exist in con-

ventional schemes.

• We model the computation time in the workers with multiple tasks and

use this model to obtain the probability of completing the overall com-

putation process before a deadline in the proposed HCDC scheme.

• Based on this probabilistic model, we derive the optimal number of infor-

mation subtasks as well as the computation load of the coded subtasks

that maximize the probability of finishing the overall computation before

a deadline or minimize the expected time of the overall process.

• We provide a probabilistic method to systematically adjust the trade-off

between the number of redundant subtasks assigned to each worker and

the encoding time such that the performance is closer than a specified

target to the optimal performance in a probabilistic sense.

4.2 System Model

Consider a master-worker distributed computing system with N workers. Sim-

ilar to [20], we consider a general distributed computation problem, where the

goal of the system is to compute a task g(x) and x is the input. It is assumed

that g(x) is divisible into k subtasks g(x) = ϕ(g1(x), g2(x), . . . , gk(x)) where

ϕ(·) simply maps the subtasks into the final result, i.e., g(x). We also assume

that the subtasks are linear, i.e. agi(x) + bgj(x) = (agi + bgj)(x). One exam-

ple can be matrix-vector multiplication g(x) = Ax with the i-th task being

gi(x) = Aix, where Ai is the i-th submatrix in the horizontally decomposed

A. In this example ϕ(·) simply concatenates the result of the tasks {gi(x)}k1
to obtain g(x).

63

In a coded distributed computing scheme, the master divides the main task

into a set of subtasks {gi(x)}k1, from now on called information subtasks and

denoted by gi, i ∈ {i}k1 for simplicity, and encodes them into a new set of

n, n > k, coded subtasks to compute them with the help of the workers. In

this work, we only consider systematic MDS codes. MDS codes have two nice

features that make them an appropriate choice when the focus is on minimizing

the computation time. Firstly, they have the minimum overhead, meaning

that to achieve a specific minimum distance d, an MDS code requires the

smallest possible number of coded subtasks, i.e. n = k+ d+1. Secondly, they

have the minimum recovery threshold, meaning that receiving any k coded

subtasks is enough to recover the information subtasks, hence finishing the

original computation. At the same time, being systematic will help to keep

the encoding and decoding time low.

In summary, the master uses a systematic (n, k), k < n, MDS code to

create n coded subtasks:

h = E(g),

where g = [g1, g2, . . . , gk] shows the information subtasks, h = [h1, h2, . . . , hn]

shows the coded subtasks and E denotes the encoding operation. Also, since

the code is systematic hi = gi, for 1 ≤ i ≤ k. The other n − k subtasks are

composed of the linear combination of the information subtasks and if they are

among the first k subtasks that are completed, the master needs to perform a

decoding step to finalize the computation. These subtasks are introduced as

redundancy to account for the straggling workers, hence, from now on we will

refer to them as redundant subtasks.

There are two models for task assignments to workers, described below:

(i) Single-task model: In conventional coded schemes, the master assigns

each worker a single coded subtask, hence n = N . The workers start their

computation upon receiving their subtasks and immediately report the result

when they are finished. The master can start recovering the main task as soon

as it receives any set of the k coded subtasks. Fig. 4.1 shows the distribution

of the subtasks among the workers in a single-subtask model.

64

Figure 4.1: Distribution of subtasks in a single-subtask model. In this figure,
the red color is used for information subtasks and the blue color for redundant
subtasks

(ii) MMC model: The main difference between the MMC model and the

single-task model is that in the MMC model, the workers are not limited to

a single subtask. Let us assume the master wants to assign p tasks to each

of the workers. Similar to the single-task model, the master divides the main

task into k subtasks and uses a (n, k) systematic MDS code. However, here

n = pN , where N is the number of workers. When p = 1 the MMC model

simplifies to the single-task model.

The master assigns p coded subtasks to each worker in a specific order.

Each worker computes its subtasks in the order given to it. In addition, after

completing each subtask, the worker sends the result to the master and does

not wait for all of the subtasks to finish. The benefit of MMC, of course, is

that some workers may not even need to finish all of their assigned subtasks.

Moreover, even some straggling workers may finish a number of their subtasks

and contribute to the overall computation. In the single-task model, a worker

was either completely useful or completely useless.

In the MMC model, similar to the single-task model, the arrival of any

k results, enables the master to start the decoding process and finalize the

computation. If the code is systematic, it is important that the information

subtasks are assigned as the first subtasks to the workers. This way, a larger

number of the k arrived results are information subtasks, hence, the decoding

complexity is reduced.

As previously mentioned, the MMC model is advantageous over the single-

task model because of solving the over-computation and under-utilization

problems. This is especially important when there is a probability of persistent

65

straggling behaviour. However, previous task assignment schemes proposed for

the MMC model presume k and consequently the load of the coded subtask

which makes their task assignment schemes sub-optimal in terms of the com-

putation time. Hence, there is a need for a novel task-assignment scheme for

the MMC model.

4.3 HCDC scheme

HCDC is a coded scheme designed for the MMC model. While in existing

coded MMC approaches, p and k are assumed as given numbers, in HCDC we

find the optimal values of p and k to meet various senses of optimality.

To work our way through this process, let us start by assuming p = k, i.e.,

k coded subtasks to be assigned to each worker. Later in Subsection 4.4.5 we

will discuss that if the encoding time is a bottleneck it is possible to trade the

number of the coded subtasks assigned to each worker for a lower encoding

time, i.e accept some sacrifice in the computation time by assigning p < k

coded subtasks to each worker to have a better encoding time. The motivation

for taking p = k at this stage is that by assigning k subtasks to each worker it

is guaranteed that even if all the workers except one of them permanently fail

and do not complete any of their subtasks, the main computation still can be

completed. Please note that assuming p > k (assigning more than k subtasks

to each worker) is not helpful because as soon as any worker completes its k-th

subtask, the master can finalize the main computation.

In summary, the code employed in HCDC scheme is a (n, k) systematic

MDS code where n = k × N and k is a variable obtained by optimizing for

the minimum expected computation time or for the maximum probability of

completion before a given deadline. Please note that k is the parameter that

determines the computation load of the coded subtasks. More specifically, if

we assume that the computation load of the main task, g, is L and it is divided

to k equally sized linear subtask, the computation load of the subtasks is L
k
.

The encoding does not change the computation load of the subtasks, hence,

all the coded subtasks will also have a computation load of L
k
. Thus k is one

66

Figure 4.2: Distribution of subtasks in an HCDC scheme with the assumption
that 1 < k < N . In this figure, the red color is used for information subtasks
and the blue color for redundant subtasks

of the factors that affect the finishing time of each subtask. Consequently,

choosing k plays an important role in the overall computation time.

The master starts by assigning the first information subtask to the first

worker, the second to the second worker, and so forth. If k > N , after as-

signing one information subtask to each of the workers, the master assigns the

remaining information subtask in a similar way starting from the first worker

again. When the master runs out of information subtasks, it continues the

assignment with redundant subtasks. In the HCDC scheme, since k is deter-

mined by optimizing for the expected computation time or the probability of

completion before a deadline, it is not necessarily a multiple of the number

of workers N . As a result, it is possible that in one case, some workers have

one information subtask but the others do not have any while there might be

another case where all the workers have at least one information subtask, but

some of them are assigned with two. Hence, we have chosen the name hybrid

coded distributed computing.

Figure 4.2 illustrates the HCDC scheme. In this figure, the subtasks that

are assigned with the same priority across the workers have been separated

with a dashed rectangle. We will refer to all the subtasks assigned as the i-th

priority across the workers as subtasks of the i-th row. please note that row

here is just an abstract term used for convenience in reference.

67

4.4 Finishing Time Analysis

In this section, we lay out the probabilistic analysis of the finishing time in

the HCDC scheme.

4.4.1 Finishing Time Distribution of a Single Task

In the literature, the finishing time of a task by a worker is usually modeled

by a shifted exponential distribution[36], [39], [56]. If there is a homogeneous

set of workers each with a task of the same computational load as others, the

common approach is to model it with independent identical distributions (iid)

that have the following cumulative distribution function (CDF):

Pr(τ ≤ t) = Fτ (t;µ, L) =

{
1− e−

1
µ
(t−L), for t ≥ L

0, otherwise
, (4.1)

where τ is the random variable denoting the finishing time of a single task.

In (4.1) L is the computation load, thus it is the minimum time required to

complete the task and µ reflects the average of all the other delays in addition

to the minimum completion time of the task. In other words, L controls the

shift in the shifted exponential distribution and µ controls the tail.

4.4.2 Finishing Time of A Number of Tasks by a Worker

In our setting described for the HCDC scheme in Section 4.3 we assigned more

than one subtask to each worker. As such, we are interested in the distribution

of the completion time for a specific number of subtasks by a worker. Let us

derive the probability that s subtasks are finished before time t in a worker. We

denote the completion time of the subtasks by {τi}si=1. Each worker executes

its tasks one after another in a chronological order. This means that the

probability of finishing s subtasks is equivalent to:

Pr(τs subtasks ≤ t) = Pr(
s∑

i=1

τi ≤ t)

Calculating the above probability would be a daunting task. Hence, we will

use properties of the moment generating functions (MGF). MGF of a shifted

68

exponential random variable with a CDF as stated in (4.1) is equal to:

Mτ (u) = E [euτ] = eLu (1− µu)−1 , u ≤ 1

µ
. (4.2)

If some random variables are independent, the MGF of their summation is

equal to the multiplication of their individual MGFs:

M∑s
i=1 τi

(u) =
s∏

i=0

Mτi(u) =
s∏

i=0

eLu (1− µu)−1

= esLu (1− µu)−s , u ≤ 1

µ

. (4.3)

Once we obtain the MGF of the distribution of the finishing time of s subtasks

in a worker we immediately notice that it has the general form of the MGF

of a shifted Gamma distribution. After some mathematical calculations, we

obtain its probability distribution function as follows:

fτs subtasks
(t; s, µ, L) =

 (t−sL)s−1e
− 1

µ (t−sL)

µsΓ(s)
, for t ≥ L

0, otherwise
,

and as a result the probability of finishing s subtasks in a worker by time t is

equal to the CDF value of the above distribution at that point:

Pr(τs subtasks ≤ t) = Fτs subtasks
(t; s, µ, L)

=

γ
(
s, t−sL

µ

)
Γ(s)

, for t ≥ sL

0, otherwise
,

(4.4)

where the γ(·) and the Γ(·) are the the lower incomplete gamma and gamma

functions respectively.

4.4.3 Finishing Time Distribution of the Main Task

Since an (n, k) MDS code is used, if k out of n subtasks are finished, the master

will be able to recover the main task. Hence, We are interested in calculating

the probability that at least k subtasks are finished before time t. For this

purpose, we will first calculate the probability that the main task will not be

finished before t, also known as the probability of failure after t.

69

Theorem 4.1. Let τmain denote the finishing time of the main task. The

probability that τmain is larger than t, is calculated as:

Pr(τmain > t) =

N∑
m1=1

m1∑
m2=0

. . .

mk−2∑
mk−1=0

k−1∏
s=0

(
ms

ms+1

)(
Fs(t)− Fs+1(t)

)ms−ms+1 , (4.5)

where mi, i ∈ {i}k1 denote the total number of finished subtasks in the i-th row

of the workers,
∑k−1

i=1 mi < k while 0 ≤ mk−1 ≤ mk−2 ≤ . . . ≤ m1 ≤ N , and

Fs(t) is the CDF obtained in (4.4) with L being the main load divided by k.

Also by convention, m0 = N , mk = 0, and F0(t) = 1.

Proof. We know that there are k rows of subtasks in the workers based on

the order that they are executed and completed. Let us denote with j the

number of all the subtasks that are completed before time t. Overall, if k

subtasks are finished, the main task is completed. Hence we are interested in

the probability of all the cases that j < k. The completed subtasks can be

from any worker but at any worker, only those subtasks can be completed that

the subtasks on their upper rows have finished earlier. Let m1 be the total

number of subtasks in the first row completed before time t. It is clear that

1 ≤ m1 ≤ min{j,N}. The probability that m0 −m1 subtasks from the first

row are not completed before time t is equal to:(
m0

m1

)(
F0(t)− F1(t)

)m0−m1 ,

where m0 = N and F0 = 1. Let us show with P1(t) the probability that m1

workers that have completed their first task will be able to complete at least

j−m1 subtasks before time t. Based on the multiplication rule, the probability

of completing j subtasks in total would be:

Pr(τmain > t) =

(
m0

m1

)(
F0(t)− F1(t)

)m0−m1 × P1(t). (4.6)

We know that P1(t) is related to the subtasks of the second and further down

rows of the m1 workers that have already completed their first subtask. Let

us assume that only m2, 1 ≤ m2 ≤ m1, out of m1 workers also finish their

70

second subtask. The probability that m1−m2 out of m1 workers are not able

to finish their second subtask after finishing the first one is:(
m1

m2

)(
F1(t)− F2(t)

)m1−m2 .

Hence, based on the multiplication rule, P1(t) can be written as:

P1(t) =

(
m1

m2

)(
F1(t)− F2(t)

)m1−m2 × P2(t), (4.7)

where P2(t) is the probability that j − (m1 +m1) subtasks from the third row

or below are completed before time t by the m2 workers that have already

completed their second subtasks. Substituting (4.7) into (4.6), we obtain:

Pr(τmain > t) = (
m0

m1

)(
F0(t)− F1(t)

)m0−m1×(
m1

m2

)(
F1(t)− F2(t)

)m1−m2 × P2(t) (4.8)

Let us assume that by receiving some subtask belonging to the r-th row, the

total number of completed subtasks is j and the process ends. Following

the same approach, we break P2(t) recursively until we arrive at the row r,

1 ≤ r ≤ k, of the subtasks. For the r-th row we have
∑r

i=1 mi = j and

mi = 0, i > r. By continuing the recursion up to this row we will have:

r∏
s=0

(
ms

ms+1

)(
Fs(t)− Fs+1(t)

)ms−ms+1 × Pr(t), (4.9)

where Pr(t) = 1. To simplify the formulation of (4.9), we can rewrite it

assuming the recursion is continued until r = k − 1. For this, we note that

since mi = 0, i > r and by convention
(
x
0

)
= 1 and x0 = 1, (4.9) can be

rewritten as:
k−1∏
s=0

(
ms

ms+1

)(
Fs(t)− Fs+1(t)

)ms−ms+1 . (4.10)

Now in order to account for all the possible cases of mi, i ∈ {i}k−1
1 we put

summations behind the formula in (4.10) and this completes the proof.

71

Corollary 4.1. The probability that the main task finishes before time t is the

complement of the probability calculated in Theorem 4.1. Hence, it is equal to:

Pr(τmain ≤ t) =

1−
N∑

m1=1

m1∑
m2=0

. . .

mk−2∑
mk−1=0

k−1∏
s=0

(
ms

ms+1

)(
Fs(t)− Fs+1(t)

)ms−ms+1 , (4.11)

Remark 4.1. In calculating the probability of finishing the main task before

a deadline, we assume that the communication time between the workers and

the master is negligible.

4.4.4 Optimizing the Completion Time

As previously mentioned, in the HCDC scheme, k is not a fixed variable and

can be chosen based on the requirements of distributed computing. If we take

a closer look into the calculation process for the probability distribution of the

finishing time of the main task, we can see that one of the important elements

in its derivation is the finishing time distribution of a single subtask in (4.1)

which in turn depends on L and µ. Here, L is itself affected by k as it is equal

to the load of the main task divided by k, and µ is the average additional time

delay for completing a subtask with load L. Hence, the choice of k depends

on the dynamic between µ and L in (4.1) and how k can affect this dynamic

for a desired distribution for the finishing time of the main task.

One way to obtain the k is to maximize the probability of finishing the

main task before a specific deadline. Let us denote the deadline by td, then

we can write:

kd = argmax
k
{Prk(τmain ≤ td)} , (4.12)

where Prk(τmain ≤ td) is calculated based on equation (4.11). In fact (4.12) is

an integer optimization problem.

Another possible way is choosing k such that the average time of finishing

the main task is minimized:

ke = argmin
k
{E [τmain]} (4.13)

72

where τmain follows the probability obtained in (4.11). The decision to choose

any of these methods for determining k depends on the needs of the user that

employs the distributed computing system. Additionally, it is also noteworthy

to mention that these two methods may not necessarily yield different k.

4.4.5 Subtasks per Worker

In the system model described in Section 4.2 we set the number of rows in each

worker to be equal to k. As a result, the master needs to create a total of k×N

coded subtasks. This will increase the encoding time compared to the single-

task method where this value is only N . However, the experimental results

show that when the workers execute the subtasks of a few first rows, enough

number of subtasks are generated, enabling the master to start decoding and

finalizing the main task. In other words, before the workers reach to their

subtasks with low priorities, the process is ended by the master. Hence, some

of the coded subtasks are almost never executed.

Despite this observation, the random nature of the straggling behaviour

prevents one from being able to choose an exact lower number of subtasks

that may be assigned to each worker for the successful completion of the main

task within the same time as the case that k subtasks are assigned to each

worker. For instance, if a large portion of the workers fail permanently, the

remaining workers might need to run subtasks with very low priorities or

even all their subtasks to produce enough results for the master to finalize

the computation. Nonetheless, such a situation is very rare, and using our

probabilistic approach, we can determine the row such that the probability of

any worker reaching a subtask in that row is extremely low.

Let us assume that the proper k has already been determined. Let us

assume that the proper k has already been determined. First we want to

obtain a time that we are almost sure (in a probabilistic sense) that the main

task is completed by. We will denote this time by tθ:

tθ = min{t |Pr(τmain ≤ t) ≥ 1− ϵ1},

where ϵ1 is an extremely small value and Pr(τmain ≤ t) is calculated based on

73

(4.11). Let us denote the event that a worker will finish at least s subtasks

before tθ by Es,θ and the event that the rest of the workers, i.e. N − 1 other

workers, do not complete at least k− s subtasks before tθ by E ′
k−s,θ. We want

to calculate the probability that a worker will finish at least s subtasks by tθ

while the rest of the workers are not able to complete at least k − s subtasks

altogether at the same time. If we denote this event by Es we can write:

Pr(Es) = Pr(Es,θ)× Pr(E ′
k−s,θ). (4.14)

In (4.14), Pr(Es,θ) is calculated based on (4.4) and Pr(E ′
k−s,θ) is calculated

from (4.5) but for N − 1 workers. Hence, Pr(Es) can be written as:

Pr(Es) =
γ
(
s, tθ−sL

µ

)
Γ(s)

×

k−s∑
m1=1

m1∑
m2=0

. . .

mk−2∑
mk−1=0

k−1∏
s=0

(
ms

ms+1

)(
Fs(tθ)− Fs+1(tθ)

)ms−ms+1 . (4.15)

Pr(Es) is a good estimate for the probability of the event in which a worker

finishes s subtasks before the master ends the process, i.e. before the rest of

the workers complete k − s subtasks. As a result, to reduce the encoding

complexity, we can search for s such that it reduces Pr(Es) to a desirably-low

value and use this s as the proper number of rows (instead of k) in the HCDC

scheme without compromising the performance:

sθ = min{s |Pr(Es) ≤ ϵ2},

where ϵ2 is a very small value.

4.5 Experimental Results

In this section, we will simulate the time to finish a general task with the load

Lmain and show the advantages of the HCDC scheme over the conventional

single-task schemes as well as conventional schemes based on the MMC model

that fix the load of the subtasks in advance.

74

4.5.1 Finding the Optimal k in the HCDC Scheme

We assume that we have a task g(x) that has the load Lmain = 600s, i.e. it

will take 600 seconds for each of the workers to complete it on their own. We

consider a scenario where the number of workers available to the master is

N = 10. As we previously mentioned, the average time for the completion of a

subtask in addition to its normal computation time denoted by µ in equation

(4.1) depends on the the characteristics of the workers and the distributed

system. Additionally, for different µ values, the optimal number of information

subtasks k may change. As a result, we vary µ from 1s to 160s and find the

optimal value of k for each µ. The optimal k is the number of information

subtasks as well as the number of subtasks that are assigned to each worker

in the HCDC scheme.

Here, we find the optimal value of k with both of the methods explained in

Subsection 4.4.4. First, we find the optimal k by maximizing the probability of

finishing the main task before a deadline. The deadline that we consider here

is obtained as td =
Lmain

N
+ µ. Please note that this is an arbitrary choice and

other values for the deadline could be considered as well. Then we find k that

maximizes the probability of finishing before td based on Equation (4.12). In

Figure 4.3, the probability of finishing before the specified deadline is plotted

for different µ with k varying from 1 to 30. We can see that all the curves

follow the same trend. For small and large values of k the probability is low

but for middle k values it grows until it reaches to the peak value and starts

dropping. The k corresponding to the peak value is the chosen k in the HCDC

scheme. We also observe that the optimal value of k for different µ varies.

In the second method, we find the optimal k that minimizes the expected

completion time of the main task according to (4.13). In Figure 4.4, the ex-

pected completion time is depicted. Similar to the first method, The horizontal

axis shows different k from 1 to 30 and each curve corresponds to a specific µ.

The curves in this figure start with a high expected finishing time, later drop

to a minimum value for middle k values, and finally rise to higher values for

larger values of k again. The optimal k which depends on µ, is the number of

75

Figure 4.3: Probability of finishing the main task before the deadline td for
different k. Here each curve corresponds to a specific µ.

information subtasks in the HCDC scheme.

In Figure 4.5, the values of k corresponding to the peak values of the prob-

ability curves in Figure 4.3 and the values of k corresponding to the minimum

values of the expected finishing time curves in Figure 4.4 are plotted together.

Depending on the objective of the optimization, the curves show the number

of information subtasks in the HCDC scheme for different µ values.

As we see in Figure 4.5, both of the curves show that when µ is close to

zero, i.e. the average delay of computing a subtask in addition to the normal

computation time is negligible, the optimal number of information subtasks is

equal to the number of workers. This is expected since µ ≈ 0 means there is no

straggling behavior. Hence, the best solution is to divide the main task into a

number of subtasks equal to the number of workers, N , and give each worker

one information subtask as its highest priority subtask. As µ increases, i.e.

the straggling behavior is more severe, the number of information subtasks in

the HCDC scheme drops. In other words, due to a larger delay in completing

76

Figure 4.4: Expected finishing time of the main task for different k. Each
curve corresponds to a specific µ.

each subtask, waiting for the completion of the subtasks with lower priority in

the workers becomes costly. Thus, the system prefers to reduce the number of

the subtasks it needs to finalize the main task, i.e. k, even if this comes at the

cost of a bigger computation load per subtask. Please note that although the

points of the two curves do not necessarily overlap, both of the curves follow

the same trend and the corresponding k values are very close to each other.

4.5.2 HCDC Performance versus Single-task Scheme

We assume that we have the same setting as the previous subsection, i.e. a

main task with Lmain = 600s, N = 10 workers, and µ varying from 1s to 160s

to compare the performance of single-task and HCDC schemes over different

conditions. Let us first consider the single-task scheme. As described in Section

4.2, in the single-task scheme the code length is equal to the number of workers:

n = N . Regarding the choice of k, we want our system to be tolerant in the

face of three permanent stragglers, i.e. the minimum distance of the code at

least should be d = 4. Since in MDS codes d = n− k + 1, we have k = 7.

On the other hand, in the HCDC scheme, each worker has p = k subtasks.

77

Figure 4.5: k in the HCDC scheme for different µ. The blue curve shows the
values of k obtained by maximizing the probability of finishing the main task
before td and the orange curve shows the values of k that are obtained by
minimizing the expected completion time of the main task

Hence, the length of the MDS code is n = k×N . Here for HCDC the value of k,

is obtained by minimizing the average finishing time of the main task as stated

in (4.13). Since p = k, even if all but one of the workers become permanent

stragglers, the system can still complete the main task. In Figure 4.6, the

average finishing time of the single-task and HCDC schemes are plotted. As

depicted, HCDC has a lower average finishing time over the entire range of µ.

Another advantage of the HCDC over the single-task scheme becomes ap-

parent when the distributed system is prone to permanent stragglers also re-

ferred to as permanent failure of the workers. To compare the performance of

the two schemes in the presence of permanent stragglers, we consider a scenario

where a main task with Lmain = 600s is distributed among N = 10 workers

and µ = 40. Please note that this corresponds to the point in Figure 4.6 that

the single-task and HCDC schemes have the same average finishing time in the

absence of permanent stragglers. Figure 4.7 shows the rate of the successful

completion of the main task in the single-task and HCDC schemes. In this

78

Figure 4.6: Comparison of the average finishing time of the main task between
single-task and HCDC schemes

figure, the horizontal axis is the probability of being a permanent straggler

in each of the workers. We can see that as the probability of failure in each

worker increases from zero, the success rate in the single-task scheme drops

while it stays at 1 over the entire range of the probability of failure in the

HCDC scheme.

4.5.3 HCDC versus Conventional MMC Schemes

Let us consider a setting similar to the previous section, i.e. Lmain = 600s and

N = 10. As we discussed, in the conventional MMC scheme the number of

information subtasks and the number of total subtasks given to each worker

are fixed values without taking into account the characteristics of the workers

such as the average delay in addition to the normal computation time. Here,

we obtain the expected finishing time of the conventional MMC scheme in two

cases and compare it with HCDC. In both cases, the total number of subtasks

given to a worker is equal to N = 10. In one case the number of information

subtasks given to each worker is one and in the other case, it is two, i.e.

k = N and k = 2N respectively. In Figure 4.8 the expected finishing times

79

Figure 4.7: Rate of the successful completion of the main task in single-task
and HCDC schemes over different probability of permanent failure in the work-
ers

are plotted. We can see that the HCDC scheme has a better performance

compared to the conventional MMC schemes over the entire range of µ.

4.5.4 HCDC versus Hierarchical Coded Distributed Com-
puting

One of the recently proposed schemes for the MMC model is the hierarchi-

cal coded computing (HCC)[20]. Unlike HCDC, and similar to conventional

MMC, the number of total information subtasks is a fixed number in HCC. A

number of the information subtasks are assigned to each row of the subtasks.

In each row, a separate MDS code is employed and some redundant subtasks

are generated to be assigned to the workers that do not have information sub-

tasks. Since the subtasks in higher rows are more probable to be finished, the

number of the information subtasks assigned in the upper rows is higher than

the lower rows. Following this general rule, the number of information sub-

tasks assigned in each row is determined by either optimizing the probability

of finishing the main task before a deadline or the expected finishing time of

80

Figure 4.8: Comparison of the expected finishing time between the HCDC and
the conventional MMC schemes with k = N and k = 2N

the main task.

To compare the performance of HCDC with HCC, we assume a setting

with N = 8 workers and a main task with the load Lmain = 600s. We choose

the N a smaller number here because the computational complexity for the

optimization in the HCC scheme grows exponentially. For the HCC scheme,

the number of subtasks assigned to each worker is p = 4, meaning that overall,

there are pN = 32 subtasks. The total number of information subtasks is

k = 16 and the number of information subtasks in each row is found by

optimizing for the expected finishing time of the main task. The parameters

of the HCDC scheme are also obtained by optimizing for the expected finishing

time. In Figure 4.9 the performances of the two schemes are depicted.

4.6 Conclusions

In this work, we introduced a novel coded scheme, hybrid coded distributed

computing (HCDC), to mitigate the straggler problem in distributed comput-

ing. HCDC is designed for the MMC model of distributed computing where

81

Figure 4.9: Comparison of the expected finishing time between the HCDC and
the HCC schemes

each worker receives multiple subtasks and sends multiple messages to the

master. In HCDC, a systematic MDS code is used for encoding the subtasks

and the total number of the subtask assigned to each worker is equal to the

information length of the MDS code, k. Unlike conventional MMC schemes,

we do not fix k which in turn, determines the computation load of the sub-

tasks. Instead, k in the HCDC scheme is one that optimizes the finishing time

or the probability of completing the main task before a deadline.

More specifically, we built a mathematical model based on the main com-

putation load and characteristics of the workers such as average delay in ad-

dition to the minimum computation time for completing a single subtask in

each worker. Then we used this model to derive the probability of finishing

the main task and find the k that optimizes it. We show that HCDC outper-

forms single-task schemes as well as conventional MMC schemes in terms of

the average completion time of the main task. It is also maximally tolerant in

the face of persistent stragglers, guaranteeing the completion of the main task

even if all but one of the workers permanently fail.

82

Chapter 5

Conclusions and Future
Directions

5.1 Conclusion

In this thesis, we started by reviewing the rapid rise in the demand for dis-

tributed computing and the reasons behind this growth in Chapter 1. In the

same chapter, we discussed some of the challenges in distributed computing

such as straggler bottleneck, communication bottleneck, and privacy. Then

we reviewed the use of coding techniques to overcome some of these issues.

In Chapter 2, we focused on the straggler problem and the use of cod-

ing techniques to mitigate this issue in distributed computing. First, we laid

out the general system model for master-worker distributed computing. Then

we studied some of the fundamental concepts and mathematical basis in cod-

ing theory. Finally, we studied the use of coding in distributed computing

for straggler mitigation. We introduced a general coded system model and

reviewed some of the prior work on this topic.

One of the missing points in the literature related to the use of coding in

distributed computing is attention to the fact that the encoding and decoding

complexity may not be always negligible. In fact, the time spent for the encod-

ing and the decoding may even become the main bottlenecks, especially, when

these two steps cannot be performed offline, such as in large-scale machine

learning applications. To this end, In Chapter 3 we considered large-scale

distributed computation of matrix multiplication which is widely needed in

83

many applications. We introduced a new scheme based on binary locally re-

pairable codes (BLRCs). This was in contrast to the existing literature which

predominantly focuses on MDS codes.

MDS codes have a high encoding and decoding complexity while our code

in Chapter 3 had a very low encoding and decoding complexity. We proved

that our code had the minimum encoding complexity among a large class

of locally repairable codes and then provided an algorithm that decoded our

code with the minimum complexity. Finally, we showed that the same matrix

multiplication problem computed based on our scheme has a significantly lower

overall completion time (encoding, computation, and decoding time) compared

to the widely adopted MDS scheme.

In Chapter 4, with a focus on computation time, we considered a multi-

message communication model (MMC) for distributed computing where each

worker receives more than one subtask and is able to send multiple messages

to the master. Our focus in this setup was on the computation time. We

introduced a new scheme, hybrid coded distributed computing (HCDC), for

the MMC model that reduced the computation time for completing a task

compared to single-task schemes and conventional MMC schemes.

Unlike conventional schemes, in HCDC the load of the subtasks is not

presupposed. Instead, it is chosen such that the distributed process has the

optimal completion probability or finishing time. HCDC is maximally tolerant

in the face of persistent stragglers, guaranteeing the successful completion of

the task even if all the workers but one, permanently fail.

5.2 Future Directions

As we have previously mentioned, matrix multiplication is usually used as a

general term to refer to matrix-matrix or matrix-vector multiplication. Both

of these operations are in high demand in most machine learning and data

analytic applications. As a result, in Chapter 3, we considered matrix-vector

multiplication and introduced a novel scheme based on a family of BLRCs

to reduce the encoding and decoding complexity. The high encoding and de-

84

coding complexity is also a serious problem in matrix-matrix multiplication.

There is a potential to address the complexity issue in matrix-matrix multi-

plication with a novel scheme similar to our scheme in Chapter 3, i.e. based

on the BLRCs. The challenge in such an attempt is minimizing the num-

ber of products between the submatrices that are required for finalizing the

main task. Otherwise, the increase in the computation time might surpass the

reduction in the encoding and the decoding time by using a BLRC.

As we discussed in Chapter 4, schemes based on the MMC model have some

advantages over the conventional single-task schemes. In Chapter 4, similar

to the majority of the work in the literature, we focused on the computation

time and introduced the HCDC scheme. However, when the overall completion

time of a task is important, the encoding and decoding times should also be

accounted for in the proposed schemes. Hence, schemes based on MDS codes

may not be the best choices. One interesting direction to follow is developing a

scheme based on non-MDS codes for the MMC model, e.g. a scheme based on

BLRCs. In the process of designing a scheme based on BLRCs for the MMC

model, there are some challenges that need to be addressed.

One important aspect of the design is creating a systematic BLRC that has

the lowest encoding and possibly decoding complexity. This will reduce the

time spent in these two steps compared to MDS-based schemes. Furthermore,

BLRCs are not MDS, i.e. the number of coded symbols required to recover

the information symbols is not minimum. Hence, Another aspect that should

be considered is choosing a BLRC as close as possible to the MDS codes in

that regard. This helps to keep the computation time close to the MDS-based

schemes, otherwise, the gain in the encoding and the decoding times might be

overshadowed by the increase in the computation time.

One interesting fact about the systematic BLRCs is that the complexity

of the encoding and decoding is not the same for all of the redundant coded

symbols. In other words, some redundant symbols are constructed from a lower

number of information symbols, which makes their encoding and decoding less

complex. On the other hand, in the MMC model, a worker receives multiple

subtasks with different priorities. Hence, there is an opportunity to optimize

85

the allocation of subtasks and their priorities to reduce encoding or decoding

complexity. For example, giving a higher priority to the less-complex subtasks

over more complex ones will increase the probability of having enough less-

complex subtasks to finalize the main computation, hence, helping reduce the

decoding time when the master finalizes the process.

We hope that our work in this thesis motivates future researchers to follow

these directions and that it provides a base for future contributions in this

field.

86

References

[1] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effec-
tive straggler mitigation: Attack of the clones.,” in NSDI, vol. 13, 2013,
pp. 185–198.

[2] M. H. Ardakani, M. Mehrabi, M. Ardakani, and C. Tellambura, “On
allocation of systematic blocks in coded distributed computing,” IEEE
Communications Letters, vol. 26, no. 4, pp. 748–752, 2022.

[3] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A first course in
order statistics. SIAM, 2008.

[4] B. Bartan and M. Pilanci, “Polar coded distributed matrix multiplica-
tion,” arXiv, vol. 2019, 2019.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation,” in Pro-
viding Sound Foundations for Cryptography: On the Work of Shafi Gold-
wasser and Silvio Micali, 2019, pp. 351–371.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, 2012, pp. 13–16.

[7] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[8] W.-T. Chang and R. Tandon, “On the capacity of secure distributed ma-
trix multiplication,” in 2018 IEEE Global Communications Conference
(GLOBECOM), IEEE, 2018, pp. 1–6.

[9] N. Charalambides, H. Mahdavifar, and A. O. Hero III, “Numerically
stable binary coded computations,” arXiv preprint arXiv:2109.10484,
2021.

[10] B. Chen, W. Fang, S.-T. Xia, and F.-W. Fu, “Constructions of optimal
(r, δ) locally repairable codes via constacyclic codes,” IEEE Transactions
on Communications, vol. 67, no. 8, pp. 5253–5263, 2019.

[11] V. Cristea, C. Dobre, C. Stratan, F. Pop, and A. Costan, Large-Scale
Distributed Computing and Applications: Models and Trends. IGI Global,
2010.

87

[12] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[13] Y. Deng and M. Dong, “Heterogeneous coded distributed computing
with nonuniform input file popularity,” in ICC 2022-IEEE International
Conference on Communications, IEEE, 2022, pp. 1936–1941.

[14] S. Dhakal, S. Prakash, Y. Yona, S. Talwar, and N. Himayat, “Coded
computing for distributed machine learning in wireless edge network,”
in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall),
IEEE, 2019, pp. 1–6.

[15] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large lin-
ear transforms distributedly using coded short dot products,” Advances
In Neural Information Processing Systems, vol. 29, 2016.

[16] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel
and distributed computing within a deadline,” in 2017 IEEE Interna-
tional Symposium on Information Theory (ISIT), IEEE, 2017, pp. 2403–
2407.

[17] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P.
Grover, “On the optimal recovery threshold of coded matrix multiplica-
tion,” IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 278–
301, 2019.

[18] J. Edmonds and M. Luby, “Erasure codes with a hierarchical bundle
structure,” IEEE Transactions on Information Theory, 2017.

[19] X. Fan, P. Soto, X. Zhong, D. Xi, Y. Wang, and J. Li, “Leveraging strag-
glers in coded computing with heterogeneous servers,” in 2020 IEEE/ACM
28th International Symposium on Quality of Service (IWQoS), IEEE,
2020, pp. 1–10.

[20] N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in
2018 IEEE International Symposium on Information Theory (ISIT),
IEEE, 2018, pp. 1620–1624.

[21] N. S. Ferdinand and S. C. Draper, “Anytime coding for distributed com-
putation,” in 2016 54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), IEEE, 2016, pp. 954–960.

[22] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of
codeword symbols,” IEEE Transactions on Information theory, vol. 58,
no. 11, pp. 6925–6934, 2012.

[23] S. Goparaju and R. Calderbank, “Binary cyclic codes that are locally re-
pairable,” in 2014 IEEE International Symposium on Information The-
ory, IEEE, 2014, pp. 676–680.

88

[24] S. Gupta and V. Lalitha, “Locality-aware hybrid coded mapreduce for
server-rack architecture,” in 2017 IEEE Information Theory Workshop
(ITW), IEEE, 2017, pp. 459–463.

[25] J. Hao, S.-T. Xia, and B. Chen, “Some results on optimal locally re-
pairable codes,” in 2016 IEEE International Symposium on Information
Theory (ISIT), IEEE, 2016, pp. 440–444.

[26] C. Huang, H. Simitci, Y. Xu, et al., “Erasure coding in windows azure
storage,” in 2012 USENIX Annual Technical Conference (USENIX ATC
12), 2012, pp. 15–26.

[27] P. Huang, E. Yaakobi, H. Uchikawa, and P. H. Siegel, “Cyclic linear
binary locally repairable codes,” in 2015 IEEE information theory work-
shop (ITW), IEEE, 2015, pp. 1–5.

[28] H. Ishii and R. Tempo, “The pagerank problem, multiagent consensus,
and web aggregation: A systems and control viewpoint,” IEEE Control
Systems Magazine, vol. 34, no. 3, pp. 34–53, 2014.

[29] D. B. Kahanwal and D. T. Singh, “The distributed computing paradigms:
P2p, grid, cluster, cloud, and jungle,” arXiv preprint arXiv:1311.3070,
2013.

[30] C. Karakus, Y. Sun, and S. Diggavi, “Encoded distributed optimization,”
in 2017 IEEE international symposium on information theory (ISIT),
IEEE, 2017, pp. 2890–2894.

[31] O. Khan, R. Burns, J. Plank, and C. Huang, “In search of I/O-Optimal
recovery from disk failures,” in 3rd Workshop on Hot Topics in Storage
and File Systems (HotStorage 11), 2011.

[32] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous coded
distributed computing,” in GLOBECOM 2017-2017 IEEE Global Com-
munications Conference, IEEE, 2017, pp. 1–7.

[33] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in
coded computation,” in 2018 IEEE International Symposium on Infor-
mation Theory (ISIT), IEEE, 2018, pp. 1988–1992.

[34] D. Kim, H. Park, and J. K. Choi, “Optimal load allocation for coded
distributed computation in heterogeneous clusters,” IEEE Transactions
on Communications, vol. 69, no. 1, pp. 44–58, 2020.

[35] Y.-S. Kim, C. Kim, and J.-S. No, “Overview of binary locally repairable
codes for distributed storage systems,” Electronics, vol. 8, no. 6, p. 596,
2019.

[36] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2017.

89

[37] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in 2017 IEEE International Symposium on Information
Theory (ISIT), IEEE, 2017, pp. 2418–2422.

[38] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded mapreduce,”
in 2015 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton), IEEE, 2015, pp. 964–971.

[39] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding frame-
work for distributed computing with straggling servers,” in 2016 IEEE
Globecom Workshops (GC Wkshps), IEEE, 2016, pp. 1–6.

[40] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A funda-
mental tradeoff between computation and communication in distributed
computing,” IEEE Transactions on Information Theory, vol. 64, no. 1,
pp. 109–128, 2017.

[41] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and S. Avestimehr,
“Coded terasort,” in 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), IEEE, 2017, pp. 389–398.

[42] S.-J. Lin, T. Y. Al-Naffouri, Y. S. Han, and W.-H. Chung, “Novel poly-
nomial basis with fast Fourier transform and its application to Reed–
Solomon erasure codes,” IEEE Transactions on Information Theory,
vol. 62, no. 11, pp. 6284–6299, 2016.

[43] E. Ozfatura, S. Ulukus, and D. Gündüz, “Coded distributed comput-
ing with partial recovery,” IEEE Transactions on Information Theory,
vol. 68, no. 3, pp. 1945–1959, 2021.

[44] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Transactions on Information Theory, vol. 60, no. 10, pp. 5843–
5855, 2014.

[45] S. Prakash, S. Dhakal, M. R. Akdeniz, et al., “Coded computing for low-
latency federated learning over wireless edge networks,” IEEE Journal
on Selected Areas in Communications, vol. 39, no. 1, pp. 233–250, 2020.

[46] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran,
“Having your cake and eating it too: Jointly optimal erasure codes for
I/O, storage, and network-bandwidth,” in 13th USENIX Conference on
File and Storage Technologies (FAST 15), 2015, pp. 81–94.

[47] N. Raviv and D. A. Karpuk, “Private polynomial computation from
lagrange encoding,” IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 553–563, 2019.

[48] A. Reisizadeh and R. Pedarsani, “Latency analysis of coded computa-
tion schemes over wireless networks,” in 2017 55th Annual Allerton Con-
ference on Communication, Control, and Computing (Allerton), IEEE,
2017, pp. 1256–1263.

90

[49] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Transactions on Infor-
mation Theory, vol. 65, no. 7, pp. 4227–4242, 2019.

[50] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in 2009 Fifth international joint conference on
INC, IMS and IDC, Ieee, 2009, pp. 44–51.

[51] R. M. Roth, “Introduction to coding theory,” IET Communications,
vol. 47, no. 18-19, p. 4, 2006.

[52] I. H. Sarker, “Machine learning: Algorithms, real-world applications and
research directions,” Sn Computer Science, vol. 2, 2021. [Online]. Avail-
able: https://api.semanticscholar.org/CorpusID:232322114.

[53] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, et al., “Xoring ele-
phants: Novel erasure codes for big data,” arXiv preprint arXiv:1301.3791,
2013.

[54] R. Schlegel, S. Kumar, E. Rosnes, and A. G. i Amat, “Codedpaddedfl and
codedsecagg: Straggler mitigation and secure aggregation in federated
learning,” IEEE Transactions on Communications, 2023.

[55] R. Schürer and W. Schmid, “Table for linear codes,” mint. sbg. ac.
at/table. php? i= c, 2014.

[56] A. Severinson, A. G. i Amat, and E. Rosnes, “Block-diagonal and lt codes
for distributed computing with straggling servers,” IEEE Transactions
on Communications, vol. 67, no. 3, pp. 1739–1753, 2018.

[57] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” IEEE Transactions on Communications, vol. 64, no. 2,
pp. 715–722, 2015.

[58] M. Shahabinejad, M. Khabbazian, and M. Ardakani, “An efficient bi-
nary locally repairable code for hadoop distributed file system,” IEEE
Communications Letters, vol. 18, no. 8, pp. 1287–1290, 2014.

[59] M. Shahabinejad, M. Khabbazian, and M. Ardakani, “A class of bi-
nary locally repairable codes,” IEEE Transactions on Communications,
vol. 64, no. 8, pp. 3182–3193, 2016.

[60] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[61] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop dis-
tributed file system,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST), Ieee, 2010, pp. 1–10.

[62] N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath, “Op-
timal locally repairable codes via rank-metric codes,” in 2013 IEEE In-
ternational Symposium on Information Theory, IEEE, 2013, pp. 1819–
1823.

91

https://api.semanticscholar.org/CorpusID:232322114

[63] N. Silberstein and A. Zeh, “Optimal binary locally repairable codes via
anticodes,” in 2015 IEEE International Symposium on Information The-
ory (ISIT), IEEE, 2015, pp. 1247–1251.

[64] R. Singleton, “Maximum distance q-nary codes,” IEEE Transactions on
Information Theory, vol. 10, no. 2, pp. 116–118, 1964.

[65] Y. Sun, J. Zhao, S. Zhou, and D. Gunduz, “Heterogeneous coded com-
putation across heterogeneous workers,” in 2019 IEEE Global Commu-
nications Conference (GLOBECOM), IEEE, 2019, pp. 1–6.

[66] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally
repairable codes and connections to matroid theory,” IEEE Transactions
on Information Theory, vol. 62, no. 12, pp. 6661–6671, 2016.

[67] Q. H. Vu, M. Lupu, and B. C. Ooi, Peer-to-peer computing: Principles
and applications. Springer, 2010.

[68] A. Wang and Z. Zhang, “An integer programming-based bound for lo-
cally repairable codes,” IEEE Transactions on Information Theory, vol. 61,
no. 10, pp. 5280–5294, 2015.

[69] D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for fast
response times in parallel computation,” in The 2014 ACM international
conference on Measurement and modeling of computer systems, 2014,
pp. 599–600.

[70] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to re-
duce latency in large-scale parallel computing,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 3, pp. 7–11, 2015.

[71] J. Wang, K. Shen, X. Liu, and C. Yu, “Construction of binary locally
repairable codes with optimal distance and code rate,” IEEE Commu-
nications Letters, vol. 25, no. 7, pp. 2109–2113, 2021.

[72] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely-throughput
optimal coded computing over cloud networks,” in Proceedings of the
Twentieth ACM International Symposium on Mobile Ad Hoc Networking
and Computing, 2019, pp. 301–310.

[73] A. Yazdanialahabadi and M. Ardakani, “A distributed low-complexity
coding solution for large-scale distributed FFT,” IEEE Transactions on
Communications, vol. 68, no. 11, pp. 6617–6628, 2020.

[74] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A.
Avestimehr, “Lagrange coded computing: Optimal design for resiliency,
security, and privacy,” in The 22nd International Conference on Artifi-
cial Intelligence and Statistics, PMLR, 2019, pp. 1215–1225.

[75] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An opti-
mal design for high-dimensional coded matrix multiplication,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

92

[76] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded fourier trans-
form,” in 2017 55th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), IEEE, 2017, pp. 494–501.

[77] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments.,”
in Osdi, vol. 8, 2008, p. 7.

93

	Introduction
	Motivation
	Distributed Computing
	Bottlenecks of Distributed Computing
	Coded Distributed Computing
	Thesis Overview

	Background Material
	Distributed Computing Systems
	System Model
	Challenges

	Forward Error Correction Codes
	Mathematical Background
	Block Codes
	Linear Codes
	Maximum Distance Separable (MDS) Codes
	Locally Repairable Codes (LRCs)

	Coding in Distributed Computing
	Challenges
	Related Work

	A Family of Binary Locally Repairable Codes for Coded Distributed Computing
	Introduction
	System Model and Preliminaries
	Matrix-Vector Multiplication Formulation
	Probabilistic Model of Time Delay
	Distributed Computing Model

	Proposed BLRC for Distributed Computing
	Linear Codes Preliminary
	Construction of the Proposed BLRC
	Encoding with the Proposed BLRC
	Decoding the Proposed BLRC

	Experiments and Numerical Results
	Modelling Task Completion
	Encoding Cost for the Proposed BLRC
	Decoding Cost for the Proposed BLRC
	Simulation Results for the Overall Process

	Conclusion

	Coding for a Multi-task Distributed Computing System
	Introduction
	System Model
	HCDC scheme
	Finishing Time Analysis
	Finishing Time Distribution of a Single Task
	Finishing Time of A Number of Tasks by a Worker
	Finishing Time Distribution of the Main Task
	Optimizing the Completion Time
	Subtasks per Worker

	Experimental Results
	Finding the Optimal k in the HCDC Scheme
	HCDC Performance versus Single-task Scheme
	HCDC versus Conventional MMC Schemes
	HCDC versus Hierarchical Coded Distributed Computing

	Conclusions

	Conclusions and Future Directions
	Conclusion
	Future Directions

	References

