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Abstract

A cyber-physical system (CPS) is a system in which computational systems interact with

physical processes. Control systems in a CPS application often include algorithms that

react to sensor data by issuing control signals via actuators to the physical components of

the CPS. Communication over wireless networks is the most energy-consuming function

performed by the cyber components of a CPS; thus communication frequencies need to be

minimized. Event triggered communication has been recognized as an efficient means to

reduce communication rates between different cyber components.

In this thesis, event triggered schemes serve as a communication protocol to mediate

data exchange in distributed control, estimation, and optimization for CPSs. Firstly, it is

established that event triggered communication outperforms time triggered communication

based on a finite time quadratic optimal control problem for first order stochastic systems.

Secondly, it is demonstrated that event triggered impulse control still outperforms periodic

impulse control for second order systems in terms of mean-square state variations, while

both having the same average control rate. Thirdly, a synchronization problem is considered

for multi-agent systems with distributed event triggered control updates. Given an undirected

and connected network topology, conditions on the feedback gain, the triggering parameters

and the maximum sampling period for solving the asymptotic synchronization problem are

developed based on the feasibility of local linear matrix inequalities (LMIs). Fourthly, a dis-

tributed state estimation method is presented through wireless sensor networks with event

triggered communication protocols among the sensors. Homogeneous detection criteria and
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consensus filters are designed to determine broadcasting instants and perform state estima-

tion. Lastly, an event triggered communication scheme is used to investigate distributed op-

timization algorithms for a network utility maximization (NUM) problem. State-dependent

thresholds are established under which the proposed event triggered barrier algorithm guar-

antees convergence to the optimal solution to the NUM problem.
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Chapter 1

Introduction

In this chapter, we will introduce cyber-physical systems (CPSs), discuss event triggered
sampling and communication, and review the relevant literature.

1.1 Cyber-Physical Systems and Event Triggered Sampling

The arrival of digital technologies has given rise to a tight combination of, and coordina-
tion between, communication, computational, control units and physical processes. A new
term has been coined to characterize this generation: Cyber-Physical Systems (CPSs) [59].
CPSs refer to the orchestration of networked computational resources and physical pro-
cesses. CPSs occur naturally in such diverse areas as communication, consumer appliances,
energy, civil infrastructure, health care, manufacturing, military, robotics, and transportation.
The core of CPSs is networking. The introduction of real-time networks raises some design
challenges regarding limited sensor energy, limited communication bandwidth, and limited
computational resource. All of these suggest that event triggered sampling should be utilized
to provide a solid information exchange mechanism for design, deployment, monitoring and
adaptation of CPSs. Event triggered sampling has many advantages compared with periodic
sampling, such as control by exception. It is useful in situations when control actions are ex-
pensive and it is a prevalent form of control in biological systems. Event triggered sampling
provides an alternative way to determine when communication actions should be invoked,
which reduces communication bandwidth usages and controller update frequencies. Event
triggered sampling is therefore used in many feedback control systems, and various terms are
utilized to express this sampling strategy, such as level-crossing sampling, magnitude-driven
sampling, sampling in the amplitude domain, and Lebesgue sampling. In the sensor network
community, the magnitude-driven/level-crossing sampling is known as the send-on-delta or
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Figure 1.1: Generic model of event triggered control systems

deadbands.
Control systems in a CPS application often include algorithms that react to sensor data

by issuing control signals via actuators to physical components of the CPS. Classical con-
trol theory assumes a continuous or periodic signaling, where the controller continually or
periodically observes the physical subsystem, and continually or periodically provides ac-
tuation to the physical component. Continuous communication might be impractical and
periodic communication may be inflexible. In a typical CPS architecture, the signaling is
mediated by software and networks that do not possess such continuous or periodic behav-
ior. CPSs, however, require extending the classic control theory to embrace the dynamics
of software and networks, which can have profound effects on stability and dynamics of the
physical subsystems. Detailed overview of event triggered control systems can be found in
[4, 111, 62, 44, 15, 66, 85].

The generic structure of a system with event triggered communication is depicted in
Figure 1.1. Each cyber subsystem (sensor, estimator, controller, and actuator) is deployed
in an intelligent node communicating via processing incoming events and triggering out-
going events according to its communication logic. The sensor measures the output of a
continuous plant continuously or periodically. Then it determines if the plant output should
be directed to the estimator according to its communication logic. The estimator obtains
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an estimate of the state using an estimation algorithm after receiving data from the sensor.
Its communication logic determines if the estimated state should be forwarded to the con-
troller. The controller is invoked and then calculates a control value according to a control
algorithm. The controller sends the new control value to the actuator according to its own
communication logic.

In the event triggered system shown in Figure 1.1, the sensor, estimator, controller, and
actuator reside on various nodes in a network. There are many different topologies that can
be imagined. The controller could be co-located with the actuator; the estimator could be
co-located with the sensor. In addition, the sensor, estimator, and controller nodes could be
very simple and contain no communication logic.

1.2 Communication Logic Design

Since an efficient use of network resources is one of the main motive forces for application
of event triggered sampling, design of communication protocols is a central issue. For im-
plementation, the communication protocol should admit a strictly positive lower bound of
inter-event times. The commonly used communication logics are discussed as follows.

Level Crossing Sampling

Level crossing sampling, also known as Lebesgue sampling, is a threshold based encoding
scheme [56].

Let L be a given infinite set of levels:

L = {. . . , l−2, l−1, l0, l1, l2, . . .}

with l0 = 0, li ∈ R, and li < li+1 for ∀i ∈ Z. If a set of levels with all non-zero levels is
desirable, l0 can be removed from the set L. The sampling instants triggered by L for signal
x(t) are defined through fresh crossings of levels:

t0 = 0, tk+1 = inf {t |t > tk, x (t) ∈ L, x (t) 6= x (tk)} .

Error based communication logic conditions can be generalized by introducing a generic
function g : Rn × Rn × [0,∞)→ R, which must have the following properties:

1. g (x, e, t) is a piecewise continuous function in t;
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2. g (x, e, t) ≥ 0 for almost all t except event instants;

3. g (x, e, t) < 0⇒ e (t+) = 0⇒ g (x, e, t+) ≥ 0.

The initial event instant is assumed to be t0. Property 2 must be ensured for almost all t.
It is natural to set the next event instant tk+1 equal to the first time when g (x, e, t) < 0. This
observation is condensed in the following lemma:

Lemma 1 If the event instants are set according to

tk+1 = inf {t : t > tk, g (x (t) , e (t) , t) < 0} ,

then we have

g (x, e, t) ≥ 0, for ∀t ∈ [tk, tk+1) .

This lemma is easy to prove by the property that g (x (t) , e (t) , t) is a continuous function
in t ∈ [tk, tk+1).

Send-on-Delta Triggering Logic

Send-on-delta sampling is a principle of non-equidistant sampling, in which not all sampled
values will be sent, but only those which have sufficiently large differences to the previously
transmitted value. The commonly used communication logic strategies based on errors are
summarized in Table 1.1 [103]. Here AE denotes the absolution error between the current
state and the state at the last event time; IAE denotes the integrated absolute error from the
last event times; APE denotes the error between a prediction of the state and its current
state; IAPE denotes the integral of the error between the prediction and the state; and IAEE
denotes the energy of the error between the current state and the state at the last event time.

Table 1.1: Error based conditions of communication strategies applied to the sensor

Error Based Condition Label Definition of Error
g (e) = δ − ‖e (t)‖ AE e (t) = x (tk)− x (t)

g (e) = δ −
∫ t
tk
‖e (τ)‖ dτ IAE e (t) = x (tk)− x (t)

g (e) = δ − ‖e (t)‖ APE e (t) = x̂ (t)− x (t)

g (e) = δ −
∫ t
tk
‖e (τ)‖ dτ IAPE e (t) = x̂ (t)− x (t)

g (e) = δ −
∫ t
tk
‖e (τ)‖2 dτ IAEE e (t) = x (tk)− x (t)

4



Adaptive Triggering Logic

The general form of adaptive triggering conditions can be formulated as

g (x, e) = δ + σxT (t) Φx (t)− eT (t) Ψe (t) ,

which includes most existing triggering conditions as special cases. For example, if we take
δ = 0, Φ = Ψ = I , it reduces to the event triggering mechanism that was proposed in [108].
Also it includes the send-on-delta triggering rule as a special case by taking σ = 0, and
Ψ = I .

Triggering Logic Based on Sampled Data

Sampled-data triggering logic is constructed to determine whether the newly sampled data
should be sent out by using the following triggering condition:

g (x, e) = δ + σxT (kh) Φx (kh)− eT (kh) Ψe (kh) ,

where h is the sampling period. Event detectors based on sampled data do not need to
monitor the state and test the triggering condition continuously. The triggering condition
is supervised only at sampling instants. Therefore, the inter-event interval is at least lower
bounded by the sampling period, which is particularly useful in multi-agent systems [78].

Triggering Logic Based on Relative Entropy

Let probability density function (PDF) p1 (x) be a posterior distribution while p2 (x) a prior
distribution. The Kullback-Keibler divergence or relative entropy is defined as

DKL (p1 (x) ||p2 (x)) =

∫ +∞

−∞
p1 (x) log

p1 (x)

p2 (x)
dx.

The communication logic is defined as

g (x) = δ −DKL (p1 (x) ||p2 (x)) ,

where DKL is known as the information gain [73].

Triggering Logic Based on Variance

Let v(k) denote the state prediction variance. A measurement is transmitted if and only if
γ(v(k)) exceeds a tolerable bound, that is,

g (v) = δ − γ(v(k)),

where γ(v(k)) is a function of v(k) [110].

5



1.3 Actuator Options

Control algorithm design is essentially the problem of finding an open loop control signal
that drives the system from its state at the time of event to a desired state. Many methods
from control system design can be used for designing control signal generating circuits. For
regulation problems, a dead-beat controller can be used which drives the state to zero in a
finite time. Optimal control [9, 10] and model predictive control [72, 14, 100, 37] are other
alternatives that are particularly useful when there are restriction on the control signal. The
design of hold circuits will be discussed as follows for event triggered control systems.

Zero-Order Hold

Since computer control is widely used, zero-order hold becomes a standard solution [5]. The
causal reconstruction of a zero-order hold is given by

x̂ (t) = x (tk) , tk ≤ t < tk+1.

This means that the reconstructed signal is piecewise constant, continuous from the right,
and equal to the sampled signal at event instants. Because of its simplicity, the zero-order
hold is very common in event triggered control systems, which is not only used at actua-
tors, but also at sensors, estimators, and controllers. The standard D-A converters are often
designed in such a way that the old value is held constant until a new value is received.

Higher-Order Hold

The zero-order hold can be regarded as an extrapolation using a polynomial of degree zero.
For smooth functions, it is possible to obtain smaller reconstruction errors by extrapolation
with higher-order polynomials. A first-order causal polynomial extrapolation gives

x̂ (t) = x (tk) +
t− tk

tk − tk−1

(x (tk)− x (tk−1)) , tk ≤ t < tk+1.

Differences between different holds are illustrated by a simple example in [4], which
shows that the hold circuit has important implication to system performance. The impulse
hold where the control signal is an impulse is an extreme case [4, 77]. Since the hold circuit
is important, it is natural that it should be matched to the process [83].
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1.4 Modeling Event Triggered Control Systems

Let us take an event triggered state feedback control of linear time-invariant systems as an
example for illustration. Consider the system described by

ẋ (t) = Ax (t) +Bu (t) , (1.1)

with x (t) ∈ Rn, and u (t) ∈ Rp. The control signal u (t) is kept constant between two
consecutive event instants, that is,

u (t) = Kx (tk) , (1.2)

for t ∈ [tk, tk+1).
Systems with event triggered control can be modeled in different ways, relating to vari-

ous tools and theories which are potentially applicable. We will look into this in more detail
below.

Systems with Measurement Errors

Define the measurement error e (t) to be

e (t) = x (tk)− x (t) ,

for t ∈ [tk, tk+1). The evolution of the system in (1.1) under the implementation of the
control law in (1.2) is thus described by

ẋ (t) = Ax (t) +BK [x (t) + e (t)] = (A+BK)x (t) +BKe (t) . (1.3)

The notion of Input-to-State Stability (ISS) can be used to characterize the stability of the
closed-loop system in (1.3).

Systems with Input Delay

Define a function τ (t) as
τ (t) = t− tk

for t ∈ [tk, tk+1). Obviously
0 ≤ τ (t) < tk+1 − tk

and
τ̇ (t) = 1.
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Utilizing τ (t) , one can rewrite the system in (1.1) as

ẋ (t) = Ax (t) +BKx (t− τ (t)) . (1.4)

Therefore, the behavior of the closed-loop system in (1.4) can be described by a system with
input delay.

Impulsive Systems

Let
e (t) = x (tk)− x (t)

denote the error at time t. Define χ =
[
xT eT

]T
, which yields the dynamics of the

system

χ̇ (t) = Āχ (t) , when χ (t) ∈ F ,

χ
(
t+
)

= C̄χ (t) , when χ (t) ∈ J ,
(1.5)

where
Ā =

[
A+BK BK
−A−BK −BK

]
, C̄ =

[
I 0
0 0

]
.

Here F and J denote the flow and jump sets, respectively. Note that the event times tk
are now related to the time at which the jumps of χ take place, in which a reset occurs
according to e

(
t+k
)

= 0, but x
(
t+k
)

= x (tk) remains the same. The system flows between
two consecutive event instants. This yields an impulsive system of the form in (1.5).

Hybrid Systems

The hybrid representation is more formally written as follows:{
ẋ (t) = Ax (t) +Bu (t)
u̇ (t) = 0

when x (t) ∈ F ,{
x (t+) = x (t)
u (t+) = Kx (t)

when x (t) ∈ J ,

where F and J are the flow and jump sets, respectively.
The definition of stability and sufficient conditions to guarantee the stability for different

systems can be found in Appendix A.
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1.5 Literature Survey

1.5.1 Event Triggered Control

There are two main research streams concerning event triggered control: event triggered
control for stochastic systems, and event triggered control for deterministic systems.

A. Event Triggered Control for Stochastic Systems

Event triggered control for stochastic systems focuses on obtaining optimal or sub-optimal
event triggering mechanisms for a predefined performance index. The research in this line
was sparked by the pioneering work [4]. This paper considered a scalar diffusion process
where the control signal was an impulse signal. Under an event triggered scheme, the con-
trol action was taken whenever the state magnitude exceeded a specified level; while under
the periodic manner, the control action was taken at every sampling instant. Reference
[4] showed that event triggered systems had better performance than periodically triggered
systems in terms of the steady-state variance while operating at the same mean control fre-
quency. This work was extended to the sporadic control with a well-defined minimum inter-
event time [46] and generalized to a class of symmetric second-order systems [77]. In [46],
two sporadic control schemes, sporadic control with continuous and discrete measurements,
were explored for first-order linear stochastic systems. The results showed that sporadic
control could give better performance than periodic control in terms of both reduced process
state variance and reduced control action frequency. In [77], it was demonstrated that the
event triggered impulse control still outperformed periodic impulse control for higher-order
systems in terms of mean-square state variations while both having the same average control
rate. The authors in [87] showed that the certainty equivalence controller was optimal for
an extended linear-quadratic-Gaussian (LQG) framework that incorporated communication
constraints. A similar result was also given in [99].

B. Event Triggered Control for Deterministic Systems

On the other hand, event triggered control for deterministic systems focuses on closed-loop
system stability. The literature on stability of event triggered control algorithms is by now
extensive. The line of research is further divided into the following branches.
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B1. Event Triggered Control for Linear/Nonlinear Systems

The work in [108] proposed adaptive triggering rules to update control actions whenever
it was necessary to ensure a certain decrease in a Lyapunov function. This paper showed
that the zero-order hold implementation of a simple state feedback controller based on the
event triggered paradigm could guarantee a desired performance while relaxing periodic
execution requirements. Later on, the idea was extended to trajectory tracking for nonlinear
systems [109] and generalized in [26]. The assumption that system states are perfectly
measured is very important in monitoring and control of event triggered control systems.
However, in many applications only partial state variables are directly measured. Thus, it
is natural to design output feedback controllers. The output feedback control incorporating
event triggered communication was studied in [32, 23, 120]. The primary challenge of
extending existing results from event triggered state feedback to output feedback is how
to derive a strictly positive lower bound of the inter-event times; and some strategies have
been proposed. In [23], the performance degenerated from asymptotic stability to ultimate
bounded stability in order to guarantee a minimum inter-event time.

It is noted that all the work above is based on continuous event detection. The sampled-
data event detection approach is introduced to relax the continuous monitoring. Periodic
event triggered control is a control strategy that combines ideas from conventional periodic
sampled-data control and event triggered control [79, 43, 80]. In [80], events were triggered
by using only the sensor output information to achieve asymptotic stability and a positive
constant lower bound of inter-event times simultaneously. These references are all based
on Lyapunov techniques. A continuous Lyapunov function is required to be monotonically
decreasing in the event based control system as it is in continuous feedback systems; this,
however, is not necessary as shown in [114, 19].

Although the Lyapunov technique is the workhorse for recent studies on event triggered
control systems, there were also other methods in the literature. By modeling event triggered
control systems as piecewise linear systems [45], event-driven PID, state feedback, and out-
put feedback control schemes were considered. The use of a generalized hold instead of a
zero-order hold to generate inter-sample open-loop control signals was studied in [32]. Sim-
ilarly, a model-based approach was proposed in [71] for event-based state feedback control
in which a control input generator mimicked a continuous feedback between two consec-
utive event times; then this approach was extended to coping with communication delays
and packet losses in the feedback link in [60]. The discrete counterpart was addressed in
[28], which also incorporated an on-line parameter estimation of dynamical systems. Com-
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bining the sampled-data communication logic and model-based approach was done in [42].
The stabilization problem of linear, discrete-time, time-varying systems in the context of
supervised control was considered in [53].

B2. Event Triggered Control for Networked Control Systems

Event triggered control for networked control systems with time-varying delays was studied
in [122, 94, 95] based on a sampled-data communication logic. The packet disorder was not
considered by the authors. However, there exist packet disorders in event triggered control
systems. A solution to avoid the phenomenon of packet disorder was provided in [76]. Other
solutions to deal with communication delays and packet losses can be found in [61, 29].
Later on, the idea was extended to wireless sensor networks [74]. In [74], a decentralized
event triggered implementation of centralized controllers over wireless sensor networks was
presented. Event triggered data transmission in distributed networked control systems with
packet losses and transmission delays was examined in [113]. A control design problem for
uncertain event triggered networked control systems with both state and input quantizations
was investigated in [51].

B3. Event Triggered Control for Multi-Agent Systems

Event triggered communication is also proved especially useful in multi-agent systems, such
as consensus algorithms [67, 21, 117], and tracking control [49]. A challenging issue posed
to this problem is the minimum inter-event interval. Unlike linear systems, there exist few
results which derive a strictly positive lower bound of inter-event times for multi-agent
systems, although the consensus can always be guaranteed with reduced control updates
[25, 30]. Currently, the only solution is based on sampled-data event detection [78]. Note
that existing results on distributed event triggered multi-agent systems focus on single- or
double-integrator dynamics mostly. Event triggered methods for linear multi-agent systems
were presented in [124, 127]; output synchronization of multi-agent systems was presented
in [121].

1.5.2 Event Triggered Estimation

When the state of a process is not measured directly, we can construct an estimator to provide
an estimate of system state [2, 106]. The estimation problem with event triggered commu-
nication is not a standard problem. If no event occurs, the information can only be inferred
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from the communication logic; when an event occurs, a precise measurement of the output
is obtained.

For systems subject to energy bounded disturbances, the H∞ filter could be used to
minimize the H∞ norm of filtering error systems. Full order linear dynamic filters with
communication logic for continuous-time systems can be found in [52, 123]. The work in
[81] introduced a general event triggered framework of state estimation for discrete-time
systems with parameter uncertainties residing in a polytope. A robust filter was designed to
ensure the `2 stability from disturbance to the estimation error and to minimize the `2 gain
subject to both packet rate and size constraints.

For systems with Gaussian noise, modified Kalman filter algorithms are usually used
to solve networked estimation problems with reduced communication. Early work on this
problem focused on modifying the standard Kalman filter algorithm to solve networked es-
timation problems. Under the send-on-delta method, there was no sensor data transmission
if the sensor value did not change more than the specified value from the previously trans-
mitted one. This way, sensor data traffic could be reduced with relative small estimation
performance degradation [107]. The estimation performance was improved by [88], where
the states were periodically estimated by the estimator node regardless of whether the sensor
nodes transmitted data or not. The idea was also used to design fault isolation filters to im-
prove resource utilization with graceful fault estimation performance degradation [63], and
was generalized in [7]. An optimal estimator for a chosen process model can be derived by
finding the conditional probability density of the process state given available information.
The amount of computation involved makes the optimal filter intractable in general [116].
The optimal filter is approximated by different techniques, such as the Gaussian sum filter
[105], and the particle filter [35, 16]. Distributed consensus state estimation with event trig-
gered communication protocols among sensors in a wireless sensor network was presented
in [82].

1.5.3 Event Triggered Optimization

Many problems in control engineering can be formulated as optimization problems. Dis-
tributed algorithms that solve network optimization problems are distributed gradient-based
algorithms that converge to the optimal point provided that the communication between sub-
systems is sufficiently frequent. Event triggered distributed algorithms were introduced in a
scenario where multiple agents cooperated to control their individual state so as to optimize
a common objective while communicating with each other to exchange state information
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[126]. The distributed event triggered optimization was also well suited for solving the ac-
tive optimal power flow problem [75]. These results confirm that approximated solutions
can be obtained with significantly less communication while they have the same accuracy as
solutions computed without event triggered communication.

1.6 Thesis Outline

The rest of this thesis is organized as follows.
In Chapter 2, the problem of optimal control for first order stochastic systems with a

quadratic performance index over a finite time horizon is studied. The performance of three
messaging policies for sensing combined with two hold circuits for actuation is compared
based on optimization over the parameters of event detection and feedback control. The
sampling rules include deterministic sampling (DS), level-crossing sampling (LCS) and op-
timal sampling (OS), and the hold circuits include zero order hold (ZOH) and generalized
hold (GH). Some general results are established that level-crossing sampling performs more
effectively than deterministic sampling and generalized hold outperforms zero order hold.
Chapter 2 is based on the following publication:

• X. Meng, B.Wang, T. Chen and M. Darouach, “Sensing and actuation strategies for
event triggered stochastic optimal control,” Proc. 52nd IEEE Conference on Decision

and Control, pp. 3097-3102, Florence, Italy, December 10-13, 2013.

In Chapter 3, several issues of periodic and event based impulse control for a class of
second order stochastic systems are considered, including the optimal sampling and perfor-
mance comparison. The procedures are provided to design the optimal sampling period for
periodic sampling and optimal threshold for event based sampling. It is demonstrated that
event based impulse control outperforms periodic impulse control in terms of mean square
state variations, while both having the same average control rate. Chapter 3 is based on the
following publication:

• X. Meng and T. Chen, “Optimal sampling and performance comparison of periodic
and event based impulse control,” IEEE Transactions on Automatic Control, vol. 57,
no. 12, pp. 3252-3259, December 2012.

Chapter 4 considers the synchronization problem for multi-agent systems with event
based control updates, where all agents share the same dynamic model of any order, includ-
ing single- and double-integrator dynamics as special cases. Controller updating instants are
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determined by distributed event detectors in individual agents. Whenever an event condition
is violated, the agent and one neighbor involved in the event will update their own control
action individually. The problem is formulated so that event conditions need to be checked
only at discrete sampling instants; the control update periods are thus at least lower bounded
by the synchronous sampling period for all agents. Given an undirected and connected net-
work topology, conditions on the feedback gain, the triggering parameters and the maximum
sampling period for solving the asymptotic synchronization problem are developed based on
feasibility of local linear matrix inequalities (LMIs). Finally, key design procedures are il-
lustrated by numerical simulations.

Chapter 5 presents distributed state estimation methods through wireless sensor networks
with event triggered communication protocols among the sensors. Homogeneous detection
criteria are designed on each sensor node to determine the broadcasting instants. Thus, a
consensus on state estimates is reached with all estimator sensors for a suboptimal consensus
filter. The purpose of event detection is to achieve energy efficient operation by reducing
unnecessary interactions among the neighboring sensors. In addition, the performance of
the proposed state estimation algorithm is validated using a simulation example. Part of
Chapter 5 is based on the following publication:

• X. Meng and T. Chen, “Optimality and stability of event triggered consensus state
estimation for wireless sensor networks,” Proc. American Control Conference, pp.
3565-3570, Portland, Oregon, USA, June 4-6, 2014.

Chapter 6 is concerned with event triggered distributed optimization for network utility
maximization (NUM) problems. Under the event triggering logic, a source broadcasts its
information to links when a local signal exceeds a state dependent threshold. A similar
communication logic is executed by all links, where the link broadcasts its information to
all sources that use the link. The algorithm is based on a sequential barrier method, which
can be applied to optimization problems with constraints. The efficiency of the proposed
scheme is verified via simulations. The simulation result shows that the proposed algorithm
reduces the number of message exchanges while guaranteeing the converge to the optimal
solution.

This following publications do not form any part of this thesis, but contribute to the event
triggered perspective of this work.

• F. Xiao, X. Meng and T. Chen, “Sampled-data consensus in switching networks of
integrators based on edge events,” Accepted in International Journal of Control.
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• B. Wang, X. Meng and T. Chen, “Event based pulse-modulated control of linear
stochastic systems,” IEEE Transactions on Automatic Control, vol. 59, no. 8, pp.
2144-2150, 2014.

• X. Meng and T. Chen, “Event detection and control co-design of sampled-data sys-
tems,” International Journal of Control, vol. 87, no. 4, pp. 777-786, 2014.

• X. Meng and T. Chen, “Event triggered robust filter design for discrete-time systems,”
IET Control Theory & Applications, vol. 8, no. 2, pp. 104-113, January 2014.

• X. Meng and T. Chen, “Event based agreement protocols for multi-agent networks,”
Automatica, vol. 49, no. 7, pp. 2123-2132, July 2013

• X. Meng and T. Chen, “Event-based stabilization over networks with transmission
delays,” Journal of Control Science and Engineering, vol. 2012, article ID 212035, 8
pages, 2012. doi:10.1155/2012/212035

• X. Meng, and T. Chen, “Event-driven communication for sampled-data control sys-
tems,” Proc. 2013 American Control Conference, pp. 3008-3013, Washington, DC,
USA, June 17-19, 2013.

• F. Xiao, X. Meng, and T. Chen, “Average sampled-data consensus driven by edge
events,” Proc. 31st Chinese Control Conference, pp. 6239-6244, Hefei, China, July
25-27, 2012.
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Chapter 2

Sensing and Actuation Strategies for
Event Triggered Optimal Control

In the chapter, the problem of optimal control for first order stochastic systems with a
quadratic performance index over a finite time horizon is studied. The performances of three
messaging policies for sensing combined with two hold circuits for actuation are compared
based on optimization over the parameters of event detection and feedback control.

2.1 Introduction

The defining feature of networked control systems is reflected in limited channel capacities,
which are characterized by constrained data rates through shared or wireless networks, thus
reducing the average number of transmissions, and limiting the minimum time interval be-
tween transmissions. From practical considerations, it is natural that the sampling frequency
must be high relative to the rate of change of the signals of interest, such as level-crossing
sampling, send-on-delta, adaptive sampling, and model based sampling.

This chapter discusses the problem of event triggered sampling and control co-design for
first order stochastic systems. The problem setup was originally considered in [97]; but this
chapter is different in the following aspects: (1) A quadratic performance index involving
control cost is considered as the criterion for designing event detectors and controllers in
a finite time horizon; (2) instead of deterministic sampling and optimal sampling, level-
crossing sampling [56] is also presented based on the work in [98] for the estimation problem
with an emphasis here more on jointly optimizing the control and threshold; (3) the impact
of generalized hold rather than just ZOH used in earlier papers is analyzed. The generalized
hold scheme could be justified by the choice of the network topology that the controller co-
locates with the actuator but resides on a separate node with the sensor and recent results
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on the structure of joint optimal event triggered control/estimation [99, 65, 87]. For zero
order hold, these measurements are directly used for feedback; whereas for generalized
hold, these measurements permit us to perform a mean square estimation of the state, and
the estimated state is subsequently used for feedback. The feedback gain and the parameter
of the event detector are optimized based on a quadratic performance index. By comparing
the different event triggered sensing and actuation schemes, it is demonstrated that level-
crossing sampling improves the performance significantly, and generalized hold is desirable
for event based control.

2.2 Problem Formulation

Consider a first order linear diffusion process x (t) described by the stochastic differential
equation

dx (t) = ax (t) dt+ u (t) dt+ dω (t) , x (0) = 0, (2.1)

where ω (t) is a standard Wiener process or Brownian motion process, the drift coefficient a
is known, and u (t) is the control input.

The goal here is to minimize the quadratic performance criterion

J = E
[∫ T

0

x2 (t) dt

]
+ ρE

[∫ T

0

u2 (t) dt

]
(2.2)

with only one sample allowed over the finite interval [0, T ] by using different sampling
strategies and hold circuits, respectively. Here the positive ρ is the relative weight. Because
of the important Markov property for diffusions, the control signals depend only on the
received sample at the stopping time in the time interval [0, T ]. For zero order hold, the
control signals are given by

u (t) =

{
0

Kx (τ)
if 0 ≤ t < τ,
if τ ≤ t ≤ T.

(2.3)

For generalized hold, the control signals are given by

u (t) =

{
0

Kx̂ (t)
if 0 ≤ t < τ,
if τ ≤ t ≤ T,

(2.4)

where x̂ (t) is the mean square estimation of x (t) and obeys a linear ordinary differential
equation

dx̂ (t)

dt
= ax̂ (t) + u (t) (2.5)
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for τ ≤ t ≤ T , and x̂ (τ) = x (τ). Here the switching time τ is a stopping time determined
by sampling mechanisms including deterministic sampling, level-crossing sampling, and
optimal sampling, which will be explained subsequently.

2.3 Optimal Design for Zero Order Hold

To facilitate the notation, define functions

h (t) ,
e2at − 2at− 1

4a2
, and g (t) ,

e2at − 1

2a
.

Assume a 6= 0. Using the zero order hold in (2.3), split the aggregate quadratic cost into two
parts as follows:

J = J1 + J2, (2.6)

where

J1 , E
[∫ τ

0

x2 (t) dt

]
,

J2 , E
[∫ T

τ

x2 (t) dt

]
+ ρE

[∫ T

τ

K2x2 (τ) dt

]
.

The first term of the expression above is given by

J1 = E
[∫ τ

0

∫ t

0

e2aθdθdt

]
= E

[
e2aτ − 2aτ − 1

4a2

]
.

The second term represents the part of the cost incurred on [τ , T ], which can be expressed
as

J2 =E
[
h (T − τ) + x2 (τ) g (T − τ)− x2 (τ) (4α)−1 β2

]
+ E

[
x2 (τ)α

(
K + (2α)−1 β

)2
]

where

α = ρ (T − τ) +
e2a(T−τ) − 4ea(T−τ) + 3 + 2a (T − τ)

2a3
,

β =
e2a(T−τ) − 2ea(T−τ) + 1

a2
.

From the expression above and the fact α > 0, the optimal choice of the feedback gain K∗

is
K∗ = − β

2α
. (2.7)
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Remark 2 For zero order hold, the optimal feedback gain K∗ cannot be predetermined;

it is closely related to the sampling instant τ but does not depend on the state x(τ) at the

sampling instant directly. Whatever triggers the sampling, the controller has to wait for the

sampling time to compute the optimal feedback gain.

Let K∗ given by equation (2.7) be the optimal feedback gain. Thus, the original opti-
mization problem is reduced to choose the pair (τ , x (τ)) such that the objective function

J = E
[
h (τ) + h (T − τ) + x2 (τ) g (T − τ)− x2 (τ)

β2

4α

]
is minimized.

Next, two different classes of sampling strategies are going to be considered and the opti-
mal design will be conducted within each class to minimize the above performance measure.
The classes are deterministic sampling and level-crossing sampling.

2.3.1 Optimal Deterministic Sampling

Let us first minimize the above performance measure over the class of deterministic sam-
pling times. For deterministic sampling

E
[
x2 (τ)

]
=
e2aτ − 1

2a
.

The above performance measure then can be written as follows:

J =
e2aT − 2aT − 1

4a2
− E

[
e2aτ − 1

4a2

β2

4α

]
.

The optimal deterministic sampling time τ is the one that minimizes the above performance
for a given weight ρ:

τ ∗ = arg min
0≤τ≤T

J.

The Brownian Motion Process Case

Now let us detail the drift coefficient a = 0 which brings about a Brownian motion process.
For a = 0, the performance in (2.2) takes the form

J =E
[
τ (T − τ) +Kτ (T − τ)2 + ρK2τ (T − τ)

]
+ E

[
τ 2

2
+

(T − τ)2

2
+K2 τ (T − τ)3

3

]
.
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The expression above permits us to determine that the optimal solution to the feedback gain
is

K∗ = − 3 (T − τ)

2 (T − τ)2 + 6ρ

and the objective function thus becomes

J =
T 2

2
− E

[
3τ (T − τ)3

4
(
(T − τ)2 + 3ρ

)] . (2.8)

It is easy to check out that the optimal sampling time falls into the interval

T

4
≤ τ ∗ ≤ T

2
.

The optimal design is to choose τ to minimize the aggregate performance for a given
weight ρ:

τ ∗ = arg min
T
4
≤τ≤T

2

T 2

2
− 3τ (T − τ)3

4
(
(T − τ)2 + 3ρ

)
and the optimal feedback gain is given by

K∗ = − 3 (T − τ ∗)
2 (T − τ ∗)2 + 6ρ

.

Remark 3 For the special case of ρ = 0, the solution to this optimization problem is given

in [97] with

τ ∗ = 0.5T, K∗ = −3T−1, J∗ = 0.3125T 2.

Figure 2.1 depicts the optimal performance and sampling time as a function of ρ for
values of the parameter a = −1, 0, 1.

2.3.2 Optimal Level-Crossing Sampling for the Brownian Motion Pro-
cess

Level-crossing sampling is a threshold based encoding scheme in which a new sample is
taken whenever |x (t)| exceeds a specified threshold δ with the corresponding sampling in-
stant defined as

τ δ = inf
t
{t | |x (t)| = δ, x (0) = x0 ∈ (−δ, δ)} .

Since a finite horizon problem is considered, it may happen that τ δ > T . Therefore, a
time-out at the end of the time horizon is used and the sampling time is defined as τ =

τ δ ∧ T . Definitely sampling at the end time τ = T has nothing effect on the performance
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Figure 2.1: The optimal performance and sampling time of the deterministic sampling and
ZOH hold scheme.

improvement since it is equivalent to not sampling at all. It is important to find the level-
crossing probability that the process exceeds a threshold before the time-out T . The density
function of τ δ can be obtained by derivation of the moment generating function.

Lemma 4 Let τ δ denote the first passage time of |x (t)| at the threshold δ. The moment

generating function is then given by

Fτδ (s) , E
[
e−sτδ

]
=

cosh
(
x0

√
2s
)

cosh
(
δ
√

2s
) .

Proof. From Lemma 5.7.4 in [54], it follows that

E [τ δ] <∞.

Let
u (x0) , E

[
e−sτδ

]
.

Then by Proposition 5.7.2 in [54], the function u (x0) satisfies the elliptic equation

1

2

∂2u (x0)

∂x2
0

− su (x0) = 0, x0 ∈ (−δ, δ)

as well as the boundary condition

u (δ) = u (−δ) = 1.

By solving the Dirichlet problem, the solution is given by

u (x0) =
ex0
√

2s + e−x0
√

2s

eδ
√

2s + e−δ
√

2s
,
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from which the desired relation is obtained immediately.
Recalling that the initial condition x0 = 0, the probability density function of the random

variable τ δ is given by the following line integral, an integral formula for the inverse Laplace
transform:

f (t) = L−1 (Fτδ (s)) =
1

2πj

∮
Fτδ (s) estds

=
1

2πj
lim
l→∞

∫ γ+jl

γ−jl

est

cosh
(
δ
√

2s
)ds.

Since cosh (x) = cos (jx), the singularities of Fτδ(s) which are also zeros of cosh
(
δ
√

2s
)

are
sk = − (2k + 1)2 π2

8δ2 , k = 0, 1, 2, . . . ,

then γ can be set to zero. The threshold crossing probability before the time-out T can be
computed as

P [τ δ < T ] =

∫ T

0

f (t) dt =
1

2πj

∮
Fτδ (s)

[∫ T

0

estdt

]
ds

=
1

2πj
lim
l→∞

∫ jl

−jl

esT − 1

s cosh
(
δ
√

2s
)ds.

Note that the integrand does not in any way affect the status of the poles since s = 0 is
canceled by a single zero at zero on the numerator. In order to calculate this line integral
over the complex plane, the standard methods of contour integration are employed. To wit,
take a path that encloses the whole left half of the complex plane so that all the poles lie
inside the contour. Then by the Cauchy residue theorem,

P [τ δ < T ] =
∑

k≥0

eskT − 1

sk
lim
s→sk

s− sk
cosh

(
δ
√

2s
) .

In order to find the limit, apply the L’Hopital’s rule to the indeterminate form 0/0. Since
sinh (x) = −j sin (jx) , then it can be shown that

lim
s→sk

s− sk
cosh

(
δ
√

2s
) = (−1)k (2k + 1)

π

2δ2 .

This expression permits the determination of the probability

P [τ δ < T ] =
4

π

∑
k≥0

(−1)k
1− e−(2k+1)2λ

2k + 1
,
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where
λ =

Tπ2

8δ2 .

In what follows, write 1
2k+1

as an integral, and sum a geometric series effortlessly by adopt-
ing the technique described in [1]:∑

k≥0

(−1)k

2k + 1
=
∑
k≥0

(−1)k
∫ 1

0

x2kdx =

∫ 1

0

dx

1 + x2
=
π

4
.

This series converges although very slowly, it produces an interesting value. This leads the
probability to

P [τ δ < T ] = 1− 4

π

∑
k≥0

(−1)k
e−(2k+1)2 Tπ2

8δ2

2k + 1
.

By letting T → ∞ or δ = 0, it can be obtained that P [τ δ < T ] = 1, which does make
sense. The probability that the process exceeds the threshold before the time-out T as a
function of the threshold δ is given in Figure 2.2, and it monotonically decreases with the
threshold δ as seen from the figure. Note that the probability depends on the ratio of the
length of the time horizon T and the square of the threshold δ. This suggests that, without
loss of generality, the focus can be limited to T = 1. The result for other T can be obtained
from T = 1 by scaling δ2 to make the ratio invariant. Now the performance
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Figure 2.2: Probability that a sample is generated as a function of the parameter δ with
T = 1

J = E
[∫ τδ∧T

0

x2 (t) dt

]
+ E

[∫ T

τδ∧T
x2 (t) dt

]
+ ρE

[∫ T

τδ∧T
K2x2 (τ) dt

]
,
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will be minimized by selecting the optimal threshold δ and feedback gain K.
Applying the Ito differential rule gives

d
[
(T − t)x2 (t)

]
= (T − t) (2x (t) dx(t) + dt)− x2 (t) dt.

Taking the Ito integral and expectation on both sides leads to

J1 =
T 2

2
− E

[
δ2 (T − τ δ)+ +

1

2

[
(T − τ δ)+]2] ,

where the property of the Ito integral (see Theorem 3.2.1 in [89]) has been used.
Thus, the corresponding performance becomes

J =
T 2

2
+

1

3
K2δ2E

[[
(T − τ δ)+]3]+Kδ2E

[[
(T − τ δ)+]2]+ ρK2δ2E

[
(T − τ δ)+] .

The next step is to write the above expression in terms of K and δ alone. This requires
an evaluation of the first, second, and third moment: E[ (T − τ δ)+], E[[ (T − τ δ)+]2], and
E[[ (T − τ δ)+]3], which can be calculated as the way in [98]:

E[ (T − τ δ)+] =
T 2π2

8δ2λ
+

T 2π

2δ2λ2

∑
k≥0

(−1)k
e−λ(2k+1)2

(2k + 1)3 −
T 2π

2δ2λ2

∑
k≥0

(−1)k

(2k + 1)3 ,

E[[ (T − τ δ)+]2] = 512
δ4

π5

∑
k≥0

(−1)k
1− e−(2k+1)2λ

(2k + 1)5 − 64
δ2T

π3

∑
k≥0

(−1)k

(2k + 1)3 + T 2,

E[[ (T − τ δ)+]3] =
3πT 4

λ4δ2

∑
k≥0

(−1)k
e−(2k+1)2λ − 1

(2k + 1)7

+ T 3 − 3πT 4

2λ2δ2

∑
k≥0

(−1)k
1

(2k + 1)3 +
3πT 4

λ3δ2

∑
k≥0

(−1)k
1

(2k + 1)5 .

For positive integer values n, there is a formula

∞∑
k=0

(−1)k

(2k + 1)2n+1 = En
1

2 (2n)!

(π
2

)2n+1

,

where the Euler numbers En are the natural numbers defined according to:

secx− 1 =
E1x

2

2!
+
E2x

4

4!
+
E3x

6

6!
+ · · ·

The first three values of Euler numbers are

E1 = 1, E2 = 5, E3 = 61.
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After substituting the series with their sums, the performance can be further reduced to the
expression below:

J =
4096δ8K2

π7

∑
k≥0

(−1)k
e−(2k+1)2λ

(2k + 1)7 +
5

3
Kδ6 +

1

3
K2δ2

[
T 3 − 3T 2δ2 + 5Tδ4 − 61

15
δ6

]

+
T 2

2
− 2Kδ4T +Kδ2

[
512

δ4

π5

∑
k≥0

(−1)k+1 e
−(2k+1)2λ

(2k + 1)5 + T 2

]

+ ρK2δ2

[
T − δ2 +

32δ2

π3

∑
k≥0

(−1)k e−λ(2k+1)2

(2k + 1)3

]
.

The optimal δ∗ will be computed by minimizing the performance for a given weight ρ:

δ∗ = arg min
δ>0,K

J.

Remark 5 Actually the resulting δ optimized in this way is just a sub-optimal threshold for

the zero order hold and level-crossing sampling strategies. Given fixed thresholds, the con-

troller waits for the sampling time to compute the feedback gain, which performs better than

any predetermined feedback gains. The true optimal threshold and feedback gain should be

optimized based on the performance index in (2.8), which are difficult to obtain. However, it

is possible to obtain the analytic result for ρ = 0 as shown in the following.

For ρ = 0, the optimal feedback gain K∗ satisfies

K∗ = − 3

2 (T − τ δ∗)+ .

The associated quadratic performance index then admits the form

J =
T 2

2
− 3

4
δ2E

[
(T − τ δ)+] =

T 2

2
− 3

4
δ2T +

3

4
δ4 − 24

δ4

π3

∑
k≥0

(−1)k e−λ(2k+1)2

(2k + 1)3 .

The minimum performance obtained proves to be J∗ = 0.2733T 2 and this is accomplished
by choosing the threshold δ∗ = 0.9389

√
T . For this optimal threshold, the probability that

the process reaches this threshold before the end time T is 68.59%.
Figure 2.3(a) depicts the sub-optimal performance J as a function of the weight ρ and

Figure 2.3(b) the corresponding sub-optimal threshold.
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Figure 2.3: The sub-optimal performance and threshold of level-crossing sampling and ZOH
hold scheme.

2.4 Optimal Design for Generalized Hold

The state of the controller in (2.5) is

x̂ (t) = e(a+K)(t−τ)x (τ) , for t ∈ [τ , T ] .

Under the generalized hold, the state of (2.1) can be written as

x (t) = e(a+K)(t−τ)x (τ) +

∫ t

τ

ea(t−s)dω (s) ,

for τ ≤ t ≤ T [3]. The aggregate quadratic performance can be decomposed as in the ZOH
case:

J = E
[∫ τ

0

x2 (t) dt

]
+ E

[∫ T

τ

x2 (t) dt

]
+ ρE

[∫ T

τ

K2x̂2 (t) dt

]
.

The second term of the expression above constitutes the part of state variance received from
the sampling time τ to the end of the time horizon T , and it could be carried as

E
[∫ T

τ

x2 (t) dt

]
= E

[
x2 (τ)

e2(a+K)(T−τ) − 1

2 (a+K)

]
+ E

[
e2a(T−τ) − 2a (T − τ)− 1

4a2

]
.

As in the case of zero order hold, deterministic sampling and level-crossing sampling
strategies are considered and the optimal design will be conducted within each class to min-
imize the performance.
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2.4.1 Optimal Deterministic Sampling

For deterministic sampling, the performance takes the form

J =
e2aτ + e2a(T−τ)

4a2
+
e2aτ − 1

2a

e2(a+K)(T−τ) − 1

2 (a+K)
− aT + 1

2a2

+ ρK2 e
2aτ − 1

2a

e2(a+K)(T−τ) − 1

2 (a+K)
.

The optimal sampling time τ ∗ and feedback gain K∗ can be found by solving the following
optimization problem:

minimize J
subjec to 0 ≤ τ ≤ T .

For ρ = 0, the optimal choice of K∗ and τ ∗ is

τ ∗ =
T

2
, and K∗ = −∞.

The corresponding performance cost is

J =
T 2

4
.

In this case, the optimal generalized hold becomes the impulse hold where the control signal
is an impulse [46, 77]. This is equivalent to reset the state to the origin at τ = 0.5T .

Figure 2.4 depicts the optimal performance, sampling time, and feedback gain for values
of the parameter a = 1, 0,−1.

2.4.2 Optimal Level-Crossing Sampling for the Brownian Motion Pro-
cess

Using the previous result yields

E
[∫ τδ∧T

0

x2 (t) dt

]
=
T 2

2
− δ2E[ (T − τ δ)+]− 1

2
E
[[

(T − τ δ)+]2] ,
E
[∫ T

τδ∧T
x2 (t) dt

]
=E

[
x2 (τ δ ∧ T )

e2K(T−τδ)+ − 1

2K

]
+

1

2
E
[[

(T − τ δ)+]2] .
Thus, the performance becomes

J =
T 2

2
− δ2E

[
(T − τ δ)+]+

δ2

2

(
1

K
+ ρK

)
E
[
e2K(T−τδ)+ − 1

]
.
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Figure 2.4: The optimal performance, threshold and feedback gain of the deterministic sam-
pling and generalized hold scheme as a function of ρ for systems with a = 1, 0,−1, respec-
tively.

A numerical method of computing E[e2K(T−τδ)+ − 1] over a fixed finite time interval is
provided in [57]. Let W (x, t) be a continuous and bounded function defined on the region
[−δ, δ]× [0, T ], and satisfy the partial differential equation

∂W (x, t)

∂t
+

1

2

∂2W (x, t)

∂x2
+ e−2Kt = 0,

along with the boundary and initial conditions{
W (−δ, t) = W (δ, t) = 0 for t ∈ [0, T ) ,
W (x, T ) = 0 for x ∈ [−δ, δ] .

Then

W (0, 0) = E
[∫ τδ∧T

0

e−2Ktdt

]
.

A brief proof will be shown here. Applying standard Itô calculus on W (x, t) yields

E [W (x (τ δ ∧ T ) , τ δ ∧ T )]−W (0, 0) = E
[∫ τδ∧T

0

dW (x (t) , t)

]
= E

[∫ τδ∧T

0

[
∂W (x, t)

∂t
+

1

2

∂2W (x, t)

∂x2

]
dt

]
= E

[∫ τδ∧T

0

−e−2Ktdt

]
.
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If the process hits the boundary before time T , x (τ δ ∧ T ) = ±δ in which case

W (x (τ δ ∧ T ) , τ δ ∧ T ) = W (±δ, τ δ) = 0.

If the process does not exit the boundary of δ before T , then the sampling instant is τ δ∧T =

T which yields W (x (τ δ ∧ T ) , τ δ ∧ T ) = W (x (T ) , T ) = 0. Thus the above relationship
can be concluded.

Note that W (0, 0) is still a function of δ and K for fixed time horizon T . Therefore,
define

U (δ,K) , W (0, 0) .

Then the performance can be written as

J =
T 2

2
− δ2T + δ4

(
1− 32

π3

∑
k≥0

(−1)k e−λ(2k+1)2

(2k + 1)3

)

+
δ2

2

(
1

K
+ ρK

)[
e2KT (1− 2KU (δ,K))− 1

]
.

The optimal δ andK can be computed by minimizing the performance J . The optimal δ and
K derived in this way are sub-optimal threshold, and feedback gain, respectively. Again,
the true optimal result will be shown analytically below for the case ρ = 0. For ρ = 0, the
optimal K∗ is

K∗ = −∞,

and then the performance takes the form as

J =
T 2

2
+ δ4 − δ2T − 32δ4

π3

∑
k≥0

(−1)k e−λ(2k+1)2

(2k + 1)3 .

The minimum performance obtained comes out to be

J∗ = 0.1977T 2,

and this is accomplished by choosing the threshold

δ∗ = 0.9389
√
T .

29



0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

t(s)

x(
t)

Zero Order Hold

 

 

Deterministic Sampling
Level−Corssing Sampling
Optimal Sampling

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

t(s)

x(
t)

Generalized Hold

 

 

Deterministic Sampling
Level−Crossing Sampling
Optimal Sampling

Figure 2.5: Control of a Wiener process with time horizon T = 1.

2.5 Performance Comparison for the Brownian Motion Pro-
cess

To provide some insight, first consider the special case ρ = 0; the results for this case
are summarized in Table 2.1. The table determines the ranking of the sampling and hold
strategies. The optimal sampling is the best among all possible sampling rules, level-crossing
sampling outperforms deterministic sampling, and generalized hold outperforms zero order
hold, which are not surprising. Another important insight given by this table is that the
optimal parameters for each sampling scheme are independent of hold circuits. This table
also shows that selecting hold circuits is more effective for performance improvement than
selecting sampling strategies.

Table 2.1: Comparison of different sampling and control schemes

J Triggering Instant τ ∗ K∗

DSZOH 0.3125T 2 t = 0.5T −3T−1

LCSZOH 0.2733T 2 inf{t| |x (t) | ≥ 0.9389
√
T} −1.5 (T − τ)−1

OSZOH 0.2623T 2 inf{t|x2 (t) ≥
√

3 (T − t)} −1.5 (T − τ)−1

DSGH 0.2500T 2 t = 0.5T −∞
LCSGH 0.1977T 2 inf{t| |x (t) | ≥ 0.9389

√
T} −∞

OSGH 0.1830T 2 inf{t|x2 (t) ≥
√

3 (T − t)} −∞

The result on the optimal sampling and generalized hold scheme is given below. It is
optimal in the sense that (K, τ) minimizes the following performance measure among all
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possible sampling policy and feedback gain pairs:

J =
T 2

2
− E

[
x2 (τ) (T − τ)

]
+

E
[
x2 (τ)

(
e2K(T−τ) − 1

)]
2K

.

It makes intuitive sense to set K∗ to be −∞. Because of this observation that the perfor-
mance measure takes the form as below:

J =
T 2

2
− E

[
x2 (τ) (T − τ)

]
.

Next it is clear that in order to minimize the performance it is sufficient to maximize the
expected reward function:

E
[
x2 (τ) (T − τ)

]
.

The optimal sampling rule is to sample at the time when the process first reaches the sym-
metric parabola [97]:

τ ∗ = inf{t|x2 (t) ≥
√

3 (T − t)}.

Now let us calculate the expected performance incurred by the optimal sampling scheme.
At the sampling time, the inequality becomes an equality

E
[
x2 (τ)

]
=
√

3T −
√

3E [τ ] = E [τ ] .

Consequently,

E [τ ] =

√
3√

3 + 1
T,

and the expect reward function becomes

E
[
x2 (τ) (T − τ)

]
=
√

3
{

(
√

3− 2)T 2 + E
[
τ 2
]}
.

The next step is to evaluate the second moment of the sampling time. According to Theorem
8.5.8 in [24], the function x4 (t) − 6x2 (t) t + 3t2 is a martingale. Since τ is a bounded
stopping time, then

E
[
x4 (τ)− 6x2 (τ) τ + 3τ 2

]
= 0.

This relation suggests

E
[
τ 2
]

=
(

2
√

3− 1
)
T 2−(2

√
3 + 1)E

[
τ 2
]
,

then from which it can be concluded

E
[
τ 2
]

=
7− 3

√
3

4
T 2.
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Finally, the optimal performance becomes

J =
T 2

2
− 3−

√
3

4
T 2 =

√
3− 1

4
T 2.

The realizations of a Wiener process with different event triggered sensing and actuation
strategies are shown in Figure 2.5. The simulation was performed by choosing the same
Wiener process. The deterministic sampling always samples at the mid-point of the time
horizon independent of the state. As seen from the figure the state is very close to the origin
at the time t = 0.5; therefore there is no need to waste the only sampling budget and take
the control action. The difference between level-crossing sampling and optimal sampling
is that the threshold of optimal sampling is time-dependent rather than a constant. It is
advantageous to depend on the time for thresholds over a finite time horizon. The reason
that the impulse hold gives better performance than the zero order hold is because it resets
the state back to zero instantaneously; however, the zero order hold takes some time to bring
it back.

Figure 2.6 shows the optimal achievable cost J∗ for the four different event triggered
sampling and control strategies. It is notable that for small weight ρ, the achievable perfor-
mance of deterministic sampling and generalized hold is better than that of level-crossing
sampling and zero-order hold; while the opposite is true when ρ becomes large. It is surpris-
ing that sampling plays a more important role than hold in performance improvement for
large weights.

2.6 Conclusion

Three sampling schemes typically used for event detection combined with two hold circuits
for control actuation have been considered for optimal design and performance comparison.
The three sampling schemes consist of deterministic sampling, level-crossing sampling, and
optimal sampling; and the two hold circuits include zero order hold and generalized hold.
The results obtained in this chapter enable performance ranking among different combina-
tions of sampling and hold strategies.

32



0 0.2 0.4 0.6 0.8 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

ρ

J*

 

 

Deterministic Sampling ZOH
Level−Crossing Sampling ZOH
Deterministic Sampling GH
Level−Crossing Sampling GH

Figure 2.6: Optimal achievable performance J∗

33



Chapter 3

Optimal Sampling and Performance
Comparison of Periodic and Event Based
Impulse Control

In this chapter, several issues of periodic and event based impulse control for a class of
second order stochastic systems are considered, including the optimal sampling and perfor-
mance comparison.

3.1 Introduction

Time and event triggered sampling mechanisms, also known as Riemann and Lebesgue sam-
pling schemes, respectively, are two important ways to perform A-to-D conversion in com-
puter controlled systems. Time-triggered digital control systems are most often implemented
by periodic sampling of the sensors and zero-order hold of the actuators. The advantage of
this approach is its simplicity, that is, the discretization of a linear time-invariant system via
step-invariant transformation yields an equivalent time-invariant discrete-time system syn-
chronized at the sampling instants. The time-varying nature of sampled-data systems thus
disappears, arriving at a purely discrete-time time-invariant control problem.

Different from periodic sampling, event based mechanism takes control action only when
some specific event occurs; for example, the output reaches a boundary or the error function
exceeds a limit. This type of sampling is closer to human intelligence and is of interest in
situations to reduce the information exchange and network bandwidth usage. The differences
between event based sampling and periodic sampling are compared in different settings [6],
[97], which turn out to favor the former. It is worth mentioning that such comparisons
are only conducted for first order linear stochastic systems or integrating dynamics due to
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the ease of calculation in one dimension. The analytic results for higher order systems are
difficult to obtain in general. Therefore, it is not clear whether event based impulse control
still outperforms periodic impulse control for higher order systems, which motivates us to
carry out the present study.

In this chapter, periodic impulse and event based impulse controls are investigated for
a class of second order stochastic systems; the contributions of this work include: (a) pro-
viding an optimal sampling period for periodic impulse control; (b) determining an optimal
threshold for event based impulse control; (c) obtaining a performance ratio between peri-
odic control and event based control. For event based impulse control, the states are reset
to zero whenever the magnitude reaches a given level. As mentioned earlier, the partial dif-
ferential equations with boundary conditions for the mean first passage time and stationary
variance are not simple to solve in two dimensions. To make the problem tractable, second
order stochastic systems in the Cartesian coordinates are first converted to first order stochas-
tic systems in the polar coordinates at the cost of losing linearity. Next, the Kolmogorov
backward equation is constructed based on the derived first order nonlinear stochastic dif-
ferential equation. It is shown that the average sampling period can be expressed as an
absolutely convergent series. Furthermore, the stationary distribution of the state is obtained
by solving the Kolmogorov forward equation. Finally, it is shown that for the same average
control rate, event based impulse control outperforms periodic impulse control. It is worth
noting that all the calculations are performed analytically.

3.2 Problem Formulation

Consider the second order system to be controlled according to the following stochastic
differential equations:

dx1 (t) = ax1 (t) dt+ u1 (t) dt+ dv1 (t)

dx2 (t) = ax2 (t) dt+ u2 (t) dt+ dv2 (t) (3.1)

where x (t) is a two-dimensional state vector, a is the pole of the process, and the distur-
bances v1 (t) and v2 (t) are mutually independent Wiener processes with unit incremental
variance. At the sampling instant tk, the control signal

u (t) = −x (tk) δ (t− tk)

is applied to the system that makes x (tk+) = 0 where δ is a Dirac delta or an impulse
function. The control performance is measured by the the mean square variation Jx and the
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average control rate Ju:

J = lim
T→∞

1

T
E
∫ T

0

xT (t)x (t) dt︸ ︷︷ ︸
Jx

+ ρ lim
T→∞

1

T
N[0,T ]︸ ︷︷ ︸

Ju

, (3.2)

where ρ is the relative weight andN[0,T ] is the number of control actions in the interval [0, T ]

[46]. The goal here is threefold: first, to determine the optimal sampling period for periodic
impulse control that minimizes J ; second, to determine the optimal threshold for event based
impulse control that minimizes J ; last, to compare the variances of the states between con-
ventional periodic impulse control and event based impulse control while ensuring the same
average control frequency.

Remark 6 Note that the more general model

dx′ (t) = ax′ (t) dt+ u′ (t) dt+ σdv (t)

can be reduced to (3.1) by the utilization of coordinate scaling. Choosing x′ = σx, u′ = σu,

and ρ′ = σ2ρ, the dynamics becomes

σdx (t) = aσx (t) dt+ σu (t) dt+ σdv (t) ,

and the cost is weighted by

J ′ = Jx′ + ρ′Ju′ = σ2Jx + σ2ρJu = σ2J.

This suggests that, without loss of generality, the focus here can be limited to the normalized

case σ = 1.

3.3 Optimal Periodic Impulse Control

In this section, the variance of the state, the average control rate as well as the optimal
sampling period are given for the general system in (3.1), and specialized for a = 0.

Theorem 7 Consider the stochastic differential equation in (3.1) controlled by periodic im-

pulses with a sampling period h. The variance of the state as defined in (3.2) is

JxP =

{
e2ah−2ah−1

2a2h
a 6= 0,

h a = 0,

and the average control rate as defined in (3.2) is

JuP =
1

h
.
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Proof. Under periodic impulse control, reset the states to zero according to a deterministic,
periodic sequence tk = kh, for k ≥ 0. Between impulses, the states evolve as

dx (t) = diag {a, a}x (t) dt+ dv (t)

and the sampled system becomes

x (kh+ t) =

∫ kh+t

kh

ediag{a,a}(kh+t−τ)dv (τ) ,

see [3].
The average variance of such a process is

JxP = lim
N→∞

1

Nh

N−1∑
k=0

∫ h

0

∫ t

0

2e2aτdτdt =
2

h

∫ h

0

∫ t

0

e2aτdτdt,

and the average control rate is

JuP = lim
T→∞

1

T
N[0,T ] = lim

N→∞

1

Nh
N =

1

h
.

This completes the proof.
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Figure 3.1: The performance with periodic impulse control for a = −1, 0, 1.

Figure 3.1 shows the mean square variation JxP and the average control rate JuP as a
function of the sampling period h for different values of the pole a. It is clear that JxP is
an increasing function of h for each a. The variance cost increases linearly for marginal
stable systems a = 0, much faster for unstable systems a = 1 and slower for stable systems
a = −1. At the same time, JuP decreases monotonically. The variances for marginal stable
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and unstable systems approach to infinite as h → ∞. But it can be shown that the variance
for stable systems converges by applying the L’Hôpital’s rule to the indeterminate form
∞/∞, that is,

lim
h→∞

JxP = lim
h→∞

e2ah − 2ah− 1

2a2h
= lim

h→∞

2ae2ah − 2a

2a2
= −1

a
.

The optimal sampling problem is to choose a fixed sample period to minimize the aggre-
gate performance for a given weight ρ:

h∗ = arg min
h>0

JP = arg min
h>0

(
e2ah − 2ah− 1

2a2h
+ ρ

1

h

)
.

In the following, the optimal sampling problem is specialized to the case of a = 0.

Corollary 8 Consider the stochastic differential equation in (3.1) with a = 0 controlled by

periodic impulses with a sampling period h. Then the optimal sampling period h∗ minimizes

the performance in (3.2) is
√
ρ, and the corresponding performance J∗P is 2

√
ρ.

The optimal sampling period and performance as a function of ρ for different values of
the pole a are shown in Figure 3.2. Here it is seen that when the relative weight becomes
large for stable systems, the sampling period approaches infinity and the total cost is bounded
by −1/a, which means that no control action is needed. Overall, a larger sampling period
means lower control cost but higher variance cost. Thus, there exists a trade-off between
the mean square variation and the average control rate and Figure 3.3 shows the optimal
trade-off curves, where stable systems need the fewest control actions for the same variance
cost.

3.4 Optimal Event Based Impulse Control

For event based control the region

x2
1 (t) + x2

2 (t) < ∆2

is chosen to limit the states. Impulse control actions are taken only when ‖x (t)‖2 = ∆. With
this control law the process becomes an instantaneous return process, which is analogous to
a Markov diffusion process.

It is of interest to convert (3.1) from Cartesian to polar coordinates by using the method
in [31]. Set

x1 (t) = r (t) cosφ (t) , x2 (t) = r (t) sinφ (t) ,
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Figure 3.2: The optimal sampling period and performance with periodic impulse control for
a = −1, 0, 1.

with
r (t) =

√
x2

1 (t) + x2
2 (t),

so that
log r (t) + jφ (t) = log [x1 (t) + jx2 (t)] .

Apply the Ito differentiation rule to derive

d [log r (t) + jφ (t)] = adt+ e− log r(t)−jφ(t) [dv1 (t) + jdv2 (t)] .

Take the real part and use the Ito differentiation rule to find

dr (t) =

[
ar (t) +

1

2r (t)

]
dt+ dv1 (t) cosφ (t) + dv2 (t) sinφ (t) .

Define
dω (t) = dv1 (t) cosφ (t) + dv2 (t) sinφ (t) ,

which is an orthogonal transformation, thus it is also an increment of a standard Wiener
process ω (t).

Here the stochastic differential equation for magnitude between impulses is

dr (t) =

[
ar (t) +

1

2r (t)

]
dt+ dω (t) . (3.3)

Remark 9 Using the stochastic calculus, it is possible to convert the Cartesian stochastic

differential equation in (3.1) to the polar equation in (3.3). Nevertheless, a direct conversion

is not possible since the stochastic differential equation does not obey the rule of ordinary

calculus. If doing so, the term [1/2r (t)] dt would not be found.
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Figure 3.3: The optimal trade-off curves between the mean square variation and the average
control rate with periodic impulse control for a = −1, 0, 1.

Remark 10 The mean exit time and steady state probability distribution will be calculated

by solving the Kolmogorov backward and forward equations respectively which are partial

differential equations for higher order systems. Unfortunately, the closed form solutions do

not often exist. However, in dealing with the polar equation in (3.3), it is possible to perform

calculations analytically as shown in the following.

3.4.1 Average Control Rate

The average control rate is derived in the following theorem.

Theorem 11 Consider the stochastic differential equation in (3.1) controlled by an event

based impulse scheme with the bound ∆. The average control rate as defined in (3.2) is

JuE =
1∑∞

k=1
(−a)k−1∆2k

2kk!

.

Proof. Consider the interval (0,∆), where the endpoint ∆ is an absorbing barrier and 0 is
a reflecting barrier. The mean exit time from the region (0,∆) can be computed by solving
the Kolmogorov backward equation

1

2

∂2hE (r)

∂r2
+

(
ar +

1

2r

)
∂hE (r)

∂r
= −1
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Figure 3.4: The average control rates with event based impulse control for a = −1, 0, 1.

with the boundary conditions hE (∆) = 0 and ∂hE(0)
∂r

= 0 [31]. The solution is given by

hE (r) = 2

∫ ∆

r

∫ y

0

z

y
ea(z

2−y2)dzdy,

and the average sampling period is the mean exit time when the process starts at r = 0

hE (0) = 2

∫ ∆

0

∫ y

0

z

y
ea(z

2−y2)dzdy.

Consider the case a 6= 0,

hE (0) =

∫ ∆

0

1− e−ay2

ay
dy.

Using the Taylor series of the function e−ay2 , the integration can be written as

hE (0) =

∫ ∆

0

∞∑
k=1

(−a)k−1 y2k−1

k!
dy =

∞∑
k=1

(−a)k−1 ∆2k

2kk!
.

The infinite series hE (0) converges absolutely, which can be shown as follows:

∞∑
k=1

∣∣∣∣∣(−a)k−1 ∆2k

2kk!

∣∣∣∣∣ < 1

2 |a|

∞∑
k=0

(|a|∆2)
k

k!
=

1

2 |a|
e|a|∆

2

<∞.

For the special case of a = 0,

hE (0) =
∆2

2
,
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which is also included in the above infinite series. Therefore, the average control rate can be
found as

JuE =
1

hE (0)
.

This completes the proof.
Figure 3.4 shows the average control rate as a function of ∆ for different values of

the pole a. Notice that the average control rate decreases as ∆ increases for each case.
As expected, the average control rate is slower for stable systems a = −1, and faster for
unstable systems a = 1 for the same ∆.

3.4.2 Mean Square Variation

It can be shown that the probability density of r satisfies the forward Kolmogorov equation

∂p (r, t)

∂t
=

∂

∂r

[
1

2

∂p (r, t)

∂r
−
(
ar +

1

2r

)
p (r, t)

]
−
[

1

2

∂p (r, t)

∂r
−
(
ar +

1

2r

)
p (r, t)

]
r=∆

δr,

where the second term on the right hand side describes the probability flux caused by reset-
ting of the states when the boundary is reached [6]. The probability density of r is given by
the stationary solution to the differential equation

1

2

∂2p (r)

∂r2
−
(
ar +

1

2r

)
∂p (r)

∂r
+

(
1

2r2
− a
)
p (r) = 0.

The equation has the solutions

p (r) = (c1 + c2 ln r) rear
2

+ 2c2are
ar2
∫ ∆

r

∫ y

0

z

y
ea(z

2−y2)dzdy,

which can be written as

p (r) = c1re
ar2 + c2re

ar2 ln r + c2are
ar2

∞∑
k=1

(−a)k−1 (∆2k − r2k
)

2kk!

by the same trick.
The constants c1 and c2 are determined by the equations

p (∆) = 0,

∫ ∆

0

p (r) dr = 1.
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Figure 3.5: The mean square variation with event based impulse control for a = −1, 0, 1.

Having obtained the stationary probability distribution of r the variance of the states can be
now computed

JxE =

∫ ∆

0

r2p (r) dr.

For the case a = 0, the variance can be explicitly expressed by elementary functions.

Corollary 12 Consider the stochastic differential equation in (3.1) with a = 0 controlled

by an event based impulse scheme with the bound ∆. The variance of the state as defined in

(3.2) is

JxE =
∆2

4
.

Proof. The probability density is given by

p (r) = c1r + c2r ln r,

with c1 and c2 satisfying

c1 + c2 ln ∆ = 0,
∆2

2
c1 + c2

(
∆2 ln ∆

2
− ∆2

4

)
= 1.

The equations determine that

c1 =
4 ln ∆

∆2
, c2 = − 4

∆2
,

thus
p (r) =

4r

∆2
ln

∆

r
.
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The variance of the states is given by

JxE =

∫ ∆

0

r2p (r) dr =

∫ ∆

0

4r3

∆2
ln

∆

r
dr =

∆2

4
.

This completes the proof.
Figure 3.5 shows the variances of event based impulse control as a function of ∆ and as

a function of the average sampling period respectively. The curves exhibit similar behaviors
to the variances of periodic impulse control.
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Figure 3.6: The optimal threshold and performance with event based impulse control for
a = −1, 0, 1.

3.4.3 Optimal Threshold

The optimal threshold will be computed by minimizing the aggregate performance for a
given weight ρ :

∆∗ = arg min
∆>0

JE = arg min
∆>0

(JxE + ρJuE) .

Again, the previous result is specialized to the case of a = 0.

Corollary 13 Consider the stochastic differential equation in (3.1) with a = 0 controlled by

an event based impulse scheme with the bound ∆. The optimal boundary ∆∗ minimizes the

performance in (3.2) is 4
√

8ρ, and the optimal performance cost J∗E incurred by the optimal

threshold is then
√

2ρ.

The proof can be done by solving the optimization problem with the objective function
JE = ∆2

4
+ ρ 2

∆2 .
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Figure 3.7: The optimal trade-off curve between the mean square variation and the average
control rate with event based impulse control for a = −1, 0, 1.

The optimal threshold ∆∗ and performance J∗E as a function of the weight ρ are shown
in Figure 3.6 for different values of the pole a. It can be seen that the optimal threshold is
zero when ρ = 0 for each case, which leads to impulse control with continuous sampling. It
can also be seen that the optimal cost decreases as a decreases. The optimal trade-off curves
between the state variance cost and control rate cost are plotted in Figure 3.7. When a very
large ρ is chosen, the most effective way to decrease JE is to use little control, at the expense
of a large variance; when a very small ρ is chosen, the most effective way to decrease JE
is to obtain a very small variance, even if this is achieved at the expense of a high control
rate. The large curvature points for unstable and marginal stable systems show that small
decreases in the control rate can be accomplished by large increases in the variances. Such
point is the proverbial knee of the trade-off curve, and in many applications represents a
good compromise solution [12]. However, for stable systems the control rate can be reduced
to sufficiently low levels without large increase in the variance.

3.5 Comparison

To provide some insight, first consider the special case a = 0; the results for this case are
summarized in the following corollary.

Corollary 14 Consider the stochastic differential equation in (3.1) with a = 0 controlled
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Figure 3.8: The ratio of the variances between periodic and event based impulse control for
a = −1, 0, 1.

by impulses. The periodic control scheme with a sampling periodic h has the same average

control rate with an event based control scheme with the bound ∆ =
√

2h, but the ratio of

the state variances is
JxP
JxE

= 2.

The proof can be easily done by equating JuE = JuP .
For fair comparison between periodic and event based impulse control it is natural to

assume that the average control rate is the same. Therefore, it is sufficient to compare Jx

only instead of J . Note that the distortion of periodic impulse control is twice higher than
that of event based impulse control for a = 0. It turns out that the ratio is independent of the
sampling period. Recall that for the first order integrator dynamics an event based impulse
control gives a variance that is three times smaller than periodic impulse control [6].

Figure 3.8 shows the ratio JxP/J
x
E as a function of the average sampling period. It can

be seen that all the curves are beyond 1, which shows that event based impulse control has
better performance than periodic impulse control for the same average sampling rate. The
advantage of event based control is more obvious for unstable systems in contrast with stable
systems, for which the ratio decreases as the average sampling period increases.

The behaviors of the process for a = 0 with different sampling strategies are shown in
Figure 3.9. The simulation was performed by choosing the same Wiener process and the
boundary ∆ = 2. Notice that the process states are limited within the boundary all the
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time for event based impulse control. However, the norm of the states with periodic impulse
control is large around t = 6, 15, 18.
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Figure 3.9: Simulation with periodic and event based impulse control for a = 0.

3.6 Conclusion

In this chapter, the optimal sampling for periodic and event based impulse control was in-
vestigated for a class of second order stochastic systems. It provided an evidence that event
based impulse control gave smaller variances than periodic impulse control with the same
control rate for higher order systems. As an initial start, impulse control was used to reset the
state of the system to the origin instantaneously. Another commonly used technique is pulse
modulation, where event based control idea can be viewed as a combination of pulse width
and frequency modulation. Our future research will focus on event based pulse modulation
[112].
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Chapter 4

Event Triggered Synchronization for
Multi-Agent Networks

This chapter considers the synchronization problem for multi-agent systems with event
based control updates, where all agents share the same dynamic model of any order, in-
cluding single- and double-integrator dynamics as special cases.

4.1 Introduction

Multi-agent systems can be used to solve problems that are difficult or impossible for an
individual agent or a monolithic system. Numerous contributions concerning distributed
cooperative control strategies for continuous or periodic sampling have been given in the
literature on multi-agent systems [101, 84]. Owing to their utility, developing tools for
analysis and control of event triggered multi-agent systems is an active area of research.
There are already some results on consensus control [17, 21, 68, 30, 25, 78, 118, 50], and
tracking control [49, 119]. Note that existing results on distributed event triggered multi-
agent systems focus on mostly single- or double-integrator dynamics [104]. Event triggered
methods for linear multi-agent systems are presented in [18, 124, 69, 127]. In [18]: each
agent predicts the future states of itself and its neighbors, and its state converges to a bounded
region around some synchronous trajectory. A similar idea can be found in [69] as well,
where a model based solution was applied to nonlinear agents.

Motivated by the existing work, we seek to further explore the problem of event triggered
synchronization for multi-agent systems. In contrast to [18, 69, 127], the objective here is to
attain asymptotic consensus which is distinguished from the related work of bounded con-
sensus. All the agents in the network are assumed to have identical linear dynamics and a
distributed event based control updating method is proposed to achieve synchronization be-
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tween inter-connected agents under an undirected and connected network. An event detector
is configured at each agent to determine when and which neighbor’s state should be used to
update the controller based on relative state differences. It is worth noting that the event
conditions are required to be checked only at sampling instants. As pointed out in [6], it is
more realistic to approximate continuous supervision by a high fast rate sampling. Here an
explicit upper bound of the sampling period for event detection is given. In addition, to im-
plement continuous event detectors requires delicate hardware to monitor local signals, and
judge event conditions constantly; this may become a major source of energy consumption.
The proposed framework is a generalization of applying event based control to synchroniza-
tion of multi-agent systems in two ways: 1) the dynamics of each agent can be of any order,
including single- and double-integrator dynamics as special cases; 2) a zero-order hold is
used to solve dynamic synchronization problems instead of higher order holds. The main
contributions of this chapter are highlighted as follows:

• A general problem is studied where the dynamics for each agent is described by a
general linear model rather than single- or double-integrator dynamics.

• Continuous communication and control algorithms have been relaxed to periodic com-
munication and event based control ones.

• A co-design of parameters of controllers and event detectors is realized.

4.2 Synchronization Problem

Consider a network G with N identical agents. The dynamics of the ith agent is described
by the linear model

ẋi (t) = Axi (t) +Bui (t) , (4.1)

where xi (t) ∈ Rn denotes the state, and ui (t) ∈ Rp is the control input to be designed, A
and B are constant real matrices with compatible dimensions. Assume that the matrix pair
(A,B) is stabilizable. The edge state z (t) =

[
zT1 (t) zT2 (t) · · · zTm (t)

]T is defined by
the transformation

z (t) = (DT ⊗ I)x (t) ,

where D is the incidence matrix of G, and

x(t) =
[
xT1 (t) xT2 (t) · · · xTN(t)

]T
.
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The control law for agent i, adopting event triggered strategies, is designed as

ui (t) = −K
∑m

j=1
dij ẑj (t) , (4.2)

where dij is the (i, j) entry of the incidence matrix D ∈ RN×m; note that the control law
in 4.2 is distributed in the sense that each agent needs only the neighbors’ information to
perform control updates instead of all agents’ information. The control gain K can be pa-
rameterized as

K =
α

2
BTS−1,

with the positive definite matrix S and the positive scalar α satisfying

SAT + AS + σλNS − λ2ραBB
T < 0, (4.3)

for any given 0 < ρ < 1 and σ > 0 to be determined later; and ẑj (t) is a piecewise constant
signal

ẑj (t) = zj
(
tjk
)
, for t ∈

[
tjk, t

j
k+1

)
,

where {tj0, t
j
1, . . .} forms the common event sequence of the two agents linked by the jth

edge and it is a subsequence of {0, h, 2h, . . .}. Here h is the sampling period for all agents
synchronized physically by a clock. In other words, the triggering conditions are required
to be checked only periodically not continuously as in the case for linear systems [43]. Note
that the control law for agent i is updated at the union of event times of those edges that
share vertex i. Therefore, an event detector will be configured on each agent to monitor
the relative states between itself and each neighbor, and the number of event conditions is
determined by the cardinality of its neighbor set.

Remark 15 For each agent, the edge state of different communication links is related to

a different event condition. A set of event conditions is provided that each event condition

is used to decide when to trigger an event, thus updating the controller by using the edge

state of the corresponding link. Two agents communicated via this link will update their

controllers simultaneously since the event condition related to the same communication link

is designed to be the same. The triggering of events is synchronized by a communication

link, which can be regarded as an edge-based control updating law [117]. Let us discuss the

pros and cons of the edge-based approach. For the edge-based approach, event detection is

based on state differences of connected agents. For systems with any order, the differences

converge to zero. Therefore, a zero-order hold of control signals can be used. For node-

based approaches, event detection is based on state differences of an agent at different times.
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The differences converge to zero only when the dynamic is single integrator. For agents with

double integrator dynamics, a first order hold for the position is incorporated to avoid the

Zeno behavior [104]. For agents with general linear dynamics, a model based approach is

incorporated to generate a control input for node-based event detection [18]. It is desirable

to have holds that match the process. A drawback of edge-based event detection is that

continuous or periodic communication is necessary to monitor state differences between

two linked agents.

With the event based control protocol in (4.2), the synchronization is achieved by the
team of agents under an undirected and connected communication topology if, for all xi(0),
i = 1, 2, . . . , N , ‖zj (t)‖ −→ 0 for all j = 1, 2, . . . ,m, as t −→∞.

4.3 Event Triggered Synchronization Algorithm for Gen-
eral Linear Dynamics

Define the state error for edge j as ej (kh) = ẑj(kh)− zj (kh) , and denote the stack vector
e(t) =

[
eT1 (t) eT2 (t) · · · eTm(t)

]T . The error defined reflects the relative difference of
two agents between the state at the last event time and the currently sampled state. Then the
closed-loop system with the event based control becomes

ẋ (t) = (I ⊗A)x (t)− (D ⊗BK) z (kh)− (D ⊗BK) e (kh)

= (I ⊗A)x (t)− (L ⊗BK)x (kh)− (D ⊗BK) e (kh)

for t ∈ [kh, kh+ h).
Define the disagreement vector

δ (t) = x (t)− 1⊗ x̄ (t) ,

where
x̄ (t) =

1

N

∑N

i=1
xi (t)

denotes the average of the states for all agents. The disagreement vector has zero average by
definition, that is,

1T δ (t) = 0.

It can be acquired that

˙̄x (t) =
1

N

∑N

i=1
ẋi (t) =

1

N
(1⊗ I)T ẋ (t)

=
1

N
(1⊗ I)T (I ⊗ A)x (t) = Ax̄ (t)
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since
1TL = 0, 1TD = 0.

Therefore, it can be obtained that

x̄ (t) = eAtx̄ (0) =
1

N
eAt
∑N

i=1
xi (0) , (4.4)

that is, the trajectories for all agents will converge to

1

N
eAt
∑N

i=1
xi (0) .

In fact,
‖z (t)‖ =

∥∥(DT ⊗ I)x (t)
∥∥ ≤ ‖D‖ ‖δ (t)‖ .

In lieu of the vertex-to-edge transformation induced by the incidence matrix of G, it follows
that agreement in the vertex states is equivalent to having z (t) = 0 when G is connected.

The following theory ensures that the synchronization is reached asymptotically under
certain conditions with the notations

µ =λmin(λ2αρS
−1BBTS−1 − ATS−1 − S−1A− σλNS−1)

β =λmax

{
λ2
Nα

2S−1BBTS−1
(
4ASAT + 4λNBB

T + λ2
Nα

2BBTS−1BBT
)
S−1BBTS−1

+16 [2 + λNσα (1− ρ)]S−1
}
.

Theorem 16 Consider the system in (4.1) over an undirected, connected graph G. Choose

the parameter σ > 0 so that (A + σλN
2
I, B) is stabilizable. Then the control law (4.2) and

the periodic triggering conditions

αeTj (kh)S−1BBTS−1ej (kh) ≤ 4σ (1− ρ) zTj (kh)S−1zj (kh) , (4.5)

with any sampling period h less than 16µ
β

guarantee the states of all agents converge to

1

N
eAt
∑N

i=1
xi (0) ,

for any initial condition xi (0) ∈ Rn.

Proof. It is easy to see that

(L ⊗ I)x (t) = (L ⊗ I) δ (t) .
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Then the closed-loop system can be rewritten in the form of time delayed differential equa-
tions

δ̇ (t) = ẋ (t)− 1⊗ ˙̄x (t)

= (I ⊗ A) δ (t)− (L ⊗BK) δ (t− r (t))− (D ⊗BK) e (t− r (t)) , (4.6)

where r (t) = t − kh, for any t ∈ [kh, kh+ h) and k ∈ {0, 1, 2, . . .} is a sawtooth delay
[27] used to model sample-and-hold circuits.

With the observation that

δ (t− r (t)) = δ (t)−
∫ t

t−r(t)
δ̇ (s) ds

= δ (t) +

∫ t

t−r(t)
(L ⊗BK) δ (s− r (s)) ds

−
∫ t

t−r(t)
(I ⊗ A) δ (s) ds+

∫ t

t−r(t)
(D ⊗BK) e (s− r (s)) ds,

the system in (4.6) can be transformed to

δ̇ (t) = (I ⊗A− L⊗BK) δ (t)− r (t) (L ⊗BK)2 δ (t− r (t))

− r (t) (L ⊗BK) (D ⊗BK) e (t− r (t))

− (D ⊗BK) e (t− r (t)) + (L ⊗BK) (I ⊗A)

∫ t

t−r(t)
δ (s) ds. (4.7)

The process of transforming the system represented by (4.6) to the one represented by (4.7)
is known as a model transformation. The stability of the system represented by (4.7) implies
the stability of the original system in (4.6). We can derive a stability condition for the
transformed system in (4.7), which of course, is sufficient for the stability of the original
system in (4.6).

Constructing the following Lyapunov function as

V (δ(t)) = δT (t) (I ⊗ P ) δ (t) ,

where P = S−1 is a positive definite matrix with appropriate dimensions, and S is a feasible
solution of the LMI in (4.3). Since α > 0 and the LMI condition in (4.3) is homogeneous
in S and α, the product λ2ρα can be taken as 1 without loss of generality, thus reducing the
number of variables by one. We may as well absorb the product σλN into A. So an alternate
equivalent condition can be derived:

S

(
A+

σλN
2
I

)T
+

(
A+

σλN
2
I

)
S −BBT < 0.
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These LMI conditions are feasible if and only if
(
A+ σλN

2
I, B

)
is stabilizable [11]. We

show here that by an appropriate choice of the parameter σ, the solutions to the LMI in
(4.3) always exist. It is well known that the pair (A,B) is stabilizable if and only if
[A− λI B] has full row rank for all λ ∈ C with Re (λ) ≥ 0. If λ is an eigenvalue of
A, then λ + σλN

2
is an eigenvalue of the matrix A + σλN

2
I . For all λ ∈ C with Re (λ) ≥ 0,

rank
(
[A+ σλN

2
I − λI − σλN

2
I B]

)
= rank ([A− λI B]) = n. For all λ ∈ C with

Re (λ) < 0, if we choose σ < 2 min Re(−λ)
λN

, then Re
(
λ+ σλN

2

)
< 0 for all Re (λ) < 0.

Since P > 0, we can conclude that

λmin (P ) ‖δ (t)‖2 ≤ V (δ (t)) ≤ λmax (P ) ‖δ (t)‖2 .

The next step is to show that V̇ (δ(t)) ≤ −ε ‖δ(t)‖2 whenever

V (δ(t− r (t))) ≤ qV (δ(t)) ,

for some q > 1.
Considering the derivative of V (δ(t)), we have

V̇ (δ(t)) = δT (t)
[
I ⊗

(
ATP + PA

)
− 2L ⊗ PBK

]
δ (t)

−2δT (t) (D ⊗ PBK) e (t− r (t))

−2r (t) δT (t)
(
L2 ⊗ PBKBK

)
δ (t− r (t))

−2r (t) δT (t) (LD ⊗ PBKBK) e (t− r (t))

+

∫ t

t−r(t)
2δT (t) (L ⊗ PBKA) δ (s) ds.

Observe that
2aT b ≤ aTΨa+ bTΨ−1b (4.8)

holds for any positive definite matrix Ψ. Thus, applying the inequality for the last term in
V̇ (δ(t)) with

aT = δT (t) (L ⊗ PBKA) , b = δ (s)

and
Ψ = (I ⊗ P )−1 ,

we obtain

2δT (t) (L ⊗ PBKA)

∫ t

t−r(t)
δ (s) ds ≤

∫ t

t−r(t)
V (s) ds

+

∫ t

t−r(t)
δT (t) (L ⊗ PBKA) (I ⊗ P )−1 (L ⊗ PBKA)T δ (t) ds.
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For the third term in V̇ (δ (t)) , using again the inequality in (4.8) with

aT = δT (t)
(
L2 ⊗ PBKBK

)
, b = −δ (t− r (t)) ,

and
Ψ = (I ⊗ P )−1 ,

we have

− 2r (t) δT (t)
(
L2 ⊗ PBKBK

)
δ (t− r (t))

≤ r (t) δT (t)
(
L2 ⊗ PBKBK

)
(I ⊗ P )−1 (L2 ⊗ PBKBK

)T
δ (t)

+ r (t) δT (t− r (t)) (I ⊗ P ) δ (t− r (t))

≤hδT (t)
(
L2 ⊗ PBKBK

)
(I ⊗ P )−1 (L2 ⊗ PBKBK

)T
δ (t) + hV (t− r (t)) , (4.9)

where the last inequality is due to 0 ≤ r (t) < h. Similarly, for the other terms in V̇ (δ(t)),
we get

−2r (t) δT (t) (LD ⊗ PBKBK) e (t− r (t))

= −2r (t) δT (t) (LD ⊗ PBKB) (I ⊗K) e (t− r (t))

≤ r (t) δT (t) (LD ⊗ PBKB) (LD ⊗ PBKB)T δ (t)

+r (t) eT (t− r (t)) (I ⊗K)T (I ⊗K) e (t− r (t))

≤ hδT (t)
(
LDDTL ⊗ PBKBBTKTBTP

)
δT (t)

+heT (t− r (t))
(
I ⊗KTK

)
e (t− r (t)) , (4.10)

−2δT (t) (D ⊗ PBK) e (t− r (t)) ≤α−1 (1− ρ)−1 eT (t− r (t))
(
I ⊗KTK

)
e (t− r (t))

+ α (1− ρ) δT (t)
(
DDT ⊗ PBBTP

)
δ (t) . (4.11)

The event condition in (4.5) implies that

eTj (t− r (t))KTKej (t− r (t)) ≤ σα (1− ρ) zTj (t− r (t))Pzj (t− r (t)) ,

for j = 1, 2, . . . ,m. Since

zT (t− r (t)) (I ⊗ P ) z (t− r (t)) = δT (t− r (t)) (L ⊗ P ) δ (t− r (t)) ,

we have

eT (t− r (t))
(
I ⊗KTK

)
e (t− r (t)) ≤ σα (1− ρ) zT (t− r (t)) (I ⊗ P ) z (t− r (t))

= σα (1− ρ) δT (t− r (t)) (L ⊗ P ) δ (t− r (t)) .
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We can conclude from the above inequalities that

V̇ (δ(t)) ≤ δT (t)
[
I ⊗

(
ATP + PA

)
− L⊗ (2PBK)

]
δ (t)

+ δT (t)
[
L ⊗

(
αPBBTP − αρPBBTP

)]
δ (t)

+ σδT (t− r (t)) (L ⊗ P ) δ (t− r (t))

+ hδT (t− r (t)) (I ⊗ P ) δ (t− r (t))

+ hδT (t)
(
L4 ⊗ PBKBKP−1KTBTKTBTP

)
δ (t)

+ hσα (1− ρ) δT (t− r (t)) (L ⊗ P ) δ (t− r (t))

+ hδT (t)
(
L3 ⊗ PBKBBTKTBTP

)
δ (t)

+ hδT (t)
(
L2 ⊗ PBKAP−1ATKTBTP

)
δ (t)

+

∫ t

t−r(t)
V (δ (s)) ds.

Whenever
V (δ(t− r (t))) ≤ qV (δ(t)) ,

for q > 1, we have∫ t

t−r(t)
V (δ (s)) ds =

∫ 0

−r(t)
V (δ (t+ s)) ds ≤

∫ 0

−r(t)
qV (δ(t)) ds ≤ qhV (δ (t)) .

Substituting
K =

α

2
BTP

yields

V̇ (δ(t)) ≤ δT (t)
[
I ⊗

(
ATP + PA+ qλNσP

)]
δ (t)

− δT (t)
(
I ⊗ λ2αρPBB

TP
)
δ (t)

+ hδT (t) [I ⊗ (2 + λNσ (1− ρ)) 16qP ] δ (t) /16

+ hδT (t)
[
I ⊗ λ2

Nα
2PBBTPAP−1ATPBBTP

]
δ (t) /4

+ hδT (t)
[
I ⊗

(
α2λ3

NPBB
TPBBTPBBTP

)]
δ (t) /4

+ hδT (t)
[
I ⊗ α4λ4

NPBB
TPBBTPBBTPBBTP

]
δ (t) /16.

Multiplying the inequality in (4.3) by P on the left and right, we have that

Q = λ2αρPBB
TP − ATP − PA− σλNP

is positive definite, which implies that for some sufficiently small θ, q = 1 + θ,

V̇ (δ(t)) ≤ −µδT (t) δ (t) + hβδT (t) δ (t) /16.
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Choosing the upper bound of the sampling period to satisfy

h = 16η
µ

β

with 0 < η < 1, we get
V̇ (δ (t)) ≤ −ε ‖δ (t)‖2 .

According to the Razumikhin theorem, δ (t) = 0 is asymptotically stable.

Remark 17 There are a few parameters involved in the LMI condition. To clarify, the role

of different parameters are explained as follows. The parameter σ can be predetermined

by users, which is indirectly related to the event frequency: A larger σ leads to a lower

frequency of control updates, while a smaller σ leads to a faster convergence rate. Therefore,

there is a trade-off between the control updating frequency and the synchronization speed.

The parameter α is used to parameterize the controller, which is decided by the solution to

the LMI condition. It can be taken as 1 without loss of generality.

Remark 18 The design is finally cast in the form of an LMI feasibility problem. In the

LMI condition in (4.3), the smallest positive and largest eigenvalues have to be known to all

agents. Since these parameters depend on the global network topology, the problem cannot

be solved locally. However, an upper bound on the largest eigenvalue λN and a lower bound

on the smallest positive eigenvalue of λ2 can be found by

λN ≤ 2 (N − 1) , λ2 ≥
4

N (N − 1)

based on the results in [36] and [86], and the fact that the maximum number of neighbors is

no more than N − 1. Therefore, the LMI condition in (4.3) can be relaxed to

N (N − 1)SAT +N (N − 1)AS + 2σN (N − 1)2 S − 4ραBBT < 0,

if the total number of agents N is known.

Example 19 Consider a network with 4 harmonic oscillators shown in Figure 4.1.

2 1 3 4
e2

e1

e3

Figure 4.1: An undirected graph with 4 vertices that is arbitrarily oriented

The dynamics of the ith agent satisfies

ẋi (t) = Axi (t) +Bui (t) , xi (t) ∈ R2, i = 1, 2, 3, 4
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Figure 4.2: Trajectory of each agent

where

A =

[
0 1
−1 0

]
, B =

[
0
1

]
.

Obviously, the communication topology is connected, and the smallest and largest nonzero

eigenvalues are λ2 = 0.5858 and λN = 3.4142, respectively.

First, letting

ρ = 0.2, σ = 0.01

and solving the LMI condition in (4.3), we have

S =

[
1.3185 −0.0467
−0.0467 1.3201

]
.

Thus, the feedback controller gain is

K =
[

0.0150 0.4236
]
,

and the sampling period satisfies

h < 0.0026.
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Figure 4.3: Event times for each agent

In simulation, choose h = 0.001 and initial values as

x1 (0) =

[
6
2

]
; x2 (0) =

[
−3
5

]
;

x3 (0) =

[
−4
3

]
; x4 (0) =

[
4
5

]
.

Since each agent is of the second order, it is straightforward to show the trajectories in

Figure 4.2. It can be observed that the states exhibit an oscillation behavior after a short

transient time. The trajectories of all the four agents converge to a common circle centered

at the origin with radius 3.8243. The time instants when each agent updates its controller are

shown in Figure 4.3 for the first 10 seconds, and the aggregate numbers of events are 238,

127, 244, 134, respectively, for agents 1-4, during a simulation of 30 seconds. Figure 4.4

shows the evolution of the event condition which triggers the control updates for both agent

1 and agent 2. In the figure, an event is generated when the left-hand side value of the

event condition in equation (4.5) shown in solid lines reaches the threshold given by the

right-hand side value of the event condition in equation (4.5) shown in dashed lines, and

then the left-hand signal is reset to zero immediately. The actual minimum inter-event time

of the events on edge e2 is the sampling period. Therefore, the Zeno behavior is excluded
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Figure 4.4: Evolution of the event condition shared by agent 1 and agent 2

both theoretically and numerically. The theoretical analysis is validated very well by the

simulation results.

4.4 Event Triggered Synchronization Algorithm for Dou-
ble Integrator Dynamics

Consider agents with double-integrator dynamics given by

ξ̇i (t) = ζ i (t) , ζ̇ i (t) = ui (t) , i = 1, . . . , N, (4.12)

where ξi (t) ∈ Rn, ζ i (t) ∈ Rn and ui (t) ∈ Rn are, respectively, the position, velocity and
acceleration associated with the ith agent.

Define
zξ (t) =

(
DT ⊗ I

)
ξ (t) , zζ (t) =

(
DT ⊗ I

)
ζ (t) .

Then an event based consensus algorithm is proposed as

ui (t) = −
m∑
j=1

dij

[
ẑξj (t) + γẑζj (t)

]
, i = 1, . . . , N, (4.13)
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where γ is a positive scalar to be determined later. With (4.13), consensus is achieved by the
team of agents under an undirected and connected communication topology if, for all ξi (0)

and ζ i (0) , i = 1, . . . , N , ‖zξj (t) ‖ → 0 and ‖zζj (t) ‖ → 0, as t→∞ for all j = 1, . . . ,m.

Let
xi (t) ,

[
ξi (t)

T ζ i (t)
T
]T
,

and
zj (t) ,

[
zξj (t)T zζj (t)T

]T
.

By applying the algorithm in (4.13), the equation in (4.12) can be written as

ẋ (t) = (I ⊗ A)x (t)− (D ⊗BK) z (kh)− (D ⊗BK) e (kh) ,

for t ∈ [kh, kh+ h) , where

A =

[
0 1
0 0

]
, B =

[
0
1

]
, K =

[
1 γ

]
.

According to (4.4) and

eAt =

[
1 t
0 1

]
,

the average position and velocity of all agents are

ξ̄ (t) =
1

N

∑N

i=1
ξi (t) =

1

N

∑N

i=1
ξi (0) +

t

N

∑N

i=1
ζ i (0)

and
ζ̄ (t) =

1

N

∑N

i=1
ζ i (t) =

1

N

∑N

i=1
ζ i (0) ,

respectively. Therefore, the average velocity remains constant as their initial average over
time, and the average position is their initial average plus the average velocity multiplied by
t.

Thus, the disagreement vector can be defined as

δi (t) = xi (t)− x̄(t)

with
x̄(t) =

1

N

∑N

i=1

[
ξi (0) + tζ i (0)

ζ i (0)

]
,

and the disagreement dynamics can be written in a compact form:

δ̇ (t) = (I ⊗ A) δ (t)− (L ⊗BK) δ (kh)− (D ⊗BK) e (kh) .
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Defining

µ =λmin

(
2λ2ρPBB

TP − ATP − PA− σλNP
)

β =λmax

{
λ2
NPBB

TP
(
ASAT + λ2

NBB
TPBBT

+λNBB
T
)
PBBTP + 2 [1 + λNσ (1− ρ)]P

}
,

we can thus summarize the result as follows.

Theorem 20 Consider the system in (4.12) over an undirected, connected graph G. Choose

the parameters 0 < ρ < 1, γ, p and σ satisfying (4.14) or (4.15). Then for the control law

in (4.13) and the event condition[
eξj (kh)

eζj (kh)

]T [
1 γ
γ γ2

] [
eξj (kh)

eζj (kh)

]
≤ 2σ (1− ρ)

[
zξj (kh)

zζj (kh)

]T
P

[
zξj (kh)

zζj (kh)

]
,

j = 1, . . .m, with any sampling period h less than µ
β

, the position and velocity states of all

agents converge to
1

N

∑N

i=1
ξi (0) + tζ i (0)

and
1

N

∑N

i=1
ζ i (0) ,

respectively, for any initial condition ξi (0) ∈ Rn and ζ i (0) ∈ Rn, i = 1, . . . N.

Proof. Take a candidate Lyapunov function

V (t) = δT (t) (I ⊗ P ) δ (t) ,

with a symmetric positive definite matrix

P =

[
p 1
1 γ

]
,

with
pγ > 1.

According to Theorem 16, the corresponding LMI condition in (4.3) becomes[
2− σλNγ −p+ σλN
−p+ σλN 2λ2ρ (pγ − 1)− σλNp

]
> 0.

Then the condition is held if and only if

σ <
2

λNγ
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and
(λNσ)2 − 2γλ2ρ (λNσ) + 4λ2ρ−

p2

pγ − 1
> 0.

Consider the left-hand side of the second inequality as a quadratic function

f (χ) = χ2 − bγχ+ 2b− p2

pγ − 1

where
χ = λNσ, b = 2λ2ρ.

The quadratic function has two real roots

bγ ±
√

∆

2
,

since the discriminant

∆ = (bγ)2 − 8b+
4p2

pγ − 1
=

(
γb− 4

γ

)2

+
4 (pγ − 2)2

γ2 (pγ − 1)
≥ 0.

From

∆ ≥
(
γb− 4

γ

)2

,

it follows that
bγ −

√
∆

2
≤ 2

γ
≤ bγ +

√
∆

2
.

Therefore, the feasible χ exists if and only if 2b− p2

pγ−1
> 0, and two different cases depend-

ing on the choices of γ and p exist:
Case 1 Assume ∆ = 0, that is,

γb− 4

γ
= 0, pγ − 2 = 0.

Then, it follows that
2

γ
=
γb

2
.

The feasible range of the parameter χ is given by

0 < χ <
2

γ
.

That is,

γ =

√
2

λ2ρ
, p =

√
2λ2ρ, 0 < σ <

√
2λ2ρ

λN
. (4.14)
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Case 2 Assume ∆ > 0 and 2b (pγ − 1)− p2 > 0. The second inequality can be written as

(p− bγ)2 < b2γ2 − 2b.

Thus, it can be seen that

γ >

√
2

b
, bγ −

√
b2γ2 − 2b < p < bγ +

√
b2γ2 − 2b

are necessary and sufficient conditions for the existence of feasible solutions. This leads to

0 < χ <
γb−

√
b2γ2 − 8b+ 4p2/ (pγ − 1)

2
.

That is,

γ >

√
1

λ2ρ
, bγb−

√
b2γ2 − 2b < p < bγ +

√
b2γ2 − 2b,

0 < σ <
γb−

√
b2γ2 − 8b+ 4p2/ (pγ − 1)

2λN
. (4.15)

The proof is completed.

Remark 21 The upper bound on the maximum sampling period for all agents may be con-

servative, as shown in the following numerical example. However, it is more realistic to

approximate the continuous event detection by a fast rate sampled-data event detection. The

performance of continuous event detection can be expected to be recovered by sampled-data

event detection with a relatively small sampling period h.

Example 22 Consider the multi-agent system with double-integrator dynamics under the

interaction topology shown in Figure 4.1 which is undirected and connected. The initial

conditions on ξ and ζ are randomly generated from uniform distributions on the interval

[0, 2] and [−0.4, 0.4], respectively. The constant is set to ρ = 0.6, and the parameters

are chosen as γ = 2.3854, p = 0.8384, σ = 0.2, which leads to the upper bound: h <

3.8836 × 10−6. The sampling period is taken to be h = 10−6. Figure 4.5 and Figure 4.6

show the evolution of the position states and the velocity states, respectively, using the event

based consensus algorithm in (4.13) under the interaction topology given by Figure 4.1.

Consensus can be achieved asymptotically for the team of agents. The control signals for

the agents are demonstrated in Figure 4.7, which shows that the zero-order hold strategy is

used for both position and velocity states. Then, the evolution of the event condition which

triggers control updates for both agent 3 and agent 4 is obtained as shown in Figure 4.8,
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Figure 4.5: Evolution of position states for the agents
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Figure 4.6: Evolution of velocity states for the agents
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Figure 4.7: Control inputs for the agents
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Figure 4.8: Evolution of the event condition shared by agent 3 and agent 4
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Figure 4.9: Event times for the agents

and the time instants when each agent updates its control law are shown in Figure 4.9. By

comparing, it can be seen that more control updates are involved in agent 1 and agent 3.

Evaluation of the event triggered control strategy shows that the average control updating

period over t ∈ [0, 10] and for all agents is 0.3509. According to [102], the maximum

control updating period which guarantees asymptotic consensus of double-integrator multi-

agent systems under sampled-data control is

min

{
2γ,

2

γλN

}
,

which is 0.2456. Thus, the event triggered control requires less control updates on the aver-

age.

4.5 Conclusions

A unified sampled-data control and event detection framework is developed to solve consen-
sus problems for linear multi-agent systems under an undirected, connected network, which
includes agents with single- and double-integrator dynamics as special cases. Along the way,
the relative state differences between any two adjacent agents provide measurements of the
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synchronization. The work described here is in contrast with earlier work in that it does not
require continuous communication between neighboring agents and continuous event detec-
tion. Furthermore, the connection between the controller gain and parameters of the event
detector has been captured as an LMI-based condition, which can be efficiently checked by
existing tools. Simulation case studies are performed to verify the results obtained from the
theoretic analysis. The existence of a global synchronized sampling period to evaluate event
conditions may be restrictive in practice. An interesting future work would be to design one
sampling period per edge instead of a global sampling period.

68



Chapter 5

Event Triggered State Estimation via
Wireless Sensor Networks

This chapter presents distributed state estimation methods through wireless sensor networks
with event triggered communication protocols among the sensors.

5.1 Introduction

In recent years, wireless sensor networks have come into prominence with a range of appli-
cations [39, 125]. One of the most important applications is trajectory tracking. The Kalman
filter and its various extensions are effective algorithms for tracking the state of known dy-
namic processes [2, 13]; while H∞ filter is specifically designed for robustness [22]. Typ-
ically, sensor networks are often deployed in environments with limited computational and
communication resources. Communication over radio is the most energy-consuming func-
tion performed by these devices, so that the communication frequency needs to be min-
imized. These constraints dictate that sensor network problems are best approached in a
holistic manner, by jointly maintaining estimation performance while reducing the number
of transmissions.

As pointed out in [4], event triggered state estimation is not a standard problem due to
the non-standard information pattern. Information is obtained precisely only when an event
occurs; if no event takes place, the information can only be inferred from the event condition.
Currently, most research on event based state estimation focuses on centralized algorithms,
either in stochastic [107, 63, 105] or deterministic [123, 109, 81] settings. However, some
problems are difficult or impossible for a monolithic system to solve. This necessitates
the use of wireless sensor networks. Unfortunately, the current existing filter designs for
wireless sensor networks, most of which are based on time triggered sampling, result in
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high power consumption and network congestion.
Based on the above observations, event triggered distributed state estimation approaches

having a low transmission frequency are proposed which significantly reduce the overall
bandwidth consumption, and increase the lifetime of the network. These approaches are
an extension of [90] to the event triggered transmission case. Event triggered transmissions
pose new challenges to existing design methodologies as novel requirements, like adaptivity,
uncertainty, and nonlinearity, arise. Specifically, the sensor node will not receive any infor-
mation from the neighbors if the events at neighboring sensor nodes are not triggered. In
this case, the behavior of neighboring sensors has to be estimated with the aid of the system
model and information obtained from neighbors at event instants. After an event has oc-
curred, the sensor broadcasts its predictive state to its neighbors and the state of the internal
system models will be re-initialized for both itself and its neighbors. Then, a modified con-
sensus filter is proposed to accommodate the generic uniform and asynchronous information
exchange scenario. In this chapter, a formal stability analysis of the consensus filter is pro-
vided, and a specific event triggered transmission mechanism is constructed. Additionally,
the event conditions can be checked without the knowledge of neighbors’ information.

5.2 Problem Formulation

Consider a system whose state at time k is x (k) ∈ Rn. The time index k of the state evolution
will be discrete and identified with N = {0, 1, 2, . . .}.

Let (Ω,F , P ) be a probability space upon which {w (k) , k ∈ N} is an independent se-
quence of Gaussian random variables, having zero mean and covariance matrices {Q (k)}.
That is,

E
[
w (k)wT (l)

]
= Q (k) δ (k, l) , (5.1)

where δ (k, l) = 1 if k = l, and δ (k, l) = 0, otherwise. The state at the initial time x (0) is a
Gaussian random variable with mean x0 and covariance matrix P0.

The state of the system satisfies linear dynamics

x (k + 1) = A (k)x (k) +B (k)w (k) , (5.2)

where A (k) and B (k) are matrices of appropriate dimensions. The state can be observed
only indirectly through a sensor network whose communication topology can be modeled
by an undirected graph G = (V , E). Here V = {1, 2, . . . , N} is the set of sensor nodes.
The edge set E ⊆ V × V consists of the communication links between sensors. Each sensor
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i ∈ V has a linear sensing model

zi (k) = Hi (k)x (k) + vi (k) , zi (k) ∈ Rm, (5.3)

where Hi (k) and vi (k) are observation matrix and measurement noise of sensor i at time k,
respectively. Each pair (A (k) , Hi (k)) is assumed to be completely detectable. The mea-
surement noise processes {vi (k)} and {vj (k)} for i 6= j are independent Gaussian processes
with zero mean and known covariances {Ri (k)} and {Rj (k)} , respectively. Note also that
{w (k)} and {vi (k)} for all i ∈ V are independent processes. Sensor i can only commu-
nicate with other sensors within its sensing radius r. All the other sensors that sensor i can
communicate with are referred to as the neighbors of sensor i, which can be mathematically
defined as Ni = {j ∈ V|dij ≤ r} with dij being the Euclidean distance between sensor i
and sensor j. Note that the underlying graph G of the wireless sensor network is required to
be connected, and could be a switching graph.

The local consensus filter is described for k ≥ 0 by the equations

x̂i (k) = x̄i (k) +Ki (k) [zi (k)−Hi (k) x̄i (k)] + Ci (k)
∑

j∈Ni
[x̃j (k)− x̃i (k)] , i ∈ V ,

(5.4)

whereKi (k) ∈ Rn×m andCi (k) ∈ Rn×n are the filter gain and consensus gain, respectively.
Here x̂i (k)1 is sensor i’s estimation of the process state x (k); x̄i (k) is the estimate prior
to assimilating the measurements at time k, and it is obtained by projecting the estimate
x̂i (k − 1) via the transition matrix

x̄i (k) = A (k − 1) x̂i (k − 1) . (5.5)

The estimates x̃j (k) for j ∈ Ni are constructed for sensor i to estimate the neighboring
sensors’ state using only the measurements received from the neighbors, while x̃i (k) is
constructed for sensor i to know what neighboring sensors assume its state estimate by using
only predictive state estimates broadcasted to the neighbors. Hence, these estimates are the
same for all sensors, which can be simply constructed by the following equations

x̃j (k) = γj (k) x̄j (k) +
[
1− γj (k)

]
A(k − 1)x̃j (k − 1) , (5.6)

where γj (k) = 1 or 0 indicates the sensor node j does or not broadcast the data to its
neighbors at the time instant k, respectively. The structure in (5.6) is chosen because the
information exchange usually happens at the beginning of each discrete time instant. At that
time, only the predicted state is available instead of the estimated state.

1To avoid confusion, it should be emphasized that the subscript does not indicate an element of a vector.
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Remark 23 When x̃j (k) is replaced by x̄j (k) for all j ∈ Ji = Ni∪{i}, the consensus filter

in (5.4) reduces to the distributed Kalman consensus filter proposed in [90]. It reflects that

time triggered transmission is a special case of event triggered transmission when events

happen at each time instant. Also different from the distributed event triggered consensus

filter in [64], the local consensus filter in (5.4) for sensor i can have access to the com-

mon estimate x̃i. Keeping a copy of this global estimate ensures consistency in the sensor

network. This is crucial for event detector design to decide broadcasting instants if the devi-

ation between the true predictive state of sensor i and what the neighboring sensors assume

its predictive state goes beyond some tolerance limit.

The problem now is to find the particular blending factor Ki(k) and consensus gain
Ci(k) for all i ∈ V that yields a consensus state estimate for the sensor network under event
triggered transmission.

5.3 Stability of Event Triggered Consensus Filters

The following notation is defined to distinguish the different errors for sensor i at time k:

ηi (k) = x̂i (k)− x (k) estimation error,

η̄i (k) = x̄i (k)− x (k) prediction error,

η̃i (k) = x̃i (k)− x (k) common error.

The filter for sensor i is given in the following form:

x̂i (k) = x̄i (k) +Ki (k) (zi (k)−Hi (k) x̄i (k)) + Ci (k)
∑

j∈Ni
[x̃j (k)− x̃i (k)] ,

where

Fi(k) = I −Ki(k)Hi(k),

Ki (k) = P̄i (k)HT
i (k)

(
Ri (k) +Hi (k) P̄i (k)HT

i (k)
)−1

,

Pi (k) = Fi (k) P̄i (k)F T
i (k) +Ki (k)Ri (k)KT

i (k) ,

P̄i (k + 1) = A (k)Pi (k)AT (k) +B (k)Q (k)BT (k) ,

x̃j (k + 1) = γj (k + 1) x̄j (k + 1) +
(
1− γj (k + 1)

)
A (k) x̃j (k) ,

x̄i (k + 1) = A (k) x̂i (k) .

Now the main result on stability of the consensus filter will be presented in the following
theorem.
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Theorem 24 Consider the consensus filter with the choice of consensus gain

Ci (k) =
2Fi (k) Γ−1

i (k)

λmax (L)λmax (Γ−1 (k))
,

where L is the Laplacian matrix associated with the graph G and

Γ (k) = diag {Γ1 (k) , . . . ,ΓN (k)}

with Γi (k) = F T
i (k)AT (k) P̄−1

i (k + 1)A (k)Fi (k). Suppose A (k) and Ri (k) are invert-

ible for all i ∈ V and k ≥ 0. Then, the noise free error dynamics of the consensus filter is

globally asymptotically stable under the event condition

[x̃i (k)− x̄i (k)]T
∑

j∈Ni
[x̃i (k)− x̃j (k)] ≤ 0. (5.7)

Furthermore, all estimators asymptotically reach a consensus on state estimates.

Proof. Given the consensus estimator of sensor node i,

x̄i (k + 1) =A (k) {x̄i (k) +Ki (k) [zi (k)−Hi (k) x̄i (k)]}

+ A (k)Ci (k)
∑

j∈Ni
[x̃j (k)− x̃i (k)] ,

the noise free error dynamics of the consensus filter can be written as

η̄i (k + 1) = A (k)Fi (k) η̄i (k) + A (k)Ci (k)ui (k) . (5.8)

The stability result for (5.8) will be proved through the use of a Lyapunov function

V (k) =
∑N

i=1
η̄Ti (k) P̄−1

i (k) η̄i (k) .

Calculating the change ∆V (k) = V (k + 1) − V (k) in the Lyapunov function, it can be
shown that

∆V (k) =
∑N

i=1
η̄Ti (k + 1) P̄−1

i (k + 1) η̄i (k + 1)−
∑N

i=1
η̄Ti (k) P̄−1

i (k) η̄i (k) . (5.9)

Substituting (5.8) into (5.9), we have

∆V (k) =
∑N

i=1
η̄Ti (k) (Γi (k)− P̄−1

i (k))η̄i (k)

+ 2
N∑
i=1

η̄Ti (k) Λi (k)ui (k) +
N∑
i=1

uTi (k) Πi (k)ui (k) , (5.10)
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where

Λi (k) = F T
i (k)AT (k) P̄−1

i (k + 1)A (k)Ci (k) ,

Πi (k) = CT
i (k)AT (k) P̄−1

i (k + 1)A (k)Ci (k) .

Using the error covariance matrix update rules, we get

P̄i (k + 1) = A (k)Fi (k) P̄i (k)F T
i (k)AT (k) +Wi (k) ,

where

Wi (k) = A (k)Ki (k)Ri (k)KT
i (k)AT (k) +B (k)Q (k)BT (k) .

Multiplying P̄i (k) on both sides of P̄−1
i (k) − Γi (k) and using the matrix inversion lemma

gives
P̄i (k)

[
P̄−1
i (k)− Γi (k)

]
P̄i (k) =

[
P̄−1
i (k) +Mi (k)

]−1
,

where
Mi (k) = F T

i (k)AT (k)W−1
i (k)A (k)Fi (k) .

Now multiplying the above equation from left and right by P̄−1
i (k) results in

P̄−1
i (k)− Γi (k) = P̄−1

i (k)
[
P̄−1
i (k) +Mi (k)

]−1
P̄−1
i (k) ,

which is a symmetric and positive definite matrix.
The first term in (5.10) is clearly negative semi-definite. Let Ci (k) satisfy Λi (k) =

σ (k) I > 0 for all i ∈ V . This can be achieved by setting the consensus gain to

Ci (k) = σ (k)
[
F T
i (k)AT (k) P̄−1

i (k + 1)A (k)
]−1

.

Using this choice of Ci (k) , the second term in (5.10) becomes

2
N∑
i=1

η̄Ti (k) Λi (k)ui (k) = 2σ (k) η̄T (k)u (k) .

Defining
Ψ = diag

{
P̄−1

1 (k)− Γ1 (k) , . . . , P̄−1
N (k)− ΓN (k)

}
and noting that Πi (k) = σ2 (k) Γ−1

i (k), ∆V (k) can be rewritten as

∆V (k) = −η̄T (k) Ψη̄ (k) + 2σ (k) η̄T (k)u (k) + σ2 (k)
N∑
i=1

uTi (k) Γ−1
i (k)ui (k) .
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Noting that u (k) = − (L ⊗ I) η̃ (k) , we have

∆V (k) ≤ − η̄T (k) Ψη̄ (k) + 2σ (k) η̄T (k)u (k)

− σ2 (k)λmax

(
Γ−1 (k)

)
λmax (L) η̃T (k)u (k) .

Choosing

σ (k) =
2

λmax (Γ−1 (k))λmax (L)
,

∆V (k) becomes

∆V (k) ≤− η̄T (k) Ψη̄ (k) + 2σ
N∑
i=1

(x̄i (k)− x̃i (k))T ui (k) .

Choose the event condition for sensor i as,

[x̃i (k)− x̄i (k)]T
∑
j∈Ni

[x̃i (k)− x̃j (k)] ≤ 0,

so that the last term of ∆V (k) is negative semi-definite. One can conclude that ∆V (k) < 0

for all η̄i (k) 6= 0, i ∈ V . Therefore, η̄ = 0 is asymptotically stable for the error dynamics of
the consensus filter without noise, which follows that x̄i (k + 1) for all i ∈ V is converging
to x (k + 1) for k →∞. From the fact that

x̄i (k + 1) = A(k)x̂i (k) , x (k + 1) = A(k)x (k) ,

the implication that x̂ (k) is converging to x (k) as k → ∞ holds. Furthermore, since
η̂i = η̂j = 0 for all j 6= i, all estimators asymptotically reach a consensus on state estimates,
i.e., x̂1 = · · · = x̂N .

Remark 25 To calculate the consensus gain for each sensor, the largest eigenvalue of Γ−1(k)

has to be known to all sensors at every time instant, which might be restrictive in a distributed

environment. However, this could be amended by bounding it above by a constant. The par-

ticular choice of Ci in Theorem 24 is chosen to derive an event condition for each sensor. In

order to reduce the frequency of communication, each sensor node predicts the behavior of

itself and its neighbors one step ahead. An event is generated by a sensor if the condition in

(5.7) is violated; at the same time, the event condition is satisfied again by broadcasting its

information to the neighbors.

Remark 26 According to the proof of Theorem 24, the result is also valid for linear time-

varying deterministic systems. To the best of the authors’ knowledge, either control or es-

timation problems with event triggered sampling for linear time-varying systems have not
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been investigated despite of their importance. The algorithm above can be viewed as an

event triggered estimation strategy for linear time-varying systems. The time-varying con-

sensus filter is also a generalization of the steady-state filter for linear time-invariant systems

with non-stationary noise covariance.

5.4 Time-Invariant Filters

In this section, we consider the time-invariant system

x(k + 1) = Ax(k) +Bw(k)

with associated measurement process

zi(k) = Hix(k) + vi(k).

We shall assume that vi(k) and w(k) are independent, zero mean, stationary, white Gaussian
processes, with covariances given by

E
[
w (k)wT (l)

]
= Qδ (kl) , E

[
vi (k) vTi (l)

]
= Riδ (kl) .

The following time-invariant filter is concerned in this section

x̂i (k) = x̄i (k) +Ki (zi (k)−Hix̄i (k)) + Ci
∑

j∈Ni
[x̃j (k)− x̃i (k)] ,

for i ∈ V , where

Fi = I −KiHi,

Ki = P̄iH
T
i

(
Ri +HiP̄iH

T
i

)−1
,

Pi = FiP̄iF
T
i +KiRiK

T
i ,

P̄i = APiA
T +BQBT ,

x̃j (k + 1) = γj (k + 1) x̄j (k + 1) +
(
1− γj (k + 1)

)
x̃j (k) ,

x̄i (k + 1) = Ax̂i (k) .

The event condition for sensor i has the following form

γj (k + 1) =

{
0, if (x̃i − x̄i)T

∑
j∈Ni (x̃i − x̃j) ≤ 0,

1, otherwise.
(5.11)

Now the result on stability of the time-invariant consensus filter will be presented in the
following corollary.
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Corollary 27 Consider the time-invariant consensus filter with the choice of consensus gain

Ci =
2FiΓ

−1
i

λmax (L)λmax (Γ)

where L is the Laplacian matrix associated with the graph G and

Γi = F T
i A

T P̄−1
i AFi, Γ = diag {Γ1, . . . ,ΓN} .

Suppose A and R are invertible for all i ∈ V. Then, the noise free error dynamics of the

consensus filter is globally asymptotically stable under the event condition in (5.11). Fur-

thermore, all estimators asymptotically reach a consensus on state estimates.

The results can be obtained by following similar lines as in the proof of Theorem 24.
One can express the consensus filter in the information form with filter gain

Ki (k) = Pi (k)HT
i R
−1

and information matrix
Pi (k) =

(
P̄−1
i +HT

i R
−1
i Hi

)−1
.

A further application to the identities above yields

P̄i (k + 1) = A
[
P̄i (k)− P̄i (k)Hi

(
HT
i P̄i (k)Hi +Ri

)−1
HT
i P̄i (k)

]
AT +BQBT .

(5.12)
Time invariance, or asymptotic time invariance, arises when there is a constant, or

asymptotically constant solution to the variance equation in (5.12). The main conclusions
are summarized as follows:

If the signal model is time invariant and not necessarily asymptotically stable, but the
pair (A,Hi) is detectable and the pair (A,BD) is stabilizable for any D with DD′ = Q,
then [2]

a) For any nonnegative symmetric initial condition P̄i(0), one has

lim
k→∞

P̄i (k) = P̄i

with P̄i independent of P̄i (0) and satisfying a steady-state version of (5.12):

P̄i = A
[
P̄i − P̄iHi

(
HT
i P̄iHi +Ri

)−1
HT
i P̄i

]
AT +BQBT .

b)
|λi (A (I −KiHi))| < 1

with
Ki = P̄iHi

(
HT
i P̄iHi +Ri

)−1
.
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5.5 Simulation Results

Suppose the discrete time model is

x (k + 1) = Ax (k) +Bw (k)

with
A =

[
0.9996 −0.03
0.03 0.9996

]
, B =

[
0.375 0

0 0.375

]
,

andQ = I . Note that the state is moving on noisy divergent circular trajectories due to a pair
of complex-conjugate eigenvalues with magnitude greater than 1. The initial state vector and
the covariance matrix are set to be x0 = [15 − 10]T , P0 = 10I , respectively.
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Figure 5.1: The sensor network topology

A sensor network is generated by randomly deploying 20 sensors in the monitoring area,
where two sensors can communicate if they are within a distance less than 40 as shown in
Figure 5.1. Label the 20 sensors with 1 through 20. The sensors take noisy measurements of
the position of the target. The odd and even numbered sensors can observe along the x-axis
and y-axis, respectively, where

z2i+1 (k) = H2i+1x (k) + v2i+1 (k) ,

z2i+2 (k) = H2i+2x (k) + v2i+2 (k) ,

with H2i+1 = [1 0] , and H2i+2 = [0 1] for i = 0, . . . , 9. Moreover, the covariance
matrices of vi areRi = 900

√
i for i = 1, 2, . . . , 20. Note that the noises have large variances,
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and are different for different sensors. First assume that the dynamical system is noise-free,
that is,w (k) ≡ 0, and vi (k) ≡ 0. The initial state of each sensor is generated randomly from
the normal distribution with the mean x0 and variance P0. Figure 5.2 depicts the evolution
of the Lyapunov function V (k) using the consensus filters based on the event condition in
(5.7). It can be seen that all sensors reach consensus at the true trajectory of the target for
the noise free case.
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Figure 5.2: The Lyapunov function

Now return to the noise case, where the process noise w(k) and measurement noises
vi(k) for each sensor are generated according to their statistic properties, respectively. The
consensus filters are run through 201 steps beginning at k = 0 and ending at k = 200. The
result is shown in Figure 5.3, where the estimate trajectory is obtained by taking the average
of the estimates of all sensor nodes. From the figure, it can be seen the event triggered
consensus filtering algorithm can effectively track the target even though the system model
is unstable and the measurement noise covariance matrices Ri for all i ∈ V are relatively
large. The total number of broadcasting for the entire sensor network is 3034, which is
75.85% of the complete transmission scheme. The number of events for each sensor node
under the event condition defined in (5.7) is shown in Figure 5.4.
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Figure 5.3: Tracking result
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Figure 5.4: Number of events for all 20 sensors
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5.6 Conclusions

Distributed state estimation algorithms were established for linear time-varying discrete-
time systems with event triggered transmission using wireless sensor networks. Initially, the
optimal event triggered consensus filter was constructed, and then it was approximated by a
suboptimal filter. An event condition was presented for the suboptimal filter to reduce the
number of transmissions for the wireless sensor network. The effectiveness of the proposed
method was illustrated through a simulation example. Future work will address triggering
rules for the optimal consensus filter to guarantee stability. The focus here is the interaction
reduction among estimator sensors. Employing event detection rules between measurement
sensor and estimator sensors would be an interesting extension.
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Chapter 6

Event Triggered Optimization for
Network Utility Maximization Problems

This chapter is concerned with event triggered distributed optimization for network utility
maximization (NUM) problems.

6.1 Introduction

Interest in distributed optimization problems has seen rapidly growing in recent years. Many
important practical problems require a distributed approach. One example is the network
utility maximization problem, where each source generates a flow over shared links with
limited capacity to achieve the maximization of total sources’ utility. Moreover, large spa-
tially distributed automated systems, such as the power grid, can make complete commu-
nication infeasible. Various techniques have been used in order to solve NUM problems
distributively, such as dual decomposition approaches [91], and Newton methods [115]. An
alternative decomposition approach to NUM problems can be found in [92]. In the design of
distributed algorithms for NUM problems, one important factor to control is communication
traffic in the network. A significant requirement in a large-scale network is the need for the
computation of the optimal solution to be distributed, relying on local measurements and
limited battery life, as opposed to requiring a central computation system.

As a consequence of these issues, event triggered communication could be used in dis-
tributed optimization algorithms for which the above issues can be mitigated and the result-
ing optimization problems become tractable [62]. In [62], barrier and augmented Lagrangian
methods have been proposed to solve NUM problems based on a continuous flow updating
rule and a continuous event detection scheme. In contrast to [62], a discrete time flow up-
dating rule and a discrete time event detection scheme have been presented in this chapter to
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Figure 6.1: A sample network with four sources and three links

solve the same problem.
The main contributions of this chapter are briefly summarized as follows:

• propose a discrete time distributed interior point method for optimization problems
with constraints;

• develop a triggering rule to mediate the communication between sources and links;

• solve the network utility maximization problem with guaranteed accuracy.

6.2 Problem Formulation

Consider a network in which two special nodes, called the source and the destination, are
distinguished. The nodes of a network are usually numbered, say, 1, 2, 3, . . . , S. A network
is typically represented as shown in Figure 6.1. The nodes are designated by circles, with a
symbol inside each circle denoting the type and index of that node. Denote S = {1, . . . S}
as the index set of sources in the network. Corresponding to each source node i ∈ S , there
is a nonnegative number si representing a flow along a predetermined route to a destination.
Use L = {1, . . . , L} to denote the index set of directed links. Associated with each link is
a finite number cl > 0 for l ∈ L, representing the maximum allowable flow. The network
utility maximization (NUM) problem is that of determining the maximal aggregate sources’
utilities subject to links’ capacity constraints. When written out, it takes the form

maximize
∑S

i=1 Ui (si)
subject to Rs ≤ c, s ≥ 0.

(6.1)

Here Ui : R+ → R is the utility of source i as a function of the source rate si. It is assumed
to be twice differentiable, strictly concave in si, and strictly monotonically increasing on
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(0,∞). The vectors s = [s1, · · · , sS]T and c = [c1, · · · , cL]T are compact forms of the
source data rates and link capacities, respectively. The matrix R is the routing matrix of
dimension L× S, i.e.,

rij =

{
1, if link i is on the route of source j,
0, otherwise.

For each link l, let Sl denote the set of sources that use link l; for each source i, let Li denote
the set of links that source i uses. Also assume that the problem is strictly feasible, i.e. the
constraint set F taking the form

F = {s : Rs− c ≤ 0, s ≥ 0}

has a nonempty interior that is arbitrarily close to any point in F . Intuitively, this means that
the set has an interior and it is possible to get to any boundary point by approaching it from
the interior. Such a set is referred to as robust [70].

The barrier method is used to approximately formulate the inequality constrained prob-
lem in (6.1) as a sequence of unconstrained problems. The approximation is accomplished
by adding terms to the objective function that favors points interior to the feasible region
over those near the boundary. The first step is to rewrite the problem in (6.1), making the
inequality constraints implicit in the objective function:

minimize −
∑

i∈S
Ui (si)−

∑
j∈L

1

λj
log
(
cj − rTj s

)
−
∑

i∈S

1

µi
log si, (6.2)

where rT1 , . . . , r
T
L are the rows of R. Here λ = [λ1, · · · , λL]T and µ = [µ1, · · · , µS]T are

constant vectors with positive entries that set the accuracy of the approximation.

Remark 28 The objective function in (6.2) is convex. This can be shown via the definition

of convex function and operations that preserve convexity of functions.

The functions

φL (s) = −
∑

j∈L
log
(
cj − rTj s

)
, and φS (s) = −

∑
i∈S

log si,

with domφL ∩ domφS =
{
s ∈ RS

∣∣si > 0, rTj s < cj, i = 1, . . . , S, j = 1, . . . , L
}
, are

called the logarithmic barriers or log barriers for the problem in (6.1).

Remark 29 The above domain is the set of points that satisfy the inequality constraints

in (6.1) strictly. No matter what values the positive parameters λj , j = 1, . . . , L and µi,
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i = 1, . . . , S have, the logarithmic barriers grow without bound if cj − rTj s→ 0 or si → 0,

for any i and j. Of course, the problem in (6.2) is only an approximation of the original

problem in (6.1). The quality of the approximation improves as the parameters λj and µi
grow. It can be soon shown that the original problem can be circumvented by solving a

sequence of problems of the form in (6.2), increasing the parameters λj and µi, and starting

each minimization at the solution to the problem with the previous values of λj and µi.

For λ � 0 and µ � 0, define s∗ (λ, µ) as the optimal solution to (6.2). The central path

associated with the problem in (6.1) is defined as the set of points s∗ (λ, µ) , λ � 0 and
µ � 0, which are called the central points. Points on the central path are characterized by
the following necessary and sufficient conditions: s∗ (λ, µ) is strictly feasible, i.e., it satisfies

rTj s < cj, j = 1, . . . , L, si > 0, i = 1, . . . , N,

and
0 = −

∑
i∈S
∇Ui (si)−

∑
i∈S

1

µi

1

si
+
∑

j∈L

1

λj

1

cj − rTj s
(6.3)

holds.
Every central point yields a dual feasible point, and hence a lower bound on the optimal

value p∗. More specifically, define

ν∗i (µi) =
1

µi

1

si
, i = 1, . . . , S,

υ∗i (λj) =
1

λj

1

cj − rTj s
, j = 1, . . . , L.

The pair ν∗ (µ) , υ∗ (λ) is dual feasible.
First, it is clear that ν∗ (µ) � 0 and υ∗ (λ) � 0 because si > 0, i = 1, . . . , S, and

rTj s < cj, j = 1, . . . , L. By expressing the optimality condition in (6.3) as

−
∑

i∈S
∇Ui (s∗i (µ, λ))−

∑
i∈S

ν∗i (µi) +
∑

j∈L
υ∗i (λj) = 0,

it can be seen that s∗ (µ, λ) minimizes the Lagrangian

f (s;λ, µ) = −
∑

i∈S
Ui (si)−

∑
j∈L

1

λj
log
(
cj − rTj s

)
−
∑

i∈S

1

µi
log si,

for ν = ν∗ (µ) and υ = υ∗ (λ) , which means that ν∗ (µ), υ∗ (λ) is a dual feasible pair.
Therefore, the dual function g (ν∗ (µ) , υ∗ (λ)) is finite, and

g (ν∗ (µ) , υ∗ (λ)) = −
∑

i∈S
Ui (s

∗
i )−

∑
i∈S

ν∗i (µ) si +
∑

j∈L
υ∗j (λ)

(
rTj s− cj

)
= −

∑
i∈S

Ui (s
∗
i )−

∑
i∈S

1

µi
−
∑

j∈L

1

λj
.
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In particular, the duality gap associated with s∗ (µ, λ) and the dual feasible pair ν∗ (µ) ,

υ∗ (λ) is simply −
∑

i∈S µ
−1
i −

∑
j∈L λ

−1
j . As an important consequence, it follows that

−
∑

i∈S
Ui (s

∗
i )− p∗ ≤

∑
i∈S

1

µi
+
∑

j∈L

1

λj
,

i.e., s∗ (λ, µ) is no more than
∑

i∈S µ
−1
i +

∑
j∈L λ

−1
j -suboptimal. This confirms the intuitive

idea that s∗ (λ, µ) converges to an optimal point as λi →∞ and µj →∞.

Remark 30 Barrier methods are also referred to as interior point methods. They work by

establishing a barrier on the boundary of the feasible region that prevents a search procedure

from leaving the region. This suggests that the link capacity constraints can always be

guaranteed. Therefore, this method is reliable enough to be embedded in real-time control

applications with little or no human oversight.

Define the jth link’s local state as

αj (k) =
1

λj

1

cj − aTj s (k)
.

Link j is able to measure the total flow that goes through it and calculate its link state.
The benefit of introducing event triggered techniques lies in reduced computation cost and
communication cost at each link. Links do not need to calculate the state information and
send it to sources at each time instant.

The sampling strategy is push type, which means that sources do not request information
from links; links send their information to sources when it is necessary. The same strategy
applies for sources.

6.3 Convergence Analysis for Event Triggered Barrier Al-
gorithms

Let TLjn , n = 1, 2, . . . , denote the time when link j samples its link state αj and broadcasts
it to sources i ∈ Sj . Therefore, the sampled link state is a piecewise constant function in
which

α̂j (k) = αj(T
Lj
n )

for any k ∈ [T
Lj
n , T

Lj
n+1). Define

zi (k) = ∇Ui (si (k)) +
1

µi

1

si (k)
−
∑

j∈Li
α̂j (k)
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as the ith source state for all i ∈ S . Let T Sin , n = 1, 2, . . . , denote the time when source
i samples its source state zi (k) and broadcasts it to links j ∈ Li. Therefore, the sampled
source state is also a piecewise constant function in which

ẑi (k) = zi
(
T Sin
)

for any k ∈ [T Sin , T
Si
n+1). Let ELj and ESi be the set of indices in {TLjn } and {T Sin } corre-

sponding to events at link j and source i, respectively. The communication event instants at
source i and link j are determined by

z2
i (k) ≥ ρiẑ

2
i (k) , (6.4)

and

(αj (k)− α̂j (k))2 ≤
∑

i∈Sj
ρiγi
|Li|

(
1− εi

2
− M

2
γi
)
ẑ2
i∑

i∈Sj
γi|Li|

2εi

, (6.5)

respectively.
The minimizer of the Lagrangian L (s;λ, µ) for fixed λ and µ can be searched using the

basic descent methods. Given an initial feasible vector s (0), the iteration of event triggered
optimization algorithms for source i is given by

si (k + 1) = si (k) + γizi (k) , (6.6)

where the positive scalar γi is called the step length. In other words, communication is
invoked only when the event conditions are not satisfied. When a communication event is
triggered, ẑi or α̂j is set to zi or αj . Therefore, the event conditions are satisfied instanta-
neously.

Theorem 31 Under the communication logic in (6.4) and (6.5), and the flow update scheme

in (6.6), if the step length is set by

0 < γi <
2− εi
M

,

then the source rates s (k) asymptotically converge to the unique minimizer of f (s;λ, µ).

Proof. Given a suitable starting point s0 ∈ dom f , the sublevel set

A =
{
s ∈ dom f |f (s) ≤ f

(
s0
)}

is closed since the function f is closed. Since the objective function is strongly convex on
A, which means that there exists an m > 0 such that

∇2f (s) ≥ mI (6.7)
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for all s ∈ A, the inequality

f (y) ≥ f (x) +∇f (x)T (y − x) +
m

2
‖y − x‖2

2 (6.8)

is held for all x and y in A. The inequality in (6.8) implies that the sublevel set contained in
A is bounded, so in particular,A is bounded. Therefore the maximum eigenvalue of∇2f (s),
which is a continuous function of s on A, is bounded above on A, i.e., there exists a constant
such that

∇2f (x) ≤MI

for all s ∈ A. This upper bound on the Hessian implies for s (k + 1) ∈ A and s (k) ∈ A,

f (s (k + 1)) ≤ f (s (k)) +∇f (s (k))T (γ · z (k)) +
M

2
‖γ · z (k)‖2

2 ,

where · denotes the element-wise multiplication of two vectors.
From the definition of zi (k), αj (k), and α̂j (k), we have

∇if (s (k) ;λ, µ) = −zi (k) +
∑

j∈Li
[αj (k)− α̂j (k)] .

For convenience, parameter dependence is omitted temporarily to save writing.
Define V (s (k)) = f (s (k) ;λ, µ)−f (s∗;λ, µ) as a Lyapunov function candidate for the

system in (6.6), where s∗ (λ, µ) is the minimizer for any fixed λ and µ, and the corresponding
Lagrangian function is f (s∗;λ, µ). By using the properties of Ui (si), it is easy to show that
such a minimizer is unique. It is trivial to see that ∆V (s) = ∆f (s;λ, µ).

For all k ≥ 0, we have

∆V ≤
∑S

i=1

{
γizi

[∑
j∈Li

(αj − α̂j)− zi
]

+
M

2
γ2
i z

2
i

}
.

Using the Young’s inequality

xy ≤ x2

2ε
+
εy2

2
,

we get

∆V ≤
∑S

i=1

{
−γi

(
1− εi

2
− M

2
γi

)
z2
i +

γi
2εi

[∑
j∈Li

(αj − α̂j)
]2
}
.

Remember there are |Li| terms in the sum
∑

j∈Li (αj − α̂j) , and then by using the sum of
squares inequality [∑

j∈Li
(αj − α̂j)

]2

≤ |Li|
∑

j∈Li
(αj − α̂j)2 ,
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we have

∆V ≤
∑S

i=1

[
−γi

(
1− εi

2
− M

2
ri

)
z2
i +

γi |Li|
2εi

∑
j∈Li

(αj − α̂j)2

]
.

We can write the last term as∑S

i=1

γi |Li|
2εi

∑
j∈Li

(αj − α̂j)2 =
L∑
j=1

(αj − α̂j)2
∑
i∈Sj

γi |Li|
2εi

.

This means

∆V ≤
∑S

i=1
−γi

(
1− εi

2
− M

2
ri

)
z2
i +

L∑
j=1

(αj − α̂j)2
∑
i∈Sj

γi |Li|
2εi

.

Considering the term
∑S

i=1 ρiγi
(
1− εi

2
− M

2
ri
)
ẑ2
i , we have∑S

i=1
ρiγi

(
1− εi

2
− M

2
γi

)
ẑ2
i =

∑L

j=1

∑
i∈Sj

ρiγi
|Li|

(
1− εi

2
− M

2
γi

)
ẑ2
i .

Adding and subtracting the term
∑S

i=1 ρiγi
(
1− εi

2
− M

2
γi
)
ẑ2
i , we obtain

∆V ≤ −
∑S

i=1
γi

(
1− M

2
ri −

εi
2

)(
z2
i − ρiẑ2

i

)
+
∑L

j=1

(αj − α̂j)2
∑
i∈Sj

γi |Li|
2εi

−
∑

i∈Sj

ρiγi
|Li|

(
1− εi

2
− M

2
γi

)
ẑ2
i

 .
This immediately suggests that ∆V (s) ≤ 0 is guaranteed for all k because the inequalities
in (6.4) and (6.5) hold for any i ∈ S and j ∈ L.

The only scenario that ∆V = 0 can happen is

zi = ẑi = 0, ∀i ∈ S, αj = α̂j = 0, ∀j ∈ L,

which corresponds to s∗ (µ, λ). As a result, the equilibrium s∗ (µ, λ) is asymptotically stable.

6.4 Event Triggered NUM Algorithm Implementation

The initial condition can be chosen distributively. Assume that each link knows the number
of sources that use the link, that is, |Sj|, and then it sends the information

cj
|Sj|
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to each source. Each source receives |Li| such information. Then the source can choose the
initial flow rate

s0
i = θi min

{
cj
|Sj|

, j ∈ Li
}
, (6.9)

with 0 < θi < 1.
Suppose that ki ∈ Li, and cki

|Ski|
= min

{
cj
|Sj | , j ∈ Li

}
. It is easy to show that the link

constraints are satisfied automatically∑
i∈Sj

s0
i =

∑
i∈Sj

θi
cki
|Ski|

<
∑
i∈Sj

cj
|Sj|

= cj.

Algorithm 32 Source i’s Update Algorithm

1. Source i’s initialization

Initialize local tolerance εi > 0, penalty factor µi , µ0
i > 0. Choose parameters

σi > 1, 0 < εi < 2, 0 < γi <
2−εi
M

, and 0 < ρi < 1. Receive information from

links and derive initial source rates s0
i . Send the information ρi, εi, γi and |Li| to links

j ∈ Li.

2. Local schedule update

a) State initialization: wait for all links j ∈ Li to send their link states α̂j and set

α̂j = αj .

b) Update source rate:

zi , ∇Ui (si) +
γi
µi

1

si
− γi

∑
j∈Li

α̂j,

si , si + γizi.

c) Communication protocol: Transmit zi to all links j ∈ Li when the following con-

dition is true

z2
i < ρiẑ

2
i ,

and set ẑi = zi.

3. Increase µi. µi , σiµi if

|zi| ≤ εi,

until µiδi > 2S. Inform the links j ∈ Li that source i performed a barrier update.

4. Repeat Step 2.
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Algorithm 33 Link j’s Update Algorithm

1. State initialization: Initialize λj , λ0
j , and choose parameter ηj > 1. Wait for users

to return zi, and Ii = 0 for all i ∈ Sj and set ẑi = zi.

2. Link update: Monitor the link state

αj =
1

λj

1

cj − rTj s
.

3. Communication protocol: Transmit αj to all users in i ∈ Sj when the following con-

dition is true

(αj (k)− α̂j (k))2 >

∑
i∈Sj

ρiγi
|Li|

(
1− εi

2
− M

2
γi
)
ẑ2
i∑

i∈Sj
γi|Li|

2εi

,

and set α̂i = αi.

4. Barrier update notification: If link j receives a notice that source i performed a bar-

rier update, set Ii = 1. If Ii = 1 for all i ∈ Sj , then set λj , ηjλj , reset Ii = 0, and

broadcast λj to all i ∈ Sj until λjδi > 2L.

5. Go to Step 2.

Remark 34 Some comments are made on the accuracy of the solution to centering prob-

lems. Computing si (k) exactly is not necessary since the central path has no significance

beyond the fact that it leads to a solution to the original problem; inexact centering will still

yield a sequence of points that converges to the optimal point. On the other hand, the cost

of computing an extremely accurate minimizer as compared to the cost of computing a good

minimizer is only marginally more. For this reason it is not unreasonable to assume exact

centering.

Remark 35 There are a few parameters involved here. To clarify, the role of each parameter

is explained as follows. The stopping criterion for inter iteration of source i is determined by

εi, which is related to the decrement of the objective function involved in source i. The choice

of the parameters σi and ηj involves a trade-off in the number of inner and outer iterations

required. If σi and ηj are small then at each outer iteration µi and λj increase by a small

factor. Values from around 10 to 20 or so seem to work well. The parameter εi is used for

the Yong’s inequality; ρi is the parameter of source i’s event detector. Let δ = max {δi} ,
then δ is a certificate for f (s∗)− p ≤ δ.
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We will prove that the point s∗(k) is δ-suboptimal, where δ is the desired accuracy of
the difference between the objective function value at the approximate solution and the true
optimal value.

Theorem 36 Under the assumptions of Ui, R and ρ in Theorem 1, the flow rates si(k)

generated by algorithms 32 and 33 converge asymptotically to the δ-suboptimal solution to

the NUM problem.

Proof. The proof is straightforward. By algorithms 32 and 33, all the parameters satisfy
µi ≥ 2S

δi
for all i ∈ S, and λj ≥ 2L

δi
, for all j ∈ L. They are fixed after the conditions are

satisfied.

6.5 Numerical Examples
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Figure 6.2: Flow rate for each source

To verify the proposed method, a simulation is demonstrated as follows. The utility
functions are chosen as

Ui (si) = wi log si,

where wi are random variables uniformly distributed on [0.8, 1.2] to distinguish different
sources. Functions Ui (si) obey the assumptions of utility functions obviously. A network
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Table 6.1: The transmission rates of sources and links

Links Sources
L1 L2 L3 S1 S2 S3 S4

No. Events 3 525 66 13 30 52 2
Transmission Rate % 0.0366 6.4017 0.8048 0.1585 0.3658 0.6341 0.0244

of 4 sources and 3 links is set up and shown in Figure 6.1. Link j is assigned a capacity cj
uniformly distributed on [0.8, 1.2].
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Figure 6.3: Evolution of the opposite of the objective function

The settings for simulation are illustrated as follows. The initial condition is generated
distributively according to (6.9) with θi = 0.95, for all i ∈ S, which is kept in the feasible
set. The initial values for multipliers λj and µi are 1, which are increased by σi = ηj = 10

during each outer interaction. Parameters ρi of the triggering logic for all sources are chosen
randomly from a uniform distribution on [0, 1]. Figure 6.2 plots the flow rate for each source
over time. After a period of transit time, all flow rates tend to be a steady value. Figure 6.3
shows the opposite of the aggregate utility over time, that is, −

∑
i∈S Ui(si). In the figure,

the red dashed line means the opposite of the maximum utility, where the optimal rate s∗

and its corresponding utility U∗ are calculated using a global optimization technique. The
objective function does not show a monotonic behavior at the beginning. This is due to
the Lagrangian parameters update. The objective function is monotonically decreasing only
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Figure 6.4: Evolution of flow in each link

during each inner iteration, that is, when the Lagrangian parameters are fixed. The derived
sub-optimal result is very close to the optimal utility value. For real-time implementation,
it is very important to guarantee that the constraints are satisfied all the time. That is, the
problem of overflow does not happen. Figure 6.4 shows the aggregate flow for each link
over time. When flow rates are approaching the optimal values, the total flow through each
link is close to the link capacity limit. There is still plenty of room in Link 1’s capacity.
However, since other links are already near their capacity limits, the flow in link 1 cannot be
increased. This happens because the link capacity in the simulation is generated randomly.
Actually, the link capacity should be well designed before installation.

Define the relative error as e (k) =
∣∣∣U(si(k))−U∗

U∗

∣∣∣ , where s (k) is the rate at time k,
and e (k) is the normalized derivation from the optimal point at the kth iteration. The
number of iteration K is counted for e (k) to decrease to and stay in the neighborhood
{e (k) |e (k) ≤ er }. For 1% relative error, the algorithm stops after 8201 iterations. Table
6.1 shows the number of information exchange and the corresponding transmission rate. It
is easy to see that the communication cost is reduced significantly.

To see the effect of er on the algorithm, the error er is varied from 0.1% to 10%, while
keeping all other parameters unchanged. The resulting Figure 6.5 plots the iteration number
K as a function of er for the broadcasting event triggered algorithm. As er increases from
0.1% to 10%, the iteration number K decreases from 225977 to 1705. There is an underly-
ing result that the number of iterations based on event triggered barrier methods increases
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Figure 6.5: Number of iterations with respect to relative errors

dramatically for high precision solutions [62].

6.6 Conclusion

We presented a barrier method for distributed optimization with event triggered commu-
nication. The proposed method is applicable to problems with convex objective functions
constrained by a convex set. We showed convergence for the algorithm and gave accu-
racy estimate. Moreover, numerical results show that the application to the network utility
maximization problem with local event triggered communication can significantly reduce
information exchange between sources and links without loosing accuracy.
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Chapter 7

Summary and Conclusions

In this last chapter, we will summarize the contributions of this thesis, discuss some chal-
lenging open problems, and present directions for future work.

7.1 Original Contributions

The summary is organized according to the earlier chapters.

Sensing and Actuation Strategies for Event Triggered Optimal Control

Chapter 2 discusses the problem of event triggered sampling and control co-design for first
order stochastic systems. A quadratic performance index is considered as the criterion for
designing event detectors and controllers in a finite time horizon. The controller co-locates
with the actuator but resides on a separate node with the sensor in the network topology.
The sensor is connected to the controller through a digital communication network medium.
It is assumed that the sensor monitors the state signal continuously with perfect measure-
ments. Nevertheless a strict upper bound is imposed on the number of data transmissions
from the sensor over a finite time horizon, and the transmission is mediated by the event
detector. There is a plethora of event detectors on the menu, but only three are presented
here: deterministic sampling, level-crossing sampling and optimal sampling. Two types of
hold circuits are studied: zero order hold and generalized order hold. Their selection is
based on their widespread use in practice as well as throughout the literature. For zero order
hold, these measurements are directly used for feedback; whereas for generalized hold, these
measurements permit us to perform a mean square estimation of the state, and the estimated
state is subsequently used for feedback. The feedback gain and the parameter of the event
detector are optimized based on a quadratic performance index. The impulse hold in which
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the control signal is an impulse, an extreme case of generalized hold, becomes optimal when
the control weight of the quadratic performance index is zero. By comparing the different
event triggered sensing and actuation schemes, it is demonstrated that level-crossing sam-
pling improves the performance significantly, and generalized hold is desirable for event
based control.

Optimal Sampling and Performance Comparison of Periodic and Event Based Impulse
Control

In Chapter 3, periodic impulse and event based impulse controls are investigated for a class
of second order stochastic systems; the contributions of this work include: (a) providing an
optimal sampling period for periodic impulse control; (b) determining an optimal threshold
for event based impulse control; (c) obtaining a performance ratio between periodic con-
trol and event based control. For event based impulse control, the states are reset to zero
whenever the magnitude reaches a given level. As mentioned earlier, the partial differential
equations with boundary conditions for the mean first passage time and stationary variance
are not simple to solve in two dimensions. To make the problem tractable, second order
stochastic systems in the Cartesian coordinates are first converted to first order stochastic
systems in the polar coordinates at the cost of losing linearity. Next, the Kolmogorov back-
ward equation is constructed based on the derived first order nonlinear stochastic differential
equation. It is shown that the average sampling period can be expressed as an absolutely
convergent series. Furthermore, the stationary distribution of the state is obtained by solving
the Kolmogorov forward equation. Finally, it is shown that for the same average control rate,
event based impulse control outperforms periodic impulse control. It is worth noting that all
the calculations are performed analytically.

Event Triggered Synchronization for Multi-agent Networks

In Chapter 4, we further explore the problem of event triggered synchronization for multi-
agent systems. In contrast to [18, 69, 127], the objective here is to attain asymptotic consen-
sus which is distinguished from the related work of bounded consensus. All agents in the
network are assumed to have identical linear dynamics and a distributed event based control
updating method is proposed to achieve synchronization between inter-connected agents un-
der an undirected and connected network. An event detector is configured at each agent to
determine when and which neighbor’s state should be used to update the controller based
on relative state differences. It is worth noting that the event conditions are required to be
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checked only at sampling instants. As pointed out in [4], it is more realistic to approximate
continuous supervision by a high fast rate sampling. Here an explicit upper bound of the
sampling period for event detection is given. In addition, to implement continuous event
detectors also requires delicate hardware to monitor local signals, and judge event condi-
tions constantly; this may become a major source of energy consumption. The proposed
framework is a generalization of event based control to synchronization of multi-agent sys-
tems in two ways: 1) the dynamics of each agent can be of any order, including single-
and double-integrator dynamics as special cases; 2) a zero-order hold is used to solve dy-
namic synchronization problems instead of higher order holds. The main contributions are
highlighted as follows:

• A comprehensive case is studied where the dynamics for each agent is described by a
general linear system rather than single- or double-integrator dynamics.

• Continuous communication and control algorithms have been relaxed to periodic com-
munication and event based control ones.

• A co-design of control and event detection is realized.

Event Triggered State Estimation via Wireless Sensor Networks

In Chapter 5, event triggered distributed state estimation approaches having a low transmis-
sion frequency are proposed which significantly reduce the overall bandwidth consumption,
and increase the lifetime of the network. These approaches are an extension of [90] to the
event triggered transmission case. Event triggered transmissions pose new challenges to
existing design methodologies as novel requirements, like adaptivity, uncertainty, and non-
linearity, arise. Specifically, the sensor node will not receive any information from the neigh-
bors if the events at neighboring sensor nodes are not triggered. In this case, the behavior of
neighboring sensors has to be estimated with the aid of the system model and information
obtained from neighbors at event instants. After an event has occurred, the sensor broad-
casts its predictive state to its neighbors and the state of the internal system models will be
re-initialized for both itself and its neighbors. Then, a modified consensus filter is proposed
to accommodate the asynchronous information exchange scenario. Formal stability analysis
of the proposed filter is provided, and a specific event triggered transmission mechanism is
constructed. Additionally, the event conditions can be checked without the knowledge of
neighbors’ information.
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Event Triggered Optimization for Network Utility Maximization Problems

Chapter 6 considers a system viewed as a network of sources and destination nodes. The sys-
tem goal is to maximize an aggregate of the objective functions of different sources, which is
not known by others. Each source updates its own flow rate to achieve the overall optimality.
A key difficulty is that each source in fact does not fully know others flow rates. Thus, in-
formation exchange through links is necessary to provide the knowledge. This is extremely
costly in terms of communication in a large network. The concern here is to determine in-
stants when a source node should broadcast its state to the links that it traverses. Note that
such communication events occur at different times for each source node. Also note that
a distributed optimization framework is necessitated by the fact that nodes operate in a dy-
namic and uncertain environment and each node generally has local information which is not
available to others. An error based triggering scheme is proposed through which a node cal-
culates the difference between its current state and its state at the last event instant. A node
transmits its current state only if the error exceeds a given threshold. In other words, a node
does not incur any communication cost unless it detects the derivation of the difference. The
analysis is based on a distributed interior-point optimization algorithm for a network utility
maximization problem that uses event triggered communication protocols. It is proved that
the proposed algorithm converges to the global optimal solution of the network utility max-
imization problem. Simulation results suggest that the resulting algorithm has a potential to
reduce the message exchange.

7.2 Recommendations for Industrial Application

Event triggered communication occurs naturally in many situations from simple servo sys-
tems to large factory complexes, computer networks, and biological systems. Many industry
processes are triggered by events, not times. Event triggered control techniques and their
combination with wireless sensor networks have already been tested in green house climate
control [93]. Event Triggered control reduced the number of changes by more than 80% in
comparison with a traditional time triggered controller. It allows reduction of the electric-
ity costs and increases the actuator lifetime. Five different event-based sampling strategies
have been compared to control of a tank system via wireless sensor networks [103]. The
conclusion is made that event triggered approaches are convenient control strategies when
the key design constraint is the reduction of exchange of information among control agents
or the reduction of the computational load. There are many reasons to use event triggered
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communication:

• It is a substitute for human behavior. Event detection is closer to human intelligence.
Event detectors have the ability to perform logic operations.

• Event triggered communication can reduce information exchange between sensors,
controllers, and actuators. This is equivalent to reduce network bandwidth usages,
and save computational sources.

• Sampled-data event detection techniques have an additional advantage of extending
the lifetime of battery-powered wireless sensors.

• This type of sampling strategies is more flexible for scheduling between different sen-
sors and subsystems.

Because of these advantages, event triggered communication has been used in industry
for some time. Moreover, it is easy to implement. Event detectors may be implemented us-
ing application-specific integrated circuits or field-programmable gate array processors. To
conduct research on event triggered communication would provide tools for control engi-
neers in better analyzing and designing complex control systems; this would in turn help to
improve product quality, safety, and increase economic efficiency in many industrial sectors.

7.3 Open Problems and Future Work

First, we list some unsolved problems in event triggered sampling.

Comparison of Event and Time Triggered Control for Stochastic Higher-order Systems

So far, only first and second order systems are considered for event based impulse control.
However, there are several possible extensions that may be worth pursuing but have some
difficulties.

Higher order systems: Consider a nonlinear stochastic differential equation

dx(t) = f (x, t) dt+ σ (x, t) dw(t), (7.1)

where x(t) ∈ Rn, and w(t) ∈ Rn is a Wiener process with incremental covariance Idt. Now
introduce the Kolmogorov forward operator

L φ = −
n∑
i=1

∂

∂xi
(φfi) +

1

2

n∑
i,j,k=1

∂2

∂xi∂xj
(φσikσjk) (7.2)
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and the Kolmogorov backward operator

L ∗ =
n∑
i=1

fi
∂

∂xi
+

1

2

n∑
i,j,k=1

σikσjk
∂2

∂xi∂xj
.

It can be shown that any unnormalized probability density p(x, t) of the state x(t) satisfies
the Fokker-Planck equation [3]

∂p (x, t)

∂t
= L p (x, t)

and the mean exit time hE(x) from Ω, starting in x, is given by the Dynkin’s equation

L ∗hE = −1 in Ω

with hE(x) = 0 on ∂Ω. However, the probability densities and exit times are not easily
computable in higher dimensions.

Systems with output feedback: Suppose that the state x(t) is partially observed and
obeys the stochastic differential equation in (7.1). The output equation is

dy(t) = g (x, t) dt+ dv(t),

where y(t) ∈ Rm, and v(t) ∈ Rm is a standard Wiener process independent of w(t). Under
suitable regularity conditions, the conditional probability density ρ(x, t) of the state given
the observations satisfies the following Duncan-Mortensen-Zakai equation

dρ (x, t) = L ρ (x, t) dt+
m∑
i=1

gi (x, t) ρ (x, t) dyi (t)

where L is the Kolmogorov forward operator given in (7.2). However, the existence and
uniqueness of solutions for Duncan-Mortensen-Zakai equations are still not well understood.

Event Triggered Output Feedback Control

In general, the goal addressed by event triggered control strategies for deterministic systems
is two fold: (1) stabilize the closed-loop system; and (2) derive a strictly positive lower
bound for inter-event intervals. The stability for event triggered control systems can be
solved by various approaches (see Chapter 1), which is relatively straightforward. The diffi-
culty lies in the way of finding a strictly positive lower bound for inter-event intervals. In the
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event triggered state feedback case, the lower bound is derived by differentiating the func-
tion ‖e(t)‖‖x(t)‖ , and with the aid of the comparison principle. Such analysis cannot be extended
to the output feedback case analogously by

d

dt

‖e (t)‖
‖y (t)‖

=
d

dt

eT (t) e (t)

yT (t) y (t)
.

Suppose y (t) = Cx (t). There does not exist such a ρ, which makes

‖y (t)‖2
2 ≥ ρ ‖x (t)‖2

2

hold for an arbitrary C. Therefore, the comparison principle is inapplicable.

Event Triggered Control for Multi-agent Systems

The same difficulty exists for event triggered control for multi-agent systems, while the
reason of failing to find a strictly positive lower bound of inter-event intervals is not the same.
For multi-agent systems, it may happen that all agents in a neighborhood reach consensus
locally instead of globally. In this case, events might be triggered frequently due to the local
consensus. Moreover, the ultimate trajectory for all agents are not static for higher-order
systems. Thus, for node-based approaches, the Zeno behavior cannot be excluded although
the consensus can be guaranteed.

Next we summarize some future work below.

Event Triggered Control for Multi-agent Systems

We aim to further explore the consensus problem for multi-agent systems from the pulse
modulation point of view. A sampled-data triggering logic was proposed in [78] to overcome
the difficulties of obtaining a strictly positive lower bound of inter-event intervals. However,
the triggering logic requires periodic communication between neighboring agents. The first
task would be to relax this communication pattern from periodic to event triggered transmis-
sion. The event detector would use only the local sampled data and the event data received
from its neighbors to make the transmission decision. In this sense, the data exchange with
neighbors would be greatly reduced, which would ease the local data processing burden of
exhaustive utilization of local sensing devices. Moreover, the utilization of a common sam-
pling period for all agents might be restrictive in distributed networks. Employing different
sampling periods for different agents would be an interesting extension. Asynchronous sam-
pling is possible for the PWM scheme. The PWM is to modulate the portion of the time that
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the signal switches on versus the time that the signal switches off in a fixed interval. After
obtaining neighbors’ information, each agent would convert the information into the width
of a rectangular pulse wave with unit amplitude. Then the pulse wave would be applied
to the local agent as an input signal. Future work will also address the generalization to
directed topology networks with communication delays as well as disturbances.

Event Triggered Optimization with Applications to Smart Grids

Advanced monitoring, communication, and control capabilities of smart meters and other
sensing devices will be essential for the successful management of smart grids [8]. While
many of these technologies are well established in their particular areas, the interactions
when combining them into a fully functioning cyber-physical system can result in much
unexpected behavior. Therefore, rigorous studies will become necessary to evaluate the
performance of these systems in order to reveal unintended and potentially harmful inter-
actions between subsystems before deploying such technologies in the field. We propose
to investigate the optimal power flow and demand response problems with the aid of mod-
ern communication technology extensively to maximize operational efficiency of energy
production, transmission, and delivery. The traditional power system infrastructure for com-
munication is power line communication. However, the communication network is the first
thing to go down during power disruptions. One way around this problem is to utilize wire-
less communication networks that operate independently of the main power grid. Sensor
nodes in wireless sensor networks are usually powered by batteries, running untethered.
They have limited computational and communication resources. These constraints dictate
that the amount of information transmits across the network should be limited. One way of
doing this is to adopt an event triggered approach to information transmission.

Event Triggered Resilience for Cyber-Physical Systems under Attacks

Cyber security is one of the most important problems in cyber-physical systems. The over-
all goal of cyber security is to create a safe, secure, and resilient cyber environment. In
the context of CPSs, resilience is the ability of a system to continue operating satisfactorily
when stressed by unexpected inputs, subsystem failures, environmental conditions, or inputs
that are outside the specified operating range. All networked computing systems face risk
of malicious attacks. As CPS networks become more open, they are in a more vulnerable
situation. There are risks due to illegal access to information, attacks causing physical dis-
ruptions in service availability in suppliers, and the possibility of accidental introduction of
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malicious codes. System resources can be rendered unavailable through denial of service
attacks by congesting the network or system with unnecessary data [96]. Therefore, the spo-
radic nature of event triggered feedback would be appropriate to determine when to update
the control signal.
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Appendix A

Stability

There are a number of different types of stability for different formulations of an event
triggered control system.

Input-to-State Stability [55]

Consider the system
ẋ = f (t, x, u) (A.1)

where f : [0,∞) × Rn × Rm → Rn is piecewise continuous in t and locally Lipschitz in
x and u. The input u (t) is a piecewise continuous, bounded function of t for all t ≥ 0.
Suppose the unforced system

ẋ = f (t, x, 0)

has a globally uniformly asymptotically stable equilibrium point at the origin x = 0.

Definition 37 A continuous function α : [0, a) → [0,∞) is said to belong to class K if it is

strictly increasing and α (0) = 0. It is said to belong to class K∞ if a =∞ and α (r)→∞
as r →∞.

Definition 38 A continuous function β : [0, a)× [0,∞)→ [0,∞) is said to belong to class

KL if, for each fixed s, the mapping β (r, s) belongs to class K with respect to r and, for

each fixed r, the mapping β (r, s) is decreasing with respect to s and β (r, s)→ 0 as s→∞.

Definition 39 The system in (A.1) is said to be input-to-state stable if there exist a class KL
function β and a class K function γ such that for any initial state x (t0) and any bounded

input u (t), the solution x (t) exists for all t ≥ t0 and satisfies

‖x (t)‖ ≤ β (‖x (t0)‖ , t− t0) + γ

(
sup
t0≤τ≤t

‖u (τ)‖
)
.
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The Lyapunov-like theorem that follows gives a sufficient condition for input-to-state
stability.

Theorem 40 Let V : [0,∞)× Rn → R be a continuously differentiable function such that

α1 (‖x‖) ≤ V (t, x) ≤ α2 (‖x‖) ,
∂V

∂t
+
∂V

∂x
f (t, x, u) ≤ −W3 (x) , ∀ ‖x‖ ≥ ρ (‖u‖) > 0

∀ (t, x, u) ∈ [0,∞) × Rn × Rm, where α1, α2 are class K∞ functions, ρ is a class K
function, and W3 (x) is a continuous positive definite function on Rn. Then, the system in

(A.1) is input-to-state stable with γ = α−1
1 ◦ α2 ◦ ρ.

Stability of Time-delay Systems [38]

Let C = C ([−r, 0] ,Rn) be the set of continuous functions mapping the interval [−r, 0] to
Rn, and let ψt ∈ C be the function ψ defined as ψt (θ) = ψ (t+ θ) , −r ≤ θ ≤ 0. The
general form of a retarded functional differential equation is

ẋ (t) = f (t, xt) , (A.2)

where x (t) ∈ Rn and f : R × C → Rn. Specify the initial state variables x (t) in a time
interval of length r, say, from t0 − r to t0, i.e.,

xt0 = φ,

where φ ∈ C is given. In other words, x (t0 + θ) = φ (θ) , −r ≤ θ ≤ 0.
For a function φ ∈ C ([−r, 0] ,Rn), define the continuous norm ‖·‖c by

‖φ‖c = max
−r≤θ≤0

‖φ (θ)‖ .

Definition 41 For the system described by (A.2), the trivial solution x (t) = 0 is said to be

stable if for any t0 ∈ R and any ε > 0, there exists a δ = δ (t0, ε) > 0 such that ‖xt0‖c < δ

implies ‖x (t)‖ < ε for t ≥ t0. It is said to be asymptotically stable if it is stable, and for

any t0 ∈ R and any ε > 0, there exists a δa = δ (t0, ε) > 0 such that ‖xt0‖c < δa implies

lim
t→∞

x (t) = 0. It is said to be uniformly stable if it is stable and δ (t0, ε) can be chosen

independently of t0. It is uniformly asymptotically stable if it is uniformly stable and there

exists a δa > 0 such that for any η > 0, there exists a T = T (δa, η), such that ‖xt0‖c < δ

implies ‖x (t)‖ < η for t ≥ t0 + T and t0 ∈ R. It is globally (uniformly) asymptotically

stable if it is (uniformly) asymptotically stable and δa can be an arbitrarily large, finite

number.
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The Lyapunov-Krasovskii theorem and Razumikhin theorem will be stated in the fol-
lowing:

Theorem 42 (Lyapunov-Krasovskii Stability Theorem) Suppose f : R × C → Rn in (A.2)

maps R×(bounded sets in C) into a bounded sets in Rn, and that u, v, w : R̄+ → R̄+

are continuous nondecreasing functions, where additionally u (s) and v (s) are positive for

s > 0, and u (0) = v (0) = 0. If there exists a continuous differentiable functional V :

R× C → R such that

u (‖φ (0)‖) ≤ V (t, φ) ≤ v (‖φ‖c)

and

V̇ (t, φ) ≤ −w (‖φ (0)‖) ,

then the trivial solution of (A.2) is uniformly stable. If w (s) > 0 for s > 0, then it is

uniformly asymptotically stable. If, in addition, lims→∞ u (s) = ∞, then it is globally

uniformly asymptotically stable.

Theorem 43 [41] (Razumikhin Theorem) Suppose f : R × C → Rn in (A.2) takes R×
(bounded sets of C) into bounded sets of Rn, and u, v, w : R̄+ → R̄+ are continuous nonde-

creasing functions, u (s) and v (s) are positive for s > 0, and u (0) = v (0) = 0, v strictly

increasing. If there exists a continuous differentiable functional V : R× Rn → R such that

u (‖x‖) ≤ V (t, x) ≤ υ (‖x‖) , for t ∈ R and x ∈ Rn

and the derivative of V along the solution x (t) of (A.2) satisfies

V̇ (t, x (t)) ≤ −w (‖x (t)‖) whenever V (t+ θ, x (t+ θ)) ≤ V (t, x (t)) (A.3)

for θ ∈ [−r, 0], then system in (A.2) is uniformly stable.

If, in addition, w (s) > 0 for s > 0, and there exist a continuous nondecreasing function

p (s) > s for s > 0 such that condition in (A.3) is strengthened to

V̇ (t, x (t)) ≤ −w (‖x (t)‖) if V (t+ θ, x (t+ θ)) ≤ p (V (t, x (t)))

for θ ∈ [−r, 0], then system in (A.2) is uniformly asymptotically stable.

If in addition lims→∞ u (s) = ∞, then system in (A.2) is globally uniformly asymptoti-

cally stable.
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Stability of Impulsive Dynamical Systems [40]

The state-dependent impulsive dynamical system can be written in the form of

ẋ (t) = fc (x (t)) , x (0) = x0, x (t) /∈ Z, (A.4)

4x (t) = fd (x (t)) , x (t) ∈ Z. (A.5)

Definition 44 i) The zero solution x (t) ≡ 0 to (A.4) and (A.5) is Lyapunov stable if, for all

ε > 0, there exists δ = δ (ε) > 0 such that if ‖x (0)‖ < δ, then ‖x (t)‖ < ε, t ≥ 0.

ii) The zero solution x (t) ≡ 0 to (A.4) and (A.5) is asymptotically stable if it is Lyapunov

stable and there exists δ > 0 such that if ‖x (0)‖ < δ, then limt→∞ x (t) = 0.

iii) The zero solution x (t) ≡ 0 to (A.4) and (A.5) is exponentially stable if there exist

positive constants α, β, and δ such that if ‖x (0)‖ < δ, then ‖x (t)‖ < α ‖x (0)‖ e−βt,
t ≥ 0.

iv) The zero solution x (t) ≡ 0 to (A.4) and (A.5) is globally asymptotically stable if it is

Lyapunov stable and for all x (0) ∈ Rn, limt→∞ x (t) = 0.

v) The zero solution x (t) ≡ 0 to (A.4) and (A.5) is globally exponentially stable if there

exist positive constants α and β such that ‖x (t)‖ < α ‖x (0)‖ e−βt, t ≥ 0, for all

x (0) ∈ Rn.

vi) Finally, the zero solution x (t) ≡ 0 to (A.4) and (A.5) is unstable if it is not Lyapunov

stable.

Theorem 45 Consider the nonlinear impulsive dynamical system G given by (A.4) and

(A.5). Suppose there exists a continuously differentiable function V : D → [0,∞) satis-

fying V (0) = 0, V (x) > 0, x ∈ D, x 6= 0, and

∂V (x)

∂x
fc (x) ≤ 0, x /∈ Z, (A.6)

V (x+ fd (x)) ≤ V (x) , x ∈ Z. (A.7)

Then the zero solution x (t) ≡ 0 to (A.4) and (A.5) is Lyapunov stable. Furthermore, if the

inequality (A.6) is strict for all x 6= 0, then the zero solution x (t) ≡ 0 to (A.4) and (A.5) is

asymptotically stable. Alternatively, if there exist scalars α, β, ε > 0, and p ≥ 1 such that

α ‖x‖p ≤ V (x) ≤ β ‖x‖p , x ∈ D,
∂V (x)

∂x
fc (x) ≤ −εV (x) , x /∈ Z,
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and (A.7) holds, then the zero solution x (t) ≡ 0 to (A.4) and (A.5) is exponentially stable.

Finally, if, in addition, D = Rn and

V (x)→∞ as ‖x‖ → ∞,

then the above asymptotic and exponential stability results are global.

Stability of Hybrid Dynamical Systems [34]

The model of a hybrid system can be represented in the following form:{
x ∈ C ẋ ∈ F (x) ,
x ∈ D x+ ∈ G (x) ,

where C is the flow set, F is the flow map, D is the jump set, and G is the jump map.

Definition 46 (Uniform global pre-asymptotic stability (UGpAS)) Consider a hybrid system

H on Rn. Let A ⊂ Rn be closed. The set A is said to be

• uniformly globally stable for H if there exists a class-K∞ function α such that any

solution φ toH satisfies |φ (t, j)|A ≤ α (|φ (0, 0)|A) for all (t, j) ∈ domφ ;

• uniformly globally pre-attractive forH if for each ε > 0 and r > 0 there exists T > 0

such that, for any solution φ with |φ (0, 0)|A ≤ r, (t, j) ∈ domφ and t+ j ≥ T imply

|φ (t, j)|A ≤ ε ;

• uniformly globally pre-asymptotically stable forH if it is both uniformly globally sta-

ble and uniformly globally pre-attractive.

Theorem 47 (Sufficient Lyapunov conditions) LetH = (C,F,D,G) be a hybrid system and

let A ⊂ Rn be closed. If V is a Lyapunov function candidate for H and there exist α1,

α2 ∈ K∞, and a continuous ρ ∈ PD such that

α1 (|x|A) ≤ V (x) ≤ α2 (|x|A) ∀x ∈ C ∪D ∪G (D) ,

〈∇V (x) , f〉 ≤ −ρ (|x|A) ∀x ∈ C, f ∈ F (x) ,

V (g)− V (x) ≤ −ρ (|x|A) ∀x ∈ D, g ∈ G (x) ,

then A is uniformly globally pre-asymptotically stable forH.
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Appendix B

Stochastic Control Theory

We now present some basic concepts and important results in stochastic control theory used
in deriving the results in Chapter 2, Chapter 3, and Chapter 5.

Probability Space [89]

Definition 48 If Ω is a given set, then a σ-algebra F on Ω is a family F of subsets of Ω with

the following properties:

(i) ∅ ∈ F

(ii) F ∈ F ⇒ FC ∈ F , where FC = Ω\F is the complement of F in Ω

(iii) A1, A2, . . . ∈ F ⇒ A := ∪∞i=1Ai ∈ F .

The pair (Ω,F) is called a measurable space. A probability measure P on a measurable

space (Ω,F) is a function P : F −→ [0, 1] such that

(a) P (∅) = 0, P (Ω) = 1

(b) if A1, A2, . . . ∈ F and {Ai}∞i=1 is disjoint then

P (∪∞i=1Ai) =
∞∑
i=1

P (Ai) .

The triple (Ω,F , P ) is called a probability space.

If (Ω,F , P ) is a given probability space, then a function Y : Ω → R is called F-
measurable if

Y −1 (U) := {ω ∈ Ω;Y (ω) ∈ U} ∈ F
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for all open sets U ∈ Rn.
Suppose 0 ≤ S ≤ T and f (t, ω) is given. Define the Itô integral∫ T

S

f (t, ω) dBt (ω) ,

where Bt is 1-dimensional Brownian motion. An important property of the Itô integral is
that [89]

E

[∫ T

S

f (t, ω) dBt (ω)

]
= 0.

Solutions of Linear Stochastic Differential Equations [3]

Consider
dx = A (t)xdt+ dB, (B.1)

where x is an n-dimensional vector, {B(t), t ∈ T} an n-dimensional Wiener process with
incremental covariance R1dt. It is assumed that the initial value x (t0) is a normal random
variable with mean m0 and covariance R0.

The solution of (B.1) can be written as

x (t) = Φ (t; t0)x (t0) +

∫ t

t0

Φ (t; s) dB (s) , (B.2)

where Φ satisfies the differential equation

dΦ (t; t0)

dt
= A (t) Φ (t; t0)

with the initial condition
Φ (t0; t0) = I .

The properties of the solution of (B.2) is summarized as follows.

Theorem 49 The solution of the stochastic differential equation is a normal process with

mean value mx (t) and covariance R (s, t) where

dmx

dt
= A (t)mx,

mx (t) = m0,

R (s, t) =

{
Φ (s; t)P (t) s ≥ t,
P (s) ΦT (t; s) s ≤ t,

dP

dt
= AP + PAT +R1,

P (t0) = R0.
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The Cost over A Fixed Finite Time Interval [57]

Here the process is of interest over the finite interval [0, T ] only, and the process stops on
hitting the boundary of the region G. Let g(·) be a continuous and bounded function on
Rk × [0, T ]. The process will stop if it hits the boundary of G before time T . If this occurs
at time s < T and the exit point is x, then the penalty will be g(x, s). If the process does
not exit G before time T , then the cost will be g(x(T ), T ). It is, therefore, natural to set the
problem up with a terminal value imposed at time t = T . The problem may be rewritten as
an initial value problem if desired. Then the cost, starting at point x ∈ G0 at time t < T , is

W (x, T ) = Ex,t
[∫ T∧τ

t

k (x (s)) ds+ g (x (T ∧ τ) , T ∧ τ)

]
.

From a formal point of view, it can be shown that W (·) satisfies the PDE

∂W (x, t)

∂t
+ LW (x, t) + k (x) = 0

for x ∈ G0, t < T , together with W (x, T ) = g (x, T ). We also have W (y, t) → g (x, t) as
y → x ∈ ∂G for regular points x and

Ex,tW (x (τ ∧ T ) , τ ∧ T ) = Ex,tg (x (τ ∧ T ) , τ ∧ T ) .

Martingales [24]

Definition 50 A filtration is a familyM = {Mt}t≥0 of σ-algebrasMt ⊂ F such that

0 ≤ s < t⇒Ms ⊂Mt.

An n-dimensional stochastic process {Mt}t≥0 on (Ω,F , P ) is called a martingale with re-

spect to a filtration {Mt}t≥0 if

(i) Mt isMt-measurable for all t,

(ii) E [|Mt|] <∞ for all t and

(iii) E [Ms|Mt] = Mt for all s ≥ t.

Theorem 51 [24] If u (t, x) is a polynomial in t and x with

∂u

∂t
+

1

2

∂2u

∂x2
= 0, (B.3)

then u (t, Bt) is a martingale.

Examples of functions that satisfy (B.3) are exp(θx− θ2t/2), x, x2 − t, x3 − 3tx, x4 −
6x2t+ 3t2 · · ·
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Appendix C

Algebraic Graph Theory

Some facts from algebraic graph theory are reviewed [33, 20, 84]. A graph is a pair G =

(V , E) of sets such that E ⊆ V × V . The elements of V are the vertices of the graph G; the
elements of E , 2-element subsets of V , are its edges. A vertex v is incident with an edge e if
v ∈ e; then e is an edge at v. Two vertices x, y of G are adjacent, or neighbors, if xy is an
edge of G. A path is a non-empty subgraph P = (V ′, E ′) of G of the form

V ′ = {i0, i1, . . . ik} E ′ = {i0i1, i1i2, . . . , ik−1ik} ,

where the ij are all distinct. A non-empty graph G is called connected if any two of its
vertices are linked by a path in G.

Assigning an arbitrary direction to each edge, then the N×m incidence matrixD is thus
defined as

D = [dij] ,

where

dij =


−1, if vi is the tail of ej,
1, if vi is the head of ej,
0, otherwise.

2 1 3 4
e2

e1

e3

Figure C.1: An undirected graph with 4 vertices that is arbitrarily oriented

For example, the incidence matrix associated with the graph G that has been oriented in
Figure C.1 is

D =


−1 −1 0
0 1 0
1 0 1
0 0 −1

 .
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All incidence matrices have a column sum equal to zero, since every edge has to have exactly
one tail and one head as can be seen from this example.

The Laplacian and edge Laplacian for an arbitrary oriented graph G is defined as

L = DDT , and Le = DTD,

respectively. The definitions directly reveal that the Laplacian and edge Laplacian are
both symmetric and positive semi-definite matrices; and it follows that they have the same
nonzero eigenvalues with the same multiplicities from the fact that

det
(
I −DDT

)
= det

(
I −DTD

)
.

For a connected graph, the Laplacian matrix has exactly a single zero eigenvalue and the
corresponding eigenvector is the vector of ones, that is,

L1 = 0.

For a connected graph with Laplacian matrix L, let λ2 be the smallest positive eigenvalue
and λN the maximum eigenvalue of L; two important variational characterizations of them
are given below:

λ2 = min
x⊥1,‖x‖2=1

xTLx, λN = max
‖x‖2=1

xTLx.
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Appendix D

Matrix Theory

We now present some results from matrix theory used in deriving the results in Chapter 4
and Chapter 5 [47, 48].

Kronecker Products [58]

The kronecker product is an operation on two matrices A = [aij] and B of arbitrary size,
resulting in a block matrix, which is defined as A ⊗ B = [aijB]. Some properties of the
Kronecker product are given as follows:

1. ‖A⊗ I‖2 = ‖A‖2.

2. (A⊗B)T = AT ⊗BT .

3. A⊗ (B + C) = A⊗B + A⊗ C (distributivity).

4. For scalar k, (kA)⊗B = A⊗ (kB) = k (A⊗B).

5. For compatible matrices, (A⊗B) (C ⊗D) = AC ⊗BD.

6. For square nonsingular matrices A and B: (A⊗B)−1 = A−1 ⊗B−1.

7. For a square matrix A, A ⊗ I and A have the same eigenvalues without considering
their multiplicity.

Matrix Inversion Lemma

Matrix inversion lemma, also known as Woodbury matrix identity, is

(A+ UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1

where A, U , C and V all denote matrices of the correct size.
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Appendix E

Convex Optimization

We now present some concepts and results on convex functions used in deriving the results
in Chapter 6 [12].

Definition 52 A function f : Rn → R is convex if dom f is convex set and if for all

x, y ∈ dom f, and θ with 0 ≤ θ ≤ 1, it holds

f (θx+ (1− θ) y) ≤ θf (x) + (1− θ) f (y) . (E.1)

A function f is strictly convex if strict inequality holds in (E.1) whenever x 6= y and 0 ≤ θ ≤
1. The function f is concave if −f is convex, and strictly concave if −f is strictly convex.

For example, log x is concave on R++.
Now introduce two operations that preserve convexity or concavity of functions.

1. A nonnegative weighted sum of convex functions,

f = w1f1 + · · ·+ wmfm,

is convex. Similarly, a nonnegative weighted sum of concave functions is concave. A
nonnegative, nonzero weighted sum of strictly convex (concave) functions is strictly
convex (concave).

2. Suppose f : Rn → R, A ∈ Rn×m, and b ∈ Rn. Define g : Rm → R by

g (x) = f (Ax+ b) ,

with dom g = {x |Ax+ b ∈ dom f }. Then if f is convex, so is g; if f is concave,
so is g.

116



Definition 53 A function f : Rn → R is said to be closed if, for each α ∈ R, the sublevel

set

{x ∈ dom f |f (x) ≤ α}

is closed.

For example, the functions f (x) = − log x with dom f = R++ and

f (x) = −
m∑
i=1

log
(
bi − aTi x

)
with dom f =

{
x
∣∣aTi x < bi, i = 1, . . . ,m

}
are closed.

Assume f is strongly convex on a sublevel set S, so there are positive constants m and
M such that

mI ≤ ∇2f (x) ≤MI

for all x ∈ S. The lower and upper bounds on the Hessian imply for any x, y ∈ S,

∇f (x)T (y − x) +
m

2
‖y − x‖2

2 ≤ f (y)− f (x) ≤ ∇f (x)T (y − x) +
M

2
‖y − x‖2

2 .
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[39] A. Hać. Wireless Sensor Network Designs. John Wiley & Sons, 2003.

[40] W. M. Haddad, V. Chellaboina, and S. G. Nersesov. Impulsive and Hybrid Dynamical

Systems: Stability, Dissipativity, and Control. Princeton University Press, 2006.

[41] J. Hale and S. Lunel. Introduction to Functional Differential Equations. Springer,
1993.

[42] W. Heemels and M. Donkers. Model-based periodic event-triggered control for linear
systems. Automatica, 49(3):698–711, 2013.

[43] W. Heemels, M. Donkers, and A. Teel. Periodic event-triggered control for linear
systems. IEEE Trans. Autom. Control, 58(4):847–861, 2013.

[44] W. Heemels, K. Johansson, and P. Tabuada. An introduction to event-triggered and
self-triggered control. In Proc. of 51st IEEE Conf. on Decision and Control, pages
3270–3285, December 2012.

[45] W. Heemels, J. Sandee, and P. Van Den Bosch. Analysis of event-driven controllers
for linear systems. Int. J. Control, 81(4):571–590, 2008.

[46] T. Henningsson, E. Johannesson, and A. Cervin. Sporadic event-based control of
first-order linear stochastic systems. Automatica, 44(11):2890–2895, 2008.

[47] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge university press, 2012.

[48] A. S. Householder. The Theory of Matrices in Numerical Analysis. Courier Dover
Publications, 2013.

[49] J. Hu, G. Chen, and H. Li. Distributed event-triggered tracking control of leader-
follower multi-agent systems with communication delays. Kybernetika, 47(4):630–
643, 2011.

[50] J. Hu, Y. Zhou, and Y. Lin. Second-order multiagent systems with event-driven con-
sensus control. Abstract and Applied Analysis, 2013, 2013.

[51] S. Hu and D. Yue. Event-triggered control design of linear networked systems with
quantizations. ISA transactions, 51:153–162, 2011.

[52] S. Hu and D. Yue. Event-basedH∞ filtering for networked system with communica-
tion delay. Signal Processing, 92(9):2029–2039, 2012.

121



[53] L. Jetto and V. Orsini. Supervised stabilisation of linear discrete-time systems with
bounded variation rate. IET Control Theory Appl., 2(10):917–929, 2008.

[54] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer,
second edition, 1991.

[55] H. K. Khalil. Nonlinear Systems. Prentice Hall, third edition, 2002.

[56] E. Kofman and J. H. Braslavsky. Level crossing sampling in feedback stabilization
under data-rate constraints. In Proc. of the 45th IEEE Conf. on Decision and Control,
pages 4423–4428, December 2006.

[57] H. J. Kushner and P. G. Dupuis. Numerical Methods for Stochastic Control Problems

in Continuous Time. Springer, 2 edition, 2001.

[58] A. J. Laub. Matrix Analysis for Scientists and Engineers. SIAM: Society for Industrial
and Applied Mathematics, 2005.

[59] E. A. Lee and S. A. Seshia. Introduction to Embedded Systems - A Cyber-Physical

Systems Approach. LeeSeshia.org, 2011.

[60] D. Lehmann and J. Lunze. Extension and experimental evaluation of an event-based
state-feedback approach. Control Engineering Practice, 19(2):101–112, 2011.

[61] D. Lehmann and J. Lunze. Event-based control with communication delays and
packet losses. Int. J. Control, 85(5):563–577, 2012.

[62] M. Lemmon. Networked Control Systems, volume 406 of Lecture Notes in Control

and Information Sciences, chapter Event-triggered feedback in control, estimation,
and optimization, pages 293–358. Berlin/Heidelberg: Springer, 2011.

[63] S. Li, D. Sauter, and B. Xu. Fault isolation filter for networked control system with
event-triggered sampling scheme. Sensors, 11(1):557–572, 2011.

[64] W. Li, S. Zhu, C. Chen, and X. Guan. Distributed consensus filtering based on event-
driven transmission for wireless sensor networks. In Proc. of the 31st Chinese Control

Conference, pages 6588–6593, 2012.

[65] G. Lipsa and N. Martins. Remote state estimation with communication costs for first-
order LTI systems. IEEE Trans. Autom. Control, 56(9):2013–2025, 2011.

122



[66] Q. Liu, Z. Wang, X. He, and D. Zhou. A survey of event-based strategies on control
and estimation. Systems Science & Control Engineering, 2(1):90–97, 2014.

[67] Z. Liu and Z. Chen. Reaching consensus in networks of agents via event-triggered
control. Journal of Information & Computational Science, 8(3):393–402, 2011.

[68] Z. Liu, Z. Chen, and Z. Yuan. Event-triggered average-consensus of multi-agent
systems with weighted and direct topology. J. Syst. Sci. Complex, 25(5):845–855,
2012.

[69] D. Liuzza, D. V. Dimarogonas, M. di Bernardo, K. H. Johansson, et al. Distributed
model-based event-triggered control for synchronization of multi-agent systems. In
Proc. 9th IFAC Symposium on Nonlinear Control Systems, pages 329–334, 2013.

[70] D. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 3 edition,
2008.

[71] J. Lunze and D. Lehmann. A state-feedback approach to event-based control. Auto-

matica, 46(1):211–215, 2010.

[72] J. M. Maciejowski. Predictive Control: with Constraints. Pearson education, 2002.

[73] J. W. Marck and J. Sijs. Relevant sampling applied to event-based state-estimation.
In Proc. of the 2010 Fourth International Conference on Sensor Technologies and

Applications, pages 618–624, 2010.

[74] M. Mazo and P. Tabuada. Decentralized event-triggered control over wireless sen-
sor/actuator networks. IEEE Trans. Autom. Control, 56(10):2456 –2461, 2011.

[75] M. Meinel, M. Ulbrich, and S. Albrecht. A class of distributed optimization methods
with event-triggered communication. Computational Optimization and Applications,
57(3):517–553, 2014.

[76] X. Meng and T. Chen. Event-based stabilization over networks with transmission
delays. Journal of Control Science and Engineering, 2012:1–8, 2012.

[77] X. Meng and T. Chen. Optimal sampling and performance comparison of periodic
and event based impulse control. IEEE Trans. Autom. Control, 57(12):3252 – 3259,
2012.

123



[78] X. Meng and T. Chen. Event based agreement protocols for multi-agent networks.
Automatica, 49(7):2123–2132, 2013.

[79] X. Meng and T. Chen. Event-driven communication for sampled-data control sys-
tems. In Proc. of American Control Conference (ACC), pages 3002–3007, 2013.

[80] X. Meng and T. Chen. Event detection and control co-design of sampled-data systems.
Int. J. Control, 87(4):777–786, 2014.

[81] X. Meng and T. Chen. Event triggered robust filter design for discrete-time systems.
IET Control Theory Appl., 8(2):104–113, 2014.

[82] X. Meng and T. Chen. Optimality and stability of event triggered consensus state
estimation for wireless sensor networks. In Proc. of American Control Conference

(ACC), pages 3565–3570, 2014.

[83] X. Meng, B. Wang, T. Chen, and M. Darouach. Sensing and actuation strategies for
event triggered stochastic optimal control. In Proc. of IEEE 52nd Conf. on Decision

and Control, pages 3097–3102, 2013.

[84] M. Mesbahi and M. Egerstedt. Graph Theoretic Methods in Multiagent Networks.
Princeton University Press, 2010.

[85] M. Miskowicz. Event-based sampling strategies in networked control systems. In
Proc. of 10th IEEE Workshop on Factory Communication Systems (WFCS), pages
1–10, 2014.

[86] B. Mohar. Eigenvalues, diameter, and mean distance in graphs. Graphs and Combi-

natorics, 7(1):53–64, 1991.

[87] A. Molin and S. Hirche. On the optimality of certainty equivalence for event-triggered
control systems. IEEE Trans. Autom. Control, 58(2):470–474, 2013.

[88] V. Nguyen and Y. Suh. Improving estimation performance in networked control sys-
tems applying the send-on-delta transmission method. Sensors, 7(10):2128–2138,
2007.

[89] B. Øksendal. Stochastic Differential Equations: An Introduction with Applications.
Springer, 6th edition, 2003.

124



[90] R. Olfati-Saber. Kalman-consensus filter: optimality, stability, and performance. In
Proceedings of the 48th IEEE Conference on Decision and Control, pages 7036–
7042, 2009.

[91] D. P. Palomar and M. Chiang. A tutorial on decomposition methods for network utility
maximization. Selected Areas in Communications, IEEE Journal on, 24(8):1439–
1451, 2006.

[92] D. P. Palomar and M. Chiang. Alternative distributed algorithms for network
utility maximization: Framework and applications. IEEE Trans. Autom. Control,
52(12):2254–2269, 2007.

[93] A. Pawlowski, J. Guzman, F. Rodrı́guez, M. Berenguel, J. Sanchez, and S. Dormido.
Simulation of greenhouse climate monitoring and control with wireless sensor net-
work and event-based control. Sensors, 9(1):232–252, 2009.

[94] C. Peng and Q. Han. A novel event-triggered transmission scheme and control co-
design for sampled-data control systems. IEEE Trans. Autom. Control, 58(10):2620–
2626, 2013.

[95] C. Peng and T. Yang. Event-triggered communication and H∞ control co-design for
networked control systems. Automatica, 49(5):1326–1332, 2013.

[96] R. Poisel. Modern Communications Jamming: Principles and Techniques. Artech
House, 2011.

[97] M. Rabi, K. Johansson, and M. Johansson. Optimal stopping for event-triggered
sensing and actuation. In Proc. of the 47th IEEE Conference on Decision and Control,
pages 3607–3612, 2008.

[98] M. Rabi, G. Moustakides, and J. Baras. Adaptive sampling for linear state estimation.
SIAM J. Control Optim., 50(2):672–702, 2012.

[99] C. Ramesh, H. Sandberg, and K. Johansson. Design of state-based schedulers for a
network of control loops. IEEE Trans. Autom. Control, 58(8):1962–1975, 2013.

[100] J. B. Rawlings and D. Q. Mayne. Model Predictive Control: Theory and Design. Nob
Hill Pub., 2009.

125



[101] W. Ren and R. Beard. Distributed Consensus in Multi-Vehicle Cooperative Control:

Theory and Applications. Springer, 2008.

[102] W. Ren and Y. Cao. Convergence of sampled-data consensus algorithms for double-
integrator dynamics. In Proc. of the 47th IEEE Conference on Decision and Control,
pages 3965–3970, 2008.

[103] J. Sánchez, M. Guarnes, and S. Dormido. On the application of different event-based
sampling strategies to the control of a simple industrial process. Sensors, 9(9):6795–
6818, 2009.

[104] G. Seyboth, D. V. Dimarogonas, and K. H. Johansson. Event-based broadcasting for
multi-agent average consensus. Automatica, 49(1):245–252, 2013.

[105] J. Sijs and M. Lazar. Event based state estimation with time synchronous updates.
IEEE Trans. Autom. Control, 57(10):2650–2655, 2012.

[106] D. Simon. Optimal State Estimation: Kalman,H∞, and Nonlinear Approaches. John
Wiley & Sons, 2006.

[107] Y. Suh, V. Nguyen, and Y. Ro. Modified Kalman filter for networked monitoring
systems employing a send-on-delta method. Automatica, 43(2):332–338, 2007.

[108] P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. IEEE

Trans. Autom. Control, 52(9):1680–1685, 2007.

[109] P. Tallapragada and N. Chopra. On event triggered tracking for nonlinear systems.
IEEE Trans. Autom. Control, 58(9):2343–2348, 2013.

[110] S. Trimpe and R. D’Andrea. Event-based state estimation with variance-based trigger-
ing. In Proc. of the 51st IEEE Conference on Decision and Control, pages 6583–6590,
Maui, Hawaii, USA, 2012.

[111] V. Vasyutynskyy and K. Kabitzsch. Event-based control: Overview and generic
model. In Proc. of 8th IEEE International Workshop on Factory Communication

Systems (WFCS), pages 271–279, 2010.

[112] B. Wang, X. Meng, and T. Chen. Event based pulse-modulated control of linear
stochastic systems. IEEE Trans. Autom. Control, 59(8):2144–2150, 2014.

126



[113] X. Wang and M. Lemmon. Event-triggering in distributed networked control systems.
IEEE Trans. Autom. Control, 56(3):586–601, 2011.

[114] X. Wang and M. Lemmon. On event design in event-triggered feedback systems.
Automatica, 47(10):2319–2322, 2011.

[115] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed newton method for network
utility maximization–i: Algorithm. IEEE Trans. Autom. Control, 58(9):2162–2175,
2013.

[116] J. Wu, Q. Jia, K. Johansson, and L. Shi. Event-based sensor data scheduling: trade-
off between communication rate and estimation quality. IEEE Trans. Autom. Control,
58(4):1041–1046, 2013.

[117] F. Xiao, X. Meng, and T. Chen. Average sampled-data consensus driven by edge
events. In Proc. of 31st Chinese Control Conf., pages 6239–6244, 2012.

[118] D. Xie, D. Yuan, J. Lu, and Y. Zhang. Consensus control of second-order leader–
follower multi-agent systems with event-triggered strategy. Transactions of the Insti-

tute of Measurement and Control, 35(4):426–436, 2013.

[119] X. Yin and D. Yue. Event-triggered tracking control for heterogeneous multi-agent
systems with markov communication delays. Journal of the Franklin Institute,
350(5):1312–1334, 2013.

[120] H. Yu and P. Antsaklis. Event-triggered output feedback control for networked control
systems using passivity: Achieving L2 stability in the presence of communication
delays and signal quantization. Automatica, 49(1):30–38, 2013.

[121] H. Yu and P. Antsaklis. Output synchronization of networked passive systems with
event-driven communication. IEEE Trans. Autom. Control, 59(3):750–756, 2014.

[122] D. Yue, E. Tian, and Q. Han. A delay system method for designing event-triggered
controllers of networked control systems. IEEE Trans. Autom. Control, 58(2):475–
481, 2013.

[123] X. Zhang and Q. Han. Network-basedH∞ filtering using a logic jumping-like trigger.
Automatica, 49(5):1428–1435, 2013.

127



[124] Z. Zhang, F. Hao, L. Zhang, and L. Wang. Consensus of linear multi-agent systems
via event-triggered control. Int. J. Control, 87(6):12431251, 2014.

[125] F. Zhao and L. Guibas. Wireless Sensor Networks: An Information Processing Ap-

proach. Morgan Kaufmann, 2004.

[126] M. Zhong and C. Cassandras. Asynchronous distributed optimization with event-
driven communication. IEEE Trans. Autom. Control, 55(12):2735–2750, 2010.

[127] W. Zhu, Z. Jiang, and G. Feng. Event-based consensus of multi-agent systems with
general linear models. Automatica, 50(2):552–558, 2014.

128


	Introduction
	Cyber-Physical Systems and Event Triggered Sampling
	Communication Logic Design
	Actuator Options
	Modeling Event Triggered Control Systems
	Literature Survey
	Event Triggered Control
	Event Triggered Estimation
	Event Triggered Optimization

	Thesis Outline

	Sensing and Actuation Strategies for Event Triggered Optimal Control
	Introduction
	Problem Formulation
	Optimal Design for Zero Order Hold
	Optimal Deterministic Sampling
	Optimal Level-Crossing Sampling for the Brownian Motion Process

	Optimal Design for Generalized Hold
	Optimal Deterministic Sampling
	Optimal Level-Crossing Sampling for the Brownian Motion Process

	Performance Comparison for the Brownian Motion Process
	Conclusion

	Optimal Sampling and Performance Comparison of Periodic and Event Based Impulse Control
	Introduction
	Problem Formulation
	Optimal Periodic Impulse Control
	Optimal Event Based Impulse Control
	Average Control Rate
	Mean Square Variation
	Optimal Threshold

	Comparison
	Conclusion

	Event Triggered Synchronization for Multi-Agent Networks
	Introduction
	Synchronization Problem
	Event Triggered Synchronization Algorithm for General Linear Dynamics
	Event Triggered Synchronization Algorithm for Double Integrator Dynamics
	Conclusions

	Event Triggered State Estimation via Wireless Sensor Networks
	Introduction
	Problem Formulation
	Stability of Event Triggered Consensus Filters
	Time-Invariant Filters
	Simulation Results
	Conclusions

	Event Triggered Optimization for Network Utility Maximization Problems
	Introduction
	Problem Formulation
	Convergence Analysis for Event Triggered Barrier Algorithms
	Event Triggered NUM Algorithm Implementation
	Numerical Examples
	Conclusion

	Summary and Conclusions
	Original Contributions
	Recommendations for Industrial Application
	Open Problems and Future Work

	Stability
	Stochastic Control Theory
	Algebraic Graph Theory
	Matrix Theory
	Convex Optimization
	Bibliography

