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ABSTRACT

In this thesis we investigate the similarity solutions of a nonlinear parabolic
equation with fixed and moving bourdary conditions. This problem governs the
fow of a class of non-Newtonian fluids in a porous medium, and thus has ap-
plications in oil reservoir en iineering.

We first determine general similarity transformations which reduce the
governing equation to an ordinary differential equation. From these transfor-
mations we select those which satisfy the boundary conditions. At the same
time we determine the forms of the boundary conditions and the source term
that will allow similar solutions.

The ordinary dinerential equations obtained by the similarity transforma-
tion have been solved analytically for a class of particular cases. For other
cases, numerical solutions have been obtained. Solutions were also obtained by
a perturbation method and they were found to be in good agreement with those
obtained numerically.

The location and velocity of the moving pressure disturbance front have
also been investigated. The conditions under which the disturbance front prop-

agates with finite velocity are found.
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Introduction

In this thesis we shall consider the unsteady flow of a class of non-
Newtonian fluids through a porous medium. We consider power low fluids for
which the shear stress is related to the shear rate by the following rheological

equation of state [10}:
r=HP|" ¥ (1.1)

where T is the shear stress, % is the shear rate and H and n are
rheological parameters obtained through measurements. For a shear thinning
or viscoplastic luid 0 < n < 1, for a dilatant flud n >1 and for a
Newtonian fluid n=1. These fluids are discussed in [1] and [8].

The one dimensional Darcy’s Law for power law fluids is given by [8]:

v= - sgn( 2 )[—-|a’°n (12)

where v is the fluid velocity, p is the fluid pressure, p.; is the effec-
tive viscosity coefficient and k is the permeability coefficient of the porous
medium.

The material balance equation for a one-dimensional unsteady fluid flow

in the presence of a source is given by:

a(a’:)) = "'¢— - g(xatﬂ’) (1‘3)
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where p is the density of the fluid, g(z,t,p) is the source term and ¢ is

the porosity of the porous medium.
For sl'ghtly compressible fluids the variation of density with pressure is

given by [8]:

p = po[l + B(p — po)]

where @ is an experimentally determined quantity, known as the compress-
ibility coefficient of the fluid, and po and po are the reference density and

reference pressure respectively.

Substituting the expression for p into (I.3) we obtain:

ol + (o= P o2 + poBv L = 4B ~ o(z 1) (19)

Taking into account that for slightly compressible fluids we have B(p—po) €1

and ﬂv < % wecan approximate (1.4) as

ov _ op 1
"a_z‘ = "'ﬂ 5{ - Pog(z,t,p)' (15)

Substituting (1.2) into (I.5) results in:

-0
862 + Lo(a,tp) = (1 IR )

Thus, the equation governing the unsteady one-dimensional flow of a

slightly compressible non-Newtonian fluid, of the above type, through a porous



medium is:
a p Op ., 1_ i
% 4 (a,t0) = ol gl (L6)
where
o = Bo(EL)*
and

= L Bty
¢(3,t,P)— PO( k ) g(xatvp)'

In :he case of axisymmetric plane radial flow of non-Newtonian fluids

through a porous medium, Darcy’s Law is given by [8}:

k Op,1

o(r,t) =— sgn( )[ l =" (1.7)
The material balance equation is:

190 _ _.0p

; "a_;(rp”) = —¢6‘t - g(r’tap)' (18)

Substituting (I.4) into (1.8) we obtain

;Poll +B(p —po)] + vpoﬂ-aérg +po[t +B(p— po)]g—: = —¢poﬂ%§ ~g(r,t,p). (1.9)

But for slightly compressible fluids we have B(p—p.) €1 and ,Bv—3§ < 8,,

thus (1.9) can be approximated by:

K

ov
+ "5; = _/3¢_ - 'pl'g(r» ,P) (110)
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Substituting (I.7) into (1.10) we are led to the governing equation of fluid

flow for the axisymmetric plane radial flow:

22 yirep) = 2 EE L 2 L)
where
a* = (L)
and

= L(Betyd
¢(r$t’p)_ PO( k ) g(r’tip)'

In order to obtain physically feasible initial and boundary conditions, let
us consider the problem of injection and production of a non-Newtonian fluid
in a one-dimensional reservoir of semi-infinite extent with prescribed pressure at
the initial moment and on the boundary. For the case of axisymmetric plane
radial flow, we consider a cylindrical reservoir of infinite extent with a centrally
located well of known radius R, > 0, which is very small compared to the
dimensions of the reservoir.

At the initial moment, ie. ¢ =0, let us take the fluid pressure in the
reservoir to be constant, i.e. p(z,0)=py for 0<z<oo and p(r,0)= po,
for R, < r < co. The boundary condition at z =0, > 0 and r =
Ry,t >0 will be of the form p(0,t) = po +pu(t) and p(Ru,t) = po+pult)
respectively. The function p,(t) will be positive in the case of injection and

negative in the case of production.
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It should be noted that fluid pressure is a non-negative quantity. Thus
in the case of production we must ensure that po+ pw(t) is non-negative. If
pw(t) = W = const. then we simply require that —W < po. But if pw(t)
is not constant and po-+pw(t) becomes negative after a finite time ty, then
we only determine the pressure distribution in the reservoir for 0 <1t <tiy.
The pressure disturbance produced at z=0 and r=R, propagates
in the reservoir. The speed of propagation may be finite or infinite. For the
case when this speed is finite, let £(t) denote the location of the interface
separating the region of disturbed and undisturbed pressure, which from now
on we will refer to as the moving pressure disturbance front. Since at t =10
the pressure is undisturbed we have £(0) = 0 for the one-dimensional case
and £(0) = R, for the plane radical case. For the case when the speed of
propagation is infinite, £(t) = oo.

Therefore the initial and bous:d~ry conditions pertaining to equation (1.6)

»(z,0) = po

p(0,t) = po + puw(t), t>0
112
p(&(2),t) = po (12

Op
‘6—z|z=t(t) =0



and the conditions pertaining to equation (I.11) are:

p(r, 0) = Po

p(Rw,t) = po + pwlt), t>0

(113)
p(ﬂ(t), t) =Po

o

'52"=t(t) =0.

Our goal is primarily to determine admissible similarity transformations
of equations (1.6) and (I.11) and the forms of the functions ¢(z,¢,p) and
¥(r,t,p) which allow us to reduce the two partial differential equations to
ordinary differential equations. We will also show that the problems (1.6} (1.12)
and (I.11) (1.13) admit similarity solutions only if the function py(t) are of
specific forms.

These two problems, with % =0 and p,(t) = const., have already
been solved in [9]. However besides considering this case we determine simi-
larity transformations for cases in which ¥(z,t,p) #0 (#(rt,p) # 0) and
pw(t) # const. Although we have not established a general existence theo-
rem we have obtained closed form solutions for classes of particular cases. We
also present a numerical scheme which has provided solutions to these ordinary
differential equations for a large number of parameter values.

Equation (L6), with 9 =0 and —oo0 <z <00, has also been previ-
ously studied but only connected with an initial value problem. For exa.mplf:, in

[5] and [7] the authors investigate the existence and uniqueness of solutions and
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the existence of pressure disturbances moving with finite speed for the Cauchy
problem associated with equation (I.6) with =0 and -oco<z <oo.

Examples of physical phenomenon governed by a non-linear parabolic equa-
tion with a source term are given in [6], where asymptotic solutions of the

equation

ou _ ™) _

ot 9z?

are studied.

In determining suitable similarity transformation for our partial differential
equations we employ the Clarkson-Kruskal (C.K) technique introduced in 2],
[3]. In these articles the authors use this particular technique to obtain gen-
eral similarity transformations for several other partial differential equations.
However, there, these differential equations are not connected with any initial
and boundary conditions. Initial and boundary conditions introduce additional

constraints on the similarity transformations for specific problems.



CHAPTER 1

General Constraints for Similarity Transformations

In this chapter we consider similarity solutions for the problems outlined
in the introduction. An attempt has been made to keep the solutions as general

as possible. We begin with a change of dependent variable by setting

p(z,t) = po + u(z,t)

for the problem (1.6), (1.12), and

P(T, t) =po + u(r’ t)

for the prcblem (1.11), (1.13).

The problem (1.6), (I1.12) reduces to solving the equation
o Ou Ou Ou y_
= +¢(z,t,u) = ( = 151" I==1) (1.1)

in the domain (0,00) x (0,00) with initial and boundary conditions:
u(z,0)= 0, z20
u(0,2)=pu(t), t>0
u(€(t),t)=0

2t mgy="0

(1.2)

where

w(z,t,u) = P(z,t,po + u).

8
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The problem (1.11), (1.13) reduces to finding the function wu(r,t) satis-

fying the equation

au 1 a‘u 1
2 —— — e | em—] R — ——— .
a? = +o(rt,u) = = |5~ + (13)

ot

in the domain (Ru,0) X (0,00) where e(r,t,u) = P(r,t,po +u) and the
initial and boundary conditions:
u(r,0)=0, - >Ry
u(Ru,t)=puw(t), t>0
(1.4)
u((t),t)=0
84 —y)=0
To begin with we concentrate our effort: on obtaining transformations
that will reduce equations (1.1) and (1.3) to ordinary differential equations.

According to the CK-technique [3] we will seek solutions to the equations (1.1)

and (1.3) in the form.

u(y,t) = Uly, t, f(ﬁ(ya t))] (1.5)

where Uly,t,f] and §(y,t) are functions to be determined.

Note that equation (1.1) can be written as:

u 1 0% 0u,1_
025; il w1l ' +¢(z,t,u) =0. (1.6)
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Upon substituting (1.5) into (1.6) and (1.3), for y ==z we have:

02[U¢ + Uff'ft] - %{Uzz + (2Uzj'€z + Uf{z:)f’ + Ufffzflz

(1.7)
+ Ufegf”}“Uz + Uf&zfll-k_l} + ‘P(za t,U)=0
and for y=r we have:
1 .
a2[Ut + Ufgtf'] - "‘{Urr + EUr + (2Urf + Ufﬁrr + 2U}’Er)f L U,’,E?-f’z
n r r (1.8)

+ U2 f" HIU» + Ugle f'13 7} + (1, U) =0.
In order for equations (1.7) and (1.8) to be ordinary differential equations
in f(£), the ratio of the coefficients of different derivatives of f({) must be
functions of f and ¢ only. For example, using the coefficient of f" as

a normalizing coefficient, considering the coefficient of (f')?> we must have:

Usr = F(f,6)Us

where F is a function to be determined. So,

Us _
Uf = F(f7 f)-
Integrating twice we obtain
U= g(ya t) + T(y’ t)r(f, E) (19)

where T'(f,£) is the result of integrating F(f,£) twice, and g(y,t) and
T(y,t) are integration functions. Note that y stands for z in the case of

equation (1.1) and for r in the case of equation (1.3).
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This result shows us that it is sufficient to consider, for equations (1.1)

and (1.3), similarity transformations of the form (3]:

u(z,t) = g(z,t) + T(z,t)f (€(=, 1)) (1.10)

and
u(r,t) = g(r,t) + T(r, ) (£(r, ) (1.11)

respectively.
Now, substituting (1.10) into (1.6) and (1.11) into (1.3) yields:
a? [gt + T f + T&f'] - %[gzz + Tz f + (2Tzfz + T{zz)f'

(1.12)
+ TE " llgs + Tef +TéF'[* ] + (2, t,u) =0 '

and

@lge+ Tof +T6f] = 2lgor + 7 g0+ (T + T TS

+ (3 Te + 2Tk + Té)f' + TEL") (113)

% [lge + Tof + Técf'13 7] + (r,t,u) = 0.

In order for equations (1.12) and (1.13) to be ordinary differential equa-
tions in f(€) certain constraints must be imposed on the functions ¢,T and
£. These restrictions will be obtained by requiring that the ratio of coefficients
of different derivatives and powers of f(§) be functions of ¢ only. The
appropriate ratios of coefficients are determined by performing the following

operation on both equations: In the second square parenthesis we normalize by
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the coefficient of f”, in the third square brackets by the coefficient of f’,

and in the first square brackets by TE2|T¢.|*~! and TE|TE,|*~!  respec-

tively.

We thus obtain the following sets of constraints. For the one-dimensional

case we have:

9: = Fi(§)T¢:
T, = F;(6)T¢.
gz2 = F3(€)TE:
Ty, = Fu(£)TE:
2T, &, +T €.z = F5(€)TES
gt =Fa(€)TEATEN
T, =Fy(§)TE2| T |+~

16 =ROTETEN
and ¢(z,t,u) must be of the form:
o(z,t,u) = R, FTEITE
Note that if ¢(z,t,u) is of the form:

w(z,t,u) = b(z,t)u + h(z,?)

(1.14)
(1.15)
(1.16)
(1.17)
(1.18)
(1.19)
(1.20)

(1.21)

(1.22)

(1.23)
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then by (1.10)-we have:
o(z,t,u) = bz, )T (2, t) F(€) + Yz, t)9(z, 1) + h(z,?).

Substituting this expression into {1.12) and collecting coefficients of f°, f

and f' then the constraints (1.19) - (1.21) are replaced by:

a®gy + by + h = Fe(€)TE2|TE|* (1.19a)
2T, + bT = Fy(€)TE2|TE > (1.20a)
a?TE, = Fa(§)TEATEN (1.21a)

and obviously constraint (1.22) no longer applies.

It should be noted that in the particular case when n = 3 the exponent
;1; —1 appearing in equation (1.12) is equal to one. In this case certain alge-
braic manipulations can be performed on this equation which lead to different
constraints for the functions ¢,T and §. However, in the next section we
discover that if we take g(z,t) =0 then we obtain a similarity transforma-
tion suitable for our boundary value problem. In this case the constraints for
n=1 are identical to (1.14) - (1.22).

If the constraints (1.14) - (1.22) are satisfied then equation (1.12) becomes:

£ (E© + FOf + FOF) - JBO+ROF +BOF T

«1RE) + FOf + fIF T + Fol6, /) =0
where A?=a? if ¢(z,t,u) # bz, t)uth(z,t) and A*=1 and Fy(&, )=

0 if ¢(z,t,u)=¥z,t)u+h(z,t).
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For the plane radial case, the constraints wie:

gr = Fi(E)TE, (1.25)
T, = Fy(€)T¢ (1.26)
grr + =9 = Fa()TE: (.27)
T+ 20 = R(TE (1.28)
(L 4+ oL )e, + Tt = F(OTE: (1.29)
ge = Fo(€)TEHTE N> (1.30)
T, = Fr(§)TETE |+ (1.31)
Té = Fo(§)TETE | (1.32)
and ¢(r,t,u) must be of the form:
o(r,t,u) = Fo(€, f)TETE|= . (1.33)

Note that if

o(ryt,u) = B(r, ) + h(r, ) = b(r, YT(r, ) F(€) + Blr,)g(r ) + h(r,2)  (1.34)

then as in the one-dimensional case the constraints (1.30) - (1.32) are replaced

by

a%g; + bg + h = Fs(£)TE|TE,|= " (1.30a)
a*T, + bT = Fy(€)TE3|TE, > (1.31a)

a*TE, = Fy(€)TE3|TE,|* ! (1.32a)
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and the constraint (1.33) no longer applies.
For the particular case when n = 3, the observation made for the one-

dimensional case apllies here as well.

If the constraints (1.25) - (1.33) are satisfied the equation (1.13) becomes:

AE(E) + FOf + B = -(F(&) + FOF + FOf + 1
> (1.35)

\R(&) + Ba(Of + fIF 7 + Fo(6,£) =0
where A? =da? if (r,t,u) # b(r,t)u+h(r,t) and A2 =1 and F(¢ f) =
0 if (r,t,u)=brt)u+h(rt).

The differential equations (1.24) and (1.35) obtained for the one-dimensional
and plane radial cases respectively are identical. But the functions g¢,7 and
£ which appear in the transformations (1.10) and (1.11) can be different as
functions of their variables since the third, fourth and fifth equations from the
list of constraints are different for the two cases.

Any set of functions ¢,T and § which together with the functions
F\,F,,...,Fs satisfy the constraints (1.14) - (1.21) or (1.25) - (1.32) determine
a similarity transformation for the partial differential equation (1.1) or (1.3)
when the function ¢ satisfies the constraint (1.22) (or (1.23)) or (1.33) (or
(1.34)) respectively.

Note that in both cases the one-dimensional case and the plane radial
case we have eleven unknown functions: ¢,T,¢,F1,Fa,..., F3 which must sat-

cight equations (1.14)- (1.21) or (1.25) - (1.32). Thus there are three
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degrees of freedom which can be used to determine a particular transformation

compatible with the given boundary conditions.



CHAPTER 2

Constraints Arising from the Boundary Conditions

Let us now determine the constraints that the boundary conditions of our
problem impose on the similarity transformation.

For example the boundary condition u(f(t),t) =0, t>0 gives us
o (E(t) 1) + T(E(E), ) FIE (8D, )] = 0. (21)

Note that this relationship between g¢,T and f is the same for both prob-
lems.

On the other hand in order to obtain a fixed domain for the ordinary
differential equation in f(§) we impose the following restrictions on the func-

tions &(zx,t) and &(r,t):

£[e(t),t] = &1 = const. (2.2)

and,
£(0,t) =€ = const,, (2.3)
£(Rw,t) = €o. (2.4)

However, upon examining the general constraints we realize that we are

not able to satisfy all the constraints with Ry # 0. Yet, the well radius is

17
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extremely small compared to the dimension of the porous medium. Thus we
can approximate the condition (2.4) with (2.3).

The condition (2.2) together with (2.1) imply that:
g(€(t),t) = ~F(E)T(&(1),t)
which is possible if we take
g(z,t) = const. T(z,t)
for the one-dimensional case and
g(r,t) = const. T(r,t)

for the plane radial case. Substituting these into the transformations (1.10) and

(1.11) respectively and denoting const. + f(§) by f({) we obtain

u(z,t) = T(z,t)f(£) (2.5)
and

u(r,t) = T(r,t)f(£)- (2.6)

So in the constraints (1.14), (1.16), (1.19), (1.25), (1.27) and (1.30) we will take
g =0 which implies that Fi(¢§) =0,F3(¢§) =0 and Fe(§) =0 for both

problems.
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Let us now focus our attention on the constraint (1.15) and its counterpart
in the plane radial case, (1.26). Denoting the spatial variable by y and

integrating with respect to it we have:
T(y,t) = HHT(£)

where TI'(€) = eJ P04 g H (t) is an integration function.
Substituting this result into (2.5) and (2.6) and again denoting the spatial

variable by y, we obtain

u(y, t) = HHOT(E) ().

Reassigning f and T we are lead to the following similarity transforma-

tions:

u(z, t) = TO)f (E(,1)) @)
u(r,t) = T(F (E(r+)) (28)

Now, since T is only a function of ¢, the constraints (1.15), (1.17)
and (1.26), (1.28) imply that F3(§)=0 and Fy(€) =0.
In order to determine £(z,t) we use the constraint (1.18), which now

can be written as
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Integrating with respect to z we obtain
£ = T(t)ef Fg(§)d{

where 7(t) is an integration function. For convenience we will take T(t) >0
for t20.

Integrating again we have:

/e‘ f Fi(f)d€d§ = 1'(t)2: + ﬂ(t)

where 7(¢) is an integration function.
Assuming that the function on the left hand side of this equation has an

inverse, solving for ¢ we obtain:

£ = Q(z7(t) + n(t)). (2.9)

Note that if Fs(£)=0 then £(z,t) = z7(t) +n(t).
Now we will show that without loss of generality we can take F3(§) =0.

Indeed, substituting (2.9) into the transformations (2.7) we obtain:

u(z,t) = T()fIQ(zr(t) +a(t))]

Reassigning f, this equation can be rewritten as:

u(z,t) = T(t)f (zr(t) + n(t))



21

which together with (2.7) implies that:
&(z,t) = zr(t) +1(t)
and from (1.18) it results that
Fs(§) =0.

On the other hand, the condition (2.3) implies that 7(t) = &o which

can conveniently be taken equal to zero. Then,
&(z,t) = zr(t). (2.10)

Before determining 7(t) and T(f) from the remaining constraints we
will find the expression of £(r,t) for the plane radial case. In light of the
fact that T is a function of t only, the constraint (1.29) becomes

Srr 4+ B = Fy(E)E-- (2.11)
& r

In the case when & =0,
E(r,t) = 7(t)r +n(2)-
Then by the condition (2.3) with & =0,

n(t)=0
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thus,

§(r,t) = rr(2). (2.12)

Substituting this result into (2.11) we obtain

F5(§) = (2.13)

n
E
I &.,7#0 then integrating (2.11) with respect to r we obtain:

-

T(t
& = _f;l ef Fy(£)d¢

where 7(t) is an integration function, which for convenience will taken to be

positive for ¢t 2> 0.

Integrating again we obtain:

/ o= S Fs@dg g

()" + ()

where n(t) is an integration function. Reasoning as in the one-dimensional

case we came to the conclusion that

1
1—n

£(T, t) =

()" + 9(t)

and that Fy(€) =0.
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In order for this expression for &(r,t) to satisfy the condition (2.3) we
must have n<1 and n(t)=&. So, reassigning 7(t) and taking & =0

we may write:
E(r,t) = T(E)rt™. (2.14)

It is easily verified that this form of the similarity variable can be reduced
to the previous form (ie. £(r,t) = rr(t)) by reassigning the functions ()
and f(£). However we wiil consider the expression for &(r,t) given by (2.14)
since the resulting form for the source term may be more appealing.

In order to determine the remaining unknown functions associated with

our transformation we must distinguish between different forms of the function

P.



CHAPTER 3
The Ordinary Differential Equations for the Case of

p#buth

In this case we must take into consideration the constraints (1.20) - (1.22)

and (1.31) - (1.33). From (1.20) and (1.21) or from (1.30) and (1.32) we obtain:

T'(t) _ Fr()
T(t) Fa(§)

§e.

Taking into account the expression for £ given by (2.10), (2.12) or (2.14) we

obtain:

_T(#
e = Py £ (3.1)

for both problems.

Thus,
T'(t) _ F(§) ¢ T'(t)
T(t) ~ Fa(€) - 7(t)
So, we must have:
Fild) ¢ o= cons
Fy(¢) $=7= t

which implies that

) ()
oMK OR
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Integrating we obtain:
T(t) = K[r(®)”

where K is an integration constant. But then we would have

u = K[r(t)]"f(£) and reassigning f(¢&) as Kf(§) umplies that

T(t) = [=(]"- (3.2)

Now, in order to determine 7(t) we substitute this < xpression for T(t)

and the appropriate expression for £ into the constraints (1.21) and (1.32):
£r'(t) = Ra(@)[r(p)+a 7D (33)
if ¢ is given by (2.10) or (2.12), and
(r(O IR (1) = (1 m) P RO (34

if ¢ is given by (2.14).
First we analyse the equation (3.3). From this equation it is evident that

Fs(¢) should be of the form:

Fy(§) = af (3.5)

where a is a constant. This implies that Fy(§) =~va. The equation (3.3)

becomes:

[rO 2 D) = o
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Integrating, we obtain for v # 12

(t) ={[-1- % - 1(;1; ~ Dat + ¢ } FHED (3.6)

where ¢; is an integration constant. For y=1*% we obtain

7(t) = c1e** (3.7

where ¢; 1is an integration constant.
On the other hand, substituting the expression for £ given by (2.10) and
(2.12) into (2.2) we obtain an expression for the moving pressure disturbance

front:

ot) = bar(@®) ™. (3.8)

If the front propagates with infinite velocity this implies that § = oo and
no restriction is imposed on 7(t). However if the velocity is finite then £(t)
must satisfy £(0) =0. This implies that [r(0)]~! =0.

This fact suggests that the case 7 = 2} does not constitute a similarity
transformation that is compatible with our problem. Whereas for the case 7 #

2+l we have to have ¢, =0, and

n+1+4(1—n)>0. (3.9)
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If we choose a = m{—;z‘-l—_;)- then we may write:

7(t) = tFFEG= (3.10)

T(t) = tFFG=m (3.11)
E(y,t) = gt T, y=z or y=r (3.12)
and £(t) = T FTRED, (3.13)

Now we will determine the form of the function ¢ such that the con-
ditions (1.22) and (1.33) are satisfied. If ¢ = 0 then Fy =0 and all con-
straints are satisfied. If not then since we already have expressions for T(t)

and £((y,t), we may write:
TE|TE, ¥ = THO+D* for v #0,
and
2 * 0 1+3 -1
TE|TE | = [r@) "~ =1 for ¥=0.

Substituting this result into (1.22) and (1.33) and taking into account that

u=Tf we obtain:
o(y,t, Tf) = Fo(&, TTO+HR* for v#0 (3.14)

and

oy, t, f) = Fp(&, f)t™! for v=0. (3.15)
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The equation (3.14) implies that we must have:

p(y,t, Tf) = FENTIf)* (3.16)

where

n+1
ng-—-1

1 1 1
q—;(l-l-;)-l-;; or Y= (3.17)

Thus in order to have similarity solutions to our problems, ¢ in the

equations (1.1) and (1.13) should be of the form
(s t,u) = F(yt T ) ult (3.18)

where y=2z and y=r respectively.

The equation (3.17) and the constraint (3.9) impose restrictions on g,

namely:
g<1l or q>~;1; if n<1
(3.19)
and, g>1 or g<2-1 if n>1
From (3.16) we deduce that
Fy(¢, f) = F(E)IfI (3.20)

Now, for the case when 4 =0, the equation (3.15) and the fact that

u=f imply that:

o(y,t,u) = Flyt=1,u)t™! (3.21)
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where
F(yto, u) # byt 7 )u + h(yt 7).

In this case Fy(¢,f) from the constraints (1.22) and (1.33) is given by:

F9(£$ f) = F(&v f) (322)
We may now write the differential equation in f(§). For the one-dimensional
case we have:
2
na ' l el d~1 _ q_
Tt =) (vf + )+ - fIF F(O)IfI?=0 (3.23)
for v= ;"-‘qi_lT and,
(3.24)

na’® ¢, 1 oy pnd— _
e d T - F ) =0

for v=0.
For the plane radial case with ¢(r,t) given by (3.12) we have

ne’ (vf +£f Y 9=0 (3.25
1+n+,./(1_n) 7 ~ ) n(f f)|f| - (&)‘f‘ - ( )

for 7=;"3qi';1—1 and

na2 ! 1. n ., my et :— _
1 +5(gf + fMIfI"t - F(&,f)=0 (:'3.26)

for v=0.
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Let us now return to the case when £(r,t) is given by (2.14). In this
case, as noted before, 7(t) is determined by the equation (3.4). This equation

indicates that F3(¢) should be of the form:
Fa(6) =o'€T%, n< 1l
This implies that F(¢) = va'¢ ‘:-L:, and the equation (3.4) becomes:
4O L S ORS

where a=(1-n)="tla.

Integrating we get:

T(t) = [—'[1 +:(-;-Z(r:.)— n)2] at + c]"""‘l.',:.:.,L_l(::n)i (327&)

for 'y#f—(—l—"—'%)- and

1—-n

_ —(14n)

T(t) =ce®® for y= a=ny

where ¢ is an integration constant.

The location of the moving pressure front is now expressed by:
- =1
£t) = & ()] . (3.28)

Reasoning as for the equation (3.8) we conclude that we must have [r(0)]~! =0

and therefore (t) is given by (3.27a) with ¢=0 and 7> 5 1+%) . Thus

1-n
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. ___=n(l-n .
if we choose a = l-l-_n-W(T:'Lﬁ’ then we have:

—~n(l-n
r(t) = tTFREET (3.27)
&(r, t) = rl'"tn_-i-li"(vl(:_:'nL)’

and

£(t) = ¢F T tFFe
With these expressions for &(r,t) and T(t) we find that:
TETE |~ = (1 - n)F 1~ CEITIOHENT for 770
and,
T§3|T§,-|*'l =(1- n)#'*'lr"(l""')t'1 for y=0.

Substituting this result into (1.33) we obtain

o(r, £, TF) = Fo(£, f)(1 — n)d+1p=(+WITFO+D for 4 £0 529)
3.29

o(rst, £) = Fol6 (1 = m)+1r=G4met for 20, (3.30)
The equation (3.29) implies that we must have:

o(r,t, Tf) = F(&)r~Cr(TIf)* (3.31)
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where ¢ is given by (3.17).
Thus in orde- to have similarity solutions to our problem, ¢(r,t,u) in

equation (1.3) should be of the form:
o(r,t,u) = F(ri~™t Tt ) p=(+m)|y|e (3.32)

where ¢ is subjected to the conditions ¢ > ;1; or ¢<2—n. From (3.31)

we deduce that Fy(¢,f) is given by:  Fo(£,f) = -(-l-ﬁ;? F(&)|f1e.
Now for the case when v =0, the equation (3.30) implies that we must

have:
e(r t,u) = F(rl_“t_"ﬂx;" ,u)t e (1+n) (3.33)

with  F(r1=nt7%8, u) 3 b(r1+neaF )y + h(r1*7t7¥%) In this case Fo(¢,f) =

We may write the differential equation in f(£) for the plane radial case

with &(r,t) given by (2.14):

—n62

(1- n)%[l +n+ (1 - n)?}

!
(1- n)-,l;-H

F\fI*=0
(3.34)

e (rfef )1 FIF1E 4

for 7=;"-';F_1—1 and

!
(1~ n)%-i-l

na® 1
£ = SR -

(n+1)(1—n)* F(,f)=0  (3.35)

for y=0.
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It remains now to determine the forms of the function pw(t) and the
boundary conditions for f(£) required by the similarity transformation. The
boundary conditions for the one-dimensional problem at z =0 and for the
plane radial problem at r = R, are u(0,1) > pw(t) and u(Ry,t) o
pw(t) respectively.

These conditions indicate that the similarity transformations for the func-
tion u impose specific forms on the function p,(t)- In Chapter 2 (equations
(2.7) and (2.8)) we established that wu(y,t) = T(t)f(£), where y represents
the spatial variable. This implies that T(t)f(0) > pw(t). Thus p,(t) must

be of the form:
pu(t) =Wt*, t>0

where W is a constant, &= yriaG=m) and 1+n+v(1—-n)>0 if the
similarity variable ¢ is given by (2.10) or (2.12) and a = 1—_*_7';','_3_71('1"2—%; and
1+n+9(1—-n)2>0 if ¢ is given by (2.14).

In order to determine the boundary conditions for f(£§) we need to refer

to the boundary conditions for u: (1.2) and (1.4). From T(t)f(0) = Puw(t)

and the expressions for py(t) we deduce that for all cases we must have:
F(0)=W. (3.36)
From u(f(t),t) =0 and u,(é(t),t) =0, ¢>0 we deduce that:

f(&)=0 (3.37)
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and

flte) =0. (3.38)

It remains now to solve the ordinary differential equations in f(§) with

the boundary conditions (3.36)-(3.38). We will deal with this task in a later

section.



CHAPTER 4
The Ordinary Differential Equations for

The Case of ¢=0bu+h,b#0

In this case we must take into corsideration the constraints (1.19a) -
(1.212) and (1.30a) - (1.32a). Using y to denote the spatial variable, from

(1.20a) and (1.21a) or from (1.31a) and (1.32a) we deduce that:

Tt b(y1 t) _ F’l(E)

T a2 Fy(f) &

or taking into account (3.1),

T'(2)

Wy,t) _ Fr(6) , T'(t)
0 ol (4.1)

@  F(§) " ()

+

Here we will consider two cases: b= 0b(y,t) and b=20(t). I b= b(y, )

then it must be of the form:

b(y, t)= r[g(% L) + A(t).

Then,
() -1
)~ @ A(t),
@) 1
=7 2 (42)

35
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and

Integrating the equation (4.2) we obtain
¢
() = keds Jo amin (4.3)

where k is an integration constant.

The expressions for £(t) given by (3.8) and (3.28) and the condition
£(0) =0 imply that [r(0)]~! = 0. But this condition cannot be satisfied by
the expression for 7(t) given by (4.3). Therefore b musi be a function of
t only: b=b(t).

In this case we must have

F(§) _
Fy(¢)

mi

and then the equation (4.1) becomes:

T'(@t) o) . T'(t)
TR T @ )

Integration of this equation results in:
T(t) = [r(t)]7e ™ Jo Mo, (44)

Now, having obtained expressions for T(t) and §(y,t), we will deter-

mine 7(t) from the equations (1.21a) and (1.32a).
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If we consider the expressions for & given by (2.10) and (2.12) then

(1.21a) and (1.32a) become:

¢ T = ROl e B s, (45)

If ¢ is given by (2.14) then (1.32a) becomes

¢ T8 = Ry - mHr e - Jj s,
t

Expressing r in terms of § we may write the above equation as:

'(t)
7(t)

a2t =L = Fy(€)(1 - n)n“e‘f‘—[r(t)l”**"“"*x-»e?’“""fo' b4 (4.6)

4.a First we analyse the equation (4.5). From this equation it is evident

that Fy(¢) should be of the form:

Fy(§) = af

where @« is a constant. This implies that Fy(£) = 7a. The equation (4.5)

becomes

[T(t)]-z—l—‘v(l—l) I(t)__ o —("" -1)% f 5('1)4')
Integrating we get:

-_— t -1 L4 -1
f0 = {5 it ol - 0] [ FEOL Oy g @)
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for y# 42

‘ - »
and T(t) = cexp[%/; e:zl'(',l.'—l) fo b(n)dqdu] for = i’t’;

where c¢ is an integration constant.
As stated above, the condition £(0) = 0 implies that [r(0)]! = 0.
From this requirement we conclude that < should be choosen such that n+

1+4(1—n)>0 and thus 7(¢) is giver by (4.7) with c¢=0.

—na’

If we choose a= Py g gy then:

t _ v .
() =| / e TR [T 8 g ey (4.8)
0

t _ v -n - ¢
T(t) = | / e FHED [ bndn gy ey T Simdn, (4.9)
0

t -1 v -n
gw,t) =yl [ HETD gt (4.10)
0
and
t _, v
Lt) = 51[/ e:!‘('k—l)fo b(ﬂ)dndul—-r,. TFA=n) (4.11)
0

Turning our attention to the constraints (1.19a) and (1.30a), we determine
the form of h(y,t) for which we may obtain similarity solutions to our prob-

lems. f Ah=0 then Fs =0 and all the constraints are satisfied. If not
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then from the expressions for £(y,t),T(t) and T(t) given above we obtain

that:

-l t
TE|Te, |51 = et o DN +1+3.

This substituted into the constraints (1.19a) and (1.30a) tells us that h(y,t)

should be of the form:
B(ut) = Flyr(e)em Jo X0 r() #4143, (412)
K h(y,t) is of this form then
F5(§) = F(§)

We may now write the differential equation for the function f(¢):

na?
n+l14+91-

o f + ¢f)+ -1,; I —-FE) =0 (4.13)

for the one-dimensional case, and

na?
n+144(1-n)

(f+EM+EG AP -FO=0  (14)

for the plane radial case.
4.b We now determine 7(t) from the equation (4.6). In this equation

F3(¢) should be of the form:

Fy(£) = o'£ 5.
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This implies that Fy(¢) =ya'€ E'%, and the equation (4.6) becomes:

[r()] 2R TG ER () = %ef’f’(*‘” o tnydn

where a =(1-n)»tla.

Integrating we get:

_ _ 2 t _ v —n{(i-n
() = (NSRRI & [ G L0y i gy
- 0

for v # %ﬂ—%’?— and
t _ v
0= el [ HEDLa)

—(14n)
l1—-n

for y= where ¢ is an integration constant.

The requirement that [r(0)]”! =0 connected with the condition ¢(0) =
0 implies that 7(t) is given by (4.15) with ¢=0 where v is such that
7> G

—n(1—n)a?

If we choose a= Trnt0=m)* then
t - » -n -
r(t) = / (S [ s g iy (4.16)
0
T(t) = [r(t)]e st Jo 4, (4.17)

&(r,t) =r'""(2),
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and

1 -1
oty =& [r(O). (4.18)

In this case,

-1 t
TﬁzrlTﬁri-k—l =(1- n)%+1r_(l+")e‘n—a’ fo b(")d"[ar(t)]%-{"l-i-};

which can also be written as:
R N st o)

TE2|TE, |1 = (1 —n)a+lg 1=ne e

Substituting this into the constraint ( 1.302) tells us that h(r,t) should be of

the form:

h(r9t) = F(rl—nT(t))e_;%r f; b(ﬂ)d"[r(t)]%'i'l-{--};-l-:_‘_i_:% .

If &(r,t) is of the form then
Fo(§) = (1 - m) ™ ~HEFRF().

We may now write the differential equation for the function f(é):

na? Ho ' l nppnd—=1_r1_n)y—s-1 1o -
e RO L S0 R R 0
(4.19)

Let us now determine the forms of the function pu(t) required by the

similarity transformation. The boundary condition at z =0 or r = Ry
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implies that py(1)is0 = WT(t), W = const.. Thus p,(t) must be of the

form:

t Y .
puw(t) = W[/ o H G- [ b(n)dndu]ave-g, Jodmdn 4 g
0

where a = 1+n+-'1:(1—n) and 1+n+9(1—-n) >0 if the similarity
-n(l-n)

variable ¢ is given by (2.10) or (2.12), and a = 1+n+~(1 —n)?

and
1+n+9(1-n)2>0 if ¢ given by (2.14).
The boundary conditions for f(£) are the same as those obtained for

the case of ¢ # bu+ h.



CHAPTER 5

The Moving Pressure Disturbance Front

In the previous sections we have deriv- ' the expressions for the location
of the moving pressure disturbance front ¢(t). For both the one dimensional
and plane radial cases, if é(y,t) = yr(t), where y is the spatial variable,

we have determined that £(t) is given by:
Yty = &lr(@®)] ™.

But the expression for 7(t) depends on the form of the source term ¢(y,t,u).

Thus the corresponding expressions for £(t) are:
o) = bLt* (5.1)
if
(y, t,u) # bt)u + h(y,?)
and
fozpa-n [T s
q =gl HEDL 00 (5:2)
0

if o(y,t,u) = b(t)u + h(y,t) with h(y,t) of the form (4.12). In (5.1) and

(5.2)

n

A= >0
1+n+9(1-n)

43



according to (3.8).

Let us now investigate the behavior of the moving pressure disturbance
front as t tends to infinity. But to do this we must restrict ourselves to those
cases for which pu(t) = —po for t>0.

I 4(t) is given by (5.1) then the pressure disturbance propagates to
infinit; as ¢ — oo. The behavior of £(t) givenby (5.2)as t— o0 depends
on the sign of (% —1) fo' b(n)dn.

¥ (2-1) J3b(n)dn <0 as t— o then tlinggﬁ(t) = 00

i (L-1)f;b(n)dn>0 as t—o0 then J5° T [T omdngy, g

convergent and thus if welet A= lim f et

1) f; bdn g, then lim €)=
t—o0
£1{A4)*. Therefore, in this case, we can conclude that the pressure disturbance
propagates only to a finite location.
In order to obtain a physical interpretation of these results we will consider

the particular case when n <1, b(t) = b= const and o(y,t,u) =bu. In

this case the location of the pressure disturbance is given by

an

)= bl— 1*[ —(1 - e TGP, (5.3)

Taking the limit of (5.3) as ¢ — o0 Wwe obtain:
oo if b<0

lim £(t) = (5.4)
00
® if >0

where 7= €1[l_n]'\
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Note that this result is consisted with the physical process. Indeed, in the
case of injection, i.e. u=p—po >0, the presence of sources, i.e. ¢ <0,
would indicate that b < 0. Thus, for the case of injection in the presence of
sources (5.4) indicates that the front propagates to infinity.

If we have injection in the presence of sinks, ie. ¢ > 0, then this
would indicate that b> 0. Therefore, for the case of injection in the presence
of sinks (5.4) indicates that the front reaches a maximum location: £* = %
from which the pressure disturbance cannot propagate.

If we have production, i.e. p—po <0, in the presence of sources, then
b> 0. So, for the case of production in the presence of sources (5.4) indicates
that the pressure disturbance propagates only to £* = .

Finally consider the case of production in the presence of sinks b < 0.
Then, (5.4) indicates that the front propagates to infinity as ¢ — oo.

Like the behavior of the pressure disturbance front as t — oo, the rate
at which it propagates through the fluid is relevant to the understanding and
prediction of some physical processes of practical interest. The velocity of the
disturbance front is obtained by differentiating the expressions for £(f) given
by (5.1) and (5.2) with respect to time. Thus, if oy, t,u) # b(t)u + h(y,t)

then the velocity of the front is given by:

dd . a1
=t (5.5)
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while for the cases with ¢ = bu the velocity of the front is given by:
de 1.1 =b(1_ -1, =31_
= - Bl Sl :!-(n 1)t - :y(" 1)t - X—l. .
- RV e 11} (56)
We note that in the equation (5.5) 4¢ decreases in time if A< 1. So

dt

in this case the motion of the disturbance front is deaccelerated. If A > 1

then % increases in time implying that the motion of the disturbance front

is accelerated.

Studying fl—f given by (5.6) by evaluating ‘;—:f- we conclude the fol-

lowing: If we first consider the case of A < 1 then we may say that if

b > 0 then the motion of the disturbance front is deaccelerated while if

2

b < 0 then the motion is deaccelerated for ¢ < fﬁ 595-‘3 and accelerated

2n
for t> -1‘-‘:'}‘ —“b-.
Nowif A>1 and b5<0 then the motion of the disturbance front is

accelerated while if 5 > 0 then the motion is accelerated for { < fi',', Qf

and deaccelerated for ¢ > -%:—"‘; é‘l,f\-.
For the radial case, besides the similarity variable &(r,t) = rr(t) we
determined a transformation with the similarity variable &(r,t) =r!'""7(t) in

which 7(#) is given by (3.27) or (4.16).

~ For this transformation £(t) is given by:

U(t) = EFT TG
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or

t _ v
o) = £7° / eSHED [ b g
0

We note that these expressions for £(t) are similar to those given by (5.1),
(5.2). Thus the conclusions concerning the behavior of the moving pressure

disturbance front made above apply to this case as well.



CHAPTER 6

Particular Cases

In the previous chapters we have determined the similarity transformation
- the forms of the functions p, and ¢ which aliow the existence of

similarity solutions. For both problems the similarity transformation is:

p(y,t) = po + T ()£ (§) (6.1)
where

&(y,t) = y7(?) (6.2)

T(t) = [r)]7 and 7(t) = tTFF0=m i 3§ #b(E)(p— po) + h(y,t),

T(t) = [ﬂr(t)]’ie':';' f: b(n)dn
and

() = l/ot (D [} i o i = ) —po) + h(uit)

with 1+n+9(1-n)>0,
(6.3)

and y is the spatial variable z or r.
f(&) is the solution of an ordinary differential equation which depends
on pw(t) and o(y,t,p). For the one dimensional case f(€) is the solution

to the equation:

aa®(~f + &) = = 'If 1A+ FQIfIT =0 (64)

48
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and for the plane radial case f(§) is the solution to the equation:
1 -
ad(rf +€f) = 1 (5 £+ FOIFIF T+ FOUT =0 (65)

where

-n

“= 1+n+9(1—n)

for both cases. (6.6)

If 9 is of the form ¥(y,t,p) = F(&)lp—po|? then vy = :q—ll and

g must satisfy the conditions

g<1l or q>;1; if n<l1
and (6.7)

2
g>1 or q<;—-1 if n>1.

In this case we must have pu(t) = W’t'*ﬂx_:i‘-"5, t>0.

¥ ¥(y,t,p) = FE)p—poltt™!, ¢#1, then v=0 and we must have
pu(t) =W, t>0.

Finally, if $(y,t:p) = KO)(p — po) + F(Qe T Jo "PMr(g]¥+1+%  and

= v, 5% [ b(n)dn . . .
pu(t) = W(r(t)]Ye=T Jo then f(£) is a solution of (6.4) or (6.5) with
g =0 and no restriction on v other than (6.3).

As it was shown previously the boundary conditions for f(¢) are:

fO)=W (6.8)
f(é&)=0 (6.9)
fl(6)=0. (6.10)
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The additional boundary condition allows us to find the constant §; which
in turn determines the location of the pressure disturbance front, denoted by

¢(t) and given by the formula:

L8 =&lr@) ™.

In this chapter we deal with solving the ordinary differential equations
mentioned above. We first consider the cases in which a closed form solution
can be found. In the cases when this is not possible we employ numerical and

approximation methods.

6.1 Closed Form Solutions For One-Dimensional Flow
It is easily seen that the differential equation (6.4) has solutions in closed
form for F(§)=0 and y=0 or 4 =1. Therefore for these cases we are

able to write the solution of the problem (I.6), (I1.12) in closed form.

6.1a F(§)=0, v=0

In this case the equation (6.4) becomes:

na?
n+1l

6 + = fIFR =0
which yields the following first integral:

d =c—M2ﬂL" 6.1.1
FAQIES! 2(1+n)€] (6.1.1)

where c¢ is an integration constant satisfying ¢ > 0.
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Considering the equation (6.10), we realize that we must distinguish be-
tween the two cases n<1 and n > 1 For the case when n > 1 the

condition (6.10) implies that & = oo, whereas for the case when n <1 we

have:
c= g%l:—%z gfa n<l,
and thus,
, a*n(l—n) o .2 _ c2y:2%
If(e)l= [m] (2 -€)T ", n<1 and 0<{< G (6.1.2)

The physical considerations of the problem we are dealing with imply
that f'(§) has the same sign on the interval [0,&): f'(§) <0 in the case
of injection and f'(§) > 0 in the case of production. Note that pu(t) >
0, t > 0 indicates injection while pw(t) < 0, t > 0 indicates production.
So, we conclude that if W >0 we have injection and if W < 0 we have
production. Therefore sgn(f'(£)) = —sgn(W) for 0< €< 6.

Integrating the first integral for n>1 we obtain:

3
£(6) =W — sga(W) /o o an

2(n+1 2]7'-——1

The condition (6.9) which states that f(co) =0 implies that:

f ” - dfl = |W]. (6.1.3)
o [c+ Grel) p2]R

Clearly equation (6.1.3) uniquely determines ¢ > 0.
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Now since & = oo we have £(t) =oco for any t > 0. This implies
that for n >1 the pressure disturbance propogates with infinite velocity since
it is felt instantaneously at all points in the domain.
Jow we can write the solution to the problem (I.6), (1.12) for n>1 in
the following two cases:

In the case when (z,t,p)=0 and p,(t)=W

£ dn
z,t) =po + W — sgn(W / - 0<
P( ) Po gn( ) o [c+ ain(n-1) nz]ﬁ.f E

2(n+1
where &(z,t) = ztnit,

In the case when (z,t,p) =dp—po) and pu(t)= Wet

€ dr’ ~ bt
et = po + (W = s00) [ ) o
€T Zn+1) "

where

na?
1—

§(z,t) =2

I (3 11— exp( )

In both cases ¢ is determined from (6.1.3).

For the case n <1, integrating the first integral (6.1.1) leads to:

n(1 — n)a? ¢
$O) =W — sgnW) [y [(e - o)

Making a change of variable, thi4 equation can be written as:

—- 2 14n z‘;
F(E) =W - sm(W)[%lrheﬁ [T s
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This expression for f(£) together with the condition (6.9) gives us the

value of & :

4 1-n n(l f')a
= Wi 2(14n)

={l—-n
14n

]T[B

where B(a,B) is the beta function. So, for n < 1 the solutiev +f the
problem (L.6), (1.12) with ¥(z,t, p)=0 and p,(t)=W is given by

plast) = po-+ W = sen(W)[ar = roee [Fu-wrsa

for 0<€é< & where €= zt"3r thus 0 < z < {(t) and p(z,t) = po

for z > {(t) where

n(1 — n)a?

() = IWIF ()

¥+ (B ; - 1 n)ﬁi'—-."ltr%:,

For this particular case we have found the same result as the one given in [9)].

If in (1.6) %(z,t,p)=bp—po) andin (112) pu(t) = Wes¥ then

nl—n)a z‘l- =5t
plavt) = po-+ (W — sga(W) e jrinef R [ 1 — pojeiede ¥

for 0<é<é or 0<z<ft), and p(z,t)=py for =z 2 £(t), where

1—-n
=41l na?

ot (311 - exp( XL Py

and

(D) = Gl (G - exp( THLZT) e,
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6.1lb F(£)=0,v=1

In this case, the equation (6.4) becomes:
naz d d ni—1 g
<" gg(&f)+zg[|f|" f1=0.
Integrating this equation we obtain:
na2 IS SR R
——2—-€f=|f|" fi+e

where ¢ is an integration constant. But the conditions (6.9) and (6.10) imply

that c¢=0, thus yielding
na® ni
sga(W) = &f = |f|»
and integrating again we obtain:

na? -n
£(6) = sga(Wle— ()" 1 €™

where the integration constant ¢ > 0 will be determined by the condition
(6.9). Again, here we must distinguish between the two cases n <1 and

n>1.

For n<1 we deduce that

1-n
1+n

a2
£(&) = sa(W)( ) PR (o) PR(ErT — ¢ s
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To find the value of £ we appeal to the condition (6.8) obtaining;:

= W (o) (o).

n

With this expression for f(§) and &, we can write the solution of the
problem (1.6), (1.12) with n <1, ¥(z,t,p) =0 and pu(t) = WtT,t>0

as

p(z,t) = po + sgn(W) ne - ﬁ"'”)fé'n',

for 0< é<§& therefore 0 < z < £(t), and p(z,t) = pp for x = £(t)
where £ = 7t and the location of the moving pressure disturbance front,

£(t) is given by:

£t) = W1 (o) () s,

Also if in (1.6), n <1, ¥(z,t,p) =b(p—po) andin (112) pu(t) =
W[l"—f_:—‘]"'/ze"“/ “2{-},-[1 - exp(—_—"é‘%}21 t)]}~™/2 then the solution of this prob-

lem is given by

=N

p(z,t) =po + Sgn(W)(——)x-»(H_ 1=y ds e -

x (31 ep(ZU M oo
for D<é&<§é and therefore 0<z <{(t) and

p(z,t)=po for z > t).
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Here &(z,t) = :r:(-i"—_“% “3{31 - exp(——"%','-ﬂ ]} and the location of the

moving pressure disturbance front, £(t) is given by:

a?

o(t) = (= b

- exp(CES e,

na?

n

It should be pointed out that the two cases for which we have just pro-
vided the solution are of interest only from a mathematical point of view.
This is because in these two situations the prescribed pressure at the boundary
z =0 tends to infinity as ¢ approaches zero, which is not physically feasible.

Thus far in this section we have obtained closed form solutions for the
differential equations in f(£) for some particular values for v and some
particular forms for the source term 1. On the basis of these results let us

now attempt to find closed form solutions for other cases.

6.1c f'(€) = A& -€&)
In the Section 6.1a we found that for n <1, ¥ =0, and F(¢) =

0, f'(¢) is given by (6.1.2). Now we will investigate other cases with n <1

for which f/(£) is of the form

1) = A} - e (6.1.4)

wkere A >0, 8>0, and

sgn(A) = — sgn(W). (6.1.5)



57

Upon substituting (6.1.4) into (6.4) we obtain:

—na’ A __£N\B A i1 A=1red _ p\E1
+ F(&IfI? =0.
This equation must be studied separately for A=1 and A#L
If A=1 then we can integrate (6.1.4) and thus obtain:
p+1 -
£6) = gy 6 O (6.1.7)
In this case (6.1.6) becomes

ad’[A6(6 - )7 - AL+ 7 @ -+ o 2 |4 - 0F

(6.1.8)
(B+1) —
+F(§) |56 — 970 =0

Therefore F(£) must be of the form:
F(€) = Da(6 — ©)P95*) + Dy(6s - P+0079 4 Dy(fy - F 171D,

The undetermired constants in the expression for f(£) can be determined in
terms of the give. constants in the expression for F(¢).

As an example we will take F({) = D = const., which corresponds to
a source term ¥(z,t,p) = D(p~po)?- In the case (6.1.8) is satisfied only if:

14 -2 =0,
+ﬂ+1

_B_,_
=—-1=q(f+1)
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and
aa®Afy + — IA A = 0. (6.1.9)
B+ u
From the first three equations we obtain:
n
B=1—0,
_ -1
7= 1—n ]
and g=n.
Substituting these results into the equation (6.1.9) gives us:
1.
—a?Af; + %@__ + D(1 -n)"|4|" = 0. (6.1.10)

On the other hand the condition (6.8) together with (6.1.7) imply tlat
2
W =—-A(1-n)™". (6.1.11)

From (6.1.10) and {6.1.11) we obtain the value for A and ¢;.

For example if D=0 and A>0(W <0) then:
2
A= (W) (1 - n)i=aT

and

b= 5 (~W)IF (1 - ). (6.1.12)
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Therefore, in this case f(£) is given by:
£(6) = ~(-W) TR (1 - n) T (& - ). (6.1.13)

Now we may write the solution of the problem (1.6), (1.12) with  ¥(z,t, p)=

0 and pu(t) = WitT==, W<0:
p(2,8) = po — (W) 5 (1 — n) =7 (& — ) TtTw, for 0<£<G

where £(z,t) = zt™! and the location of the moving pressure disturbance

front is given by:

) = &it

with £ given by (6.1.12).

However if pw(t) is of this form the prescribed pressure at the boundary
z=0 isnegative for t>t; where ty=(Z§)'"". Thus the solution given
above is only valid for 0 <t < iy.

The function defined by (6.1.13) also provides us with the solution to the

problem (1.6), (I.12) with ¥(z,t,p) =bp—po) and

pu(t) = W]

2 1 —b(1 -~ . PeY)
2 grie 2 - (T e, W<o

The solution is

p(z,t) = po = (~W) TR (1 = ) =07 (na?) 5 (& — €)™

X {%[1 - exp(--i(r%a—;—?2 t)]}Té"-'e:?;i, 0<€éE<&
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where &(z,t) = z(32){3[1 - exp(:ﬁn%?ﬂ t)]}! and the locaticn of the

moving pressure disturbance front is given by:

2 -b(1 —n)

T t)]

£t) = & (

na® 1
Tl — exe(

with £, given by (6.1.12).
Clearly, if b< 0 the function py(t) considered here decreases in time
and tends to minus infinity as ¢ approaches infinity. Therefore there exists

a value for t, t; such that po+pu(t)<0 for ¢>¢; which implies that
the above solution is only valid for 0<% <ty

If b>0 then it can be shown that p,(tf) has a minimuxu at

na® n+1

so, if po is such that py > pw(tmin) then the above solution is valid for

t>0.
Note that in both of the above problems p(z,t)=po for z > £(t).
We will now study the equation (6.1.6) for A # 1. In this case f(¢)
is not of the form const. (¢} —€*)* and since ¢ #1, we must have 7 =0

and ¢=0. Then (6.1.6) becomes:
ad® AL(E - €) + -‘-:— AP e - DR+ P =0 (8119)

Ot LI}
where a= n
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For the case when F(£) =0 the above equation holds only if A =

2, B=12; and |4]= [%‘1%—:;?]757 Therefore

a’n(l -

) l1=n 1-n
-

Il =1

Note that this same result was obtained in Section 6.1a.

Now if F(£)#0 then it must be of the form:

F(E) = D1£(E) — €*)F + D1 (6) — €M)=

With this expression for F(£) (6.1.14) holds only if:

—Dz o’n and A=

1
,BA— D1 (1+n) lDll_'l..._l na?

n Di(1 +n)

(6.1.15)

(6.1.16)

Note that this implies that there must exist a relationship between the constants

appearing in the source term.

Once B,A and A are determined the expression for f(€) can be

obtained by integrating (6.1.4):

o - ¢ ‘\_ IYY:]
fae)-/oA«l )dn + W.

From this expression for f(¢) and the condition f(&1) =0 we deduce that

& = (C22)sh(B(5 8+ DIF.

(6.1.17)
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But £ appears in the expression for F(£), thus it is given by the source
term. Therefore W, which is a function of £ by the above relationm, is
imposed by the source term.
As an example let us consider the problem (1.6), (I.12) with

na2

14+n

¥(z,t,p) = F(E)™ = £(€3 - €%)%" — 6e2(€3 — )t

where £(z,t) is the similarity transformation variable and it is given by:
£(z,t) = TtiFw,

This expression for F(£) is of the form of (6.1.15) with:

na?

Dl=1+na

D;=-6, f=2n aad A=3.

From (6.1.16) we obtain A =1 and from (6.1.17) W =- S E4B(3,2n+1).

So f(£) is given by:
1 upl € 3 3yn
fO == €BGG 2+ D+ [ (@~
So, if in the boundary condition at z =0 pyu(t) is given by:
1 4ol
Pu(t) = — 3 513(5 y2n+1), t>0
then the solution to our problem is:

§
pat)=po— 3 EB(G .20+ 1)+ [ (€ -, for 0<z <)
1]
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and p(z,t)=po for z>¢(t) where £t) = £t

6.1d f(§)= A -
In the subsection 6.1b, we found that for n<1, v= 1, and

b =0, f(§) is of the form:

Fi) = A&} - &7 (6.1.18)

whete A=1tn, f=ri and A= Sga(W)(%)™=(}F2)™". Let us look

for a solution to (6.4) of this form with A >0, >0 and sgn(4) = sgn(W)
for other cases with n < 1. In the previous section we have consider:1 a

solution of this form with X = 1. So in this section we will only consider

A#£1

Upon substituting (6.1.18) into (6.4) we obtain:

s Aly(E - € — MBE(E ~ P11+ Z(f)F AlAlF eI
(6.1.19)

(€} — ENAIR (A = 1)(E) - €) - M(B — 1)EN] + F(E)lAl(Ed - ) =o0.

If F(6)=0 then (6.1.19) holds only if

1
l—n’ ‘y

2 _
A=ltn, B= =1, wmd |4 = ()T

14+n

But this is the result obtained in Section 6.1b by directly integrating the equa-

tion (6.4) with y=1 and F(£)=0.



If in (6.1.19) F(£) #0 then it mast be of the form:

F(€) = Da(E} — £9P~P1 + Dagh(€d — £2)P~ 8
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(6.1.20)

4+ DygR=H1(E) — 058P0 4 DR E AN — )R aTIoA,

With this expression for F(£) (6.1.19) is valid if:

aa’Ay = —|A|"D,
—aa?ANB = —|A|'D,

1 -
~(A-1(AB)*A|A|* " = -|4|°Ds

- Laxg-n0osralaE-t = -jaep,.

These equations imply that:

_ D A-1_ _Ds
M==D," -1 D

nvya®

and A= sgn(W)[Dl(l +n+4(1—-n)

i
3!

(6.1.21)
(6.1.22)
(6.1.23)

(6.1.24)
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As an example, let us take ¢=n, Dy = -(1-n),D;=-1,D3=1-n

and D, = —1. In this case 7= 5 and A=f=:2. Then:

n

F() = (n— 1R - £77) - €785 + (1 - mgmn(eF™ —g) - ¢55,

A= sg(W)5 =717,

£(6) = sga(W)Z-]PT (€5 - 7)™

and £

i
~| 8

From the condition f(0)=W it follows that

o jedeg

1-n

Wl=I

With these results we can write the solution to the problem (1.6), (1.12)
with
Hartp) = lp—pol"{(n = DEFT =n(3)me + (-2 )R +(1-n)eF™ (F))

t

and

po(t) = Hl——]R T erdw, t>0, n<l

1—-n
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plz,t) = po & [ro ][R = (H)PFIFTER for 0<z<l(D)
and

p(z,t)=po for z 2> (t)

where {(t) = £, t.

It is interesting to note that in this case the location of the pressure
disturbance front is a linear function of time, and therefore the front propagates
with constant velgcity.

We may also write the solution to the problem (1.6), (I.12) with

$(z,t,0) = b(p — po) + [(n — DEFT —nETF + (1 —n)eF e

+ (n =2 () FH e
where
o) =or(t) and (1) = (Lo - exp(Z ™ o)

and with py(t) = (725 1_"‘)'1"'5 {t=n) ['r(t)]l-'- e¥,t>0 and n<1 In this

case the solution is:
p(z,t) = po & (7o) P[5 — PRI [r(e)] FRe ™ for 0<z < k()

and pl(z,t)=po for z>£(t) where £(t)=4&[r(t)™".



6.2 Closed Form Solutions for the Plane Radial Flow
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The differential equation (6.5) corresponding to this case can be solved

analytically for F(£§)=0 and 7=0.

6.2a F(¢{)=0, 7v=0

In this case (6.5) becomes:

na? y , 1oy TNVUL o
m€f+;(zf+f)|f| =0

If we let g =|f'| then this reduces to Bernoulli’s equation:

naz 1 11 1 ¢t Lo2
mor A A Ak
Solving this equation yields:
! —_ -n n(n - 1)02 3-n1125

and
F(€) = - sga(W)E e + 5 a*a F if n=3

where ¢ is an integration constant.

(6.2.1)

(6.2.2)

In order to determine the values of ¢ and & we refer to the boundary

conditions for f(£) outlined above. However, we must distinguish between

different values for n:
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Case 1: n<1
The condition (6 i0) implies that in this case we must have

2
= (—n'-:-r)_sl—: f"‘, wtich leads to:

£(6) = — oW g - e, 0<e<an

Integrating this equation we obtain:

n e/6 )
56 =W — s et [T o oy

Now, substituting this result into the equation (6.9) we have:

n(n - 1)(12 = 1_,. 1 —-n -ny3s —
lW'—[(n+1)(3—n)] o3 j{ p™(1 = pd~™) TR dp = 0.

Making the appropriate change of variable in the integral we may write the

following expression for ¢ :

6 = W @ - ) (e (B (O,

Having determined the function f(§) and £, we may write the so-
lution to the problem (I.11), (I.13) with ¥(r,t,p)=0 and pu(t) =W, for

n<l:

n £/&
p(r,t)=po+ W - sgn(W)[( -(:1)(3) n)]r"—gl—n /0 p™(1— ™) R dp,

for 0< £ <& therefore R, < r < £(t), where §(r,t) = rt~T# and

et) =&, and p(r,t)=po for r 2 L(t).
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In this particular case we have obtained the same result as the one pre-
sented in [9].
The same function f(£) enables us to write the solution of the problem
(L11), (L13) with #(r,t,p)=b(p—po) and pu(t)= We™at,

n<l as:

= bt
n(l — ) ]1__61_.. ARLe! _#3—71)‘1“}t i

p(T‘,t) = po -+ {W — sgn (W)[(l + )(3 n) .IO

for 0<€é<& ie. Ry<r< ¢(t) where

©)E (31— e T and

£(t) = r(

_i(___'_‘lt)]}u— and

p(r,t)=pp for r 2 L)

CAsE2 1<n<3
Integrating the equations (6.2.1) and taking into consideration the condi-

tion (6.8) we obtain

n(n — 1)a?

§
76 =W = o) [ 7o+ oy I

However, analysing the integral in this expression we realize that it is divergent

for all € >0 with any value for the constant c.
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CASE3 n>3

First we rewrite (6.2.1) as:

n(n—1)

—(n+1)(n—3)]m for n>3.

F(€) = — sgn(W)E =T [eg™3

It is evident that with any ¢ this function, as well as the one given by (6.2.2)
is undefined for sufficiently small £.
From the arguments presented above we conclude that the problem we

are currently concerned with does not have a similarity. solution if n > 1.

6.2b f(€) =A@ &Y
As in the one-dimensional case, let us seek a solution to (6.5) with n <1

of the form

£(6) = A} - €7

with A>0, 3>0 and sgn(A)= sgn(W).

Substituting this expression for f(£§) into (6.5) yields:

aa Ay (€} — £} — ABENE} — Y+

AMB)= A= 1
n

[(n+ A — DERH1(E — €A — A(B - DEFRTETE - )RR

+ F(E)IAl (&} - 1P =0
(6.2.3)

If F(£)=0 then (6.2.3) holds only if

1 a? 1-n
A=14m, f=m—y y=2 ad A= sm(W)(5=,) ()™
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In this case f(£) is given by:

HO) = W) (ot (el - e,

From the condition f(0)=W we obtain:

1+

IWIT

(6.2.4)

Now we can write the solution to the problem (I.11), (1.13) with 3(r,t,p) =
0 and pw(t)=Wt§—-2%, t>0 and n<1 as

a , 1—n

. ny i, =27
T T - e

(1‘, t) = Po +

for t>0 and Ry <r <&t) and p(rt) =po for r 2 £(1), where
£(r,8) = rt¥&n, £(t) = £,t5% and £ s given by (6.2.4).
We can also write the solution to the problem (I.11), (1.13) with ¥(r,t,p) =

b(p—po)y n<1 and pu(t)=Wr(t)2e ™, where

—ll

eop( oy

7(t) =

namely:

p(r;t) = po + sgn(W)( 3"_"_'2n)re=(£;+u ety rgte s, £> 0

for t>0 and Ry, <r <{(t), and

p(ryt) = po for r 2 £(2),
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where £(r,t) = r7(t), £(t) = &[{r(t)]"! and & is given by (6.2.4).
Now we turn our attention to the equation (6.5) with F(£) of the form
(6.1.20). In order for (6.2.3) to be valid the parameters appearing in F(§)

st satisfy the relations (6.1.21), (6.1.22), (6.1.24) and
1
~(n+X = 1)(AB)* A|A|+ ™! = —|A|"D;.

From these relations we deduce that

D2 n+/\-—1 D3

)\ﬁ=—b'1"‘r, -—_’\Zﬂ—:i-)-=_5;'

As an example let us take ¢=n, Dy =—(1-n), Dy = -1,

D3 =(1-n)(2—-n), Dy =—1i. In this case we have

-] ,, 1
TEron Eberg

So the solution to the problem (I.11), (1.13) with

$(r,t,) = Ip = pol™{(n — DEFT — (5= + (1 = m)2 - ) ()%
—(3-3n+n?)(3) %)
and

pult) = £ 2 )T, 150, n<1
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is
p(r,) = po i(l—%)r-’-n[gf-"" --(g)x—iwlrl—ntr-‘? for Ry, <r <t

and
o(r,t)=po for r>E(t)

where £(t) = £t

Here again we note that the front propagates with constant velocity.

6.3 Numerical Solutions

For the cases in which a closed form solution for the equations (6.4) and
(6.5) cannot be found we resort to numerical methods.

In solving the problems (6.4}, {6.8) - (6.10) and (6.5), (6.8) - (6.10) we
must slso determine the right end point of the interval [0,£;]. We deal with
this task by using the shooting method combined with the fifth order Runge-
Kutta rrethod.

We solve the equation (6.4) or (6.5) with initial conditions f(0)=W
and f(0)=Q with the Runge-Kutta method. Then by varying the shooting
parameter  we detem;ine the first point at which both f and f' equal
zero. This is then the requi.red right end point &).

To illustrate this technique we present the following example. In the equa-
tion (1.6) we take n =0.75, a* =1 and ¥(z,t,p) =0 and in the bound-

ary condition at z =0 we take py(t) = —t3. This implies that in (6.4)
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v= -35, a=-6/7 and F(£)=0. In this case (6.4) becomes:

9(—3.5f + £f') + 14f"(f)¥ = 0.

So we are looking for the solution to this equation and the constant §; such

that “(()<0 and f(€)>0 for £€(0,6) and

f(0)=-1
f(€1)=0
fi(&) =0.

In fig. 1 we have plotted the function f(£) for three different shooting
parameters. For = 1.376 on the interval (2.28, 2.30) both f and f
change sign. Thus we may say that 2.29 is a good approximation for the right
end point ¢;.

Thus for this example the location of the pressure disturbances front is

given by:
o(t) = 2.20t%,

Let us now consider situations in which sources or sinks are present. With
the same parameters as above we have solved the equation (6.4) with F(§) =1
and ¢ =2. This corresponds to Y(z,t,p) = lp—po|. In this case we have

found that ¢ =2.90 implying that

o(t) = 2.90¢%.
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Now if in (6.4) we take F(£) = —1 which corresponds to ¥(z,t,p) =
-lp - po|§ indicating the presence of sources, we find that & =1.95 which

implies that
g(t) = 1.95t7.

We have plotted these results in fig.2 and fig.3. Fig.2 contains the graph of
f(€) in the presence of sources, in the presence of sinks and in the absence of
both in the case of production with pw(t) = —t3. In fig.3 we have plotted the
location of the pressure disturbance front versus time for these three situations.

Examining fig.3 we observe that our numerical results are consistent with
the physical expectations which indicate that in the case of production the
moving pressure disturbance front propagates faster in the presence of sinks
and slower in the presence of sources. -

We have also investigated the plane radial problem with the parameters
considered abave. We found that in the presence of sinks & = 4.05, in the
presence of sources of equal magnitude & = 1.55, and if neither sinks nor
sources are present then ¢ = 1.90. Fig. 4 contains the graph of f(£) in
each of these three cases.

To show the accuracy of our numerical scheme, in table 1 we present &
comparison between the exact solution and the solution obtained numericaily

for the equation

—af +& +3IF1E =0,
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The exact solution of this equation is:

F(€) = -4 (4t - )t (6.4)

6.4 Perturbation Method

In sections 6.1 and 6.2 we have obtained closed form solutions for the
equations (6.4) and (6.5) with various values for <. Now with values for
4 near the ones mentioned above we may obtain approximate solutions by
employing the perturbation method.

To illustrete the application of this method we consider the problem (6.4)

(6.8) - (6.10° «i.h n w8, W<0, and F(£)=0. In this case the equation

(6.4) becomes:

a® ' e
317 (vf+EH+2f f" =0. (6.4.1)

In section 6.1a we have obtained the solution to this problem with ~ =0.

So we will now seek an approximate solution for |y] <<1 of the form:

F=fo+vh (6.4.2)

Since f must satisfy the conditions (6.9) - (6.10) we will impose on  fp and

fi the following conditions:

fol&) = fi(€r) =0 (6.4.3)
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and

fl(fl) = fi(El) =0 (6-4-4)

where £ is to be determined from the additional condition (6.8).
Substituting (6.4.2) into (6.4.1) and equating the coefficients of powers of

4 to zero we obtain:

2
2f4 + 93— €=0 (6.4.5)
and
2 2
ny @ fo 3.
S il (6.4.6)

Solving the problem (6.4.5) (6.4.3) we have:
| —a2
fol€) = S (& = (€ +261). (6.4.7)

Substituting (6.4.7) into (6.4.6) and integrating the resulting equations

with the conditions (6.4..) yields:

2¢2
71O = S8 16— £+ (62 + (LTS

Now the condition (6.8) indicates that

fo(0) +7f21(0) =W
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which yields

-18W L
b= {a2[1 -2y(1- €n2)]}a'

In table 2 we present the values of the function f(§) for y=-0.5 and
4 = 0.1 obtained by the perturbation method and by the numerical method
described in the previous section. Note the excellent agreement between the

.+, .rethods even for the relatively large value for |v|.



ble 1 - Comparison between exact and numerical solutions

n=0.75 , W=-1

, a=1,

v=-4

exact soln.

Mmmd_dd_é_ﬂ__d__dd_dﬂd—oooooooooooooooooooo

.800
.850
.900
.950
.000
.050
.100
. 150
.200
.250
.300
.350
.400
.450
.500
.550
.600
.650
.700
.750
.800
.850
.900
.950
.000
.050
.100

num.

soln.
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Table 9 - Comparison between perturbation and numerical me thod
for n=0.5 , W=-1 ,a=1

-—-..--_--_—..--..—_---.--—un——-—--_---------—-_-----a---

v=0.1 pert.meth num.meth
£ fo f, f
0.00 -1.06538 0.65383 -1.00000 -1.00000
0.10 -1.00571 0.60012 -0.94569 -0.94564
0.20 -0.94620 0.54928 -0.89127 -0.89116
0.30 -0.88702 0.50121 -0.83690 -0.83674
0.40 -0.82834 0.45581 -0.78276 -0.78255
0.50 -0.77033 0.41300 -0.72904 -0.72878
0.60 -0.71316 0.37269 -0.67589 -0.67559
0.70 -0.65698 0.33482 -0.62350 -0.62316
0.80 -0.60197 0.238930 -0.57204 -0.57167
0.90 -0.54830 0.26607 -0.52169 -0.52129
1.00 -0.49612 0.23507 -0.47261 -0.47219
1.0 -0.44561 0.20623 -0.4249¢ -0.42455
1.20 -0.39693 0.179851 -0.37898 -0.37853
1.30 -0.35026 0.15483 -0.33477 -0.33432
1.40 -0.30575 0.13216 -0.29253 -0.29207
1.50 -0.26357 0.11144 -0.25243 -0.25197
1.60 -0.22389 0.09263 -0.21463 -0.21419
1.70 -0.18689 0.07568 -0.17932 -0.17889
1.80 -0.15271 0.06054 -0.14665 -0.14625
1.90 -0.12153 0.04719 -0.11681 -0.11644
2.00 -0.08352 0.03558 -0.08997 -0.08962
2.10 -0.06885 0.02566 -0.06628 -0.06598
2.20 -0.04767 0.01742 -0.04593 -0.04567
2.30 -0.03016 0.01080 -0.02908 -0.02887
2.40 -0.01648 0.00579 -0.01591 -0.01575
2.50 -0.00681 0.0023% -0.00657 -0.00648
2.60 -0.00130 0.30044 -0.00125 -0.00123
2.70 -0.00012 0.00004 -0.00012 0.00207
¥y =-0.5
0.00 -0.76520 0.46961 -1.00000 -1.00000
0.10 -0.71734 0.42667 -0.23067 -0.92929
0.20 -0.66965 0.38628 -0.86279 -0.86011
0.30 -0.62230 0.34836 -0.79648 -0.79259
0.40 -0.57544 0.31280 -0.73184 -0.72686
0.50 -0.52925 0.27953 -0.66802 -0.66305
0.60 -0.48390 0.24846 -0.60813 -0.60130
0.70 -0.43354 0.21952 -0.54931 -0.54174
0.80 -0.39635 0.19265 -0.49268 -0.48450
0.90 -0.35450 0.16777 -0.43838 -0.42973
1.00 -0.31414 0.14483 -0.38656 -0.37757
1.10 -0.27545 0.12377 -0.33734 -0.32814
1.20 -0.23860 0.10453 -0.29086 -0.28160
1.30 -0.20374 0.08707 -0.24728 -0.23809
1.40 -0.17106 0.07133 -0.20672 -0.19774
1.50 -0.14070 0.05728 -0.16934 -0.16070
1.60 -0.11284 0.04487 -0.13528 -0.12712
1.70 -0.08766 0.03405 -0.10468 -0.09714
1.80 -0.06530 0.02479 -0.07770 -0.07091
1.90 -0.04595 0.01705 ~-0.05447 -0.04856
2.00 -0.02976 0.01080 -0.03516 -0.03025
2.10 ~-0.01690 0.00600 -0.01890 -0.01613
2.20 -0.00755 0.00262 -0.00886 -0.00635
2.30 -0.00186 0.00063 -0.00217 -0.00107
2.40 0.00000 0.00000 0.00000 0.00208
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llustration of the shooting method
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One dimensiondl case

The effect of the sourcz term
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One dimensional case
The effect of the source term

n=75 y=-35 py="t
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Plane radial case
The effect of the source term
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CONCLUSION

In this thesis we have investigated initial and boundary value problems
related to two nonlinear parabolic equations which govern the flow of power
law fluids through porous media with the purpose of finding similarity solutions.
We have determined the forms of the source term % and the corresponding
forms of the prescribed pressure at the fixed boundary which allow similarity
solutions. Only the case with % =0 and pw(t) = const. have previously
been treated [9].

We have not studied the existence and uniqueness of the solution to the
boundary value problem corresponding to the resulting ordinary differential
equations. However we were able to obtain closed form solutions for classes
of particular cases. For other cases numerical solutions have been found which
were in good agreement with the exact solutions when these were available.

The solutions obtained indicate that for shear thinning fluids (0 <n <1)
the pressure disturbance front propagates with finite velocity, while for dilatant
fluids (n > 1) it propagates with infinite velocity a property characteristic of
Newtonian fluids.

For the cases when the pressure disturbance front propagates with finite
velocity we have investigated its acceleration and its behavior as t tends to
infinity. We found that the front propagates to infinity as ¢ tends to infinity

for all the allowable source terms except for the case when 1 = b(t)(p—po)+

85
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h(y,t) with (% -1) fot d(n)bp >0 as t— oo, in which case it propagates
to a finite location.

Although not all physical situations can be modeled by equations with a

source term that allows similarity solutions one might be able to approximate

them by one of these forms, thus obtaining some practical insight into the

problem.
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