P PR T, LT RS BN . -

‘%NNMMLMmy‘”
of Canada -~ du Cana
JCanadIan Theses Service '

' Ottawa, Canada .- . ‘
K1A ON4 : o

o e

. N . . . Y ) !
AT . . / 1 5 +
\ [ L, . o/

NOTICE

The quallty of thls microfiche is heavily dependent upbn the
~.. quality of the original thesis submitted for microfilming. Every '
effort has been made®o ensure the highest quamy of reproduc-

e tlon pbssmle

: 'If pages are mtssung contad the umversaty WhICh granted the .

"_' rdegree

Som ges may have mdlstlnct prlnt especually if the original
V pages
B snty sent us an mfenor photocopy

Prevuously copynghted mater|a|s (journal artlcles published -

tests, etc.) are not filmed.

: 'Rep‘roduction in fuII or in part of this film is governed by the
- Canadian gopyrighfi Act, R.S.C. 1970, c. C-30. 2

. THIS DISSERTATION
- HAS BEEN MICROFILMED
~ EXACTLY AS RECEIVED

- 'NL-339 (1.86/06)

7 Blblloth e naﬂonale

re typed with a poor typewriter ribbon or if the univer- -

Servlces des théses canadlennes

AVIS

-1la quallté de cette microfi che dépend grandement dela qualité N
- delathése soumlse au microfilmage. Nous avons tout fait pouf :
assurer uge qualité supérieure de reproductloh

a

S'il manque des pages, veunllez commumquer avec.l’ univer- -
sité qui_a conféré. Ie grade. :

La quamé dnmpression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylographiées
a l'aide d'un ruban usé ou si‘l'université nous a- fait parvenlr

- une photocopie de qua&té mféneure

Les documents qui font déja I ob]et d’ un droit 'd'abte’uvr ,(artl_cleé .
de revue, examens publiés, etc.) ne sont pas microfilmés. .

. o \ o : \ 8 ) P
La reproduction, méme partielle, de ce microfilm est soumise
ala-Loi canadienne sur le droit-d'auteur, SRC 1970, c, C-30.

LA THESE A ETE o
MICROFILMEE TELLE . QUE L
 NOUS L’AVONS REGUE . . [




. SN ,
THE' UNIVERSITY OF ALBERTA
/; s S . L o b X
_ R : [fl e : _ SR .
The Effect of yjsalighmén%seeaiManibulatot Performance
- ': - by - a
T ; : T
[ o, Q“§ "lan W. A. Kermack . ,
SR A / SR ' L e
b - ;{/ . ‘ S SR e
# \‘ : R
< \
A THESI s

SU%HITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

‘/ OF Master ‘of Sc1ence ]
e
~Mechanical Engineering-
,‘~ . . . :
q" Al
* EDMONTON, ALBERTA = o

~ Fall 1986

N



-

o : oo o

fPermis§ion has}béen'bfénted’

. to the National Library of
~Canada

to microfiim this

R

?

thesis and to 1lénd or sell

.copies of the film.

The.author\(éqpyright Swner).

has Treserved jother
publication: rights,
neither the thesis
extensive extracts from
may be printed or otherwise

nor

- reproduced without his/her
writtén 'permission.
\:\\.
™ ‘

and

it

film. ¢ 8 ‘

v ')~ .31‘4\‘

" L'autorisation a ®8t# accordée

3 la’ Bibliotha3que nationalé
du Canada -de
cette tHeése et de prdter ou
de vendre des exemplaires du

— .

' S - v
L'auteur (titulaire du drgit

.d'auteur) se- ré&serve les
autres ‘droits de publication;
‘ni - la .th&@se 'ni de 1loags
extraits \de celle-ci -
dofvent @ette . imprimé&s ou
autrement yeproduits sans son
autorisatic

L

 ISBN  @-315-32323-X

Bcrites

.',

microfilmer -

ne. .



" THE' UNIVERSITY OF -ALBERTA
 RELEASE ro'nu“ B

"NAME OF AUTHOR _ ﬂ“"kIan w nA Kermack

“mw oF THESISF‘/ The Bffect of msahgnments on

'Y

; 'lManxpulator Performance
e .

'VDEGREE FOR WHICH THESIS WAS PRESENTED Master of Sc1ence o
':YEAR THIS DEGREE GRANTED Fall 1986 . )
Perm1ss1on 1s hereby granted to THE. UNIVERSITY OF,
ALBERTA LIBRARY to reproduce sxngle coples of thxs -
thesxs and Eo lend or sell such cop1es for pr1vate,
;scholarly or sc1ent1f1c reqfarch purposes only.
The author resevves other publlcatxon r1ghts,‘and

- vnexther the thes1s nor extens;@e extracts from 1t may

L
-bé?pr1ﬂted or otherw1se rep:oduced w1thout ; author S

‘ﬁs

en perm1551on. o

i (SIGNED) ‘
v ' RPRMANENT ADDRESS. IR

2 7 14 Ao

0..0..*....'0.00.0..Qo...oo.

E/ML /4 (oot

Y

;_mmn OQ.............198¢

-



+
L

) fﬁﬁ UNIVER$ITY OF 'ALBERTA e
 FACULTY OF GRADUNTE STODIES AND RESEARCH S
The undersigned certify that they'aave read, -and
recommend to the Faculty of Graduate Studies and Research fyl
for acceptance, a thes1s entitled The Effect of
M15a11gnments on Man1pu1ator Performance subm1tted by Ian W,
K, Kermack in partlal fulf11ment of the requirements for the .

\
¥

degree of Master*of Sc1ence.

- S ‘.
i, S B
L . ﬂ;m W
. . ocoooo.oooo ocooo\

Supervisor

C @/6/ 2 e S

® 00 60698 00 00 .‘.l......l..
. , . v Y

vDate /s/ﬁof /d)é B ’ .\

.'I........l...........‘...



< N N “ . . s "
" " Abstract

| This thesis 1nvestigates the effect of masalignments on

‘ the analysis and’ response, of. robot manipulators. The
,idengxficatzon_and incorporat1on of mxsal1gnments into the‘
kinéﬁ%tlc models of manipulators is of fundamental
'fhimportance}bo the success of future offline programzng

) techn1ques. :

The kinematics of m1salxgned man1pu1ators 1s revxewed

and a convent1oghfor descr1b1ng the geometry of m:salxgned "

man1pu1ators is developed ‘This conventxon 1s used to
1nvestxgate the forward and 1nverse k1nemat1c solutxons for
'mxsalxgned manzpulators. The presence of m1sa11gnments was
:found to have 11ttle 1mpact on the forward soluunon, however
the 1nverse solutxon becomes much more complicated. |
Manzpulatorjhynamxcs is reviewed and an efflcxent
.algor1thm for the generat1on of symbolic equatxons of motion

is presented. It was found, that the symbolxc equations could

be evaluated mere eff1c1ent1y than the Holle bach or’
sNewton-Euler.equat1ons. The symbolically g: erated equations
arerused to investigate the‘dynamic’response of‘misaliéned
manipulators. It was fbund that misalignments had minlmal»
'1mpact on the'man1pu1ator s dynamxc response Therefore the

<

manxpulator s dynamic model need not 1nc1ude.masa11gnments.

-
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1. tngrodhction .

* .

Automation technology has been applied almost
cxclusiwciy in very large.scale nanufacturing‘systgm;. These
?  systems prddqpe very large quantities of ideqtichl items and
therefore thg,cconomies éf scale have been able to offset
~ the major investment.in hard automation equipme:£: The major
grawback of hard automation has been its'inflextbility..ln
ofdet to modify the end product a major investment of tgmg
‘§nd dgpital are fequired to reconfigure the system. Flexible
manufacturihg systems promise to change this and as a result
will Sriné the eéonomies of automation.to smaller scale
‘ prodhctiop} '
Flexiﬁle manufacturing systems will reduce batch sizes
‘while maintaiaing~;utomation economy becausé of the |
versatility of ‘the machines and the ease and speed with
wvhich they cancbe reprpgrammed, otf-line.ptogramming will
play a major role in simpiitying the reprogramming task and

'is therefore of vital importance to the success of flexible

-

manufacturing. )
Th;s thesis deals with a particular prob;;m faced by .
otf line programming. Off-line programmxng demands vety
r@ ‘accurate models of manzpulators. Therefore any discrepancies
between the actual and theoretxcal parameters which describe
the nanxpulator-will affect the accuracy of any tasks being
. ptogtalnedfbtt4iine. The,di;crepanqies beiveenvactuai and

1



‘ ideal parameters ere termed mh.liignmentl. Thie thesis will

investigate the effect of mieeliqnuen:e on kineuetic end
dynemxc analylis, and en manipulator performamce.

" The proqremming method most commonly used in industry
'todey,is lead-through proqrammingkﬁ‘gth thia method the |
menipuletor is nenually led through the desired tlsk either
physically or vith a teach pendant,~while the joint )
positions are recorded. Uhfortung;ely this method requires

that work processes are susgended while reprogramming is

performed. The productlon downtxme involved with such

** stoppages can become cog\ly, especiXlly in assembly line

conditions which may requxre several processes to be
suspended while modifications may be reguireq»to only a few
m;nipulators. As a result there has been a recent trend
toward eff-line ptogfamming. It is desired to be able to
simulate the tasks to be performed, generate and then
download a task progtam to the manipulator controller.. The
new task could then be immediately executed with little
interruption of the manufacturing process. Clearly o£f4liqe
programming could result inlgreatly reducing the downtime
reqsired ts accomodate process changes. .

Otf-li;e programming and higher level control ,
Qstrategies demand vefy accurate geometric models of both the
manipulator and the workspace. Using the Denavit-Hartenberg
convention (described further in Chapter 1), manipulator
geometry ¢an be specified by four parameters (length ,

twist, offset, and rotation) for each 1ink in the kinematic
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chaxn. Commerc1a11y avaxlable robots have an 1deal set of R
parameters, der1ved from ‘the orzgznal desxgn, wh1ch defzne
- the 1dea1 geometry. Howevef each 1ndrv1dual manxpulator may
“-have slightly d1fferent geometry as the result of
manufacturan errors and tolerances, wear, acc1dents, or
otheru1se. These dev1at1ons between the 1deal parameters and
the'actuallparameters are the source oh the m1salxgnments._
“Because . of the increasing need for very accurate B “_'F
“mathemat1ca1 models (espec1a11y for off- 11ne programmxng)

~

‘there is a growlng 1nterest in m1sa11gnments, thelr effects,
5and 1dent1f1cat10n. | S
Dubowsky and Maatuk (1995) 1nvest1gated k1nematrc‘;
rrors resu1t1ng from mlsallgnments (in planar mechan1sms)
gtyand descrlbed a method of parameter 1denﬂ1f1cat1on. Moor1ng
”(1983) showed‘that the Denav1t Hartenberg transform may |
becbme ill- cond1t1oned 1f very slzght 301nt axis
'mlsalzgnments are present and proposed an alternatrve
transform developed by Suh and Radcl1ff (1978) . Mooring used
A‘thxs new transform to study the effect of mlsal1gnments'.L
| posxtxonlng accuracy ang. found that very slzght’
u,mzsalxgnments could produce S1gn1f1cant posztzonlng errors.
Slmulat1ng a PUMA 600 manxpulator, w1th both Jo1nts two and
f three m1sa11gned by one degreej Moorxng found the p051t1on
.error to be a. nonl:near funct:on (of the Jo1nt angles)
WVreachxng a maxlmum of 32,56 mm, Clearly, this is

runsatxsfactory for assembly operatlons. Moor1ng proposed an

algor1thm for parameter 1dent1f1cat1on suggest1ng that 1t



.weuid be more cesteeffective to‘aeComSQaﬁe'ﬁisaiiénﬁehts ?
’:througheidentificetion an; control algofithms than &g -

elimina;é.themby building robots to extremely high. A

tof;rances. Foulley ahd Kelly (19843 have proposed‘the'use' ‘ j/

of a 51ngle compensatxon matr1x to correct the pos1txon1ng f{]

d1screpancy While th1s method can correct for posxtlonlng/'

errors it does not accurately descrlbe each 11nk and’ as a

result is unsu1table for dynamic analy51s. !

Manlpulator dynamlcs 1s playing an 1mpor€ant and ever

expand1ng role in- the 51mulatzon, analysis, and coytrol of\a‘
';_ modern man1pu1ators The feedback control systzjﬁ/used todayl

regard dynamlc 1nteract10ns as dlsturbances which the
'control system must reject. During low speed/éotlons 51mple
feedback systems can accomodateuthe relatzvely small
dlsturbances resultlng from dynamxc effects. However in

h1gher speed motions the dynamlc 1nteradé1ons may domznate

‘the equatlons of mot1on and the resu1t1ng perturbat1ons may

‘be too large to be rejected by 51mple £eedback Higher level ’

control systems which 1ncorporate man1pulator dynamxcs are

now be1ng pursued and may improve system performance..

" preliminary results show that feed forward

~ computation of the inverse dynamics cpuid,imp;oVe
the performahce'of'the feedﬁegi contrel‘systeﬁ:
because perturbat1ons due to dynam1c 1nteract1ons do

“not- have to be rejected.' Brady et al. (1982)



Torque -based control systems are also be?ng
investxgated ~Brady et al. (1982) ‘These - systems use the
Aequatxons of motion to generate the nominal joint torgues
requ1red to dr1ve a man1pu1atorwalong some: spec1f1ed
tra;ectory. A torque based controllet then dr:ves ‘the system

.‘anng the desired trajectory and p0512&on feedback ensures

accurate tracking. . b' .(

Past efflczent argor1thms Eorl

importent to the 1mplementat1on oi control systems whlch

ut111ze~gynam1cs and have been- purs_hﬁfact1ve1y £or the past.

decade.
_________Man1pu1ator dynam1c theory has evolved from two basic’
.approaches, the Lagrang1an formulat1on based upon Lagranges

equat1on, and the Newton-Euler tormulat1on w%§$h is. based
~ . ,"/

i

upon D' Alembe;t s prznc1p1e.
The" Lagrangian formulat1on vas first developed by

chker (1965) who der1ved the Lagrang1an and subsequent
equations of motion for general spat1a1 linkages. Kahn- (see
Brady et al. (1982)) then particularized these egpations to
open loop maﬁipulator linkages; Due'to‘the compiexity and
vcomputatxonal 1nten51veness of the Uicker-Kahn equations,

| s1mp11£1catxons have been made. Bejczy (1974) s1mp11£1ed the
equatxons by neglect1ng\the»€orlolxs and centrxpetal terms.
This led to a vast reduct;on in complexity and computatxon.

.Hovever the approx1matxon is only valid for very low speed

motxons in which the gravxty terms dominate the equat1ons of

v



motion Paul (1981) |
The 1nef£1c1ency of. the chker Kahn’eguatxons results
largely because each general1zed force is evaluated as a
: separate ent1ty, distinct from all other forces actxng on
the system, Theretore,a lot o: needless recomputation;is -
'performed each time a force is evaluatedl Waters (see Brady
- et al.'(1982))arecognized that the generalized coordinates
could‘be‘ekpressed in a form thch alloved the Uickeerahn
' eqoations to be rewritten in a much more efficient,fp .\‘
rectrsive forn.'Hollerbachg(IQBOY further refined Waters'
egnations resulting in an efficient, recursive dynamic -
»tormulatfon.' . | |
-The‘Newton-Buler equations, hased upon Newton's '
equations and D'Alembert's principle, were first applied to
open . loop k1nemat1c chains by Hooker and Margulies (1965).

Vukobratovic (1982) and Stephanko (1982) then applzed these //

/
/

'equatxons to b1omechan1cal structures such as the human - /
v/'
/

'body. It has only been very recently that these equat1ons

vere app11ed 4dj rectly ‘to robotic systems by Luh et al.
(198\) The Newton Euler equations although lack1ng the

‘ elegance and s1mp11c1ty.of the Lagranglan formulatxons are A

"‘more computatlonally ef£1c1ent Thls arises due to the
_naturally recunsive nature of the equatxons and the use of-
3%3 rotation'matrxces and vector translatxons rather than

the 4X4 homogeneous transformatxons employed in the

: Lagrang1an formulatxons. Hollerbach (1980) has ghown

Q9wever, that the recurszve Lagrangxan formulatxon employzng ‘



3x3 mattices results in signzfxcant increases in efficiency
'\as compared to the 4x4 eqUations. However, the effaczency

: stxll does not equal that of the Newton-Euler formulat1on.

- ‘The equations of motxon as derived from eather the
‘Lagrangxan or Newton Euler formulat1on are_represented by a
¥

set of coupled, nonlznear—ditferentlal equat1ons in matrxx

form. A numer1ca1 approach 1s most commonly used to evaluate

‘these eqpatlons in whlch the ‘matrix ow“i?féonsgare performedf
"at each manipulator state 1n questxq;‘\Another approach | _ '
vwhxch has been pursued recently is to\sengrate the equat:ons-
of motxon symbolxcally. This 1s done by perform1ng the

matrix operatlons a sxngle txme u51ng -symbols, as oppq\ed ‘to
“ numeric values for the matr1x elements. It is poss1ble that\
the symbolxc expressions generated-can-be evaluated more
‘ quickly thancthe'nUmerical'approach resulting in avmore
1e£f16}ent algor1thm. ‘This increase in execution speed

results because the looplng, testxng and logical transfer
ﬁoperatlons requlred by the numer1ca1 method are elxmznatedn
»and because mult1p11cat1ons by zero and one are ‘not

performed in the symbolr\\equat1ons.}lt should be noted
hoJEC;r that the effxczency of evaluatxon depends greatly
upon the extent of szmpl1f1cat1on performed upon the
symbolxc equations. If little or no sxmplzfxcatxon 1s’ |
| pertormed the equatxons of mot1on may become S0 large and

complex that their evaluat1on .may take much longer than the

L

numer1cal~methods..
* .
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5ymbolic generation.of‘manipuiator equations'ot mot ion
is not a new idea. Eun'and Lin (1981)'deve1oped'an algor{:Rm
 tor symbolically dericzng the equations'of‘motﬁon-based npon
,"the’Newton-Euler'formulation. In order to aimp1i£§ the C

:eqdatiOns, sjmilar ternsl;;; compared and insignificant
terms are negleCted.'No.comparisons between effidiency of
symbollc and numer1cal techn1ques were. performed More
Alrecently Vecchio et al (1982) developed a program for
'der1v1ng the equatxons of motion, based upon the Lagrangian
.formulatxon, using the symbol1c language REDUCE{' -
*Unfortunately, no compar1sons between symbolxc and numerzcal
eff1c1enc1es were undertaken by the ‘authors. ,

In chapter 2 the Denavit- Hartenberg and Moorxng
conventxons are rev1ewed and the1r shortcomlngs d1scussed.
An alternat1ve transform is then- pgesented whzch overcomes g
these»shortcom1ngs. This neu transformatxon w111 then be
vused to 1nvest1gate the effects of mxsa11gnments upon
'pos1t1on1ng accuracy and dynam1c behavzor.

Chapter 3 w111 1nvest1gate the kxnematxc and dynamzc'
“analysis of m15a11gned man1pu1ators. The forwvard and 1nverse
‘ k1nemat1c aolut1ons will be 1nvest1gated and ngmer;cal |
techniques forfsolvinéythe inhverse problem will be- '
presented. Manipdlator~dynamic'analysis will then be
retigied.n |

Chapter 3 will go on to‘investioate the relative
'efficiencies of the numerical and;symbolic methods. An

.algorithm for symbolic generation based upon the Lagrangian

-
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formulation has been developed and it vill/be shown that
‘symbolic generation can result in a s1gn1£icantly more -
efficient method for the evaluatxon of the equatxons of
motion. . , | | |

' The symbolic equations of motion vill then be used to
investigate'the foru:rd_dynamic solution.'Thevforward
t‘solution solves for the manipulator f@hnt forces given thel'
ikxnematlc state at any ngen 1nstant in txme. The forward
thOIUtlon can be used dur1ng simulation to determine if the
' desxred trajectory can be executed within the alloted time,
given ;hat the joint actuators can produce 11m1ted forces.
The forward solutzon may also be used in hxgh level control
systems whxch i&ll pred1ct the joint forces requxred to
. correct the traqectorxes{xn real time.
o :'Chapter 4 will investigate the effects of mfsalignments
on both pos1tlon1ng and or1entat1on accuracy General
expressions for these errors will be der1ved and the
relat1ve.magn1tudes of errors_resultxng from mxsal1gnments
'in each parameter uill be reviewed, It will be shown that-
the angular misalignments have the greatest impact on
position_and orientation accuracy. Furthermore, a general
error matrix will be developed which wlll define the
position and orientation errors as functions of the
manipulator state. ‘ o

The effect of misalignments on'the'joint forces -

requ1red to traverse a given trajectory will also be

investigated in chapter 4. The effects of mxsalxgnments on

+
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.jbin% forces will be showh to be relatively small, Hovever, o
'thes; bérturgations may affe;ﬁ the fesponse of aiménipulato:
if|a cohtrol sysﬁeﬁ.cannot account for these perturbations.
iThis‘thésis w{il'hbt investigate hov manipulators actually
respond if they are misaligned as this requires
_investigating how‘ﬁééalignments affect various control
systems. This would be a topic of research in itself and as
such is beyond the scope Sf thié work. .
| Chapter § will then summarizé the results of thds'.

“investigation. ' - -



11. Description of Robot Kinematics

Y

This chapter will deal with the kineﬁétic.destription
of mistlignménts using homogeneous transformatigns. The
Denavit-Hartenberg convention Qill be reviewed énd#the
problems arising with misal1gnments will be dxscussed

PN

Readers who are unfamil1ar &rth homogeneous transforms are
l

referred to Paul (1981).

A, Denavit-nartenberg'Convention

{

Ngrmally six parameters, five independent, describe the
relatiée position and orientation between the codrdinate'—
frames ﬂef1n1ng consecutive links. However, the
Depavit- Hartenberg convent1on places restrictions upon the
locatxon and orientation of each coordinate frame and as a
result only four parameters afe required.

The Denav1t Hartenberg conventlon spec1f1es that the
'origan.of the coordinate system of link n is located at the
intersection of the common normal between the axés of joints
n and n+1, and the aXis of joint n+1 ,as shown in figure
IT.1. If joint axes n and n+1 ihtersect; the origin of dink
n is-specified to be at thé point of intersection. If the

‘;jo'nt axes are paralléel the origin is chosen to make the -

offset (d,) zero for the next link whoose coord1nate frqme

-

RE
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. Joint Axis n ‘

Link n

Joint Axis n+1

 Figure II1.1 The Denavit-Hartenberg Convention
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is defined., The z, axis is colinear with joint axi;\n+1. The
x, axis is colinear withvthe common normal existing between

~ joint axes n and n+1, If the axes ‘intersect, the dire&;ion
oi.the'x, axis is parallel or aﬁtiparailél'to thg‘cros;
product z,., X z,;‘The rotation is zero wvhen x,i.‘and_i“ are
: paréllel and havg‘the same direction, (,Figuré I1I1.1)

The Denavit-Hartenberg”tranéfofmation matrix A, is the

4 .
result of the following rotations and translations:

\
1. rotate about z,.,, an angle 8,, bringing x,., to x,*
2. translate along z,..,, an offset d,, bringing x.% to x.,
3. translate along x,, the length a,

4. rotate about x,, the twist angle an
i.e. A,-Rot(z,on)Ttans(z,d,)Trans(x,a;) Rot{x,a,)

or, carrying out the matrix multiplications,

cp S0Ca S0 Se acCl g

o0 Coca{-cose aso
As Sa. . Ca d
R ° o

0 0 .0 9




R

where ‘ ‘ VI | s
CO=Cos(6,) -
S6=8in(8,)
Ca-Cos(an) ‘ o

- d
G

JSa-Sin(an)

Note ‘that the subscript'n has been omited from the matrix “
{ eléments for the sake of cla;ity} This willlpe consistent
ghrouéhout the duration of this investigation.

* For revolute joints the joint variable is 6 witﬁ a, a,
and 'd constant. For prismat?c'joints the variable is d with
9, a«, and a constant. ‘
| 'The link coord{nate'frames are easily defined'and
conveniently located if the joiht a#es remain in'parallél
planes or intersect orthogonally. In these éases the
cdordinate frames are locatﬁﬁ at the joint on the link as
'illustrated in Figure 11.2, However if the axes are not
parallel in the same: plane or'iptersect at some angle/pthef
than 90 degrees, the link coordina;e éystem willmhot‘éév
lbcéted on the‘physi¢51“1ink. Mooring (1983) has shown that
if‘the joint axes intersect-and there is some small angle
between them the resulting coordinate:system may be very far
removed from the actual link as illustrated in Figure II1.3.
The offset caﬁ then become a very large number, tending to
infinity as the degree of misalignment décrgases. As a

result, this may cause the A, matrix to become

ill-coﬁditioned; vhere one element of the matrix is many
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orders of magnitude larger than the others. Numerical
difticulties then arise. This is part:cul*rly evident when
the inverse of A, is required This is a &isedvantage of the
Denavit- Hertenberg convention when deelxng with
misalignments. K

During simulations of manippletors and their
trejectoriel, the location of each link, as well as the
endpoxnt, is often of concern. This is especially true if
‘the manxpulator ;s to operate in a confined workspace where
obstacles must be avoided. :When using the Denavr{ -Hartenberg
conventxon to descrlbe<man1pulators,coord1nate frames may be
p far removed from the phfbical link. As a result another --
transform, which locates the physical_endpoint bfmthe'link
within the link's coordinate systeﬁ, is reqﬁired to locere
the ehépoint'in'space. It would be much more convenient if
}the link coordinate‘fys£Em always represehteé the endpoint
of the link itself. o o

It is apparent that the Denavit- Hartenberg convent1on
is not a satxsfactory method for descr1b;ng manipulators
which have mxsalxgnments present. New conventlonsﬂere
required which alleviate the problemS‘assoc1ated with rllg

conditioning and coordinate frame dislocation.

w——
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B. Moorings Convention V" N :
‘ T # 9 o .
u . .

‘Mooring (1983) overoameJthe problems, reeulting from
.m1sal1gnments, assoc1ated with the Denavit- Hartenberg
.con%ent;on by adopt1ng ‘a’ transformatlon developed by Suh and
Radcllff (1978). This transformat1on utilizes a unit vector
_wh1ch descrlbes the dlrectxon of the rotation axis (z ) a
;rotatlon angle (¢n ) désc1b1ng the relative X ation between
llnks, and a p01nt (pn) through which the rogttlonﬁaxls
passes as shown™in Figqure II.4, Since there is no constraxnt
- on coordinate system location, each c%ord1nate ftame may be
‘1bcated co1nc1dent with each joint. "As a result the
'transform ‘is well cond1t1oned and the problems assocxated _
with dlslocated coord1nate frames are allev1ated

L

Moorings convent1on is:s

Y
| U.‘V*C‘ . ..u"u"v-u‘ls ululv*uys _D||
" \.);U,’V*U.S uy'VeC Uyu,V-u,$S " Dj,
D : ‘ | - g
| ’L U.U.V‘U,S uyu.v’uls UI ’VOC D’.
0 0 0 1
L |



where ux, u,, U, are the components of unit vector u which

defines the ortentation of the joint axis. The'joint

rotation angle ¢, descibes the relative rotatioﬁ befween the

*

successive links, ahd-p;, Py: P: define the position of the

301nt ax1s. The z axis of the assoc1ated coordlnate frame is

co1nc1dent a1th the Jo1nt ax1s and the x axis is coxnc1dent

with the vector p.

‘D1|=(1“D11)*px'D1z*Py‘b‘3*pz  : L N

D1.,Di|,D3. are given by:.

Dza=°Dz1*p,+(1’Dzi)*Pv;D23*Pz '
D3.=:D;1*px‘Dainy*(1'333)*p3_'
V=vers(¢,)= 1-cos(s,) \
C=cos(¢,) |
S=sin(¢,) .

There are two major problems with Mobrihgs convention’

which fimit‘its applicability in mad&pﬂlator kinematics and

dynam1cs. The f1rst problem is one of un1versa11ty. Moor1ngs.

conventxon only applies to revolute 301nts. unllke the

Denavit- Hartenberg conventxon "which may be used for both

'y

revolute and prismatic jOlntS. The ab111ty to analyze

m15al1gnments in both revolute and prismatic joints.is

clearlyvnecessary.



. Link n-1

Figure I1.4 Moorings Convention.
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The other problem arxses from the use of partial |
derivatives of the transform matruces in the development ofb
the equataons of motion. The part1a1 der1vat1ves~of the
Denavit- Hartenberg ‘A matrlx,w1th respect to the’ Joznﬂ
var1ag1e theta is

|

-6 -Cé Ca cé Ca -2 so

2A CO . -S6 Ca SO Sa acCl

20 - | 0 o v 7 1

0 o .

This results in a very sparse matrix and this in turn
simplifies the resulting equations ofbmotion. The Mooring
convention hbwever,'results in a more complicated partial

9
derivative matrix:

r . _ .
u.'SfSl, . U,u,S-u,C U';U,S+u,c Dy,
EB N 9:‘}‘,5°U:C‘ u,'S-S : ' quIS‘U._C"v- ‘ D'l_l
3 | uau,S-u,C uu,5+u,C u,’S-§ DYy,
0 —6 o .




where: =

D..=(1-D3.)p;-Dazpny‘apz-
Dz-“Dz1Px+(1‘Dzz)Py;Dzapz'

D:.-°D:-p.4D:zpy*(1'D:;)pz

This‘results in equivalent but more complex equations.
1f the equat1ons of motlon are evaluated numerzcally this
added complex1ty does not present a large problem However,
- if it is desired to generate the equat1ons of motxon
symbdllcafly, s1mp11c1ty of equatxons is of utmost
1qportance. It w111 be shown ( Chapter 3 ) that evaluatlng
the symbol1c equatxons is much faster than numerxcal methods

and therefore symbolic generat1on is desirable, In v1ew of

theseqproblems a new convent1on is requlred



C. Modified Denavit-ﬂarte@batgAConvention
. , t |

A modified Denavit-Hartenberg.transform is proposed .
‘which.alleviates the problems, resulting from misalignmentsf"
.associated with the Denavit-Hartenberg and Mooring \ C
co%ventibns. The'modified-transform allows the link -
coOrdinate frame to‘be.located coincident Qith the'jaént
through the use of an add1t1onal link parameter termed the

N
skew angle (yn). Subsequently £ive. parameters are now

required to define ‘each coordinate system. It. will be seen
that in the'ideal case-y,dis zero and the modified transform
becomes identical to the Denavit-Hartenberg transform,
Figure I11.5 illustrates the modified convention. The
 ii"k parameters‘length (a,), offset (d,), and rotation (6,)
specify the location of the_coordinate frame while the‘.
parameters twist (a,) and skew (yn) define the orientation.
* . The modified;transform, D, is obtained by specifying the .
origin of the coordinate frame at a desired location on

~joint n+1 and proceedlng with the followxng transformations

such that the z, axis 1s col1near Hlth the Jo1nt n+1 axis:

.._4——

1. rotate about ‘the z,., axis the rotatxon (6,) ClOClese
-such that thg transformed x-z plane passes through the
" origin |
2. translate along the transformed z axis the offdets (d,)
such that the transformed X axﬁs'passeS'through.the,

.~ origin



R . . F . . ’," R | - “ e
s il ' |
3. translate along the transformed‘x axis the length (a,)

such that the coordinate system is coincident with the
defined origin =~ |

- . - i I . ‘. . \
4. rotate about the transformed x axis thél twist angle (a,)

5, rotate about the transformed y axis the skew angle (y,)
' !

The resulting modified transform, D, given by

D = Rot(z,8,)Tran(z,d, )Tran(x,a,)Rot(x,a ,)Rot(y,y,)
= A Rot(y,va.)
is:
CiCy-S0SaSy  ~S6Ca C0$1#SOSaC1 - a Cé
§0Cy+C8SaSy  CéCa §8Sy-C#SaCy 8 SO
D= | -CaSy Sa CaCy 3 d
0 0 0




where:
Sy=Sin(y,)
Cy!Cos(y")X‘

I
K

S y

Note that if the skew (y,) is zero the modified transform,
D, reduces to the Denavit-Hartenberg form.‘

Figures I1.3 and I11.6 illustrate two links which have
fntersecting joint axes. Thg'link in Fiéure 11.3 is defined
by the Denavitfﬁartenberghtonvention and the associated
,COOrdiﬂgte frame is dislocated from the link end point. The
link in Figure I1.6 is defiahgvby the modifieq convention
and the fesplting link coordinate frame is conveniently
‘located at the n+1 joint centre. The Denavit-Hartenberg
convention results in a very large offset and a link length
of zero. The modified convention alternatively specifies the
length and.offset which represent the a¢tuai link.,

As with the orig&hal Denavit-Hartenberg convention, and

unlike Moorings, prismatic joints can be accomodated with

the modified convention.
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Link n-1

Figure II1.5 Modified Denavit-Hartenberg Convention
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The partial derivative matrix of the modified
transform, while more complicated than the unmodified

version, is less complicated than Moorings convention.

p- * -

-58Cy-C8SaSy COCa  -S6Sa+CéSaCy -a SO

T 0 . | -0 0o 0
0 0 0 0 -

N i

‘v | : U | :
This modifiied Denavit-Hartenberg convention will be used in
» ) ~ — % fl
the following chapters for the kinematic and dynamic -

)

analysis of manipulators with misaligned joints.

- IS



,r!l.'Kinan:tic and'nynanié Theory ind.AnaIysis
‘A, Kinonatici

Kinematic analysis }s'concerned vith the relation
,bitﬁecn‘the'joint posftiong and vi;dcitiis cné'tho locétion,
orientation, and velocity of each link; fhe forward
kin;matic solution is concerned with solving for thé
location and orientaiion of any link given that'the jdinﬁ
coordinates are specified. This problem is solved very
neatly by multiplying successive transforms tqggther:such :
that the T, mat:ix is obtained. The location»éhd’oriegtétion
“oF-the nth coordinate frame are then specified by the
elements of T,. | _ w'.

~ The inverse kinematic problem is that of, solving for
the j’oinf. éoordinates !;iv'en’ that the desired-end“point aﬂd.
oriention of the manipulptor are known. ?561‘i1981)‘presents'
a very effective method for solving the invérse problem
vhich usually resulis in explicit equﬁtions defining the
foin;_cPOtdinates..The elements ot‘the'T.}matrix’aré known
from the desired position and orientation of the endpoint.
T; is also known to be equal to the product of thg,A

¢

matcices for each of the n links:

. -
T..A |A’---A.

S

29



. %
Subsaqpehtly n matfix equations can be vriéécn by

successively pre-multiplying the above equation by the A
mqtrii inverses. The matrix elements on the left hand side- .
of the ith eduiiion,are‘fﬁnCtions of the elements of T, and
the-fir;t.i joint variablés, The\matrix elemintk on the
right hand side of the ith equation are either zero,
éoﬁs#ants, or fungtions of the ith+1 through nth joint
variables. Twelve algebraic equationg‘resultlgfom Qich qf
-the n matrix qugtions. From these 12sn algebraic equatjons,
_ expliéif.er,eSSibné~dgfining thg'joint coordinates may bé
ébtaingq. Fot more detailed di#cussion; gnd-ﬁg;ked examples

see Paul (1981).
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The‘lnverse Kinematic_solutionForMisalijnedikanipulators

The presence of m1sal1gnments and the 1mp1ementatxon of |
}the modxfxed Denav1t Hartenberg transform, D, presents no -
; added d1£f1cult1es to the forward k1nemat1c solut1on,
g”assumrng the mlsallénments are known.»

The 1nverse solut1on however, becomes much more ,»f ’dN
compl1cated, and expllClt analytlcal express1ons may be _
ehlmpOSSible to obtaln This is due to the fact that h1ghly
| coupled non- 11near equat1ons result from us1ng the method
- outl1ned by Paul (1981) In lieu of explicit and tndependent
expresszons, numerlcal technxques may be used to solve the
‘vcoupled equatxons for the JOlnt coordlnates. |
Ah.attempk to solve the problem for a three degree of

. . ) :
'freedom man1pulator (as shown in F1gure III.1) was made

o u51ng the Gauss- Seldel method for non lxnear algebralc v."

equat1ons. However. more than. one solutlon for the jo1nt

| RER)
.' vL) \’

coordlnates ex1sts for every endpoznt. As a resudt the
' solutxon often )umped 1ntervals and would co@verge on the

_funwanted solut1on. Th1s problem was most. apparent in reg1ons
B v \(,
‘close to any of the global coordlnate axes. Under relaxatlon.

!

was tr;ed in an. attempt to reduce the problem however there
.

‘was lxttle 1mpr6Vement When u51ng the Gauss Se1de1 method.
it 1s sometxmes helpful to rearrange the order in wh:ch the
equatxons are lterated However none of the rearrangements

trxbd allevxated the problems. It is poss1ble that w1th ‘the :

‘%,

e‘proper set o£ equat1ons and order of 1terat1on the ;hff
, g,
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Figﬁte'III;i Three Degree of Freedom Manipulgtpr Used in the

Aﬁalysis'of Misalignments



Gauss-Seidel-m;;;:; could be a setisfactor§4meghod of
'_somng the inverse problen, However finding the confpi"natioh f‘
coula prove very\difficult esp;;ially‘és the number of
“degrees of freedom 1ncrease5,.‘ ‘ |
__.The elements of the T, matrix whzch SPecxfy the
o \pos1t1on and or1entat1on Of ‘the manipulator endpoxnt are
non-linear funct:ons af the n joint coordlnates; Therefore:
twelve nonlinear equations“exist which define.the’position
and orientation as fUﬂCtionS‘of the{n jbiﬁt‘variables. |
Newton—Raphsom iterétion‘was used in‘an‘&ttempt to solve the
inverse problem by S°1V1n9 these equations for a three
gﬁegree of freedom man1pulator. Severe osc1llatlon problems
occured when try1ng to SOlve the equat1ons in regions near
_ -
~any of the coord;nate axes Under relaxatlon was prov1ded in
an attempt to reduce the 08c1llat10n, hO"EVer the amount of
relaxation requ1red to Provide stab111ty resulted in |
excess1vely slow convergence, ﬂAs a result thls method vas
1ne£f1c1egt and uns!;table fo? solvzng the inverse problem;
- The method which did prove succ€SSfU1 in solving the
inverse prOblem for the threevdegree of ffGEdomfmanlpulatOr
over all regions except in the lmﬂwdiate vicinity of the z
axis was a s1mp1?e nu;nerlcal technique.. In this method an
'v91n1t1a1 guess at %pe 5°1Utlpn ‘was~ obtalned from the inverse
equatxons for an 1deal man1pu1ator. Each 301nt coordinate
was 1ncremented by PlUS or minus qﬁsmall deviation and that

combxnatlon ot nev coordxnates vhich produced a new ‘endpoint

‘ closest to the’d951red solut10¢ vas usedBS the new Juess
, R * i

~ - om— -
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for the next 1teratxon. ‘This. method proved to be
Surprxs1ngly ef£1c1ent, genetally requiring fewer than
Sixteen 1terations to obtain convergence within 0, 001 4 of

4

ithe desired endpoxnt. |
Solutions to the inverse probiem in reéions‘close to
the glebel z axis could not be obtained Sy any of the
numerical techniqueé attempted. This is due to the
'degeneracy of the glo al z axls. It can be seen in F1gurev
I11.2 that an infinite set of solutions exist for a;y”
endpoint along the z axis. Therefore.difficulties in
obtaining a soiutioh by any -»npmeric"thod.shoeld FBe'
exeected_in'this regidg#gp n :
| The inverse kinématiﬁﬂﬁ ebleh for‘miséligned |
man1pula&prs is a compl1cae§;>problem‘whlch warrants further
’studyA_A numerxcal technlque has “Been dev1sed vhich solves
the problem»over all.regaops other than the-z axis, however
other techniques such as gradient search techniques may also
be effeetive.'As‘the,nUmbef:of degreesrot freedem increases
the exhaustive seareb‘method'will become iesg efficient due
to the.rapidly increasing humber‘of‘COmbinations'arieiﬁg

~ from perturbing each jofnt slightly.
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B. ﬁYnamics

'.The past two deeades have witnessed‘e great.deel of
research aimed.at impréving the,efficiencj o;'dynamics
algorithms. Tablé‘III 1 compares the reIative efficiencies

of the four most .-common formulatxons. The Newton-Euler - |
formulat1on is the most eff1c1ent, requ1t1ng approxzmately
one f1fth as many addition and mu1t1p11catxon steps as the
4X4 HollerbachAequat1ons. ‘When compared-to the U1cker-Kehn
equations the Newton-Euler formulation requites about one
seventieth as many cbmputational steps, This repreeents a
drast1c 1mprovement in eff1c1ency

The speed and efficiency of -the evaluatlon of the
equat1ons of motion is of paramgunt 1mportance in-
man1pulator control and simulation algor1thms.v1n order to
,tncerporate manlpulator dynamxcs into control algorxthms, it
is essential that the equatxons be evaluated very’ rapzdly.
.Paul (1981) 1nd1cates that these equatxons must: ‘be evaluated
at 1east sixty txmes per second. This is an amb1t1ous task
,bﬁtlone which the Newtph-Euler formulation has been. able tc;
accbmplish. Despite the efficiency.of the Newton-Euler
eQuations, the reduction of computational requirements
) remaxns a research objectzve. | i
The computational efficiency of the 4X4 Hollerbach

equations cen'be iTproved by apptgximately fifty percent by*.
Alreformulating theuequatibns employing,3x3 rotational

transforms and vector translations. This increase in
N . i ‘



' Tablellll.l Computational Comglexiqg.of Varidus Dynamic

. Formulations‘Thrady et al. (1982)]

)

Computational -'?Com‘plexityl

1131n-48"

For n . 6 degrees
Degrees of | ‘
Freedom of freedom
; + 25n‘*6,6n.".+1~29n'*42n-96, 5;534,
Uicker-Kahn - |
t | 32n++86n°+171n2+53n-128 | 51456
| Hollerbach | ¥ | 8s0n-s92 4388
- 4dxd t | 675n-464" 3586
" Hollerbach ¥ | 412n-277 2195
I3 1t 320n-201 ° 1719
- ¥ {ison-as -+ 852
Newton-Euler |4 : 238
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efficiedcgpresults because 3X3 matrix ﬁultiplication
requires lesspthan:one half the number of operations
required by 4Xi multiplicatioh. The 3X3 equations lack the |

..elegance and simplicity of the 4X4 formulation and as a
result are more difficult to program. The 4X4 equations are
much easier to program than either the 3X3 Hollerbach
equat1ons or the Newton Euler equatxons.,

The ease of programm1ng the 4X4 Hollerbach equat:ons
stems from the use of homogeneous transforms. However, the
fourth row of a homogeneous transform, cons1st1ng of zeros
"and a one, contains no essent1a1 1nformat1on. Therefore
computat1onal steps involving. the fourth row are needless
"and inefficient. Hollerbach (1980) notes that reductions in
computation could”be rea11zed through software which
optimizes the multxpllcat1on of homogengous transforms. This
opt1m1zat1on would neglect the operatxons 1mposed by the ‘
fourth row and would improve the eff1c1ency by approx1mately
fifty percent. At the same time it would preserve the
algorxthmlc 51mp11c1ty of the 4X4 ‘equations. Unfortunately
the eff1c1ency of :this algor;thm stzll does not - compare
favourably with the Newtoq-EuIer formulation even though it

is easier to program.
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Symbolic Generation .

.

The efficiency of the“equations may be improved by
geﬁbrating the equatiohs of motion symbolically. In doing so
operations involving zeros and ones need never be performed
and increases in efficiency should result, Comput}ng time
should also be reduced due to the el}minationgof looping,

' testing, and logical trénsfer‘operations. This resulté
from_the significant computat1onal overhead imposed by the .,
incrementing and reseting of counters and the relocation of
data. L

Ip'order to investigate tﬂ% viability of symbolic
geheration the program DYNAM was detelepedt DYNAM is an
.interactive program which generates:symbéfic equations of
mption for arb1trary open chain manipulators with up to 6
degrees of freedom. As the. equatlons are being generated
'DYNAM writes a FOR?RAN callable subroutine which will
evaluate the equations of motion given the manipulators
kinematic state. As a result, the equatxons of motion for
‘any arbitrary manipulator can be generated and programmed
“automatically with minimal 1nput by,the user. The equat1on
generation is based upon_the 4X4 Hollerbech formulation.
Appendix I contains a discussion of the DYNAM algorithm and
the recursive Lagrangian equations. Figure 111;3 illustrates
the reletionship between the user simuletion'program, the

equations of motion, and DYNAM. v
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PN

Preliminary investigation quickly indicated that the
symbolic equations for manipplqtors wikh three 6; more
degrees of treedom grow at an astoundfng rate, Theretore,
some form of equatxon 51mplif1catxon becomes essential, The
equat1ons for manipulators vith revolute joints contazn many
. trigonometric functions. As a result vast. reductxons in
eqpatxon complex1ty can be obtained through simplification
utilizing trigonometric’identities. The equations of motion
for a two degree of freedom manipulator with non-zero
inertia.terms, as generated by DYNAM with no simplification,
require more than 798 ﬁultiplication and 399 addition steps
in order to be evaluated. Evaluating the equations
numefically utilizing the Hollerbach 4X4 equgtigg;@gggld,,
require 1068 multiplication and 886 addition steps vwhile tM
Newton-Euler would involve 252 and 214 respectively. However
if the symbolic equations are reduced through the use of .
trigonometric identities and grouping, only 41
multiplication and'40 addition steps are required. This
‘represents a drastic reduction in computatibn and increase
in efficiency.

The simplification"performed upon the two degree of
freedom equations was cagried out by hand and wvas a long and
(tediOus process. The sim@lification‘of the significantly
longer and more complicated equatibns‘oﬂ'a higher degree of
freedom manipulator would be a long and arduous task (if it
could be performed at all). Therefore it becomes essential

that simplifications be performed automatically by the .’

BN

£ x

C 1 ]
S
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computer during the generation process. This could be an
lextremel; difficult task given that trigonomotrig
simplifications are reﬁﬁired. Languages such as REDUCE2 can
expand andﬁsimplify algebraic expresgions, hovever no
facxllty exists for‘trigonometric simplifications. As»a
result, some other method of equation simplifxcation xs
required.

A simple and effective algorith@zfor automatic
simplification has been implementeé in DYme.'As the
_equations of motion are being generated, each symbdlié
string is tested to see if moré ﬁhén twolmultiplicaéions or
one addition is required, If this is the~case the string is
replaced with a'aew variab&e and the corresponding algebraic
equation is written into the FORTRAN subroutine. This method
of s1mpl1£1catxon elxmxnates a lot of needless recomputatxonv
and reduces storage rquxrements@becapse a given string may
i pe used several times in the equapions,of motioﬁ'and it negd

“only be evaluated and'stored a single time. Much less

AN
\ \

/bomplicaied equations result from this method of

:/’Agimplification. Hence for the two degreg_of freedom example
discussed previously, only 203 multiplication and 104
addiiion steps are required for equation Qvaldaiipn. It is
appatent that still greateé efficiency could be realized if
qull‘trigonoéétric simplification vére.possible. More
reseafch in. this area could lead to extremely efficienln

algorithms for equation of motion evaluation..



Table I11.2 compares the computational cfficiency of
the symbolic equations—to the Hollerbach and Newton-Euler
formulations for two and three degree of freedom revolute
manipulators./Ehe simplified symbolic expressions require
‘less than one third the total number of operations needed by
the 3X3 Hollerbach equations and only one gifth of those
needed. by the 4X4 equations. The total number of
computational steps, between the Newton-Euler and simp;{fied
equations, is within 10% fgr the three d;§(ee of freedom
case. However, the symbolié‘aéuations should be
significantly more efficient with fespeét to the
computational.ﬁime required for‘equétion evaluation. This is
due to the greater efficiency of machinevbﬁde producgd by
the symbolic equations which have none of the looping,
testing, or logical transfer instructions required by the
_ Newton-Euler equaf&pns R
Compar1ng the actual nU%%;f of ar1thmet1c operations

required by the symbolic equations to other a19°r1thms
beCOMes impractical for manlpulators vith more than three
degrees of freedom. However, comparisons of the computer
time required to evaluate the equations by.dxfferent methods
is feasible, 4ab1e III.3lshOHs that, for a three degree of
freedom révolbte manipulator, the symbolic expresSions are
evaluated in approximately one fourtieth of the time
required by the 414HHollerbach equations, Assuming that the
‘sewt?n-suler»gqﬁitioﬂs can be evalua%gd in approximately one

£ifth the time of the Hollerbach equations the symbolic
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Table 111.2 Computational Copplerity of 5ymbolic Equations

Compyational - Complexity
TwgDegrees Three Degrees
of Freedom of Freedom
Symbolic 1| Morg han 798 Unavailable
Unsimplified t| Moreyn33 .| Unavailable
Symbolic (¥ W 4507
Smplifid |+ L 243
Holeboch 3| 108 | 16
4xd } 466 1561
Hollerbach | 3 547 % .|
3x3 @ 759 :
| 3 5 w
Newton-tuler AT 0
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equations should be approximately eight times faster than
the‘NevtonfEuler.‘This;represents>a dramatlc{improvement in
iefficiency.‘ | | |

;. For a six degree of freedom man1pu1ator the symbol1c

requatxons can be evaluated in. one sixth the time requxred by -

the Hollerbach equat1ons.~Therefore, the symbolic equ;t1ons
generated and s1mpl1f1ed by DYNAM should be approxlmately as
‘eff1c1ent as the Newton Euler formulatlon.

It can be seen that the Hollerbach equations for a slx
r.de@ree of’ freedom man1pu1ator requlre tw1ce as long to
'evaluate than do the three degree of freedom equatxons. Th1s
is to be expected because the Hollerbach equatlons are
linear with respect to degrees of freedom (refer to Taple
I1I. 1) It is also noted that the s1mp11f1ed symbol1c §
| equatlons are not l1near. The three degree of freedom g |
’equatxons are. evaluated ;n one th1rteenth the t1me requ;redr
by the 51x degree of freedom equat1ons. A non- l1near

\

relat1onsh1p to be expected as. the equatlons themselves are .
9, :
not l1near thh respect’ to degrees of freedom. However, if r”

the symbolat equat1ons were completely reduced they would

‘ always be evaluated in less t1me than the ggelerbach -or
‘ANewton Euler methods. e o ;??j Ll s 'ﬁ

Table III 2 1nd1cates that the symbol1c express1ons for R
~. P

' )8
a three degree of freedom man1pulator requ1re approx1mately

one fourth as many operatlons as the 4x4 Hollerbach
‘express1ons. Hovever, Tablg II{ 3 1nd1cates that the

‘”symbolxc express1ons can be evaluated 1n approxxmately one

-~ 4
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" Table III.3 RelatiVe Execution Time Comparisons Between The

Symbolic Equations And The Hollerbach 4x4 Algorithm

Wy

. - Degrees of Freedom

Twee | six

| simplified
| Symbolic
! .Hollerbadw |

A ' Loa
v -
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fourtxeth of the txme. This d1fference represents the
overhead 1mposed by loOpxng, test1ng, and logical transfer
operat1ons Clearly the elimination of thesevsteps results
in a substantxal 1mprovement in computat1onal eff1c1ency.
The examples yllustrated in Tables 111.2 and III.3 have
been based upon revolute man1pulators.<The equat1ons of
mot1on for revolute man1pu1ators can be much more 1nvolved
than those of manlpulators with. prlsmat1c Jo1nts. Mutually
perpend1cular prxsmat1c jo1nts m1n1m12e joint 1nteract1ons
and therefore s1mpl1fy the equat1ons‘of motion. Comparing
tHe execut1on time of revolute and prismatic manxpulators |
indicates that a‘six degree of freedom manxpulator w1th
pr1smat1c second and th1rd jo1qts has equations of motlon

“which can be evaluated 25% fatter tﬂ%n a purely revolute

man1pulator. It must be noted that the numerical methods of
4' :

a

equatxon generat1on do not real17e .any reduct1on in

2K 4
computlonalfcompl x1ty because of pr1smat,- joints. Th1s

1ncrease 1n eff1c1e%?y is only ava1laole to symbol1c

’("K L S

&
%

'“'i: Further reductlons 1n equat1on complexlty may also be
5 obta1ned by eliminating some of the 1nert1a terms of certazn
lxnks. Generally the fourth fifth, and‘s1xth links of a six
degree. of freedom manipulator™ aﬂgfbery short and have small
_inertias when compared to the f1rst three links and typxcal
‘-loads. 1f the 1nert1a terms (I..,I,,,I,,) for‘the f1na1

three l1nks are neglected the resulting equatxons of mgtxon @

can be evaluated in less '? one half the time of a
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«standard six degree of freedom manxpulator. The abilxty to i"
\take advantage of phys1ca1 propert1es’>h1ch minimize
equat1on,cbmple fg

‘ o B
generation o

715 another advantage of symbolic

: tacal methods.

The results shown here 1nd1cate that symbolxc
generatxon can be an eff1c1ent, v1ab1e, and versatzle method
for evaluatlng the equatlons of motlon. Stxll greater
1mprovements in effxcxency could be teadxzed if full
t:1gonometr1c 51mp1151catxon and regroupung weré to . Qﬁﬂﬁ!
. empléygd; This will be a very difficult task to automate -

however and was not attemptea in the present work.



The rorward DvnauiC'Solut}on‘
The forward solut1on 1s d1rected at evaluating the

joint forces given the man1pulator s kinematic state at some

4nstant in time. Any of the algorithms, prev1ously dlscussed ‘

for equat1on of motion evaluation may be used to ;olve the |

forward problem. Obviously, eff;c1ent algor1thms are most

k3

desxrable.‘,
LT e
The first step in the forward solution is to define

some de51red ﬁragectory and then spec1fy some time h1story (
of path executxon. The joint positions may then be evaluate
as funct1ons of time and 301nt;ﬁeloc1t1es and accelerat1ons \
may be obtained through success1ve numer1cal j?? ~ \
d1fferent1at1on. Flnally the equat1ons of motion are | '\\
';evalﬁated and the Jo1nt forces requ1red to traverse the path
,may be obta1ned.‘ | |

. F1gure 11T, 4 1llustrates the. joint torque functlons'
‘required by a three degree of‘freedom revolute manxpulator,
to traverse the straight line‘trajeotory‘showd in ?igure
dIII 5. Straxght line trajectorles are representat:ve of
those used in. assembly operatxons as well as sxmple we1d1ng
“and painting mot1ons The ideal link parameters (k1nemat1c
. and dynam1c) are l1sted in Appendxx II and are °
representatxve of a 11ght duty commerc1al manlpulator. Thzs
manxpulator'wxll'be used throughout the body of this thesis.

' The_path‘time.history chosen for this example vas a |

shifted cosine function as shown in Figure I11.6. It can be
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seen in F1gure 111.4 that th:s type of time history results
1n 1nstantaneous changes in Joxnt torques at the start and
finish of the trajectory.‘These abrupt changes would not be
advisable Lniac;ual practice as ttry could induce viBration
and overshoot problems. Therefore someIOther‘type of path
hiatory, likely based upon éolynomials, which preduees
smooth acceleration transitionsaat all times would be
réqhire&ffo; actual implementatioh. The cosine path his;ory
will be used however, for the durationvof this
1nvestlgat10n. ‘

It can be seen in Figure I1I1.6 that the time is the
R ratlo of time to total duration of trajectory, and as such
is nondxmensxonal Likewise, :he trajectory parameter s is -
nond1menszona1 parameter ranging from 0 to 1. This parameter
describes the positionkef_the endpoint relative to rhe total
length of the trajectery. S ‘ ‘ . |

The forﬁard dfnamic solution will be used in chapter 4
:to 1nvest1gate the effect of misalignments.on the Joznt

torques requ1red to move a manxpulator along a desired

‘trajectory.



51

14

-

'Nondiuer‘lsional 'l‘oArque Functions ('rorque/Hax.iqum Totque)

‘ — . — v - v — v
') 0.1 0.2 0.3 0.4 0.8 L LEL R R 0.0 1

" Trajectory parameter (s)

N

Fa

Figure IIT.4 Joip; Torque Functions Required by a Three

.Degree. of Fréédom‘uanipulator to Traverse a Typical Path

-
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Figure III.5 Typ_xga; Three Degree of Freedom M.ag_m\ula_tg and

Typical Trajectory

.
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1v, The Effect of Misalignments on Performance

1}

M1salxgnments affect both the statxc‘posxtxonxng
accuracy and dynam1c response of robots. The magnitude of
these effects depends upon whxch parameters, or combxnatlons
) the:eof ‘are mxsalxgned the magnitude of the misalignments,

and the conf1gurat1on of the manipulator.

A. Positioning Errors | o

Robot manufacturers often specify very high tolerances
for'manipulator fepeatabilicy. However, accuracy is rarely
mentioned. Repeatability is a measure of the tclefance
‘;ithin which a manipu}ator-will return to a predefined pointb
a?d‘is therefore reiated tc thelcont;ol system. -Accuracy
however, is-a measure of the tolerance within waich a
manipulator will reach a desired point given the ideal joint
coordinates which have been calcdlated based upon the ideal
k1nemat1c parameters.rAs such, accuracy is affecteé by the .
kinematic parameters themselves. Offlxne programmxng
requires very accurate mathematical models of manipulators

and therefore the identification of misalignments is very

important.

54
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The modified Denavit-Hartenberg.conv%ntion defined five
link parameters which may be used to describe each link in a

robot system. Errors in any of these parameters will have

varying effects upon both the positioning and orientafidﬁ

e —

. /’ \
accuracy. ‘ é/ { -
e R
The position and orientation of the nth link is defined

- by the elements of the T, matrix. The position alone is
defined by the elements of the fourth column and may be

v

represented as functions of Ist through nth link parameters:

Xn * f(al’ dl' Tpr eoor Vo en)
yn = g(al, dl, Gl, cesy Tn,xen)

zn‘i h(al, Ay Gy eees Yo en)

The position error may result from'misalignments in any one

or more of the links., This error may be defined as;

Where e, is the difference between the x coordinate of the
ideai and the misaligned manipulator. Similatiy_e, and e,

represént the differences betveen the ideal and misaligned y‘

and z coordinates.

e, = fleee) - fﬁ(‘...) o

ey * 9ylee) = glen)

€, lmi(".) -hm(u.)



Whet'e fl(oeo), gl(eee)' lnd h.l'(ooe) repr.'.nt th. idlll

x,y,z coordinates end f,(...),.ge(..}), and hale.s)
represent the endpoint coordinates of the actual (presumed
misaligned) manipulator

]

The terms e,,e,,and ¢, can be expressed as

‘ d1££erent1als-
of df
Y 1 28, 1. /
29, 39,
€ 2 e Aa + 3-.4 e Ae3 N
Y 23, 1 38,
3h, dh,
£, = —— 8a) * .o ¥ —— 88,
z 2, 1 26,

Where Aa,...A8, are the misalignments for the parameteré of

the n links. The error in each coordinate, resulting from

s
/

perameter misalignments,ﬁﬁan be represented by the sum of
the partial derivat}yes.of the respective equation with
respect to each paramater (evaluated at the ideal state)
multxpl;ed by the panemeter mxsalxgnment. in this fashxon
general equat1ons for’posxtzon error can be generated.
0r1entatxon errors can b; investigated in a similar manher,
however this analysis will,be ppstponed until later in the |

chabter.
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- The etfects of misaﬁﬂgnmengg in each of the p&rameteré
| ot‘a thte; degree of freedom manipulatbr will be analyzed. -
In this analysis; misalignments in only link 2 will be
pursued so as to minimize equation complexity. Extension of
th1s ‘analysis to multxple mxsallgnments is straight forward
' The kinematic equations defxnzng the endpoznt position
for a three degree of freedom revolute mahxpulator w1th1; \\\

1deal 1st and 3rd links and a m1sa119ned 2nd link are: "~

-

3
Lo

‘m . . v 2 S "A.»"' K

Whete:

° Dy, = CO,;Cy3-563SasSY3
D,;--SO;C«‘
D3 (=S8, Cy;*CO;Sa,Sy.
@,.-cezch- e
D:v"evstg;T 4

Dal'SGz
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s‘ )
.

The position error afising due_ to misalignmnnti in fho

sécoﬁd link is:g

g

¥
L]

172

ps Y

where, vigp all other misalignments equal to zetoé

™
]

CICZAq2 + SlAd

- C,ad, - S.Aa

™
]

= §,C A8

¢t

€, = SpPap - aylySghay + agl LAY, + (35055 + a,C))ae,

The values Ba,, Ad?A Aa,, Ay;, and A8, represent the

2 * 51235580, - 51230385/~ €1(a35)5 + 4,5, )0,

1683 - Cyady - 32;\3-ﬁ§ * 330y Cqtmy - Sy (a35y ¢ aps) )0,

9

\

5

misalignments in each of link 2's parametérs. The effect of

individual misalignments is demonstrated as follows.
| N

&
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position Errors Due to Length and Offset Misalignments

The~pcsitich'er;:§ resuitihg from a misalignment ihl
‘the length (a,) of link 2 is given byw.

V o, :
| of, 2 ag, 2 oh 2 '/E
L0 | 2 ) da, | 03, o aaé, i

Carryxng out the part1a1 d1£ferent1atxon,and
s1mpl1£1catxon a constant p051t10n error results-

\*. - e

?~f, ' I ,a IAa '
' ~ L W
¢ . ’
4 " Vo ; .
Similarly, a constant p051t1on error: : .
. . ’ 'i. ' . . ) ) )

el - M-._

resu&ts from a m&sal;gnment in-the offset (d;).

-
./\.

" These resulns should be expected as the k:nemat1c

‘ equatzons are l1near thh respect to both the length
- § 1
P (a ) and the offset (d.). Pos1txon errors resultxng from

lehgth and of fset m1§a11gnments w111 be - constant for,
4

nj‘ manlpulators regardless of wh1ch 11nk or comb1nat1on of
lxnks is m:saJ1gned Note that 1t xs possxble that two/
‘or more lfi:;‘could be m1sa11gneé/such that the total

v error would be zero. | \" PR ~ -

]
- \
e B
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Positioh Errors Due to TwistWERd Skew Misaligments

e,
' )

The position error resulting from a misalignment in

the twist (a;) of link"? is givenQby:

v ‘ 12
€], - (G 227 IS
Wlaz - ""3a,”  0a, da, 2

!
Performing the partial differentiation'and

) . . . R o . . . « 1
'simplification a variable p7sxt1on error results:

[ela, = | agspml
PO ”1/ L i/fﬁ
Performxng an analogoMs operation for skew (yz)

m15a11gnments a s1m1lar e#pressxon is obta1ned

% o
e \ | °é°3ﬁ*2|
‘ > . ‘ _‘/" e .
These expressions represent position. errors which _
2 vary nonlxnearly ffom zero to a maximum value of a,tAa;
or. a,tAy, respect1vely. Unl1ke length and offset errors,

the errors resu1t1ng from twist and skew m1sa11gnments

will depend upon wh1ch Joxnt or )oxnts are m1salxgned._'

s 4

: Ln the example shown the errdrs are func41ons of the
lengthaand rotatxon of Ifmk‘3 In general,vthe errors
ar1szng due to ‘A th;& o:-skev4mxsalxgnment 1n jo1ht i
‘w111 be a functxon ofrthe parameters of links 1+1
through n. The effect of sbéght mxsal:gnments in tw1st fd-

or skev can. result in substant1a1 position error7 ‘due to )
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the muitiplying,e;fect of the link lengths, This problem
* becomes more acute éo:'the larger ﬁanipulatoré due to
‘the iné:éased‘length of»eéchf;igk.,Thisﬂeffect was ﬁoted
by Mooring(1983)..ﬁ;§fdund éhle, for,avPUMA 600, a one
degree error in thg_skew of link 2 and.3‘prodUCed a -
maXimum'position error of 35mm. | | \

e
¥



Posifion,Errors Due to Rotation Misa}ignhents,

: The'bositiop_error resulting from a misalignment in.
“.the rotation angler(eg)‘is;giveo by:

~ | o 1/2
af. 2 2 2

39, © -ah,

s iy i i

Elg, = ((—

L [(aez) +Fae_2) AR

[

Once again, performing thé partial differentiation and

, . n . , -

- simplification, a variable pijtiqn*error results:

. , ‘ ) o . L ‘ ‘

I 1/2,,

‘E'ez = {ag + 2 + 2 a2a3r3} 86,

'Thé.maximum'boéition error occurs when, 6, equals 0

degrees; i.e. arm extended, and is givenby:

= (ay +a5) a0, L e

|E|92 2t %) Ot

LB

The m1n1mum occurs at 0, equals 180 degrees, 1 e. arm~

@ . M

"doubled back on 1tse1f, and ls ngen by

) : "

-gyaez E

-

In general the posxtlgn error, in an n. degre& of '
vfreedom mampulator, ar1%}m@ due to a msalxwgnmeent in.
| the ith rotat1on variable (8,) w111 be a functxon of the
ith through n link parameters. As with the tvist and
skew errors,4substant1alﬂposxtxon .errors can~arise due

to sl1ght errors in the rotation var1ab1e BrLOtl iﬂ

 rotation are, most likely to arise as part of tbe“ Ogtfb1

L
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hardwaré or software. Problems with angular position

encoders could easily result in rotation misalignmentsy)‘ ‘
] . . .
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Multiple Misalignments '

The effects of individual misalignmenté have been
examined. However, actual manipUlators(will‘generally havoUQ“\‘
some combina;ion of‘misalignments. General;expreSSions for-
the posifion efrors resulting from combinations of
m1sallgnments can be obtained by the method outlined
However, the: equatlon§ become quite 1nvolved and ,manual
derivations become lengthy. Therefore a more general method
f  of der1v1ng the eqguations of ?os1t10n and orientation errors
is needed |

The position and orientation ofpkhe nth manipulator
link‘is defined by the T, matrix, The inctenen%al change in
ﬁeach element of T arising due to miselignments in eacn of

the 5#n link parameters (ps) can be written as:

Ks

Th1s matr1x can be termgd the error matr1 E..

The change 1n or1ent ;bn tesul ; from the1~

\:‘% . .
e &
gsalxgnments wlll be def1n"§$y t<f ee columns of

- of the error matrxx while the changey'wgpos:%xon uzllxbe

;_defxned by the fourth column. szen the partxal derxvatxwes

A

" of the T, matrix with respect to each 11nk parameter general *

K

expre551ons for p051t1on and orxentat1on error may

\ . - e : S,



hﬂQvalue of 8089 mm to a. mxnimum valpe of 6. 40 mm. The maxgmum

obta}ned.
“The T, matrix is the product of the 1st through nth

modified Denavzt Hartenberg matrices, D.

Ta- DD

120000

‘The‘pertial derivative of T, with respect to a parameter,
« Pmi of 11nk m can be obtazned by the product of the b
matrlces and the partla; der1vat1ve of D, with respect to

-

Pm. Recall that the part1a1 of D; with respect to p, is

. Z2ero. -
3&‘. = D D _a__D_i )
3Pm‘ | S T2 op, i+ 0, .
-

' The elements of E, which dlscrlbe the p051t10n of a
. typical 3 degree of freedom revolute manipulator (Fxgure
" I111.1) have been generated and the effect of multiple
mxsal1gnments on the position error along an arb1trary
'stfalght line trajectory (F1gure 111, 5) has been
‘1nves€igated as ‘follows.

The posxti"error as a ‘functmn of the normahz

trajectory parameter (s): has been plotted 1n Flgur_w
thls analys1s the J%ngtheaad offset of eachdlznk

o R ey
' to be m;salxgnegn,y 0 254-,}; Thedthst,.skew,

' ;;are asshmed to be sza%Jgﬂed*hygI q‘ﬁpgrees. The po

error vaties nonlxnearly over tbe trajectbry from a max1mum 'y

posxt:on error occur1ng ow@r the ent1re workspace can be :' d;

*sﬁ*
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J\‘det:ermmed by maxxmxz1ng the position elements of E, and is

ghnd to be 33.02/ ‘mm, which is similar to that found by

_ ‘f‘m-
Mooring. R

Clearly these are unacceptable discrepancies in systems
whiéh'may‘requife.accuracy,to fractions of millimeters, If
offl1ne programm1ng 1s to be successful, misalignments must

"be 1dent1f1ed and rncorporated into the manxpulator model

A
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Figure IV.1 Position Error Alﬁg a Typical Trajectory,



Orientation Errors .

u', -

k. O}iéntation erfors arising due to miS#lignments can
also bq investigated usxng the error matr1x. The first
three rows and columns of E, define the incremental
change in the dxrect1on cos1nes, whxch define the link
orxentatxpn, ar;sxng from mxsalxgnments. The.complete
error matri; foF a three degree of'freedom manipulator
with misaiignments in the paifmeters of link two is:
B B2 B3 Bie
0| B0 E2 f2,3 Fa,
By E32 B33 E34

Lo o0 0 ;»
Wheres
E\l’1 £ -0y 00y ¢ Sl(;az Sy - By L)
f1,2” - Cyty; 88y * Sy(aay Gy - 2*253)
£y 37 €187, + 8y $3)
Ey,q = GCp 82y * Sy 4dy ¢ Sy23(54 5"2 - ¢4 87y)

- Cylag Spy + 35,088,

-



E2,1 " - 51523 803 * (1 (415 C3 - ap S)
Ep,2 ™ = $1023 805 - €y (83 Cy v ar, S3)
£2,3 % S1lovply + 83y Sp)

#S) (2353 + 35,) 48,

3,1 % Cp3 88,

E3.2 2 o 523 Aez‘
E3'3 2 . Cz Aaz + Sz AYZ
B34 7 Sp 837 - C123(53 dap + (3 8rp)

+ (a30p3 + 2205088

Note that the orientation error is 1ndependent of the
length and offset parameters as expected

Fxgure IV.2 shows the path of a typxcal three
\ degree of freedom manipulator moving along the global x
axi;. If the manipulator were ideal link 3 would be
.coplenaf with the x-z plane at all times. Hevever

misalignments will cause the link to be‘displacedq

69
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relat;ve to the x-z plane, by some angle § which will
vary ddring‘the course of the ;rajeétory. Figure 1IVv.3
illustrateé the error angle (}) as the angle between the
ideal x axis (x,,) and the actual,,miSalighea axis
(x3m). The terms Am, and An, represent the elements .of
the error matrix By(y.3) and E,(, 1) ' ‘

_Figure IV.4 plots the maghitudejof the orientation
error's as a function of the normalized trajectory
paramater s. In this analysis the twisg, skew, and
rotation have each been assumed to be misaligned by 1.0
degree. §Ote that the orientation error varies from a
maximum of 1.65'dégrees to a minimum of zero and then
througﬁ the x-z plane to a final error of 0.06 degrees.

It has been shown that general expressions for the -
‘position and orientation'érrors can be obtained throuéh
the generation of the error matrix. Length and offset
misalignments result in constant posxt1on errors«over
the workspace and have no effect upon the orientation,
Errors arising dqé to misalignments 'in the twist, and
ékew are nonlinear‘functions'og'the parameiers of links
i+1 through n. The error resuIE{;g from a misalignment
in the rotation is a nonlinear function of the
parameters of links i through n. Position and
orientation are critical for certain assembly, veldlng,
and mater1a1 handlxng operations The position and’
orientation errors which can result from relattve1y  ,

minor misalignments have been shown to be substantiéigy‘
Vo _ oo T
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rigﬁte“IV.2 A Path Which Traverses th

e x-axis
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‘As a. result the determ1nat1on of m1sallgnments 14 vety

~1mportant 1f an accurate model of - a manxpulator is to be

'ob*azned Furthermore mxsalxgnments must “be. accounted o
for if offlzne programmlng of manlpulatOtsﬁ}s to vf;”

: . AR ‘
v* . " ‘_.\u‘.’ N «“..‘. .
‘i '&A e

successful



B. bynamic Anai?sisfof Misaligned Manipulators’

: o e W . ‘
™ Each manipulator link has five kinematic parameters

"whichcdefine the‘linkzcoordinatevsystem and orientation,

VVPosition and'orientatiOn errors vere completely defined /by

mxsalmgnments 1n these f1ve parameters. However, “each {ink
IR
also has. asaocxated w1th it ten dynam;c parameters’ wh1ch

Rl

'deflne*the mass and 1nert1a propert1 s. The three product of

inertia- terms (I.,, ,,,I,,) agg ene ally zero leav1ng seven

.

;lparameters whxch locate the centre f ‘mass and descrlbe the
;moments of znertza of each 11nk As'a reault‘g&total of

#e parameters are requ1red to defme each lxnk ~ :
“ki ematzcally and“dynam1ca11y In order to thoroughly

1nvest1gate the effect of" m1sal1gnments on dynamlc . f&

'-performance the concept of m1sa11gnments, or parameter
errors, would have to be expanded b9~1nc1ode ‘errors in the o
}fsezen§dynam1c parameters bt each link. N e | |
: Th1s sect1on will deal wzth obta1n1ng the Joznt torques f
requ;red by a mlsal1gned man1pulator to traverse a
-,&prescrzbed trajectory. It will be shown that 5o1nt torque
ifunct1ons are almost 1dent1cal for the %geal and mlsa11gned
. manzpulators. Therefore the parametr1c ana1y51s’o£ the P ‘
rdynamlc*response of mrsa11gned-man1pu1atorl seems to,be 9fﬁi

;,little_val@@f'? ‘.;:h‘f' B R U B figAég@‘f_[f:‘_’

“

¢ : - S ¥als R -



~Joint Force beviatioﬁs Aiong a Prescibed Path
. The .joint forces required'for &#'fdeal menipulator’tb

»

chapter '3 by evaluatzng the equat1ons of mbt1on for an 1deal

N manlpulator at epch p01nt along the traJectory The © =

»

.

travetée‘a given path, in a spec1f1ed time, ‘were obtazned in .

equat1ons ofhmotzon £or m1sal1gned man1pulatoﬁ§ can be ‘,‘

[F

”generated by 15 ﬁko;atzng the mod1f1ed DenaV1t Hartenberg

transform into e her the. Lagrang1an or Newton Euler

..formulations e program DYNAM has 1ncorporated the
mod1f1ed ti;.s§orm into’ Hollerbach s recursxve Lagrangian
‘formulatlon and thus ‘the equat1ons of motion for‘ﬁ%ﬁal1gned
maQ}pulators can be ggnerated symbol;cally Us1ng these
equat1ons of mot1on the dynam1c response of m1salxgned
man1pulators has been 1nvestxgated Thé\relatlve magn1tude
of dynamlc errors, resultxng from m1sal1gnments 1n-jpe
k1nemat1c parameters w1ll ‘be demonstrated by cons1der1ng the
effect of k1nem£t1c m1salxgnm7pts on the forward solutxon.

D . d £

[N I - -
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The Effect of Kinematic Parameter Misalignments on Joint .

v,

8
-

. 2 .
‘The Jo1nt forces reQU1red to- traverse a typxcald
trajectory (Figure III S‘lBVer a spec1f1ed time perlod |
(2 d%conds) were evaluated as out11ned in chapter 3. The
%;amet@eotory was, then -simulated with ‘the length,

offset,\t i t, ‘and skew, m1sa119ned by 0 25‘&5 and 1. 0

degtees respggtlvely. Erro s of these magnltudes, 0. 25%,

are reaséhable ngen iﬁe ma9h1n1ng processes 1nvoIVed 1n

" the manufacture of comme4c1al man1p3!htors..‘ ‘o

F1gure Iv.5 plots the joint torque functlons forv}é
both ‘the jdeal and m1sa11gned manmpulators. It cap be -
seen that the dlfferences are extr%mely small. The N
devxatzons 1n.Jo1nt torqpes are plotted in Flgure IV.6.

Thefmax1mum torque devxat1on is assocxated w1th JOlnt #

.
1 4 and has therv@lue of 2 9 %, The m$x1mum error in- ¢

';Joxnts #Zugpd #3 are 0 10 ¥ and 0 42% respect1vely It

is noted that the deviations vary non linearly

" <

'throughout the trajectory. '“_ ;4 coe ‘i: e

%g?le 1v.1 111ustrates the’?elat1ve sens1t1v1ty of

the equat:ons of - mot1on to ind1V1dual m1sal»gnments in"

\
\Qﬂength offset thst 'and skew. It can be seen that in-

thxs case the equatxons are most sensxtxve to errprs 1n L

R

v;the thst and skev parames.rs. The relatxve sens1t1v1ty

. pa*\xcular manxpulator and trajectory xnvolved

of the eqhations may, hovever, vary dependzng on‘tﬂ!

»
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.....

\;mahxpulators. Therefore it is 11kely that the dynamxc

él 1ncorporated into a control system does not need

J :‘

1mportant result because the 1nclu9&oo‘ogya*mieadggned nﬁ f

dynam1e model V%uld lead to a less. effxczentecontvol

‘ . _ | ) : au

algorithm, S !



Table IV.1 The Effect of Ind1v1dua1 Mmsa11gnments on the

uﬁt}ons of Motion

“Joint TorqueErrors

.

¢:] Parameler Error

bint 1

Joint 2

binf 3.“

-

he

0.72%

0 .']04; |

0.08%

563'0.25

0.11%

0.10%

0.05%

% . . K * !
R :
330 ¢ .

v i Aaa" 0 2.40% |, 0.37%
.‘ :’ -“‘5 v", . .
L . |
7 ayaet.0 | 2.00% | 0.33% | o0.02%
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) V. Conclusions and Recommendationg
. v
-

Thﬁs thesis has 1nvestlgated the effects of joxnt

‘

mxsa11gnments on the analysis and performance of robot
manipulators. The 1dent1f1cat1on and 1ncorporatxon ot‘
@isalighments igto the kinematic model of menipuletors js?of
'fdndamental impoétance to the sueoess of future offline

' ] R}
programming techniques. However, it was found that

. v ‘\ A,w'_‘,f
m1salxgnments have very little effect on man1gulator

<

dynam1cs. The main points and conclusions whidh haVe arisen

from th15‘1nvest1gat1on are presented below:

» Manipulator'Geometry ) " ’
L ] . ‘ B "
0 ‘ ' ! { [ ] ‘
The DenaV1t Hartenberg convent:on does not adequately
4 s
descrzbe the. geomebry of misaligned manipulators for the

following reasons: - | -
1. 1f consecutive joint axes are not parallel and co?planar»
or they do not intersect orthogonally, the joint

.coordlnate system can become far removed from the

i

physical end point of the link itself. Thls‘leads to the

-

ill-conditioning’ of the A matrix and can result- in

,.

_severe numerical difficulties, particularly when the
inverse of the A matrix is required. . -

i

2. - When misalignments are presént, another transform which

-

82
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defines the actual endpoint of the link with respect to
the link coordinate system is required to locete the
endpoint in the workspace:’ |
: *Mooring proposed the adopt1om of a.transform
>dgVeloped'§@ Suh and Radcl1£: for she geometric
_:description of m15a11gned lxnks.‘The Moor1ng convent1on

however has two ma;or prablems'

e
3. The Moonng convention does no'o prismatic
joints, o . - o '

. Ve % . - % S - U
"4,  The partlal der1vat1ve matrix of the Moorfng transfor%
e Uges

is relatxvely complicated and as su is not aﬁﬂ%oprxa e

for the symbolic generation of the equatrons of motion,
-
/

\> A modified Denavit-Hartenberg convention was proposed

" which overcomes the problems illustrated above. With this

convention a fifthilink paraheter termed skew (y) was

introduced. }' ‘ R v '

}1. The fifth link par;meter accomodates non parallel Jo1nt .
axes while mainta1n1ng ‘the c01nc1dence of the: link

* ‘coordina ystem with the physical end point of the

%a result, the A matrix is always well
condifioned andjﬁhe need for supplementary
tra sférmations to. locafe link endpeﬁats is eliminated
F rthermore, lxnk‘1nert1a propertiés remain essent1ally
.unchanged from the ideal confiqurations, - ‘
2. The partialtdé;iyative of phev;odified transform, ehiiz;k

- more involved than the Denavit-Hartéhberg gonvention, is

. ' ,r
’M." S - 9 ‘ AR Y N
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much less compliéfted than the Mooring qohuention. AS a
result, the modified convenﬂion is more appropriate for
use in the symbol{c generation of the equations of

motion,

a ‘ ‘ |
‘\
4 N gy
. ! vt

b
. | . . . --
The modified conyention was then used to 1nvestigate,

the effects of misaliisments on the kinématicrand'dynamic'

analysis,and performifice of misaligned manipulators.

' Kinematic Analysis . ~7 | s

1. The forward kinematic solution js not adversely affected
. “a

-

by the pfesence of @isaligdﬁfnts;

2. Explicit equations for the inverse solution are

extremely difficult, if not imp9ssibie, to obtain for

-

. ' 1 .
misaligged manipulators. As a result, numerical methods
'y : . Y .

must be' employed to obtain 501ut§ons topthé inverse
problem. |

Id

3. TheNGauss-Seiderqud'Newtonvaaphsdp mefhods“fqr,fﬂ;”
~. ' nonlinear algebraic equations were used in‘ordgr,ZE} »
solve the*invers¢ problem. However, severe oscillatian ’

J s o e - N

!

problems were‘enCOunéeféd in the régions nea; an§'b£-thé
global coordinate axes.‘Uhdet-relaxaFion helﬁed; kowever
the .amount of relaxatioh'requiréd té produgg ‘tability

resuiled in excessively slow cqnveégence.. -~ (

4. A'siﬁple'yet“effective-numerical teéhnique vas pfOpOscd o

vhich vas successful in obtaining solytions to the



‘ »

~close to the z axis. The 2 axis is likely to p__
problems with any numet1cal technique due to the —

degenerate naturq of this axis.

¢ Dynamic Analysxs
T

Z*‘f‘ o : ‘ B ".. L |
1.  The equations of motion for misaligned manipulators can
M “ be, obtalned with any of thé Lagrandﬁan formulatlons by

e uttlizxng the modxfied Den$v1t Hartenberg conveniﬁpn.
. )
2. A program called DYNAM was developed and used to

&ﬁ‘PVQStEEate the viability  ‘;the symbol1c generat1on of-"

the equations of motion. |
3. It vas found that without some fqrm of sluplification ,}
}‘1 and- reduction the symbol1c equat1ons very-qu1ckly become
\‘extremely large and unmanageable. . §
4. A sxmple yet . effectxve algor1thm for equat1on'
”‘sxmplezcation-!ai presented ‘which resulted in av very
. i;”eff1c1en; methdﬁwﬁfsgouatxon evaiuat1on. T@e syﬁbolxc
:fegugtlons foo,esxﬁree‘degreevof-freedom revolute
-‘menipulator‘cen'be‘evaluated‘in approximetely one .
Jfourt:eth of the txme requlred by the Hollerbach ¢ x 4.
formulatxon The equations. for a six degree of Ereedom
o revolute nanxpuletor cannbe evaluated in approximately

‘ one sxnﬁ‘: ,"5‘{}1:# "t»ine. | ,"ﬁﬁ P <

,,‘,"3,58 ’ ‘w .

:yi% nquations could be\con letely sxnplezed ,
; e . :‘g gy , - .
'J&hrouqh hi*%ataof bxigonohetr:c red tion and .

- 'v
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. ‘ j

regrouping, the efficiency of the symbolxc eqﬂktions

P S

would see a dramatic 1mprovement. 1t must\be noted that
completely reduced symbolic equations repéesent the most
eff1c1ent eqqatzons of motxon possxble.;f

e

The complexity of the symbolxc equatidns 1s non- 11naar '

wath respect to the number of degre%s of freedom,

- whgreas both the Newton- Euler and Hd&\:rbechl

|

formulatxons are lxnear. However if the {ansymbolic

.equatxons could be completely redﬁced‘ they\ﬁould always \

\ *

. . /
. ‘ .

i

be evaluatgd in less time.

Symbol1c generat1on can’take advantage of ceatain N g
man1pu1ator geometrxes and dynamlc properties ‘which can‘/
lead to a reductxon in equation complexxtz The o ’ / “;
equat1ons of motxon for manxpulators with one or more /f ’
prxsmatlc 301nts d!n be evaluated 1n less time than //
: ‘those of a purely revdiute manapulatot. $1m11ar1y ]
| inertia properties of ‘the end effector of a sxx d;é(‘é‘

r‘j»nghd ‘to be” 1ns:gh1f1cant and the resultxng equat1ons\

evaluatxon.‘

of fteedom\man1pdlator can be el1m1nated 1f they are '

L

vof motion can become much less tomplzfated o . f

. , : 1
The Symbolyc equat)ons for each Jo1nt are 1ndependent of

each other and would there{ore be apptoprxate for B

parallel proce531ng archxtectures. This could lead to,

-~

L .
,V;urther 1mprovement 1n the effxcxency of equation ,

. . .
.A/’ . . A ' i
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" Pgsition and Orientation, Errors’ *

e Voo DN . . ’

1. Thi Error matr;x En has been derl%ed and can be used to -

-

;‘determlne the errors in p051t10n ané orientat1on whlch

B

arise due to any comb1hat10n oi m1sa11gnments.g
‘2. The pos1txon ernor result1ng from length and offset

IS

-

m1sa11gnments wall be constawt regardless o£ which lxnk

3or comb1nat1on of llnks 1s m

0

1sa11gned AS a((esult 't >
1‘71s p0551ble that two or more llnks cdpld;he m1salxgned’ i
such: that the total p051t1on erﬁon vould be zero,iukp‘““
.‘M1sal1gnments im the length and offset of a 11nk have no -
effect on err?rs in the donentatlon bE - ‘a man1pulator.
3_”'The,pos;tfbn errorfresult1dq from m1sa1}gnments in the%
| ‘twist (a)'orfske;v(y)‘of link i will befnonlinear‘v
anctiohs offthe;parameterskotflinks}i+1 through n. The
effect of slightvhisalignments\in\these parameters'caﬁ
'resuit in sUbStantial.positiOh errors due to the“';
‘multioiyihg effect ofvthe link lengths. Very large . .
‘man1pulators will thoeefore be part1cularly sen51t1ve tov
accuracy or 1dent1f1cat1on of these parameters.'
4.“.Pos1t1on errors resultlng from mlsal1gannts in the-
’jolnt rotat1on var1able (0.) ylll be " funct1ons of the
1th through n 11nk parameters. As w1th twist and skew,
substant1al errors can arlse due to m1sa11gnments in the
hﬁrotatlon var1ab1e. Fhese m1sal1gnments w111 most lxkely
4 ar1se due to problems Hlth the control system such as

p051t1on encodens, or the control software.



5.7

N o

Or1entatlon errors are 1ndependént of the length and

%

loffset parameterSv howiyer they are non11near functions

“‘Jof the tw1st, skew, a?d rotation parameters.-'

fassembly and weldlng opera yens. It was shown ‘that.

‘1n the mathematxcal model of man1pulators is of

[

:‘Both posxtlon and orientat1on are cr1t1cal for certsi

=

modest m1sa11gnm\?ts in the/sepond 11nk of a three

/ .
degree of freedom manlpulator could result in

.

substant1a1 p051tzon and or1entat10n errors. Therefore

the 1dent1f1ept1on of m1sallgnments and the1r 1nc1u51on

{
paramount 1mportance to the s&ccess of off11ne ‘
; .
programm1$g Furthermore,Athe-man1pulator control/sysfem

must 1ncorporate the mxsal1gnments in the k1nemat1c
\

~model af the desired trajectory is to be traversed.

/

!
S
i

oy
;



‘vpynamio Response'
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The dynam1c response of a m1sa1rgned manlpulator was

®

.1nvest1gated and~the follow1ng was noted. D .

The effect of’ mlsal1gnments on the goent torques

an

requlred to traverse a'§1ven path‘qu found to. Beﬂg

relatlvely small A three degree of freedom manxpulator

. WIth the length offsetk tw15t, ana skew m1sa11gned by

0 25 mm and 1 0 degrees respect;vely was analyzed. It ’

A.“\' was. found that the maximum joqnt tbrdue degkat1on

e
Ny

occurred. on Jo1nt number 1 and haﬁa magmtude of 2. 9%.\

~ The maxlmum errors in joint torques nupber tgo and three

R

.

were 0 10 and 0. 42 respect1Vely. These ‘errors are

relatlvely small/and it- is likely that they would Hé

!

1ns1gn1f1cant and -easily controlled by the manzpulator s

control system (Assum1ng of course that: the control
N

system 1nc1uded the m15al1gnments in 1ts k1nemat1c model
of the manlpulator)

\it\was found that the equat1ons were most sensitive to

mls\ilgnments in. the twist and skew parameters. Th,"

ri¥§t1ve sen51t1v1ty may, however, vary dependlng on‘the

part1cular man1pulator and geometry 1nvolved »
’ , ; -

¥

a
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g

. Recommendations

2,

The followxng recommendat1ons can be made:-
Different. numertcal methods for solv1ng the 1nverse

k1nemat1c problem should be pursued Grad1ent search E
¥ ‘

Great rmprovements in the effxciency of the dynam1c y

——

models. of man1pulators could be real1zed by further

’51mp11fy1ng and redpc1ng the-symbol1c ----- equatwons of

. motlon. Symbol;c dynam1c models w111 l1kely ‘have a

.szgn1f1cant 1mpact on manlpulator ‘control. and

d

"’sxmulat1on. High level control systems are go1nq to

demand extreme eff1c1ency of the dynamlc model and
completely reduced symbol1c equat1ons will result in thet

most effxcxent models p0551bfe.

_The effect of errors in the 1ner%1a parame@ers on the

o

Adynamtc response should be 1nvest1gated ‘as these may

;have a s1gn1f1cant effect on. manxpulator response.

-

»Fuﬁﬁbermoreh the effect of changes in JOlnt friction

.ﬂ_‘ ~ ».M /
sH&ﬁ} *pe 1nvest19ated as this w111 certa1nly have an

fzmpact on the Jo1nt torques requ1red to traverse a

"de51red path The 1mpl1catlon on torque based control

i 4

© ‘systems may be s:gn1f1cant.

7The effect of mlsa11gnments on the;manipulator control -

‘system should be 1nvest1gated Tt will be very. importantf

’

- to determ1ne hov a manxpulator with misalignments will

respond when the controller is also modelled. Certain

g -
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control S¥Ftems may have g 3reater tolerance for m,Mi,a@sm,
m1sa11gnments than others. It would certainly seem that
torque based control systems would be very sengitive t9

mxsalxgnments and an accurate model of both kxnematlc
K
and dynamxc mzsa11gnments wou;g_be 1mportant, ‘
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Appendix A: S}mbolic Gonoraiion of the Equations of Motion
DYNAM .is an interactive computer program wHTEh.
generates symbolic equations of motion for arbitrary

maniéufators of up to six degrees of freedom. The algorithm
is badged upon the recursive Hollerbach 4x4 dynamics:

formulation.

The Hollerbach formulation evaluates manipulatdr joint

e

forces‘a§°follows:

aT, LT,
8, ] T 9%

Fi = Trace '[ 3q

Where ¢, and B, are evaluated ftom\é¥n-dqwn to i=1, and are

\\

defined by:

|

- i . -
% ¢y =myoag *+ Gy Gy

\
T, and T, are evaluated from i=1 to n and are defined by:

30, 2o,

Y ny j '2
T 7101*27113qi° Tu"faq q
* §
301- ~"
* T, 0

i

L, a0,
STyt Tia Byt T aq %

95



pram——

J

i

. Lt

= inertia matrix
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A tloy, chart. f.or the evaluation of the cquetlcne is
shown in riqure A.1. DYNAM qeneratu the -ynbolic equetlone '
folloving this algorithm. . . ° . '
* The program wis vrittén in Pascal for tvwo reasons: d
7. Pascal handles character and string manipulation very
“ convenientlfi . o |
.2. The versetilxty of the data structures available with
Pascal tend to reduce algorithm complexity and 1mprove
selt documentation. L S |
goftware has been developed for the symbolic
man1pulatxon of the followxng task3° T
.1. Matrxx addition
.2, Matr1x muqupl1catidn
3. Transpose ot a matrxx
4. .Multxplxcatxon of a matrxx by a constant
§. Trace o£‘ mg&ijx
6. Multiplication of a matrix by{a vector
7. Generation of the first and second derivatives of the A
and Dvmatrlces. Lo
‘:Of the above tasks the addition and multiplication
algorxthms proved to be the most complex. These algorzthms
must. perform the operatxons vhile minimizing equatxon

complex;ty. Many of the operations required by these

algorithms require special consideration. Some of these

" tasks are'~ ; P

1. The algorithms must not add zeros.

27 Multiplications by zero must not be included in the
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Figure A.1 Algorithm Por Equation Generation Using the 4x4 ‘

vy Recurvsi've Hollerbach Formulation
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3. Multiplications by one must no} bc portormcd |
4. Algebraic hierarchy must be maintained whill nininiziﬂg |

. the prolitoration of unnoctslary 9roupinq: and bruckctl ‘

5. Multiplication of positive and noqativo quqntlticu must

be haﬂdlod,appropriatoly ,

DYNAM has inéorps;atod a simplification algorithm which
minimizes. the compl;xi;y of the symbolic equations. This
siﬁpflti?gtion routine replaces all nbf*ﬁbsfwhich c§ntiin”h
more ‘than one addition and/or two multipljcitions vith a .
single vériqple. This algonitpm was relbtively(siqple to
incorporate yet resulted in a/dramatic improvement in.the
effxciency of equat1on evaluation. . | .

DYNAM creates a FORTRAN callable subroutine which )
contains the symbolic equations for a given manxpulatcr.

This subroutlne will evaluate the joint forces given the

manipulators kinematic state.

-

!

%



AppéndixvBé”Manibﬁlat&r'Kihgmatiq and Qynéﬁic,?arameters

All of the ana1y51s in thzs thesxs has been based upon .

an. 1deal1zed man1pulator whose parameters are sim11ar to

those of the commercially ava1lable PUMA 600 The k1nemat1c,

and dynamxc propertxes are shown 1n Table B 1.
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Table B. 1 'rhe Kmematxc and Dynamc Properties of a Three .

g\gree of Freedom Mampulator :

¥

Lik1  Link2 Link3 y,
w| oo bt Lk Link3 /
| Leghtm .0 42 BB /0
| ot . 0 o 0o )
Thist ldegreesl -~ 90 . 0 0 /
lSkewldegreesl 0 0 o
5Masa kg . 45 1591 11}8

CEml I A

1 jm 0 /0
Ll
‘txxo(gmm)f 0008 01237 0.0074

1. ‘ly‘y,ng_-m**Z),"; - 00038 { 1237 . 00074
kgm¥®2 .t 007 03897 0707
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