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Abstract

In this thesis, we present a new algorithm to estimate depth of real-world

scenes containing an object semi-submerged in water using a light field camera.

Existing hand-held consumer light field cameras are well-suited for automated

refocusing, depth detection in outdoor environment. However, when it comes

to surveying marine environment and near water macro photography, all depth

estimation algorithms based on traditional perspective camera model will fail

because of the refracted rays. In this thesis, a new method is presented that

explicitly accommodates the effect of refraction and resolves correct depths of

underwater scene points. In particular, a semi-submerged object with opaque

Lambertian surface with repeating textures is assumed. After removing the

effect of refraction, the reconstructed underwater part of the semi-submerged

object has consistent depth and shape with that of the above-water part.

With experiments on synthetic scenes rendered with modeling software

Blender and real light field images captured by a Lytro Illum camera, we

show that our algorithm can largely remove the effect of refraction for semi-

submerged objects using an image from a light field camera.
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Chapter 1

Introduction

1.1 Light field

The theory of light field has been around for many years. It was first mentioned

in [5][6][7]. A light field can be considered as a 7D function which captures

each ray’s wave length and direction at any time and location. If we can

describe the intensities, directions of rays inside a space, then images can be

rendered from any perspective. In other words, the propagation of light is

recorded instead. Based on [8], the complete light field function (also known

as the plenoptic function) is:

P = P (θ, φ, t, λ, x, y, z).

To understand plenoptic function, one can imagine that the intensity of

light ray is recorded at every possible location (x, y, z), with every possible

direction (θ, φ), and of every wavelength λ at any time t. The light ray direc-

tion is normalized, parametrized by tilt angle and slant angle. However, this

idealized plenoptic function is almost impossible to reconstruct. To simplify it,

the two-plane parametrization is generally adopted in the community of light

field. Practically, light rays inside the space we are interested in is assumed

to be continuous, i.e. the intensity of a light ray with the same direction is

constant. Hence, the 7D light field function is simplified as:

P = P (u, v, s, t, λ).

The directions of rays are parameterized by two points located on two

planes. Such a parameterization is called 2-plane parameterization. A ray
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propagates through a point (u,v) on the first plane to a point (s,t) on the

second plane. The intensity of wavelength λ is recorded. This simplification

is illustrated in Figure 1.1[6].

Figure 1.1: Two-plane parameterization of light field

Back to traditional computer vision methods, the three dimensional world

is described using geometries. In order to render a 2D image from a new

perspective, we need to reconstruct the scene, model the materials, estimate

light sources, camera parameters and so on. However, from the perspective

of photography, the physical world can be viewed as a light field. Depends

on the structure of the scene, light rays may be reflected, refracted, absorbed

inside the interested space. No matter how the light rays are transmitted, the

light field representation can always help us render new photos from another

viewpoint, and then reconstruct the scene.

1.2 Light field camera

For a long time, a new type of camera to record the light field is not available.

As in a traditional pinhole camera, a lens is placed in front of the image sensor,

then rays from different directions strike the same image sensor pixel. The 2D

image of a pinhole camera can be considered as an integration of the light

field over a bundle of rays. The aperture size and focal length determine the

cone angle of this bundle of rays. Even though the intensity of each pixel is
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recorded, the directional information from the original light field is lost due to

the integration process. To record a light field, hand-held light field cameras

such like Lytro and Raytrix have been designed in recent years [9][10].

A typical lenslet-based light field camera consists of one main lens and an

array of micro lenslets. Compared with a traditional camera, a light field cam-

era is able to sample more (15× 15 slices for Lytro Illum camera) 2D photos

from different viewpoints. Each viewpoint is located at a sub-aperture on the

main lens. Rays focused by the main lens are further dispersed by a lenslet

array. Thus rays of different directions strike different sensor pixels. With

the lenslet array, the lost directional information of a traditional camera is

preserved. The underlying principle of a light field camera is both straightfor-

ward and elegant. In a word, by placing a lenslet array between the main lens

and the image sensor, a lenslet-based light field camera can record directions

of rays inside the free space (a space with no occlusions and concavity) inside

the camera. The principle of a lenslet-based light field camera is illustrated in

Figure 1.2 [9].

Figure 1.2: Lenslet-based light field camera

Also, the sample rate of directions of light rays depends on the number

of sensor pixels under a lenslet. As we can see in Figure 1.2, if more pixels

are assigned to record directional or angular information, then fewer pixels

are there to record spatial information. This is the trade-off between spatial

resolution and angular resolution.
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1.3 Thesis work

Obviously, a light field camera has an advantage over a traditional camera

because it also records ray’s direction. Instead of using a complex stereo rig,

one can acquire correspondences from a single image using a light field camera.

Besides, images from different viewpoints can be easily decoded from raw

data. Due to the limited size of the main lens, these adjacent viewpoints have

significant overlap, which provides opportunities to improve the robustness of

correspondence matching.

On the other hand, a light field camera has some disadvantages and con-

straints. They are listed below.

• First, the baseline, which is the distance between two viewpoints, of

existing light field cameras is very small. If the baseline is too small,

the corresponding range of disparities, which is the difference of image

coordinates of an object captured by two viewpoints, must be small. For

example, the effective baseline of the Lytro Illum camera is in the order

of 0.01 to 0.1cm [11]. Using 2D photos from different viewpoints, the

disparity is in the range of sub-pixels.

• Second, due to having some sensor pixels sacrificed to record the angular

domain, the spatial resolution of captured image is relatively low. For ex-

ample, the spatial resolution of Lytro Illum is only about 5 megapixels,

while the angular resolution is 40 megarays. Although manufacturing

companies tend to use post-processing techniques such as super resolu-

tion to address this constraint, the raw data is still a major constraint.

• Third, some light field cameras are very expensive, such as those by

Raytrix, partially because these cameras are mainly for the industrial

market. In the experiments, we use the Lytro Illum camera because

it is affordable (<$1000 CDN) and provides us with sufficient number

(11× 11) of viewpoints for our experiments.

In the last decades, due to the fast development of microlens manufactur-

ing, lenslet-based light field cameras have entered the consumer market, gain-
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ing more attention in the field of computer vision for their distinctive light

recording and refocusing capabilities. In order to fully exploit the potential of

consumer light field cameras, we present a new algorithm to recover scene’s

depth of a semi-submerged object using a single light field image. In partic-

ular, our depth estimation result can remove the effect of refraction. Assume

that the relative refractive index of water or any other transparent media is

known, the correct shape and depth of the refracted scene points can be re-

solved. First, we estimate the depth information of the scene and ignore the

effect of refraction. In this part, interpolation is used to estimate disparity in

the range of sub-pixels. Then, using texture information, we estimate the in-

terface between water and air. Finally, Snell’s law is applied to re-triangulate

the underwater part, leading to a final depth estimation without the error

caused by refraction. To our best knowledge, this is the first proposed method

of accommodating refraction in depth estimation using a light field camera.

The contributions of the research can be summarized as follows:

• Taking pictures of semi-submerged objects is very common in macro

photography. After removing the effect of refraction, correct underwater

depth information is beneficial for refocusing, scene reconstruction, view

synthesis and many other applications.

• In our algorithm, we also estimate the equation for the water surface.

Although water is assumed to be stationary, the estimated result can be

further used as input to other water surface estimation algorithms, or

underwater reconstruction algorithms.

• Only a single image from a light field camera is required. Hence, our

algorithm can work for dynamic scenes, which is hard for other single

image depth estimation algorithms.

• Our algorithm can work with light field data from other sources. Apart

from the lenslet light field camera, light field data can also be acquired

with a moving camera, or even learned from a single 2D capture [12].
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As more and more light field data acquiring techniques emerge, more

application of depth estimation using light field data can be found.

1.4 Thesis outline

The remainder of this thesis is organized as follows: chapter 2 reviews re-

lated work; chapter 3 presents the underwater geometric model and describes

an algorithm to resolve depth for semi-submerged object; chapter 4 provides

experimental results on synthetic data and real data; chapter 5 presents con-

clusions and limitations of our work.
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Chapter 2

Related Work

2.1 Depth cues from light field data

A hand-held light field camera enables us to capture a scene from different

viewpoints simultaneously, encouraging increased interest in the fields of 3D

reconstruction, depth estimation and view synthesis. There has been progress

in the field of depth estimation using light field cameras. Previous attempts

[4][13] employ multiple cues like defocus, correspondence and shading. An-

other interesting alternative approach [14] involves using PCA over viewpoints

on a circle around the center view to enhance robustness. Other methods

[15][16][17] involve the geometric analysis on the epipolar plane image of light

field data. Different methods may emphasize on a typical challenge in the field

of depth estimation, e.g. in the presence of occlusion boundaries, specularity,

or fine structures.

Because a light field camera samples a 4D light field, there are multiple

depth cues from a single light field exposure. Throughout this section, we

discuss the depth cues from light field data.

2.1.1 Correspondence

The correspondence cue extracted from light field data is the same as that

in traditional multi-view stereo problem. Methods developed from stereo

setup are modified and applied in light field’s depth estimation algorithms

[4][13][18][19]. We first describe the traditional stereo setup and then analyze

the specific characteristics of light field camera and the corresponding depth
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estimation algorithm.

In multiple view stereo, it is assumed that the same scene is captured by

multiple cameras. To start with, we assume that there are only two cameras

or two viewpoints. The geometric relationship between the two views is called

epipolar geometry. The epipolar geometry is depicted in Figure 2.1.

Figure 2.1: Epipolar Geometry. This is also how human eyes perceive depth
information. Modified from [1].

In Figure 2.1, scene point X is captured by two cameras. This is equivalent

to that scene point X projects rays to both camera centers, intersecting two

photosensors at two image points XL and XR. The camera centers, scene

point X and two rays must lie in a common plane. The line connecting the two

camera centers OL and OR is named the baseline. From two captured pictures,

the pair of corresponding image points XL and XR is called a correspondence.

When the two image planes are parallel, the difference of locations of XL and

XR is called disparity. Obviously, disparity is affected by the depth of X. In

particular, the farther the scene point, the smaller is the disparity. This is

also the principle of depth perception of the human vision system. Because

disparity is used in binocular vision, it is regarded as a binocular depth cue.

If the position of scene point X changes from X1 to X3, then the inter-

sected image point XR also moves along a line accordingly, which enables us

to estimate the depth of X. That line formed by all possible positions of XR

is called the epipolar line. Hence, the search for correspondences reduces to a

1D search on the epipolar line.

The fundamental matrix F which describes the relationship of correspon-
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dences is a unique 3× 3 rank 2 homogeneous matrix which satisfies,

x
′TFx = 0 (2.1)

and x
′

and x can be any pair of correspondence. The properties of epipolar

geometry and the equation of Fundamental matrix are discussed in details in

ref. [1].

In a light field camera, a lenslet array is placed between the sensor and the

main lens. Each viewpoint is actually a sub-aperture image. The number of

microlenses is the number of viewpoints. The microlens array can be modeled

as a grid of viewpoints. As can be seen in Figure 2.2, different viewpoints Ci

and Cj are on the same plane such that the transformation between any two

viewpoints is a translation. Because adjacent views are next to each other

on the same lens, the baseline of two adjacent viewpoints is much smaller

compared to that in traditional stereo.

To handle the micro baseline in light field data, we use spline interpolation

to estimate sub-pixels. To handle the micro-baseline in depth estimation using

a lenslet-based light field camera, other methods [4][20][19] use bilinear inter-

polation, bicubic interpolation or phase shift theorem, respectively. In [20],

they interpolate to sub-pixels using bicubic interpolation to calculate optical

flow for each pair of images. Their depth estimation method is built on a

structure of motion framework. In [19], the cost volumes for correspondences

are calculated after estimating sub-pixels in the Fourier domain.

Figure 2.2: Two-view geometry in a light field camera.

As shown in Figure 2.2, scene point X is captured from two viewpoints

9



simultaneously. The line connecting viewpoints Ci and Cj is the baseline.

Because ray XCi intersects the photosensor at the location Pi, scene point X

is observed at the pixel located at Pi. Similarly, from viewpoint Cj, scene point

X is observed at the pixel located at Pj. Let the line CjPK be parallel to the

line CiX, then triangle CjPkPj and triangle CiXCj are similar triangles. The

difference between Pj and Pk is the difference between pixel locations from two

viewpoints, so the length of PjPk is the disparity. The relationship between

disparity and depth can be derived from similar triangles.

d

b
=
f

z
. (2.2)

In the equation above, d is the disparity between a pair of correspondence,

b is the baseline of two viewpoints, f is the focal length, and z is the depth of

the observed scene point.

If we stack pictures from different viewpoints together into a volume, then

the image on the side of the volume we got is called epipolar plane image.

The concept of epipolar plane image was first mentioned in [21]. Figure 2.3

is an epipolar plane image constructed from a light field data captured by a

Lytro Illum camera. In the epipolar plane image, each row is taken from one

viewpoint. Along the red line is the correspondence found in each viewpoint.

As the translation of the current viewpoint to the first viewpoint is increasing

along this red line, the disparity is also increasing. In other words, the tangent

of a line in epipolar plane image can be regraded as δd
δb

. As shown in equation

2.2, this is another depth cue.

The epipolar plane image is a two-dimensional slice of the full light field

data, in other words, a flatland light field. In equation 2.3, the eipolar plane

image is constructed by stacking the y spatial dimension and the v angular

dimension when u equals to ui, x equals to xi. The u coordinate and x co-

ordinate are fixed. As long as we fix one spatial dimension and one angular

dimension, the flatland two dimensional image is an epipolar plane image,

EPI(ui, xi) = L (ui, v, xi, y) . (2.3)

Many methods exploit the potential of depth estimation using epipolar

plane image, such like [22][15][23]. Depth estimation on epipolar plane image
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is straightforward and more efficient, but the constraint is that the light field

data has to be densely sampled.

Figure 2.3: An epipolar plane image: Along the red line is a set of correspon-
dences found from different adjacent viewpoints. The tangent of this red line
is a depth cue: δd

δb
.

Also, in a traditional stereo setup, we need multiple exposures from multi-

ple cameras. Using a light field camera, we only need one exposure from one

camera. The microlens array allows us to retrieve direction and magnitude of

rays at the same time, providing with multiple viewpoints in one exposure.

A common assumption for correspondence-based methods is: the scene

point is Lambertian or diffuse. For a Lambertian scene point, the image

points of the same scene point from different viewpoints have the same inten-

sity. However, for specular objects, intensities of the same scene point when

viewed from different viewpoints will be different. Hence, with specularity, the

correspondence depth cue does not work correctly.

Correspondence is more robust on scenes with high textures and edges. If

the scene is textureless, then objects with different depths will have similar

colors and are no longer distinguishable. Another interesting topic is to use

image gradients to guide the depth propagation process. In an image, the

regions with high image gradients might be edges or texture variations. In

[24], they use bidirectional photo-consistency to differentiate texture edges

from silhouette edges in order to propagate depth information to low-gradient

regions. In [19], depth filtering guided by the central view image is applied to

the depth map to preserve edges.

2.1.2 Defocus

Based on the Lambertian assumption, another depth cue from a light field

data is the defocus cue. If a part of the scene is focused, then its image patch
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is sharper. Otherwise, a not-in-focus scene is blurry. This kind of monocular

depth cue can provide information on the depth from one viewpoint.

Taking the light field data as input, if we calculate the average intensity

among different viewpoints, then the average image is similar to a photo from

a traditional pinhole camera. After we refocus the light field image to different

depths, then multiple defocus cues will be available.

Below is the refocusing effect of a first generation Lytro prototype cam-

era [9]. Refocusing using the light field data can be done by a simple shear

transformation.

Figure 2.4: Light field camera can refocus a captured image to different depths.
Rather than by simulation using blurring, refocusing of a light field camera is
physically-based.

2.1.3 Specularity

Both correspondence and defocus cues are not robust in the presence of spec-

ularity. Instead of the Lambertian assumption, other methods tend to use

more complex but physically correct models. In papers [25][26], the BRDF

(Bidirectional reflectance distribution function) model is used to handle non-

Lambertian effects. The coefficients of the specular term is determined by

two directions: the direction of the incoming light and the viewing direction.

Because of the redundancy of light field data, they derive another BRDF in-
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variant to solve for the depth and normal by assuming that the surface is

smooth or a set of bicubic patches. The equation below is the BRDF function,

x the position of a scene point, n the normal of the scene surface, s the in-

coming light direction determined by the position of the light source and the

position of the scene point, and v the viewing direction,

ρ(x, n, s, v) = (ρd(x, n, s) + ρs(x, n̂
T ĥ))(n̂T ŝ). (2.4)

Noted that a common drawback of methods based on the BRDF model is

that they are more suitable for controlled scenes. Because in a BRDF function,

the location of the light source must be known or it requires to be estimated

along with depth. Other depth estimation methods [18][27] which explicitly

handle specularity classify the scene into diffuse parts and specular parts, and

then iteratively propagate the estimated depth from the diffuse part to the

specular part.

Other methods like [28][12] trained convolutional neural networks to syn-

thesize new views and estimate the depth maps. Because the ground truth

for view synthesis is available, it is feasible to train a CNN to synthesize a

new view. Jointly with the new views, the depth map is estimated indirectly.

Methods based on CNN can tackle the problems of specularity and occlusion

without incorporating strict assumptions and physical-accurate models. How-

ever, the training data needs to be chosen judiciously. For example, in [12], due

to the diversity of one training data set, their network can not work robustly

even though there are 3243 images in the training data.

2.2 Accommodating refraction

Even though the methods mentioned above can estimate depth of a realistic

scene captured using a light field camera, none of them allows us to accom-

modate the effect of refraction. Realistic photography is often composed of

various objects made from different materials, including the effect of refraction.

Transparent media such as air, water or glass do not have the same refractive

index, which is determined by the speed of light inside them. According to
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Snell’s law, when light rays enter another medium with a different refractive

index, they are refracted or bent, following a nonlinear path. Illustrated in

Figure 2.5, a pencil is semi-submerged in water. The picture of it is distorted

because of refraction.

Figure 2.5: A pencil is semi-submerged in a water tank. The underwater
part is refracted. The correct position is at X. Due to refraction, the wrong
position Y is observed.

This kind of non-linear path change forces the real image formation pro-

cess to deviate from the traditional perspective camera model. In this case,

because of the invalid camera model, the corresponding depth map and 3D

reconstruction result using a method for air will no longer be valid. Hence,

we have to explicitly model the effect of refraction to recover the actual depth

of underwater scene points. Methods like [29][30][31][32] take the nonlinear

path into account and they build the methods by involving refractive plane

into the general pinhole camera model. Another option is to use a virtual

camera [33][34]. The virtual camera is first proposed by [34]. All rays in water

intersect a common axis defined by the cameras center of projection and the

normal of the interface between two medias.

In our proposed algorithm, we incorporate the depth estimation method

from [4]. Furthermore, the effect of refraction is also explicitly considered by

incorporating the refraction into the pinhole camera model.

To remove the effect of refraction from our estimated depth map, identify-

ing the underwater part of the semi-submerged object is a crucial step because

only the underwater pixel’s depth needs to be corrected. Besides, to compute

the actual non-linear paths of light rays, we must know the normal of the water
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surface in advance. In this thesis, we assume that the water is stationary and

does not have waves. To directly recover the shape of dynamic water surface

from light field images is beyond the scope of this thesis.

In the field of water surface reconstruction, we are not aware of any existing

research that could recover the water surface using a light field camera. In [23],

they assume two signals can be detected in the light field data, one from the

object, one from the refractive or reflective surface. Then a structure tensor

is used to separate these signals and to reconstruct the occluding reflective or

refractive surface. But the signal of clear water is almost undetectable. Data

from a consumer light field camera is much noisier, making it even harder to

apply the structure tensor method. Another available approach is described in

ref[35]. With a known pattern placed underwater and two cameras mounted

on a stereo rig to capture correspondences, this method specially targets at

flowing water. But as we mentioned, the baseline of a consumer light field

camera is very small, making this method not applicable.

2.2.1 Texture analysis

In our method, we take advantage of the boundary pixels between air and

water to estimate the normal of the water surface using texture analysis. To

automatically estimate the water surface, we assume that the semi-submerged

object is covered with similar textures such that the water surface can be

identified by analyzing the change of texture caused by refraction.

Back in the 1950s, Gibson first proposed that surface orientation can be

perceived from texture analysis [36]. Due to differences in orientation and

depth of the surface, textures are perceived differently. This is what has been

termed as texture gradient by Gibson. For example, by observing windows on

a wall, we can infer the orientation of this wall. As the window (texel) gets

smaller, it gives us a clue that the wall is getting further away from us. As

depicted in Figure 3.5, the windows on the building is a kind of texture. As a

wall of the building gets further way, the window texture gets finer.

To recover the scene structure from textures, there are mainly two ap-

proaches. The first approach is based on size and density of texels which vary
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Figure 2.6: A monocular depth cue: the size and orientation of texture will
vary with depth.

with the distance from the observer. As the surface gets further away, the

texture gets finer and appears smoother [37]. Based on this observation, the

texture gradient information is gathered from patches inside an image as a

depth cue. However, the gradient information relies on the size of the image

patch, which in turn makes it of limited use when the interested surface gets

smaller. To avoid this drawback, the second approach uses texture cue ex-

tracted from each texel by considering its aspect ratio. When the plane of a

circle is slanted from the viewing direction, the circle appears to be an ellipse.

Similarly, the aspect ratio of each texel also reveals the surface structure. This

kind of method has been fully discussed in [38][39]. They use statistical mod-

els to estimate the probability of different surface orientation considering the

observed distribution of texels with various aspect ratios. In this thesis, we

combine both approaches to improve the efficiency of our algorithm.
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Chapter 3

Refraction Corrected Depth
Estimation

In our algorithm, we assume that the surface of the semi-submerged object has

similar textures. The input to our algorithm is a light field image LF (u, v, x, y),

where (u, v) are the angular coordinates, the position of viewpoint, and (x, y)

are the spatial coordinates, the 2D pixel’s location. The output is a depth

map after removing the effect of refraction.

3.1 Overview

Briefly, our algorithm consists of three steps:

1. Depth estimation using correspondence. In this step, we ignore the effect

of refraction and estimate a temporary depth map using correspondence,

from which the incorrect underwater depth result is estimated.

2. Estimate the normal of the water surface using texture analysis. Next, to

recognize the underwater part, we analyze the orientation of the surface

from texture gradient to extract boundary pixels between air and water.

The calculated normal of the water surface allows us to further calculate

the real path of refracted rays in the next step.

3. Calculate the real depth using Snell’s law and depth estimation from

step 1. We recalculate underwater scene points using the correct light

rays and triangulate where the underwater objects are.
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3.2 Depth estimation using correspondence

In the first depth estimation step, we ignore the effect of refraction and specu-

larity. The actual scene points can be modeled as a composition of diffuse part

and specular part. A Lambertian scene point demonstrates photo-consistency

among different viewpoints. In other words, if we look at the same Lambertian

scene point from another view, the observed color should be the same.

Given a light field image LF (u, v, x, y), we can vary the (u,v) angular

coordinates to get 2D spatial images from other slightly different viewpoints.

Assumed that the captured scene is Lambertian. If the scene point is refocused

to the correct depth, then ideally, different viewpoints will capture the same

color for the same scene point. In contrast, if the scene point is refocused to the

wrong depth, the observed color will be different in different views. In order

to distinguish between correct and incorrect depths, we refocus the light field

image to different depths and the depth is determined as the correct depth

when the color variance among different viewpoints reaches the minimum.

Ng et al. first explained how to refocus a 4D light field data in [9]. Basically,

a refocused light field LF ′(α) is a sheared version of the original one:

LF ′(α) =

∫ ∫
L

(
u′, v′, u′ +

x′ − u′

α
, v′ +

y′ − v′

α

)
. (3.1)

The new refocused light field data is just a summation of sheared sub-

aperture images, with shear value α. After the light field image is refocused

with different α, we can compare their color variance among all viewpoints.

The α with the minimum variance, i.e. the highest photo consistency, is chosen

as our estimation. The equation of color variance at pixel (x, y) with shear

value α is:

σα(x, y)2 =
1

N

∑
(u′,v′)

(Lα(x, y, u′, v′)− Lα(x, y))2. (3.2)

In the above equation, the total number of viewpoints (u,v) is denoted as

N and Lα(x, y) is the mean value of color variance. This method was first

given by Tao et al. [4]. In their algorithm, they combine this result with

another defocus response. However, our main focus is to avoid the effect of
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refraction so we only make use of the correspondence cue. Even though depth

derived from correspondences may yield bad results if the scene has repeating

textures or occlusions, it still opens up a possibility for us to discover the

effect of refraction, and then gradually improve the current depth result in the

following steps.

3.2.1 Interpolation to sub-pixel

From equation 3.1, we can see the shear transformation in light field will reach

sub-pixel level. In order to improve the accuracy of the shear transforma-

tion, we need to do interpolation to estimate the intensity value at a sub-pixel

location. Among interpolation algorithms, bilinear interpolation, bicubic in-

terpolation and spline interpolation are widely used. Many publicly available

modules such like GNU’s ALGLIB library have implemented these numerical

methods. But in order to increase the efficiency of our implementation, we

implement this part in C and wrap it using mex to work with other matlab

codes. Part of our implementation is based on the code from [40].

Bilinear and bicubic interpolation are both polynomial interpolation meth-

ods. The difference is that bilinear interpolation uses the nearest 4 neighbors

but bicubic interpolation uses the nearest 16 neighbors. The equations for

them can be summarized as follows. i and j are indices for the x and y co-

ordinates. For bicubic interpolation, imax and jmax are equal to 3, while for

bilinear interpolation, imax and jmax are equal to 1.

f(x, y) =
imax∑
i=0

jmax∑
j=0

aijx
iyj (3.3)

Spline is another popular method for interpolation especially in the field

of computer-aided geometric design. The shape of the curve interpolated by

spline is controlled by several control points. For example, in the industry of

automobile, a designer can design a curve by shifting control point’s position,

which is far more convenient than using an equation. The main advantage

of spline interpolation can be displayed in Runge’s example [41], where high

order interpolation using a global polynomial often exhibits oscillations. If we
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imagine these sample points as training samples in the field of machine learn-

ing, then Runge’s example is like over fitting. This phenomenon is illustrated

in Figure 3.1. The classical Runge’s phenomenon is about the polynomial

interpolation of Runge’s function, whose equation is:

f(x) =
1

1 + 25x2
, x ∈ [−1, 1]. (3.4)

Normally, higher order polynomial interpolation should be more accurate

compared with lower order polynomials. However, if we interpolate Runge’s

function using lower order polynomials whose equation is 3.5 and high order

polynomials whose equation is 3.6, then the result is not what is predicted.

The detailed derivation process for 3.5 and 3.6 can be found in paper [2].

p1(x) = 1− 3225

754
x2 +

1250

377
x4 (3.5)

p2x = 1− 98366225

7450274
x2 +

228601250

3725137
x4 − 383000000

3725137
x6 +

200000000

3725137
x8 (3.6)

Figure 3.1: Runge’s example [2]. Runge’s function is plotted on the left.
The rest two figures are polynomial interpolation of runge’s function. The
rightmost curve is interpolated with higher order polynomials (3.6) but exhibit
oscillation. Piecewise spline interpolation can avoid this kind of oscillation.

Compared with traditional interpolation methods, spline is like a “piece-

wise” interpolation. Assume we have n+1 data points {(xi, yi) : i = 0, 1, ..., n},

then there are n intervals, each defined by a pair of knots (xi, yi) and (xi+1, yi+1).

For each interval, the polynomials pi that we use may not be the same, which

are local polynomials rather than global polynomials. But both first and sec-

ond derivatives are continuous everywhere. In addition, we have,

p
′

i(xi) = p
′

i+1(xi)

p
′′

i (xi) = p
′′

i+1(xi)
(3.7)
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The smoothness of a spline can be further expanded to higher order of n,

which means that at each knot (xi, yi), adjacent polynomials share common

derivative values of order n. In our algorithm, we use spline interpolation to

estimate corresponding points at sub-pixel locations.

To this end, the first step of our depth estimation has finished. Please be

noted that the current depth map does not recognize any underwater part, but

only provides an initial guess for the underwater depth. As a result, the current

underwater result is completely wrong. It is a very common phenomenon in our

daily lives that refraction will make our visual depth estimation inaccurate.

For example, if a fisherman wants to spear a fish swimming in water, the

spear needs to go deeper than that observed visually because the virtual depth

acquired by the eyes is not accurate, which is shallower than the real depth

of the fish. It is because the light ray is refracted but we do not realize this

when our eyes are doing backward ray tracing to “estimate” the depth of

an underwater object. Similarly, the underwater depth map for this part is

regarded as the virtual depth, which is incorrect but will be corrected in our

algorithm.

3.3 Estimate normal of water surface

In this part, we assume that the water surface is flat and stationary, with one

consistent normal. We combine a texture descriptor method and a statistical

model in texture analysis to pick out pixels along the boundary between air

and water. Because of refraction, underwater distortion leads to inconsistency

of surface orientation and depth along the boundary. For example, in synthetic

data, we generate the correct depth map and the incorrect depth map in Figure

3.2 and Figure 3.3, respectively. For the underwater part, the correct depth

map is denoted in red and the incorrect depth map in green. Darker color

means closer. In Figure 3.2, a straight ruler is semi-submerged into water,

such that its underwater part is completely distorted, both in its shape and

depth. In Figure 3.3, the orientation of the surface of a cone is also changed

due to refraction.
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Figure 3.2: Depth map of a ruler in water. Correct depth in color red, wrong
depth in green.

Figure 3.3: Depth map of a cone in water. Correct depth in color red, wrong
depth in green.

Given the texture information, this inconsistency can be identified at the

same time revealing the position and orientation of the water surface. To

begin texture gradient analysis, we first gather patches with a width of 50

pixels using the center light field image and calculate a texture descriptor for

each patch to describe the gradient of texture’s size and density. Gradients

are calculated from the power spectrum of the Fourier transform of the image,

which is first proposed in [37]. After transforming the coordinates of the power

spectrum into the polar coordinate system, the size and density of repeating

patterns can be represented by the radius of the power spectrum at each peak

direction. A snapshot of the texture descriptor analysis is shown in Figure 3.4.

To this end, image patches where size and density display inconsistency

are recorded for the next step to refine the search range.

Secondly, we apply the method in [38] to estimate the probability of differ-
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Figure 3.4: Snapshot of texture descriptor.

ent surface orientations, but only on the image patches found above. In order

to estimate the surface orientation, we need to calculate every candidate orien-

tation’s probability, our combined method is more efficient by narrowing down

the search range. Next, boundary pixels are chosen from pixels whose surface

orientations display a sudden change compared with its neighboring pixels.

Based on all observed curves’ orientation αi, we can estimate the probability

of each surface orientation (σ, τ):

n∏
i=1

π−2sinσcosσ

cos2(αi − τ) + sin2(αi − τ)cos2σ
. (3.8)

Boundary pixels found in this step are illustrated in Figure 3.5. We refer the

interested reader to the original papers for a more comprehensive description of

this statistical model. Then, the best fitting plane is calculated by minimizing

the orthogonal distances from the set of boundary pixels to the water surface

as an initial estimation of the water surface.

3.4 Remove the effect of refraction

At the interface between air and water, all refracted rays obey Snell’s law,

which allows us to compute the correct depth. The underwater light path can

be calculated by making use of the normal calculated from texture analysis.

According to Snell’s law, the relationship between the refracted ray and the

original ray depends on the relative index of refraction (IOR) and the normal
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Figure 3.5: An image patch (red square) and boundary pixels (red dots)

of the interface:
sinθ1
sinθ2

=
IOR1

IOR2
= η. (3.9)

Angle θ1 is the angle between the ray in air and the water surface normal,

while θ2 is the angle between the ray in water and the normal. Instead of

angles, Snell’s law can also be represented using rays:

	w = η	a+ (−η	a · 	n−
√

1− η2 + η2(	a · 	n)2)	n. (3.10)

In equation 3.10, 	a is the refracted ray in air, while 	w is the original ray

from an underwater scene point, which is exactly the correct ray we are looking

for. 	n is the normal of the water surface and the relative refractive index η is

assumed to be known. In the experiments, we assume the relative refractive

index of water is 1.33. With Snell’s law, the correct direction of underwater

ray 	w can be calculated.

In Figure 3.6, the wrong underwater scene point is denoted as F while

the correct underwater scene point is denoted as R. C1 and C2 denote two

viewpoints on the main lens of the light field camera. 	n denotes the normal

of the water surface. Although in this figure, the water surface is parallel to

the photosensor. In our experiments, the position of the water surface is not

constrained. It is noteworthy that if the water surface is not parallel to the

sensor plane, our method can still work.

Based on the depth map from Section 3.2, the incorrect underwater position

F can be computed. Although wrong positions lead to wrong pixel locations
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Figure 3.6: Refracted Rays (see text for explanation)

and depth results, they still unveil the ray direction in air, C1−F . By applying

Snell’s law, two correct rays 	w are used to triangulate the correct position of

the underwater scene point. All points are in the camera coordinate system.

In the real experiments, we use The Light Field Toolbox [42][43] to estimate

the intrinsic parameters of the camera.

Since the estimated water surface from Section 3.3 is not accurate, a bound-

ary constraint is developed to modify the normal of the water surface. Because

boundary pixels are close to the water, their recalculated locations must be

very close to their original pixel locations. We gradually vary the orienta-

tion (σ, τ) of the water surface and calculate the corrected pixel locations

for all boundary pixels. The orientation which can minimize the distance be-

tween the corrected pixels and the old pixels is selected as the final estimation,

which is then used to correct the depths of all underwater pixels. With a new

orientation (σi, τi), the new equation of the water surface is recalculated, as

aix+biy+ciz+di = 0. Using the new water surface, we can re-triangulate the

boundary pixels whose locations are BP based on the Snell’s law shown above

and get the new pixel locations BP ′. Finally, the water surface is reselected

to minimize the difference between BP and BP ′. In equation 3.11, j is the

index for boundary pixels.

(σ, τ) = min
(σ,τ)

∑
(BP (j)− BP ′(j)) (3.11)

The point clouds of wrong underwater scene points (red) and corrected
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scene points (blue) are shown in Figure 3.7 and Figure 3.8. The point cloud

is from our synthetic experiments.

Figure 3.7: Underwater point cloud. The plane represents the water surface.
The red point cloud is wrong. The blue point cloud is corrected from the
wrong point cloud.

Figure 3.8: Another viewpoint of the underwater point cloud. The plane
represents the water surface. The blue point cloud is corrected from the wrong
point cloud using Snell’s law.

In Figure 3.9 and Figure 3.10, we demonstrate the point clouds from two

synthetic experiments. In Figure 3.9, the water surface is at z = 3. In Figure

3.10, the water surface is at z = 1. Because of refraction, the traditional depth

estimation method can not work for the underwater part, leading to a wrong,

refracted point cloud, which is illustrated as the red point cloud. Reversing

the process of Snell’s law, we are able to recover the real positions of the

underwater points.
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Figure 3.9: This is the point cloud in world coordinates. With a water surface
at z = 3, the scene points whose z value is less than 3 are refracted. In
the pinhole camera model, the light ray is assumed to be straight. Traditional
reconstruction algorithm can only reconstruct a wrong, bent point cloud, which
is shown in red.

Figure 3.10: This is the point cloud in world coordinates. With a water surface
at z = 1, the scene points whose z values are less than 1 are refracted. The
wrong point cloud is shown in red. The corrected point cloud is shown in blue.
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Chapter 4

Experiments

To verify our algorithms, we did experiments on synthetic data and real data.

In the synthetic experiments, we apply our methods to synthesized 3D scenes

rendered by an open-source modeling software, Blender. For simple scenes,

the blender file is created by us and are rendered using a non-photo-realistic

ray tracing engine, Blender Internal Renderer. For more complicated photo-

realistic scene, we use the blender files from a benchmark dataset and did

some modifications to include refraction. The complicated scene is rendered

by a photo-realistic ray tracing engine, Blender’s Cycles Renderer. In the real

experiments, we take photos for semi-submerged objects using a Lytro Illum

light field camera.

4.1 Synthetic data

In a light field camera, there is a microlens array to retrieve directional in-

formation of rays. However, it’s hard to model a lens array in Blender. To

model a light field camera, a grid of pinhole cameras are modeled to capture

photos from different viewpoints. They share the same focal plane and the

baseline of adjacent cameras are the same. We model the light field camera

by using an addon created by the University of Konstanz and the HCI group

at Heidelberg University [3]. The output of our work is the depth map of the

central viewpoint.
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4.1.1 Dataset from Blender’s internal render engine

There are two ray tracing engines in Blender. One is the built-in Blender

Internal Renderer and another one is the photo-realistic Cycle’s Renderer. At

first, we create two simple scenes and render photos using Blender’s Internal

Renderer. Even though Blender Internal Renderer is not physically accurate,

it is faster and due to our Lambertian assumption, the realism of Blender

Internal is acceptable.

In the synthetic experiments, we apply our method to two different scenes.

Although many light field benchmark data sets are available right now, we

cannot use them directly like other light field research work. The reason is

that all of them do not have water or any other refractive materials and hence

the effect of refraction cannot be observed in them. So we build our own 3D

scenes using Blender 2.77, an open source modeling and animation software.

121 cameras are arranged on a 11×11 grid to simulate a real light field camera.

Each camera’s FOV is 40 degrees. The refractive index of water is set at 1.33.

The first scene is similar to the popular physical experiment in a typical

high school, i.e. a pencil is semi-submerged in water. There is a water tank

and a ruler in the scene. The straight ruler is partially submerged in the water

tank. The water tank is surrounded by two gray walls. We can find obvious

underwater distortions of this ruler caused by refraction. The ruler appears

to be bent and its above water texture looks different from that under the

water. In the second scene, the submerged cone and water tank are placed

at a different position. At the same time, we also change the position of the

point light source. However, the setting of our 121 camera rig is still the same.

Because after some tests, this setting is the best one to simulate a consumer

Lytro camera.

From our results, we show that our method can remove the effect of refrac-

tion to some extent. The corrected underwater part demonstrates consistency

in shape and depth with the above-water part. The refracted underwater scene

is always smaller in size compared with the same scene without water. Espe-

cially at the intersecting positions between air and water, scene points which
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can be observed without water can not be captured because of refraction. Due

to this kind of distortion, the corrected pixels can not be perfectly connected

with the above-water pixels. Similarly, in the segmented coded depth map,

the upper above-water part is not fully connected with the underwater part.

But basically, the corrected depth map can provide a good insight for the

underwater portion’s depth and shape.

To provide a quantitative analysis, we measure the RMSE (root mean

squared error) with the ground disparity map. After removing the effect of

refraction, for the first scene, the RMSE drops from 0.025 to 0.024, for the

second scene, the RMSE drops from 0.031 to 0.030. After the correction, the

shape of underwater portion is corrected, leaving the data of the original pixels

unaccessible. Because of refraction, some background pixels are occluded. But

after the effect of refraction is removed, those background pixels can not be

recovered because they are not captured by the camera. And the RMSE highly

depends on the size of the underwater portion. If the underwater part is larger,

then there are more pixels corrected, the improvement is larger.

4.1.2 Realistic benchmark dataset

Rendering a scene with the photo-realistic ray tracer, the Blender’s Cycles

Renderer, is time-consuming. Cycles renderer is a backward path tracing

engine. In order to make the synthesized capture more photo-realistic and

avoid artifacts, this kind of engine will trace a huge amount of rays. Cycles

Renderer is able to sample thousands of rays for each pixel. Hence, the number

of samples will affect the rendering speed. For example, if the sample size is

changed from 3000 to 1000, then the rendering time for a single image will

decrease from 16min20s to 6mins.

To speed up the rendering process, we choose GPU computing and de-

crease the sample size in the ray tracing engine from 3000 to 1000. Using a

computer with the Nvidia GeForce GTX 970 grahics card, i7-6700 CPU and

16GB memory, it takes about 4 hours to render a synthetic scene. We render

one realistic scene using cycles’ renderer, which is from a light field benchmark

dataset[3]. To model the effect of refraction, we add a cube with refractive
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(a) Pencil in the water (b) Uncorrected depth map

(c) Corrected depth map
without refraction

(d) Depth map after water is
removed in the synthetic scene

Figure 4.1: Synthetic experiments’ results: Figures a,b,c and d are results of
the first synthetic scene, where a straight pencil is submerged in water. a is the
central sub-aperture light-field image. Figure b shows the depth estimation
result using correspondences, and c is the corrected depth after removing the
effect of refraction. The color varies from blue to red, the more reddish, the
closer. Figure d is the depth estimation results using correspondences after
removing the water in synthetic scenes, in other words, the ground truth.

(a) Cone in the water (b) Uncorrected depth map

(c) Corrected depth map
without refraction

(d) Depth map after water is
removed in the synthetic scene

Figure 4.2: Figures a,b,c and d are results of the second scene, where a cone
is submerged in a water tank. In Figure c, old underwater pixels are removed,
leaving old positions white. Figure d is the depth estimation results using
correspondences after removing the water in synthetic scenes.
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(a) Blender model without water (b) Blender model with water

Figure 4.3: 3D model in the software Blender. Figure a is the semi-submerged
object: a medieval city, which is provided by the benchmark dataset[3]. Figure
b is the model after water is added. A cube with refractive material will refract
rays just like real-world water.

material to represent water.

In Figure 4.3, we show the original 3D model and the 3D model with

the refractive cube. In this experiment, a medieval city is semi-submerged in

water. In particular, the front stairs are semi-submerged.

In Figure 4.4, we show the central view images in this synthetic data with

and without water. As you can see from the images, this synthetic experiment

is more challenging. There are some shadows and highlights on the water

surface because of reflection of water.

In Figure 4.5, Figure a is the uncorrected depth map based on correspon-

dences. Figure b is the corrected depth map after correcting the effect of

refraction. Figure c is the ground truth depth map. It is exported from the

blender file without the refractive cube.

4.2 Real data

To work with a Lytro Illum camera, a light field MatLab toolbox [42] is used

for the purpose of decoding and calibration. The decoded light field data is a

5D matrix. If we fix the 2 dimensions representing the aperture location on the

main lens plane, then the squeezed new 3D data are the sub-aperture images

we need. The size of decoded light field raw data is 15× 15× 434× 625× 4.

With a single capture, there are 15×15 sub-apertures in the raw data, which is

also called angular resolution. The 434×625 represents the spatial resolution,

in particular, the size of sensors to record densities of light rays.
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(a) Realistic Scene with water (b) Realistic Scene without
water

Figure 4.4: Central-view image from the synthetic data. Figure a is the image
captured with water in the scene. Figure b is the image captured without
water.

(a) Uncorrected depth map (b) Corrected depth map
without refraction

(c) Ground truth depth map
without refraction

Figure 4.5: Uncorrected and corrected depth maps. Figure c is the ground
depth map without water in the synthetic data.
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Physically, the raw sensor pixels are hexagonally aligned on the sensor

plane. Taken advantage of the vignetting effect, a white image taken by the

Illum camera is able to help us detect the center of each sensor pixel. Finally,

after the decoding process, raw pixels can be aligned within a grid, which is

congruous with the 4D parametrization of a light field, i.e. a pair of coordinates

(u,v) is given by the location in the micro-lens space, another pair (x,y) is

given by the sub-aperture location on the main lens. This parametrization

is equivalent to identify each ray’s direction from the main lens to the micro

lens. By now, it is notable that propagating the rays through the main lens,

we can calibrate the rays to the camera coordinate system. From this toolbox,

a calibration matrix, H matrix is formulated as:
s
t
u
v
1

 =


H1,1 0 H1,3 0 H1,5

0 H2,2 H2,3 0 H2,5

H3,1 0 H3,3 0 H3,5

0 H4,2 H4,3 0 H4,5

0 0 0 0 1



i
j
k
l
1


In the real experiments, we only make use of 11 × 11 sub-apertures, in

other words, the diameter we explored in the main lens plane is 11. Margin

apertures are abandoned to reduce noise and to increase processing speed.

Our results also indicates that the aperture size we used is reasonable. The

whole processing time is about 25 minutes, 20 for depth estimation using

correspondences, 5 mins for the next two steps. The CPU of our computer is

an Intel 3.40GHz Core i7, with 16GB of memory.

The results of real experiments are shown in Figure 4.6. Since real data’s

texture is not as obvious as that of synthetic data, which make texture analy-

sis invalid, we manually segment the underwater part. Because the distortion

of the ruler scene is not so serious as the toy dinosaur’s tail, its disconnec-

tion effect, also found in the synthetic data, is also not serious. Due to the

concavities on the toy dinosaur’s surface, its depth estimation result from cor-

respondences is very noisy, resulting in some noise in the corrected depth map

after removing the effect of refraction. In contrast, the corrected depth map

of the ruler is much better. This is also the major limitation of our method.
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(a) Real data: A ruler in a water tank

(b) Real data: A toy in a water tank

Figure 4.6: Real experiments’ results: The upper row is the decoded light-field
image captured with the Lytro camera and the corresponding depth map cal-
culated using correspondence[4]. Because concavities on the surface of the toy
dinosaur, the depth map using correspondences is very noisy. So we combine
the defocus cue to improve it. The second row shows the shape comparison of
original pixels (black) and corrected underwater pixels (white), and the correct
depth after removing the effect of refraction. We only focus on the tail of the
toy dinosaur, which is marked by a red box. The underwater distorted part is
also marked in the ruler’s image.

It depends on the virtual depth, the first depth estimation result to estimate

ray’s direction in air. If the scene is textureless or exhibits large displacement,

then correspondences acquired with a consumer light field camera is not accu-

rate, limited by its small baseline. In the future, we can employ other kinds of

light-field cameras to overcome this constraint. Overall, the recovered shape
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and depth of underwater part is closer to the ground truth after removing the

effect of refraction.
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Chapter 5

Conclusion

5.1 Summary

In summary, we propose a new method to remove the effect of refraction of a

semi-submerged object using a light-field camera. With the corrected depth

information and pixel positions, the real structure of underwater scene without

distortions caused by refraction can be recovered. As far as we know, this

is the first depth estimation algorithm to explicitly accommodate refraction

using a consumer light field camera. By detecting boundary pixels on a semi-

submerged object, we are able to estimate the water surface and apply it to

recalculate the real positions of the underwater part. Although our method

is affected by the result from Section 3.2, the next two steps targeting at

refraction can be combined with more accurate depth estimation algorithms.

5.2 Contributions

The following summarizes the contributions of this thesis:

• Taking pictures of semi-submerged objects is very common in macro

photography. After removing the effect of refraction, correct underwater

depth information is beneficial for refocusing, scene reconstruction, view

synthesis and many other applications. This thesis can serve as a staring

point to incorporate refraction as an extension to the depth estimation

problem.
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• In our algorithm, we also estimate the equation for water surface. Al-

though water is assumed to be stationary, the estimation result can be

further applied as input to other water surface estimation algorithms, or

underwater reconstruction algorithm.

• Our algorithm can work for dynamic scenes. Because only one capture

is required from a light field camera.

• Our algorithm can work with light field data from other sources. As

more and more light field data acquiring techniques emerging, more ap-

plication of depth estimation using light field data can be found.

5.3 Future work

The following discussions give directions for future research:

• Narrow baseline of lenslet-based camera: The inherent narrow baseline of

lenslet-based camera is the major reason why the depth estimation result

is inaccurate. In order to handle this drawback, we should either estimate

sub-pixels or use extra captures with a larger baseline. In the future, we

want to lay emphasis on videos from light field camera to improve the

accuracy of reconstruction. Recently, a new light field camera named

Lytro Cinema has been released. With a video from a light field camera,

it is interesting to combine the strength of a narrow baseline with a large

baseline and to provide a real-time accurate depth map.

• Non-stationary water surface: When the water surface is no longer sta-

tionary, how to recover the normal of water surface according to the

observed underwater distortion will be another interesting problem to

explore. In our algorithm, a stationary water surface is assumed. In the

future, we can optimize the reconstruction of semi-submerged objects

and the water surface in a single framework.

• Combine depth cues: In our algorithm, only one depth cue, the corre-

spondence is discovered to estimate the depth map. However, it is easily
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affected by noise, repeating patterns and specularity. In the future, we

want to combine correspondence with other depth cues, e.g. defocus,

shading.

• Convolutional neural network: During the past several decades, con-

volutional neural network has made great contributions in many fields.

Recent research work like [28][12] have demonstrated the feasibility of ap-

plying CNN to depth estimation using a light field camera. Even though

the ground truth of depth is hard to retrieve in real life, the ground

truth of views can help us train networks to synthesize new viewpoints.

By using the epipolar geometry, the depth map can also be estimated

indirectly.
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