
University of Alberta

Pl a n n in g w it h A p pr o x im a t e a n d L e a r n e d M o d e l s of M a r k o v D e c isio n

P r o c e sse s

by

Cosmin Paduraru ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Master of Science.

Department o f Computing Science

Edmonton, Alberta
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-30002-2
Our file Notre reference
ISBN: 978-0-494-30002-2

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity of A lberta

L ib ra ry Release F orm

N am e o f A uthor: Cosmin Paduraru

T itle of Thesis: Planning with Approximate and Learned M odels of M arkov Decision Pro
cesses

Degree: M aster of Science

Y ear this D egree G ran ted : 2007

Permission is hereby granted to the University o f Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial por
tion thereof may be printed or otherwise reproduced in any material form whatever without
the author’s prior written permission.

Cosmin Paduraru
Apt 215, 8515 112 Street
Edmonton, AB
Canada, T6G 1K7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty o f Graduate
Studies and Research for acceptance, a thesis entitled Planning with Approximate and
Learned Models of Markov Decision Processes submitted by Cosmin Paduraru in partial
fulfillment o f the requirements for the degree o f Master of Science.

C7----------
Richard S. Sutton

Vadim Bulitko

M ichael Bowling

Bernard Linsky

Date: A .
lav. 5, 2oo 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my amazingly supportive parents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Planning, the process of using a model of the world to compute a policy for selecting ac

tions, is a key com ponent o f artificial intelligence. Planning in realistic domains poses many

challenges, such as dealing with large problem sizes, non-deterministic effects of actions or

a priori unknown dynamics. A planning system that addresses these challenges must repre

sent the model compactly, using function approximation, deal with stochastic action effects,

and learn the model from experience. Existing methods for planning with approximate and

stochastic models, however, make restrictive assumptions about the world’s structure. In

this thesis, a sampling-based planning method with general function approximation for the

stochastic model will be proposed as a less restrictive alternative. Experiments in a contin

uous, stochastic domain show that the proposed method can be more data-efficient than a

model-free alternative. In addition, preliminary theoretical results suggest that, for linear

function approximators, an approximate model that only represents expected values may be

sufficient for planning. The soundness of planning with approximate models is supported

by the general theoretical results in Chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I am extremely grateful for all the support and encouragement I have received throughout

my M.Sc. work at the University of Alberta. The university, and the Department of Com

puting Science in particular, have created a wonderful research environment. I have learned

immensely from my two supervisors, Rich Sutton and Vadim Bulitko, and most other m em

bers of the RLAI and IRCL research groups have helped me along the way in one way or

another. In particular, M ark Ring, Csaba Szepesvari, M ohammad Ghavamzadeh, Anna

Koop, David Silver, Adam W hite and Doina Precup have dedicated a significant portion

o f their time to helping me with the research and writing that this thesis is a result of. I

would also like to thank M ichael Bowling and Bernard Linsky for finding the time to serve

as defense committee members in a very busy period of the year. Finally, I have to thank

Iulian Radu, from whom I learned the basics o f artificial intelligence many years ago.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Sampling-based P la n n in g ... 3
1.2 Expectation-based P lann ing ... 5
1.3 C o n tr ib u tio n s ... 5

2 Background and Related Work 7
2.1 Reinforcem ent Learning .. 7
2.2 M arkov Decision P ro cesse s ... 8
2.3 M odel-free M ethods for Reinforcem ent L e a r n in g ... 11

2.3.1 Function Approximation in M odel-free Reinforcement Learning . . 11
2.4 M odel-based M ethods for Reinforcem ent L e a r n in g ... 13

2.4.1 M DP Planning with Approxim ate M o d e ls .. 14
2.4.2 Learning Models for M DP P la n n in g ... 18

2.5 Conclusion ... 19

3 The Effect of Model Inaccuracies 20
3.1 Theoretical R e s u l t s ... 20
3.2 D iscu ssio n .. 22

4 Two Methods for Sampling-based Planning 24
4.1 The Sampling-based Planning P r o c e s s .. 24
4.2 Updating the P o l ic y ... 26
4.3 Generative M odels of Multivariate D is trib u tio n s .. 26

4.3.1 Independent S a m p l in g .. 26
4.3.2 Cascade S a m p l in g ... 27

4.4 Approximating the Univariate D is tr ib u tio n s ... 29
4.5 Learning the Generative M o d e l .. 30
4.6 Approximating and Learning the Reward M o d e l .. 31
4.7 A Complete Im p le m e n ta tio n ... 33
4.8 Computational C o m p le x ity ... 33
4.9 Limitations o f Independent Sampling .. 34
4.10 Conclusion ... 35

5 Empirical Illustration 37
5.1 Testbed for Experiments 1 and 2: The Soft Obstacle D o m a in 37
5.2 Experim ent 1: Data-efficiency in a Single Task .. 39

5.2.1 Experiment Description .. 39
5.2.2 R e s u l t s .. 40
5.2.3 D is c u s s io n ... 40

5.3 Experim ent 2: Data-efficiency over a Sequence of Tasks 44
5.3.1 Experiment Description .. 44
5.3.2 R e s u l t s .. 45
5.3.3 D is c u s s io n ... 46

5.4 Experim ent 3: The Effect of Arbitrary G en era liza tio n 47
5.4.1 Experiment Description .. 47
5.4.2 R e s u l t s .. 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.3 D is c u s s io n .. 49
5.5 L im ita t io n s ... 50
5.6 Conclusion ... 51

6 On the Possibility of Expectation-based Planning 52
6.1 Value Iteration with Expectation-based M o d e l s .. 52
6.2 Learning M ultiple State-Values from a Single P r o je c t io n 54
6.3 M ulti-step Projection with Expectation-based M o d e ls .. 55

6.3.1 Non-linear M o d e l s .. 57
6.4 Approximating and Learning Expectation-based M odels 57
6.5 Conclusion ... 58

7 Conclusion 59
7.1 Limitations (Future W o r k) ... 60

Bibliography 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Good poker players are able to exploit knowledge of an opponent’s strategy; a driver that

knows the city well is able to navigate between any two places; engineers can design new,

complex structures because they know how basic parts and materials interact. In all of these

examples knowledge o f the world is used by a decision m aker in order to achieve some

objective. In artificial intelligence (AI) this process is generally referred to as ‘planning’,

and it has long been a subject o f investigation for AI researchers. The aim of this thesis is

to make advances in the design and analysis o f a particular class of planning methods, more

specifically methods that use approximate and learned world models.

Designing efficient planning methods is important because they allow artificial intelli

gence agents to make use of a model (either provided or learned). Using a model is partic

ularly advantageous for agents that have to perform a variety o f tasks in the same setting.

This would be the case, for instance, when driving between different locations in the same

city or designing different machines using the same set of pieces. In these cases, the world’s

dynamics are independent of the task, so, once acquired, the model can be used for solving

any new task more efficiently.

One challenging aspect of designing planning methods is that real-world domains are

often too complex for simple, tabular representations o f the model to be useful. Storing a

different value for each possible situation in a game of poker, each geographical location

in a city or each possible configuration o f a set of pieces is likely to be intractable. Fortu

nately, the field o f machine learning can provide solutions for representing functions over

large spaces compactly. These m achine learning methods are known as ‘function approxi-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m ation’, and they can be thought of as trading accuracy for compactness and generalization.

This thesis will focus on planning methods that represent the model using function approx

imation.

Another important aspect is that the effects of its actions will often appear to the agent as

non-deterministic. For instance, a poker player does not know what the next dealt card will

be, a driver cannot predict the precise amount of time that will be spent caught in traffic, and

some o f the pieces that one tries to build a machine out o f might be faulty. Consequently,

the planning algorithms introduced in this thesis will use stochastic models to account for

this uncertainty.

W hile it is possible to have the model programmed in by a domain expert, in general

one cannot assume that a model is a priori available. A simple example is driving in a new

city, where knowledge of the traffic patterns is gradually acquired. In such a context, it is

important to consider the problem of learning the model from data. For all the approximate

model architectures that I propose, I will also discuss methods for learning the parameters

of the function approximator.

In this thesis, the objective of the planning process will be to maximize a numeric re

ward (reinforcement) signal. The reward o f a poker playing agent would be the amount

of money it makes. For driving, positive rewards for getting to the destination fast must

be balanced with large negative rewards for getting into accidents. Learning how to m ax

imize reward from experience is generally known as ‘reinforcement learning’. Thus, the

methods for planning with learned models investigated in this thesis are also (model-based)

reinforcement learning methods.

Another property of many real-world problems is that previous experience may provide

useful information that is not present in the agent’s current observations. Such systems are

usually referred to as ‘partially observable’. For instance, poker is partially observable if

the playing agent only observes the current table configuration, as important information

about an opponent’s past behavior is discarded; driving is also partially observable if the

driver only uses the current visual observation, because this ignores useful information such

as previously observed speed limit signs.

This thesis will not deal with issues related to partial observability explicitly. Rather, I

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B

A . i • i t)a

< 8 > i ; —

Trajectory 3:
policy = n 2

driving tim e = 7 m inu tes
traffic light tim e = 3 m inutes
b arrier w ait tim e = 0 m inu tes

T rajectory 2:T rajectory 2: BT~T| [H *
policy = n 1 T: —*

driving tim e = 7 m inu tes
traffic light tim e = 0 m inu tes

barrier w ait tim e = 10 m inu tes

<i> r

A

T rajectory 1:
policy = n 1

driving tim e = 5 m inu tes
traffic light tim e = 2 m inu tes
barrier w ait tim e = 0 m inu tes

Figure 1.1: Illustration o f sampling-based planning.

will make the common assumption that the agent is provided with a representation that con

tains sufficient information about previous interaction. U nder this assumption, the planning

problem can be formulated as a M arkov decision process (MDP), a standard formalism for

describing stochastic decision-m aking problems.

To summarize, this thesis will investigate the problem of M DP planning with models

that are learned, stochastic and represented using function approximation. I will explain

how previous methods for addressing this problem are lim ited and how the methods pro

posed here remove some o f these limitations.

1.1 Sampling-based Planning

The main approach to M DP planning investigated in this thesis uses sampling-based or

generative models. As the nam e indicates, a sampling-based model can be used to sample

hypothetical future experience. The key of the planning process is that mechanisms for

learning from real experience are used on the sampled data. This idea is not new, dating

back at least to Sutton’s Dyna work (Sutton, 1990).

To better understand the sampling-based planning process, let us analyze a fragment of

the city driving task illustrated in Figure 1.1. The driving agent has to navigate from A to

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B, and it can choose between going straight forward over the rail tracks or taking the detour

to the right of the figure. The detour is longer and usually requires more waiting at traffic

lights, while the straight route has the disadvantage that the barrier might be down if there

is an incoming train. In order to choose the route that will minimize the total driving time,

the agent has to consider possible sources of non-determinism such as whether the barrier

will be lifted or lowered, what color will the traffic lights show or how heavy traffic will be.

A sampling-based model for this problem would generate samples of these events ac

cording to their probabilities of occurring. For instance, given that the agent is in front of

the barrier and that the probability o f the barrier being lowered is 0 .2, ‘barrier lowered’ and

‘barrier lifted’ would be sampled 20% and 80% of the time, respectively.

The sampling-based model allows the agent to generate possible future trajectories.

Given a policy for selecting actions (in this case, a route), these trajectories will be com

prised o f sampled values for different events that m ight occur along the way. Three such

trajectories are illustrated by the dashed lines in Figure 1.1, two of them generated using

policy 7Ti (go straight) and one generated using policy tt2 (take the detour). The figure

shows sampled waiting times for traffic, barrier or traffic lights.

The sampled trajectories can be used by the agent to update its estimates of the total

travel time, which is in turn useful for deciding what route to follow. For instance, if the

estimated total time for policy 7r2 was initially larger than 10 minutes (the sampled time),

this estimate would be decreased after observing Trajectory 3. After updating its estimates,

the agent would choose the route (policy) with the smallest estimated waiting time.

An important advantage gained by using sampling-based methods is that the model

representation can be completely independent from the policy representation. This allows

for great flexibility in the design o f a complete learning and planning system: no m atter

what function approxim ator is used for representing the model, the function approximator

for the policy can be chosen independently so that it best fits the problem. In contrast, other

existing approaches to the planning problem (e.g. Bradtke & Barto, 1996; Boutilier et al.,

2000; Boyan, 2002; Sallans, 2002; Degris et al., 2006) require particular combinations of

model and policy representation.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Expectation-based Planning

Chapter 6 investigates the possibility of expectation-based planning. Instead of representing

full probability distributions over future events, as sampling-based methods would require,

expectation-based methods only represent the expected values of those events. For instance,

in the driving example an expectation-based model would only predict the average time

spent waiting at the barrier for a train to pass.

An important advantage of expectation-based planning over sampling-based planning

and other planning methods is that an expectation-based model is easier to represent and

learn than a full probabilistic model. This comes, however, at the cost of decreased ex

pressiveness. Going back to the driving example, the same expected barrier waiting time

could be caused by either many trains taking a short time each, or by a few trains that take

a long tim e to pass. Being able to distinguish between frequent short waits and infrequent

long waits could be important, for instance, if the task is to get from A to B in less than x

minutes (e.g. when B is the airport).

1.3 Contributions

Two complete sampling-based planning systems with approximate and learned models,

based on existing ideas from statistics and m achine learning, are discussed in detail in Chap

ter 4. The only difference between these two systems is the way the model is represented.

The first type o f model, called ‘independent sam pling’, ignores the relationships between

state variables within the same time step. The second model, called ‘cascade sam pling’,

represents these relationships explicitly. In the driving example, independent sampling may

produce the pair of events ‘barrier lifted’ and ‘train com ing’, although the two events never

happen together. A cascade sampling model, on the other hand, explicitly encodes the fact

that if the barrier is up, then the train cannot be too close.

Unlike previous approximate models used for M DP planning, the cascade sampling

architecture does not pose any m ajor constraints on the types of models that can be repre

sented. Its representation power is limited only by the resources available to the function

approximator.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Both planning systems are implemented and evaluated empirically in a stochastic, con

tinuous domain, where they are compared to learning directly from experience (model-free

learning). For a single task per environment scenario the results indicate that the cascade

sampling approach can require less experience to learn a good policy; however, model-free

methods perform better than planning systems in the long run. In the case of multiple tasks

in the same environment, the advantages of planning methods over model-free methods are

shown to be more significant than in the case o f a single task. In addition, experiments on

randomly generated MDPs are used to illustrate how the quality of the state representation

influences the performance of planning methods compared to model-free methods.

Chapter 6 analyzes the conditions under which, despite their limited expressiveness,

expectation-based models can still be used as part o f a planning system. The results in

Chapter 6 are entirely theoretical. These results show the potential of expectation-based

planning, but this potential is yet to be incorporated into a complete planning system. De

signing and testing such a system requires separate, careful work, and is therefore left for

future research.

In addition to discussing particular methods, general theoretical results concerning the

performance of planning with approximate models are presented in Chapter 3. These results

apply to any planning algorithm, and they bound the quality o f the final solution in terms of

the quality o f the approximate model.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background and Related Work

The main goal of this chapter is to describe existing methods for planning and learning with

approximate models of M arkov decision processes (MDPs). Before discussing these meth

ods, I will provide necessary background on reinforcement learning and M DPs in Sections

2.1 and 2 .2 .

2.1 Reinforcement Learning

In reinforcement learning an agent interacts with an environment with the purpose o f m ax

imizing some function o f a num erical reward (reinforcement) signal. The agent can select

actions, sense aspects o f the environm ent’s state and receive rewards that depend on the

actions it selects. This process occurs in a (typically discrete) sequence o f time steps and is

summarized in Figure 2.1.

Playing poker, driving a car or building a mechanical system, presented in the introduc

tion as examples of planning systems, can also be regarded as instances o f the reinforcement

learning problem. A poker playing agent observes cards and selects actions such as fold

ing or betting, while trying to maximize the amount of money it leaves the table with. A

driver senses other cars or obstacles, perhaps through a vision sensor, and acts by steering or

breaking; short travel time would be rewarded, while accidents would be highly penalized.

An agent building a mechanical system senses components by seeing or touching them, acts

by placing them together and gets rewarded according to the quality o f the final product.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sensation (observation) ot
action at

Agent
reward rt

Ot+1
Environment

Figure 2.1: Graphical illustration of the agent-environment interaction. At time t, the agent
selects action at based on the previous observations and rewards, the last of which are ot
and rt- The environment responds to action at by emitting a new observation ot+ \ and a
new reward rt+1-

2.2 Markov Decision Processes

Markov decision processes (MDPs) are a widely used formalism for describing sequential

decision making problems. An M DP consists of a tuple M. =< S, A, P , R > , where S is

a set of states and A is a set o f actions. P : E x A x S —► [0,1], where E is a cr-algebra

over S, is a transition function, and R : S x A —* IRi s a reward function. In this thesis,

the action set A will be assumed to be finite. An M DP with |A | = 1 is also referred to as a

Markov chain.

The transition and reward functions, together with a policy for selecting actions 7r :

S x A —> [0,1], can be used to generate sequences so, a 0, r i , s i , a i , ... o f states, actions and

rewards. For each state s and action a, the probability with which the next state is generated

is determined by the transition function:

P r (s t+ 1 € B \ s t ~ s, at ~ a) = P (B , a, s)

where B C S is a measurable set. In the particular case o f finite state spaces, the transition

function simply determines, for each s' e S, P r (s t+1 = s '|s t = s, a,t = a).

In the most general case, the reward function could have similar semantics. However,

since all the methods investigated in this thesis use only the expected value of the next

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reward, the reward function will be defined such that:

E (r t+1\st = s , a t - a) = R(s ,a) .

Finally, the actions are selected probabilistically according to policy re:

Pr(a t = a\st = s) = re(s, a).

MDPs fit in naturally as models of reinforcement learning, as both are based on the

same type of interaction. See the textbooks of Bertsekas and Tsitsiklis (1996) or Sutton and

Barto (1998) for an extensive treatment of solutions to the reinforcement learning problem

that rely on representing the environment as an MDP.

Notice that an M D P’s transition and reward functions solely depend on the current state

and action: any information about previous states and actions is irrelevant given the current

state. If the agent cannot directly access a complete summary of previous interaction, for

mulating the reinforcement learning problem as an M DP might be limiting. In this case,

models such as partially observable MDPs (POM DPs) (Cassandra, 1994; Littman, 1996) or

predictive representations (PSR, TD nets, OOMs) might be more appropriate. In this thesis,

however, only the M DP formulation will be investigated.

Besides reinforcement learning problems, planning problems can also be formulated in

terms of M DPs. In the M DP formulation of the planning problem, the model is represented

by the transition and reward functions, and the objective o f the planning process is to com

pute a policy that maximizes some function o f future rewards. For other formulations of

the planning problem, one can consult general planning textbooks (e.g. Dean & Wellman,

1991; Ghallab, Nau & Traverso, 2004)

The function of future rewards that has to be maximized depends on whether the prob

lem is formulated as an episodic or continuing task. In the episodic setting, there is a special

terminal state. W henever this term inal state is reached, the current episode ends and a new

episode is generated according to re, P and R, starting from some distribution do over the

state space. The time step at which the episode terminates is usually denoted by T. In

the continuing (or non-episodic) case, there is no terminal state and interaction goes on

indefinitely.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A common objective function for the episodic case is the expected sum of future re

wards. Under this objective, a policy 7r maximizing

T

V (tt) - E «
E r t + 1

Li=0

must be found. In the previous equation, V (tt) is called the value of policy tt. The policy

tt* = arg maxjr V (7r) is called the optimal policy.

In the continuing case, the sum of future rewards is taken over an infinity of terms and

can therefore be undefined. In this case, the objective function is the discounted sum of

future rewards, defined as

V (tt) = ^ 7 ^4+1
.4 = 0

where 7 € [0 , 1) is a discount factor that gives exponentially less weight to rewards further

on in the future.

Two useful constructs related to this objective function are the state value function (also

referred to as the value function) V"* : S —> IR, defined as

V*(s) = E„ X ^ 7 t+Vi+4+ l |s 4 = S
i = 0

and the state-action value function Qn : S x A —► IR, defined as

y y +V w + ila « = s , a t = a
Li=0

The optimal state value function is then defined as V* = V 7r*, and the optimal state-action

value function as Q* — Qn*. Sim ilar constructs are defined for the episodic case by using

7 = 1 and summing to T instead o f 00 in the above equations.

Another possible objective function for the continuing case is the average o f expected

future rewards. The function to maximize in this case is

V (n) = pn - lim - V E n [ri+ i] .
71—►OO Tl —7—0

For the average-reward objective, the action-value function is defined as

OO

Q 7r(s, a) = ^ 2 E « [rt+i+ 1 - = s , a t = a]
i= 0

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Model-free Methods for Reinforcement Learning

M odel-free or direct reinforcement learning algorithms learn an estimate of the optimal

policy directly from experience, without explicitly building a transition or reward model.

M ethods that learn a value function as an intermediate step towards learning a policy are

often considered to be model-free methods, and they will be presented as such in this thesis.

A variety of algorithms exist for m odel-free reinforcement learning, most of them based

on M DP theory. Comprehensive surveys of such methods can be found elsewhere (Bert-

sekas and Tsitsiklis, 1996; Sutton and Barto, 1998); here I will only describe, in the follow

ing section, several algorithms that are relevant to the rest of this thesis.

2.3.1 Function Approximation in Model-free Reinforcement Learning

When the state space is small enough, the value function or the policy for each state can

be represented exactly, for instance in a table. M ethods that use such exact representations

are usually referred to as ‘tabular’. The tabular approach, while conceptually simple, is

intractable if the state or action space is large or continuous. The first reason for this is that

tabular representations are not compact: the memory requirements of storing a different

value for each state-action pair become prohibitive as the size of the state space increases.

Second, tabular representations do not lend themselves to generalization: no m atter how

similar two states are, updating the value o f one does not change the value of the other

in any way, potentially requiring a large num ber of updates to be m ade before anything

meaningful can be learned.

Function approximation deals with these issues by trading accuracy for compactness

and generalization. A function approxim ator for function g : X —» Y is a function / :

X —> Y that can be represented more compactly than g (/ typically has a parameterized

form, and thus is completely specified by the param eter values). The goal is to find a

function / in a certain class o f com pact functions such that / is as close to g as possible.

Surveys of different function approximation techniques can be found in the textbooks of

M itchell (1997) or Hastie, Tibshirani and Friedm an (2001).

Function approximation relies on the existence of structure in the world that can be

exploited for meaningful generalization. For instance, one of the simplest function approx-

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

imators simply groups together similar elements of X and stores a separate value for each

group. The structural assumption here is that it is reasonable that / outputs the same value

for all members of any given group.

An important concept for many approximate reinforcement learning methods is that

of feature-based function approximators. It is often the case that the original state repre

sentation was designed such that states are easy to interpret by a domain expert, yet this

representation might not be an appropriate input for a parametric function approximator. A

common solution is to add an extra function, mapping the original state space to a more

appropriate space for the function approximator. This additional function will be denoted

by 4>: S —> $>, where $ is typically a subset o f IRn ; the vector <ps = <p(s) will be referred to

as the feature vector for state s. M ore generally, <j> can be defined over S x A but, because

|-A | is assumed to be small, state-action values can be handled by simply using a separate

approximator Q a for each action a € A. Thus, the function approxim ator will be composed

o f the feature extraction m echanism and a (typically parametric) function / : < & —> IR.

One method for building binary feature vectors is tile coding (e.g. Sutton and Barto,

1998). In tile coding, multiple grids (referred to as tilings) are overlaid on top of the (possi

bly continuous) state space. The feature vector for state s will contain ones in the positions

corresponding to the grid cells that cover s and zeros in all other positions.

Numerous choices of feature-based function approximators have been investigated in

the reinforcement learning literature. These include linear, quadratic or other polynomial

functions o f the features, neural networks (Tesauro, 1995, Lin, 1992) or decision trees

(Boutilier et al., 2000; Degris et al., 2006).

A particularly simple, yet powerful form for the value function approximator is one that

is linear in the features: a) = where u a e IRn is the vector of value function

parameters corresponding to action a. Linear approximators have been successfully used

in a variety of applications (Sutton, 1996; Stone, Sutton & Kuhlmann, 2005; Sturtevant

& W hite, 2006). They are often preferred because they are easy to analyze and interpret,

in addition to having rather low computational costs. Note that, depending on the feature

construction mechanism, linear function approximators m ight be non-linear with respect to

the original state space.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sarsa(A) (Sutton and Barto, 1998) with linear function approximation is a popular

m odel-free reinforcement learning algorithm. Under linear Sarsa, the following updates

are performed at each time step t > 0 :

where lo is the parameter vector of the approximate value function Q%(s, a) = 4>Juia and

e is a real-valued vector called the eligibility vector. The initial value of e is the zero

vector, while uq can be arbitrary. The A parameter takes values in [0,1] and determines

how much the agent bootstraps (learns from other estimated values). The learning rate

param eter a E (0,1] determines how much influence new experience has on the existing

estimate. M odel-free reinforcement learning methods that use bootstrapping, such as Sarsa,

are usually referred to as ‘temporal-difference’ (TD) learning methods.

Using Sarsa for control is most commonly done by modifying the policy at every time

step so that it is e-greedy with respect to the current value function. An e-greedy policy

with respect to value function Q has the form

In the average reward case, the R-leam ing algorithm (Schwartz, 1993) can be used. An

on-policy version o f R-leam ing with linear function approximation performs the following

updates at every time step:

where p is an estimate of the average reward, a p and a are learning rate parameters and

Q*(s, a) = (pju)a. Sim ilar to Sarsa, an e-greedy policy with respect to can be used for

the control case.

2.4 Model-based Methods for Reinforcement Learning

M odel-based reinforcement learning involves, as the name suggests, using a model for solv

ing reinforcement learning problems. If the M DP formalism is used for describing the

■= Uat-! + a [r t + 7 QZ(st , at) - QZ(st- i , a t- i)} e

1 — e + | ^ y i f a = argm axj; Q(s, x);
e — t t t otherwise.

p : = p + a p(rt - p)

bJat-i ::= ^at - i T Oc[rt — p -j- Qw(st , ttt) Qw(.St—l , ttt—l)]0st_ i

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem, then m odel-based reinforcement learning is equivalent to M DP planning.

An important observation is that any model-free reinforcement learning method can be

used as part of a m odel-based method if a sampling-based model of the world is available.

As explained in Section 1.1, in this case the agent can plan by applying model-free m eth

ods on sampled experience. Specialized methods for planning with sampling-based M DP

models also exist (Kearns, M ansour and Ng, 1999; M unos and Szepesvari, 2005).

The value iteration algorithm for M DP planning maintains an estimate of the optimal

value function and updates this estimate in a series of iterations. Each new iterate 14+ 1 is

computed by I4 + i(s) = BVk(s) , where B is the Bellman operator defined, for any value

function V, as

For finite state spaces, the integral is replaced by a sum over all s € S. The sequence of

value functions produced by value iteration is guaranteed to converge to the optimal value

function V*, under the sam e conditions for which V* is guaranteed to exist.

If function approximation is used for the value function, a class of modified variants of

the value iteration algorithm generally referred to as ‘approximate value iteration’ can be

used (e.g. de Farias and Van Roy, 2000). The simplest form of approximate value iteration

computes V^+i as the best fit to BVk in the class of value function approximators.

2.4.1 MDP Planning with Approximate Models

For small M DPs, the transition model P can be represented exactly by simply keeping a

table that stores for each (s, a, s') tuple the value of P(s , a, s'). A similar tabular repre

sentation can be used for the expected reward model, storing the value of R(s, a) for each

(s, a) pair. The table-based approach is, however, infeasible for large or continuous state

spaces. In such cases, function approximation has to be used for representing the model.

As discussed previously, the premise that justifies the use of function approximation

is that the world has structure, enabling a compact, approximate model to be learned and

used. Correspondingly, existing methods for approximating the model make different as

sumptions about the type o f structure that the world has.

B V (s) = m ax
a

Vs 6 S.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A simple solution is to discretize the state space into a small number of aggregate states

and use a table to store transition probabilities between pairs of aggregate states (Kuvayev &

Sutton, 1996). This approach suffers from the general problem of state-aggregation m eth

ods: an increase in the discrimination power can only be achieved at the cost of decreased

generalization, and vice versa.

Another approach is to learn a model of the world as a factored dynamic Bayes network

(DBN). If state variables with conditional independence relationships can be identified, then

using DBNs for learning and representing an M DP model is simple and efficient. If such

conditional independence relationships are not present in the system, however, then DBNs

alone do not offer any advantages over tabular representations.

W hen the conditional independence relationships exist and can be identified, models

of MDPs with a large num ber of states can be represented exactly using a small num ber

of parameters. Correspondingly, DBN transition models using tabular representations of

the dependencies between state variables have previously been used for M DP planning

(Tadepalli & Ok, 1996; Andre, Friedman & Parr, 1998; Guestrin et al., 2003). Guestrin,

Hauskrecht and Kveton (2004) use a similar approach for representing distributions over

continuous state variables, using a table to store the parameters of conditional distributions

from the exponential family. W hen the conditional independence assumptions are not met,

the number of parameters that these methods require is exponential in the num ber o f state

variables.

Boutilier, Dearden and Goldszmidt (2000) use a representation of the DBN in the form

of decision trees, allowing for larger state spaces to be represented compactly. For planning

with this model they propose a particular algorithm called structured value iteration (SVI)

that takes advantage of the tree structure. Degris, Sigaud and Wuillemin (2006) build on

the work of Boutilier et al. by extending it to the case o f learned models.

Sallans (2002) proposed a more general representation, where the DBN model of

P(s' , a, s) only assumes conditional independence between the components of s'. In the

case of multidimensional binary state representations, the function approximator for repre

senting the probability of each component s'(i) of s' was a log-linear combination of the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.2: Illustration of the possible pitfalls o f only considering the expected next state,

components of s:

P r (s ' (i) = l | s , a) = a (sT @a(i))

where @a(i) is the portion of the model parameters © corresponding to action a and com

ponent i, and a is the logistic function a(x) = 1 /(1 + e~x). In order to use this model in

a planning system, Sallans makes additional assumptions about the structure o f the value

function.

Another simplifying assumption is that the transition distribution is of a special para

metric form, most commonly Gaussian. This is the case, for instance, in some robotics

applications (Ng et al, 2004; Kaboli, Bowling & Musilek, 2006).

Other researchers have investigated planning with approximate models o f deterministic

systems (e.g. Atkeson, 1993; Atkeson, M oore & Schaal, 1997; Nouri & Littman, 2006).

Determinism makes it easy to represent the model: instead of a full probability distribu

tion, only one value needs to be predicted for the next state. Their methods have been

successfully applied on a num ber of challenging problems, including domains with contin

uous state spaces. If the real world is stochastic, however, ignoring this stochasticity can be

unsound, as illustrated by the following example.

For illustration purposes, consider the domain in Figure 2.2. Assume that after moving

forward from (x, y) the agent ends up in either (x + l , y), (x + 1, y + 1) or (:c + l, y —1), each

of them with equal probability, and that no reward is received for any of these transitions.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When applied directly on this domain, the methods mentioned in the previous paragraph

would learn a model that predicts the expectation of the next state distribution given the

current state and an action. Using such a model with TD methods and a Dyna-style planning

system is hazardous. The expectation of the next state distribution after moving forward

from (x, y) is (x + 1, y) and, since this is the only information provided by the model, a TD

method using this model would always update the value of state (x , y) towards the value of

(x + 1, y). Because this ignores the other possible future states, the agent never learns that

by going forward from (x, y) it m ight also end up in (x + 1, y + 1) or (x + 1, y — 1) and from

that to ‘war and destruction’. Thus, the value of (x, y) always gets updated based on the

value of (x + l , y) and never based on the value of (x + 1, y + 1) or (x + 1, y — 1) (presumably

the imminence of war and destruction would cause the value function for (x + 1, y + 1) and

(x + 1, y — 1) to be very, very low).

The example above does not imply that a deterministic, expectation-based model can

never be used, only that we have to be careful about how to use it. In fact, in Chapter 6

I will show that under certain conditions there are reasons to believe that planning with

expectation-based models can be perform ed in a sound manner.

Least-squares temporal difference (LSTD) methods (Bradtke & Barto, 1996; Boyan,

2002; Geramifard, Bowling & Sutton, 2006) can also be considered m odel-based methods,

although they do not explicitly build a transition model. Instead, a model of how feature

vectors at consecutive time steps are correlated is built, and this model is used to perform

policy evaluation. LSTD methods rely on the value function approximator being linear.

Because the model that LSTD builds is policy-dependent, in the control setting a new

model has to be learned every time the policy changes. To limit the amount o f experience

that this process requires, Lagoudakis and Parr (2003) and Antos, Szepesvari and Munos

(2006) propose algorithms that use a single stored trajectory to build an LSTD-style model

for any policy. Lagoudakis and Parr offer no performance guarantees concerning their

‘least-squares policy iteration’ (LSPI) algorithm, whereas Antos, Szepesvari and Munos

provide finite-sample bounds for the perform ance of their ‘Bellman-residual minimization

based fitted policy iteration’ method.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.2 Learning Models for MDP Planning

This section will survey existing methods for planning with learned models. The em pha

sis will be on learning transition models; learning an expected reward model is an easier

problem, since it avoids dealing with a full probability distribution.

Depending on how the learned model is used, two types of approaches are common

in the literature. The first is comprised of a separate model learning phase and a separate

planning phase. In the model learning phase, the model is learned from data using a random

or hand-coded control policy. After the model is learned, it is fixed and a plan is computed

off-line using the learned model (e.g. Ng et al., 2004).

The second class of methods interleave planning and learning, and is illustrated by the

Dyna architecture (Sutton, 1990; Singh, 1992; Degris, Sigaud & W uillemin, 2006). A

model o f the world is learned from experience, and at the same tim e a decision-making

policy is computed based on the learned model. Extensions such as prioritized sweeping

(M oore & Atkeson, 1993) and Queue-Dyna (Peng & W illiams, 1993) improve computa

tional efficiency by guiding the planning process from goals or states that have recently

changed value.

As in the value function case, learning the transition model depends on the way the

model is represented. If a table-based approach is used, then learning can simply proceed

by frequency counts (e.g. Kuvayev & Sutton, 1996). Frequency counts can also be used

for the table-based DBN representations mentioned in section 2.4.1 (Tadepalli & Ok, 1996;

Andre, Friedman & Parr, 1998; Guestrin et al., 2003).

M ore interesting is the recent work o f Degris, Sigaud and W uillemin (2006), in which

a decision tree DBN representation is learned from data. Thus, less experience is required

because of the generalization induced by the decision tree. Learning an approximate DBN

model has also been investigated using mean field theory (Sallans, 2002).

For planning methods that use deterministic models (Atkeson, 1993; Atkeson, M oore &

Schaal, 1997; Nouri & Littman, 2006) the model-learning problem amounts to traditional

supervised learning, and a variety of methods are available.

In the cases when the transition distribution is represented in a parametric form, the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

learning problem is easy if a set of parameters for each state can be stored in a table. How

ever, if function approximation has to be used for the state-dependent distribution param

eters, learning can be more complicated. The main problem is getting training data of the

form (s, 9), where 9 is the set of transition model parameters corresponding to state s.

Learning the LSTD model is straightforward, as it amounts to estimating a correlation

matrix between the feature vector components.

Many of the learning and planning algorithms mentioned above have been empirically

shown to achieve better data-efficiency than model-free methods.

2.5 Conclusion

Existing methods for learning and planning with approximate M DP models were surveyed

in Sections 2.4.1 and 2.4.2. W hile having obvious merits, these methods are limited in the

class of systems they can model by the structural assumptions that they make. The methods

investigated in this thesis aim to alleviate some of these restrictions.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The Effect of Model Inaccuracies

A fundamental question for planning with approximate models is the following: If a plan

ning method computes a policy using an imperfect world model, how well will that policy

perform in the real world? The theoretical results presented in this chapter guarantee that,

if the approximate model is accurate enough and an appropriate planning method is used,

the real-world perform ance will be close to optimal.1

3.1 Theoretical Results

The following results (Theorem 1 and Theorem 2) bound the difference between the op

timal value functions o f two MDPs in terms o f the distance between their models. The

theorems analyze the (discounted or undiscounted) cumulative return case; the average re

ward formulation is not discussed here.

The analysis uses L p norms, defined as | | / | | p = (/ \ f{x) \pd x) l ^p. The limit as p goes

to oo of the LP norm is called L°°, defined as | | / | |o o = su p x | / (. t) | . The L 1 norm will

be used to measure the distance between the transition models in the text of Theorems 1

and 2, as it is considered to be a “natural distance” for measuring the distance between two

probability distributions (Devroye and Gyorfi, 1985).

The first result can n ow be stated:

Theorem 1. Given two MDPs M \ = (S, A , Pi, P i) and M 2 = (S, A , P 2 , P 2) with the

same discount factor 7 < 1, the distance between the two optimal value functions V f and

‘The results presented in this chapter are the outcome of joint work with Csaba Szepesvari.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V<1 can be bounded by

||Vi* - V ^lloo < T— — (| | i ? i - ^ 2 | |o o + 711̂ 2* Hoc m ax sup H P iO , a , s) - P 2 (-, a , s)\
1 - 7 V a s

Proof. Using the triangle inequality,

||Vi* - V ^lloo = \\B iV f - B 2V2*||oo < \\B iV f - P iU 2*||oo + IIB xV f - B 2V2*lU - (3.1)

It is well known that the Bellman operator is a contraction with contraction factor 7 . Thus,

the first term can be bounded by:

||B 1V1* - B iV 2*Hoc < 7 IIV1* - V ^ IU (3.2)

For the second term

\\BxV f - Bt f fWco < snV \ m ax [R 1(s , a) - R 2(s,a)}\

+ 7 sup m ax
a

J V£(y)P i (dy ,a , s) - j V f (y) P 2(dy, a, s)

< sup m ax |i? i(s , a) — R 2(s, a) |
s a

+ 7 sup m ax / ('V f (y) P 1(dy , a, s) - V£(y)P2(dy, a, s))
s a J

< 11- R l — P 2 I I 0 0

+ 7 sup m ax / \ V f (y) (P 1(d y , a , s) - P 2(dy,a,s)) \
s a J

< | |P i — P 2II00

+ 7 sup m ax IIV^I|oo / |P i (d y ,a ,s) - P2(dy,a,s)\
s a J

= ll-Rl — -R2II0O

+ 7 S u p m ax ||U 2*||0O||P l (d?/,a, s) - P2(d y ,a , s) ||i
S a

The theorem ’s statement can now be obtained by replacing the two terms in the right

hand side o f Equation 3.1 with their respective bounds. □

For the episodic, undiscounted case, a contraction property of the Bellman operator in

a weighted supremum norm can be used instead of Equation 3.2. Given / : X —> IR and

w : X —*■ R such that w(x) > 0, Vx € X , the weighted supremum norm of / with respect

to w is defined as | | / | |Wj0o = su p x \ f (x) \ /w (x) . The following result can now be stated:

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T heorem 2. Given two MDPs M \ = (S, A , P i , R \) and M 2 = (S, A , P2 , R 2), and given

that all policies that could be defined fo r A di or M .2 are proper (there exists n > 0 such

that there is a positive probability that the terminal state will be reached in at most n steps

using any policy from any starting state), the distance between the optimal value functions

V f and V f o f the two MDPs can be bounded by

I K - ^ l k o o < Y ^ -c (p i - R tlko o + ||F2*||4)00m a x s u p | |P i (- ,a ,S) - P2(- ,a , s) | | i)

where, fo r any s 6 S, £ (s) is the expected number o f time steps the current policy would

take to reach a terminal state when starting from s, and c — su p s65 1 —

Proof In the undiscounted episodic case, the Bellman operator is a contraction in the

|| • ||^i00 norm with contraction factor c if all policies are proper (Bertsekas and Tsitsiklis,

1996, page 23). Using this contraction property instead of Equation 3.2, the bound in the

text of the theorem can be proven in a similar way with Theorem 1. □

3.2 Discussion

Theorems 1 and 2 do not mention approximate models explicitly, but they are nevertheless

relevant to planning with approximate models. Let M = (,S, A, P , P) be the M DP of

interest. A method for planning with an approximate model (P , R) of M can be thought

of as a m ethod for planning with the exact model of M — (S , A , P , R). Theorems 1 and 2

can then be used to bound the difference between the optimal value functions of M and M

based on how close the approximate model is to the correct model.

Using the idea in the above paragraph, one can combine bounds on the performance

of a particular planning method and of a particular model-learning technique into a result

describing the performance of the integrated planning and learning system. Assume that

planning method p l a n is able to com pute for any discounted M DP M a policy n for

which || V 77 — V^Hoo < d, for some d > 0. Also assume that model-acquisition method

a c q u i r e - m o d e l can compute for any M DP M = (S , A , P , R) an approximate model

(P , R) such that | |P — P||oo < $R and m ax a sups ||P (- ,a , s) — P (- ,a , s) | |i < 5p for

some 5r ,5p > 0. Then a system using the p l a n method with the model computed by

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a c q u i r e - m o d e l will be able to com pute a policy tv such that

11V ” - V & l l o o < d + SR. + ^ Y M ° ° l r
1 - 7

Incorporating existing results about the perform ance of planning and model-learning meth

ods into such a bound is a subject o f future work.

Finally, it should be mentioned that results similar to Theorem 1 exist in the literature

(e.g. Kalmar, Szepesvari and Lorincz, 1998; Kearns and Singh, 2002; Kakade, Kearns and

Langford, 2003). These results hold for M DPs with finite state spaces, but the ideas of their

proofs m ight be easily extended to continuous state spaces - the proof o f Theorem 1 is, in

fact, based on the similar result of Kalmar, Szepesvari and Lorincz (1998).

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Two Methods for Sampling-based
Planning

As discussed in Section 2.4, sampling-based methods provide a general mechanism for

M DP planning. The current chapter proposes two methods for sampling-based M DP plan

ning with learned and approximate models. The difference between the two methods is

in the way the generative model is represented. The method called iplanner, based on an

independent sampling model, is conceptually simple but rather limited, as it ignores depen

dencies between different components of the feature vector. On the other hand, the cplanner

method (based on a cascade sampling model) represents these dependencies explicitly; it

will be argued in the Conclusion of this chapter that cplanner is less restrictive than existing

methods for planning and learning with approximate M DP models.

4.1 The Sampling-based Planning Process

The class of sampling-based planning methods described here apply direct reinforcement

learning algorithms on trajectories sampled from a generative model. For feature-based

function approximators, the trajectories are sequences o f feature vectors, actions and re

wards rather than states, actions and rewards.

A generic algorithm for sampling-based planning is outlined in Table 4.1. This al

gorithm is m eant to illustrate the flow of the process; the functions called by the generic

algorithm can have an arbitrary form as long as they behave as described below.

Using the m o d e l - l e a r n function, the agent learns a (possibly approximate) model

o f its environment from the transitions observed transitions o f the form (<p, a, r, <f/). After

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

learn-and-plan(</>, 7r, c\, C2 , N)
a <— sample-action(0, 7r)
repeat

Take action a, observe r and 4>'
model-learn(^), a, r, (j>')
a' sample-action(^/, 7r)
7r <— policy-update(0, a, r, <p', a')
for * = 1 : iV

Select initial feature vector <f> and action a for new traejctory
repeat

f <— expected-reward(<?!>, a)
(j)' *— sample-next-f eatures(0, a)
a sample-action((^', 7r)
7r policy-update(^, a, f, <//, a')
<t> *— 4>' ,a <r— a'

until C2
end
4> <— 0 ', a <— a '

until ci

Table 4.1: Generic algorithm for sampling-based planning with a learned model.

each step of interaction, a variable num ber of planning steps can be taken, in which data

is generated from the learned model by using the expected-reward and sample-
next-f eatures functions. The sampled data is used by policy-update to improve

the current policy ir, perhaps via updating a value function estimate (policy-update
can also be used with real experience). All actions are generated by sample-action
according to the current policy. Particular choices for all these functions will be presented

in the next sections.

Notice that data is sampled from the model in two nested loops. The outer loop en

sures that N independent trajectories will be sampled. The inner loop samples each of the

N trajectories. Each trajectory ends when condition C2 is satisfied. In the particular im

plementation described in Section 4.7, all trajectories start from the current feature vector,

and C2 is satisfied either if the episode’s termination is sampled or if a trajectory o f length

L = 20 has been generated. If C2 is such that the length of a sampled trajectory is always

zero, the algorithm in Table 4.1 becomes generic model-free reinforcement learning.

Also note that, by appropriately choosing N and C2 , this generic algorithm can be re

garded as either an on-line or an off-line method. For instance, if the agent learns from

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simulated data after every step of real interaction we obtain an on-line, Dyna-style algo

rithm. In another scenario, real experience could be used only for learning the model until,

say, t time steps are elapsed. At time t the agent would go into an off-line planning mode:

it would sample many long trajectories from the learned model and compute a policy from

these trajectories.

4.2 Updating the Policy

Any reinforcement learning algorithm can be used for the p o l i c y - u p d a t e function. It

can be Q-leam ing, policy gradient, LSPI, direct policy search, or any other method that can

update the policy given transitions of the form (0, a, r, fa, a'). Independent o f the m odel’s

representation, any function approximator can be used for representing the policy (and the

value function, if a value function is used) as long as it uses the same features.

The particular system described in Section 4.7 uses the Sarsa(O) algorithm for updating

the parameters of the linear value-function approximator, in conjunction with keeping the

policy e-greedy with respect to the current value function estimate. The average-reward

experiments in Section 5.4 use R-leam ing with linear function approximation.

4.3 Generative Models of Multivariate Distributions

The s a m p l e - n e x t - f e a t u r e s function in the generic planning algorithm will use a gen

erative model o f the MDP. A feature-based generative model must provide a mechanism

that, given a feature vector (j) and an action a, allows for a feature vector fa+\ to be sampled

from P(<p, a, •) = P r(fa+ i = -|(f>t = a>t = a), where fa and at are the feature vector and

action time t. An im portant challenge here is to devise such a mechanism for the case o f

multidimensional feature vectors. In this section I will present two approaches that reduce

sampling an n-dim ensional feature vector to sampling n univariate random variables.

4.3.1 Independent Sampling

A simple mechanism for sampling multidimensional feature vectors assumes that the com

ponents of fa+\ are independent given fa and a*. Under this assumption, one only needs to

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O t <Dt+i

1

n 0 n

O t Ot+i

1

i

n

independent
sampling

cascade
sampling

Figure 4.1: Graphical illustration of how component i of 4>t+i is generated under indepen
dent and cascade sampling, respectively.

sample each com ponent <f>t+i(i) of (pt+i from the distribution

= -|<j>t- 4>, (H = a).

As a side note, this assumption is common in the literature on DBN models.

This previous approach, while conceptually and computationally simple, can be guaran

teed to work only when the components o f (f>t+1 are statistically independent given (ftt and

a t . Otherwise, aspects of the joint probability distribution, such as correlations between

different components, m ight need to be modeled.

4.3.2 Cascade Sampling

The cascade sampling architecture (name inspired from Leslie Kaelbing’s thesis (Kael-

bling, 1993)) described in this section can model all aspects o f the jo in t distribution given

appropriate conditional models o f univariate random variables. The main idea behind this

architecture is that features are generated in a sequence, and, as the generative process ad

vances through this sequence, the probabilities with which new features are sampled depend

on the sampled values of the previous features.

M ore formally, the generative process for sampling 4>t+1 from Pr(<f>t+1 = -| <j>t =

(j>, at = a) begins by sampling the first component, c/>t+ i (1). This is done, as in the in

dependent architecture, by sampling from Pr(4>t+ i (l) = -\4>t — 4>,at — a). The second

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

component, however, depends on the already sampled value of the first component, as it is

sampled from Pr(4>t+1 (2) = -\<j)t = (f>,at = a , < / > t + i (l) = < ^ + i (l)) . In general, the z-th

component 4>t+i(i) is sampled from

P r (0 t + l (*) = = a,4>t+ i{ 1 : * - 1) = <j>t+ i (l : * - 1)) ,

where 4>(1 : i) denotes the first i components of vector <j>. Thus, the value of 4>t+i(i)

depends on all the previously sampled i — 1 components. Figure 4.1 illustrates this process,

contrasting it to independent sampling.

Using this mechanism, sampling from the multivariate next feature distribution is once

again reduced to sampling from n univariate conditional distributions, with the added ad

vantage that the new process explicitly models dependencies between features. In fact,

by using the sampling process described above, the resulting vector (j>t+\ will be drawn

from the desired distribution P r (<fit+ i — -\<f>t = <t>, at = a) regardless o f the lack of inde

pendence between state features. This can be immediately inferred from the following

well-known formula:

P r (X (1) = x i , X (2) = x 2, •••) = J] P r { X i i) = Xi\X (l) = x x, . . .X(i - 1) = x ^)
i

by making the probabilities conditional on the previous action and feature vector.

Because of this, cascade sampling is significantly more general than independent sam

pling. Independent sampling might be unable to generate the correct jo in t distribution even

if it was allowed to use arbitrarily com plex function approximation for the univariate dis

tributions. Cascade sampling, on the other hand, can achieve an arbitrarily close approxi

mation to the true distribution, whatever it may be, as the function approximators are made

more complex and powerful. A potential drawback o f cascade sampling, however, is that er

rors in approximating the distribution o f the first components can propagate, thus affecting

the quality o f approximation for subsequent components.

Sim ilar architectures have previously been used to model relationships between m ulti

dimensional representations, such as in the work by Bengio and Bengio (2000) on building

unconditional models o f univariate distributions or Kaelbling (1993) on assigning credit to

binary features in reinforcement learning problems.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Approximating the Univariate Distributions

The types of architecture described above reduce the problem of modeling a conditional dis

tribution over multidimensional features to modeling n univariate distributions. Under these

architectures, each of the univariate distributions is allowed to have arbitrary form. How

ever, exactly representing arbitrary distributions over real-valued random variables would

require a potentially infinite number of parameters (or stored data points, for non-parametric

methods). For a compact representation to be possible, one has to make assumptions either

about the form of the distribution or about the range of the values that the random variable

can take.

The assumption made in this work is that the components of the feature vectors are

binary. Note, however, that general discrete-valued feature vectors can be transformed to

binary vectors by using an indicator function for each possible value of each feature. This

will increase the feature vectors’ size, and is a feasible approach when the features have a

relatively small num ber of possible values.

An im portant advantage of working with binary features is that each of the univariate

distributions can be represented compactly. Indeed, to represent any probability distribu

tion over a binary random variable X € (0 ,1 } one only has to define P r (X = 0) and

P r (X = 1). In fact, since P r (X — 0) = 1 — P r (X — 1), just one o f the two values is

sufficient. Thus, all that is needed for sampling rs_/ P r (4>t+1 = -\(f>t — (j>, at = a) are

the probabilities

P r {4>t+ i(i) = 1 |4>t = (j>, at = a)

for independent sampling, or

P r - l|<£t = 4>,at = a,(f>t+i(1 : i - 1) = <j>t+i (l : i - 1))

for cascade sampling, where i = 1, ..to.
Representing these probabilities in a table would generally be infeasible, since the size

of the table would be exponential in the dimensionality of the features space, so function

approximation m ust be used. Any approximation mechanism that models functions / :

{0, l} n —> [0,1] can be used here. A popular choice, and the one that will be used in

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the experiments in this thesis, is a log-linear combination of the features /(</>) a{(f>T6),

where <7 : R —► [0,1] is the logistic or sigmoid function a(x) = i+le~x- Thus, depending on

what type of architecture is used, each of the univariate distributions will be approximated

as

P r i(i) = 1 |4>t = <t>, at = a) « a (4>j0la) (4.1)

for the independent sampling architecture, or

P r (<£t+ i(*) = 1|<\>t = <j>,at = a,<f>t+i(1 : i - 1) = <j>t+ i (l : * - 1))

~ c (4>t, 4>t+i (l : i - 1) T (* a) (4-2)

for the cascade sampling architecture. Here, for each a € A and i € 1, ..n , 0la is the

param eter vector corresponding to action a and component <pt+i (*)• The use of the logistic

function ensures that the output o f this approximation scheme will always be between zero

and one.

An important question is whether the restriction to binary features is sensible from a

practical perspective. The answer seems to be yes, since many non-trivial reinforcement

learning problems have been successfully tackled using binary feature vectors (Sutton,

1996; Stone, Sutton & Kuhlmann, 2005; Sturtevant & W hite, 2006). This is largely due

to the fact that methods such as tile coding are capable o f turning continuous states into

binary feature vectors, in a manner that is useful for both discrimination and generalization.

4.5 Learning the Generative Model

The previous sections described architectures for approximating the model. The current

section describes methods for learning the parameters of these architectures from data. In

other words, it presents a possible implementation of the model-learn function that up

dates the parameters of the model approxim ator given a transition o f the form (4>, a , r, (j)').

The form of the model-learn function will obviously depend on the choice of approxi

m ate representation for the model. Still, given a particular approximation architecture, any

learning method that is appropriate for that architecture can be used.

The particular implementation proposed here learns a separate model for each of the

univariate component distributions appearing in independent or cascade sampling. The

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

learning method used for each o f these components is an on-line version of logistic regres

sion (e.g. Jordan, 1996), a popular choice for log-linear representations. The objective

of logistic regression to find the parameters of an approximate distribution model, such

that the logarithm of the likelihood that the observed data was generated by that model is

maximized. On-line gradient descent on this objective function yields the update rule

for the independent sampling architecture, or

ei := ei + P - a ([< f , </>'(! : i - i f] <)) \ f , : i - i f
T

for the cascade sampling architecture. Here, P G IR+ is a step-size parameter. Note that,

when learning the model parameters for cascade sampling, the values of <£'(1 : i — 1) are

observed and do not need to be sampled.

4.6 Approximating and Learning the Reward Model

Designing a function approximator for the reward model is relatively simple since, for each

feature vector <j> and action a, the approximator for a) only needs to produce a single

number (the expected reward) rather than a full distribution.

The particular approxim ator used in this thesis is linear in the features, a) «

4>T d«, where dR is a portion of the reward model param eter dR (which is in turn a portion

o f the overall model param eter 0) . For learning the model parameters, on-line gradient

descent on the mean squared error between the observed rewards and the predicted rewards

yields the update

:= e* + p * (r - 0«) 4>,

where PR e IR+ is the step-size param eter for the reward model.

W ith respect to the generic planning algorithm in Table 4.1, reward learning would

be part o f the m o d e l - l e a r n function. The learned model would then be used by the

e x p e c t e d - r e w a r d function to produce the next expected reward.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cplanner(cj, ci, N , L)
a <— e-greedy((f), Q w)

repeat
Take action a, observe r and (j)'
for z = 1 : n

end
£ + / ? (V W - t f (</>'(! : i - l) T <?«)) </>T , </>'(!: z - l) r

ea ^ ea + PR {r ~ <t>Tea) </>
a' <— e-greedy(0', Q̂ ,)

<- + a [r + 7 o ') - Qw(0 , a)]
(j> <— (j)'\a <— a'
for j = 1 : AT
Z < - 0

repeat

r < - <i>T 0ii
for i = l :n

Sample <̂ >'(z) « o ^ 4>T , 4>f(1 : z — 1)T

end
a' <— e-greedy(0', Q w) _
o>a <-_^a + a [r + 7 Q w(0 ', o ') - Q w(0 , a)]
(j) <— (/>', a <— o ', I <— I + 1

until I < L or end of episode is sampled
end
4> <— 0 ', a *— o '

until ci

Table 4.2: Planning and learning with a cascade sampling model (c p l a n n e r) .
Qu}(4>, a) = is the linear action-value-function approximator. The corresponding ver
sion for independent sampling is called i p l a n n e r .

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 A Complete Implementation

Table 4.2 describes a complete learning and planning system using cascade sampling, linear

reward models and linear Sarsa(O). This algorithm will be called cplanner. I f independent

sampling is used instead of cascade sampling, the corresponding algorithm will be called

iplanner.

4.8 Computational Complexity

The main motivation for m odel-based reinforcement learning is that in many practical prob

lems computation is relatively cheap but experience is expensive, and thus it is sensible to

allocate more computational resources in order to obtain better data efficiency. However,

computational resources are not unlimited, and it is important to know how much time and

memory model-based methods will require.

Both iplanner and cplanner require 0{v? \A \) memory. For both methods, the reward

part of the model, S R , requires exactly n x |A | values to be stored. The exact size o f the

transition model, on the other hand, depends on which of the methods is used: iplanner

needs to store \ A \n param eter vectors of length n each for a total of \A \n2 elements, while

the | A | n vectors that cplanner needs to store are o f length n, n 4- 1 ,..., n + n — 1 for a total

of |A|(n2 4- n(n — l) / 2) elements.

A similar argument can be used to show that, for both cascade and independent sam

pling with log-linear models, the time complexity o f sampling the next feature vector (j)'

given the current vector <j) and an action a is 0 (k (n 4- |A |)), where k is the num ber of

non-zero elements o f <f>. For the complete learning and planning system described in Table

4.2, the total time complexity per step o f real interaction is 0 (N L k (n + |A |)).

In comparison, model-free reinforcement learning algorithms with linear value function

approximation such as linear Sarsa(O) or linear Q -leam ing have very low computational

complexity. They only require 0(n \A \) memory and 0 (k \A \) computation for every step

of interaction with the environment.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m

S o

■ P (1) = 0
P (1) = 0 .5
P (1) = 0 .5

P (1) = 0
L P (1) = 1-1

P = 0 .2 5

m

P = 0 .2 5

Independent model Transition probabilities
Markov chain 0f f jrgt transition in the independent model

Figure 4.2: Independent sampling planning can be unsound for this small M arkov chain.

4.9 Limitations of Independent Sampling

As previously mentioned, iplanner can be guaranteed to work only when the components of

each feature vector are conditionally independent given the previous features and an action.

The following example shows that, even with a perfect model, iplanner can diverge in a

policy evaluation setting.

Take the M arkov chain on the left side o f Figure 4.2, where so transitions to either s i or

S2 with probability 0.5. A correct m odel for independent sampling would state that, if the

feature vector corresponding to so is observed, the probabilities of individual components

o f the next feature vector being equal to 1 are 0 ,0 .5 ,0 .5 ,0 and 1 respectively. Sampling

from this independent model would generate any o f the four feature vectors to the right

o f Figure 4.2. From this, it can already be observed that the probabilities o f these vectors

being sampled do not correspond to the correct transition probabilities.

Even more disturbing is the fact that learning a value function from sequences of feature

vectors generated this way can be unsound. There exist log-linear independent sampling

models (not included here) that can generate independent probabilities consistent with the

Markov chain in Figure 4.2. Among these models, some will cause [0 0 0 0 1]T to transition

to itself with probability one. If such a model samples the initial transition [1 0 0 0 1]T —>

[0 0 0 0 1]T , it will afterwards go into an infinite loop where [0 0 0 0 1]T is sampled forever.

If the expected reward for transitioning from [0 0 0 0 1]T is non-zero, then the value function

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

estimated based on such a sequence will be unbounded.

In practice, sampled trajectories will normally be cut off after a finite num ber of steps,

and thus divergence is unlikely to occur. Nevertheless, the phenomenon illustrated in the

example above can negatively impact the performance of iplanner.

On the other hand, a similar problem does not arise for cascade sampling. A correct

cascade sampling model will always sample from the correct distribution over feature vec

tors.

4.10 Conclusion

This chapter presented an outline of a generic system for sampling-based planning and

learning with feature-based approximators, followed by the description of two particular

instantiations of such a system.

The generic system was described in a structured, clear and general manner. This de

scription emphasizes the flexibility that sam pling-based planning allows in the choice of

function approximators and learning algorithms.

The particular methods proposed define all components of the system, thus resulting

in complete and working algorithms. Iplanner, the method based on independent sampling

of each feature-vector component, is conceptually simple but has the disadvantage that it

is limited in its representational power. On the other hand, cplanner, based on the so-

called ‘cascade sam pling’, is more general because it can represent dependencies between

different components of the same feature vector.

In the following paragraphs, I will discuss how the cascade sampling architecture is

related to existing methods for representing approximate generative M DP models.

Among current sampling-based M DP planning algorithms with approximate models,

two main directions exist. The first represents the model using a particular, limited type

of function approximation, such as state aggregation (Kuvayev and Sutton, 1996) or DBNs

with conditional independence assumptions (Tadepalli & Ok, 1996; Andre, Friedman &

Parr, 1998). The second direction can represent the model using arbitrary function approx

imation, at the cost of only describing the first two moments of the transition distribution:

E(<tf>t+ i 14>t, «■/.) is learned for each state using general function approximation, and a glob-

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ally estimated uniform (Atkeson, M oore & Schaal, 1997) or normally distributed (Ng et al,

2004) noise is added to this expected value.

Compared to these, cascade sampling with binary features represents a third type of

approach. General function approximation can be used for each component, and arbitrary

probability distributions can be represented, as long as binary features that allow this gen

erality can be constructed. Constructing appropriate binary features is not a trivial matter,

but it is one that is often addressed anyway in the context of value function approximation.

Another issue related to cascade sampling is that its performance might depend on the order

in which components of the feature vector are sampled, and it is not yet clear how to design

a good mechanism for ordering these components.

It should also be noted that cascade sampling with binary features is, in essence, a DBN

representation, but its compactness stems from representing the probability of each com po

nent using function approximation rather than from conditional independence assumptions.

Previous work exists on using DBNs with parametric function approximation for each com

ponent as M DP models in non-sampling planning systems (e.g. Sallans, 2002; Degris et al.,

2006); the work in these papers still relies on conditional independence between the com

ponents o f <f>t+i-

Finally, one should keep in mind that statistical density estimation is a huge field, and

it is likely that other existing density estimation techniques can easily be adapted for rep

resenting approximate generative M DP models. For instance, the Boltzmann machine (e.g.

Ackley, Hinton and Sejnowski, 1985) could be used to learn a jo in t generative model for

binary state representations. W hile the original Boltzmann machine learning algorithm is

considered to be slow and unreliable, more recent versions posing additional restrictions

have been shown to be effective in practice (Welling and Hinton, 2002; Hinton, Osindero

and Teh, 2006).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Empirical Illustration

The empirical results presented in this chapter illustrate the behavior of the sampling-based

planning systems described in Chapter 4. The first experiment shows that a planning method

based on the cascade sampling architecture can be more data-efficient than model-free

learning in a continuous, stochastic domain. The second experiment shows that this ad

vantage is even greater if a sequence o f tasks have to be solved in the same domain. Finally,

the third experiment shows that arbitrary generalization can weaken the quality o f planning

methods relative to m odel-free methods.

5.1 Testbed for Experiments 1 and 2: The Soft Obstacle Domain

The soft obstacle domain is a simplistic simulation o f a navigation task with continuous

state and stochastic dynamics. The 2D environment, illustrated in Figure 5.1, includes

two kinds of obstacles, soft and hard, whose effects will be explained shortly. The agent

can be located at any position on the m ap except for the regions where hard obstacles are

present. The (continuous) state is represented by the coordinates of the agent’s current

position, x £ [0,1] and y £ [0,1]. There are four actions available at every tim e step: north,

south, east and west. Each of the actions causes the agent to move for a distance of 0.05

on average in the corresponding direction, unless this m ovem en t would take the agent into

an obstacle area or outside the map boundaries. A normally distributed noise of standard

deviation 0.025 is added to the actions’ effects in each direction. Actions that would cause

the agent to move outside the map boundaries or inside a hard obstacle have no effect: the

respective time step elapses without any movement. If the action causes the agent to move

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1 , 1)

s,
50%

i GII __

(0 ,0)

Figure 5.1: The soft obstacle domain. Attempts to enter the dark regions were rejected with
100% probability and for the light region with 50% probability.

to a position inside a soft obstacle, either the action has no effect (like in the case of hard

obstacles), or the agent is moved to that position. Each of these two outcomes occurs with

50% probability.

The agent’s objective is to navigate from the starting state to the goal region in a minimal

number of tim e steps. This is formulated as an undiscounted, episodic problem, with the

agent receiving a negative reward of —1 per time step until the goal is reached.

Tile coding was used to form the binary feature vectors (j>s for this domain. For all

experiments 8 tilings were used, each roughly a 10-by-10 tiling o f the 2D space. The

features generated by the tile coding process were then hashed down to 400 in num ber using

Rich Sutton’s tile coding software1. Another 25 features were obtained by discretizing the

state space into a 5-by-5 grid and taking the index o f the grid cell corresponding to the

current state; one o f these grid locations corresponded to the goal region, and the agents

had knowledge of what this ‘terminal feature’ was. The 25 extra features will be im portant

for Experiment 2, and I have chosen to use the same feature sets over the two experiments.

Finally, a feature that always took a value of 1 was added as a bias unit. The feature vectors

were thus of length n = 426; exactly 10 components of each feature vector took a value of

one, while the rest were equal to zero.

’Sutton’s tile coding software is available at http://www.cs.ualberta.ca/~sutton/tiles2.html

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~sutton/tiles2.html

5.2 Experiment 1: Data-efficiency in a Single Task

As discussed in Section 2.4.2, previous empirical results for finite MDPs suggest that

model-based methods can be more data-efficient than their model-free counterparts. The

main experiment in this section investigates whether the same can be said for the sampling-

based planning and learning methods proposed in Chapter 4. The experiment will use the

soft obstacle domain, a continuous, stochastic problem.

5.2.1 Experiment Description

Three algorithms were applied to the soft obstacle domain: planning and learning with

an independent sampling model (iplanner), planning and learning with a cascade sam

pling model (cplanner), and model-free reinforcement learning (equivalent to zero planning

steps). All algorithms used linear value function approximation with the tile coding features

described in Section 5.1.

Sarsa(O) was used to learn the parameters of the linear value function approximator. For

the planning methods, Sarsa(O) was used to learn both from simulated data and from real

data; for the m odel-free method, it was (obviously) only used with real data. The policy was

e-greedy with respect to the current value function, and e = 0.1 was used for all algorithms.

The length of each simulated trajectory was set to L = 20. If the feature corresponding

to the terminal region was sampled at step k of this trajectory, then the rest 20 — k steps

were not sampled. Only one trajectory was sampled at every time step (N — 1).

Several learning rates for the model and the value function were used in the experiments.

For model-free Sarsa, the learning rates for the value function were a € {0 .1 ,0 .2 ,0 .4 ,0 .8 } ,

while for both planning methods the ranges were a € {0.1,0.4} and (3 £ { 2 ,4 ,8 ,1 6 } . A

reward learning rate of 0.1 was used, but this was o f little importance as the rewards were

—1 at any time step. These param eter values were divided by the number o f non-zero

features in the current feature vector.

Each algorithm was run for 100000 time steps and the whole process was repeated for

30 runs.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) (b)

m o d e l- f re e S a r s a ,a = 0 .4

<n 1500 cp lan n e r,c r= 0 . f,/3= 16 V

ip lan n er, a=0.1,13=8

X100

m o d e l- f re e S a r s a ,a = 0 .4

c p la n n e r ,a = 0 .7 ,/3 = l6

\
ip lan n er, a = 0 .7,/3=8

O qI i-----------1-----------1-----------1---------- 1---------- 1-----------1-----------1-----------1
(J 0 1 00 200 300 400 500 600 700 800 900 1 000

xioo
100 200 300 400 500 600 700 800 900 1000

T im e s te p (f) T im e s t e p (7)

Figure 5.2: Total (a) and average (b) num ber of episodes completed in the single-task sce
nario. Results are averaged over 30 runs.

5.2.2 Results

The results for the best parameter settings for each algorithm are summarized by the graphs

in Figure 5.2. The first graph shows, for each t, the average number of episodes com

pleted during the [0, t] interval. The second graph shows the average num ber o f episodes

completed during the [t — 100, t] interval, and was smoothed with a window o f size 10.

The iplanner algorithm clearly perform ed poorly. On the other hand, cplanner managed

to make better use o f initial experience than the model-free method: for all values of t

between 200 and 10700, the policy learned by cplanner was better on average than the

policy learned by the model-free m ethod with the same amount of experience. The initial

difference in perform ance is illustrated by the graphs in Figure 5.3.

Given enough experience, m odel-free learning found the best solution out of all the

methods. During the last 10000 time steps, the average length o f an episode was 30.8 steps

for model-free learning (with a standard error o f 0.01), 33.6 for cplanner (with a standard

error of 0.02) and 84 for iplanner (with a standard error of 0.14).

5.2.3 Discussion

Using its best param eter settings, cplanner required less data to learn a good policy than

the model-free algorithm. The intuitive explanation for this is that, by also learning the

transition models, planning methods store more information about previous experience than

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) (b)

m o d e l- f re e S a r s a ,a=0.4 c p la n n e r , o = 0 . ?,/?= 16

300 c p l a n n e r ,a = 0 . 7 ,/3=16

250 ■ \
m o a e i- t r e e S a r s a , a = 0 .4

ip la n n e r , a = 0 . 7 ,^ = 8
ip l a n n e r ,a = 0 .7,/3=8

50 100

T im e s t e p (f)

150 200 50 100

T im e s t e p (/)

150 200

Figure 5.3: Total (a) and average (b) num ber o f episodes completed in the single-task sce
nario over the first 20000 time steps. The error bars represent the standard error at selected
points. Results are averaged over 30 runs.

a method that only uses a value function.

The poor performance o f iplanner should not be surprising. Due to the specifics o f the

tile coding process, the features used in this experiment were highly correlated, while iplan

ner assumes conditional independence. In Section 4.9 it was demonstrated that iplanner can

perform poorly even on a simple synthetic M DP if the features are correlated.

W hile planning can learn a good solution faster, the solution that m odel-free learning

stabilizes to is better than the one that planning stabilizes to. Even after a lot o f experience,

the model learned by the planning methods is likely to be imperfect due to the function

approximator. Thus, the agent will learn from trajectories that are sampled from a distri

bution that is not the correct distribution. The m odel-free method, on the other hand, uses

only data from the real world, which is generated from the correct probability distribution.

The ultimate performance o f the model-free algorithms is limited only by the resolution of

the function approximator for the value function, whereas the planning methods are also

limited by the function approximator for the model.

The Effect of the TVansition Model Learning-Rate

The learning rate for the transition model (ft) had a significant effect on the results: cplanner

showed better data-efficiency than model-free learning for ft = 16, but not for smaller

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3000

2500

2000

1500

Q_ 1000

■O

500
Q.

100 200 300 400 500 600 700 800 900 1000

T im e s t e p (f)

Figure 5.4: Total number o f episodes com pleted by cplanner in the single-task scenario for
different values o f the model leam ing-rate (/?). Results are averaged over 30 runs.

values of /?. As it can be observed in Figure 5.4, cplanner requires m ore time to learn a

good policy as the value of j3 decreases.

The role that the learning rate has in on-line gradient-descent methods, such as the

one that cplanner and iplanner use, can explain this phenomenon. In on-line gradient-

descent methods, larger values of the learning rate lead to bigger steps in the direction of

the gradient, which can in turn lead to getting close to the optimal solution more quickly.

The danger o f using large leam ing-rates, however, is that the algorithm may not be able to

stabilize to a solution that is sufficiently close to the optimum. The results seem to indicate

that, for the soft obstacle domain, the model learned with a large leam ing-rate is sufficiently

close to the correct m odel to allow for a good policy to be computed.

In general, however, a large leam ing-rate for the model can lead to clearly sub-optimal

behavior. This is not evident from the soft obstacle domain experiment, and will be illus

trated on the highly simplified domain in Figure 5.5 (called the ‘soft pathway dom ain’).

The state space for the soft pathway domain is extremely small: each state corresponds

to one of the grid locations illustrated in Figure 5.5. The four available actions (north,

south, east and west) move the agent to the corresponding adjacent grid cell, unless one of

the following situations occurs: if the action would take the agent outside the boundaries

or into a hard obstacle, that action has no effect; if the action would take the agent into a

state inside the soft obstacle, then either the action has no effect or the agent moves to that

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■
s 50% ! G 1■

Figure 5.5: The soft pathway domain, used to illustrates that aggressive online gradient
descent (large value of the (3 parameter) can lead to sub-optimal behavior even in a very
simple task. Each grid cell in the figure represents a state.

state, each with probability 50%. The name ‘soft pathway dom ain’ indicates that there is a

direct pathway from start to goal going between the two hard obstacles and through the soft

obstacle.

Consider now running a planning and learning algorithm such as cplanner on the soft

pathway domain. Because of the size of the state space, the model does not need to be

approximated, and can be stored for instance in a table. Thus, the learned model will

converge to the correct model if (3 is appropriately decreased. If (3 is too large, however,

then convergence cannot be guaranteed and planning with the learned model can lead to

sub-optimal behavior.

In the rather extreme case of (3 — 16, for instance, the agent learns an almost-deterministic

transition model, practically always giving full credit to the last observed transition. This

means that the agent’s learned model will predict that the outcome o f taking action a at

state s will always be the last observed outcome of taking a at s .2 This is reminiscent of

memory-based methods such as L in’s experience replay (Lin, 1993). In the soft pathway

domain, if the last attempt to go east from the starting state had no effect, then all the sam

pled trajectories from the learned model would predict that going east from the starting

state has no effect. Thus, the policy that the agent learns from these trajectories will not

consider going through the soft obstacle to be a viable alternative, and will instead search

2This is not necessarily true if function approximation is used; because of generalization, the prediction for
a certain state may change even after the last visit to that state.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for an alternate route.

This was verified empirically by running cplanner with /3 = 16 and (3 = 1 on the soft

pathway domain (the other parameters were a = 0.1, 0 R = 0.1, N = 1 and L = 20). The

two variants of cplanner were run for 20000 tim e steps. Over the last 10000 time steps, the

average length of an episode under the policy computed by cplanner with (3 = 16 was 4.47,

while for /? = 1 it was 2.49 (results were averaged over 30 runs). This discrepancy occured,

as expected, because cplanner with /3 == 16 often avoided the shorter path through the soft

obstacle.

To conclude this section, the soft obstacle domain results emphasize the fact that fast,

data-efficient m odel-learning can help the data-efficiency o f a planning and learning system.

In the soft obstacle domain, fast model-learning was achieved by simply using a large value

of p. The soft pathway domain results, however, illustrate that this is not always an adequate

solution. Investigating a more reliable solution for data-efficient learning of the generative

model is a subject of future work.

5.3 Experiment 2: Data-efficiency over a Sequence of Tasks

The second experim ent illustrates the advantages of m odel-based methods in the context of

different tasks in the same environment. A simple formulation of this m ulti-task scenario

has been used, where the terminal state is changed at some point in time and the agent

has knowledge of the change. M ore general formulations, such as modifying the reward

function without notifying the agent of the change, are not considered here.

5.3.1 Experiment Description

The soft obstacle dom ain was also used for this experiment, this time in a two-task scenario.

The agent had to solve a sequence o f two tasks, each of them with a different goal region.

A s illustrated in Figure 5.6, the goal region for the first task is G \, while the goal region for

the second task is G%.

The cplanner, iplanner and model-free Sarsa(O) algorithms were ran for 100000 time

steps each with the same parameters as for Experiment 1, except that only the two best

values of 0 (8 and 16) and the best value o f a (0 .1) were used for the planning methods.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1 . 1)

Si S2 •

Figure 5.6: The two-task scenario for the soft obstacle domain. Halfway through the learn
ing process, the starting state was changed from S i to S 2 and the goal state was changed
from G i to G 2.

Halfway through the tim e interval (after 50000 tim e steps) the goal region was changed

from G \ to G 2 (i.e. the episodes term inated when the agent reached G 2 rather than G i).

At the same time, the starting position changed from S i to S 2. The agent had knowledge

of this change via the special terminal feature: at time-step 50000, the agent was provided

the information that the term inal feature is the one corresponding to locations in G 2 rather

than G i. Note that a new feature corresponding to G 2 did not need to be created, because

it already existed because of the 5-by-5 tiling described in Section 5.2.1

W hen the goal region changed, all agents re-set their value functions to zero. The plan

ning agents kept the already learned transition and reward model, and performed additional

planning by generating 1000 episodes from the learned model before resuming norm al in

teraction with the environment. Planning was obviously not a possibility for the model-free

agent, so that agent resumed interaction immediately.

5.3.2 Results

For each algorithm, I measured the average ratio of episodes completed during the first

10000 steps of the second task to episodes completed during the first 10000 steps of the

first task. This ratio was 1.45 for cplanner with (3 = 16, 2.39 for cplanner with (3 = 8,1 .5 1

for iplanner and 1.005 for model-free Sarsa(O) with a = 0.4 (the best param eter setting

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) (b)

cplanner,a= O .J,/3=8(Q 3000
> cp lanner, a=0.1,(3=I
£ 3.5.E 2500
'CT'
c[
<D 2000

O

x: 2.5
c
w 1500 <D U O

. £ 1000
Q.0)

m ode l-free S a r s a ,a = 0 .4 m ode l-free S a r s a ,a = 0 .4

a .
ip la n n e r ,a = 0 .7,0=8 ip la n n e r ,a = a 7 ,0 = 8500a>a. 0.5

E
oO

X100

O
Tim e s te p (0 Tim e s te p (Q

Figure 5.7: Total (a) and average (b) num ber o f episodes completed in the two-task scenario.
Results are averaged over 30 runs.

in terms o f total number of episodes com pleted over the two tasks). This indicates that,

while the two tasks were of sim ilar difficulty (the performance of model-free learning was

virtually identical), the planning methods were more adept at solving the second task after

having gained experience on the first.

Similarly to Experiment 1, the graphs in Figure 5.7 show the average o f the num ber of

episodes completed in the [0, t] interval (Figure 5.7(a)) and in the [f—100, t] interval (Figure

5.7(b)). Am ong the two param eter settings used for cplanner, only the learning curve for

/3 = 8 was included, as the ratio measured in the paragraph above was better for (3 = 8 than

for /? = 16. The results show that, after the goal region is changed, cplanner’s performance

drops less and recovers more quickly than m odel-free learning.

5.3.3 Discussion

The results illustrate that model-based methods are particularly appropriate for multi-task

scenarios, since experience accumulated while solving the first task(s) allow them to per

form better on subsequent tasks. Starting with the second task, m odel-based methods can

use the transition model learned while solving previous tasks; in contrast, m odel-free meth

ods only learn a value function or a policy, and both of these quantities are task-dependent

and therefore non-reusable.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Experiment 3: The Effect of Arbitrary Generalization

All compact representation methods induce some form of generalization. For instance,

the model representation architectures introduced in Chapter 4 generalize between states

with similar feature vectors: the more non-zero features two vectors <fi\ and <p2 have in

common, the more o f the weights used in computing the approximate values for P(-, a, (f>i)

and P(-, a, 4>2) will be the same, thus causing the approximate transition probabilities to

have similar values.

The previous comment suggests that the success of the planning methods will depend

on the extent to which the transition probabilities corresponding to similar feature vectors

are also similar. An empirical approach to supporting this idea is taken here.

The following experiment illustrates how generalization induced by feature vectors that

are arbitrary and have no relationship to the problem structure can be harmful to planning

methods. The results indicate that arbitrary generalization hurts planning methods more

than it hurts model-free methods; this can be explained by the fact that for planning methods

generalization is involved in learning both the model and the value function, while for

model-free methods it is only involved in learning the value function.

5.4.1 Experiment Description

A suite of randomly generated M DPs was used to investigate the effects of arbitrary gen

eralization. Each M DP had 100 states and 5 available actions at each state. For each state

s and action a, two successor states s} and s'2 were randomly selected out of the remain

ing 99 states without repetition, and the transition probabilities P(s[,a , s) and P (s 2, a, s)

were assigned random values between zero and one such that P(s[,a , s) + P{s'2, a, s) = 1.

The expected reward R(s, a) was randomly generated from a normal distribution A ^(0 ,1).

The reward that the agent observed after taking action a in state s was the expected reward

R(s, a) plus a normally distributed noise of variance 0.1. The objective was to find a policy

that maximizes the average of future rewards.

The states were observed by the agent via binary feature vectors. For all experiments,

these feature vectors were 100-dimensional. The number o f non-zero features was varied in

order to illustrate the effect of generalization: for each state s G {0, ..99} the feature vector

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D C I D C I D C I

Figure 5.8: Average reward per time step obtained by the three algorithms (D=direct,
C=cplanner, I=iplanner) over 100000 time steps on a sequence o f 30 random MDPs, for
different values of the num ber of non-zero features k.

<j)a had the k components s, (s + 1) m od |S j, ... (s + i) m od |S | equal to one and the

rest of the components equal to zero. The param eter k was given the values 1 ,5 and 20.

Similarly to the previous experiments, three algorithms were used: cplanner, iplanner

and a direct (model-free) learning algorithm. The only difference was that, since this was

an average-reward problem, all algorithms used R-leam ing (Section 2.3.1) for the policy-

update step3. The step-size a p used for estimating the average reward was set to 0.001

for all algorithms. For cplanner and iplanner, all combinations of a G {0 .05 ,0 .1 ,0 .2}

and (3 G {1 ,4 ,1 6 } were tried, while the reward model leam ing-rate was arbitrarily set to

/3r = 0.1. For model-free learning, a G {0 .05 ,0 .1 ,0 .2} was used. The results displayed

are for the best param eter values for each algorithm. Similarly to Experiments 1 and 2, the

num ber of sampled trajectories was N — 1 and the length of each trajectory was L — 20.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.2 Results

Figure 5.8 shows the average reward per time step obtained by the three algorithms during

100000 time steps, averaged over 30 runs. Each run used a different randomly generated

MDP, but the same sequence of MDPs was used for all algorithms.

It can be observed that direct RL gained more of an advantage relative to the plan

ning methods as the num ber of non-zero features increased. This advantage was especially

evident when 20-dimensional feature vectors were used.

5.4.3 Discussion

The results indicate that arbitrary generalization hurts the performance of all methods.

However, they also indicate that the performance of the planning methods is hurt more

than the perform ance o f model-free learning. My explanation for this is that model-free

learning was only affected by arbitrary generalization in the value-function, while the plan

ning methods were affected by arbitrary generalization for both the model and the value

function.

It should be em phasized that the value of k only influenced the amount of generalization

and not the discrimination power. Normally, poor discrimination power due to the fact that

function approximation is used for the model can be another factor that causes planning

methods to underperform m odel-free methods. In the experiments presented here, however,

the features were constructed such that the vectors { 0 i, 02 , • ••, 0ioo} were linearly indepen

dent. This, together with the fact that the logistic function is invertible, means that both the

model and the value function could be represented exactly for all values of k. Thus, supe

rior discrimination power was not what caused model-free learning to gain the advantage

as the num ber o f non-zero features increased.

Generalization, on the other hand, did indeed occur when k > 1, and it occurred in an

arbitrary fashion. As explained earlier, the model built by cplanner and iplanner general

izes between feature vectors with non-zero components on the same positions. The bigger

the value o f k, the more non-zero components different states had in common, and thus

3For simplicity, I have abused notation and used the names cplanner and iplanner even though R-leaming is
used instead of Sarsa

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the more generalization occurred. This generalization was arbitrary: the M DP model was

randomly generated, and the feature vectors were simply assigned based on the state labels,

completely ignoring the dynamics of the MDP. In contrast, a potentially meaningful feature

assignment scheme would associate similar feature vectors to states with similar transition

probabilities.

This section offers empirical support for the idea that the success of planning algo

rithms such as cplanner depends on the availability of feature vectors that are related to the

M D P’s dynamics. In the extreme case presented here, generalization based on the random

feature assignment scheme caused cplanner and iplanner to perform worse than model-free

learning.

Finally, this experiment is offering further evidence of the flexibility of the sampling-

based planning framework. The exact same function approximator and learning algorithm

as in the experiments on the soft obstacle domain were used for the model, but a differ

ent algorithm (R-leam ing) was used for learning the value function. Yet, the R-leam ing

algorithm was smoothly integrated with the model learning and approximation methods.

5.5 Limitations

The results presented in this chapter have not been com pared with other methods for plan

ning and learning with approximate models (e.g. Sallans, 2002; Degris et al., 2006; Ku-

vayev and Sutton, 1996). Although these methods use more restrictive model approximators

than cplanner, it is still possible that they are successful on a wide range of problems, for in

stance on the soft obstacle domain. Therefore, the lack of such a comparison is a limitation

of this chapter.

The experiments presented here do not include extensive parameter optimization. The

main reason for this is the large number of parameters to be optimized - up to seven for

cplanner or iplanner with R-leaming. Besides being a limitation of the current experiments,

this highlights the fact that optimizing the parameters o f the planning methods for particular

problems may require a considerable effort.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Conclusion

Experiments 1 and 2 have shown that m odel-based methods can be more data-efficient than

model-free methods even in continuous and stochastic domains, particularly if the agent

has to solve a sequence of tasks in the same environment. W hen deciding what algorithm

to use in practice, data-efficiency is an important criterion, especially for domains such as

robotics where gathering experience is hard and costly.

Nevertheless, other criteria besides data-efficiency might be important for selecting

what method to use. Experiment 3 illustrated the negative effect that arbitrary generaliza

tion can have on planning methods Another im portant aspect is computational complexity.

In general, model-based methods will require m ore resources than their model-free counter

parts - recall from Chapter 4 that the time complexity of cplanner and iplanner is O (N L n k)

for every time step, whereas Sarsa(O) only requires O(k) operations per time step. Because

of this, model-free methods can work with a much larger (and therefore potentially more

expressive) feature space than m odel-based methods if little computation time is available

per time step. Thus, a judicious decision would involve considering factors such as com

putational resources, the difficulty of collecting data or the expressiveness of the feature

set.

The results also showed that the model-free m ethod found a better final solution than

the model-based methods. This can be explained by the fact that model-based methods

eventually pay tribute to inaccuracies in the model caused by function approximation. Still,

this fact is slightly disturbing, since all methods used the same p o l i c y - l e a r n algorithm

and the same experience; a possible solution to this problem could be to give less credit to

the model as more experience is accumulated.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

On the Possibility of
Expectation-based Planning

This chapter investigates the possibility of planning when the model only contains the ex

pected value o f the next state (feature vector) instead of a complete distribution over next

states. Expectation-based planning is appealing because, as explained in Section 6.4 , rep

resenting and learning expectation-based models is considerably easier than representing

and learning the complete transition distribution. The results in the following sections offer

new insights about the potential and limitations o f expectation-based planning.

Note that the results in this chapter hold for discounted cumulative return problems.

Some of them appear to be easily extendible to the average-reward case, but this extension

will be left for future work.

6.1 Value Iteration with Expectation-based Models

The results in this section use a feature-based, approximate version of expectation-based,

action-conditioned, one-step M DP transition models. An expectation-based, action-condi

tioned, one-step M DP transition model predicts E [s* + i|s t = s, at = a], the expected value

of the next state st+i given current state st and action at. A feature-based, approximate

version o f such a model predicts the expected value of the next feature vector (pt+i (*) given

4>t and at:

E[(f)t + i\(p t = <f>,at = a\ = f((j>,a),

where / is the feature-based function approximator.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As described in Section 2.4, computing the Bellman operator is the main step of the

value iteration class of M DP planning methods l . The key observation for this section is

that, for a certain class of value function approximators, the Bellman operator can be com

puted using an expectation-based model of the MDP. The class of function approximators

is described by the following assumption:

A ssum ption 1. Given the feature-generating mechanism 0 : 5 —> $>, the value function

approximator f : (I> —> IR is such that, fo r any s £ S and a £ A,

J V(s ')P(ds ' , a, s) = f{E[4>s' |s t = a, at = a])

O bservation 1. Assumption 1 is verified i f the value function approximator f is linear in

the features. To see why, simply observe that i f f {(f) = v T f then

J V (s ') P (d s ' , a , s) = J vT (f>s>P(dsf,a, s) = vTE[(j)s>\s, a]

If Assumption 1 is verified, it immediately follows that the Bellman operator can be

computed using an expectation-based model. U nder Assumption 1, the Bellman operator

can be re-written as

B V (s) = m ax [R(s, a) + j f{E[(f)s> |s, a]])
a e A

or, for the particular case o f linear value function approximation,

B V (s) = m ax [f?(s, a) + y v TE[<psi Is, oil
a e A L J

This observation opens the door to approximate value iteration algorithms where not

only the value function, but also the model is approximate. Carefully designed adaptations

of existing algorithms (e.g. de Farias and Van Roy, 2000; Munos and Szepesvari, 2005)

could form a new class of sound, yet practically efficient methods for M DP planning with

learned and approximate models.

'Recall that the Bellman operator B was defined by

BV(s) = m ax
v ' a e A

i ? (s ,a) + 7 J V(s')P(ds' ,a,s) , Vs € S.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-100

so

r= 100

Figure 6.1: M DP used to illustrate a limitation o f expectation-based models.

6.2 Learning Multiple State-Values from a Single Projection

In sampling-based planning, a trajectory sampled starting from a particular state allows the

agent to update not only the value of that state, but also the values o f all the other states

along the trajectory. Sampling-based methods can thus estimate the value function of all

states in S while requiring a single state to be provided as input. This property can be

extremely useful: for instance, if a model is available then the value o f any new policy can

be computed without having to interact with the environment using that policy.

In this section I will show that expectation-based models do not have a similar property.

Assume a perfect expectation-based model, one that would compute, for any policy 7r and

initial state s, the correct values o f E[ri\so = s, 7r] and J5[sj|so = s, 7r] for all i > 0. These

m ay still not contain sufficient information for computing the value o f any state other than

so-

To illustrate this, consider the simple M DP in Figure 6.1. This M DP has three non

terminal states so, s i and S2, and only one possible action a. The state representation con

sists of a unique unit-basis vector for each state, as indicated in the figure (no features are

required for the terminal states, since their value will always be zero). Starting in so, the

agent will always observe the sequence of expected state vectors [1 0 0]T , [0 0.5 0.5]r . The

sequence of expected rewards is 0 ,0 .

These sequences contain sufficient information for correctly computing V (so) = 0.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

They do not, however, contain enough information for computing V (s i) and V(s2)'- be

cause the projection is performed in an average, expected fashion, the elements in the pro

jection do not reflect the fact that the agent receives a reward of —100 after [0 1 0]T is

observed, and a reward o f 100 after [0 0 l] r is observed.

6.3 Multi-step Projection with Expectation-based Models

In this section I will show that a linear expectation-based model of policy tv can be used to

compute V*(a) at any given state s. An expectation-based, policy-conditioned model for

policy 7r predicts

E[st+i\at = s ,7r] = U (s) .

The following results require that the policy-conditioned expectation-based model is

linear:

f n(s) = M ns,

where M„ is a n -by-n matrix.

L em m a 1. I f

.E jst+ ils t = s,7r] = M wa,V i > 0,V s e S

then fo r any n > 0

E[st+n\st = s,7r] = M%s,t > 0 ,V s € S

Proof (The following holds for n = 2; the proof for the general case is similar.)

E[st+2\st = s,7r] = Est+1 [E[st+2\st+ u s t = s,7r]|st = s,7r]

= E St+1 [£;[.st+2 |st+ i,7r]|,st = s ,tt] (M arkovproperty)

= E St+1 [M f f S t+ i |s t = s, t t]

= M E [s t + i \ s t = s ,7 r] = M % S

□

L em m a 2. I f

E[st+ i\st = s,7r] = M ns , t > 0 ,V s 6 S

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and

E[rt+i\st = s, tt] = Uns, t > 0, Vs € 5

then fo r any n > 0

E[rt+n\st = S, 7r] = U7TMf:~1s , t > 0 ,V s 6 S

Proof.

E[rt+n\st = s , t t] = ESt+n_x [E[rt+n\st+n- i , s t = s,tt]|s* = s,7r]

= E St+n_ i [E [r-i+ n |st+ n _ i , 7r] |s f = s, tt] (Markov property)

= ESt+n_ j = -S, 7r]

= (7^-£;[st+ n _ i | s i = s, 7r] = U^MJf~l s

(the last equality is true because of Lemma 1) □

From the previous lemmas, it immediately follows that:

T heorem 3. Linear one-step expectation-based transition and reward models fo r policy Tt

are sufficient fo r computing V 7l(ss) fo r any state s

Proof. Using Lem m a 1 and Lemma 2,

V*{s) = E 5 ^ 7 V i + i | s 0 = S ,7 T

Li=0

= frVt+llsO = S,7r] = T r t ^ K s
i= 0 i=0

□

Theorem 3 shows the potential of policy-dependent expectation-based models. The ob

vious problem with policy-dependent models is that a new model has to be constructed

every time the policy changes. Nevertheless, a practical implementation based on Theo

rem 3 could still be data-efficienct for evaluating a single policy. In this case, it should be

compared with existing data-efficient methods for policy evaluation, such as LSTD. If an al

gorithm for computing the policy-conditioned model o f any policy from action-conditioned

models existed, then Theorem 3 could also be used in a policy improvement setting. Inves

tigating under what conditions such an algorithm can be designed is an interesting topic for

future work.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P = 0.1

P = 0.9 SO

P = 0.5

Figure 6.2: M DP used to illustrate potential problems with using non-linear expectation-
based models.

6.3.1 Non-linear Models

The above proofs only hold for linear models, and, unfortunately, the results cannot be

easily generalized to handle arbitrary function approximation for the model. I will present

a simple example of an M DP for which an expectation-based non-linear model of the form

E[sk+i\sk = s, 7 r] = f n (s) cannot be used for multi-step projections: E[sk+2\sk = s, tt] /

f M A s)) -

Consider the M DP in Figure 6.2, with S = {[0 1]T , [1 0]r } and A = {a} (rewards

are not important in this example). For this MDP, 22[sf+ i |s t = [0 1]T] = [0.1 0.9]T and

£ /[s t+ i|s t = [1 0]r] = [0.5 0.5]t . A possible form for the function f n (or simply / ,

since there is only one possible policy) is log-linear in the features, f { s) = a {M s) where

M is a 2-by-2 matrix o f parameters. For our MDP, this choice of / can perfectly model

£ [s t+ i |s t = s] for s € S if we set

/ 0 -2 .1 9 7 2 \
V 0 2.1972)

However, this model cannot be directly used for multistep predictions. For instance,

E[st+2\st = sa l] - [0.3 0.7]t , while f (f (s s l)) = a { M a { M s s l)) = [0.25 0.75]r . A

linear model, on the other hand, would be able to make all multi-step predictions accurately.

6.4 Approximating and Learning Expectation-based Models

Learning an approximate one-step, action-conditioned, expectation-based model is an in

stance o f the well-studied regression problem (e.g. Mitchell, 1997; Hastie, Tibshirani and

Friedman, 2001): the agenthas to learn a com pact representation of jE?[st+i|st = s,at = a],

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

having access to training data of the form (s f , at) St+i. The problem of learning an ex

pected reward model is similar. In the case o f full probability models, all learning methods

must make assumptions about the form of the probability distribution.

Note that the expected value of a vector is equal to the vector of expectations: for

any vector <f>, E [[(f)(1)...<p(n)}T] = [E[<f)(l)}...E[(f)(n)]}T . Thus, unlike in the case of full

probabilistic models, there is no need to worry about dependencies between different com

ponents at the same time step; predicting the expected value of each feature independently

is sufficient for predicting the next vector.

6.5 Conclusion

This chapter analyzed, through a series o f proofs and counterexamples, the opportunity of

planning with expectation-based models.

A common theme throughout the chapter was the interplay of linearity and expectations.

It was shown that if the value function is linear, then expectation-based models can be used

as part of value iteration algorithms, and that a linear policy-dependent model is sufficient

(at least theoretically) for computing the value function of any state.

An im portant limitation of expectation-based planning is that, unlike for sampling-

based planning, the information provided by an expectation-based model is not sufficient

for completely computing a value function; it is only sufficient for updating the value of

a given state. This was illustrated by the counterexample in Section 6.2. Thus, for practi

cal applications o f expectation-based methods, states have to be generated using a separate

process, perhaps by interacting with the environment or from a generative model.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusion

This thesis addresses the challenging problem o f M DP planning with approximate, stochas

tic and learned models. Its primary contribution is proposing and empirically evaluating a

sampling-based planning and learning system that is m ore general than existing methods for

planning with approximate models. In addition, the theoretical results in Chapter 3 offer

new insights into the possibility of planning with approximate expectation-based models,

which are easier to learn and represent than general sampling-based models. The soundness

of M DP planning with approximate models is theoretically demonstrated in Chapter 3.

Sampling-based planning is an appealing planning strategy, offering great flexibility

in terms of choosing the function approxim ator for the model and the policy. The only

constraint relating the two approximators is that they must use the same state representation.

Two ideas are key to the generality of cplanner, the sampling-based planning and learn

ing system described in Section 4.7. First, transforming the state representation into binary

feature vectors allows arbitrary function approximation to be used for representing the dis

tribution of each component. Second, the model that cplanner learns allows for arbitrary

dependencies between components o f the feature vectors to be represented. Iplanner, a

sampling-based planning system that ignores some o f these dependencies, has been shown

to be unsound.

The results in Section 5.3 illustrate the important point that using planning methods is

particularly advantageous when a sequence of tasks has to be solved in the same environ

ment. The fact that the models used were independent o f the policy and the reward structure

was the key to obtaining this advantage.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The results in Chapter 6 show that there are reasons to be optimistic about planning with

approximate expectation-based models. Essential to the positive results about expectation-

based planning was the fact that linear operators commute with the the expectation operator.

7.1 Limitations (Future Work)

The current empirical results are rather limited, and there are many ways to make them

more illustrative and thorough. Analyzing the effect of individual parameters and using

m ore domains, such as the ones available in the RL Library (White, 2006) are obvious

extensions. An interesting scenario to experiment with would change the rewards or the

transition model without the agent’s knowledge, and test whether a m odel-based algorithm

adapts to the changes faster than a model-free algorithm.

The algorithms used for model-learning (gradient descent) or policy-learning (Sarsa(O))

as part o f cplanner are rather rudimentary. Because data-efficiency is the main reason for

using planning methods, it is particularly important that the model-learning algorithms are

data-efficient. By analyzing the literature on building and learning statistical models, it is

likely that improvements on the gradient descent algorithm used by cplanner and iplanner

can be made.

Chapter 6 only contains prelim inary ideas and results about expectation-based planning.

The obvious next step there is to transform these ideas into complete algorithms, and to

analyze these algorithms em pirically and theoretically.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

Ackley, D. H., Hinton, G. E., Sejnowski, T. J. (1985). A Learning Algorithm for Boltzmann

Machines. Cognitive Science, 9:147-169.

Andre, D., Friedman, N., Parr, R. (1998). Generalized Prioritized Sweeping. In Advances

in Neural Information Processing Systems 10.

Antos, A., Szepesvari, C., M unos, R. (2006). Learning near-optimal policies with Bellman-

residual minim ization based fitted policy iteration and a single sample path. In Proceed

ings o f The Nineteenth Annual Conference on Learning Theory.

Atkeson, C. (1993). Using local trajectory optimizers to speed up global optimization in

dynamic programming. Advances in Neural Information Processing Systems, 5, 6 6 3 -

670. San M ateo, CA: M organ Kaufmann.

Atkeson, C., M oore, A.W., Schaal, S. (1997). Locally Weighted Learning for Control. A I

Review, 11: 75-113, Kluwer Acadedmic Publishers

Bengio, Y., Bengio, S. (2000). M odeling high-dimensional discrete data with multi-layer

neural networks. In Advances in Neural Information Processing Systems 12, pages 400-

406.

Bertsekas, D. and Tsitsiklis, J. (1996). Neuro-Dynamic Programming. A thena Scientific.

Boutilier, C., Dearden, R., Goldszmidt, M. (2000). Stochastic Dynamic Programming with

Factored Representations. Artificial Intelligence 121: 49107.

Boyan, J. (2002). Technical update: Least-squares temporal difference learning. Machine

Learning, 49:233-246.

Bradtke, S., Barto, A. G. (1996). Linear least-squares algorithms for temporal difference

learning. Machine Learning, 22:33-57.

Cassandra, A. (1994). Optimal Policies fo r Partially Observable Markov Decision Pro

cesses. Technical Report CS-94-14, Brown University, Department of Computer Sci

ence.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dean, T., Wellman, M.P. (1991) Planning and Control. Morgan Kaufmann Publishers.

Degris, T., Sigaud, O., Wuillemin, P. (2006). Learning the Structure of Factored M arkov

Decision Processes in Reinforcement Learning Problems. Proceedings o f the 23rd In

ternational Conference on Machine Learning.

de Farias, D.P. and Van Roy, B. (2000). On the Existence o f Fixed Points for Approximate

Value Iteration and Temporal-Difference Learning. Journal o f Optimization Theory and

Applications, Vol. 105, No. 3

Devroye, L. andG yorfi, L. (1985). Nonparametric Density Estimation: the L I View. Wiley,

New York.

Geramifard, A., Bowling, M., Sutton, R. S. (2006). Incremental Least-Squares Temporal

Difference Learning. In Proceedings o f the Twenty-First National Conference on Artifi

cial Intelligence (AAAI), pages 356-361.

Ghallab M., Nau D., Traverso P. (2004) Automated Planning, Theory and Practice. Else

vier, M organ Kaufmann Publishers

Guestrin, C., Patrascu, R., Schuurmans, D. (2002). Algorithm-Directed Exploration for

M odel-Based Reinforcem ent Learning in Factored MDPs. Proceedings o f the N ine

teenth International Conference on Machine Learning, pp. 235-242.

Guestrin, C., Koller, D ., Parr, R. and Venkataraman, S. (2003). Efficient Solution Algo

rithms for Factored M DPs. Journal o f Artificial Intelligence Research (JAIR)19:399-

468.

Guestrin, C., Hauskrecht, M. and Kveton, B. (2004). Solving Factored M DPs with Con

tinuous and Discrete Variables. In Twentieth Conference on Uncertainty in Artificial

Intelligence (UAI 2004).

Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements o f Statistical Learning:

Data Mining, Inference, and Prediction. Springer.

Hinton, G. E., Osindero, S. and Teh, Y. (2006). A fast learning algorithm for deep belief

nets. Neural Computation, 18:1527-1554 .

Kaelbling, L.P. (1993). Learning in E m bedded System s. MIT Press.

Kaboli, A., Bowling, M. and Musilek, P. (2006). Bayesian calibration for M onte Carlo

localization. In Proceedings o f the Twenty-First National Conference on Artificial Intel

ligence (A A A I), pages 964—969.

Kakade, S., Kearns, M. and Langford, J. (2003) Exploration in Metric State Spaces. Pro

ceedings o f the 20th International Conference on Machine Learning

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Kalmar, Z., Szepesvari, C. and Lorincz, A. (1998). M odule-Based Reinforcement Learning:

Experiments with a Real Robot. Machine Learning 31:55-85.

Kearns, M ., Mansour, Y, and Ng, A.Y. (1999). A Sparse Sampling Algorithm for Near-

Optimal Planning in Large M arkov Decision Processes. In Proceedings o f the Sixteenth

International Joint Conference on Artificial Intelligence, pages 1324-1331.

Kearns, M. and Singh, S. (2002). Near-Optimal Reinforcement Learning in Polynomial

Time. Machine Learning, 49:209-232.

Kuvayev, L., Sutton, R.S. (1996). M odel-based reinforcement learning with an approxi

mate, learned model. Proceedings o f the Ninth Yale Workshop on Adaptive and Learning

Systems, pp. 101-105, Yale University, New Haven, CT.

Lagoudakis, M.G. and Parr, R. (2003). Least-Squares Policy Iteration. Journal o f Machine

Learning Research 4:1107-1149.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning

and teaching. Machine Learning 8:293-321.

Littman, M. (1996). Algorithms fo r Sequential Decision Making. Department of Com puter

Science, Brown University.

Mitchell, T. (1997). Machine Learning. M cGraw Hill.

Ng, A.Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., Liang, E.

(2004) Inverted autonomous helicopter flight via reinforcement learning International

Symposium on Experimental Robotics

Nouri, A., Littman, M. L. (2006). Investigating Function Approximation for M odel-based

Reinforcement Learning. Unpublished note at http://www.cs.mtgers.edu/ mlittman/ftp/

nouri-model-fa.ps.

Peng, J., W illiams, R J . (1993) Efficient learning and planning within the Dyna framework,

Adaptive Behavior 1, 437-454.

Sallans, B. (2002). Reinforcement Learning fo r Factored Markov Decision Processes.

Ph.D. Thesis, Dept, o f Com puter Science, University o f Toronto.

S c h w a r tz , A . (1 9 9 3) . A re in fo rc e m e n t le a r n in g m e th o d f o r m a x im iz in g u n d is c o u n te d r e

wards. In Proceedings o f the Tenth International Conference on Machine Learning,

pages 298-305.

Singh, S.P. (1992). Reinforcem ent learning with a hierarchy of abstract models. Proceed

ings o f the Tenth National Conference on Artificial Intelligence, pp. 202-207. M IT

Press.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.mtgers.edu/

Stone, P., Sutton, R. S., Kuhlmann, G. (2005). Reinforcement Learning for RoboCup-

Soccer Keepaway. Adaptive Behavior.

Sturtevant, N. and W hite, A. (2006). Feature Construction for Reinforcement Learning in

Hearts. In Computers and Games.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on

approximating dynamic programming, Proceedings o f the Seventh International Con

ference on Machine Learning, pp. 216-224.

Sutton, R.S. (1996). Generalization in reinforcement learning: Successful examples using

sparse coarse coding title. In Advances in Neural Information Processing Systems 8,

pages 1038-1044.

Sutton, R.S., Barto, A.G. (1998). Reinforcement Learning: An Introduction. M IT Press.

Szepesvari, C. and Munos, R. (2005). Finite Time Bounds for Sampling Based Fitted Value

Iteration Proceedings o f the 22nd International Conference on Machine Learning, pp.

881-886.

Tesauro, G.J. (1995). Temporal difference learning and TD-Gammon. Communications o f

the ACM, 38:58-68.

Tadepalli, P. and Ok, D. (1996). Scaling up average reward reinforcement learning by

approximating the domain models and the value function. In Proceedings o f the 13th

International Conference on Machine Learning.

Welling, M. and Hinton, G. E. (2002). A New Learning Algorithm for M ean Field Boltz

mann M achines. International Joint Conference on Neural Networks.

W hite, A. (2006). A Standard System fo r Benchmarking in Reinforcement Learning. M.Sc.

Thesis, University of Alberta.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

