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ABSTRACT

This thesis is a study of design and analysis issues arising from repeated 

measurement designs. We have constructed repeated measurement designs 

under much more general models than those constructed in previous studies, 

and have suggested new alternative approaches to the analysis of repeated 

measures data with missing values.

We approached the construction of repeated measurement designs in two 

different ways: (1 ) constructing optimal designs with the assumption that the 

model includes random subject effects and that the serial correlation structure 

for measurement error is autoregressive; (2 ) constructing adaptive designs that 

allow the model to have an unknown error structure with heterogeneity. In the 

first approach, we constructed optimal designs by maximizing the correspond­

ing information on treatment effects, noting some similarities and differences as 

compared to the optimal designs constructed under less general models. In the 

second approach, we constructed adaptive designs using updated information 

from the available data in sequence. The allocation rules for assigning subjects 

to sequences were derived in such a way as to maximize the increment of the 

information on treatment effects obtained from new subjects. These allocation 

rules were adapted to account for any loss of information caused by incorrectly 

specified error structures. We used a simulation study to compare the efficiency 

of the adaptive designs with the designs constructed without accommodating
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the subject heterogeneity.

In the analysis of the repeated measures data with missing values, we also 

considered two different approaches to make up “complete” data sets: (1 ) using 

proxy information for missing data, and (2 ) using a multiple imputation strat­

egy to fill in for missing values. We developed small-sample testing procedures 

for both approaches, under assumptions that the repeated measurements are 

from a multivariate normal distribution and the missing data occur at ran­

dom. Simulation studies indicated that our proposed procedures performed 

well for small-sample repeated measures data. We concluded that the use of 

proxy information is more powerful than the other existing incomplete data 

analyses methods. Lastly, we found that, in general, the multiple imputation 

method is not a worthwhile strategy, especially in situations where proxy data 

are obtainable or available.
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Chapter 1

Introduction

1.1 Background o f the thesis

This thesis focuses on the design and analysis issues that arise in the use of 

repeated measurement designs with a special application to clinical trials. In 

typical repeated measurement designs, the study subjects receive several exper­

imental treatments over several different periods of time. The study subjects 

can either be treated repeatedly with the same treatments over time, or in a 

cross-over fashion, with different treatments over time. Responses from each of 

the periods for each study subject are usually correlated, and are often referred 

to as longitudinal or repeated measures data. To obtain efficient estimators of 

parameters of interest, decisions have to be made on which treatment sequences 

a subject should be assigned to and how many subjects should be assigned to

1
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each treatment sequence. Further, for various reasons, the resulting repeated 

measures data are often incomplete, so efficient analysis methods are required 

for repeated measures data with missing values. This thesis deals with both 

design and analysis issues related to repeated measurement designs.

1.1.1 Design issues

Repeated measurement designs (sometimes referred to as cross-over designs 

or change-over designs) are frequently used in clinical trials to compare the 

efficacy of several different treatments. Brown (1980) reported that in a survey 

of studies investigating the effects of anti-anxiety drugs on humans, 6 8 % of 

the studies used the cross-over approach, which is evidence of the popularity 

of repeated measurement designs. Here are some of the major reasons for the 

widespread use of repeated measurement designs (Hedayat and Afsarinejad, 

1978; Carriere and Huang, 2 0 0 0  and 2001):

1 . It is economical to adopt repeated measurement designs, since it can be

expensive to recruit human study subjects.

2. The use of repeated measurement designs allows within-subject compar­

isons. This is important because the .response to a treatment can vary 

greatly among study subjects.

2
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3. Using repeated measurement designs can save time, especially when special

training is required for the study subjects. Unlike completely randomized 

designs, where subjects are used only for one period, repeated measure­

ment designs allow the repeated use of subjects who are already trained.

4. Repeated measurement designs can produce estimators for treatment ef­

fects that are more efficient than those obtained from parallel or com­

pletely randomized designs.

A simple example of a repeated measurement design is the two-treatment 

(A and B) two-period design with two sequences, AB and BA. In sequence 

AB (BA), subjects are assigned to treatment A (B) in the first period and 

treatment B (A) in the second period. The design is desired to produce the 

most efficient estimator for the treatment effects.

In constructing optimal repeated measurement designs, we first choose a 

model for the correlated data while considering factors involved in the experi­

ment and the correlation structure. The factors that are usually considered are 

treatment effects, residual (carry-over) treatment effects (which are the effects 

of the treatment given in previous periods), period effects, sequence effects 

and subject effects (fixed or random). The most commonly used covariance 

structures for measurement error are:

3
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(1 ) independent, in which it is assumed that the repeated measures data are

uncorrelated;

(2 ) equicorrelated, in which it is assumed that the observations from any two

different periods are equally correlated;

(3) autoregressive, in which the correlation for the observations from any 

two periods is an exponential function of the distance between the two 

periods.

Many researchers (e.g., Cheng and Wu, 1980; Hedayat and Afsarinejad, 

1978; Kunert, 1983, 1985, 1991; Kushnerr 1997; Laska and Meisner, 1985; 

Matthews, 1987) have constructed optimal designs under various model as­

sumptions. However, these optimal designs are strongly model-dependent. 

For example, the optimal designs under an autoregressive (AR) error model 

are not the same as those obtained under an equicorrelated covariance model 

(Matthews, 1987). Further, clinicians may not wish to use some treatment se­

quences involved in the optimal designs (Carriere and Reinsel, 1992 and 1993). 

To alleviate these dilemmas, some researchers have considered compromised 

designs (e.g., Carriere and Reinsel 1992; Carriere 1994b). However, all of these 

investigations are based on the assumption that the covariance structures for 

within-subject measurements are homogeneous and known.

4
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In this thesis, we recognize some of these problems with optimal designs, 

and consider a general approach to designing an experiment. First, we pro­

ceeded with constructing optimal designs in a traditional way, but used a more 

general model than had been considered before. We then constructed univer­

sally optimal designs by maximizing the information matrix as usual.

Next, we attempted to deal with the fact that subjects usually enter the ex­

periment sequentially, and that one cannot know prior to the experiment which 

design should be chosen because of the lack of information on the correlation 

model. In response-adaptive randomized design, investigated by Flournoy and 

Rosenberger (1995), Atkinson (1982), Pocock and Simon (1975) and Efron 

(1971), the serial subject responses are used to update the rules for terminat­

ing the experiment. Authors such as Kushner (2000) and Cook (1995, 1996) 

have explored adaptive cross-over designs, where the designs are adaptively 

constructed as more data become available, thereby using empirical observa­

tions about the correlation pattern.

In this thesis, we also considered constructing designs adaptively. A unique 

improvement in our approach is that designs can be constructed for situations 

where the correlation structure is not only unknown but can also vary from 

subject to subject. The rules for allocating study subjects to one of the planned 

treatment sequences are then derived in such a way as to maximize the incre­

ment of the information for the treatment effects available from new subjects,

5
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based on the data from already observed subjects. Further, the allocation rules 

are adjusted to minimize the loss function of the increment of the information, 

which may be due to an incorrectly specified covariance structure.

1.1.2 Analysis issues

Now we turn to analysis issues in repeated measurement designs. In re­

peated measurement designs, study subjects are randomly assigned to each 

treatment sequence over several periods. The subjects’ responses in successive 

periods result in a set of repeated measures data. For instance, in the two- 

treatment two-period design with sequences AB and BA, paired observations 

are obtained from the two periods for each subject in the experiment. These 

paired data are correlated, usually positively, since they are measured on the 

same subject, and are often referred to as longitudinal or repeated measures 

data.

More often than not, longitudinal or repeated measures data are incomplete 

because some subjects drop out before the experiment is complete. Missing 

data in repeated measurement designs can be caused by lack of treatment 

effects, unpleasant experiences, loss of follow-up or other unknown reasons. It is 

common to have missing data in experiments that take a long time to complete. 

Patients often fail to keep the last few follow-up appointments (Hogan and 

Laird, 1997; Yao et al., 1998).

6
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Missing data can occur haphazardly or monotonically. The pattern is said 

to be monotonic when a subject is not observed for a certain period and all the 

subsequent periods. With the monotonic missing data pattern, it is possible to 

factorize the likelihood function as a product of conditional distributions and 

derive the maximum likelihood estimators (Rubin, 1987; Carriere, 1999; Patel, 

1985), under the assumption that the data are missing at random.

Sometimes, especially in experiments using human subjects, missing data 

can occur even when the study subjects are present. For example, some pa­

tients in cancer clinical trials may simply be too sick to comply, and often, 

their care providers supply relevant information, called “proxy” information. 

Some authors have argued for the use of such proxy information (e.g., Parsons 

et al., 1999; Jalukar et al., 1998). However,-most work on this topic has been 

limited to the debate between using or discarding variables with proxy infor­

mation (e.g., McCallum, 1972; Wickens, 1972; Aigner, 1974; Dhrymes, 1978; 

Trenkler and Stahlecker, 1996). In these works and other applications, proxy 

information has been treated and analyzed as if it were actual.

Our aim in this thesis is to evaluate the merits of using proxy informa­

tion as compared with several available approaches dealing with missing data 

problems in repeated measures data analyses. Three such main approaches 

are complete subset data only analyses, incomplete data methods (Anderson, 

1957; Morrison, 1970; Patel, 1985; Carriere, 1994a and 1999) and imputation

7
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methods (Rubin, 1987; Glynn et al., 1993; Meng, 1994). Methods based only 

on the complete subset data have been shown to produce biased and inefficient 

estimators. Incomplete data methods are intended to utilize all available data, 

usually by using likelihood methods. Imputation methods involve making up 

a complete data set using various imputation strategies so that the standard 

statistical analysis can be applied.

Comparisons between the complete subset data analysis and the incomplete 

data analysis in small-sample repeated measures data have been investigated 

by Carriere (1994a and 1999). Her studies showed that the incomplete data 

methods are superior to the complete subset data method in terms of the power 

of testing hypotheses for treatment effects. Although the theory and applica­

tions of multiple imputation have been investigated widely since 1978, little 

research has been done on its strategies for small-sample repeated measures 

data (Carriere, 1997).

This thesis first investigated how to deal with situations where some data 

are missing monotonically, but proxy information is available. To our knowl­

edge, no one has considered rigorously how to utilize proxy information in the 

context of trying to deal with incomplete data. The development of an appro­

priate method of using proxy data in small-sample repeated measures data with 

missing values is certain to be useful for data analysts in various disciplines.

By modeling possible bias and possible heterogeneity in the data due to

8
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some proxy values, we explored its power as compared to the incomplete data 

methods utilizing only the available actual data. The approach of using proxy 

data, in essence, corresponds to the single imputation method, which was 

widely considered to be inferior (Rubin, 1978, 1987) to the multiple imputa­

tion method. However, proxy information can be more informative and more 

personal than imputed data, as it usually comes from the next of kin. We also 

considered the design implications of having proxy data.

As the use of proxy is, in principle, a single imputation method, the next 

investigation dealt with the multiple imputation method. We first proposed 

a multiple imputation strategy for repeated measures data. Testing proce­

dures for the treatment and residual elfects were then proposed, building on 

the multiple imputation inferential technique (Rubin, 1987) and adjusting the 

degrees of freedom for small samples. The advantages and disadvantages of all 

approaches to missing, and thus deficient, data were then examined.

1.2 Thesis overview

In Chapter 2, we review all models that have been considered for con­

structing optimal designs. By expanding the model’s capacity somewhat, we 

consider a general model that includes random subject effects and an autore­

gressive error structure for the correlated data. We show that all other models

9
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are special cases of this general model. We then construct optimal designs 

under this model, verifying the results against those of others for some special 

cases. We also consider some “nearly” optimal designs.

In Chapter 3, we construct adaptive repeated measurement designs. Af­

ter obtaining the information matrix for the treatment effects, we derive the 

allocation rules to be used in assigning subjects to the treatment sequences, 

thereby minimizing the loss function of the increment of information due to an 

incorrectly specified covariance structure. The implications of incorporating 

heterogeneity among the study subjects in design construction are discussed.

In Chapter 4, we utilize proxy information for missing data, and compare 

this method’s estimation and testing performance to that of the incomplete 

data method, which utilizes only the available actual data. We also consider 

the efficiency of designs in helping to identify situations where having proxy 

data is useful and where it is waste of time."

In Chapter 5, we develop a multiple imputation strategy for small-sample 

repeated measures data. The power of this strategy is compared to that of the 

incomplete data method without the use of imputation. Overall conclusions 

and general recommendations are given.

Finally, Chapter 6  summarizes the main contributions of this thesis to the 

literature. Some possible future research is suggested to expand and improve 

on the strategies suggested in this thesis.

10
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Chapter 2 

Optimal Two-Treatment 

Repeated Measurement Designs

2.1 Introduction

Repeated measurement designs have been used frequently in clinical trials 

to compare the efficacy of several non-curative treatments. The major appeal 

of repeated measurement designs lies in the fact that the estimators of direct 

treatment effects can be obtained efficiently, as between-subject variations can 

be eliminated. Although some researchers, such as Cleophas and Tavenier 

(1994), Brown (1980) and Cochran and Cox (1957), have questioned their 

feasibility, repeated measurement designs have been shown to be cost efficient

11
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as compared to completely randomized designs or parallel designs, except in a 

few extreme cases (Carriere and Huang, 2000 and 2001).

Generally, a repeated measurement design with t treatments and p  periods 

can have up to tp possible treatment sequences. Subjects may be exposed 

to a series of different or identical treatments. A simple two-treatment (A 

and B) two-period repeated measurement design randomly assigns patients to 

one of the two treatment sequences, AB and BA. In the sequence AB (BA), 

patients receive treatment A (B) in the first period and B (A) in the second 

period. When one sequence can be turned into another sequence by permuting 

the treatments, the two sequences are referred to as “dual sequences.” For 

instance, sequence AB is the dual sequence of BA; and sequences BCA and 

ACB are dual sequences of ABC. We refer to a repeated measurement design 

as “dual balanced” if an equal number of subjects is assigned to each of the 

dual sequences.

Researchers have considered various models for fitting repeated measures 

data from cross-over design experiments. Williams (1949) introduced a model 

that does not include residual effects, assuming that the wash-out period will 

help to eliminate the treatment effects left over for the next period. For a re­

view of Williams’ model, see Matthews (1988). First-order residual effects have 

been added into models, concerning the persistence of treatment effects. How­

ever, Fleiss (1989) and Senn (1993) stated that using only first-order residual

12
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effects is not realistic since the treatment effects may persist beyond one pe­

riod. In response to these statements, Matthews (1994a, 1994b) suggests that 

certain adjustments may be necessary upon a close examination of the partic­

ular situation. Another factor that determines the model and the design is the 

form of covariance structure for the repeated measures data, for which either 

an independent, equicorrelated or autoregressive structure has been employed.

Under various model assumptions, many researchers have investigated the 

construction of optimal repeated measurement designs (Hedayat and Afsarine­

jad, 1975 and 1978; Cheng and Wu, 1980; Kunert, 1983 and 1984; Laska and 

Meisner, 1985; Matthews, 1987; Hedayat and Zhao, 1990; Carriere and Reinsel, 

1992; Kushner, 1997 and 2000). As expected, the optimal designs are highly 

dependent on model assumptions such as the factors included in the model 

and the error structure associated with the within-subject measurements. The 

optimal design under a certain model may no longer be optimal when one or 

more of its model assumptions are violated.

Typically, optimal repeated measurement designs have been constructed 

under the assumptions that the subjects share a common covariance matrix 

and the form of the error structure is known. However, in practice, the form 

of the covariance matrix cannot be known before the actual experiment. Some 

authors recommended “nearly” optimal designs that are somewhat robust to 

the violation of the model assumption (Carriere and Reinsel, 1992; Carriere,

13
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1994b). A “nearly” optimal design may be robust against mild departures from 

the assumed form of a covariance structure, but not robust against gross de­

partures, for example, the usual situations of an unknown covariance structure 

coupled with possible heterogeneity. Designs that are robust under the latter 

situation are discussed in Chapter 3.

In this chapter, we discuss the construction of optimal designs under a 

more general model to address the situation of a known covariance structure. 

The model to be considered here is more general than those described in the 

literature, in that it includes two sources of random variation—random subject 

error and serially correlated within-subject measurements error. Construction 

of optimal designs in such situations has not been considered to date. We will 

show how changing some parameters of the general model affects the results 

of the optimal designs. In this chapter, we will also evaluate the robustness of 

several popularly adopted two-treatment designs under this model.

The organization of this chapter is as follows. In Section 2, we describe the 

model to be considered. In Section 3, we obtain the information matrix for the 

contrast of treatment effects and residual effects. In Section 4, we construct 

optimal designs for two-period, three-period and four-period experiments. In 

Section 5, we compare and discuss the relative efficiency of several repeated 

measurement designs constructed by other investigators.

14
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2.2 M odel

Consider a repeated measurement design d with t treatments, p  periods 

and s  sequences. Let y jk =  (yijk, • • •, yPjk)T be the vector of observations from 

subject j  in treatment sequence k. The model for the response y j k is

Yjk =  + £jfcl[p] +  (2 -2 .1)

where j  =  1 , . . . ,  N k, l[pj is a p x 1 vector of one and Nk is the number of 

subjects in sequence k, k =  1 , . . . ,  s. The total number of subjects involved is 

N  =  i Nk- For dual-balanced designs, we have Nk = Nk-, where k* is the 

dual sequence of sequence k. The parameter /3 =  (p., irT , r T, ~fT)T consists of 

the overall mean p., the period effects ir =  (7Ti,. . . ,  7rp)r , the direct treatment 

effect r  =  (ti, . . . ,  t £)t  and the first-order residual effect of the treatment 

given in the previous period 7  =  (7 1 , . . . ,  7 t)T . The design matrix Xj*, which 

is the same for all j ,  j  =  1 , . . . ,JVfc, is X* =  (Xlfc,X 2fc), where Xi* relates 

y jk with p  and 1r, and X2/k =  (X^, X^) with matrix X£ =  (x[fc, . . .  ,x pfc)T and 

X2 =  (X[fc, . . . ,  Xpfc)T relating yjk with r  and 7 , respectively. The component 

xJt is a vector composed of a 1 and p — 1 0’s. .The position of 1 is an index of the 

treatment assigned in period i to sequence k. For instance, in a three-treatment 

(A, B and C) design, the vector x[fc =  (0 ,0 ,1 )T indicates that treatment C is 

assigned to subjects in sequence k  in period i. Further, we have x/fc =  x[_t k

15
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for i =  2 , . . . ,  p.  Since there is no residual effect in the first period, we have 

x.ik =  0. In the literature, the subject effect £jk has been treated as either fixed 

or random. Random subject effects are typically assumed to have a normal 

distribution with mean 0 and variance a j, independent of the random error 

ejk- The random error €_,* =  (eijk, . . . ,  ePJ/k)T is assumed to have a multivariate 

normal distribution with mean 0 and covariance matrix The covariance 

matrix of y jlc is denoted as

In this chapter, we consider model (2.2.1) for two-treatment (A and B) 

design with a full rank design matrix. The parameter now is /3 =  (/i, irT, r, 7 )T. 

We are interested in estimating and testing for the contrast of direct treatment 

effects r  =  (r4 — 7b ) / 2  and the contrast of residual treatment effects 7  = 

{lA — 1 b )/2. The component of the design matrix, x jk , takes a value of 1 , 

if a subject in sequence k takes treatment A in period i. Otherwise, this 

component has a value of —1 . The design matrix X 2t  =  (x£, x*), with vectors 

x£ =  {xTu(.,..., Xpfc)r  and x k = (x jk, . . .  ,x '1pk)T. We further assume that all 

subjects are associated with the same covariance matrix, i.e., S j k = E. Thus, 

the covariance matrix of yjk is Vjfc =  V, for j  =  1 , . . . ,  N k and A: =  1 , . . . ,  s.

Several variations of the above full rank model have been considered for 

constructing optimal designs:

(a) fixed subject effects and an independent error assumption (V =  E = 

= 0)

16
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(b) random subject effects and an independent error assumption (V =  <Jgl[p\ +

(c) fixed subject effects and an autoregressive error assumption ((V)rc = 

a 2^lr- cl/(i _  0 2  ̂ where _ i < 0  < i  (V)rc is the element of V  on the 

r th row and cth column )

Model (a) has been studied by Hedayat and Afsarinejad (1978), Cheng and 

Wu (1980), Laska, Meisner and Kushner (1983), Kunert (1983, 1984) and He­

dayat and Zhao (1990). Model (b) was introduced to address the dependence 

among i =  1 , . . .  ,p, since {*/,_,*} are measured on the same subject. The 

within-subject correlation is p =  cr|/cr2, where a 2 =  a^+cr2. Laska and Meisner 

(1985) and Carriere and Reinsel (1992 and 1993) have investigated optimal de­

signs for model (b). Note that variance-component models (a) and (b) assume 

a priori that the correlation is positive. Models (a) and (b) are related, in that 

estimators from a fixed subject effects model (a) can be obtained using the esti­

mators from a random subjects effect model (b) by letting p —> 1 , as shown by 

Carriere and Reinsel (1992). Considering that the correlation among within- 

subject measurement is decreasing with time exponentially, Matthews (1987), 

Kunert (1991) and Kushner (1997) studied optimal designs under model (c). 

Kunert (1985) considered a similar model without residual treatment effects, 

while Laska and Meisner (1985) discussed model (c) without explicit subject

17
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effects.

Since repeated or longitudinal data are likely to exhibit many qualitatively 

different sources of random variations (Diggle, 1988), we consider another vari­

ant of the model. We consider a model with two sources of such random 

variations—random subject effects and serially correlated errors in the form of 

a first-order autoregression (AR(1 )), i.e.,

€ijk =  fai-l,jk  ■+" Vijk (2.2.2)

for i >  1, and e ljk =  T)l jk, where T)ljk ~  N { 0 , a 2/ ( 1  -  4>2)) and T)i]k ~  N ( 0 , a 2) 

for i > 1 . Under this model, the elements in the covariance matrix V  of y 3k 

are

(V )„  =  1 -  «2) + ^  (2.2.3)

where, — 1 < <f> < 1. We label such a model with random subject effects and 

AR(1) error structure as model (d), namely:

(d) random subject effects and an autoregressive error assumption for V  as 

in (2.2.3)

18
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2.3 Information matrix

The information matrix for the treatment contrast and the residual treat­

ment contrast (r, 7 ) in a two-treatment design under our model (d) is (Carriere 

and Huang, 2000)

Ai I \2

Ai I22

(2.3.1)

where

Al +  <j>2{p -  2 ) -  2  4>qk -  b(lk -  <t>i*k' ) 2 ] /o 2e,
k

I \2  =  Nk[qk +  (f>2Qk — d>(fk +  P — 1) -  b(lk -  <^D(A -  ^ k ) ] /a li

and

I 22 =  £  N k\p -  1 +  <j>2(p -  2 ) -  2 <t>qk -  b(Ik -  <t>l'k)2 ] /a 2,
k

for b = (1 -  <t>)2 p /{{  1 -  p) + (1  -  <f))\p -  (p -  2 )<t>]p}, qk =  EC* x Tikx Ti+lk, 

Ik =  E C i x \k'. A is the same as lk but summing up to p -  1 , lk and qk are the 

same as lk and qk but summing up to p — 2 , /£* is the same as lk but summing 

from 2  up to p -  1 , and f k =  E C ? x Tlkx Ti+2k.

Remark 2.3.1 When p = 2 , l k = l*k = f k =  qk =  0.

Remark 2.3.2 WTien <f> is zero, the within-subject measurement error is not 

serially correlated, but exchangeable. In this case, the information m atrix cor­

responds to that under model (b), and the information m atrix (2.3.1) reduces
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to

Y ,N k p ~  b°lk qk ~~ b°iklk
I ( t .  7) =  — 2

qk ~  W k  P ~  1 -  b0ll 

as shown in Carriere (1994), where bo =  p/[ 1 +  (p — l)p].

The connection between model (c) and (d) is illustrated by the following 

theorem.

Theorem 2.3.1 If we let p —> 1, the information matrix (2.3.1) becomes

/ in  h \2

h \2  /122

as shown in Matthew (1987) under the fixed subject effect model. The compo­

nents are h n = 20 £*  N kck + 2 R (l — h22 = 2 0 £ fc NkCk +2R(l-<f>)z2 +  z4,

and h i2 = R{ 1 -  0)z3 -  £* A/*(cfc ~  <pek +  4>2ck), where ck =  £ £ “/ xf toitt 

X* =  0  i f  the same treatment is administered in the two successive periods, 

and 1 otherwise. Here, ck is the same as ck but summing up to p — 2, ek =  

Ck+ck - X i - 2 T , PiZi XiXi+v z i = E k  Wk(rk -<firk)(rk' — 22 =  E*iVfc(ffc-

0 k){fk. -  <t>rk.) , z3 =  £* JV*[(rfc -  (f>rk){fk. -  <f>rk.)  +  (rk. -  0 r£.)(ffc -  4>fk)\, 

Z4 =  s[p — 1 -0 (p  — 3)]/4[p — 0(p — 2)], and /? =  l/[p  — (p — 2)0]. Mde i/iai r* 

is the number o f occurrences o f treatment A  on sequence k in all periods, is 

that fo r  periods 2  t o p —I, f k is that fo r  the first p — 1 periods, and finally, f k is
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that for the first p — 2 periods, as defined in Matthews (1987). All summations 

are over one-half of all sequences.

P r o o f .  When p —> 1, we have that qk =  p —  1 — 2ck, qk =  p  — 2 — 2ck, 

lk =  2 rk -  p, /J* = 2 r l - i p -  2 ), /£ =  2f* -  (p -  1), Z* =  2 r* -  (p -  2), 

fk  = (p — 2 ) — 2 e*, and the theorem follows upon algebraic manipulations.

□

2.4 Construction of optimal designs

For two-treatment designs, the universal optimal design is the one that 

maximizes the information for r  or 7 , which is obtainable from the information 

matrix provided in equation (2.3.1). The optimal design depends on the level 

of autoregressive coefficient (j> and the ratio p between the two variances cr| and 

cr2 =  +  a 2.

For two-period designs, we obtain the optimal designs for estimating r  and 

7  by maximizing their information directly. For dual-balanced three-period 

and four-period designs, we used the software MAPLE to obtain the optimal 

designs. Here, we outline the steps taken to construct the optimal designs. 

First, we found the sequences in the optimal designs for selected values of p 

using Lemma 3.2 (Kushner, 1997). Second, the proportions of subjects to each 

sequence in the optimal design were obtained by applying equation 6.4 (Kush-
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ner, 1997). Third, the information on treatment effects for the optimal designs 

was obtained and the values of <f> were determined. Table 2.1 provides a list of 

all possible sequences in two-period, three-period and four-period designs, and 

the number of subjects for each of the sequences. The sequences shown as a 

pair in Table 2.1 are dual sequences to each other. An optimal design allocates 

an equal number of subjects to a sequence and its dual sequence, as Kushner 

(1997) found under a model with fixed subject effects.

2.4.1 Optimal designs for r and 7

2.4.1.1 Optimal two-period designs

For two-treatment two-period designs, there are four possible sequences to 

consider: AA, AB and their duals, as listed in Table 2.1.

The optimal two-period design for estimating t  is the design with an equal 

number of subjects assigned to the sequences AA, AB and their duals, regard- 

lessly of the values of p and 4>. This result coincides with those under no serial 

correlation model (Kershner and Federer, 1981).

For estimating 7 , the optimal design assigns N x =  (l+<£)(l+p—2p<ji)iV/[4(l— 

p<t>2)\ subjects to sequence AA and its dual, and N f  2 — N x to sequence AB and 

its dual. Note that the optimal design under no serial correlation model is to 

use sequence AA and its dual (Carriere and Reinsel, 1992).
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2.4.1.2 Optimal three-period designs

For two-treatment three-period designs, there are eight possible sequences 

to consider: AAA, AAB, ABA, ABB and their duals, as listed in Table 2.1. 

Following is a list of optimal three-period designs for treatment effects r  with 

respect to the values of p and 0 .

When .3 < p < 1 , we have five different optimal designs determined by 0 :

(a) - 1  < * < 0, JV2 =  iV4 =  £  -  N t4[<t>2 (4p -  1)-4p<p+p]J

+02(-9p___________
4[02p+0(3p— I)—2p— Ip

H-1 )+03( -6p2 —p+1 )+02______________________
4[04 (4p2 -p)+03(—5p+1 )+02 ( -7  p2 +5p)+0(5p2 -p ) —p2

fb ) 0  <  0  <  0 ,  N -i =  ^ 3( y - P ) + f 2.( - 9P2+P)+<K7P2-3p)-2p2+p+l] jy  y  V _  ,y(U) U ^  ^  (p!, 4(<i2o+^3n-ll-2n-tl2 2V » lV4 ~  2 2V3

Cel 6 ,  <  6  <  d)o N o  =  04(l5p2-8p+l)+<t>3(-6p2-P + 1 )+02 ( -  19p2 +1 )+0( 17p2 +5p) —4p2-2p y  tW V'l ^  V2 ^  V2 , 4r<f>'«Mo2-ol+<A3f-5o+n+ri.2('-7/i2+5ol+<Af.!;/.2-/j -̂fl2l iV ’

N 4 — y  — N -2

(d) 02 <  0  <  03, iV2 — y

fp l pSo ^  1 /V — + 0392+0293+ 094~4p2 +2p+2-f-xf0z(5p—l)+0(4p—2)—4p—2] »r
V3 v  ^  1, iv 2 — 8i[02p+ 0(p -l)-p ] iV ’

iV3 =  f - i V 2, where 0 t = Up2 - 8 p-t-l, g2 =  -5 p 2 + 4 p + l ,  p3 =  -13p2 +  

2p—1, & =  14p2-6 p , 05 =  17p2 —lOp+1, 06 =  -1 4 p 2+4p+2, 0 7 = 3p2-  

6 p — li 08 =  —2P2 +  2 and x =  \ f0405 +  0306 +  0 20 7  +  008 +  p2 +  2p -F 1.

The information for r  for the five optimal designs above is denoted as /(a), 

7(6), 7(c), 7(d) and 7(e). The 0 1, 02, 03 are the threshold values that provide 

the solutions for 7(6) =  7(C), 7(C) =  7(d) and 7(d) =  7(e), respectively. Table 2.2 

illustrates 0 1, 0 2 and 0 3 for selected values of p.
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For small p, we reported only the cases of p =  0, p =  0.1 and p =  0.2. 

When p =  0.2, the optimal designs for r  are:

(f) - 1  <  4> < 0, N2 = N, = % - N t

(g) o < *  < <*>„ JV3 =  JV4 =  a  -  JV,

(h) (b < 0 < 1 AT =  ^ ~ i ~ 702-t-40— L-!+(30+7)\/-20~l + L4</)3 —1302-t-120+9^  jy
’ 2 -4(<&2 - 4 0 - 1 )  v/ - 2 0 4+14«3-1 3 « 2+ 120+9 ’ 3

Z - N ,

When p =  0.1, the optimal designs for r  are:

(i) - 1  < 0 <  - .2 8 5 7 , ,V2 =  AT, =  f  -  ,V2

0 ) - 2 8 5 7  <  *  <  0, AT2 =  ^ H L J V ,  AT, =  f  -  AT,

(k) 0 < 0 < 0 ,, AT, = , iV4 = f  -  AT,

( I ) / / .  V  _  31(^4-H 3503—930z—46<^+216+(—5<̂ 2 —160—24)\ / l 7 0 4+22603 — 157<̂ 2+  19804-121 „
1 ’ 2 8(02 - 9 0 - l ) v/l7<*>4+226tf3-157«j>2 +  1980+121

Af3 =  f  -  AT2

When p =  0 and thus a |  =  0, the optimal designs are:

(m) -1  <  *  <  0, AT, =  At, = a _ ,v,
- 8  4>y/<t>* - 2  ̂ - 0 2 -24»+l

(n) 0 < * < 1, AT, =  N  z _ N
-S<t>y/<t>*+24>3-<t>2+24>+l

For the model without subject effects (cr| = 0), the sequences in our optimal 

designs are in accordance with the findings of Kushner (1997). However, Kush-
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ner (1997) did not provide the proportions of each sequence required for the 

optimal design.

Our investigation appears to indicate that the optimal designs for r  gen­

erally either use the sequences AAB, ABB and their duals, or assign most of 

the subjects (> 90%) to either AAB and its dual or ABB and its dual. For 

moderate to large values of (f>, a moderately high level of p requires the use of 

the sequence AAB and its dual.

Figures 2.1-2.4 illustrate how the proportions N \/N , N 2 /N ,  N $ /N  and 

N 4 / N  change with the autocorrelation (j> and the variance ratio p to produce 

the three-period optimal designs for estimating r  when p =  0, .3, .7 and when 

p approaches 1 .

The optimal three-period designs for estimating residual effects 7 , con­

structed in a similar way, are summarized in Table 2.3 and Figures 2.5-2.7.

2.4.1.3 Optimal four-period designs

For two-treatment four-period designs, there are sixteen sequences to con­

sider: AAAA, AAAB, AABA, AABB, ABBB, ABBA, ABAB, ABAA and their 

duals (see Table 2.1). We now document the optimal four-period designs for 

estimating treatment effects.

When .3 < p < 1, the optimal design allocates iV4 of the subjects to 

sequences AABB and its dual, and N /2  — iV4 to ABBA and its dual for — 1 <
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<t> < <t>2 and 0 ^ 0 ;  N /2  subjects to ABBA and its dual for 02 < 0  < 1, where

N _  P*h + P h  ~  2<f>2 ~  % +  (p h  + 202 +  3)gt itr (9 a i \
80p(03 — 302 +  30 — l)g x *

with A =  40 7 -  2806 + 7705 -  1200“ +  13703 -  14902 +  980 -  24, / 2 =  

405 - 1604 +  2903 -  2502 + 350 -1 7 , f 3 =  404 - 1203 + 1102 -1 6 0  +  8  and gx =

+ Pfs + 1, Sa =  408 — 2807 + 8906 — 1560s+ 16604 — 12603 +8502 — 420+9

and f 5 =  —405 + 1204 -  1403 +  1202 -  140 +  6 .

For small p (i.e., 0, .1, .2), the optimal design allocates N /2  subjects to 

AABB and its dual for —1 < 0 < 0^; iV4 of the subjects in equation (2.4.1) 

to sequences AABB and its dual, and N /2  — iV4 to ABBA and its dual for

0i < 0 < 0 2  and 0 ^  0; and N /2  subjects to ABBA and its dual for 02 < 0 < 1.

In Table 2.4, the values of 0i and 02 that determine four-period optimal

designs are listed for selected values of p. The four-period optimal designs are 

summarized in Figures 2.8-2.11.

For residual effects, when .1 < p < 1, the optimal designs allocate N G of the 

subjects to A B B A  and its dual, N /2  — N 6 to ABBB and its dual for negative 

0, where N 6 is

p(403 - 1 4 0 2 +  9 0 -  1 ) + 3 0 - 1
6 4[p(203 -  702 + 70 -  2) + 0 -  1] ‘
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It allocates Ng of the subjects to A B A A  and its dual, N /2  — Ng to AABB and 

its dual for positive 0, where Ng is obtained from

j y  _  P* fe + P h  + 04 +  02 +  20 +  2 +  (pfg — 02 +  0 — 2)g2 y  

8 _  4[p(203 — 7(f>2 +  50 — 1) +  0 ]</2

with / 6 =  408 -  2407 + 5406 -  620s +  3604 -  1O03 +  5302 -  660 +  21, f 7 =  

406 -  1205 +  1104 -  603 -  802 -  140 + 13, f a =  -2 0 4 +  803 -  1302 +  150 -  6 , 

9 2  = \Zp*h  +  P f10 +  04 + 203 -  02 +  20+1 ,  with / 9 =  40® -  2407 +  5206 -  

4405 +  8O03 -  2702 -  320 +16 and / 10 =  406 -  805 -  804 +  2203 -  3O02 +  20 +  8 .

When there are random subject effects, ABBA and AABB and their duals 

are needed for estimating 7  just as in the case of estimating r, but ABBB and 

ABAA and their duals are also important, depending on the sign of 0.

For p =  0, the optimal design is different from the one mentioned previously 

for negative 0 , which allocates N 2 of the subjects to the sequence AAAB and 

its dual, and remaining subjects to the sequence ABBA and its dual, where N 2  

is

^  =  04 +  02 -  20 +  2 -  (02 +  0 +  2)> /04 -  203 -  0  ̂ -  20+  1 ^

2 -40V 04 -  203 -  02 - 2 0 + 1

Figures 2.12-2.15 summarize these four-period optimal designs for 7  when 

p =  0, .3, .7, and when p approaches 1.

For p =  0, the optimal four-period designs we obtained include the same 

sequences as those reported by Kushner (1997). The optimal three-period and
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four-period designs we obtained for p —► 1 are in accordance with those of 

Matthews (1987).

2.4.2 Optimal designs for r  in the absence of 7

When there are no residual effects in the model, the optimal designs are 

different from those obtained above.

Lemma 2.4.1 Under our model (d) without residual effects, the information  

m atrix (2.3.1) fo r  the treatment effects is

In  = Y .  N ^\P + ^ (P  -  2 ) -  2 *fc -  b(lt  -  (2.4.2)
k

Theorem 2.4.1 I f  there are no residual effects and 4> > 0, the optimal design 

fo r  the contrast o f treatment effects r  is to alternate the two different treat­

ments.

P r o o f .  The optimal design is obtained by maximizing 2.4.2 in Lemma 2.4.1. 

Note that > —(p — 1) with the equality attained for a sequence that al­

ternates the treatments. Also, (4 — <f>l*k * ) 2 is minimized when the sequence

balances the numbers of treatments as nearly as possible in all periods, and 

in the middle p — 2 periods as well. For even p, both <7* and (1* — 0 /£ * )2 are 

minimized when the treatments are alternated in sequence fc. For odd p, the 

choice is between the sequences with alternating treatments in p periods and
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the sequences alternating treatments in the first p —1 periods. The information 

reduction of the former design to the latter is 40(6—1) < 0, leading to Theorem 

2.4.1, that the optimal design is to alternate treatments in each period of the 

sequences.

□

If 0 < 0 and there are no residual effects, the optimal designs depend on the 

values of 0. Here, we present three examples for optimal designs with negative 

0 for two-period, three-period and four-period designs.

Example 2.4.1 For two-period two-treatment designs, the optimal design fo r  

the treatment effect when 7  = 0 and 0 < 0 is A B  and its dual when p >

0 / (02 -t- 0 — 1); AA  and its dual when p < 0 / (0 2 -I- 0 — 1).

Example 2.4.2 For three-period two-treatment designs, the optimal design fo r  

the treatment effect when 7  = 0  and 0 < 0 is A A B , A B B  and their duals when

p >  0/(30 — 2); A A A  and its dual when p < 0/(30 — 2).

Example 2.4.3 For four-period two-treatment designs, the optimal design fo r  

the treatment effect when 7  = 0 and <j> < 0 is A A A A  and its dual when p < 

—0 /(—50 — 202 +  203 +  4); and A A B B  and its dual when p > —0 /(—50 —202 + 

203 +  4).
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2.5 The efficiency of tw o-treatm ent designs

We now compare the efficiency of some commonly used designs with that 

of optimal designs. For estimating the treatment effect contrast r  and residual 

effect contrast 7 , the efficiency of the selected repeated measurement designs 

is computed as the ratio of the information for r  or 7  of the selected design to 

that of the optimal design. The designs that have been frequently discussed 

and employed are listed in Table 2.5.

For two-period designs, Design I is the optimal design under no residual 

effects model (Grizzle, 1965; Laska and Meisner, 1985). Design II has been 

shown to be optimal under various models (Carriere and Reinsel, 1992; Laska 

and Meisner, 1985) and also in Section 2.4.1 of this thesis. Design III is the 

parallel group two-period two-treatment design.

Design IV was shown to be the universally optimal design under the equicor- 

related covariance model (Kershner and Federer, 1981; Laska et al., 1983). Un­

der an AR(1) error model with fixed or random subject effects, the optimal 

design depends on the values of 0 , the autoregressive coefficient, as well as p. 

For positive 0  with fixed subject effects, it has been shown that Design VII 

remains “nearly” optimal among three-period designs except when the values 

of 0  are close to 1 or —1 (Matthews, 1987). When 0 is very high and positive 

(> .4), the universally optimal design allocates all subjects to AAB and BBA
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sequences. On the other hand, when 0  is moderately negative, the optimal 

design allocates subjects to AAB and ABB and their duals, with a higher al­

location of subjects to ABB and its dual. The optimal design under the no 

subject effect model with an AR(1) error is quite different; it is one with AAB, 

ABB and their duals, with over 90% of the subjects allocated to the sequence 

AAB and its dual (Laska et al., 1983). A compromise between statistical ef­

ficiency and ethical considerations led Carriere (1994) to recommend Design 

VI as the “nearly” optimal three-period design. It performed very competi­

tively under model (b) with various within-subject correlation coefficients and 

various forms of residual effects. Carriere (1994) discussed allocating higher 

proportions of subjects to the ABB and BAA sequences than to the AAB and 

BBA sequences. Such a design corresponds to the optimal designs constructed 

when 0  is slightly negative under the AR(1) error and fixed subject effects 

model (Matthews, 1987). Design VIII is the parallel group three-period two- 

treatment design. Kershner (1986) considered Designs V and VIII under the 

second-order residual effects model.

For four-period designs, Design XIV is considered to be the optimal design 

under an equicorrelated error model with random subject effects (Laska and 

Meisner, 1985). Design IX has been suggested as the optimal design for small 

negative 0 under an AR(1) error model without subject effects (Laska and Meis­

ner, 1985). Design X was shown to be superior to other designs under an AR(1 )
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error model with fixed subject effects for relatively large <f> (Matthews, 1987). 

Designs XI, XII, XIII, XV and XVI have also been considered by Matthews 

(1987).

Tables 2.6-2.14 tabulate the efficiencies of Designs I-XVI for various values 

of <j> and p. The case of p =  0 represents the model without subject effects, as 

discussed by Laska and Meisner (1985), Matthews (1987) and Kushner (1997). 

The case of p —> 1 corresponds to the model with fixed subject effects. Two 

other values (i.e., .3 and .7) were chosen to study the efficiency of the designs. 

The efficiencies obtained for Designs IV, VI, VII, IX-XVI when p —> 1 are in 

accordance with the findings of Matthews (1987).

For two-period designs, Design II is the optimal design with an equal allo­

cation of subjects in the four sequences. Designs I and III perform identically 

and not well for estimating r, with efficiency lower than 50%. For residual 

effects, Design II is competitive for moderate value of 0 when repeated mea­

sures are slightly correlated. When the within-subject correlation is relatively 

large, Designs II and III perform reasonably well for negative and positive 0, 

respectively. Under the model with fixed subject effects, Design III is optimal 

for 7 , which is also true under a model with independent random errors and 

random subject effects (Laska and Meisner, 1985).

Among all three-period designs considered, we found that Design VI with 

an equal allocation to each sequence is extremely competitive as compared with
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the optimal designs for treatment effects we obtained in the previous section; 

the efficiency was higher than 93% for all combinations of p and 0. Design 

IV is also quite competitive for moderate values of 0, i.e., — .4 < 0 < .6 . For 

residual effects, Design IV performs well for the case 0 > — .4 when within- 

subject correlation is larger than .3, and is recommended for situations with 

positive 0  and no subject effects (i.e., p =  0 ).

For four-period designs, Design IX has a high efficiency (> 90%) for non­

positive 0 for treatment effects, as does Design X for non-negative 0. Design 

XIV performs reasonably well for all moderate values of 0; the efficiency is 84% 

or higher. When there are no subject effects in the model, Design XV and XVI 

are also very good, provided — .4 < 0 < .4. For residual effects, Design XV is 

nearly optimal for non-negative 0  and sill values of p; the efficiency is higher 

than 99%. Designs X and XVI are also excellent for estimating residual effects 

for non-positive 0  when p is not extremely small. Design VII, recommended 

by Ebbutt (1984), does not perform very well.

The “best” design would be a robust design with high efficiency as com­

pared with the optimal designs for various values of 0  and p. For two-period 

designs, Design II is optimal for r . For residual effects, although none of them 

seems to be robust, Design II achieves reasonably high efficiency for low to 

moderate values of p. It appears that Design VI and Design IV achieve the 

most robustness for treatment effects and residual effects, respectively, in a
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three-period experiment. For four-period experiments, Design XIV appears to 

be the most robust one for both treatment effects and residual effects. For 

various p and 0 , Design XIV attained a minimum efficiency of 75%.
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Table 2.1: List of all possible sequences for two-period, three-period and four- 
period designs______________________________________________________

p =  2 p =  3 p =  4
Sequences (Nk, N k.) Sequences (Nk, N k.) Sequences (Nk, N k.)
(AA, BB) 
(AB, BA)

(iVi.iVi)
(N2, N 2)

(AAA, BBB) 
(AAB, BBA) 
(ABA, BAB) 
(ABB, BAA)

(N i , N 0  
(N2, N 2) 
(N3, N 3) 
(Na, N 4)

(AAAA, BBBB) 
(AAAB, BBBA) 
(AABA, BBAB) 
(AABB, BBAA) 
(ABBB, BAAA) 
(ABBA, BAAB) 
(ABAB, BABA) 
(ABAA, BABB)

(M,iVx) 
(N2, N 2) 
(N3, N 3) 
(Na, Na) 
(N5, N 5) 
(Ns, N 6) 
(N7, N 7) 
(Ns, N 8)

Table 2.2: Values of <f)\, <f>2 and 03 at given p for optimal three-period designs 
for estimating treatment effects r

p 01 02 03
0 .1 .3177
0 .2 .3634
0.3 .3900 .4079 .4511
0.4 .4086 .4412 .5076
0.5 .4226 .4689 .5484
0 .6 .4339 .4906 .5806
0.7 .4433 .5107 .6076
0 .8 .4512 .5287 .6316
0.9 .4581 .5455 .6537

1 .0 .4641 .5616 .6750

Table 2.3: Optimal three-period designs for estimating residual effects 7

0

P ( 1 2p \ / 2p 1 -p - \/\ .-2 p + 5 p 2 \ , \ - P-^/l-2p+ 5p*
(0 , 1 )1 3 o - l ' ' 3o—1 ’ 2o > t ~io

0 AAB(£) ABB(i)
(0 , .2 ) AAB(i)

A A A ( 3 ^ ^ )
ABA
(  0 fl+ 0 + p (3 -5 0 )] v

ABB
/ ( ^ + l) [o (7 « - 4 ) - (« + 2 ) ls  
v 4[p(0i + 3 < i - 2 ) - ^ - l ]  )

ABB(i)
[•2 , 1 )

a a a ( ^ ^ )
-> 1 a b a  ( ^ )  

a b b  (|f± i{)
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ti

on

ABB
BAA

AAB
B6A0.5

0.4

0.3

0.2

0.1
AAA
BBS

ABA
BAB

0.0

- 1.0 -0.8 -0.6 -0.4 - 0.2 0.0 0.2 0.4 0.6 0.8 .0
♦

Figure 2.1: Proportions of subjects in each given sequence that makes up
optimal three-period designs for estimating treatment effects, when p =  0 .0 .
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pr
op

or
ti

on

ABB
BAA0.5

AAB
BBA0.4

AAB
BBA

0.3

ABB
BAA.0.2

0.1
ABA
BAB

ABA
BAB

0.0 ABB
BAA

.3900 .4079 .4511
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 .0

♦

Figure 2.2: Proportions of subjects in each given sequence that makes up
optimal three-period designs for estimating treatment effects, when p =  0.3.
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AB8
BAA0.5

AAB
BBA

0.4

ABB
BAA

0.3

aob.a
0.2 AAB

BBA

0.1

'ABB
BAA

ABAABA
BAB

0.0

.4433.5107 .6076
0.4 0.6 0.81.0 - 0.8 -0.6 - 0.4 -0.2 0.0 0.2 .0

♦

Figure 2.3: Proportions of subjects in each given sequence that makes up
optimal three-period designs for estimating treatment effects, when p =  0.7.
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ABB

0.5

AAB
BBA

0.4

ABB
BAA

0.3

0.2 AAB
BBA

0.1
ABA
BABABA

ABB]
BAA0.0

.4641 .5616 .6750
- 1.0 - 0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

♦

Figure 2.4: Proportions of subjects in each given sequence that makes up
optimal three-period designs for estimating treatment effects, when p —> 1 .
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ABB
BAAAB8

BAA

AAB
BAA

8  0.3

AAA
ABA
BAB

-.3699
1.0• 1.0 0.5•0.5 0.0

♦

Figure 2.5: Proportions of subjects in each given sequence that makes up
optimal three-period designs for estimating residual effects, when p  =  0.3.
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0.6

ABB
BAA

0.5

ABB
BAAAAA

BBS0.4

R 0.3

0.2 ABA
BAB

AAB
BBA

0.0
-.8061

* 1.0 1.0-0.5 0.0 0.5
♦

Figure 2.6: Proportions of subjects in each given sequence that makes
optimal three-period designs for estimating residual effects, when p  =  0.7.
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ABB
BAA

ABB
BAA

n 0.3

ABA
BAB

- 1.0 -0.5 0.0 1.00.5
♦

Figure 2.7: Proportions of subjects in each given sequence that makes up
optimal three-period designs for estimating residual effects, when p -» 1 .

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.4: Values of 4>\ and 02 at given p for four-period optimal designs for 
estimating treatment effects r

p 4>i 02
0 -.4238 .4238

0 .1 -.5514 .4211
0 .2 -.7431 .4186
0.3 .4165
0.4 .4146
0.5 .4130
0 .6 .4115
0.7 .4102
0 .8 .4090
0.9 .4079

-> 1 .0 .4069
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0.5 AABB
B8AA

AABB
BBAA

ABBA
BAAB

0.4

0.3

0.2

0.1
ABBA
BAAB

0.0

.4 2 3 8  4238
- 1.0 -0.8 -0.6 - 0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

♦

Figure 2.8: Proportions of subjects in each given sequence that makes up
optimal four-period designs for estimating treatment effects, when p =  0 .0 .
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0.5 AA88
BBAA

ABBA
BAAB

0.4

0.3

aowa
0.2

ABBA
BAAB

0.1

0.0

.4165
1.0 -0.8 -0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6 0.8 .0

♦

Figure 2.9: Proportions of subjects in each given sequence that makes up
optimal four-period designs for estimating treatment effects, when p =  0.3.
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0.5 ABBA
BAAB

AABB
BBAA

0.4

0.3

&owa 0.2

ABBA
6AAB

0.1

0.0

.4102
- 1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0

Figure 2.10: Proportions of subjects in each given sequence that makes up
optimal four-period designs for estimating treatment effects, when p — 0.7.
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0.5 AB8A
BAAB

AABB
BBAA

0.4

0.3

0.2

ABBA
BAAB

0.1

0.0

.4069
- 1.0 - 0.8 - 0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

♦

Figure 2.11: Proportions of subjects in each given sequence that makes up
optimal four-period designs for estimating treatment effects, when p —> 1 .
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AAAB
B68A

ABAA
BABB

0.30

0.25

0.20
AABB
BBAA

ABBA
BAAB

0.15
- 1.0 - 0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

♦

Figure 2.12: Proportions of subjects in each given sequence that makes up
optimal four-period designs for estimating residual effects, when p =  0 .0 .
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ABBA
BAAB

0.4

0.3 AABB
BBAA

ABAA
BABB

0.2
ABB8
BAAA

0.1

1.0 -0.8 - 0.6 -0.4 - 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0

Figure 2.13: Proportions of subjects in each given sequence that makes up
optimal four-period designs for estimating residual effects, when p =  0.3.
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0.4

ABBA
BAAB

AABB
BBAA0.3

asa
AB6B
BAAA0.2 ABAA

BABB

0.1

1.0 -0.8 - 0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

♦

Figure 2.14: Proportions of subjects in each given sequence that makes up
optimal four-period designs for estimating residual effects, when p =  0.7.
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0.40

ABBA
BAAB

0.35
AABB
BBAA

0.30

&  0.25

ABAA
BABB0.20

0.15

0.10

1.0 - 0.8 - 0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

♦

Figure 2.15: Proportions of subjects in each given sequence that makes up
optimal four-period designs for estimating residual effects, when />—»!.
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Table 2.5: Index for two-period, three-period and four-period designs
p Design Sequences
2 I (AB, BA)

II (AB, BA), (AA, BB)
III (AA, BB)

3 IV (ABB, BAA)
V (ABB, BAA), (AAA, BBB)
VI (ABB, BAA), (AAB, BBA)
VII (ABB, BAA), (ABA, BAB)
VIII (AAA, BBB)

4 IX (AABB, BBAA)
X (ABBA, BAAB)
XI (ABBB, BAAA)
XII (ABAA, BABB)
XIII (ABAB, BABA)
XIV (AABB, BBAA), (ABBA, BAAB)
XV (AABB, BBAA), (ABAA, BABB)
XVI (ABBA, BAAB), (ABBB, BAAA)
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Table 2.6: Efficiency of two-period designs relative to the optimal design
Para­
meter Design

<i>
-0 .8 -0 .6 -0.4 -0 .2 0 0 .2 0.4 0 .6 0 .8o©IIQ.

T I
I I I

0.26
0.26

0.39
0.39

0.46
0.46

0.49
0.49

0.50
0.50

0.49
0.49

0.46
0.46

0.39
0.39

0.26
0.26

7 I
I I
I I I

0.90
0 .6 8

0 .1 0

0.80
0.82
0 .2 0

0.70
0.92
0.30

0.60
0.98
0.40

0.50
1 .0 0

0.50

0.40
0.98
0.60

0.30
0.92
0.70

0 .2 0

0.82
0.80

0 .1 0

0 .6 8

0.90
p =  0.3

r I
I I I

0.41
0.41

0.48
0.48

0.50
0.50

0.49
0.49

0.48
0.48

0.45
0.45

0.41
0.41

0.35
0.35

0.24
0.24

7 I
I I

I I I

0.78
0.84
0 .2 2

0.63
0.97
0.37

0.51
1 .0 0

0.49

0.43
0.99
0.57

0.35
0.96
0.65

0.28
0.91
0.72

0 .2 2

0.84
0.78

0.16
0.76
0.84

0.09
0 .6 6

0.91

II p

r I
I I I

0.50
0.50

0.47
0.47

0.42
0.42

0.38
0.38

0.34
0.34

0.30
0.30

0.27
0.27

0.23
0.23

0.17
0.17

7 I
I I

I I I

0.49
1 .0 0

0.51

0.32
0.94
0 .6 8

0.24
0 .8 6

0.76

0.19
0.80
0.81

0.15
0.76
0.85

0 .1 2

0.72
0 .8 8

0 .1 0

0 .6 8

0.90

0.08
0.65
0.92

0.05
0.60
0.95

p —► 1 .0

r I
I I I

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

0 .0 0

7 I
I I

I I I

0 .0 0

0.50
1 .0 0

0 .0 0

0.50
1 .0 0

0 .0 0

0.50
1 .0 0

0 .0 0

0.50
1 .0 0

0 .0 0

0.50
1 .0 0

0 .0 0

0.50
1 .0 0

0 .0 0

0.50
1 .0 0

0 .0 0

0.50
1 .0 0

0 .0 0

0.50
1 .0 0
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Table 2.7: Efficiency of three-period designs relative to the optimal design when
p =  0 .0

0
Design -0 .8 -0 .6 -0.4 -0 .2 0 0 .2 0.4 0 .6 0 .8

T

I V 0.99 0.99 1 .0 0 1 .00 1 .0 0 0.99 0.98 0.93 0 .8 6
V 0.73 0.75 0.79 0.82 0.83 0.81 0.75 0.64 0.52

V I 0.93 0.96 0.99 1.00 1 .0 0 1 .0 0 0.99 0.96 0.93
V I I 0.56 0.64 0.72 0.79 0.83 0.85 0.85 0.82 0.75

V I I I 0.23 0.27 0.30 0.32 0.33 0.32 0.28 0 .2 1 0 .1 0

7
I V 0.28 0.35 0.47 0.67 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
V 0.37 0.40 0.47 0.61 0.83 0.79 0.75 0.71 0.67

V I 0.67 0.69 0.74 0.84 1 .0 0 0.84 0.74 0.69 0.67
V I I 0.28 0.35 0.46 0.61 0.83 0.76 0.70 0.65 0.61

V I I I 0.14 0.17 0 .2 1 0.26 0.33 0.3 0.27 0.25 0.25

Table 2.8: Efficiency of three-period designs relative to the optimal design when
p =  0.3

0
Design -0 .8 -0 .6 -0.4 -0 .2 0 0 .2 0.4 0 .6 0 .8

T

I V 0.78 0.89 0.95 0.99 1 .0 0 1 .0 0 0.99 0.94 0 .8 6
V 0.51 0.58 0.64 0 .6 8 0.69 0.69 0.67 0.60 0.51

V I 0.99 1 .0 0 1 .0 0 1 .00 0.99 0.99 1 .0 0 0.97 0.93
V I I 0.57 0 .6 8 0.75 0.80 0.82 0.84 0.85 0.81 0.75

V I I I 0.25 0.25 0.26 0.26 0.25 0.24 0 .2 1 0.16 0.09
7

I V 0.43 0.65 0.92 0.99 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
V 0.47 0.61 0.78 0.79 0.77 0.74 0.72 0.69 0 .6 6

V I 0.77 0.87 0.98 0.90 0.81 0.74 0.69 0.67 0.67
V I I 0.54 0.73 0.93 0.90 0.82 0.75 0.69 0.65 0.61

V I I I 0.36 0.39 0.43 0.38 0.33 0.30 0.27 0.26 0.25
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Table 2.9: Efficiency of three-period designs relative to the optimal design when
p =  0.7

<i>
Design -0 .8 -0 .6 -0.4 -0 .2 0 0 .2 0.4 0 .6 0 .8

r
I V 0.61 0.83 0.94 0.99 1 .0 0 1 .0 0 1 .0 0 0.95 0 .8 6
V 0.41 0.48 0.53 0.55 0.57 0.57 0.57 0.54 0.48

V I 1 .0 0 1 .00 0.99 0.99 0.98 0.98 0.99 0.97 0.93
V I I 0.56 0.69 0.77 0.80 0.82 0.82 0.83 0.80 0.75

V I I I 0.13 0.13 0 .1 2 0 .1 2 0 .1 1 0 .1 0 0 .1 0 0.08 0.06
7

I V 0.61 0.83 0.94 0.99 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
V 0.69 0.72 0.73 0.72 0.70 0 .6 8 0.67 0 .6 6 0.65

V I 0.99 0 .8 8 0.80 0.74 0.69 0 .6 6 0.65 0.65 0 .6 6

V I I 0.94 1 .00 0.96 0.89 0.82 0.74 0.69 0.64 0.61
V I I I 0.70 0.55 0.45 0.38 0.33 0.30 0.27 0.26 0.25

Table 2.10: Efficiency of three-period designs relative to the optimal design
when p approaches 1 .0

<t>
Design -0 .8 -0 .6 -0.4 -0 .2 0 0 .2 0.4 0 .6 0 .8

r
I V 0.54 0.80 0.93 0.98 1 .0 0 1 .0 0 1 .0 0 0.95 0 .8 6

V 0.37 0.44 0.48 0.49 0.50 0.50 0.50 0.48 0.44
V I 1 .0 0 0.99 0.99 0.98 0.97 0.97 0.99 0.98 0.93

V I I 0.56 0.70 0.77 0.80 0.81 0.82 0.82 0.80 0.74
V I I I 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0

7
I V 0.54 0.80 0.93 0.98 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0

V 0.63 0 .6 8 0.69 0 .6 8 0.67 0.65 0.64 0.63 0.63
V I 0 .8 6 0.77 0.72 0 .6 8 0.65 0.63 0.63 0.64 0 .6 6

V I I 0.93 1 .00 0.96 0.89 0.81 0.74 0.69 0.64 0.61
V I I I 0.71 0.56 0.45 0.38 0.33 0.30 0.27 0.26 0.25
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Table 2.11: Efficiency of four-period designs relative to the optimal design
when p  =  0.0_______________________________________________

<t>
Design -0 .8 -0 .6 ■ o -0 .2 0 0 .2 0.4 0 .6 0 .8

T

IX 1 .0 0 1 .0 0 1 .0 0 0.97 0.92 0.84 0.75 0 .6 6 0.60
X 0.60 0 .6 6 0.75 0.84 0.92 0.97 1 .0 0 1 .0 0 1 .0 0

XI 0 .6 8 0.73 0.81 0 .8 8 0.92 0 .8 8 0.77 0.64 0.53
XII 0.60 0.67 0.77 0.87 0.92 0.91 0.85 0.74 0.65
XIII 0.07 0.14 0 .2 0 0.24 0.25 0.24 0 .2 1 0.18 0.15
XIV 0.84 0 .8 8 0.94 0.99 1 .0 0 0.99 0.94 0 .8 8 0.84
XV 0.81 0.85 0.92 0.98 1 .00 0.98 0.90 0.81 0.72

XVII 0.76 0.83 0.91 0.98 1 .00 0.98 0.91 0.83 0.76
7

IX 0.77 0.75 0.75 0.80 0.92 0.84 0.82 0.83 0 .8 6

X 0 .8 6 0.83 0.82 0.84 0.92 0.80 0.75 0.75 0.77
XI 0.53 0.54 0.61 0.73 0.92 0 .8 8 0.84 0.80 0.76
XII 0 .2 2 0.30 0.44 0.64 0.92 0.94 0.94 0.91 0.87
XIII 0.19 0.19 0 .2 1 0.23 0.25 0 .2 1 0.18 0.16 0.14
XIV 0.84 0.83 0.84 0.89 1 .0 0 0.89 0.84 0.83 0.84
XV 0.51 0.54 0.62 0.77 1 .00 1 .0 0 1 .0 0 1 .0 0 1 .0 0

XVII 0.77 0.78 0.81 0 .8 8 1 .0 0 0 .8 8 0.81 0.78 0.77
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Table 2.12: Efficiency of four-period designs relative to the optimal design
when p  =  0.3 ___________________________________

0
Design -0 .8 -0 .6 i o ** -0 .2 0 0 .2 0.4 0 .6 0 .8

T

IX 1 .0 0 1 .0 0 0.99 0.96 0.91 0.84 0.76 0.67 0.60
X 0.52 0.62 0.72 0.82 0.91 0.97 1 .00 1 .0 0 1 .0 0
XI 0.36 0.46 0.59 0.71 0.80 0.81 0.75 0.63 0.53
XII 0.44 0.49 0.55 0.63 0.69 0.73 0.73 0.69 0.63
XIII 0.07 0.13 0.17 0 .2 0 0 .2 1 0 .2 1 0.19 0.17 0.15
XIV 0 .8 6 0.91 0.95 0.99 1 .0 0 0.99 0.94 0 .8 8 0.84
XV 0.80 0.82 0 .8 6 0.90 0.92 0.91 0 .8 6 0.79 0.72
XVI 0.54 0.65 0.76 0.85 0.92 0.93 0.89 0.82 0.76

7
IX 0.51 0.61 0.72 0.83 0.91 0 .8 6 0.84 0.85 0.87
X 0.97 0.96 0.94 0.93 0.91 0.80 0.76 0.75 0.77
XI 0.57 0 .6 6 0.76 0.87 0.95 0.89 0.84 0.80 0.76
XII 0.19 0.29 0.45 0.64 0.82 0.85 0.87 0.87 0 .8 6

XIII 0.16 0.18 0.19 0 .2 0 0 .2 1 0.18 0.16 0.15 0.13
XIV 0.80 0.85 0.91 0.97 1 .0 0 0.90 0.85 0.84 0.84
XV 0.39 0.50 0.65 0.83 1 .0 0 1 .0 0 1 .00 1 .0 0 1 .0 0
XVI 0.94 0.96 0.98 1 .0 0 1 .0 0 0.87 0.81 0.78 0.77
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Table 2.13: Efficiency of four-period designs relative to the optimal design
when p =  0 .7_______________________________ ______________

4>
Design -0 .8 -0 .6 -0.4 -0 .2 0 0 .2 0.4 0 .6 0 .8

T

IX 0.99 0.99 0.98 0.96 0.91 0.84 0.76 0.67 0.61
X 0.51 0.60 0.71 0.82 0.91 0.97 1.00 1 .0 0 1 .0 0
XI 0.29 0.39 0.52 0.65 0.75 0.77 0.72 0.63 0.53
XII 0.39 0.43 0.48 0.53 0.58 0.62 0.63 0.62 0.60
XIII 0.07 0.13 0.16 0.18 0.19 0.19 0.17 0.16 0.14
XIV 0 .8 8 0.91 0.95 0.99 1 .0 0 0.99 0.94 0 .8 8 0.84
XV 0.80 0.81 0.84 0.87 0 .8 8 0.87 0.82 0.76 0.71
XVI 0.50 0.60 0.71 0.81 0 .8 8 0.90 0.87 0.82 0.76

7
IX 0.43 0.55 0.67 0.80 0.91 0.87 0 .8 6 0 .8 6 0.87
X 0.96 0.95 0.93 0.92 0.91 0.80 0.76 0.76 0.78
XI 0.54 0.65 0.77 0 .8 8 0.96 0.89 0.83 0.79 0.76
XII 0.17 0.27 0.41 0.59 0.75 0.78 0.80 0.82 0.83
XIII 0.15 0.16 0.18 0.19 0.19 0.16 0.15 0.14 0.13
XIV 0.76 0.82 0.89 0.96 1 .0 0 0.91 0 .8 6 0.84 0.85
XV 0.35 0.46 0.62 0.81 0.99 1 .0 0 1 .00 1 .0 0 0.99
XVI 0.94 0.97 0.99 1 .0 0 0.99 0.87 0.80 0.78 0.77
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Table 2.14: Efficiency of four-period designs relative to the optimal design
when p  approaches 1.0_______________________________________

0
Design -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

T
IX 0.98 0.98 0.98 0.95 0.91 0.84 0.76 0.68 0.61
X 0.50 0.60 0.71 0.81 0.91 0.97 1.00 1.00 1.00
XI 0.27 0.37 0.50 0.63 0.73 0.76 0.71 0.62 0.53
XII 0.37 0.41 0.46 0.50 0.55 0.57 0.58 0.57 0.56
XIII 0.07 0.13 0.16 0.18 0.18 0.18 0.16 0.15 0.14
XIV 0.88 0.91 0.95 0.99 1.00 0.98 0.94 0.88 0.84
XV 0.80 0.81 0.83 0.86 0.87 0.85 0.80 0.75 0.70
XVI 0.49 0.59 0.70 0.80 0.87 0.89 0.87 0.81 0.77

7
IX 0.41 0.53 0.66 0.79 0.91 0.88 0.86 0.87 0.88
X 0.95 0.94 0.93 0.92 0.91 0.80 0.76 0.76 0.78
XI 0.53 0.65 0.78 0.89 0.97 0.89 0.83 0.79 0.75
XII 0.16 0.26 0.40 0.57 0.73 0.74 0.76 0.77 0.79
XIII 0.15 0.16 0.17 0.18 0.18 0.16 0.14 0.13 0.12
XIV 0.75 0.82 0.89 0.95 1.00 0.91 0.86 0.85 0.85
XV 0.34 0.45 0.62 0.81 0.99 0.99 0.99 0.99 0.99
XVI 0.95 0.97 0.99 1.00 0.99 0.86 0.80 0.77 0.77
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Chapter 3 

Response Adaptive Repeated  

Measurement Designs

3.1 Introduction

As discussed in the previous chapter, much of the work on constructing 

optimal designs is based on two assumptions: that subjects are associated 

with a common covariance matrix and that the covariance structure is known. 

Consequently, these optimal designs are rather sensitive to violations of these 

assumptions. These designs may become inefficient when the data does not 

support the assumed covariance matrix. For instance, the design using the se­

quences ABB and BAA is optimal for estimating the contrast of residual effects
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7 when the covariance matrix is first-order autoregressive with the parameter 

<j> > 0 and no subject effects (see Chapter 2). However, if the data indicate 

that the value of (j> is —.8, then the efficiency of that design is only .28 relative 

to the optimal design for that situation.

In Chapter 2, we recommended some designs that are robust against the 

violation of model assumptions. We have to point out, however, that this 

robustness is restricted to the variation of some parameters determining the 

covariance matrix, assuming that the form of a covariance matrix is known. 

These designs may not be robust in other situations. Methods are needed 

to construct designs without having to assume an error structure because, in 

practice, the error structure is not known before an experiment but after a 

number of subjects are entered into the experiment.

For Design I (defined in Chapter 2, Table 2.5), Cook (1995, 1996) provided 

guidelines for terminating the accession of subjects in terms of power and type 

I error. The attractions of Cook’s method are: it utilizes the estimates of 

the assumed common covariance matrix obtained adaptively to the subject 

response, it allows the use of subjects with only the first period observed and 

it results in savings in terms of the smaller expected measurements required as 

compared with the fixed-sample-size cross-over design. Not restricted to one 

specific design, Kushner (2000) proposed a method for constructing general 

cross-over designs adaptively, that is, relaxing the assumption of a known error
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structure but still assuming homogeneity among the study subjects. Rather 

than terminating the adaptive procedure to minimize the expected sample size, 

as is the case in the traditional sequential trial design (Armitage 1975), the 

focus was on improving the precision of the estimators of parameters, similarly 

as in Chapter 2.

However, Kushners approach leaves something to be desired in that the 

covariance matrices for the within-subject measurement error may not be the 

same for all subjects. For example, the subjects can exhibit a wide range of 

variation in responses, depending on their demographic or prognostic factors. 

Here, we aim to relax further the usual assumption about the covariance matrix 

by removing the homogeneity restriction.

In this chapter, we propose a method of sequentially allocating a small 

number of new subjects to treatment sequences, when the covariance matrices 

for the subjects are unknown and heterogeneous. Practically, we can handle 

only a finite number of different covariance matrices in an experiment. Further, 

we assume some information is available on who is associated with each of the 

covariance matrices being considered.

As a simple example, consider a two-treatment two-period repeated mea­

surement design with the sequences AB and BA. Patients are assigned to a 

group that receives a new drug (A) followed by a placebo (B), or to a group 

that receives B first and then A. Older patients may be associated with a dif-
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ferent covariance matrix than younger patients. Also, a patient’s chances of 

being associated with a particular covariance matrix will depend on the pro­

gression of a disease. Usually, this type of information can be known only 

approximately. It can be obtained from previous studies or estimated from 

a pilot project. We derive the allocation rules by minimizing a loss function 

of the increment of information for each new subject or a small group of new 

subjects. Some adjustments will also be considered for situations when only 

probabilistic information is available about a particular patient’s membership 

to an error structure. The allocation rules are applied sequentially to new sub­

jects, and the parameters involved are updated, using the subjects already in 

the experiment, and aiming eventually for efficient estimators of the treatment 

effects.

The idea is similar to the approach of traditional adaptive designs in clinical 

trials—the accrued information on responses to treatment is used to assign 

new subjects (Bather, 1985; Armitage, 1985; Rosenberger and Lachin, 1993). 

However, our interest is in building adaptive repeated measurement designs, 

as opposed to the typical randomized designs. Further, our allocation rules 

are derived to assign subjects to treatment sequences that contribute most to 

the information matrix for the parameters of interest, rather than to a better 

performed treatment, as in traditional adaptive designs (Wei and Durham, 

1978; Wei, 1979; Rosenberger, 1995). Finally, the proposed adaptive design is
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intended to obtain efficient estimators for parameters of interest, rather than 

to minimize the proportion of subjects assigned to an inferior treatment (Zelen, 

1969; Simon, 1977, 1991; Pocock, 1979; Bartlett et al., 1985). The important 

contribution of this chapter is our efforts to incorporate heterogeneity among 

study subjects into the construction of adaptive designs.

This chapter is organized as follows. In Section 2, we introduce the model 

and present the information matrix for the parameters of interest. In Section 

3, we develop the allocation rules for constructing the designs. In Section 4, we 

demonstrate the efficiency of the resulting designs as compared to the optimal 

designs, in selected situations. In Section 5, we summarize our approach and 

provide concluding remarks.

3.2 Information matrix for treatm ent effects

Consider model (2.2.1) with unknown and heterogeneous covariance ma­

trices associated with the study subjects, where V,-* are not all equal, for 

k =  1 , . . . ,  s, j  = 1 , . . . ,  AT*. Here, we assume that Vy* can be grouped into a 

finite set, consisting of V i , . . . ,  Va/. The subject effects in the model can be 

fixed or random.
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For model (2.2.1) with random subject effects, we have

Vjk ~ 'Ejk ~ / ( I  +  â lp] ĵk l[pl)’2iT v - l i

while for model (2.2.1) with fixed subject effects, it becomes

Define r  and X 7 to be £ ( V - ‘) - 1 £ ifc and ^ (V ~ 1) - 1 L j k V j & l

respectively, where V "1 =  T.jk ra/tmVm1/Ar with nfcm being

the number of subjects in sequence k  associated with covariance matrix V m, 

m =  1 ,. . . ,  M, k = 1 , . . . ,  s. This leads us to the following Lemmas.

Lem m a 3.2.1 The information matrix fo r  ( t  , y )

111 I l 2  

121 I22

(3.2.1)

where I„  = T . U Z % W - l  ~  3C )TVJkH X l  -  T ) ,  I 12 =  -

T ) TV j k' ( X l - T ) ,  I21 = I[2 a n d l n  ^ U r f t . W - X y v - ^ X J - X ’).

P r o o f . W hen th e  su bject effects are ran d om , th e  in form ation  m a trix  for
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0  = (fi, irT , t t , 7 r )r  is

1(0) = X TDiag{V'ki } X

where X — (Xi, X 2), Xi =  (ljv®l[p], l[N]®I[p]) find X 2 =  . . . ,

X-%S)T , with X 2fc defined as in Chapter 2. Then, the information for ( r T, y T)T 

is

I (r ,7 ) = X lD ia g {V ~ kl } X 2

- X l  D ia g { V jkl } X ,  (X [ Diag{Vjkl } X l ) - X j D i a g { V - kl }X2.

Note that

X .tx rD ia s fV ^ lX .J -X f  = i l „ l j  ® V = r ‘.

Therefore,

I(r, 7 ) = Z  X & V - J X *  - - • £  Xrt V ^ ( V ^ ) -  £  V Ji'X a ,
jk  jk  jk

and it follows that

i„ = E x r v ^ x j - i ^ x f v ^ v ^ - ' ^ v - ^ x ;
jk  j k  jk

=  E x i 'V j . ' x ;  -  N T TW n C
jk
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= Eps-XTVjVfxj-JT),
i t

using X  and V -1 as defined earlier. Similarly, I 12 and I22 can be obtained to 

give Lemma 3.2.1.

When the subject effects are fixed, the information matrix for /3 becomes

m  =  X7'D iaS{2-t'}X

- X TD i a g ® ® l ^ D i a g l ' S J ^ X

=  X TD ia g {V j t' ) X ,

E _li i r E _1
where =  EJ*1  JkT ^ J f l T Jk . Then, the results follow by similar argu-

ments.

□

Lem m a 3.2.2 The row and column sums of I u , I i 2 , l 2i and I22 in Lemma

3.2.1 are zero.

P r o o f . Since in each period, one and only one treatment must be assigned, 

we have Xj^lft] =  l[p], for all k. Noting that x]k =  x[_l fc for i = 2 ,. . . ,p  and 

xff. =  0, we have that X*l[t] =  l^j for all k, where l^j is the same as l[p] except 

for the first element, which is 0. Thus, we have X^l[t] =  1^  and X^l[t] =  1^ . 

Therefore, Lemma 3.2.2 follows.

□
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Definition 3.2.1 A repeated measurement design d is a design specified by 

a vector n  =  {n*}, where n* =  (nfcl, . . . ,  nk\() is the number o f subjects in 

treatment sequence k associated with each of the M  covariance matrices fo r  

k  =  1 , . . . ,  tp. Then, there exists a 1-1 mapping between d and n  (d n ) .

Definition 3.2.2 Design d is symmetric i f  it remains unchanged by a permu­

tation o f ( 1 , . . . , t).

As defined in Chapter 2, sequences are dual to each other if one sequence 

can be turned into other sequences by permuting the treatments. Hence, if 

a symmetric design includes a certain sequence, it also includes the dual se­

quences of that sequence.

Example of two-treatment symmetric designs: For two-period de­

signs, a design with the sequence AB and its dual is a symmetric design. For 

three-period designs, a design with the sequences ABB, AAA and their duals 

is a symmetric two-treatment three-period design.

Example of three-treatment symmetric designs: For two-period de­

signs, a design with the sequences AA, AB and their duals (BB, CC; BA, AC, 

BC, CA, CB) is a symmetric design. Similarly, for three-period designs, a de­

sign with the sequences ABB, AAB and their duals (ACC, BAA, BCC, CAA, 

CBB; AAC, BBA, BBC, CCA, CCB) is a symmetric design.

Theorem 3.2.1 I f  the symmetric design is also dual-balanced, i.e., nkm =
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nk'm fo r  k  = \ , . . .  , s ,  k* is the dual sequence o f k , and m  =  1 then

the information matrix (3.2.1) can be rewritten as

an a 12 

a 12 a22

® (^[t] -  l[e] Ifl) (3.2.2)

where aw = tr ( lu>) = E l= iEm = i Iw ore the IV-th components o f

I(r, 7 ) in Lemma 3.2.1, I = 1,2, V = 1,2, and aft” = H i,i'= i^k' ~  v i / t>

ai2* = £?=i JTJi % (Ym'te+i-Vi/t, a% = E f i  H'=i i f  (V-l)i+i^+i-«3/tf 

«x =  lJ jV ^ ltp ], v2 = l f o V ^ ,  u3 =  <Sf =  1 i/ the i th row and

ilth row ofX.1 are the same, and 0, otherwise.

P r o o f . Denote the number of distinct treatments in sequence A: as For 

any sequence A; in a symmetric design d, the design matrices of its l^-Cltk dual 

sequences (including itself) are generated by permuting the column of X£ and 

X*!. If one treatment in a certain period in sequence k  is fixed, there are totally 

(Ik — dual sequences of sequence k including itself.

For instance, in a three-period three-treatment design, the sequences ABC, 

ACB, BAC, BCA, CAB, CBA are dual sequences, and the number of duals is 

3!Cf =  6. If treatment A is fixed in the first period, sequences ABC and ACB 

are dual sequences and the number of such dual sequences is (2 — 1)!C2 =  2. 

Similarly, the sequences BCA and ACB are duals when treatment C is fixed in
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the second period.

Thus,

£  XJ, =  (k  -  l) !C fc ll l w ® lf t ,
k' Edualsequencesofk

Hence, we have

JV km

m k

= E x;
tn k1 k£dualsofk'

= n*,„(t - l)!C,VlW«lS
iV m fe/

=  ^ ‘E ^ ' E W H ^ I h  ® iw/*

=  4 v r r " I E v ^ , E ' ' ‘".1w ® 1w /1
7V m k

— i[p] ® i[t]A)

where k' runs through sequences which are dual to only themselves. Similarly,

x 1 =  r w <g> 1 ft]/ t .

Now, we only need to prove that C =  nfem(XJ)TV ~1Xfc = (a — 6)I[t] + 

6l[t]l^j, where a and b are two constants. For any sequence k, the design 

matrices of its duals can be generated by X£A and X*A, where A is obtained 

by permuting the columns ({e, })of Here, e, is the vector of 0’s with 

the ith element replaced by 1. There are totally lk]-C[k such A. For the dual
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sequences k \  (X [.)TVm'X ;. =  A T(X [)TV m‘X'kA .

Note that among all the A ’s, e,, i = l , . . . , l k appear with equal frequency 

in any column. Thus, by the definition of dual-balanced symmetric design, we 

have that the diagonal elements of C are all equal. Further, note that, if any 

two columns are selected, the resulting pairs (ei ,ej )  do not depend on which 

columns are selected. Hence, the non-diagonal elements of C are all equal 

to each other, i.e., C = (a — 6)I[t] +  &l[t]l£j. By Lemma 3.2.2, we have that 

In  =  c ( t l[t] — Similar results can be obtained for I 12 and I22. Then by

Lemma 3.2.1 and Definition 3.2.2, we have 3.2.2.

The elements are obtained as a\™ =  tr[(X£ — X£)TV “ l(X£ — X£)] = 

t r & f V - ' X V - t r l T j v ^ ) ,  0f2™ = ir fX fV ^ X Z )  and

a%? =  t r { X l TV n l Q )  -  t r f i C 1 V _1X '), and the results follow by noting that

<g> ® 1W)

= ® iw V - 'iw  ® l w)

»wv - ‘»w
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and that

iw v -'*w

V2,

1*
x [p] v  1 [p]

v3-

□

C orollary  3.2.1 The information matrix fo r  the treatment effects is

I ( t ) — (an  — af2/ a 22)(£l[t] — l\t\\l[t( ) / t ( t  — 1) (3.2.3)

C orollary  3.2.2 When the subject effects are fixed, a*™, a \T  an<̂  a22*in Theo­

rem (3.2.1) can be simplified to aft" =  a*™ =  £?=i &'k

(Vml )*,«'+1 ™ d ak£  =  ~  v* I t ,  where vA =  E fcmn*m

(V - l)i,i/iV. When M  = 1, components af™, fo r  1,1' =  1,2, reduce to those in 

Kushner (2000).
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P r o o f . Note that, when subject effects are fixed, the matrix Vjfcl = —

l[p] 1 l(p] is spanned by l w, i.e. V jk l w =  0. Thus Corollary

3.2.2 follows.

□

3.3 A llocation rules for sym m etric designs

We shall restrict our attention in this section to balanced symmetric designs, 

as dual-balanced designs are found to be optimal in the literature. When the 

inferential interest is in r, we focus on the information matrix in (3.2.3).

Note that, since the information for r  depends on n  only through the 

function f ( n )  = a n  -  0 ^ / 022, the increment of the information from new 

subjects A n  =  (Anu , •. •, Ani*./, . . . ,  Ansl, . . . ,  A tism )t  is determined by the 

increment of / ,  which is A / =  f ( n  -I- A n) — /(n ) .  Intuitively, programs can 

be used to sift out the maximum of f ( n  + A n ) by thoroughly sorting over 

all possible A n  satisfying l r A n  =  A N ,  where A N  is the total number of 

new subjects at each allocation step. However, such programs can be very 

time consuming and costly. The level of cost depends on the size of A N . As in 

Kushner (2000), we approximate A f  using the first order of Taylor’s Expansion

A f - l g r t n .
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where it can be shown that

o n

with each component

q U c - , V m) =  (r { [X i-3 T  + c ( x ; - X 7) r v - 1[ X J - r + c ( X 2 - 3 r ) ] }

We used the following allocation rules to optimize the experiment at each 

allocation step.

A llocation  R ule 1: The increment of inform ation is maximized by assigning 

all new subjects associated with covariance m atrix  V m to sequence K  and its 

dual sequences, such that

=  aft* +  2ca{51 +  c2a£*

and Cq — —012/^ 22-

Thus,

A/  =  2  Ankm x qkm(co; V m). (3.3.1)

<7tfm(co; vm) = maxg*m(co; V m)k
(3.3.2)
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subject to

sk  x AriKm =  A N , (3.3.3)

where A n  Km is an integer and Sk  is the number o f dual sequences to sequence

K , including itself. Hence, A n km =  0 fo r  the rest sequences that are not the

dual sequence of sequence K .

This rule reduces to the allocation rule in Kushner (2000) when a homoge­

neous covariance matrix is assumed for all subjects.

If we can further assume that An*,,, =  A n k-m =  1, then a more accurate 

approximation for A/  can be obtained via a second order-expansion, as

A/ = [£ lTAn + 5 A” 7’!0 1An’

where

d2/   __ 1 dqkm dqk'm' ■
dn2 ~  2o22 dc |c=c° dc |c=c°'

Thus, we can refine A/  as

A /  =  An km x 9fcm(co; V m) -  -p—E  x ~ ^ I1 \c=c0}2 (3.3.4)
k,m 22 dc

so that the following allocation rule is possible.

A llocation  Rule 2: When each new subject is to be allocated to a sequence, the 

allocation rule given in (3.3.2) is refined to assign all new subjects associated
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with covariance matrix  V m to sequence K  and its dual sequences by choosing 

K  such that

qKm(co;Vm) -  4~ [ “ 0^ lc= co]2 = max{gfcm(c<,;Vm) -  ^ i ^ j ^ l ^ ] 2}

(3.3.5)

with

^ r U .  =  2(<.*r+ <*■£■).

Here, we assume

Anf (m = AnK 'm  ~  1?

A N  = s K, (3.3.6)

where K* is the dual sequence of K .

Note that it may be impossible to assume a priori which covariance ma­

trix is associated with new subjects. If the actual covariance matrix is not 

V m, as assumed in allocation rules 1 and 2, then the two allocation rules do 

not necessarily maximize the increment of information on r . To deal with 

such situations, we adjust the aforementioned allocation rules in the following 

manner.

First, we define A/* as the true increment of information when the covari­

ance matrix associated with new subjects is correctly specified. Depending 

on which of V m, m =  1 , . . . ,  A/, is the true covariance matrix, A/* takes val-
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ues A /(V i) , . . . ,  A / { V m ) ,  where A /(V m) is the increment information (3.3.1) 

with ATikm and qtm substituted by (3.3.2) and (3.3.3) in Allocation Rule 1, or 

the information (3.3.4) with An*™ and qkm substituted by (3.3.6) and (3.3.5) 

in Allocation Rule 2. The probability of A/* taking value A /(V m), denoted 

by Pm, is the same as the probability that the new subjects have covariance 

matrix Vm. Here, {pi,. . .  ,pjw} are known or could be obtained from a pilot 

study.

A llocation  R ule 3: The subjects are assigned to sequence K , such that the loss 

o f increment information due to an incorrect assumption about the associated 

variance is minimized.

mm Ea /. [(A /(V „) -  A/*)2] (3.3.7)
M

= nun Z! Pm'[A/(Vm) -  A /(V m/)]2.
m '=I

The value o f K  depends on V m as stated in allocation rules 1 and 2. I f  the m in­

im um  o f (3.3.7) is obtained at m*, then new subjects are assigned to sequence 

K  and its duals, as obtained from  (3.3.2) or (3.3.5) using Vm- .

3.4 Im plem entation of the rules

A naive procedure for implementing the allocation rules is to update the 

estimates for {V m} and /3 adaptively once the assigned subjects complete the
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experiment. Then, applying the updated estimates to the allocation rules, 

we continue to assign all subjects to treatment sequences. Specifically, the 

procedure consists of the following steps.

Step 1. Start the experiment with an initial N q subjects using the optimal 

or “nearly” optimal design suggested in the literature. Compute the 

maximum likelihood estimates V m(n), m  =  and (3{n) with

vector n  representing the initial design, iteratively, by

V m(n) =  £  £ ( y Jt -  X*<8(n))(yi t  -  X t 0 ( n ) ) T , (3.4.1)
k=l j'=l

and

S Hfcm
0 ( n )  =  ( ^ X j V J n r 'X * ) - 1 £  £  X lV ; t (n ) - 'y j k. (3.4.2)

km  f c=l j=l

Step 2. Assign new subjects to treatment sequences using allocation rules 

(3.3.2 or 3.3.5 along with 3.3.7) with V m substituted by its estimates as 

in Step 1.

Step 3. Update the estimates V m(n + A n  ) and j3 (n+ A n) using the subjects 

in Steps 1 and 2.

Step 4. Repeat Steps 1-3 until all subjects have been allocated.
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3.5 Efficiency of adaptive designs

To assess the efficiency of the adaptive designs, we compare its matrix of 

mean squared error

M SE = E[{ t  — r ) ( f  -  r ) T]

with that of the “optimal” designs in a given situation. In the simulation study, 

the M SE is estimated by

MSE =  £ ( t (6) -  r ) ( f (6) -  t )t / B ,  
6=1

where is the MLE obtained in the bth simulation run, B  =  1000. We denote 

MSEX as the matrix of mean squared error for the proposed adaptive design 

and MSEo for the adaptive design under the variance-covariance homogeneity 

assumption. Based on A-, D- or E- optimality criteria (Kiefer 1975), we defined 

the efficiency of the proposed design as

tr(M SEi)
6JlA tr(MSEo)

|M SE,|
e f f o  =

e f f E =

| MSE01

max eigenva lue(M SE i)
max eigenvalue(M SEo)
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For a singular matrix, the determinant is defined as the product of non­

zero eigenvalues. The efficiency comparison was conducted by simulation for 

two-period two-treatment; three-period two-treatment; and three-period three- 

treatment designs for M  =  1,2,3. The case of M  =  1 is the case of assuming 

homogeneity. For two-treatment designs, since the information matrix (3.2.3) 

becomes

I ( r )  =  a
1 -1

-1  1

the trace, the maximum eigenvalue and the determinant of I ( r )  are all equal 

to 2a. Thus, all three criteria are equivalent.

3.5.1 t = 2 and p = 2

We applied the proposed allocation rules to the two-treatment two-period 

design, consisting of four sequences, AA, AB, BA and BB. For M  =  2, we 

assumed that all the subjects were associated with two different covariance

matrices

V 1 =

and

V 2 =

1 P 

P 1

1 C\P

cip 4
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with p =  .3, .7, Ci =  2 and the proportion of subjects associated with V̂ , 

P  — H k n k2 /N ,  controlled to be 20% or 50%. For M  =  3, the three different 

covariance matrices are Vi, V2 with p — .3 and Ci =  2, and V 3 is obtained from 

V 2 with ci =  2 and p =  .7. The proportions of subjects associated with these 

three covariance matrices were 50%, 30% and 20%, respectively. Initially, four 

subjects were assigned to sequences AB and BA, respectively. The experiment 

included 100 subjects in total.

First, we show the performance of the adaptive design (M =  1) compared 

to the fixed optimal design using the covariance matrix Vi with p  =  .3. The 

fixed optimal design for this case is the design with an equal number of subjects 

assigned to sequences AA, AB and their duals. Figure 3.1 demonstrates the 

relative efficiency as the ratio of the MSE for the fixed design to that for the 

adaptive design. The variance for r  when p =  .3 is 2.06/N .  The adaptive design 

was as efficient as the optimal design, when Vi is assumed known before the 

experiment. It has an efficiency over 95%, when the sample is at least 10. The 

final efficiency when N  = 100 is 97%.

VVe now focus on situations where the fixed optimal design is not as easily 

identifiable as in the above example because there is no prior information on 

the covariance matrix. In the following discussions, we shall compare only 

the adaptive designs to assess the merits or disadvantages of incorporating 

heterogeneity into design construction.
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Figure 3.2 is a comparison of the adaptive designs when two different co- 

variance matrices associated with the subjects and the two periods were weakly 

correlated with p = .3 against the design that assumed homogeneity. When 

the sample size is relatively small, say less than 30, it shows that incorporating 

heterogeneity leads to less efficient designs. The reason may be that there are 

not yet enough subjects in the experiment to be able to distinguish between 

the two different covariance matrices. However, as the sample size increases, it 

becomes evident that incorporating heterogeneity leads to high-efficiency de­

signs, especially when the two covariance matrices are notably different from 

each other and equally likely (P  = 50%).

Figure 3.3 illustrates the relative efficiency of our two-treatment two-period 

designs when M  — 2 and p =  .7. The findings are similar to those described 

above. Comparing the curves in Figure 3.2 and Figure 3.3, we find that our 

strategy improves as p increases with P  and fixed. At N  = 100, the efficiency 

when Ci = 2  and P  = 50% is about 67% when p  =  .7, about 75% when p = .3. 

When Ci =  2, P  = 20% and p =  .7, the efficiency is 77%, and, it is about 

87% when p = .3. This indicates that incorporating heterogeneity improves 

the efficiency by almost one and a half times.

Figure 3.4 demonstrates that more subjects are needed to distinguish the 

different covariance matrices when M  increases to 3. Our approach becomes 

superior and the relative efficiency attains 70% when the sample size increases
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to 100.

3.5.2 t = 2 and p = 3

For two-treatment three-period designs, the proposed allocation rules were 

applied to assign subjects to eight possible sequences: AAA, AAB, ABA, ABB 

and their duals. For M =  2, we assumed all subjects were associated with two 

different covariance matrices,

1 P i P2

Pi 1 P3

P2 P3 1

and

1 C2P1 C1P2

v2 = C2P1 4 C1P3

C1P2 C1P3 4
with pi = P2 = pz = .3, .7 or p \ — pz = yffa and cx =  1, c2 = 2 or ci =  c2 =  2. 

The proportion of subjects associated with V 2 is 50% in our simulation. For 

M  =  3, we considered three different covariance matrices: V i, V 2 with cx =  1 

and c2 =  2, and V3 obtained as in V2 with c\ = c2 =  2. The proportions of 

subjects associated with these three covariance matrices were 50%, 30% and 

20%, respectively. Note that Vi with Pi =  P2 = P3 has an equicorrelated co-
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variance structure, and V\ with Pi = Pz = yfpz is the first-order autoregressive 

covariance structure. Initially, six subjects were assigned to sequences ABB 

and BAA, respectively, according to the optimal design suggested by Kersh- 

ner and Federer (1981) and Laska et al. (1983) for equicorrelated covariance 

structure.

Figures 3.5-3.8 summarize the simulation results for the comparison of rela­

tive efficiencies of the adaptive designs for two-treatment three-period designs. 

Similar to what we observed with two-treatment two-period designs, the pro­

posed design strategy was notably superior. In the case of pi =  Pz = \fp 2 , 

the disparity of the covariance matrices did not affect the performance of the 

proposed design as much as in the case of p\ =  P2 =  pz- The final efficiency 

was 81% when Ci =  c2 = 2, and about 90% when c\ =  1, c2 =  2 and all p =  .3. 

With the correlation coefficients increasing to .7, the efficiencies became 73% 

and 85%, respectively. In the case of autoregressive errors, the final efficiency 

is similar to that for equal correlation coefficients, when C\ =  1 and c2 =  2.

Figures 3.9-3.12 demonstrate the performance of our approach when M  =  3. 

The relative efficiency depends on the degree of disparity of the covariance 

matrices. The final efficiency at N  =  100 is around 85%, and 75% when the 

correlation coefficient is .3 and .7, respectively, for an equicorrelated covariance 

structure. In the case of autoregressive error, the efficiency increased to 90% 

for pi =  .3 and 80% when p\ =  .7.
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3.5.3 t  = 3 and p = 3

The same situations as in 3.4.2 were considered with two subjects initially 

in each of the sequences ABB, ACC, BAA, BCC, CAA and CBB.

Figures 3.11-3.18 demonstrate the results of comparisons of the relative 

efficiency of adaptive designs with M  = 2 against that with M  = 1. The 

efficiency curves based on the three optimal criteria (A-, D- and El-optimal) are 

shown for each case. The efficiency curves based on A- and El- optimal criteria 

are similar, while the one based on D-optimal criteria is about 8-15% lower. 

The final efficiency based on D-optimal criteria for the case of c\ = C2 =  2 is 

73%, which is 12% lower than that for the case of ci =  1,C2 = 2 , when all 

correlation coefficients are equal to .3. When correlation coefficients increase 

to .7, the final efficiency based on D-optimal criteria is 14% lower, as compared 

with 73% as ct increases from 1 to 2.

Similar to the two-treatment cases (not shown), an increasing number of 

different covariance matrices requires more subjects to be effective. This is 

even more important when p is not very high.

3.6 Conclusion

Recognizing that the study subjects in an experiment can be heterogeneous 

in their responses to the treatments given, and that they usually enter the
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experiment sequentially, we developed a methodology for constructing adaptive 

designs suitable for these situations. Our strategy was to minimize the loss 

function of the increment of information added by each new set of subjects. 

The resulting designs were shown to be more efficient than those that do not 

account for heterogeneity, and robust to the assumptions required in traditional 

design construction.

The superiority of the proposed design strategy becomes more evident when 

covariance matrices differ greatly. When the number of treatments is more 

than two, the efficiency of our strategy depends on the optimality criteria. 

The simulation results showed that A-optimal and E-optimal criteria led to 

similar efficiency curves for all the models we considered. Efficiency curves 

based on the D-optimal criterion behave quite differently from the other two. 

It appears that D-optimal criterion is more sensitive to variance heterogeneity 

and requires larger sample sizes than the other two criteria for the proposed 

adaptive designs to be effective.
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Figure 3.1: Relative efficiency curves for adaptive two-treatment two-period
designs with covariance matrix Vi in Section 3.5.1 with p =  .3 for M  =  1. 
The straight horizontal line is inserted to indicate the comparison of efficiency 
improvement (i.e., close to the line) relative to the fixed optimal design.
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Figure 3.2: Relative efficiency curves for adaptive two-treatment two-period
designs with correlation coefficient p = .3 for M  =  2 for P  =  20% and ci =  2 

(the solid line) and P  =  50% and cy = 2 (the dashed line). The straight 
horizontal line is inserted to indicate the comparison of efficiency improvement 
(i.e., below the line) relative to the homogeneity case (M  =  1 ).
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Figure 3.3: Relative efficiency curves for adaptive two-treatment two-period
designs with correlation coefficient p =  .7 for M  =  2 for P  =  20% and ct =  2 
(the solid line) and P  = 50% and c\ =  2 (the dashed line). The straight 
horizontal line is inserted to indicate the comparison of efficiency improvement 
(i.e., below the line) relative to the homogeneity case (M =  1 ).
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Figure 3.4: Relative efficiency curves for adaptive two-treatment two-period
designs for M  =  3. The straight horizontal line is inserted to indicate the 
comparison of efficiency improvement (i.e., below the line) relative to the ho­
mogeneity case (M =  1 ).
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Figure 3.5: Relative efficiency curves for adaptive two-treatment three-period 
designs when M  =  2 and p x =  = fo =  .3 for c\ — c2 = 2  (the solid line) and
ci =  1 and c2 =  2 (the dashed line). The straight horizontal line is inserted to 
indicate the comparison of efficiency improvement (i.e., below the line) relative 
to the homogeneity case (M = 1 ).
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Figure 3.6: Relative efficiency curves for adaptive two-treatment three-period 
designs when M  — 2 and pi = pz = y/pi =  -3 for ct =  c2 =  2 (the solid 
line) and Ci =  1 and c2 =  2 (the dashed line). The straight horizontal line is 
inserted to indicate the comparison of efficiency improvement (i.e., below the 
line) relative to the homogeneity case (M  =  1).
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Figure 3.7: Relative efficiency curves for adaptive two-treatment three-period 
designs when M  =  2 and p\ =  f t  =  p$ =  .7 for ci =  C2 =  2 (the solid line) and 
c\_ =  1 and C2 =  2 (the dashed line). The straight horizontal line is inserted to 
indicate the comparison of efficiency improvement (i.e., below the line) relative 
to the homogeneity case (M  = 1).
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Figure 3.8: Relative efficiency curves for adaptive two-treatment three-period 
designs when M  = 2 and pi = p3 =  y/fa =  .7 for Ci =  c2 =  2 (the solid 
line) and C\ =  1 and c2 =  2 (the dashed line). The straight horizontal line is 
inserted to indicate the comparison of efficiency improvement (i.e., below the 
line) relative to the homogeneity case (M =  1 ).
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Figure 3.9: Relative efficiency curves for adaptive two-treatment three-period 
designs when M  = 3 and px = fa =  fa =  .3 (the solid line), and pi = fa = 
Pi =  .7 (the dashed line). The straight horizontal line is inserted to indicate 
the comparison of efficiency improvement (i.e., below the line) relative to the 
homogeneity case (Af =  1).
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Figure 3.10: Relative efficiency curves for adaptive two-treatment three-period 
designs when M  =  3 and P\ = pz = yfpi =  -3 (the solid line), and py = p$ = 
yfp i  =  .7 (the dashed line). The straight horizontal line is inserted to indicate 
the comparison of efficiency improvement (i.e., below the line) relative to the 
homogeneity case (Af =  1).
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Figure 3.11: Relative efficiency curves for adaptive three-treatment three-
period designs when M  = 2  and correlation coefficients pi =  p3 =  y/fa =  .3 
and ci =  C2 =  2 using A-optimal criteria (the solid line), E-optimal criteria (the 
dashed line) and D-optimal criteria (the dotted line). The straight horizontal 
line is inserted to indicate the comparison of efficiency improvement (i.e., below 
the line) relative to the homogeneity case (M = 1 ).
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Figure 3.12: Relative efficiency curves for adaptive three-treatment three-
period designs when M  =  2 and correlation coefficients p\ — pz = y/fa =  -3 and 
ci — l ,c 2 =  2  using A-optimal criteria (the solid line), E-optimal criteria (the 
dashed line) and D-optimal criteria (the dotted line). The straight horizontal 
line is inserted to indicate the comparison of efficiency improvement (i.e., below 
the line) relative to the homogeneity case (M  =  1 ).
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Figure 3.13: Relative efficiency curves for adaptive three-treatment three-
period designs when M  = 2 and correlation coefficients p\ =  fa — pz =  .3 and 
ci =  c2 =  2 using A-optimal criteria (the solid line), E-optimal criteria (the 
dashed line) and D-optimal criteria (the dotted line). The straight horizontal 
line is inserted to indicate the comparison of efficiency improvement (i.e., below 
the line) relative to the homogeneity case (M  =  1 ).
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Figure 3.14: Relative efficiency curves for adaptive three-treatment three-
period designs when M = 2 and correlation coefficients p\ = p2 =  P3 =  .3 and 
Ci =  1 ,C2 =  2 using A-optimal criteria (the solid line), E-optimal criteria (the 
dashed line) and D-optimal criteria (the dotted line). The straight horizontal 
line is inserted to indicate the comparison of efficiency improvement (i.e., below 
the line) relative to the homogeneity case (M =  1).
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Figure 3.15: Relative efficiency curves for adaptive three-treatment three-
period designs when M  = 2 and correlation coefficients P\ — Pz — y/fh =  -7 
and ci =  c2 =  2  using A-optimal criteria (the solid line), E-optimal criteria (the 
dashed line) and D-optimal criteria (the dotted line). The straight horizontal 
line is inserted to indicate the comparison of efficiency improvement (i.e., below 
the line) relative to the homogeneity case (M = 1 ).
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Figure 3.16: Relative efficiency curves for adaptive three-treatment three-
period designs when M  =  2 and correlation coefficients p\ =  pz =  y/p^ = .7 and 
ci =  1 ,C2 =  2 using A-optimal criteria (the solid line), E-optimal criteria (the 
dashed line) and D-optimal criteria (the dotted line). The straight horizontal 
line is inserted to indicate the comparison of efficiency improvement (i.e., below 
the line) relative to the homogeneity case (M = 1 ).
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Figure 3.17: Relative efficiency curves for adaptive three-treatment three-
period designs when M  =  2 and correlation coefficients P i  = P2 = P s — -7 and 
Ci =  c2 =  2 using A-optimal criteria (the solid line), E-optimal criteria (the 
dashed line) and D-optimal criteria (the dotted line). The straight horizontal 
line is inserted to indicate the comparison of efficiency improvement (i.e., below 
the line) relative to the homogeneity case (M  =  1).
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Figure 3.18: Relative efficiency curves for adaptive three-treatment three-
period designs when M  = 2 and correlation coefficients px =  pi = p3 =  .7 and 
ci =  l ,c 2 =  2 using A-optimal criteria (the solid line), E-optimal criteria (the 
dashed line) and D-optimal criteria (the dotted line). The straight horizontal 
line is inserted to indicate the comparison of efficiency improvement (i.e., below 
the line) relative to the homogeneity case (M  =  1 ).
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Chapter 4 

U se of Proxy Data: An  

Alternative to Incom plete Data 

Analysis

4.1 Introduction

Responses from repeated measurement designs make up longitudinal or 

repeated measures data. In many scientific investigations on repeated measures 

data, complete data sets are unavailable for various reasons. In this chapter, we 

investigate analytic methods for repeated measures data with missing values.

Three approaches have been used for dealing with missing data: (1 ) use 

only the complete subset data, (2 ) use an incomplete data analysis method or
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(3) use an imputation strategy.

Using only complete subset data has been widely shown to be an inefficient 

method and to produce inconsistent estimators when missing data are not miss­

ing completely at random (Schafer, 1997). Many investigators have developed 

efficient incomplete data analysis methods by using all available data (for ex­

ample, Carriere, 1994a and 1999). Alternatively, pseudo values can be imputed 

in place of the missing data in order to apply a standard complete data analysis 

method. Treating these values as if they were actual, a  repeated-imputation 

inference can be used to draw conclusions (Rubin, 1987).

In this chapter, we propose yet another strategy for dealing with incom­

plete data. Analysts often collect proxy information in an attempt to create a 

complete data situation with no missing values. For example, in cancer clinical 

trials, some patients may be too sick to respond, but the researcher often takes 

approximate information from their care providers. Then, the issue is how to 

treat this proxy information.

Various authors (Grootendorst et al., 1997; Jalukar et al., 1998) have shown 

that there is a high degree of agreement in the responses of the study subjects 

and their proxies (care providers). Most of the related theoretical work to 

date, however, is limited to situations where incomplete information occurs on 

covariates, and there has been much debate about the optimality of the ap­

proaches that omit unobservable covariates instead of utilizing their proxies.
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McCallum (1972) and Wickens (1972) demonstrated that, in terms of asymp­

totic bias for the case of one unobservable regressor, using even a poor proxy is 

better than using only the observable regressors. Barnow (1976) showed that 

when there is more than one unobservable regressor, deleting the regressors 

may be a better choice. Aigner (1974) found that proxies are preferable in 

most empirical situations in terms of scalar-valued mean squared error (MSE). 

However, Maddala (1977) showed that including the proxy variable may result 

in non-negligible bias. Frost (1979) found that using proxy information indis­

criminately may be risky from the viewpoint of MSE. Dhrymes (1978), Ohtani 

(1981), and Trenkler and Stahlecker (1996) outlined situations where estima­

tors with proxy data are inferior to those without, with respect to MSE-matrix 

criterion.

Recently, investigations on the use of proxy data have been carried on for the 

experiments using double sampling, where incomplete observations on the vari­

able of interest (either dependent or independent variable) are supplemented 

by fully observed proxy data. Engel and Walstra (1991) improved the preci­

sion for estimating the parameters of interest by a double regression: one with 

the response and proxy variable on covariates and the other with the response 

variable on the proxy data. The method they proposed was restricted to a 

univariate case for large sample studies. Pepe (1992) and Pepe et al. (1994) 

proposed analysis methods for discrete response variable by solving some esti-
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mating equations. Later, Reilly and Pepe (1995) extended the methods to the 

problem of auxiliary covariate data.

The foremost advantage of incorporating proxy information is that it avoids 

the missing data problem so that standard statistical analysis methods can be 

applied. Further, this approach can lead to substantial cost savings when the 

procedure for obtaining actual data is expensive, if not impossible. In the situ­

ation we consider, the dependent data are available, but some data are proxy, 

not actual. Here, we do not require that the proxy data are available for all 

study subjects, as the methods developed in the setting of double sampling. 

We assume that the missing data occur at random (Rubin, 1976). We inves­

tigate the merits of using proxy data in place of missing values in terms of 

efficiency and power in a multivariate repeated measures data setting.

The organization of this chapter is as follows. Section 2 presents the model 

for incorporating proxy information. Section 3 presents a brief review of in­

complete data analysis methods. Section 4 estimates the parameters of interest 

under various models discussed in Section 2. In Section 5, we propose testing 

procedures for the method of using proxy. Then, in Section 6 , we compare 

the power of the estimators using proxy data to those without. Finally, in 

Section 7, we specify the conditions under which the estimators utilizing proxy 

information are nearly as efficient as those using the complete actual data for 

selected two and three-period two-treatment repeated measurement designs.
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4.2 M odel

We consider repeated measurement designs where data are measured over

p  periods from each subject in s  groups (treatment sequences). Let and 

Pijk denote the data and their proxy obtained in period i from subject j  in 

sequence k, i =  1, . . .  ,p, j  =  1 , . . . ,  N k, k = 1, . . . ,  s. The design structure is 

given by the matrix X*, the same for all subjects in sequence A: as in Chapter 

2.

where z ^ k — Vijk if thjk is observed from the study subject, Zijk =  pijk if ytJk 

is observed from its proxy. Define Mj* =  diag(Sijk,. . . ,  5Pjk) with &ijk =  1 

if Vijk is missing, and 0, otherwise, and M = D ia g ( M u , . . . ,  MwaS). Then

j  in sequence k. Let Di = Dim/(1 [at,] <8 >I[p], • • •, 1[at,] <S> I[p]) so that D = 

is the design matrix under the cell means model. Then the model 

we consider is

p  is the overall mean, rr the period effects, r  the treatment effects, 7  the

Let z =  ( z f , z J ) T with z k =  {zjk, . . . ,  z TNkk)T and z jk = ( z ljk, z pjk)T,

5'jk — Y%= 1 is the number of periods with proxy information for subject

/  \

The matrix X =  (Xf , . . . ,  X^)T relates to =  (//, ttt , r r , 7 r , AT)T, where
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residual treatment effects and A the sequence effects, with X* =  (x ^ , . . . ,  Xpk)T 

for Xik =  (xiki, . . . ,  Xikq)T with q the length of 0 .

Let tj = (fia, 7TaT, r aT , 7 ar , XaT)T measure possible bias from 0  due to 

proxy. Then /i =  X /3, «/ =  X q  and u; =  (/iT, v r )T . The e has a mean of 0 

with covariance matrix V, where V  =  ®  £  for a p x p covariance matrix

£  associated with completely observed subjects, with N  = Nk. The extra 

error term e for proxy data has a mean of 0  with covariance matrix Ve, where 

V e =  I tjv] ®  £ e for a p x p covariance matrix £ e associated with proxy data, 

and Cov(e, e) =  0 . Thus, we have Cov(zjk) = £  +  M_,/t£eMjjt. Note here 

that, when e =  0 , the subjects with complete observations and those with 

proxy data share the same covariance matrix.

The parameters of interest are /i and 0 .  When X is invertible, 0  =  X -1/i 

and C o v (0 ) =  (XTCov(/i)- lX ) - 1  =  X - 1Cou(/x)(Xr )-1, similar to the work 

of Carriere (1994a) with no proxy data.

Note that the covariance matrix of 0  depends on the assumed error struc­

ture and the number and the pattern of proxy observations. The proxy pattern 

is given by matrices Mjfc, j  = 1 , . . . , N k, and k  =  1 , . . . ,  s. We assume that at 

least the first period is completely observed and the missing pattern is mono­

tonic. Each of M.jk might take values Diag(Q[RlX^,1^-^])  for I =  1, . . . , L  

for missing data occurring at L levels with 0 < R i < R i  . . . <  R l  < p. Thus, 

N f  =  Nk — 5ftl k subjects complete the first Ri periods. Note Nk^ = N k and

1 1 0
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jV(0 =  £*  N {kt]. Denote pi = R t -  R i- i  as the number of periods in the Ith level. 

We order {zjk} ascending with S.jk, so that the first subjects complete the 

first Ri periods.

For complete data with no proxy observations, T) = 0, e =  0 and 9  =  

0  reduces to the usual MLE 0^ = (Ht -NfcXjt E _1X*;)_l E -Iy.*> with

y.k =  Hj Yjk, and its covariance matrix Cov(0^) =  ( £ fc ATfcX ^E _lXfc)_1, as 

in Carriere (1994a), where the superscript “/ ” denotes that the estimator is 

based on the “fully actual data.” For complete subset data analysis denoted

~ C ~ c
with the superscript “c”, the estimator 0  and its covariance matrix cav ( 0  ) 

are obtained by removing the incomplete pairs of data and are similar in form 

to 0*  and Cov(0*).

4.3 Incom plete data analysis

This section reviews and establishes the relationship of our approach to 

that of Carriere (1994a and 1999). Carriere (1994a and 1999) considered the 

model (4.2.1) with e =  0 and no proxy situation. Let yik =  yijk/Nk 

for i = R t- { +  1 y[p()it =  (y$_l+i.*,• • • I = Rq =

T  T
0 , and y L V .) =  (ycPi)Jfc ).* )T‘ Denote the means =

(/*&,)*’ • • • ’ where A*(pi)fc =  ■ ■, m , k ) T, l =  Par­

tition S  to S  n , S 12 and E 22 to divide the subjects between those with
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complete data up to (Z — l ) th periods and those with incomplete data at the 

Ith period. Result (4.3.1) states the MLE that Carriere (1999) obtained for the 

means of y  in each period and sequence with missing data.

R esu lt 4.3.1 (Carriere, 1999)

When £  is known, the M LE for  the means fxk =  . . ,  fiJpL)k)T , k =

1 , . . . .  s is

i*(pi)k =  y \pt).k ~  ^ 2i ( s i i )  -  frkiRi-i)) (4.3.1)

fo r  I =  1 , . . . ,  L. When £  is unknown, the M L E  fo r  the means is estimated as

P{pi)k =  y(p,).* ~ sy(s(„}) l{yilRl_l) -  Afc(«,_l)) (4.3.2)

where S is the sample covariance matrix corresponding to £ . Partitioning S

in the same way as partitioning £  gives S ^ , S 12 and S^-

R em ark  4.3.1 When L = 2, Carriere (1999) obtained that

P{P2 )k = y[J2).k ~  -  y^).*) (4.3.3)

and fi(Pl)k =  y[pl).fc- The covariance matrix fo r  f i k are C o v ( f i ^ k) = H n / N k, 

C o v (P(pi)k^{P2 )k) = V n / N k  and

1 Nu —
CootAta)*) = - g y P a  -  - * n S a l  (4-3.4)
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for E is known. When E is unknown, the covariance for fi(P2)k becomes

1 Mi. — M ^  n ,
Cov(.fi(K)t) =  ^ y { S 22 + — ~  S iiE ri'S u ]}

(4.3.5)

reflecting the sampling variation in estimating E, where E 2.1 =  E 22—E 2 iE f11E i2 - 

R em ark  4.3.2 For P2 =  1, Carriere (1999) observed that

C ov(lhk) =  ) { ! +  (4-3.6)
Nfc

Pi , ,  _
N k N ( l  — r) — s — pi — 1 <jpp Opp

where 6 2 1  =  (crpl, . . . ,  c r ^ Y  and r is the proportion o f missing data.

4.4 Parameter estimation w ith proxy data

4.4.1 When e = 0

When e =  0, the proxy is assumed to behave similarly to the actual 

data, but possibly at a different location (i.e., u  ±  0). Let yjk^R,.^ =

(yfpi)i*: ■ • •. y£<_i)jfc)T with y{p,)jk =  (l/n_,+ij*, • • •, V*, j*)T> l = l , . . . , L .  Sim­

ilarly, =  (pjpl)jfc, • • -,pfp(_l)jfc)r  with P(p,)jfc =  (pRl_l+ijk, • - • ,P«(Jfc)r ,

/ =  2 , . . . ,  L.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The likelihood can be written as

C =  L \ L i . . .  L l, (4.4.1)

where

(4.4.2)

^ = n n  /  (y (P2 )jfcly (pi)jk) n  n  f(P{P2)jk\y(pi)jk) (4.4.3)k j=1

and more generally, for I =  1 , . . . ,  L,

Nll) ^
i « = n n  f (y(Pi)jk\yjk( Pjk(Rt_ i)) n  n  f  i.P(pi)jk\yjk(Ri^i): Pjk(Ri-i))

k j=l k j=frV)+l

(4.4.4)

Successively maximizing gives the MLEs for P(pt)k, I =

and I'tp,)*, / =  2 , . . . ,  L  when £  is known as

P(pi)k y (pi).* (4.4.5)

Ate)* = yfLk -  R(l)(y * V i ) _ 1)) (4.4.6)

and
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where p£> =  iW W fc -  * P )  for * =  * - i  +  1 • • • • .* .  P&).* =

(Pj2_l+ijfc. • • -P g jb)3’, / =  2 , . . . ,  I ,  and p iW i)  =  (p S i) ./ ’ • • • ’ P i? ,- ! ) /)7”for 

k  =  1 , . . . ,  s and B (,) =  S g E ? /" 1.

When £  is unknown, the MLE for B (/) is

Nw3 nk
b (0 =  £ E  (y(P«)i* -  y (£)jt)(yi*(«i-i) -  y  k U .,) )7'k= 1 j  = l 

/—2

+ E E (P(pt)j* — P(p().jb)
i=0 j=N(k‘~i) + l

\r(0

x (yjfc(«e_,)+  iYfc _*^(ij(y*(iii-i) ~ Afc(K,_1)))T]
( 1 -1 )

x (El E (yjfc(R,-i) -yiVl))(ŷ («<-i) -yi?*,-^/t=i j=i

w *r-' ... N w
+ E E (yS(R(-i)+ .r ,r(/)(yfc(Ri-i) £fc(«i_i)))

k

x (yifc(/2,_x) (/) (y*(}«i-i) ^*(Ri-i)))r }] l> (4 .4 .8 )is k -  Jyk

where the vector yJjt(«i_1) — £*(/*,_,) with the last i components

replaced by ((P(p,_,)j*-£(p,_J*-*>(p,_l)ifc)7’, • • •, (P(p,_1)ifc-A(pi_1)fc-t>{p1. l)it)T)r  

and yfk(R,_t) =  yjfc(Ri-i) -  The covariance matrices for the means

(4.4.5), (4.4.6) and (4.4.7) can be obtained in a straightforward manner.

R em ark  4.4.1 When v  =  0, f/ie data are complete with no missing or proxy 

values. Thus, the M LE fik becomes the usual sample mean (Carriere, 1999).
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T heorem  4.4.1 When L  =  2 and S  is known, we obtain the M LE and co- 

variance matrices fo r  H(Pl)k, V-ip^k 05 171 Remark 4-3.1. The additional proxy 

information contributes to the estimation of u ^ k ,  which is

V(P2)k ~  P(pi).*: y ((pi).fc +  ^  _  ^ 2 ) S 21S n (y £)•* y (pl)-A:) (4.4.9)

The covariance matrices are

C ov^ ,k) =  w - M W * '  <4410)

C o v i i / ^ k ,  ft(Pl)k) =  0 (4.4.11)

C ov(» te)k , •'(«)*) =  (4.4.12)
™k

P r o o f . The proof is obtained in a straightforward manner by substituting 

/ =  2 in (4.4.5), (4.4.6), (4.4.7) and applying the properties of multivariate 

normal distribution.

□

Define the sum of squares SSj£, = £ fc £^=i (y(Pm)j* -  y$L).*)(y(P»)ifc “  

y?L).k)T’ * =  1,2, m =  1,2, n =  1,2, SSff =  £ * £ ^ , + l(y(plW* -  f J I j J

(y(pi)jk — y(P!).fc)T, ss(l2} = £* £^JV(2)+1(y(pl)3fc -  y(pi).*:)(P(pi)iA: -  P(pl).fc)T,

ssg} = £<; £ ^ ( 2)+1(PM jk  -  p g )Jfc)(PtaM* -  p S ).,) t , where y g |)Jfc =
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S *=»™+i J W / W  -  ’)• And, let SS„ =  SSf? +  SSff, SS2l =  SSg> +

SSjj1. SS22 =  S S g  + SS™ and SS2.[ =  SS ^ — SS2tSSJ\lSSl2. Then, we have 

the following theorem.

T heorem  4.4.2 When E  is unknown fo r L =  2, the M LE for /i(Pl)fc is un- 

changed. The MLEs for H(P2)k and u <j>i)k are obtained by substituting =  

SS2iSSj"ll obtained from (4-4-8)  with I = 2 in (4-4-6)  and (4-4-V-  The covari­

ance matrices fo r  £(P2)fc and 0 (P2)k are

_  J L  p\ - S t . s r . ' s . )  (4.4.13)
k * k s

Co»(*<«)*) (JVt_ ^ 2))JV,2)Ar_ 2 s _ p i _ 1S 2.l (4.4.14)

ant/

The estimates fo r  the covariance matrices can be obtained by plugging in the 

unbiased estimators for the components o f E , which are E n  =  SS[li / ( N  — s), 

t 2i =  B ^ E u , E 2.i = SS2.1/( iV -2 s -p 1) a n d E 22 =  cSS2a+dB {2)(£ u )(B (2,)T, 

with c =  [ ( N - 3 s  — p i ) ( N - 2 s - p i  -  1 ) -  spi] /[(N — 3s ) (N — 2 s - p i  — 1){N — 

2s -  pi)] and d = ( N  -  s ) / ( N  — 3s).
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P roof. Denote

SS =
SSU SS12 

SS21 SS22

then SS has a Wishart distribution with covariance matrix

£  =
S n  ^ 1 2

S 2 1  £ 2 2

and degrees of freedom N  - 2 s .  A derivation similar to that of Carriere (1999) 

leads to (4.4.13), (4.4.14) and (4.4.15). That £ 2.i is unbiased follows from 

the fact that SS2.1 has the Wishart distribution with covariance matrix £ 2.i 

and the degrees of freedom N  — 2s — pi  (Mardia, Kent and Bibby, 1979, p.71). 

Similarly, that £ n  is unbiased follows from the fact that SS(n  has the Wishart 

distribution with covariance matrix £ n  and the degrees of freedom N  — s. 

Rewrite S S ^ , so that

SSff =  SSU +  SS0,

where

SS _  V  ~  N k ]) _ v (0) w-(2) _  —(0) \T
0 2 .* j y  w (pi)* y(pi).*/vy(pi).* y(pi).k) '
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and B (2) and SSq are independent. We have that

^(SSo) — sSn- 

And, a similar derivation to Morrison (1970) leads to

£ (B (2)) =  B,

£[(B<2> -  B)£„(B<2> -  B)t ] = P' ------S j.! .
Is — I s  — p  1 — 1

Thus,

£ ( £ , ,)  =  ^ [ ^ l l tS S n + S S o ) ]

= E ( ^ - )  + E ( * ^ )  
vJ V - s '  ' N - s  1

£ 2i ( J V - 2 s) £ ( B ,2)) £ ( S S o)
N - s  +  N - s  

_  ^2l(N  ~  2s) 5S 21

N - s  N - s

= S 21.

Let S 22 =  cSS2.i +  dB(2^Sn(B (2̂ )T for some constants c and d. Then, solving

E ( iW  =  c(JV -  2s -  P, ) S , ,  +  d[£ ( » (2,SS2-(B 12,a ± g L B !-2,SS»<6l2l)T) 1

=  c(JV -  2s -  P,)S 2 , +  J E ( S S *  -  SS2-‘> +  d g . ^ ,£ (SS»X6 m )T)
N  — s N  — s
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=  c (N - 2 s -  p ,)S 2.. + d i P , + 2 s ~  Ar)E2-' +  (JV ~  2s)Sm
N - s

U - J V ,  +  1]S2.._-  S g
A T - S

=  S 22

for c and d, we obtain

(iV — 3s -  px) (AT — 2s — pi — 1 ) — spxc =
(AT -  3s)(AT -  2s -  px)(AT -  2s -  Pl -  1)

and

AT-s
d =

N  - 3 s

Hence, Theorem 4.4.2 is proved.

□

Remark 4.4.2 Forp2 =  1, Cov(i£2k) is the same as (4-3.6) with N ( l —r ) —s — 

Pi — 1 replaced by N  — 2s — p\ — It is clear that utilizing proxy information 

is more efficient fo r  estimating t*(P2)k, k — 1 , . . . ,  s, when the proportion of 

missing data r > s / N .

Theorem 4.4.3 When S  is compound symmetric with L = 2, an approxi­

mately unbiased estimator fo r  p and an unbiased estimator fo r  a2  are obtained

as

2(g ,„ (S S )„ .) {4416)
9  ( p -  1)(E?(SS)«) ( '
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-2  _ E?(SS)» 
p ( N - 2 s Y

(4.4.17)

where SS is defined in Theorem 4-4-%- The variances for a2 and p are obtained

as

(4.4.18)

and

2 ( l - p ) 2[ l + p ( p ~ l )]2

p ( p - l ) ( N - 2 s )
(4.4.19)

P r o o f . We estimate p by dividing the sum of all nondiagonal elements by 

the sum of all diagonal elements of the sample sum of squares. Here, we 

use not only the complete subset data (Carriere, 1994a), but also the proxy, 

which shares the same covariance structure as the observed data. Denote that

S S S ™  = p E E ( ^ - 2 (? ) 2, S S E M  = Z Z n z i j k - z (£ ))2 - S S S ( m\  where

z.jk =  H i zijk/p, for m =  0,2. The mean and the summation are over the 

complete subset for m  =  2 , and over the subset with proxy components for 

m =  0. Let S S S  = SSS™  + S S S <°> and S S E  =  S S E ™  + S S E ™ .  Under 

the multivariate normal assumption, it can be shown that S S S  and S S E  are 

independently distributed as <r2(l +  p(p — 1))Xjv-2s and <t2 (1  -  p)x2p_ • l ) ( V - 2  s ) ’ 

Then the result follows by a similar derivation of Carriere (1994a).

R em ark  4.4.3 When S  is compound symmetric with L  = 2, the MLEs fo r

□
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/i(p2)ik and V fa)k become

_ -42)________ P______ t  -T (—(2) —(1) \— y(P2).k i y{pi).k)

and

P2)k ~ P(P2).A: — y(p2).* ~ Y ^ ^ r i ) 1W 1IPi](y(Pi)-* ~ (̂pi)-k)'

where p is an estimator fo r  p as given in (4-4-16).

R em ark  4.4.4 When E  is compound symmetric with L  = 2, the covariance 

f ° r  i*(P2)k> *>(p2)fc are

<r2 Nk — N^
C ovOl {P2)k) =  ^2 y { (1-/>)I [P2]+[p+---- j ^ ^ P i { a i [ 1+(Pi-l)p]-2a2p}]l[P2]l£2]}

2
Cov{u{P2)k) = — -----(2y{(l-p)I[P2l+[p+pla 1[ l+ (p i- l )p ] - 2 p1a2p]l[P2]l5 2]}

(Nk ~  N k )Nk

and

2

C o v & M k ,  i* te)k) =  -T72j-{(l-p)I[P2]+ [P+Pla l[1 + (Pl_ 1 )p]_ 2Pla2P]l[P2]1 b2]}’

where a2 =  p/[ 1 +  (pi -  l)p] and a y =  [1 +  (pi -  l)p]~4 V(p) + a\.

Here, C o v ( j x ^ k has the same expression as (9b) in Carriere (1994a) except
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for V{ p ) ,  which is as in (4.4.19).

4.4.2 When e^ O

For the case of e ^  0, we give the results only for L  =  2. Denote the 

covariance matrix for the proxy, given the observed data in the first p\ periods, 

as S 2.i =  S 2.1 + S e22> where E e22 is the pi*.pi submatrix of E e. The component 

L i (4.4.3) becomes

at;( 2 )

L2 CX |S 2.!| Nmi2e x p { ~  Y .  £  [y(P2)ifc -  »(P2)k -  B {2)(y(pi)i/k -  /i(pl)fc)]TS 2.1
£ k j= l

x \y<P2)jk -  »{P2)k -  B (2)(y(pOj* -  /x(pi)/t)]}

i ^
x |S 21| - ^ - ^ (2))/2e x p { - - 5 ;  j ;  [P(»M* - /*(pa)* -  •'(pa)*

j=tf<2)+l

— B (  ̂(y(pi )jA: ~ /•(pi)*)3 ^ 2.1

X [P(P2)i* -  P(p2)* ~ •'(p,)* -  B(2)(y(Pl)jfc -  fifo)*)]}-

Then the MLEs for /X(Pl)*, /i(P2)fc and V(P2)k are the same as those when e =  0 

and the covariance matrices are unchanged, if S  and S e22 are known.

When E  and E e22 are unknown, the MLE for /j(p2)fc and V(P2)k are obtained 

similarly, using the MLE for B (2) as

B<2> =  SSg^SSg*)-1 +  E2.1S2 .!s s 5°1)(SS[21)) - 1 -  E2.l i:2.lB<2>SSS)(SS(1? ) - 1,

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where E ^  =  [SSg} -  B ^ S S g  -  SSg}(B(2))r  +  B(2)SS(121)(B ^ )T]/iV(2) and 

f c .  1 =  [SSg} - B ^ S S l ? - S S ^ ( B ( 2Y  + BWSS '$ (B{2))T] / ( K - N W )  are the 

MLEs for E  and E, respectively. A solution for B (2) can be obtained iteratively 

by

b ® .  = s s ^ , ( s s f f ) - ,+ s ” ,(^ :" ,) - 1ss!,0l1(s(|2l, ) - 1-^ :" ,(^ :” , ) ' 1B m S s(u1( s s (1̂l,)

until it converges, starting with an initial value Bg =  SS , 2 (SS[2) )-1. Here,
>» jfl Z Ttl * Z

we denote E 2A and E 21  as S 2.i and E 2.i evaluated at B g \  respectively. Such 

a solution B {2) has an asymptotic multivariate normal distribution with mean 

B (2) and covariance matrix I(B (2))-1, where I(B (2)) is the information matrix 

for B(2\  Using Corollary 3.2.1 (McDonald and Swaminathan, 1973), we have

I(B {2)) =  —E (  g2/°g (£ )r ) 
aB(2)aB(2)r

= E[ s 2: i  ®  s s f f  +  E - ;  ®  s s f f ]

=  E£l ®  E ( SS(2)) +  E -; 0  E ( S S ff)

=  S 2-.} ® ( N W  -  s)E u +  S 2.l ® ( N  -  N™ -  s)E „

=  [(jV® -  «)E£} + ( N -  N™ -  s )S - ; ]  0  E „

= W 0 E u ,

where W  =  (AT<2> -  s)E*} +  (iV -  iV<2> -  s)E2.l and I~l(B<2>) =  W " 1 <g> E^1.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Thus, the covariance matrix for /i(p2)/fc is

S 22 ^  N k -  iVf

^ ( A ( p 2)fc) =  C,(w(y(£ ) Jk -  B(2)(y(p!).ik -  ySJJjjt))

=  E ^ C o v U i ^ B W )
i
•Eb<»[B12|S , i(B(2>)t -  2S2,E(B«>)t ]

I
-E (S „ ) jtC«>(Bf ,6 ? ’) -  B(2,Su(B(2))r]

jk

E (e fS n  ( g l ^ K W 1 <g) Eril)(e,- <g)I[p2])

,v<2>
+

N kN l2)

s  22 1 N k -  N {2)

jvf>
I

N kN l2)

s 22
+

N k -  JVf
j v t  a w  ■ i=l

- S 21ErilS 12], (4.4.20)

where Bj2) is the j th column of B^2\  and e* is a pi x 1 vector of 0  except the 

i th element, which is 1 .

Similarly, the covariance matrix for t>(P2)k is

C ov(0(P2)ik) «  ^  H--— —-------=r- (4.4.21)
N k - N j ? ] N l 2){Nk - N l 2])

x E ( e f S u  (g)I[p2])(W - 1 ®  S r 1l )(ei 0 1 tp 2]) +  S 2.!
i= 1

and

Cou( /W >  *(«)*) »  +  1 ® S ul)(ei 0 I [p2l)].
Afjfc i=l

(4.4.22)
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R em ark  4.4.5 When p2  =  1, the covariances (4-4-20), (4-4-21) and (4-4-22) 

become

C nv(LL  \ -  022 \ Nk ~  N * ] \ Pl<T2.1*2.1C o v \/*(pa)k) ~  -.(2) + .. -.(2) IJVf N kN P  -  s)&2A + (N  -  NV) -  s )<t 2A

-<r2i S 111a ,i2],

N k - N j * ] Nj?](N k -  N l 2))
x r___________ Pi_<72. 1 <*2.1____________ ,

l(iV(2) -  s)<x2.i + ( N  — iV(2) -  s)tr2A 2-lJ

and

n  t ~ - \ 1 r P l& 2  1^2 1 1
"<«>*) *  +  (lV(2) _  s )* 2 , +  (JV -  NW -  S) < r J ’

where o2A — 022 — ^ 21^ 11*^12 arid g2a — <x22 0^22 — ^ 21^ 1/ ^ 12-

T heorem  4.4.4 WhenY, and E e22 are compound sym m etric, i.e., S  = cr2[(l — 

p)l[p] +  pilp]1 ]̂] and S e22 +  E 22 = cr|[(l -  Pa)I[p2] +  Palfo*]1^ ]]’ the MLEs f ° r  

H(p2)k and iS(P2)k are same as in Remark 4-4-3 with p, an approximately unbiased 

estimator fo r  p, obtained as

d = J S > A s s ^ k .
( p - 1)23(88® ),
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a n d  th e va ria n ce  f o r  p  is

v ( S i =  2 U - P ) 2 [1 + / > ( P - 1 )]2 
KP) p ( p - l ) ( N W  - a) '

The unbiased estimator fo r  a 2 is

#  _  Ef(SS(21)i
p ( N W - s ) '  

and the variance fo r  a 2 is

_ o T 4 1  +  P 2 ( P -  1 )  

r ( < 1  1 "  2 0  p (N W  -  ») '

as in Carriere (1994a). The unbiased estimator fo r  a 2 is

- 2 .  ELPI+1(ssgl)ii 
a p2 { N - N W - s ) '

and the variance fo r  da 2 is

V(&2) = 2a*- 1 + p2̂ P 2  L)
lP2 (N  -  N W  -  s ) '
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A n  approx im ate ly  unbiased  e s tim a to r  f o r  pa is  ob ta in ed  as

. 2 g > f , „ +1(SSgl)M.
f o - l ) £ U +i(S S g V

and its variance is

v r  , 2(1 -  pa)2[ 1 +  pa{p2 -  l)]2
[P a )  P 2 (P 2  ~  l ) ( N  -  N W  -  s) •

P r o o f . Since the proxy and the observation have different covariance matrices 

for the second group of periods, we used the complete subset data to estimate 

a 2 and p as in Carriere (1994a). Then, we use the proxy information to estimate 

a 2 and pa. Theorem 4.4.4 is proved following the similar derivation of Theorem 

4.4.3.

□

The covariance C o v ( f j , ^ k) is the same as (9b) in Carriere (1994a), C o v { u ^ k) 

is the same as in Remark 4.4.4 with an addition {<r„[(l — pa)I[p2] +Pal[p2]lj>2]] ~ 

tf2[(l -  P)I[P2] + p l|j* ]Ijy  }/(Wfc -  Wfc2)) and V{p) as given in (4.4.23). The 

covariance C o v ( f i ^ k, 0(P2)k) is the same as that in Remark 4.4.4 with V(p)  as 

given in (4.4.23).
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4.5 Testing procedures

The hypotheses we are interested in testing are that there are no direct 

treatment effects (H0l : r  =  0) and no residual effects (i /0 2  : 7  =  0)- The test 

statistic we consider is of the form

7 . Under the assumption of normality, the statistic tg has an approximate 

t-distribution with certain degrees of freedom. Carriere (1994a and 1999) and 

Patel (1991) chose the following degrees of freedom for testing i /01  and i / 02. 

For compound symmetric covariance structures, the degrees of freedom are 

(p — 1 )(N^L) — s) for testing both r and 7 . When no pattern can be specified 

for the covariance matrix, the degrees of freedom for r and 7  were proposed as 

— s and ( N ^  + N  — 2s — p\P2 ) j 2 , respectively.

When e = 0, for the approach utilizing proxy information, we propose 

the degrees of freedom d\ =  (p — 1 ) ( N  -  2s) under the compound symmetric 

covariance model. Note that is the degrees of freedom associated with the 

sum of squared error S S E  defined in Theorem 4.4.3. When the covariance 

matrix is unknown and no pattern could be specified, we follow the suggestion 

of others, such as Patel (1991) and Carriere (1999), and propose the degrees
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of freedom of d2 = N  — (3s +  Pi)/2, where d2 is the average of the degrees of 

freedom associated with En and E2.i (see Section 4.4). The proposed degrees 

of freedom work well, as we will show in the next section.

When e ^  0, recall that the extra proxy information does not contribute to 

the MLEs for fx as shown in Theorem 4.4.4, in the case where both E and Ee22 

are compound symmetric. For this reason, we use the same degrees of freedom 

(p — l)(Ar(2) — s) as in the incomplete data method (Carriere, 1994a). When 

e ^  0 and no specific covariance form can be used, we apply the average of the 

degrees of freedom associated with En, E2.i and E2.i, ignoring the uncertainty 

of B (2), which is d3 =  (2N  — 3s -  2pi)/3 (see Section 4.4).

4.6 Simulation study

We compare the performance of the estimators f  and 7  in the two ap­

proaches mentioned above, using small samples. We generated 1000 samples 

from model (4.2.1) with 0  = 0  and rj = .5 for Design I and Design IV (defined 

in Chapter 2), with 5 or 10 subjects in each sequence. We consider the case 

where 2 0 % of the data obtained is proxy data and the missing data pattern is 

monotonic.

When e ^  0, the sample size is chosen to be 10 for each sequence. The
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covariance matrix £  (in model (4.2.1)) that we considered is

E =

1 Py/c[ P^/Ol

Cl pyJC\C2

C2

with two different values of p, which were .3 and .7, and two different values 

for Ci and c2, which are 1 and 4. The covariance matrix for the data with the 

proxy component is set at c3£ , where c3 = 4. For Design I, the last column 

and row are deleted from £ . The empirical sizes and powers of the test against 

H u : 6  =  .5 are calculated from both approaches. For Design IV, we consider 

testing against H u  : 9 =  .25.

Table 4.1 reports the size and power of the test for H qi for Design I with 

sample sizes 10 and 20, when e = 0. The suggested degrees of freedom appear 

to work well in testing the direct treatment effects and are shown to be more 

powerful than the incomplete data analysis methods without utilizing proxies. 

Table 4.2 shows the power comparison for testing 7  for Design I. The suggested 

degrees of freedom appear to keep the nominal level satisfactorily. However, 

the testing procedure for the residual treatment effect using proxy has a similar 

power to that of traditional incomplete data analysis, although the use of proxy 

appears to be less efficient when the sample size is small and the covariance 

matrix is unspecified.
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Tables 4.3-4.6 tabulate similar results for Design IV. For testing r, the 

procedure that uses proxy is more powerful except in the case of relatively large 

sample size (n  =  20) and a ratio of variances of .3, where the two approaches 

perform similarly. For testing 7 , the procedure using proxy is better, even for 

a small sample size (71 =  10) and high ratio of variances (p =  0.7). The two 

approaches perform similarly in the other cases. In general, the method using 

proxy appears to be more powerful than using the traditional incomplete data 

analysis strategy.

When e ^  0, the proxy method and the incomplete method performed 

similarly, when the covariance matrix is compound symmetric. Under an un­

specified covariance matrix, we found that the suggested degrees of freedom 

work well for both r  and 7 . For Design I, Table 4.7 demonstrates that the 

incomplete method is more powerful than the proxy method for testing H 0 i , 

when p is relatively small and the missing proportion is relatively small, i.e., 

20%. For testing i / 02, the two approaches perform similarly (see Table 4.8).

For Design IV, tables 4.9 and 4.10 demonstrate that the incomplete method 

is more powerful than the proxy method for testing i /01 and i/o2 -

Although not shown here, when the proxy is used to fill in 50% of the miss­

ing data, the proxy approach is more powerful than the conventional incomplete 

data strategy.

We also investigated a relatively larger bias in proxy with 17 =  1 , and a
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smaller discrepancy between the covariance matrices for observed data and 

proxy (i.e., c3 =  2). Our findings remain unchanged; overall, the procedure 

using proxy is more powerful than the conventional incomplete data method 

when e =  0. When e ^  0, the proxy method shows its superiority for testing 

tfoi when the missing proportion is relatively large. For testing # 02, generally 

speaking, the proxy method is just as powerful as the conventional incom­

plete data method when the proxy has a different covariance matrix from the 

observed actual data.

In summmary, we find that the use of proxy data to replace missing values 

is an excellent alternative for missing data problems. Further, it allows the 

researchers to use standard analysis software. In principle, this approach (with 

proxy) is equivalent to the single imputation method. In the next chapter, we 

contrast this approach with the multiple imputation method.

4.7 D esign considerations

We have compared two alternative strategies for handling incomplete data 

and demonstrated that the use of proxies is generally efficient. We now consider 

what proportion of proxy data can be introduced to achieve a given efficiency. 

We discuss design considerations here because ultimately we want the chosen 

design to be efficient. We will derive the conditions under which the use of
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proxy data can be nearly as efficient as when all data are observed. Consider 

that we wish to test

Hq : aT0  =  do, (4.7.1)

where a is a q x 1 vector containing 0 ’s and l ’s, and a0 is the value of aT 0  

specified under the null hypothesis. Then, aT0  is estimated by aT0  and its 

variance by aTI ( 0 ) ~ la. If all data are actual, these are estimated by aT0 s and 

aTI ( 0 f ) - la.

D efinition 4.7.1 The estimator aT0  using proxy data is at least c x 100% as 

efficient as aT0 * if

aTl ( 0 { )~1a.
 ------< c (4 7 21

where c is a real number between 0  and 1 .

Definition (4.7.1) can be used to specify the conditions for the maxi­

mum number of proxy (i.e., missing observations) for period i and sequence k 

that can be allowed to attain c x 1 0 0 % efficiency.

It is difficult to make general statements, but some special cases are treated 

in Sections 4.7.1 and 4.7.2. For two-treatment trials, we consider the dual­

balanced design as in Carriere and Huang (2000, 2001). Dual-balanced designs 

allocate an equal number of subjects to sequence k  and its dual k*, where the 

treatments assigned for sequence k are the opposite of those for the sequence 

k* for each period.
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In sections 4.7.1 and 4.7.2, we obtain conditions for for some special 

designs to produce estimators for r  that are at least c x 100% efficient. Here, 

we do not include the sequence effects in model (4.2.1), and we assume that 

the pattern of missing data (which were filled in by their proxy) is monotonic 

and the data in the first period is complete for all subjects. Also, to simplify 

the discussion, we assume that the proxy and the actual data are similar in 

their variability (e =  0). The case of 5 ^  =  Nk for any i > 1 can be considered 

as the case of pseudo repeated measures design where an extra period(s) is 

created using proxy information in the complete randomized design.

4.7.1 Two-period two-treatment designs

For two-period designs, we consider Designs I, II and III (as defined in 

Chapter 2, Table 2.5) to investigate the use of proxy in design considerations.

Let n  =  S2A/ { N / 4) = 62 .2 / {N/4)  and r2 =  62 .3 / ( N / 4 )  =  S2 A/ ( N /4 )  be the 

proportions of data to be filled in by proxies in the second period of sequences 

AB, BA, AA and BB, respectively, in a dual-balanced design. We obtain 

conditions for S2 ,k, k =  1, . . . ,  4, to produce at least cx 100% efficient estimators 

for t  for two-period designs.

R esu lt 4.7.1 For Design I  and Design III, the estimator fo r  the treatment 

effect contrast t  using proxy information in the second period is as efficient as
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the e s t im a to r  based on  com plete actu a l da ta , regardless o f  th e  fra c tio n  o f  p roxy

data and the measurement error structure under the model (4 -2 . 1 ).

Result 4.7.1 is due to the fact that, in these two-period designs, the estima­

tor for t  uses only the first period data under the model, with unequal residual 

effects. Hence, use of proxy information to fill in the missing second period 

data does not result in any gain or loss in efficiency.

R esu lt 4.7.2 For Design II, the estimator fo r  the treatment effect contrast r  

using proxy information can be at least c x 1 0 0 % as efficient as the estimator 

using complete actual data, i f  the proportions r i and r2 are chosen such that

when £  =  a 2[{ 1 -  p)I[p] +  p l ^ l ^ ] ,  where bi = [~2b2 +  6 6  — 3 +  (62 -  46 + 

2 )c]/[2 (l -  b)2] and 62 =  [(ft2 - 4 b + 2 ) (1  -  c)]/(l -  b)2, with b = p /(  1 + p). 

We see that they reduce to ri < [4(c — 1) — (2c — 3 )r2]/(2 r 2 +  2c — 3) and 

r 2 < 4(c -  l)/(2c -  3) when E = a 2I^j.

Table 4.11 reports the possible proportions of proxy information permitted 

to generate a nearly efficient estimator for r  for Design II as defined by c > .8 .

- 6 1  r 2 -  62 (4.7.3)

and

r 2 <  —6 2 / h i , (4.7.4)
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As expected, efficiency increases as the proxy proportion decreases. For a 

given efficiency, high within-subject correlation has an implication that not as 

much proxy is allowed as in the case of a low value of p. The proportions of 

proxy information permitted in the sequence AA(BB) increase as those in the 

sequence AB(BA) decrease.

This suggests that more resources should be allocated to collect actual 

information in sequences AB(BA), as sequences AA(BB) are less desirable for 

clinicians (Carriere and Reinsel, 1992). For example, when p  =  0, to obtain 

a 90% efficient estimator for r, up to 20% of the data in the second period of 

the sequences AA(BB) and 20% of the data in the sequences AB(BA) can be 

collected from proxies. When p =  0.6, we could have 20% proxy data in the 

second period of the sequences AA(BB) and 12% proxy data in the sequences 

AB(BA), with less than 10% loss of efficiency for estimating r.

4.7.2 Three-period two-treatment designs

For three-period designs, we will consider Design IV and Design VI, which, 

in Chapter 2 , were noted to be the most robust. To simplify the discussion, we 

assume that the missing data occurs only in the third (last) period.

Let r ! =  53a / (N/A)  = <S3.2/(iV/4) and r2 =  &z.$/{N/A) =  S3 a /{N/A)  be the 

proportions of data filled in by proxy data in the third period of the sequences 

ABB(BAA) and AAB(BBA), respectively. We have the following results for
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three-period designs.

R esu lt 4.7.3 For Design IV, the estimator fo r  the treatment effect contrast r  

using the proxy information can be at least c x  1 0 0 % as efficient as the estimator 

using complete actual data i f  the proportion r± is chosen such that

^  262 -  8 6  +  6  +  2c(3 — 6 ) (6  — 1)
2ft2 — 56 +  5 — c(3 — 6) l ' '

when S  =  cr2[(l — p)\\p\ + p l ^ l j ^ ] ,  where b = p /(  1 +  2p). This reduces to 

ri < 6(1 — c)/(5 -  3c) when £  =  <r|I[p].

For Design IV, Table 4.12 shows that the proportion of proxy information 

permitted in the third period is decreasing with increasing correlation coeffi­

cient p and increasing c. Unlike two-period designs, the proportion of possible 

proxy information in the third period is an increasing function in p.

R esu lt 4.7.4 For Design VI, to attain at least c x 100% efficiency in estimat­

ing t , the proportions ri and r2 must be

—03 — a2r2 , .r t < -------------- (4.7.6)
00^2 +  a l

and

r2 < m in ( - a i /a Q, - a 3/a 2), (4-7.7)
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when E =  a 2{{ 1 — p)\\p\ +  pl[p]l£j], where aQ =  —2(264 — 463 +  662 — 46 +  

2),at = —2(—264 +  66 3 -  962 +  106 -  5) -  c(62 -  86  +  6 ),a2 =  -2 (-2 6 4 +  

1863 -  2962 +  186 -  5) -  c(62 -  86  +  6)(462 -  46 +  1), and a3 =  —2(264 -  

2063 + 4662 — 406 +  12) — c(62 — 8 6  +  6)(—462 +  8 6  — 4). This reduces to 

r i < [—24(1 — c) +  (10 — 6c)r2]/[4r2 — (10 — 6 c)] and r2 < 6(1 — c)/(5 — 3c) 

when £ =  a 2I[p].

The results shown in Table 4.13 for Design VI are similar to those in Ta­

ble 4.11 for Design II. If the sequences ABB and BAA are preferable to the 

sequences AAB and BBA, more resources should be allocated to collecting as 

much actual data as possible from the sequences ABB and BAA. For example, 

when E =  <x2I[p], we could use 50% and 6 8 % proxy data in the third period of 

the sequences AAB, BBA, ABB and BAA, respectively, with just 20% loss in 

efficiency.

4.8 Discussion

We have investigated the role of proxy information in statistical analyses. 

Proxy information can be available in diverse forms. Its quality also varies a 

great deal. For example, unavailable information about one’s socio-economic 

status can be filled in with proxy data on neighborhood affluence. In a clinical 

trial context, the patients’ care providers can provide pertinent information.
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The strategy of collecting proxy information in an effort to optimize the data 

collection process is particularly useful in statistical data analyses. In essence, 

this approach is similar to the single imputation strategy, where missing data 

are filled in with proxy values generated via various methods (Little and Rubin, 

1987). Our consideration, however, would be more informative and personal 

than the commonly used single imputation. Common software gives the users 

a choice of the method of imputation to adopt. The most popular imputation 

method may be to use the mean of a sub-group whose particular covariate 

pattern is shared by the subjects that have missing data.

What we have learned in this study is rather substantial and significant. 

Even when over 50% of the data are replaced by proxy information, we find 

that the efficiency, as compared to the ideal situation of complete actual data, 

can be over 90%. As well, analysts can use this method while enjoying all the 

conveniences that are normally available to them.

Comparisons to other existing techniques revealed that estimators utilizing 

proxy information obtain better results than they would by using the incom­

plete analytic method, especially when the proxy and the observed data share 

the same covariance matrix.
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Ta >le *.1 : Empirical sizes and powers for testing r in Design I when e =  0
n P Cl Procedure type a  = .0 1 a =  .05 a  = .1

size power size power size power
1 0 .3 1 prx sys .007 .158 .053 .467 .089 .631

uns .007 .182 .052 .480 .094 .629
inc sys .008 .117 .049 .381 .099 .592

uns .008 .116 .046 .390 .1 0 1 .558
4 prx sys .016 .072 .061 .233 .1 1 0 .352

uns .014 .065 .052 .213 .1 1 2 .322
inc sys .009 .042 .051 .194 .108 .318

uns .009 .040 .045 .165 .097 .282
.7 1 prx sys .006 .416 .055 .768 .1 0 0 .885

uns .009 .439 .060 .761 .1 1 0 .875
inc sys .009 .284 .048 .685 .105 .846

uns .009 .261 .050 .643 .099 .820
4 prx sys .007 .093 .053 .295 .106 .456

uns .0 1 0 .095 .047 .290 .099 .444
inc sys .008 .065 .050 .264 .104 .414

uns .0 1 0 .060 .046 .250 .095 .393
2 0 .3 1 prx sys .008 .580 .048 .840 .099 .921

uns .008 .595 .051 .837 .1 0 1 .921
inc sys .0 1 0 .514 .049 .805 .109 .909

uns .0 1 2 .513 .050 .794 .108 .906
4 prx sys .015 .225 .062 .422 .125 .540

uns .007 .173 .048 .383 .103 .500
inc sys .013 .184 .064 .389 .1 1 1 .516

uns .0 1 0 .149 .055 .363 .099 .477
.7 1 prx sys .008 .943 .042 .991 .086 .998

uns .0 1 0 .944 .043 .993 .086 .997
inc sys .007 .900 .040 .989 .089 .996

uns .008 .900 .038 .989 .094 .995
4 prx sys .0 1 2 .360 .071 .613 .121 .742

uns .006 .343 .052 .598 .107 .724
inc sys .016 .307 .063 .578 .129 .725

uns .0 1 1 .279 .049 .572 .109 .709
Note:
prx—Approach utilizing proxy data 
inc—Incomplete data procedure (Carriere, 1994a and 1999) 
sys—Compound symmetry pattern of covariance matrix 
uns—Unstructured covariance pattern

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ta >le <.2 : Empirical sizes and powers for testing 7 in Design I when e =  0
n P Cl Procedure type a  = .0 1 a =  .05 a =  .1

size power size power size power
1 0 .3 1 prx sys .0 1 0 .026 .043 .1 1 2 .098 .184

uns .0 1 0 .030 .048 .106 .105 .185
inc sys .0 1 1 .023 .041 .096 .086 .180

uns .018 .034 .053 .1 2 1 .097 .199
4 prx sys .006 .0 1 1 .039 .076 .088 .150

uns .006 .0 1 1 .038 .070 .083 .134
inc sys .0 1 1 .016 .040 .070 .083 .131

uns .0 1 0 .0 2 1 .051 .080 .094 .146
.7 1 prx sys .005 .0 2 0 .042 .082 .083 .177

uns .004 .018 .041 .095 .082 .180
inc sys .007 .013 .040 .075 .097 .161

uns .007 .017 .044 .083 .091 .179
4 prx sys .009 .015 .046 .061 .088 .127

uns .005 .0 1 2 .037 .060 .081 .1 1 0

inc sys .007 .009 .044 .063 .091 .124
uns .009 .016 .045 .068 .083 .123

2 0 .3 1 prx sys .009 .073 .043 .213 .081 .324
uns .0 1 0 .078 .041 .216 .083 .318

inc sys .013 .073 .043 .208 .091 .316
uns .0 1 2 .079 .048 .218 .092 .322

4 prx sys .014 .034 .052 .1 2 1 .109 .2 0 1

uns .0 1 1 .027 .043 .099 .098 .183
inc sys .015 .026 .058 .115 .094 .195

uns .013 .025 .048 .096 .099 .180
.7 1 prx sys .013 .063 .045 .205 .091 .322

uns .0 1 2 .067 .048 .208 .096 .312
inc sys .0 1 0 .059 .044 .2 0 1 .093 .312

uns .0 1 0 .062 .048 .2 0 0 .094 .311
4 prx sys .0 1 1 .031 .052 .116 .1 0 1 .195

uns .0 1 1 .023 .043 .096 .086 .175
inc sys .0 1 1 .025 .045 .103 .1 0 2 .184

uns .0 1 1 .025 .040 .094 .091 .171
Note:
prx—Approach utilizing proxy
inc—Incomplete data procedure (Carriere, 1994a and 1999) 
sys—Compound symmetry pattern of covariance matrix 
uns—Unstructured covariance pattern
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Table 4.3: Empirical sizes and powers for testing r in Design IV when e
and n  =  10

p Cl
C2

Procedure type a
size

= .0 1  

power
a  =  

size
.05
power

a
size

=  .1 

power
.3 1 prx sys .011 .090 .047 .250 .095 .372

1 uns .0 1 0 .053 .041 .204 .072 .333
inc sys .0 1 2 .069 .049 .237 .096 .371

uns .005 .034 .040 .155 .073 .287
1 prx sys .0 1 0 .042 .034 .152 .086 .249
4 uns .008 .028 .050 .141 .094 .242

inc sys .007 .035 .031 .139 .081 .236
uns .006 .0 2 2 .040 .111 .094 .193

4 prx sys .004 .030 .023 .136 .066 .227
1 uns .006 .050 .054 .171 .118 .281

inc sys .006 .027 .031 .131 .073 .219
uns .004 .026 .040 .136 .096 .231

.7 1 prx sys .013 .253 .067 .512 .125 .643
1 uns .0 1 0 .158 .063 .435 . 1 2 0 .603

inc sys .016 .208 .067 .477 .130 .630
uns .007 .083 .048 .324 .093 .510

1 prx sys .013 .069 .042 .204 .081 .329
4 uns .0 1 0 .048 .052 .2 0 2 .087 .327

inc sys .008 .057 .050 .298 .091 .332
uns .013 .028 .038 .142 .079 .279

4 prx sys .004 .060 .019 .207 .051 .323
1 uns .009 .080 .041 .258 .085 .407

inc sys .007 .056 .026 .2 0 1 .055 .319
uns .006 .036 .029 .198 .070 .349

Note:
prx—Approach utilizing proxy data 
inc—Incomplete data procedure (Carriere, 1994a and 1999) 
sys—Compound symmetry pattern of covariance matrix 
uns—Unstructured covariance pattern
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Table 4.4: Empirical sizes and powers for testing r  in Design IV when e
and re =  20

p Cl
C2

Procedure type a  =  
size

.01

power
a  = 

size
.05
power

a
size

= .1 

power
.3 1 prx sys .008 .259 .043 .524 .090 .670

1 uns .007 .232 .046 .491 .088 .640
inc sys .008 .256 .051 .519 .090 .663

uns .007 .290 .038 .442 .082 .616
1 prx sys .007 .105 .045 .263 .084 .381
4 uns .0 1 2 .1 1 2 .053 .276 .111 .420

inc sys .009 .104 .049 .250 .084 .376
uns .0 1 2 .092 .052 .256 .103 .402

4 prx sys .002 .069 .025 .248 .055 .385
1 uns .009 .130 .048 .360 .096 .492

inc sys .003 .079 .026 .249 .059 .388
uns .005 .1 0 2 .041 .319 .088 .474

.7 1 prx sys .013 .656 .046 .837 .094 .912
1 uns .013 .574 .043 .823 .092 .890

inc sys .013 .610 .050 .823 .098 .903
uns .011 .480 .041 .782 .089 .890

1 prx sys .0 1 0 .213 .045 .446 .090 .581
4 uns .0 1 0 .250 .065 .515 .119 .649

inc sys .0 1 0 .2 0 1 .041 .430 .081 .569
uns .011 .213 .060 .484 .108 .611

4 prx sys .004 .173 .018 .454 .045 .604
1 uns .013 .335 .049 .614 .106 .730

inc sys .004 .154 .025 .427 .055 .585
uns .0 1 0 .261 .044 .567 .096 .699

Note:
prx—Approach utilizing proxy data 
inc—Incomplete data procedure (Carriere, 1994a and 1999) 
sys—Compound symmetry pattern of covariance matrix 
uns—Unstructured covariance pattern
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Table 4.5: Empirical sizes and powers for testing 7  in Design IV when e
and n  =  10

p Cl
C2

Procedure type a  =  
size

.0 1

power
a  =  

size
.05
power

a
size

=  .1  

power
.3 1 prx sys .015 .054 .054 .169 .092 .274

1 uns .008 .032 .049 .145 .089 .246
inc sys .0 1 0 .045 .049 .164 .090 .278

uns .014 .039 .053 .141 .1 0 1 .233
1 prx sys .032 .056 . 1 1 0 .149 .175 .231
4 uns .011 .016 .061 .089 .119 .144

inc sys .026 .050 . 1 0 2 .136 .175 .224
uns . 0 1 2 .019 .049 .068 .106 .126

4 prx sys .018 .044 .064 .128 .117 .199
1 uns . 0 1 0 .0 2 2 .043 .090 .087 .164

inc sys .018 .039 .062 .130 .123 .208
uns . 0 1 0 .028 .057 .089 .107 .159

.7 1 prx sys . 0 1 0 .140 .054 .350 .118 .466
1 uns .014 .095 .058 .290 .1 1 0 .423

inc sys .011 .1 1 2 .049 .336 .105 .461
uns .011 .078 .055 .233 .113 .371

1 prx sys .035 .082 . 1 1 0 .217 .172 .324
4 uns .007 .0 2 1 .047 .106 .099 .199

inc sys .038 .069 .109 .2 1 2 .181 .323
uns .0 1 2 .024 .049 .1 0 1 .097 .175

4 prx sys . 0 2 2 .060 .068 .170 . 1 2 1 .262
1 uns .013 .028 .050 .126 .098 .213

inc sys . 0 2 1 .047 .081 .168 .131 .261
uns .015 .024 .048 .111 .090 .195

Note:
prx—Approach utilizing proxy data 
inc—Incomplete data procedure (Carriere, 1994a and 1999) 
sys—Compound symmetry pattern of covariance matrix 
uns—Unstructured covariance pattern
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Table 4.6: Empirical sizes and powers for testing 7  in Design IV when e
and n =  2 0

p Cl
C2

Procedure type a  =  
size

.0 1

power
a  =  

size
.05
power

a
size

= .1 

power
.3 1 prx sys .012 .131 .057 .336 .098 .448

1 uns .013 .1 2 1 .046 .315 .103 .436
inc sys .011 .130 .058 .328 .1 0 2 .454

uns .0 1 0 .126 .059 .311 .1 2 0 .438
1 prx sys .037 .092 .115 .251 .178 .335
4 uns .016 .033 .066 .138 .117 .236

inc sys .033 .097 .116 .236 .177 .333
uns .0 2 0 .042 .061 .149 .124 .228

4 prx svs .011 .066 .059 .182 .1 1 0 .287
1 uns .009 .045 .046 .149 .096 .272

inc sys .011 .064 .061 .182 .113 .284
uns .011 .044 .048 .154 .096 .252

.7 1 prx sys .013 .361 .054 .644 .1 0 0 .750
1 uns .014 .336 .049 .585 .1 1 0 .718

inc sys .014 .345 .053 .611 .103 .743
uns .012 .322 .066 .584 .124 .710

1 prx sys .046 .173 .119 .326 .200 .426
4 uns .015 .074 .050 .215 .1 1 2 .330

inc sys .042 .161 .117 .312 .194 .420
uns .015 .073 .060 .2 2 0 .114 .320

4 prx sys .014 .117 .055 .293 .105 .407
1 uns .007 .093 .044 .279 .092 .388

inc sys .015 .1 2 2 .056 .293 .114 .399
uns .007 .092 .050 .271 .094 .384

Note:
prx—Approach utilizing proxy data 
inc—Incomplete data procedure (Carriere, 1994a and 1999) 
sys—Compound symmetry pattern of covariance matrix 
uns—Unstructured covariance pattern
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Table 4.7: Empirical sizes and powers for testing r  in Design I when e ^ O  and
n  =  2 0__________________________________________________________

p Cl Procedure type a  = 
size

.01

power
a  =  

size
.05
power

a
size

= .1 

power
.3 1 prx sys 0.009 0.697 0.058 0 .8 8 8 0 .1 0 0 0.953

uns 0.009 0.647 0.056 0.877 0 .1 0 0 0.943
inc sys 0.009 0.697 0.058 0 .8 8 8 0 .1 0 0 0.953

uns 0 .0 1 1 0.680 0.060 0.882 0 .1 0 1 0.951
4 prx sys 0 .0 1 0 0.231 0.050 0.495 0.107 0.647

uns 0 .0 1 2 0 .2 0 1 0.051 0.461 0.106 0.605
inc sys 0 .0 1 0 0.231 0.050 0.495 0.107 0.647

uns 0 .0 1 0 0.205 0.043 0.470 0.095 0.619
.7 1 prx sys 0.008 0.975 0.050 0.996 0 .1 0 1 0.998

uns 0 .0 1 0 0.964 0.050 0.994 0.105 0.996
inc sys 0.008 0.975 0.050 0.996 0 .1 0 1 0.998

uns 0.007 0.976 0.048 0.996 0 .1 0 1 0.998
4 prx sys 0.007 0.418 0.056 0.678 0.116 0.802

uns 0.007 0.399 0.052 0.678 0.106 0.802
inc sys 0.007 0.418 0.056 0.678 0.116 0.802

uns 0.007 0.397 0.046 0.670 0.099 0.801
Note:
prx—Approach utilizing proxy data 
inc—Incomplete data procedure (Carriere, 1994a and 1999) 
sys—Compound symmetry pattern of covariance matrix 
uns—Unstructured covariance pattern
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Table 4.8: Empirical sizes and powers for testing 7  in Design I when e ^  0 
and n =  2 0 _______ ____________________ __________________________

p Cl Procedure type a  =  
size

.01

power
a  = 

size
.05
power

a
size

=  .1 

power
.3 1 prx sys 0 .0 1 2 0.082 0.055 0 .2 2 2 0 .1 0 0 0.334

uns 0.006 0.076 0.055 0.217 0 .1 0 0 0.334
inc sys 0 .0 1 2 0.082 0.055 0 .2 2 2 0 .1 0 0 0.334

uns 0 .0 1 0 0.087 0.060 0.215 0 .1 0 0 0.336
4 prx sys 0.009 0.037 0.054 0.141 0.107 0.240

uns 0.005 0.033 0.049 0.135 0 .1 0 0 0.229
inc sys 0.009 0.037 0.054 0.141 0.107 0.240

uns 0.007 0.039 0.047 0.135 0.095 0.228
.7 1 prx sys 0.013 0.085 0.060 0 .2 0 0 0.108 0.330

uns 0.009 0.071 0.051 0 .2 0 0 0 .1 0 1 0.331
inc sys 0.013 0.085 0.060 0 .2 0 0 0.108 0.330

uns 0 .0 1 2 0.082 0.056 0.208 0.103 0.336
4 prx sys 0 .0 1 0 0.033 0.046 0.130 0.093 0.215

uns 0.006 0 .0 2 2 0.039 0.126 0.089 0.215
inc sys 0 .0 1 0 0.033 0.046 0.130 0.093 0.215

uns 0.006 0.031 0.040 0.133 0.085 0 .2 1 1
Note:
prx—Approach utilizing proxy data 
inc—Incomplete data procedure (Carriere, 1994a and 1999) 
sys—Compound symmetry pattern of covariance matrix 
uns—Unstructured covariance pattern
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Table 4.9: Empirical sizes and powers for testing r  in Design IV when e  /  0

p Cl C2 Procedure type a  =  
size

.0 1
power

a  =  
size

.05
power

Q =
size

.1

power
.3 1 1 prx sys 0.013 0.285 0.048 0.533 0.095 0.673

uns 0.006 0.178 0.041 0.471 0.092 0.616
inc sys 0.013 0.285 0.048 0.533 0.095 0.673

uns 0.007 0.234 0.044 0.499 0.095 0.649
1 4 prx sys 0.009 0.089 0.037 0.255 0.073 0.358

uns 0 .0 1 1 0.105 0.049 0.267 0.103 0.404
inc sys 0.009 0.089 0.037 0.255 0.073 0.358

uns 0.014 0 .1 2 2 0.055 0.291 0.109 0.423
4 1 prx sys 0.002 0.071 0.022 0.245 0.054 0.375

uns 0.005 0.084 0.039 0.308 0.092 0.446
inc sys 0.002 0.071 0.022 0.245 0.054 0.375

uns 0.005 0.111 0.047 0.337 0.098 0.477
.7 1 1 prx sys 0.013 0.672 0.056 0.864 0.099 0.928

uns 0 .0 1 0 0.538 0.043 0.814 0.090 0.907
inc sys 0.013 0.672 0.056 0.864 0.099 0.928

uns 0.013 0.600 0.048 0.838 0.095 0.916
1 4 prx sys 0.003 0.209 0.029 0.454 0.067 0.601

uns 0.005 0.248 0.042 0.535 0.089 0.681
inc sys 0.003 0.209 0.029 0.454 0.067 0.601

uns 0.008 0.279 0.045 0.554 0.092 0.692
4 1 prx sys 0.007 0 .2 1 2 0.024 0.473 0.052 0.641

uns 0.009 0.284 0.054 0.570 0.105 0.745
inc sys 0.007 0 .2 1 2 0.024 0.473 0.052 0.641

uns 0 .0 1 1 0.326 0.056 0.598 0 .1 1 0 0.760
Note:
prx—Approach utilizing proxy data 
inc—Incomplete data procedure (Carriere, 1994a and 1999) 
sys—Compound symmetry pattern of covariance matrix 
uns—Unstructured covariance pattern
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Table 4.10: Empirical sizes and powers for testing 7  in Design IV when e ^  0

and n =  2 0
p Cl C2 Procedure type a  =  

size
.0 1

power
a  =  

size
.05
power

a  =  
size

.1

power
.3 1 1 prx sys 0 .0 1 0 0 .2 0 0 0.051 0.410 0.107 0.544

uns 0.005 0.141 0.050 0.366 0.103 0.509
inc sys 0 .0 1 0 0 .2 0 0 0.051 0.410 0.107 0.544

uns 0.006 0.173 0.058 0.397 0 .1 1 0 0.529
1 4 prx sys 0.028 0.108 0.093 0.252 0.163 0.352

uns 0.009 0.041 0.046 0.162 0.108 0.261
inc sys 0.028 0.108 0.093 0.252 0.163 0.352

uns 0 .0 1 0 0.044 0.050 0.158 0 .1 0 1 0.272
4 1 prx sys 0.021 0.106 0.082 0.238 0.146 0.344

uns 0.005 0.046 0.042 0.160 0.098 0.269
inc sys 0.021 0.106 0.082 0.238 0.146 0.344

uns 0 .0 1 0 0.063 0.049 0.183 0 .1 1 0 0.282
.7 1 1 prx sys 0.015 0.472 0.054 0.741 0.094 0.827

uns 0 .0 1 2 0.369 0.042 0.673 0.094 0.792
inc sys 0.015 0.472 0.054 0.741 0.094 0.827

uns 0.014 0.420 0.042 0.700 0.095 0.812
1 4 prx sys 0.033 0 .2 1 1 0.093 0.388 0.174 0.493

uns 0.009 0.081 0.049 0.272 0.093 0.391
inc sys 0.033 0 .2 1 1 0.093 0.388 0.174 0.493

uns 0.009 0.091 0.050 0.279 0.087 0.398
4 1 prx sys 0.028 0.152 0.076 0.317 0.134 0.438

uns 0.007 0.065 0.042 0 .2 2 0 0.088 0.346
inc sys 0.028 0.152 0.076 0.317 0.134 0.438

uns 0.015 0.088 0.048 0.249 0.095 0.371
Note:
prx—Approach utilizing proxy data 
inc—Incomplete data procedure (Caniere, 1994a and 1999) 
sys—Compound symmetry pattern of covariance matrix 
uns—Unstructured covariance pattern
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Table 4.11: Proportions of proxy data that generate estimators for r with
c x 1 0 0 % efficiency in Design II

c Tl nooII<a. p =  0 .2 p — 0.4 p =  0 .6 p =  0 .8 p -> 1 .0

.8 .50 .25 .2 2 .14
.40 .40 .38 .33 .23 .07
.30 .47 .46 .42 .35 .24 .06
.2 0 .52 .51 .48 .42 .33 .2 0

.1 0 .55 .54 .51 .46 .38 .28

.0 0 .57 .56 .53 .49 .42 .33
.9 .30 .06 .05 .0 2

.2 0 .2 0 .19 .16 .1 2 .06

.1 0 .28 .27 .25 .2 1 .16 .1 0

.0 0 .33 .32 .31 .28 .23 .18
Note:
7*1 is the proportion of proxy information in the second period of the sequences AB and BA. 
7*2 is the proportion of proxy information in the second period of the sequences A A and BB. 
The entries below the horizontal lines in each row of c correspond to the case r2 < t*i .

Table 4.12: Proportions of proxy data that generate estimators for r  with
c x 00% efficiency in Design IV

c n

ii o o p =  0 .2 II o p =  0 .6 II O bo p = 1 .0

.8 .46 .48 .48 49 .49 .50

.9 .26 .27 .29 .29 .30 .30
Note:
7*i is the proportion of proxy information in the third period of the sequences ABB and 
BAA.
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Table 4.13: Proportions of proxy data that generate estimators for r  with 
c x 100% efficiency in Design VI_____________________________

c T'l T\
p =  0 .0 p = 0 .2 p =  0.4 p =  0 .6 T5 II O OO p =  1 .0

.8 .50 .6 8 .43 .23 .05
.40 .75 .54 .38 .25 .15 .06
.30 .80 .63 .49 .39 .31 .25
.2 0 .85 .70 .58 .50 .43 .38
.1 0 .89 .75 .65 .58 .52 .48
.0 0 .92 .80 .71 .64 .59 .56

.9 .2 0 .38 .28 .19 .1 2 .07 .03
.1 0 .46 .38 .31 .27 .23 .2 0

.0 0 .52 .46 .41 .38 .35 .33
Note:
ri is the proportion of proxy information in the third period of the sequences ABB and 
BAA.
r2  is the proportion of proxy information in the third period of the sequences AAB and 
BAA.
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Chapter 5 

M ultiple Imputation for 

Repeated Measures Data

5.1 Introduction

In Chapter 4, we showed that using proxy information for missing data 

has some advantages over incomplete data analysis methods, especially when 

a large proportion of data is missing. As discussed in Chapter 4, the use of 

proxy information can be regarded as a more informative single imputation 

method than the ones commonly used. Comparisons between multiple impu­

tation and single imputation strategies (Rubin, 1979,1987) have demonstrated 

that single imputation generally underestimates the variability of the missing 

data and thus produces inefficient estimators, since the single imputed value
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cannot represent the uncertainty about the missing data. We can easily obtain 

multiply-imputed data using imputation strategies; however, it is usually not 

feasible to obtain multiple proxy information. To further but indirectly study 

the merits of using proxy information, we evaluate the efficiency of a multiple 

imputation strategy by comparing it with incomplete data analysis methods.

The multiple imputation strategy was proposed by Rubin in 1978. Since 

then, it has frequently been applied in various fields of data analysis (Rubin, 

1987; Rubin and Schenker, 1986 and 1991; Little and Rubin, 1987; Taylor et al., 

1990; Dorey, Little and Schenker, 1993; Heitjan and Little, 1991; Heitjan and 

Landis, 1994; James, 1995; etc.). The multiple imputation strategy rectifies 

the disadvantages of the single imputation method (Rubin, 1987). It becomes 

more efficient by repeating the single imputation procedure for each of the 

complete data sets. Valid inferences can be obtained by combining complete- 

data inferences, as the multiple imputations represent repeated random draws 

under a given model for non-response.

Other widely applied methods for dealing with incomplete data problems 

include the jackknife and bootstrap methods (Miller, 1974; Efron and Tibsha- 

rani, 1993; Efron, 1994), data augmentation (Tanner and Wong, 1987) and 

the Gibbs sampler (e.g., Gelfand and Smith, 1990; Gelman and Rubin, 1992). 

The multiple imputation method, like the common methods listed above, is 

based on the use of simulation. However, with multiple imputation, simulation
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is used only to handle the missing information, not the observed data. This 

difference provides a distinct advantage over other methods.

Like most statistical analysis methods, the multiple imputation method is 

not valid for all cases (Fay, 1991, 1992). In addition, the multiple imputation 

method has disadvantages such as the need for high-level computation and 

large memory space for storing the multiply-imputed data.

Further, the performance of this method in small-sample repeated measures 

data has not been studied (Carriere, 1997). Richardson and Flack (1996) 

proposed multiple imputation strategies for two-treatment three-period cross­

over design data, and compared it with the single imputation method and the 

standard analysis using only complete subset data. The sample size they used 

for simulation was relatively large—at least 2 0  subjects in each sequence.

In this chapter, we develop a multiple imputation strategy for small-sample 

repeated measures data in the presence of treatment effects. This chapter 

is organized as follows. Section 2 briefly introduces the multiple imputation 

theory. In Section 3, we propose a multiple imputation strategy for small- 

sample repeated measures data. Section 4 focuses on a comparison between 

the incomplete data analysis approach (Carriere, 1994a and 1999) and the 

proposed multiple imputation approach, with respect to the size and power of 

their testing procedures. Section 5 provides concluding remarks.
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5.2 M ultiple im putation theory

Carriere (1997) provides a comprehensive review of multiple imputation 

based on Rubin (1987). Multiple imputation involves drawing the missing 

values from the posterior distribution f ( y mis\yobs), where y mis is the missing 

portion of the data and y ^  is the observed data. Then the posterior of the 

parameter of interest 0 , a q x 1 vector, can be obtained by averaging the pos­

terior of the complete data over the predictive distribution of the missing data, 

i.e., f  g{0\yobs,ymis)f(ymu\yobs)dymis. For each draw of the data, a complete 

data set y (l) =  (y0bs, YmL) ls obtained by combining the observed data set y ^  

and the imputed data set for the missing values y ^ s, i =  1 , . . . ,  M .  Standard 

inference methods can be applied to each of the complete data sets y 1̂ . Then 

the M  complete-data set analyses are combined to give a repeated-imputation 

inference.

Let 0(i) and U(j), i =  1 , . . . ,  M  be the estimators and their associated vari­

ances for the parameter of interest 0  based on M  complete data sets. The 

estimator of 0  based on multiply-imputed data is

_ M
Oxf =  '£,d(i)/M C5 -2-1)

t = l
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and its variance is estimated as

V ( 0 M) = T w =  U m +  (1 +  M -1) Bm, (5.2.2)

which is composed of two elements (Rubin, 1987): 

(a) the within-imputation variance

M

Uiv/ =  £ u (i)/M (5.2.3)
i=l

and (b) the between-imputation variance

M_________ _
Bm =  £ ( %  -  0M)(»(i) -  » m )t I ( M  -  1). (5.2.4)

1 = 1

Consider a linear transformation 77 =  l T0  by a vector I. Then, the approximate 

distribution for 77 is obtained via

(>)-Wm)['TT m1]-1/2~ ( . ,  (5.2.5)

where rjM =  It 0 m  and the degree freedom v is

v =  (M — l ) r ^ -2 (5.2.6)

based on a Satterthwaite approximation (Rubin and Schenker 1986; Rubin
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1987). The ratio =  (1 +  M ~ i)tr (BMT ^ f ) / q  estimates the fraction of infor­

mation on 0 that is missing due to non-response, which is no larger than the 

fraction of all missing data. The variance form with multiple imputation in 

Rubin (1979) does not include the factor (1 +  M ) / M .  This adjustment is an 

improvement for modest A/. It has been shown by substantial empirical Work 

(for example, Rubin 1979, 1998) that multiple imputation with M  =  3 or 5 

works well with typical fractions of missing data in surveys (<30%). For more 

extensive results on p values, see Li, Raghunathan and Rubin (1991); Li et al. 

(1991); and Meng and Rubin (1992).

The inference outlined above is based on a Bayesian framework that as­

sumes that imputed values are independent draws from the posterior distri­

bution of the missing values. Further, the size of the complete subset data is 

assumed to be large, so that it is effective to set the degrees of freedom for the 

test statistics at infinity. When the sample size is small, setting the degrees 

of freedom at infinity is no longer satisfactory, especially when the fractions of 

missing data are large. Barnard and Rubin (1999) provide a principle adjust­

ment to the degrees of freedom v in (5.2.6), such that the resulting degrees of 

freedom is always less than the degrees of freedom in the complete data set. 

The adjusted degrees of freedom is

5 =  M [ /( u 0)(l -  rjv/)]-1 +  — }~ l , (5.2.7)v

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where f ( v 0) =  (vo +  l)/(^o +  3), and Vo is the degrees of freedom based on the 

complete subset data.

Rubin (1987) claimed that the inference based on multiply-imputed data 

sets is valid if the multiple imputation strategy is proper, under the definition 

given in Rubin (1987). However, improper multiple imputations can still lead to 

valid repeated-imputation inferences (Rubin and Schenker, 1987). Theoretical 

work (Meng, 1994) and substantial empirical work (e.g., Rubin and Schenker, 

1987; Schenker, Treiman and VVeidman, 1993) support the claim that repeated- 

imputation inferences are confidence-valid, even if some important predictors 

are left out of the multiple imputation strategy—if the fraction of missing 

values is not too large. This conclusion provides grounds for using simpler, but 

possibly improper, multiple imputation strategies.

5.3 M ultiple imputation for repeated measures 

data

Consider model (4.2.1) with e = 0 and u  = 0. Richardson and Flack (1996) 

proposed a multiple imputation strategy for the data from a two-treatment 

three-period design. The idea is to obtain regression models for the data from 

periods two and three based on data from the previous periods and apply 

the multiple imputation strategy as illustrated in Example 5.1 (Rubin, 1987)
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to each of the regression models. Specifically, Richardson and Flack (1996) 

imputed the missing data as follows for the three-period design.

Step 1: Obtain the regression model for the second and third periods as

Vijk =  X i k P  + (yjfc(i-i) -  x fc(l_l)/3)r /3,1 + Eijk

= 0 iko +  yjk(i-i)Pu + £  ijk

= Zjkfiik + £ijk (5.3.1)

for i =  2,3 and k = 1,2, where y ]k(2) = {yijk, y23k)T and yj*(l) = y ljk,

Zjk =  (1, yjfc(,_l)) and 0 ik = {Piko,0 [i)T and get the usual least-square es­

timator j3ik. Here, x ik is the ith row of the design matrix X* and Xfc(,_[) is the

submatrix of X  including the first i - l  rows, 0  = {fi, 7Ti, 7r2, r, 7 , A)T. Let S S E i  

denote the sum of squared error from the regression model for the response in 

the i th period and let Vik = Z j kz J k ] ~ l .

Step 2: Draw a chi-square random variable with iV(l) —di degrees of freedom, 

where di is the number of elements in (3ik and is the number of subjects 

completing the first i periods. Then define a*2 =  S S E i / g t .

Step 3: Draw d, independent N ( 0,1) variates to create a d ~  component vector 

r„ and update (dik as f3*k = (3ik + a*Vikl/2 ri.
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Step 4: Impute the missing data i/y* by zjk0*k +  ro> where is randomly 

selected from residuals {&_,* -  } with replacement and with equal prob­

ability, and j  runs over all subjects completing the first i periods in sequence 

k .

Richardson and Flack (1996) obtained multiply-imputed data sets by re­

peating Steps 1-4 several times. They showed that their strategy works well for 

large sample data in simulation. However, their work is limited in the scope of 

sample sizes and missing proportions. Further, their regression approach can 

fail to impute data in the last several periods, since the degrees of freedom to 

generate the chi-square random variable can be 0 .

Assuming a monotonic missing pattern, we propose an imputation strategy 

that would be simple and also work well for small-sample data, improving 

the shortcomings noted above. Rather than relying on the regression model, 

we simply impute the missing values using the conditional distribution of the 

missing data, given the observed data in previous periods. Consequently, the 

proposed multiple imputation strategy is robust against model assumptions.

For the complete subset data, we assume that y(pi)jk is distributed as multi­

variate normal with mean /i(Pl)* and covariance matrix £ n ,  using the notation 

established in Chapter 4. Thus, the conditional distribution of yPl+ijk given 

Y(pi) jk  is normal with mean n Pi+i,k + <T2i £ u ( y  (piW* “  /*(?!)*)’ and variance
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cr22 — < t - i where S n is the submatrix of S  with the first px rows and 

Pi columns, <r2i is that with the (pi +  l) t/l row and the first pt columns, with 

a  12 =  & 2 1 ) and 022 is the (pi + l ) th diagonal element of S . For the subsequent 

periods, we applied the above steps by replacing pi with pi + 1 .

The following six steps made up our imputation strategy. We adopted and 

extended the imputation strategy for a univariate normal model as described in 

Example 3.2 (Rubin, 1987) in order to apply it to a multivariate normal model.

Step 1 : With the usual least-squares estimators for the mean and the covari­

ance matrices, we have that yPl+ijk given y(Pl)jk is approximately distributed 

as normal with mean pPl+i,* =  + s2iSri1 (y(Pl)jk -yjJljjb) (see Chapter 4

for the notation), k  =  1 , . . . ,  s, and variance a 2 =  S22 — S2iSf11Si2, where I is the 

index for the level the (pt +  l ) th period belongs to, that is, 1 < pi + 1  < /?(, 

S is the sample variance using the complete data  subset, and Sn, S12, S21 and 

S22 are the submatrices defined in the same way as S n , <ri2 , 0*21 and 0 2 2 , 

respectively.

Step 2: Draw a chi-square random variable g with degrees of freedom — s 

and let 0 * =  o-(iV^ — s)/g.

Step 3: Draw a random variable from a standard normal distribution, say z,
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and let p*l+uk = PPl+i,k + a 'z /y /N jP .

Step 4: Draw a random variable z from a standard normal distribution, and 

impute for the missing values in the period of p\ + 1  as yPl+ijk = VPl+i,k + a *z - 

Repeat Step 4 for all missing components in the period p\ +  1 .

Step 5: Treat the imputed values as if they are observed. Repeat Steps 1-4 for 

the next periods with missing values, with pi replaced by pi +  1 .

Step 6 : Repeat Steps 1-5 M  times for all sequences to create M  multiply- 

imputed data sets.

The proposed imputation strategy implies that the imputed values in previ­

ous periods are treated as if they were observed when they are used to impute 

missing values in the current period. The idea is similar to the sequential impu­

tation method (Kong, Liu and Wong, 1994). The rationale lies in that repeated 

measures data are generally obtained at different times of measurement. Thus, 

data in different time periods can be regarded as if they became available se­

quentially. However, each of the imputed “complete” data sets contributes to 

the repeated-imputation inference equally, which is not the case in sequential 

imputation.
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Applying the multiple inference method outlined in Section 2, we obtained 

the estimator using (5.2.1), and the covariance matrix V ^ /, using (5.2.2). 

In the next section, we demonstrate the performance of the proposed multiple 

imputation strategy by comparing the size and power of the corresponding 

testing procedure with those of the incomplete data analyses of Carriere (1994a 

and 1999).

5.4 Simulations

As stated in Chapter 4, the hypotheses of interest are those of no treatment 

effects tfoi : r  =  0, and no residual effects # 0 2  : 7  =  0. The test statistic we 

considered is

_  9
var(9)1/2'

where var{9) is the estimated variance for estimation 9 using multiply-imputed 

data and 9 is either f  = l \ P Mi or 7  =  1^0Mh ^  being a vector of 0 and 

1, i =  1,2. Under the assumption of normality, the statistic tg is expected 

to have an approximate t-distribution with degrees of freedom v as in (5.2.7), 

based on the multiply-imputed data.

Carriere (1999) proposed a t test for treatment effects and residual effects 

using the estimator, as summarized in Section 3, Chapter 4. The degrees of 

freedom Carriere (1999) proposed is (p — 1 ) ( N ^  — s) for both r  and 7  under
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the assumption that the covariance matrix is compound symmetric, while it is 

— s for treatment effects and (N  +  iV(2) — 2s — PiP^/2 for residual effects 

under an unspecified covariance structure assumption.

To examine the performance of these two approaches for small-sample data, 

we generated 1000 small samples from the model (4.2.1) using Design I (design 

with sequences AB and BA, as defined in Chapter 4) and Design IV (design 

with sequences ABB and BAA, as defined in Chapter 2) with five subjects in 

each sequence. We consider a case where 20% of the data is missing, assuming 

that the missing pattern is monotonic. In each sequence, we randomly choose 

one subject and delete the observations in their last period to generate missing 

data. We set M  =  5 for the multiple imputation procedure. The covariance 

matrix E  in model (4.2.1) is considered the same as in Carriere (1999)

E =

1 p y /c [  p^ /c i 

Cl Py/C iC 2

C2

with two different values of within-subject correlation (p = .3 and p =  .7) and 

two different values, 1 or 4 for ci and c2. For the two-period design, the last 

column and row are deleted from E. The sizes for testing i/0i and H02, and 

powers of the test for H u  : r  =  .5 and H \ 2 : 7  = .5 are calculated using both 

approaches. For Design IV, we calculated the powers for H u  : r  =  .25 and
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#12 : 7  =  -25.

Overall, the asymptotic distribution suggested earlier appears to fit rea­

sonably well in both approaches. Empirical sizes that do not agree with the 

nominal levels are highlighted in Tables 5.1-5.3. The 95% confidence intervals 

for these empirical levels are (0.004, 0.016), (0.036, 0.064) and (0.081, 0.119) 

for nominal level .01, .05 and .10, respectively.

Although the empirical sizes were satisfactory in keeping the nominal lev­

els, we decided to adopt the a-adjusted power as a criteria for evaluating the 

performance of the two approaches (Kim, 1992; Cristensen and Rencher, 1997). 

The a-adjusted power is determined by finding the proportion of times that the 

p-value for a test when # 0i or # 0 2  is false is less than the a-adjusted critical 

level. The a-adjusted critical level is defined as the a th percentile of the 1000 

p-values when the null hypothesis is true. The a-adjusted power allows us to 

compare the power upon adjusting the empirical sizes to be the same, thereby 

eliminating the power advantage of procedures with higher empirical size.

Table 5.1 demonstrates the empirical sizes for testing # 0 1  and # 02, and 

a-adjusted powers for testing H u  and H ^ ,  for both the multiple imputation 

approach and the incomplete data analysis method for the two-period design. 

The performance of the multiple imputation method was similar to that of the 

incomplete data method (Carriere, 1994a and 1999) for all cases we considered, 

except when p is large for testing treatment effects, where the incomplete data
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method is more powerful.

Tables 5.2 and 5.3 show similar results for the three-period design for 7  

and r. The two approaches are rather similar, although the incomplete data 

method is more powerful when p is large.

5.5 Conclusion

This chapter investigated the merits of a multiple imputation strategy over 

the incomplete data analytic method. We first suggested a small-sample dis­

tribution of the estimators based on multiply-imputed data, assuming that the 

data are distributed as a multivariate normal. The strategy we proposed does 

not rely on the regression model, which makes it robust against the violation 

of the assumed model. The imputation strategy is simple and easy to imple­

ment. Once the missing data are filled in, standard statistical inferences can be 

drawn, based on the multiply-imputed complete data sets. No special software 

is required.

Next, we used simulation studies to show that the multiple imputation 

method performs reasonably well in most of the cases we considered. However, 

we generally did not find it superior to the alternative method (Carriere, 1999).

In the previous chapter, we concluded that using proxy information can be 

a competitive alternative to missing data analysis. This conclusion leads us
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to investigate multiple imputation to see if this approach would provide any 

further improvement. However, there does not appear to be much benefit in 

using the multiple imputation method, considering the time and effort required. 

This investigation finds that the multiple imputation method is not superior 

to the missing data analysis method utilizing all available data. Considering 

the advantages of utilizing proxy information for missing values, as discussed 

in Chapter 4, we conclude that one should try to collect proxy data, which 

is a more personal and informative method of imputing for missing data than 

using conventional single or multiple imputations.
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Table 5.1: Empirical sizes and a-adjusted powers for testing r  and 7  in Design 
L_____________________________________________________________________________

P Cl Method Type a  = .0 1 a  = .05 a  == .1

size power size power size power
7 .3 1 INC sys 0 .0 1 1 0.025 0.051 0 .1 2 1 0.104 0.229

uns 0.013 0.028 0.051 0.135 0.114 0.223
MI sys 0.007 0.032 0.037 0.130 0.084 0.229

uns 0.013 0 .0 2 1 0.044 0.124 0.109 0.204
4 INC sys 0.014 0.009 0.054 0.082 0.114 0.147

uns 0.016 0 .0 1 0 0.057 0.066 0 .1 1 2 0.148
MI sys 0.013 0 .0 1 0 0.060 0.058 0.109 0.152

uns 0.013 0.007 0.051 0.075 0.104 0.146
.7 1 INC sys 0 .0 1 1 0.017 0.047 0.106 0.094 0.199

uns 0.008 0.023 0.042 0.116 0.092 0.189
MI sys 0.007 0.019 0.036 0 .1 1 2 0.089 0.181

uns 0.007 0.026 0.038 0.116 0.090 0.188
4 INC sys 0 .0 1 1 0.016 0.051 0.067 0 .1 1 2 0.125

uns 0.006 0 .0 2 1 0.048 0.074 0 .1 0 0 0.131
MI sys 0.008 0.023 0.048 0.080 0 .1 1 0 0.124

uns 0.004 0.027 0.036 0.083 0.086 0.144
r .3 1 INC sys 0 .0 1 1 0.182 0.059 0.509 0 .1 0 2 0.691

uns 0 .0 1 0 0.189 0.056 0.497 0.099 0.701
MI sys 0.008 0 .2 0 1 0.045 0.511 0.091 0.693

ubs 0 .0 1 0 0.194 0.050 0.498 0.094 0.676
4 INC sys 0.014 0.078 0.061 0.235 0.116 0.367

uns 0 .0 1 1 0.075 0.060 0.232 0.107 0.351
MI sys 0 .0 1 0 0.082 0.054 0.246 0.116 0.352

uns 0.007 0.098 0.054 0 .2 1 1 0.115 0.332
.7 1 INC sys 0.008 0.558 0.050 0.871 0.094 0.951

uns 0 .0 1 0 0.541 0.051 0.865 0.092 0.946
MI sys 0.006 0.506 0.047 0.831 0.087 0.927

uns 0 .0 1 1 0.470 0.045 0.826 0.089 0.923
4 INC sys 0.004 0.185 0.061 0.333 0.115 0.505

uns 0.004 0.170 0.058 0.348 0.111 0.490
MI sys 0.005 0.139 0.055 0.342 0.105 0.499

uns 0.005 0.167 0.050 0.326 0.097 0.485
MI--Mu tiple imputation approach
INC—Incomplete data procedure (Carriere, 1994a and 1999)
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Table 5.2: Empirical sizes and a-adjusted powers for testing 7  in Design IV
p Cl Methods Type Q = .01 a  = .05 a  = .1

size power size power size power
.3 1 INC sys 0 .0 1 1 0.063 0.056 0.182 0.115 0.283

1 uns 0.006 0.053 0.050 0.171 0.109 0.272
MI sys 0.005 0.089 0.037 0.195 0.081 0.333

uns 0.007 0.054 0.039 0.189 0.083 0.299
1 INC sys 0.025 0.032 0.105 0.088 0.179 0.156
4 uns 0 .0 1 0 0.029 0.060 0.085 0 .1 1 2 0.155

MI sys 0.029 0.024 0.111 0.090 0.176 0.151
uns 0 .0 1 2 0 .0 2 2 0.057 0.093 0.115 0.165

4 INC sys 0.020 0 .0 1 2 0.076 0 .1 1 2 0.137 0.193
1 uns 0 .0 1 1 0 .0 1 1 0.050 0.090 0.097 0.178

MI sys 0 .0 1 2 0 .0 2 1 0.053 0.109 0.093 0.224
uns 0.007 0.017 0.033 0 .1 1 2 0.076 0 .2 0 1

.7 1 INC sys 0 .0 1 0 0.175 0.051 0.428 0.105 0.555
1 uns 0 .0 1 1 0.093 0.048 0.387 0.097 0.497

MI sys 0.007 0 .2 0 1 0.043 0.413 0.082 0.574
uns 0.007 0.141 0.037 0.366 0.082 0.523

1 INC sys 0.025 0.054 0.086 0.146 0.151 0.237
4 uns 0.005 0.055 0.041 0.151 0.091 0.250

MI sys 0.029 0.051 0.093 0.149 0.163 0.232
uns 0.004 0.044 0.052 0.130 0 .1 0 0 0.224

4 INC sys 0.023 0.036 0.079 0.151 0.149 0.253
1 uns 0 .0 1 0 0.026 0.045 0.139 0.094 0.233

MI sys 0.004 0.074 0.028 0 .2 0 0 0.067 0.322
uns 0.005 0.040 0.021 0.181 0.052 0.294

MI—Multiple imputation approach 
INC—Incomplete data procedure (Carriere, 1994a and 1999)
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Table 5.3: Empirica sizes and a-adjusted powers for testing r in Design IV.
p Cl Procedure Type Q = .01 Q = .05 a  = .1

size power size power size power
.3 1 INC sys 0.011 0.106 0.059 0.257 0.106 0.408

1 uns 0.006 0.091 0.050 0.245 0.116 0.331
MI sys 0.007 0.100 0.057 0.255 0.111 0.383

uns 0.004 0.100 0.051 0.232 0.100 0.372
1 INC sys 0.007 0.059 0.043 0.178 0.088 0.274
4 uns 0.009 0.059 0.051 0.173 0.104 0.277

MI sys 0.007 0.056 0.045 0.169 0.091 0.269
uns 0.009 0.054 0.049 0.191 0.106 0.281

4 INC sys 0.003 0.067 0.029 0.183 0.063 0.297
1 uns 0.010 0.051 0.051 0.152 0.106 0.263

MI sys 0.002 0.065 0.026 0.156 0.064 0.275
uns 0.009 0.065 0.051 0.153 0.110 0.263

.7 1 INC sys 0.004 0.323 0.039 0.585 0.090 0.717
1 uns 0.008 0.215 0.045 0.499 0.088 0.692

MI sys 0.009 0.279 0.036 0.554 0.086 0.694
uns 0.005 0.235 0.042 0.516 0.083 0.663

1 INC sys 0.008 0.105 0.036 0.280 0.072 0.431
4 uns 0.008 0.076 0.045 0.293 0.094 0.415

MI sys 0.007 0.099 0.043 0.257 0.082 0.406
uns 0.007 0.088 0.053 0.253 0.111 0.371

4 INC sys 0.003 0.110 0.026 0.326 0.055 0.458
1 uns 0.005 0.104 0.045 0.286 0.082 0.455

MI sys 0.002 0.120 0.022 0.304 0.053 0.432
uns 0.007 0.106 0.055 0.259 0.104 0.403

MI—Multiple imputation approach
INC—Incomplete data procedure (Carriere, 1994a and 1999)
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Chapter 6

Concluding Remarks

Repeated measurements designs are often employed to measure the efficacy 

of several treatments or interventions and to make appropriate recommenda­

tions about the “best” treatment or intervention. Statistical analyses based on 

the data from these designs are carried out to guide decision-making processes.

In these empirical investigations, many statistical issues arise. This the­

sis is a study of design and analysis issues in typical experiments that use 

repeated measurement designs, especially issues pertaining to data based on 

small samples.

6.1 M ain contributions

1. Construction of optimal designs under a general m odel with ran-
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dom subject effects and autoregressive error structure. Many 

investigators have constructed optimal designs under various models. 

However, these models are simple and the designs constructed cannot 

be generalized to other situations. We considered a more general model 

that accommodates serially correlated measurement error and random 

subject effects. All other models are special cases of this general model. 

Optimal designs are highly dependent on the autoregressive correlation 

coefficient 0 and the ratio of within- and between-subject variances for 

the measurement error, p. However, for two-treatment two-period de­

signs, we found that a design with an equal number of subjects in the 

sequences AA, AB and their duals is the “best” design for estimating r  

and 7 .

For two-treatment three-period designs, we found that the design 

with an equal allocation of subjects to each of the sequences ABB, BAA, 

AAB and BBA is nearly as efficient for treatment effects as the optimal 

designs across the range of p and 0. For residual effects, a design with 

an equal allocation of subjects to the sequences ABB and BAA generally 

performs well, except for extremely negative 0 and small p. The four- 

sequence design has been suggested as the best compromised design under 

various assumptions about residual effects (Carriere, 1994). The two- 

sequence design is the universally optimal design under an equicorrelated
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covariance structure with first-order residual effects (Laska et al., 1983; 

Kershner, 1986; Carriere, 1994).

When one more period is added into the experiment, a design with 

an equal number of subjects assigned to AABB, ABBA and their du­

als, BBAA and BAAB, is found to be the most robust design for both 

treatment effects and residual effects. This design has also been recom­

mended as the “best” design under an autoregressive error model with 

fixed subject effects (Matthews, 1987).

2. Construction of designs adaptive to data. The study subjects are 

naturally heterogeneous and the associated covariance matrices are typ­

ically unknown. Further, the subjects enter the experiment in sequence. 

No known optimal design exists under this situation. To construct a de­

sign suitable for these situations, we first entered a few subjects in the 

experiment and obtained the information matrix for treatment effects for 

^-treatment p-period designs. By using and updating the information 

matrix repeatedly, allocation rules of subjects to sequences were derived 

in such a way that the loss function of the additional information from the 

new set of subjects is minimized, based on a criterion. Compared to the 

approach that ignores heterogeneity of subjects, this adaptive approach 

is up to 33% more efficient. However, as expected, such consideration
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of heterogeneity requires a considerably large number of subjects to be 

included in the experiment. Otherwise, the distinct covariance matrices 

are not distinguishable. In general, adaptive designs are more intuitive 

and realistic, and no doubt more efficient than designs constructed on 

the basis of unrealistic assumptions.

3. Using proxy inform ation for missing data . We built a model that in­

corporated possible bias and heterogeneity in responses when some data 

are provided by proxies. We then developed an inferential procedure 

with small-sample repeated measures data involving proxy information. 

As expected, when the proxy and the observed data share the same co- 

variance structure, the resulting testing procedure is more powerful than 

the incomplete data method. When heterogeneity is present, this test­

ing procedure is not as powerful as incomplete data methods, especially 

when the missing proportion and thus the amount of proxy data is small, 

i.e., 20%. However, when the missing proportion increases to 50%, the 

method utilizing proxy is superior to the incomplete data method.

In addition, general conditions were obtained under which the use of 

proxy is nearly as efficient as when all data are actual. When the proxy 

and observed data share the same covariance matrix, using over 50% 

proxy information can still produce estimators that are at least 90% as
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efficient as those obtained when all data is actual.

4. M ultiple im putation approach for the missing data problem in 

repeated measurement designs. We proposed a multiple imputation 

strategy for the missing data problem in repeated measurement designs. 

This strategy performs reasonably well even when the sample size is small. 

The general conclusion is that, considering the work required, multiple 

imputation of missing data is not worthwhile in repeated measurement 

designs. The incomplete data method was found to be just as good as 

the imputation approach, without the extra work. However, as per the 

results from Chapter 4, whenever possible, proxy information should be 

used to obtain better and more powerful results.

6.2 Future direction

There are a number of issues that still need to be resolved. One of the main 

contributions of this thesis is the new knowledge gained about the adaptive 

construction of repeated measurement designs, which generate more efficient 

estimators for parameters of interest. However, more subjects will need to be 

involved in experiments before the proposed strategy becomes desirable and 

useful. The number of subjects required for a design depends on the level 

of heterogeneity among subjects. The more heterogeneous the subjects, the
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fewer the subjects required. In simulation studies conducted for this thesis, 

the required number of subjects was usually over 30.

We are working towards improving the allocation rules so that an efficient 

design can be generated without requiring an excessively large sample size. One 

possibility is to incorporate more information in the loss function by utilizing 

available demographic or prognostic factors.

We will also explore constructing adaptive designs under a mixture model, 

where the study population is composed of several populations, possibly with 

different means and different covariance matrices.

For the multiple imputation approach, we assumed that the missing data 

occurred at random. Further work is needed to examine the sensitivity of 

the proposed strategy to the violation of the assumed mechanism. Recently, 

methods based on pattern mixtures have generated much interest. We plan 

to extend our work to the non-randomly missing data situation. We will also 

compare our strategy to that using weighted estimating equations (Fitzmaurice 

et al., 1995; Robins et al., 1995; Rotnizky et al., 1998).

Finally, all analysis work in this thesis assumed that the data are from a 

multivariate normal distribution. The methods discussed might be extended 

to data from non-normal distributions, but first it will be necessary to explore 

the sensitivity of the proposed methods to violations of the model assumptions.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] Aigner, D. J. (1974) MSE dominance of least squares with errors-of- 

observation. Journal o f Econometrics, 2, 365-372.

[2] Anderson, T. W. (1957) Maximum likelihood estimators for a multivari­

ate normal distribution when some observations are missing. Journal of 

American Statistical Association, 52, 200-203.

[3] Armitage, P. (1975) Sequential Medical Trials. Oxford: Blackwell.

[4] Armitage, P. (1985) The search for optimality in clinical trials. Interna­

tional Statistical Review, 53, 15-36.

[5] Atkinson, A. C. (1982) Optimum biased coin designs for sequential clinical 

trials with prognostic factors. Biometrika, 69, 61-67.

[6] Barnard, J. O. and Rubin, D. B. (1999) Small-sample degrees of freedom 

with multiple imputation. Biometrika, 86, 4, 948-955.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[7] Barnow, B. S. (1976) The use of proxy variables when one or two inde­

pendent variables are measured with error. The American Statistician, 30, 

119-121.

[8] Bartlett, R. H., Roloff, D. W., Cornell, R. G., Andrews, A. F., Dil­

lon, P.W., and Zwischenberger, J. B. (1985) Extracorporeal circulation in 

neonatal respiratory failure: a prospective randomized study. Pediatrics 

76, 479-487.

[9] Bather, J. A. (1985) On the allocation of treatments in sequential medical 

trials. International Statistical Review, 53, 1-13.

[10] Brown, B. W. (1980) The crossover experiment for clinical trial. Biom et­

rics, 36, 69-79.

[11] Carriere, K. C. (1994a) Incomplete repeated measures data analysis in the 

presence of treatment effects. Journal o f the American Statistical Associ­

ation, 89, 680-686.

[12] Carriere, K. C. (1994b) Crossover designs for clinical trials. Statistics in 

Medicine, 13, 1063-1069.

[13] Carriere, K. C. (1997) Comparative study on missing data analysis meth­

ods. Unpublished manuscript.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[14] Carriere, K. C. (1999) Methods for repeated measures data analysis with 

missing values. Journal o f Statistical Planning and Inference, 77, 221-236.

[15] Carriere, K. C. and Reinsel, G. C. (1992) Investigation of dual-balanced 

crossover designs for two treatments. Biometrics, 48, 1157-1164.

[16] Carriere, K. C. and Reinsel, G. C. (1993) Optimal two-period repeated 

measurement designs with two or more treatments. Biometrika, 80, 924- 

929.

[17] Carriere, K. C. and Huang, R. (2000) Crossover designs for two-treatment 

clinical trials. Journal o f Statistical planning and Inference 87, 125-134.

[18] Carriere, K. C. and Huang, R. (2001) Traditional Paradigms in Pharma- 

coeconomics: Consideration for Cost-Effective Designs. In  Introduction to 

Applied Pharmacoeconomics. McGraw-Hill Medical Publishing Division. 

19-39.

[19] Cheng, C. S. and Wu, C. F. (1980) Balanced repeated measurements de­

signs (Corr: V ll p349). The Annals of Statistics, 8, 1272-1283.

[20] Christensen, W. F. and Rencher, A. C. (1997) A comparison of type I error 

rates an power levels for seven solutions to the multivariate Behrens-Fisher 

problem. Communication in Statistics, Simulation, 26 (4), 1251-1273.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[21] Cleophas, T.J.M. and Tavenier, P. (1994) Fundamental issues of choosing 

the right type of trial.American Journal o f Therapeutics, 1, 327-332.

[22] Cochran, W.G. and Cox, G.M. (1957) Experimental Designs, 2dn Edition. 

Wiley: New York.

[23] Cook, R. J. (1995) Interim analyses in 2x2 crossover trials. Biometrics, 

51, 932-945.

[24] Cook, R. J. (1996) Design considerations in crossover trials with a single 

interim analysis and serial patient entry. Biometrics, 52, 732-739.

[25] Dhrymes, P. J. (1978) Introductory Econometrics. Springer, New York.

[26] Diggle, P. J. (1988) An approach to the analysis of repeated measurements. 

Biometrics, 44, 959-971.

[27] Dorey, F. J., Little, R. J. A. and Schenker, J. L. (1993) Multiple im­

putation for threshold crossing data with interval censoring. Statistics in 

Medicine, 12, 1589-1603.

[28] Ebbutt, A. F. (1984) Three-period crossover designs for two treatments. 

Biometrics, 40, 219-224.

[29] Efron, B. (1971) Forcing a sequential experiment to be balanced. 

Biometrika, 58, 403-417.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[30] Efron, B. (1994) Missing data, Imputation, and the Bootstrap. Journal o f  

American Statistical Association, 89, 463-478.

[31] Efron, B. and Tibsharani, R. (1993) An introduction to the Bootstrap. 

London, Chapman and Hall.

[32] Engle, B. and Walstra, P. (1991) Increasing precision or reducing expense 

in regression experiments by using information from a concomitant vari­

able. Biometrics, 47, 13-20.

[33] Fay, R. E. (1991) A design-based perspective on missing data variance. 

Proceeding o f the 1991 annual research conference, U.S. Bureau of census, 

429-440.

[34] Fay, R. E. (1992) When are inferences from multiple imputation valid? 

ASA Proceedings of the Section on Survey Research Methods, 227-232.

[35] Fitzmaurice, G. M., Molenberghs, G. and Lipsitz, S. R. (1995) Regres­

sion models for longitudinal binary responses with informative drop-outs. 

Journal o f the Royal Statistical Society, B, 57, 691-704.

[36] Fleiss, J. L. (1989) A critique of recent research of the two-treatment 

cross-over design. Control Clinical Trials, 20, 237-243.

[37] Flournoy, N. and Rosenberger, W. F. (1995) Adaptive Design. Institute of 

Mathematical Statistics Lecture Notes-Monograph Series, Vol. 25.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[38] Frost, P. A. (1979) Proxy variables and specification bias. The Review o f 

Economics and Statistics, 61, 323-325.

[39] Gelfand, A. E. and Smith, A. F. M. (1990) Sampling-based approaches to 

calculating marginal densities . Journal o f the American Statistical A sso­

ciation, 85, 398- 409.

[40] Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation 

using multiple sequences (Disc: p483-501, 503-511). Statistical Science, 7, 

457- 472.

[41] Glynn, R. J., Laird, N. M. and Rubin, D. B. (1993) Multiple Imputation in 

Mixture Models for Nonignorable Nonresponse With Follow-ups, Journal 

o f the American Statistical Association, Vol. 88, No. 423. (Sep., 1993), pp. 

984-993.

[42] Grizzle, J. E. (1965) The two-period change-over design and its use in 

clinical trials (Corr: V30 p727). Biometrics, 21, 467- 480.

[43] Grootendorst, P., Feeny, D. and Furlong, W. (1997) Does it matter whom 

and how you ask? An investigation into inter- and intra-rater agreement 

in the 1996 Ontario Health Survey. Journal o f Clinic Epidemiology, 50, 

127-135.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[44] Hedayat, A. and Afsarinejad, K. (1975) Repeated measurements design, I. 

In A Survey of Statistical Designs and Linear Models, Ed. J. N. Srivastava, 

pp. 229-242. Amsterdam: North-Holland.

[45] Hedayat, A. and Afsarinejad, K. (1978) Repeated measurements design, 

II. The Annals o f Statistics, 6, 619-628.

[46] Hedayat, A. and Zhao, W. (1990) Optimal two-period repeated measure­

ments designs. The Annals o f Statistics, 18, 1805-1816.

[47] Heitjan, D. F. and Landis, J. R. (1994) Assessing secular trends in blood 

pressure: A multiple-imputation approach. Journal o f the American Sta­

tistical Association, 89, 750-759.

[48] Hogan, J. W. and Liard, N.M. (1997) Mixture models for the joint dis­

tribution of repeated measures and event time. Statistics in Medicine, 16, 

239-258.

[49] Jalukar, V., Funk, G. F., Christensen, A. J., Karnell, L. H. and Moran, P. 

J. (1998) Health states following head and neck cancer treatment: patient, 

health-care professional, and public perspectives. Health and Neck, 20, 

1998, 600-608.

[50] James, I. R. (1995) A note on the analysis of censored regression data by 

multiple imputation. Biometrics, 51, 358-362.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[51] Kershner, R. P. (1986) Optimal three-period two-treatment cross-over de­

signs with and without baseline readings. Proceedings o f the Biopharma- 

ceutical Section of the American Statistical Association, 151-160.

[52] Kershner, Ronald P. and Federer, Walter T. (1981) Two-treatment 

crossover designs for estimating a variety of effects. Journal o f American 

Statistical Association, 76, 612- 619.

[53] Kiefer, J. (1975) Optimal design: Variation in structure and performance 

under change of criterion. Biometrika, 62, 277- 288.

[54] Kim, S. J. (1992) A practical solution to the multivariate Behrens-Fisher 

problem. Biometrika, 79 (1), 171-176.

[55] Kong, A., Liu, J. S. and Wong, W. H. (1994) Sequential imputations 

and Bayesian missing data problems. Journal o f the American Statistical 

Association, 89, 278- 288.

[56] Kunert, J. (1983) Optimal design and refinement of the linear model with 

applications to repeated measurements designs. The Annals Statistics, 11, 

247- 257.

[57] Kunert, J. (1984) Optimality of balanced uniform repeated measurements 

designs. The Annals o f Statistics, 12, 1006- 1017.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[58] Kunert, J. (1985) Optimality repeated measurements designs for corre­

lated observations and analysis by weighted least squares. Biometrika, 72, 

375-389.

[59] Kunert, J. (1991) Cross-over designs for two treatments and correlated 

errors. Biometrika, 78, 315-324.

[60] Kushner, H. B. (1997) Optimality and efficiency of two-treatment repeated 

measurements design. Biometrika, 84, 455-468.

[61] Kushner, H. B. (2000) Allocations rules for adaptive repeated measure­

ments designs. Unpublished manuscript.

[62] Laska, E., Meisner, M. and Kushner, H. B. (1983) Optimal crossover de­

signs in the presence of carryover effects. Biometrics, 39, 1087-1091.

[63] Laska, E. M. and Meisner, M. (1985) A variational approach to optimal 

two-treatment crossover designs: Application to carryover-effect models. 

Journal o f the American Statistical Association, 80, 704- 710.

[64] Li, K. H., Raghunathan, T. E. and Rubin, D. B. (1991) Large-sample sig­

nificance levels from multiply imputed data using moment-based statistics 

and an F  reference distribution. Journal o f the Am erican Statistical As­

sociation, 86, 1065-1073.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[65] Li, K. H., Meng, X. L., Raghunathan, T. E. and Rubin, D. B. (1991) 

Significance levels from repeated p-values with multiply-imputed data. 

Statistica Sinica , 1, 65-92.

[66] Little, R. J. A. and Rubin, D. B. (1987) Statistical Analysis with Missing 

Data. New York: John Wiley.

[67] Maddala, G. S. (1977) Econometrics. McGraw-Hill: New York.

[68] Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979) Multivariate Analysis. 

Academic Press.

[69] Matthews, J. N. S. (1987) Optimal crossover designs for the comparison 

of two treatments in the presence of carryover effects and autocorrelated 

errors. Biometrika, 74, 311- 320.

[70] Matthews, J. N. S. (1988) Recent developments in crossover designs. In­

ternational Statistical Review, 56, 117- 127.

[71] Matthews, J. N. S. (1994a) Multi-period crossover trials. Statistical Meth­

ods in Medical Research, 3, 383-405.

[72] Matthews, J. N. S. (1994b) Modelling and optimality in the design of 

crossover studies for medical applications. Journal o f Statistical Planning 

and Inference, 42, 89-108.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[73] McCallum, B. T. (1972) Relative asymptotic bias from errors of omission 

and measurement. Econometrica, 40, 757-758.

[74] McDonald, R. P. and Swaminathan, H. (1973) A simple matrix calculus 

with applications to multivariate analysis. General System s, XVIII, 37-54.

[75] Meng, X. L. (1994) Multiple imputation with uncongenial sources of input. 

Statistical Science, 9, 538-574.

[76] Meng, X. L. and Rubin, D. B. (1992) Performing likelihood ratio tests 

with multiply-imputed data sets. Biometrika, 79, 103-111.

[77] Miller, R. G. (1974) The Jackknife-A review. Biometrika, 61, 1-17.

[78] Morrison, D. F. (1970) Expectations and Variances of maximum likelihood 

estimates of the multivariate normal distribution parameters with missing 

data. Technical Report No. 1, Department of Statistics and Operations 

Research, University of Pennsylvania.

[79] Ohtani, K. (1981) On the use of a proxy variable in prediction: An MSE 

comparison. The Review o f Economics and Statistics, 63, 627- 629.

[80] Parsons, S. K., Barlow, S. E., Levy, S. L., Supran, S. E. and Kaplan, S. 

H. (1999) Health-related quality of life in pediatric bone marrow trans­

plant survivors: According to whom? International Journal o f Cancer: 

Supplement, 12, 46-51.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[81] Patel, H. I. (1985) Analysis of incomplete data in a two-period crossover 

design with reference to clinical trials. Biometrika, 72, 411-418.

[82] Patel, H. I. (1991) Analysis of Incomplete data from a clinical trial with 

repeated measurements. Biometrika, 78, 609-919.

[83] Pepe, M. S. (1992) Inference using surrogate outcome data and a valida­

tion sample. Biometrika, 79, 2, 355-365.

[84] Pepe, M. S., Reilly, M. and Fleming, T. R. (1994) Auxiliary outcome data 

and the mean score method. Journal o f Statistical Planning and Inference, 

42, 137-160.

[85] Pocock, S. J. (1979) Allocation of patients to treatments in clinical trials. 

Biometrics, 35, 183-197.

[86] Pocock, S. J., Simon, R. (1975) Sequential treatment assignment with 

balancing for prognostic factors in the controlled clinical trial. Biom etrics, 

31, 103-115.

[87] Reilly, M. and Pepe, M. S. (1995) A mean score method for missing and 

auxiliary covariate data in regression model. Biometrika, 82, 2, 299-314.

[88] Richardson, B. A. and Flack, V. F. (1996) The analysis of incomplete 

data in the three-period two-treatment cross-over design for clinical trials. 

Statistics in Medicine, 15, 2, 127-143.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[89] Robins, J. M., Rotnizky, A. and Zhao, L. P. (1995) Analysis of semipara- 

metric regression models for repeated outcomes in the presence of missing 

data. Journal o f the American Statistical Association, 90, 106-121.

[90] Rosenberger, W. F. and Lachin, J. M. (1993) The use of response-adaptive 

designs in clinical trials. Controlled Clinical Trials, 14, 471-484.

[91] Rosenberger, W. F. (1995) Adaptive designs in clinical trials: some is­

sues with emphasis on asymptotic inference. Adaptive Designs. Institute 

of Mathematical Statistics Lecture Notes-Monograph Series, Vol. 25.

[92] Rotnizky, A., Robins, J. M. and Scharfstein, D. O. (1998) Semiparametric 

regression for repeated outcomes with nonignorable nonresponse. Journal 

o f the American Statistical Association, 93, 1321-1339.

[93] Rubin, D. B. (1976) Inference and missing data. Biometrika, 63, 581-592.

[94] Rubin, D. B. (1979) Illustrating the use of multiple imputations to handle 

nonresponse in sample surveys. Proceedings o f 42nd Session o f the Inter­

national Statistical Institute, Book 2, 517-532.

[95] Rubin, D. B. (1987) Multiple Imputation fo r  Nonresponse in Surveys. New 

York: John Wiley.

[96] Rubin, D. B. (1998) Multiple Imputation after 18+ years. Journal o f the 

American Statistical Association, 91, 473-489.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[97] Rubin, D. B. and Schenker, N. (1986) Multiple imputation for interval esti­

mation from simple random samples with ignorable nonresponse. Journal 

o f the American Statistical Association, 81, 366- 374.

[98] Rubin, D. B. and Schenker, N. (1987) Interval estimation from multiple 

imputed data: A case study using agriculture industry codes. Journal o f 

Official Statistics, 3, 375-387.

[99] Rubin, D. B. and Schenker, N. (1991) Multiple imputation in health-care 

data bases: An overview and some applications. Statistics in Medicine, 

10, 585-598.

[100] Schafer, J.L. (1997) Analysis o f Incomplete Multivariate Data. Chapman 

& Hall.

[101] Schenker, N., Treiman, D. J. and Widman, L. (1993) Analyses of public 

use decennial census data with multiple imputed industry and occupation 

codes. Applied Statistics, 42, 545-556.

[102] Senn, S. (1993) Cross-over Trials in Clinical Research. Chichester: Wiley.

[103] Simon, R. (1977) Adaptive treatment assignment methods and clinical 

trials. Biometrics, 33, 743-749

[104] Simon, R. (1991) A decade of progress in statistical methodology for 

clinical trials. Statistics in Medicine, 10, 1789-1817.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[105] Tanner, M. A. and Wong, W. H. (1987) The calculation of posterior dis­

tributions by data augmentation (C/R: p541-550). Journal o f the A m eri­

can Statistical Association, 82, 528-540.

[106] Taylor, J. M. G., Munoz, A., Bass, S. M., Saah, A., Chmiel, J. S. and 

Kingsley, L. A. (1990) Estimating the distribution of times from HIV 

seroconversion to AIDS using multiple imputation. Statistics in Medicine, 

9, 505-514.

[107] Trenkler, G. and Stahlecker, P. (1996) Dropping variables versus use of 

proxy variables in linear regression. Journal of Statistical Planning and  

Inference, 50, 65-75.

[108] Wei, L.J. (1979) The generalized Polya’s urn design for sequential medical 

trials. The Annals of Statistics, 7, 291-296.

[109] Wei, L. J. and Durham, S. (1978) The randomized play-the-winner rule 

in medical trials. Journal o f the American Statistical Association, 73, 840- 

843.

[110] Wickens, M. R. (1972) A note on the use of proxy variables. Economet- 

rica, 40, 759-761.

[111] Williams, E. J. (1949) Experiment designs balanced for the estimation 

of residual effects. Australian Journal o f Scientific Research, A2, 351-363

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[112] Yao, Q., Wei, L. J. and Hogan J. W. (1998) Analysis of incomplete 

repeated measurements with dependent censoring times. Biometrika, 85, 

139-149.

[113] Zelen, M. (1969) Play-the-winner rule and the controlled clinical trial. 

Journal of the American Statistical association, 64, 131-146.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


