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Abstract

We study the ground state physics of a helium-4 monolayer adsorbed onto graphene

substrate through means of quantum Monte Carlo simulations. At low temperatures,

helium-4 is well-known to undergo a superfluid transition. In the presence of a mod-

ulating potential from corrugated substrates like graphene however, the situation is

less clear. This thesis is primarily aimed at addressing existing controversy in the

literature about whether a metastable superfluid state exists when the system is a

commensurate C1/3 crystal. Starting from a detailed microscopic model, we conduct

first principles quantum Monte Carlo simulations of the system at both finite and zero

temperature. Our results indicate the absence of a superfluid signal in the ground

state crystal, with no evidence of a low-lying fluid state.
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Preface

The work presented in this thesis constitutes the original research of Sam Yu under

the supervision of Professor Massimo Boninsegni. The main physical results of the

research work described here, mainly presented in Chapter 3, are summarized in a

manuscript that has been submitted for publication to Communications in Theoretical

Physics. It is available in the ArXiv public repository (https://arxiv.org/abs/2403.02033).
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Chapter 1

Introduction

Quantum mechanics (QM) is one of the most successful theories in physics, describing

physical phenomena taking place at atomic and molecular scales. Despite its famously

non-intuitive nature, the utility of QM cannot be overstated as many of its predictions

are undoubtedly in amazing agreement with experiment. Several major technological

advances in the twentieth century would not be possible without QM, such as the

invention of the transistor, heralding in the age of computers.

Given that QM is such a successful theory, there are now two distinct lines of

inquiry one may take given QM as their bedrock. The first route would be to ask

what physics takes place at even smaller length scales than molecules and atoms.

Are the protons, neutrons, and electrons which make up an atom composed of even

smaller, more fundamental constituents? The wave-like properties of particles in

QM are emphasized by the de-Broglie relation λ = h/p where λ is the particle’s

de-Broglie wavelength and p is its momentum. Therefore, collisions in scattering

experiments must occur within highly relativistic regime of energies, which is needed

to provide sufficient spatial resolution for observing more fundamental particles in the

collision products. Investigations along this line mean that quantum theory has to be

reconciled with Einstein’s theory of special relativity, which led to the development

of quantum field theory (QFT) and the Standard Model of elementary particles in

the second half of the twentieth century.
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On the other hand, one can think of larger scale structure and consider what

happens when systems of interacting quantum particles are put together, which can

range from a few particles or macroscopically many in the thermodynamic limit. This

is the quantum many-body problem and a subject of condensed matter physics. It is

a very hard problem in general due to the exponential scaling of the Hilbert space’s

size with the number of particles, with strong interactions rendering it impossible to

utilize perturbation theory.

However, in spite of the problem’s sheer complexity, great progress has been made

towards the development of computational methods, which prove highly useful when

analytical approaches fail. Interest in such methods has been growing in tandem

with increasing computing power over the years. One method in particular, quantum

Monte Carlo (QMC), has been indispensable towards the study of systems of bosons,

allowing one to compute their thermodynamic properties accurately and produce the-

oretical predictions that are readily comparable to experiment. A great advantage of

quantum Monte Carlo is its flexibility; if one can write down the quantum-mechanical

Hamiltonian describing a many-body system, then there’s a good chance that it is

applicable, with some notable exceptions1.

Superfluidity, an example of a macroscopic quantum phenomenon, is one fasci-

nating character of Bose systems which can be readily studied with quantum Monte

Carlo. Certain substances acquire superfluid properties at low temperatures and

become capable of flowing frictionlessly without dissipation of their kinetic energy.

Elucidating the nature of superfluidity is of marked interest to theorists and ex-

perimentalists because of its connection with superconductivity, as the current in a

superconductor can be thought of as a charged superfluid.

The first substance discovered to have superfluid properties was liquid helium-4

by Kapitza [1] in 1937, as well as independently by Allen and Misner [2] in the same

year, its superfluid phase occurring when it is cooled below a critical temperature of

1Systems of fermions, as we will see later in this thesis.
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Tλ = 2.17K. The substance remains a liquid all the way down to zero temperature,

as the zero-point motion of its atoms is enough to overcome the weak interatomic

interactions and disrupt the formation of a crystal. Helium-3 on the other hand, can

also become a superfluid, albeit at a much lower temperature of ∼ 1 mK. This is due

to the fact that before transitioning to the superfluid phase, helium-3 atoms pair up to

form composite bosons called Cooper pairs, while the helium-3 atoms by themselves

are fermions owing to the spins of their nuclei. The Cooper pairing mechanism un-

derlying the superfluid transition of helium-3 demonstrates an intriguing connection

between superfluidity and Bose-Einstein condensation.

Due to the structural simplicity of helium-4 atoms, which can be regarded as point-

like bosonic particles, they provide a convenient testbed for simulating more exotic

kinds of superfluids, such as those occurring in lower dimensions. The dimensionality

of the space is fundamentally important to condensed matter physicists, as it sets

the stage for exotic phases of matter that only emerge in lower dimensions. One

striking example is that of anyonic quasiparticle excitations, which only exist in two

dimensions and exhibit parastatistics : the many-body wavefunction acquires a com-

plex phase eiθ when any two anyons are exchanged, as opposed to the more traditional

quantum statistics obeyed by bosons and fermions in 3D.

An experimentally convenient way of engineering effectively 2D systems is through

adsorbing its constituents onto attractive substrates, with a range of different be-

haviors exhibited depending on the kind that is used. For example, when helium-4

atoms are adsorbed onto weakly-binding substrates such as lithium, a superfluid film

is formed whose thickness grows continuously as a function of the chemical potential

[3–5]. Another commonly studied substrate is graphite, which is one of the most

strongly attractive substrates available. An allotrope of carbon, it is made up of

several graphene layers stacked on top of each other and held together by van der

Waals forces, each graphene sheet comprising of carbon atoms arranged into a hon-

eycomb lattice. When adsorbed onto graphite substrate at low densities, helium-4
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atoms form an atomically-thin monolayer over the graphite [6–9]. As more helium

atoms are successively adsorbed, multiple distinct layers can be formed, each con-

stituting essentially independent 2D systems [10–12]. At low temperatures, helium-4

films on graphite exhibit a variety of different crystal phases, both commensurate and

incommensurate with respect to the graphite lattice. The first two helium-4 layers

are known to be crystalline upon completion [13], while the third layer and beyond

are superfluid [11, 14]. By stacking up enough layers, one can study the transition of

the system’s physics from two to three dimensions.

In general, helium films on graphite provide a flexible platform for realizing a vari-

ety of condensed matter systems, arising from the ability for the graphite surface to

be preplated. For example, preplating the substrate with helium-4 before subsequent

adsorption of helium-3 allows for the study of 2D Fermi systems. If the graphite is

first preplated with a solid helium-4 bilayer to create a composite substrate, then

the adsorbed helium-3 bilayer film on top will exhibit heavy fermion behavior and

quantum criticality [15–17]. A helium-3 fluid film grown over graphite preplated with

a deuterium or helium-4 monolayer exhibits a density-tuned Mott transition [18, 19].

Solid helium-3 monolayers on graphite on the hand yield a playground for examining

two-dimensional frustrated magnets [20–22].

Another fascinating state of matter which can be potentially manifested is a 2D

’supersolid’, where the helium atoms crystallize over the graphite, yet quantum ex-

changes between atoms in different crystal sites permit a global superfluid response.

Although this is not a true supersolid phase [23] because translational symmetry

is broken by an external modulating potential rather than through interatomic in-

teractions alone, such a phase would be intriguing since it combines two seemingly

contradictory properties. Following reports of a non-classical moment of inertia in

solid helium-4 from torsional oscillator experiments conducted by Kim and Chan

[24], considerable attention has been dedicated towards the search for supersolidity

in helium-4 crystals from first-principles computational studies with QMC. However,
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previous numerical studies of the first and/or second helium layer over graphite have

not found evidence of such a phenomenon [25], unless the helium crystal is doped

with vacancies [26].

A graphene sheet by itself has a somewhat weaker (∼10%) attraction than graphite

[27], but otherwise, the graphene-induced potential landscape has essentially the same

corrugation as that from a graphite substrate. Previous QMC calculations [26, 28]

show that, despite the reduced binding energy, the equilibrium crystal phases for the

first two helium layers on graphene are identical to those found for graphite [25].

It is generally accepted that a helium-4 monolayer has an equilibrium C1/3 crystal

phase on graphene at an areal density of 0.0636 Å−2, wherein one third of the hexago-

nal centers are occupied by a helium atom. There is some controversy however, about

whether a superfluid signal exists in this state that can be detected experimentally,

as several groups have made conflicting predictions, with some finding no evidence

of superfluidity [28], others finding a small yet finite fraction [26], or a long-lived,

metastable liquid that is energetically competitive with the solid phase [27].

The goal of this thesis is to address this controversy by conducting our own quan-

tum Monte Carlo simulations of a helium monolayer on top of graphene, starting

from a realistic, microscopic model of the system. The remainder of this thesis is

organized as follows. First, the methodology of quantum Monte Carlo is introduced

after a brief review of the path integral formulation of quantum statistical mechanics.

The effects of particle indistinguishability and differences between finite-temperature

and zero-temperature methods are elaborated upon. Estimators for the energy, pair

correlation function, structure factor, and superfluid fraction are then derived. Fi-

nally, we apply the developed methodology to analyze the superfluid content of a

helium monolayer film adsorbed onto graphene and outline our conclusions.
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Chapter 2

Background

We will now describe the computational methodology we utilize for performing the

calculations in this thesis. As a road-map for how this chapter is structured, in Sec-

tion 2.1 we formulate quantum statistical mechanics in terms of imaginary-time path

integrals, necessitating the evaluation of very high-dimensional integrals to obtain

expectation values. In Section 2.2, we show how to evaluate these integrals through

Monte Carlo methods. In Section 2.3, we incorporate the effects of particle indis-

tinguishability into our methodology through a permutation sampling scheme. In

Section 2.4, we discuss two important zero-temperature variants of quantum Monte

Carlo: Diffusion Monte Carlo (DMC) and Path Integral Ground State (PIGS), which

are important towards the methodological aspects of our work on the helium-graphene

problem. Finally, in Sections 2.5 and 2.6 we derive estimators for physical observ-

ables and consider a few details regarding the computational implementation of our

methodology. All of the energies we will report are related to the temperature param-

eter of our simulations via proportionality constant kB. Henceforth, for the remainder

of this thesis we shall set kB = 1 so that all energies are expressed in units of Kelvin.
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2.1 Path Integral Formulation of Quantum Statis-

tical Mechanics

We will begin by briefly reviewing some foundational concepts from quantum statis-

tical mechanics. Consider a system of N particles in thermal equilibrium with a heat

bath at temperature T . It is a fundamental result from quantum statistical mechanics

that the system’s state ρ̂ is described by the thermal density matrix

ρ̂ = e−βĤ/Z (2.1)

where Z = Tr
(︂
e−βĤ

)︂
is called the partition function and β = T−1 is the inverse

temperature. The thermal expectation value of any observable Ô characterizing the

system is given by ⟨︂
Ô
⟩︂

= Tr
(︂
ρ̂Ô
)︂

(2.2)

which is the primary quantity that quantum Monte Carlo aims to calculate.

For now, let us treat the particles as distinguishable. The positions of all particles

can be written into a single many-body position as R = r1 · · · rN , such that |R⟩ is the

state constructed from the tensor product of position eigenstates |ri⟩ for individual

particles, the set of which {|R⟩} provides an orthonormal basis of the joint Hilbert

space for expanding the trace⟨︂
Ô
⟩︂

= Z−1

∫︂
dR ⟨R| e−βĤÔ |R⟩ =

∫︁
dR dR′ ρ(R,R′; β) ⟨R′|O |R⟩∫︁

dR ρ(R,R, β)
(2.3)

where the imaginary time propagator is defined as

ρ(R,R′; β) ≡ ⟨R| e−βĤ |R′⟩ (2.4)

If β = it/ℏ, then the operator exponential would just be the ordinary time evolution

operator over time t. Thus, it is said that ρ(R,R′; β) gives the probability amplitude

of transitioning from state |R′⟩ to |R⟩ over the ’imaginary time’ interval βℏ, hence

the moniker.
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Figure 2.1: Schematic depiction of a configuration X containing the world lines of
N = 3 particles with Trotter number M = 3. Left: Vertical axis is taken to be
imaginary time so that the β-periodicity is manifest. Right: Particle world lines in
imaginary time with both axes representing the spatial dimensions. β-periodicity in
imaginary time implies that the world lines are closed: they are ’ring polymers’.

To proceed, it is useful to write Eqs. (2.4) and (2.3) as path integrals through

a procedure called time-slicing. This follows by first noting e−βĤ = (e−ϵĤ)M where

β = Mϵ and M is called the Trotter number. Then, by inserting M − 1 resolutions

of the identity 1 =
∫︁

dR |R⟩ ⟨R|, we get

ρ(R,R′; β) =

∫︂
dR1 · · · dRM−1 ⟨R| e−ϵĤ |R1⟩ · · · ⟨RM−1| e−ϵĤ |R′⟩

=

∫︂
dR1 · · · dRM−1

M−1∏︂
j=0

ρ(Rj,Rj+1; ϵ) (2.5)

where R = R0 and RM = R′. The propagator is given by the sum over all possible

“discretized” many-particle trajectories connecting R and R′. We can do the same

for the partition function and obtain

Z =

∫︂
dR ρ(R,R; β) =

∫︂
dR0dR1 · · · dRM−1

M−1∏︂
j=0

ρ(Rj,Rj+1; ϵ) (2.6)

where now R = R0 ≡ RM . Thus, the partition function is calculated by summing

over all possible closed many-particle trajectories in the path integral formalism.

Alternatively, Eqs (2.5) and (2.6) could have been obtained as a consequence of the
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propagator’s convolutional property

ρ(R,R′; β1 + β2) =

∫︂
dR′′ ρ(R,R′′; β1)ρ(R′′,R′; β2) (2.7)

For ease of notation, from now on let us denote the world line configuration X =

R0R1 · · ·RM as a collection of time slices ordered according to imaginary time, rep-

resenting a β-periodic many-particle path in imaginary time. A schematic depiction

of a world line configuration is given in Fig. 2.9.

Now, the thermal expectation value of any observable Ô can be recast as the

integral of some weight function w(X) (that is associated with Ô) with respect to a

probability distribution π(X) over the space of paths⟨︂
Ô
⟩︂

=

∫︂
dX π(X)w(X) (2.8)

where the probability distribution is given by

π(X) =

∏︁M−1
j=0 ρ(Rj,Rj+1; ϵ)∫︁

dX
∏︁M−1

j=0 ρ(Rj,Rj+1; ϵ)
(2.9)

over the space of closed world line configurations, i.e. R0 ≡ RM in X. If Ô is

a function of only the particle coordinates, i.e. it is a structural observable, then

⟨R| Ô |R′⟩ = O(R)δ(R − R′), which implies w(X) = O(Rk). Due to the cyclical

property of trace, any time slice Rk of X can be chosen as the argument to the

weight function, such as the middle time slice RM/2. Inspecting Eq. (2.9), calculating

thermal expectation values requires the evaluation of a very high-dimensional integral

over a total of 3NM coordinates. We will tackle the computation using the Monte

Carlo methods discussed in Section 2.2.

The primary benefit of converting to a path integral representation is that thermal

expectation values are now expressed in terms of “short-time” propagators ρ(R,R′; ϵ).

To this end, let us assume that the Hamiltonian describing the system is separable

into a kinetic term, as well as a potential term that is only a function of position:

Ĥ = K̂ + V̂ . In position space, it is given by

H = −λ
N∑︂
i=1

∇2
i + V (R) (2.10)
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where λ = ℏ2/2m and m is the mass of the particle species considered. The strat-

egy then is to exploit the smallness of parameter ϵ by substituting some perturbative

approximation for ρ(R,R′; ϵ). The most commonly known approximation is the prim-

itive approximation, which arises from applying the Suzuki-Trotter formula

e−ϵĤ = e−ϵK̂e−ϵV̂ + O(ϵ2) (2.11)

We substitute this expression into Eq. (2.4) and insert a complete set of position

eigenstates between the exponentials. Evaluating the integral yields the short-time

propagator

ρ(R,R′; ϵ) = ρF (R,R′; ϵ)e−ϵV (R′) + O(ϵ2) (2.12)

in the primitive approximation, where

ρF (R,R′; ϵ) = ⟨R| e−ϵK̂ |R′⟩ (2.13)

is the propagator for a system of free particles, i.e. an ideal gas. For an ideal gas,

the momenta of the particles are good quantum numbers. Therefore, it is convenient

to insert a complete set of eigenstates {|P ⟩} of the operator P̂ (which collects the

momenta of each particle) into Eq. (2.13). Since the momentum eigenstates are plane

waves in position space, Eq. (2.13) becomes the Fourier transform of a Gaussian.

Evaluating the transform gives

ρF (R,R′; ϵ) =
1

(4πλϵ)3N/2
e−

(R−R′)2
4λϵ (2.14)

which is again a Gaussian. The full propagator in the primitive approximation is then

ρ(R,R′; β) ∝
∫︂

dR1 · · ·RM−1 exp

(︄
−

M−1∑︂
j=0

[︃
(Rj+1 −Rj)

2

4λϵ
+ ϵV (Rj+1)

]︃)︄
(2.15)

By taking the continuum limit (M → ∞) we get

Z =

∫︂
dR ρ(R,R; β) ∝

∫︂
DR(τ) e−SE [R(τ)]/ℏ (2.16)
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Figure 2.2: System of two ring polymers with beads connected with springs, and an
’iso-time’ potential coupling together beads on the same time slice (shown as the red
dotted lines). The larger that the particle masses are, the stiffer the springs, reducing
the polymer sizes. In the world-line picture, the size is a measure of the particle’s
quantum delocalization. Thus, larger masses imply that the system behaves more
classically.

where DR is an integration measure summing over all closed imaginary time paths

and SE is called the Euclidean action, given by

SE[R(τ)] =

∫︂ βℏ

0

dτ

(︄
N∑︂
i=1

m

2

(︃
dRi

dτ

)︃2

+ V (R)

)︄
(2.17)

Based on Eq. (2.16), the imaginary time paths which minimize the action will con-

tribute the most to the partition function. The first term in Eq. (2.17) represents the

kinetic energy in imaginary time and favors paths which have less curvature. On the

other hand, the potential energy term favors localizing the world lines within regions

of lower potential energy, which necessarily induces curvature in the paths for them

to occupy a restricted volume. Therefore, the shapes of the imaginary time world

lines in R(τ) are dictated by the competition between the kinetic and potential terms

in the action.

Interestingly, it should be noted that the partition function given in Eq. (2.16)

with M finite exactly corresponds to the partition function of a classical system of
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polymers with beads connected by springs with spring constant (4λϵ)−1, albeit, with

a peculiar “iso-time” interaction potential between polymers only acting between

beads on the same time slice. Keeping this correspondence in mind, we often refer to

positions along world lines as “beads” and the single-particle propagators connecting

positions along world lines as “links”. A depiction of a two polymer system is shown

in Fig. 2.2.

The primitive approximation (Eq. (2.12)) is the simplest approximation available

for the short-time propagator, having a error term that is quadratic in ϵ at leading

order. For better performance, one may use higher-order approximations of the short-

time propagator. For example, a second-order “Trotterization” of e−ϵĤ = e−ϵ(K̂+V̂ ) is

given by

e−ϵĤ = e−ϵV̂ /2e−ϵK̂e−ϵV̂ /2 + O(ϵ3) (2.18)

Substituting into Eq. (2.4), we obtain the following short-time propagator

ρ3(R,R
′; ϵ) = e−ϵ(V (R)+V (R′))/2ρF (R,R′; ϵ) + O(ϵ3) (2.19)

For the calculations performed in this thesis, we use the following fourth-order ap-

proximation for the propagator taken from Refs. [29, 30]:

ρ4(Rj,Rj+1; ϵ) = ρF (Rj,Rj+1; ϵ) exp(−ϵU(Rj))

U(Rj) =
2V (Rj)

3
+ Ṽ (Rj)

Ṽ (Rj) =

{︄
2V (Rj)

3
+ 2λϵ2

9

∑︁N
i=1(∇iV (Rj))

2 j is odd

0 j is even

(2.20)

High-order approximations with errors better than or equal to O(ϵ5) can also be ob-

tained [31, 32], but tend to be difficult to implement because they involve complicated

expressions with layers of nested commutators between K̂ and V̂ or problematic neg-

ative imaginary-time terms. Thus, fourth-order propagators are most commonly used

in the algorithms of present day studies.
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2.2 The Monte Carlo Method

In order to calculate thermal expectation values, we must calculate very high dimen-

sional integrals over the system’s configuration space. This is not surprising, given

the rapid scaling of microscopic degrees of freedom with the number of particles in

our system. It turns out that the problem of computing expectation values lends it-

self naturally to Monte Carlo methods, which are stochastic methods that were first

pioneered by scientists at Los Alamos Laboratory during the Second World War for

calculating neutron diffusion out of the cores of thermonuclear weapons [33]. The

moniker ’Monte Carlo’ was coined by physicist Stanislaw Ulam, one of the main de-

velopers of the method. It arose from the need for a secret code name for the project

and derives from the Monte Carlo casino in Monaco, inspired by the gambling habits

of Ulam’s uncle. In this section, we will introduce the Monte Carlo method as a

means for evaluating high-dimensional integrals, drawing from Ref. [34].

2.2.1 Monte Carlo Integration

One of the simplest manifestations of a Monte Carlo method is for integrating single-

variable functions. Suppose we want to numerically evaluate I =
∫︁ b
a

dx f(x) for

some well-behaved function f(x). Typically, one integrates f(x) numerically through

quadrature: by taking equally spaced points over the interval and constructing a

Riemann sum. Another way is through sampling N uniformly-random points xi over

the interval and evaluating the Monte Carlo estimator

Ĩ(N) =
(b− a)

N

N∑︂
i=1

f(xi) ≈ I (2.21)

which is stochastic by nature. However, it can be shown Ĩ(N) is an unbiased esti-

mator, i.e. its expected value exactly equals I. The proof follows from the fact that

⟨f(xi)⟩ = 1
b−a

∫︁ b
a
f(x) dx for all 1 ≤ i ≤ N , i.e. the expected value of f(xi) is simply
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its average value over the interval. By linearity of expectation, we have⟨︂
Ĩ(N)

⟩︂
=

(b− a)

N

N∑︂
i=1

⟨f(xi)⟩ = I (2.22)

as expected. To assess the error in Ĩ(N), we want an idea of the dispersion of Ĩ(N)

about its expected value. By computing the variance in the estimator, it is found

that

σ2 =
⟨︁
I2
⟩︁
− ⟨I⟩2 = αN−1 (2.23)

where α is a constant dependent on a, b, and f but not on N . In other words, the

characteristic length scale for fluctuations of Ĩ(N) away from I is ∝ N−1/2. On the

other hand, for standard numerical integration (quadrature) involving equidistant

values of xi, the error is O(hk) where k ≥ 1 is dependent on the integration scheme

used and h is the separation between adjacent points.

Let us compare the error scaling between these two methods more closely. Suppose

that we are integrating f over a d-dimensional hypercube with side-length L, then

N = (L/h)d implies hk = LN−k/d. So, we see that quadrature has an error scaling

∝ N−k/d while the error of the Monte Carlo estimator always scales as ∝ N−1/2,

independent of dimension. Therefore, as long as the dimensionality of the space is

high enough such that d > 2k, Monte Carlo integration is more favorable in terms

of computational efficiency. This makes Monte Carlo methods the preferred choice

when tackling integrals over very high dimensional spaces.

2.2.2 Markov Chain Monte Carlo

We want to formulate our problem of computing high-dimensional configuration-space

integrals such that it is amenable to Monte Carlo methods. However, directly adopt-

ing the scheme described in the previous section does not quite work. Typically, the

significant contributions come from small regions in the integration domain while be-

ing negligible outside. Therefore, the bulk of the uniformly sampled points fall outside

of these significant regions where the integrand vanishes, leading to large statistical
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errors. If we knew the locations of these significant regions, then we could modify

our sampling distribution to favor sampling points from these regions, a technique

called importance sampling. Unfortunately, we typically do not know a priori where

the significant regions are.

There is however an elegant solution, which is to implement importance sampling

through means of a guided random walk in configuration space that preferentially

visits regions of importance. To do this, the guided random walk is represented as a

Markov chain, which is a sequence of configurations {Xi}Ni=1 such that the probability

of the sequence is

P (X1, X2, ..., XN) = P (X1)T (X1 → X2) · · ·T (XN−1 → XN) (2.24)

where T (X → X ′) is a matrix containing the transition probabilities between each

pair of states and P (X1) is the probability of having the initial configuration X1,

which we set to 1 for simplicity. In other words, the probability of sampling the next

configuration X ′ only depends on the last state X through T (X → X ′), oblivious to

the full history of the chain. Thus, Markov chains are said to be memoryless.

Remarkably, as long as the Markov chain is aperiodic and connected, then in the

limit that N → ∞, the sampled configurations will approach those sampled from some

unique probability distribution P (X), termed the stationary distribution. To further

elaborate, aperiodic means that the probability of the chain revisiting a configuration

after n steps is non-zero for all n, while connectedness means that every configuration

is reachable from every other configuration within a finite number of steps. Together,

these two properties imply the chain is ergodic, loosely meaning that the chain visits

all possible configurations given a sufficient amount of time. Intuitively, if the Markov

chain can explore any other possible configuration in statistically the same way no

matter where it starts from, then the chain always “forgets” the initial configuration

in the long run due the memoryless property. The situation is analogous to a system

reaching thermal equilibrium in statistical mechanics, at which point all information

15



about the initially prepared state is erased (except for conserved quantities), and the

system can be described by a universal (Boltzmann) probability distribution.

Our goal is to tune the transition matrix T (X → X ′) such that the chain converges

to a stationary distribution equal to π(X) given by Eq. (2.9), so that we can approxi-

mate thermal expectation values as statistical averages over generated configurations

from the chain. To find out what form T (X → X ′) needs to take, a useful result is

first introduced. Denote the state index as t and P (X, t) as the probability of having

Xt = X in the chain {Xi}Ni=1 for 1 ≤ t ≤ N . Then

P (X, t+ 1) =
∑︂
X′

T (X ′ → X)P (X ′, t) (2.25)

is the Chapman-Kolmogorov equation. The stationarity condition thus implies that

there exists a probability distribution P (X) such that P (X) ≡ P (X, t) = P (X, t+ 1)

as the probability distribution is unchanging. We have then that∑︂
X′

T (X ′ → X)P (X ′) =
∑︂
X′

T (X → X ′)P (X) (2.26)

which essentially states that the flux of probability into and out of X must balance

each other for steady-state invariance of P (X). For a given choice of T (X → X ′),

the stationary distribution P (X) is dictated such that the probability conservation

law is fulfilled. Let us postulate that T (X → X ′) and P (X) satisfy a even stronger

condition at equilibrium

T (X ′ → X)P (X ′) = T (X → X ′)P (X) (2.27)

for all pairs X,X ′ ∈ S. This condition is known as detailed balance, stating that

the probability flows between each pairs of states X,X ′ cancel each other out. It is

obvious that this condition implies the previous ’global’ conservation law. Hence, as

long as T (X → X ′) satisfies detailed balance involving P (X), the chain will converge

to P (X) as its stationary distribution.

For the Monte Carlo calculations in this thesis, we use the Metropolis algorithm,

which corresponds with writing the transition probability T (X → X ′) as the product
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of a proposal probability G(X → X ′) and acceptance probability A(X → X ′)

T (X → X ′) = G(X → X ′)A(X → X ′)

A(X → X ′) = min

(︃
1,

G(X ′ → X)P (X ′)

G(X → X ′)P (X)

)︃
(2.28)

Let us prove that this satisfies Eq. (2.27). First, assume G(X ′ → X)P (X ′) <

G(X → X ′)P (X), so that A(X → X ′) = G(X′→X)P (X′)
G(X→X′)P (X)

and A(X ′ → X) = 1.

We then have T (X → X ′)P (X) = G(X ′ → X)P (X ′). However, we also have

T (X ′ → X)P (X ′) = G(X ′ → X)P (X ′), and so Eq. (2.27) holds for this case.

The remaining case G(X ′ → X)P (X ′) ≥ G(X → X ′)P (X) follows from identical

reasoning, and so, we have proven that the Metropolis algorithm satisfies detailed

balance. ■

To perform the procedure, an initial configuration X1 is chosen. Then, the chain is

built up through the following process. Given the current state X, a trial state X ′ is

first drawn from the proposal distribution G(X → X ′) and accepted with probability

given by A(X → X ′). In practice, the acceptance stage is implemented through

generating a uniform random number u on [0, 1]. If u < A(X → X ′), then the next

element of the chain is set to be trial state X ′. Otherwise, the trial state is rejected

and the next state of the chain is set to be the previous state X. After a burn-in

(thermalization) period, the initial data X1 will be essentially erased and the chain

will have converged to the desired stationary distribution, sampling configurations

according to it.

Again, for our problem of computing thermal expectation values, the configuration

space is the space of world line configurations {X} and the stationary distribution is

set to be π(X) from Eq. (2.9). After the chain’s equilibration, the generated samples

{Xi}Pi=1 can be used for approximating physical quantities as simple averages⟨︂
Ô
⟩︂
≈ 1

P

P∑︂
i=1

w(XP ) (2.29)

It remains to specify the form of the proposal probability G(X → X ′), which should

chosen judiciously for the algorithm to run efficiently.
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2.2.3 Sampling of Elementary Moves

The way that imaginary-time paths are updated during the procedure is crucial -

we must design our proposal distribution G(X → X ′) in such a way that ensures

effective exploration of the configuration space during the Metropolis random walk.

In general, it means that moves involving multiple beads are necessary as just moving

a single bead turns out to be too inefficient.

A commonly-used move in path integral Monte Carlo for efficient sampling is the

wiggle move. The update consists of choosing a single world line from the configu-

ration, and selecting a segment of that world line. The world line is then chopped

off at the end points of that segment, and a new segment joining the two end points

is then proposed as a modification to the existing world line and accepted using the

Metropolis recipe (2.28). The positions of the beads along the proposed new segment

can conveniently be drawn from Gaussian probability distributions centered at the

corresponding beads in the old segment, since the short-time propagators ρ(R,R′; ϵ)

in the Eq. (2.9) distribution have the free propagator ρF as a factor, which is a

Gaussian from Eq. (2.14).

For sake of computational efficiency, the Metropolis proposal and acceptance stages

for the wiggle move can be combined into one sequential, multi-level procedure [35–

37], in which first (at the zero-th level) the midpoint position of the new segment is

generated and then accepted or rejected according to some acceptance probability.

If accepted, the procedure moves on to the next level, where new midpoint positions

are generated for each of the sub-segments demarcated by the midpoint position

from the previous level, moving on to the next level if the new positions are accepted.

This process of bisection continues until all positions in the new segment have been

generated. If at any level the proposed midpoint positions are rejected, then the

entire move is aborted and the old world line is retained.

The wiggle move contains a parameter s which is the length of the segment that
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Figure 2.3: Left: Wiggle move involving three beads applied to a particle world line.
The segment in red shows the proposed world line modification. Right: Displace
move applied to a particle world line.

is being updated. If s is made too large, it becomes very likely that the move will

be rejected and nothing gets done. Conversely, if s is too small, the resulting move

will be too insignificant. As can be seen, both making s too big or too small results

in inefficient exploration. Therefore, the value of s has to be tuned throughout the

simulation to maintain the acceptance rate of moves within a permissible range, which

for example can be taken to be from 20% to 50% [36].

In addition to the wiggle move, displace-type moves involving rigid displacements

of world lines can also be incorporated into the sampling algorithm to improve overall

exploration of the configuration space. The magnitude ∆ of the displacement also

ought to be tuned to maintain desired acceptance rates. For the PIGS variant of path

integral Monte Carlo we will see in Section 2.4.1, the world lines are open, and so the

wiggle move can also involve the ends of the world lines, now termed the wag move.

When multiple types of moves are available, one of them is randomly chosen to be

performed during each step of the simulation. Depictions of the wiggle and displace

updates are shown in Fig. 2.3.

Altogether, the scheme we have discussed thus far using Monte Carlo to evaluate

thermal expectation values (2.2) is known as ’conventional’ path integral Monte Carlo.
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As we will see in the next section, we begin running into scalability issues when trying

to incorporate quantum statistics into the methodology.

2.3 Effects of Particle Indistinguishability

So far in our discussion, we have treated all particles as distinguishable. That is,

we have ascribed particle 1 with position r1, particle 2 with position r2, and so on.

However, it is an empirical fact that particles with the same quantum numbers are

indistinguishable; no experiment can tell you otherwise. We cannot say that atom

i is at a particular position, only that an atom is at that particular position. The

same goes for any other quantum number, therefore the labelling of any atom in

the system is redundant. The effects of indistinguishability for systems of quantum

particles leads to observable consequences, notably the Pauli Exclusion Principle for

fermions and conversely an effective attraction between bosons as in Bose-Einstein

condensation.

To incorporate the concept of particle indistinguishability, we postulate that that

the system’s Hamiltonian (describing N identical particles) always possesses particle

permutation symmetry. Since any permutation is the composition of transpositions,

let us define a transposition operator P̂αβ on the system’s Hilbert space, whose action

is to swap the labels on particles α and β. It can readily be seen that P̂
2

αβ = 1,

meaning that the eigenvalues of P̂αβ must have magnitude 1. While it is possible in

some physical scenarios to consider the possibility of complex eigenvalues eiθ, such

as for anyonic statistics, they are irrelevant to the current discussion, where we will

restrict ourselves to η = ±1 as the permissible eigenvalues of P̂αβ. The eigenstates of

P̂αβ are then given by

P̂αβϕ(r1, ..., rα, ..., rβ, ..., rN) = ηϕ(r1, ..., rα, ..., rβ, ..., rN) (2.30)

The spin-statistics theorem provides the connection between η and the spin angular

momenta of the particle species involved. For bosons, which have integer spin, η = 1,
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and for fermions, which have half-integer spin, η = −1. Since we also have by

definition that

P̂αβϕ(r1, ..., rα, ..., rβ, ..., rN) = ϕ(r1, ..., rβ, ..., rα, ..., rN) (2.31)

the eigenstates of P̂αβ acquire a factor of η whenever two particles are swapped, and

are said to be (anti-)symmetric with respect to particle exchange. Mathematically,

permutation symmetry is implemented by having [Ĥ, P̂αβ] = 0, and so Ĥ and P̂αβ

have a shared eigenbasis. Additionally, η must be a conserved quantity and the

system’s time evolution is restricted to a subspace spanned by either symmetric (or

antisymmetric) energy eigenstates depending on whether the system is composed

of bosons or fermions. This means that only states of the appropriate symmetry

contribute to the propagator.

To simplify the notation, let us write R = r1 · · · rN . We can define an opera-

tor Ŝη that projects states onto the correct symmetry subspace, which we call the

symmetrizer, defined through its action on a wavefunction ψ(R)

Ŝηϕ(R) =
1

N !

∑︂
P

ηPψ(PR) (2.32)

where P is a permutation of the particle labels, η = ±1 for bosons and fermions

respectively, and ηP = (sgn(P ))(1−η)/2. Note that the propagator has an expansion

in terms of Hamiltonian eigenstates {ϕj}:

ρ(R,R′; β) =
∞∑︂
j=0

ϕ∗
j(R)ϕj(R

′)e−βEj (2.33)

By applying the bosonic (η = 1) symmetrizer to the propagator, we see that it projects

out states of appropriate symmetry

Ŝη=1ρ(R,R′; β) =
1

N !

∞∑︂
j=0

∑︂
P

ϕ∗
j(PR)ϕj(R

′)e−βEj

=
1

N !

(︄ ∑︂
P, even

+
∑︂
P, odd

)︄(︄∑︂
Bose, j

+
∑︂

Fermi, j

)︄
ϕ∗
j(PR)ϕj(R

′)e−βEj

=
∑︂
Bose

ϕ∗
j(R)ϕj(R

′)e−βEj

(2.34)
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where in the second equality we split the permutation sum
∑︁

P into sums
∑︁

P,even,∑︁
P,odd over even and odd parity permutations, as well as split the sum over Hamilto-

nian eigenstates
∑︁∞

j=0 into sums
∑︁

Fermi, j,
∑︁

Bose, j over (anti-)symmetric Hamiltonian

eigenstates. Applying the symmetrizer to R′ instead yields the same result. An anal-

ogous calculation can be performed with the fermionic symmetrizer to show that it

projects out antisymmetric, fermionic states. When a permutation is applied to an

argument of the symmetrized propagator Ŝηρ, we obtain

(Ŝηρ)(PR,R′; β) = ηP (Ŝηρ)(R,R′; β) (2.35)

With this result, replacing all propagators with their symmetrized versions in the

expectation value gives ⟨︂
Ô
⟩︂

=

∑︁
P η

P
⟨︂
Ô
⟩︂
P∑︁

P η
P

(2.36)

where
⟨︂
Ô
⟩︂
P

denotes the expectation value of Ô for configurations X closing on a

permutation P of the starting positions: RM = PR0.

The importance of considering particle indistinguishability depends on the degree

that the single particle wavefunctions overlap. The extent of a particle’s spatial

delocalization at a given temperature T is roughly quantifiable by the thermal de

Broglie wavelength

λT =
h√

2πmT
(2.37)

When the interparticle spacing is much greater than the thermal de-Broglie wave-

length, the identity permutation dominates in Eq. (2.36). In the limit of zero tem-

perature, the thermal wavelength diverges and all N ! permutations become equally

important. Unfortunately, for fermionic systems this leads to the infamous sign prob-

lem, making it intractable for Monte Carlo methods to handle large systems of identi-

cal fermions. The heart of issue can be summarized as the expectation value becoming

a summation over terms of alternating sign that cancel each other out almost exactly,

leading to the calculation becoming overwhelmed by the statistical noise intrinsic to

Monte Carlo methods.
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For bosonic systems however, this is no issue since the terms do not change sign

depending on the permutation’s parity. We simply have adapt our sampling procedure

to also sample permutations of particles throughout the duration of the simulation. In

other words, the random walk is now over both the space of world-line configurations

and space of permutations. Schemes for sampling permutations are described in Refs.

[35, 36]. The way that they work is that an additional ’permute’ move is added to

the sampling repertoire. In its most basic incarnation, the permute move involves

choosing a particular time slice of X and disconnecting the links connecting that

slice to the previous time slice, then reconnecting the beads differently, as depicted

in Fig. 2.4 for a simple case. The more general scheme has no restriction that the

reconnection of paths must take place within a single time slice [36]. When two world

Figure 2.4: Left: A permutation is applied to the t = 2ϵ time slice of the configuration
X containing N = 3 particle world lines. Right: As a result of the permutation, two
of the world lines become entangled, while the remaining one is left unchanged since
it is not involved in the permutation.

lines are involved in a permutation, they become intertwined with each other and are

said to form a permutation or exchange cycle. The indistinguishability of particles

correlates with the appearance of exchange cycles involving macroscopically many

world lines. It turns out that these macroscopic exchange cycles are what underlie
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phenomena such as superfluidity and Bose-Einstein condensation.

Conventional PIMC starts running into problems when attempting to sample large

exchange cycles. For a particle world line, if we imagine the links as carrying a

’portion’ of a particle as well, rather than just the beads, then the permutation brings

the two particles closer together, even though the bead positions are unchanged.

Essentially all interactions between particles found in nature contain some sort of

strong repulsion at short distances. Thus, bringing two particles too close together

will spike the system’s potential energy, leading to a high probability of rejection

of the move. This has the effect of exponentially suppressing exchanges involving

higher numbers of particles, which is problematic for witnessing superfluidity in our

simulations.

The continuous-space Worm Algorithm [38] was developed in large part for ef-

ficient sampling of permutations, operating within an extended configuration space

containing the subspace of closed world line configurations (called the Z-sector, which

is sampled from in conventional PIMC) as well as configurations containing a single

open world line (called the G-sector). The inclusion of G-sector configurations allows

for permutation cycles to be sampled without having to bring particles close together

and incurring the cost of potential energy. The resulting performance boost was ap-

plied to great effect in Ref. [38], where the superfluid transition of helium-4 was

simulated for thousands of atoms, while the previously largest system size simulated

contained sixty-four atoms [39]. Since the details of the algorithm are lengthy, we

will not delve into them in this thesis and instead kindly refer the reader to Refs. [38,

40]. The Worm Algorithm’s formulation also lends itself naturally to simulating in

the grand canonical ensemble, where the particle number can fluctuate. In Chapter 3

however, a canonical variant of the algorithm is utilized in which the particle number

is fixed for simulations of a helium-4 monolayer over graphene.
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2.4 Zero temperature methods

Suppose one is interested in zero temperature, for example, in order to study the

system’s ground state properties. At exactly T = 0 K, the imaginary time path

lengths β diverge to infinity, rendering it impossible to utilize the formalism described

above. One way to get around this is to take T as low as possible such that the

obtained estimates can effectively be treated as ground state estimates. However,

there also exists a specialized set of ’zero-temperature’ methods aimed specifically

at describing T = 0 K. Although they may not be as flexible as finite temperature

approaches, one could argue that they have comparable or even better efficiency when

it comes to specifically extracting the ground state properties.

We shall discuss two methods in particular: Diffusion Monte Carlo (DMC) and

Path Integral Ground State (PIGS) (also referred to as the Variational Path Integral

method in the literature). Instead of starting from the thermal density matrix (2.1),

these methods consider the many-body Schrödinger equation in imaginary time

∂Ψ(R, t)

∂t
= H(R)Ψ(R, t) =

(︄
−λ
∑︂
i

∇2
i + V (R)

)︄
Ψ(R, t) (2.38)

where λ ≡ ℏ2/2m as before. In imaginary time, the Schrödinger equation becomes a

diffusion equation. By expanding in the eigenbasis {ϕj} of the Hamiltonian H, this

equation can be readily solved in order to yield

Ψ(R, t) =
∞∑︂
j=0

cje
−Emtϕj(R) = e−E0t

[︄
c0ϕ0(R) +

∞∑︂
j=1

cje
−(Ej−E0)tϕj(R)

]︄
(2.39)

Therefore in the long time limit, the excited state contributions die out and the true

ground state is ’projected out’ up to some constant factor, provided that there is

non-zero overlap c0 ̸= 0 between the ground state wavefunction and Ψ(R, 0).

As seen from Eq. (2.39), the contribution from the first excited state persists

the longest throughout the projection procedure, the decay rate of which is given

by the energy gap ∆E = E1 − E0 between the ground and first excited state. For

bosonic systems, the ground state wavefunction is positive everywhere, hence any
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wavefunction Ψ(R, 0) that is also positive everywhere will suffice as it is guaranteed

to have non-zero overlap. For fermionic systems however the story is different, as

the ground state wavefunction is nodal : there are regions where the ground-state

wavefunction flips sign due to the anti-symmetry under permutations1.

Starting out from some choice of Ψ(R, 0), the objective of zero-temperature Monte

Carlo methods is to then obtain the asymptotic limit ψ(R, t→ ∞).

2.4.1 Path Integral Ground State (PIGS)

The path integral ground state (PIGS) method functions almost identically to finite-

temperature PIMC. The main difference is that as in Eq. (2.38), the imaginary-time

paths must now involve an initial trial state |ψ0⟩ that is propagated in imaginary time

|ψ(Λ)⟩ = e−ΛĤ |ψ0⟩ (2.40)

where ψ(R, 0) = ⟨R|ψ0⟩ gives the trial wavefunction. This is the basis-independent

solution to Eq. (2.38), where Λ is a variational parameter called the projection time.

Note that Λ does not have any connection with temperature, but rather is a artificial

parameter that is increased sufficiently for the state given in Eq. (2.40) to converge

to the ground state. Expectation values are now given by⟨︂
Ô
⟩︂
PIGS

=
⟨ψ(Λ)| Ô |ψ(Λ)⟩
⟨ψ(Λ)|ψ(Λ)⟩

=
⟨ψ0| e−ΛĤÔe−ΛĤ |ψ0⟩

⟨ψ0| e−2ΛĤ |ψ0⟩
(2.41)

Again, a path integral representation of this equation may be written down by ex-

panding the propagator as the convolution of M short-time propagators. For the

denominator, this gives

Z(Λ) ≡ ⟨ψ(Λ)|ψ(Λ)⟩ =

∫︂
dR0 · · · dR2M ψ0(R0)ψ0(R2M)

2M−1∏︂
j=0

ρ(Rj,Rj+1; ϵ) (2.42)

1Specialized methods have been developed to work around these nodal regions, delimited from
each other by so-called nodal surfaces. One of these methods is the fixed-node method, where we
forbid the Monte Carlo random walks from crossing nodal surfaces.
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Figure 2.5: A sampled configuration X during PIGS. The world lines are now all open.
When a Monte Carlo update changes the ends, the proposal/acceptance probabilities
now involve the trial wavefunction.

where Λ = Mϵ. It suggests that the expectation value may again be written as the

integration with respect to a probability density, but this time it is given by

πPIGS(X) ∝ ψ0(R0)ψ0(R2M)
2M−1∏︂
j=0

ρ(Rj,Rj+1; ϵ) (2.43)

where again, we simplify the notation by denoting X = R0 · · ·R2M , with Eq. (2.42)

giving the proper normalization so that we have
∫︁

dX πPIGS(X) = 1.

Comparing with the distribution that is sampled from in finite temperature PIMC,

the PIGS distribution now has dependence on a trial wavefunction and is supported

over the set of ’open’ instead of ’closed’ world line configurations, since the trace is

no longer involved. An example world line configuration in PIGS is depicted in Fig.

2.5. Analogously to the finite temperature case described earlier, we have that⟨︂
Ô
⟩︂
PIGS

=

∫︂
dX πPIGS(X)w(X) (2.44)

for a suitable weight function w(X) associated with the observable Ô. In the limit

of Λ → ∞, the midpoint configurations obtained approach that from sampling a

27



probability density proportional to |ϕ0|2, irrespective of the trial wavefunction that

was used.

As an illustrative example of computing a physical observable through PIGS, we

can use the position representation of the Hamiltonian ⟨R| Ĥ |R′⟩ = δ(R−R′)H(R′)

to derive a path integral representation for the total energy:

E =
⟨︂
Ĥ
⟩︂

= Z(Λ)−1

∫︂
dR dR′ ψ0(R)ψ0(R

′)ρ(R,R′; 2β)
Hψ0(R

′)

ψ0(R′)

=

∫︂
dX πPIGS(X)

{︃
Hψ0(RM)

ψ0(RM)

}︃
(2.45)

The weight function corresponding to this case is w(X) = H(RM )ψ0(RM )
ψ0(RM )

, which is

termed the local energy. Note that in Eq. (2.45) the trial wavefunction is evaluated

at the middle time slice of configuration X, although in principle any other time slice

can be taken because the Hamiltonian commutes with the evolution operator.

Eq. (2.45) gives rise to the so-called mixed estimator for convenient calculations

of the total energy. If we have a set of paths {Xj}Pj=1 distributed according to π(X),

such as those from the Monte Carlo sampling procedure described in Section 2.2, E

can be approximated as

E ≈ 1

P

P∑︂
j=1

H(R
(j)
M )ψ0(R

(j)
M )

ψ0(R
(j)
M )

(2.46)

which can be evaluated quite efficiently given the analytical expression for ψ0(R). At

this point it may be asked: what about quantum statistics? Doesn’t it necessitate

the sampling of permutations? Fortunately, the situation here is a lot simpler than

the finite-temperature case. Since the ground state wavefunction for a system of

distinguishable particles is the same as for a system of identical bosons, it turns out

not to be necessary to sample permutations.

2.4.2 Diffusion Monte Carlo (DMC)

The diffusion Monte Carlo method implements importance sampling of Eq. (2.38)

through rewriting its solution as f(R, t) = ψG(R)Ψ(R, t) where ψG(R) is a guide
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wavefunction. When substituted, Eq. (2.38) becomes

−∂f(R, t)

∂t
= DRf(R, t)

DR ≡ −λ
N∑︂
i=1

∇2
i − 2λ∇ · ∇ψG(R)

ψG(R)
+ (EL(R) − ET )

(2.47)

where we have added a constant energy shift ET to the Hamiltonian which is method-

ologically important, λ = ℏ2/2m is the diffusion constant, and EL(R) = HψG/ψG is

the local energy of the guide wavefunction.

The three terms in (2.47) are referred to as the diffusion, drift, and branching

terms respectively. Retaining only the first term, the situation would be quite boring:

f(R, t) would only diffuse spatially outwards in order to minimize the kinetic energy.

Adding the second term provides the ’quantum force’

F (R) = 2∇ · ∇ψG(R)

ψG(R)
(2.48)

acting to guide this diffusion process towards regions where ψG(R) is large. The third

term is involved in a branching and pruning step of the DMC algorithm.

To solve Eq. (2.47), we use a Green’s function approach. The imaginary-time

evolution of f over the course of a small time step ∆t in accord with Eq. (2.47)

comes from convolving with the Green’s function G(R,R′; ∆t), which is the unique

solution with the initial condition G(R,R′; 0) = δ(R−R′)

G(R,R′; t) = ⟨R| e−tDR |R′⟩

f(R, t+ ∆t) =

∫︂
dR′G(R,R′; ∆t)f(R′, t)

(2.49)

Similar to the path integral case, we proceed by substituting a short-time approxi-

mation for the Green’s function

G(R,R′; ∆t) =
e
−(R−R′−λ∆tF (R′))2/4λ∆t−∆t

(︃
EL(R)+EL(R′)

2
−ET

)︃
(4πλ∆t)3N/2

+ O(∆t2) (2.50)

Then, f(R, t→ ∞) is found by repeatedly iterating Eqs. (2.49) and (2.50).

In order to implement this procedure, the distribution f(R, t) is represented through

a population of n walkers that each perform independent random walks, each walker
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constituting a pair (Ri, wi) where Ri is the 3N -dimensional position vector of all

particles and wi is the walker’s weight. To begin, the guide wavefunction ψG(R) as

well as the initial distribution f(R, 0) have to be chosen, with ψG(R) approximating

the true ground state as closely as possible. One often starts from an ansatz and

variationally minimizes its expected energy in order to obtain a suitable ψG(R). Af-

terwards, f(R, 0) can be taken to be |ψG(R, t)|2 and the positions of the walkers are

initialized according to a probability density proportional to f(R, 0).

A step during the DMC algorithm consists iterating over all walkers and proposing

new positions according to the diffusive kernel given in Eq. (2.50). That is, for a

given walker j, it is shifted to a new position R′
j = Rj + λ∆tF (R) + η where η is

a 3N -dimensional Gaussian random vector with mean 0 and variance 2λ∆t for all

entries, and the move is then accepted with the Metropolis update probability

A(R → R′, t) = min

(︄
1,

|ψG(R′)|2G(R′,R; ∆t)

|ψG(R)|2G(R,R′; ∆t)

)︄
(2.51)

After moves have been attempted for all walkers, the simulation time is advanced by

∆t. The other factor in the Green’s function is called the branching factor, given by

Bj = exp

[︃
−∆t

(︃
EL(Rj) + EL(R′

j)

2
− ET

)︃]︃
(2.52)

and can be incorporated into the algorithm by multiplying it into the weight of each

walker that was moved. However, this turns out to be very inefficient as some walkers

will accumulate small weights and have relatively small influence over the final result,

yet incur the same computational cost as the important walkers. Therefore, it proves

convenient to reconfigure the walkers now and then over the course of the simulation

through a branching and pruning procedure. To do this, instead of multiplying the

branching factor into the walker weights, we determine the multiplicity of walker j as

B̄j = floor(Bj + ξ) where ξ is a uniform random number on (0, 1). If B̄j > 0, B̄j − 1

new copies of walker j are made and addded to the population. Otherwise, walker j

is removed.
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There is one more ingredient in the algorithm, which is the energy shift ET that

was introduced earlier: it plays the role of keeping the population size stable. As can

be seen in Eq. (2.52), the size of the ’average’ local energy relative to ET determines

whether the walker should be replicated or removed, corresponding with the overall

growth or decay of the population size. Thus, ET is generally tuned throughout the

simulation in order to maintain a population size around a desired walker number

ntarget. As per Ref. [34], one choice is to use

ET = Eref + C ln
(︂ntarget

n

)︂
(2.53)

where Eref is a reference energy that ought to be close to the true ground state energy,

n is the current number of walkers, and c is an external parameter.

Altogether, the DMC procedure consists of iterating the diffusion and branch-

ing/pruning steps until a target time is reached, corresponding to the asymptotic

limit t→∞. Ideally, by that point the population of walkers represents the true

ground state wavefunction, and the walker data (Ri, wi) can then be used to com-

pute physical quantities as weighted averages.

Although the DMC method has been applied to obtain ground state estimates for

a variety of systems, there are also systematic issues present, notably a bias from

having a finite population of walkers [41, 42], as well as a heavy reliance upon the

guide wavefunction being a good approximation of the ground state. PIGS on the

other hand, does not suffer from this bias as there is no notion of a population. It

could be argued that the success of PIGS also heavily depends on the inputted trial

wavefunction, which we put to the test in Chapter 3.

2.5 Physical Observables

We have seen how to calculate thermal expectation values through a stochastic algo-

rithm based on Feynman’s path integral approach to quantum mechanics. We will

now derive the Monte Carlo estimators for a few important physical quantities which
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we put to use in Chapter 3.

2.5.1 Energy

Let us begin with deriving an estimator for the energy. Eq. (2.9) states that the

thermal expectation of any observable Ô (which is a function of the position and

momenta of the particles) can be calculated through integration of a suitable weight

function w(X) against a probability distribution π(X) over the space of all paths

X. If Ô is structural, we can simply replace R̂ → R for some time slice R so that

Ô → O(R) and use it as our weight function.

The kinetic energy in the Hamiltonian is the only off-diagonal term, and so it is

instructive to derive it. For simplicity, we will use the primitive approximation for

the propagator. The estimator then follows by computing the action of the kinetic

term on the propagator

∇iρ(R,R′; ϵ) = −(ri − r′i)

2λϵ
ρ(R,R′; ϵ)

−λ
∑︂
i

∇2
i ρ(R,R′; ϵ) =

(︃
3N

2ϵ
− (R−R′)2

4λϵ2

)︃
ρ(R,R′; ϵ)

(2.54)

which gives back the propagator with a prefactor in front. Substituting this result

into Eqs. (2.8) and (2.9), the prefactor gives an estimator for the kinetic energy in the

primitive approximation, and so the total energy estimator follows trivially because

the potential energy is structural

E =
3N

2ϵ
− 1

4λϵ2
⟨︁
(Rj −R′

j+1)
2
⟩︁

+ ⟨V (Rj)⟩ (2.55)

where j can be chosen arbitrarily as either 0,1, ..., or M − 1. For better statistical

convergence during run-time, we can then average over j on the right hand side to

obtain an improved estimator. Energy estimators based on better approximations of

the short-time propagator can be obtained. For example, an estimator based on a

fourth-order approximation is derived in Ref. [43], and is given by

Nℏ
2ϵ

− 1

4λϵ2
⟨︁
(rj − rj+1)

2⟩︁+
λϵ2

9

⟨︁
(∇V (R2j))

2⟩︁ (2.56)
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It should be emphasized that off-diagonal observables generally require multiple time

slices for the calculation. As we will see, computing the superfluid density makes use

of the entire world lines of each particle.

2.5.2 Pair distribution function and structure factor

The pair distribution function and structure factor are indispensable quantities when

it comes to studying the spatial structure of classical/quantum fluids, and both are

readily accessible from experiment. Depending only on the positions of the particles,

they are simple to calculate using Monte Carlo generated configurations. We will

now present a brief derivation of their formulas starting from equilibrium statistical

mechanics, drawing from [44].

Let us assume we have an N -particle system described by Hamiltonian H in the

canonical ensemble. If the Hamiltonian is separable: H = T + V with V dependent

on position only, the momentum degrees of freedom may be integrated out from the

Boltzmann distribution, giving

P (r1, r2, ..., rN) =
e−βV

Zc
dr1 · · · drN (2.57)

which is the probability of having particle 1 in an infinitesimal volume dr1, particle

2 in an infinitesimal volume dr2, etc where Zc is the configurational integral

Zc =

∫︂
dr1 · · · drN e−βV (r1,...,rN ) (2.58)

From now on we will write rN = r1 · · · rN and similarly drN = dr1 · · · drN . In almost

every case, one desires to restrict their focus to the distribution of a subset of n < N

particles at positions r1, ..., rn, as this gives more insight into the equilibrium structure

of the system. The reduced distribution for n particles comes from marginalizing Eq.

(2.57) over the remaining N − n extraneous degrees of freedom, and including a

combinatorial prefactor N !/(N − n)! as any n-particle subset of the total N may be

chosen. And so, we define

ρ
(n)
N (r1, ..., rn) =

N !

(N − n)!

1

Zc

∫︂
dr(N−n) e−βV (2.59)
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which is called the n-particle density. Note by including the combinatorial prefactor,

the normalization is not 1. Particularly,∫︂
drn ρ

(n)
N (rn) =

N !

(N − n)!
(2.60)

implying that ρ
(1)
N has the interpretation as the particle density at point r. More

generally, the n-particle density has dimensions of density to the power n. Therefore,

if Eq. (2.59) is divided by the product of n densities, a dimensionless measure can be

obtained which is more universally applicable. This motivates the definition of the

n-particle distribution function as

g
(n)
N (rn) =

ρ
(n)
N (rn)∏︁n

i=1 ρ
(1)
N (ri)

(2.61)

In the scenario that there are no interactions between particles, the numerator of Eq.

(2.59) factorizes into one-body terms and g
(n)
N (rn) = 1 as a result.

With interactions however, while n = 1 gives us the particle density, n = 2 gives in-

formation about the two-body correlations present in the system. For fluids, it is com-

monly assumed that the system is homogeneous and isotropic, i.e. the systems prop-

erties do not depend on the position or orientation of the coordinate axes. With these

assumptions, the formulae simplify to ρ
(1)
N = ρ and g(r) = g

(2)
N (r1, r2) = ρ

(2)
N (r1, r2)/ρ

2

where r = |r1 − r2| where g(r) is referred to as the radial distribution function. To

proceed, it is illuminating to write the n = 1 and n = 2 cases in terms of delta

functions. First of all, it can be confirmed that⟨︄
N∑︂
i=1

δ(r− ri)

⟩︄
=

N

CN

∫︂
drN−1e−βV = ρ

(1)
N (r) (2.62)

as expected. The n = 2 case follows similarly⟨︄∑︂
i ̸=j

δ(r− ri)δ(r
′ − rj)

⟩︄
=
N(N − 1)

CN

∫︂
drN−2 exp (−βU(r, r′, r3, ..., rN))

= ρ
(2)
N (r, r′)

(2.63)
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With this result, the radial distribution function may be written in terms of delta

functions:⟨︄
1

N

∑︂
i ̸=j

δ(r− rj + ri)

⟩︄
=

⟨︄
1

N

∫︂
dr′
∑︂
i ̸=j

δ(r′ + r− rj)δ(r
′ − ri)

⟩︄

=
1

N

∫︂
dr′ρ

(2)
N (r′ + r, r′)

(2.64)

For an isotropic and homogeneous system, we therefore have⟨︄
1

N

∑︂
i ̸=j

δ(r− rj + ri)

⟩︄
= ρg(r) (2.65)

The interpretation of this expression is that on average, the number of particles

lying within a shell [r, r+ dr] around some reference particle ri is 4πr2ρg(r) dr as can

be seen by integrating both sides over a spherical shell [r, r + dr] centered at ri. In

fact, this is exactly how we compute the pair correlation function in our Monte Carlo

simulations. First, the range of distances we want to examine [rmin, rmax] is divided

into several equal sized bins of size dr. For a sampled configuration X, the middle

time slice R is extracted. From R, the distances between each pair of particles is

calculated and the corresponding bins are incremented accordingly. After averaging

over many different configurations {X}, each bin in the histogram is normalized by

4πr2ρ/N to obtain g(r).

Importantly, the radial distribution function can be related to the potential en-

ergy of the system, provided that it consists of only pairwise interactions: V (rN) =∑︁
i

∑︁
j>i V (rij). The potential part of the system’s internal energy is given by

Epot =
1

Zc

∫︂
drN V (rn)e−βV (rn)

=
∑︂
j>i

∫︂
dri drj V (rij)

(︃
1

Zc

∫︂
dr(N−2) e−βV (rN )

)︃
=
ρ2

2

∫︂
dr1 dr2 V (r12)g

(2)
N (r1, r2) =

N2

2Ω

∫︂
drV (r)g(r)

(2.66)

which is called the energy equation, and can be used for computing corrections to the

total energy due to imposing periodic boundary conditions.
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Additionally, the radial distribution function g(r) is connected to the structure

factor of the system, which relates the diffracted intensities obtained from scattering

experiments to the microscopic arrangement of scatterers. The structure factor is

given by

S(q) = Ω−1

⟨︄∑︂
i,j

exp (−iq · (ri − rj))

⟩︄
= Ω−1

⟨︁
|n(q)|2

⟩︁
(2.67)

with the particle density and its Fourier dual given by

n(r) ≡
∑︂
i

δ(r− ri)

n(q) ≡ F [n(r)] =
∑︂
i

e−iq·ri
(2.68)

For a perfect crystal, the Fourier transform can be evaluated to give

n(q) =
(2π)3

Ω

∑︂
G

δ(3)(q−G) (2.69)

where the sum is over all reciprocal lattice vectors associated with the crystal lattice.

In other words, the static structure factor has (Bragg) peaks whenever q equals some

reciprocal lattice vector. Making use of Eq. (2.65), Eq. (2.67) can be written in

terms of the radial distribution function for an isotropic and homogeneous system

S(q) = ρ+ ρ2
∫︂

dr e−iq·rg(r) (2.70)

from which we see the structure factor is simply the Fourier transform of the radial

distribution function. This provides a useful consistency check for calculating the

structure factor given access to the radial distribution function, and vice-versa.

2.5.3 Superfluid fraction

In this section, we will introduce the two-fluid model of superfluidity, and show how

to calculate the superfluid fraction in the two-fluid model using path integral Monte

Carlo. Let us begin by discussing the basic physics behind superfluidity. A major

breakthrough in the microscopic theory of superfluid helium-4 was made in the 1940s

by Soviet physicist Lev Landau, when he realized that the superflow velocity was
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connected to the elementary excitation spectrum. We will recapitulate his argument

in the following.

The thought experiment begins by considering a fluid with total mass M flowing

through a narrow pipe with velocity v in the lab frame. The system’s total energy is

then

Ev = E0 +
1

2
M |v|2 (2.71)

Dissipation of the fluid’s kinetic energy due to coupling with the pipe walls occurs

through converting a portion of that kinetic energy into creating an elementary ex-

citation with energy ϵ(q) and momentum q in the fluid’s rest frame. Indeed, in the

fluid’s rest frame we have that its energy is

Ev=0,q = E0 + ϵ(q) (2.72)

where E0 is the ground state energy of the fluid. If we want to go back to the lab

frame, we can perform a Galilean boost with velocity −v from the rest frame of the

fluid. In the boosted frame after creating an elementary excitation, the energy is then

Ev,q = E0 + ϵ(q) + q · v +
1

2
M |v|2 (2.73)

For the process to dissipate energy, it must be that ϵ(q)+q ·v < 0, i.e. the excitation

has negative energy in the lab frame. This quantity is minimized when q and v are

anti-parallel, and so it is necessary that ϵ(q) − qv < 0 for dissipation to occur. The

constraint implies a critical velocity vc, below which no dissipative excitations can be

created:

vc = min
q

ϵ(q)

q
(2.74)

which is the Landau criterion for superflow. The argument happens to have a nice

geometric interpretation. At the minimum, the derivative of ϵ(q)/q vanishes, implying

dϵ(q)

dq
=
ϵ(q)

q
(at q = q⋆) (2.75)

1Additionally, Landau’s criterion shows it is necessary to have interactions between particles in
order for superfluidity to emerge. For a non-interacting system of bosons, the dispersion is given by
ϵ(q) = q2/2m, which clearly implies the critical velocity is zero - no superflow can exist.
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with q⋆ = argminq
ϵ(q)
q

. In other words, to obtain the critical velocity from the graph

of ϵ(q), we can rotate a horizontal line about the origin counter-clockwise. If the line

can rotate a finite amount before it touches the dispersion curve, then the system

supports superfluidity with critical velocity given by the line’s slope.

In the preceding thought experiment, the superfluid constitutes the undisturbed

’ground state’ of the system at T = 0. As the temperature is increased or the flow

velocity exceeds vc, quasiparticle excitations appear, which one interprets as ’normal’

particles that experience viscous friction. The Tisza two-fluid model coarse-grains this

picture, considering the superfluid system as comprising of a superfluid and normal

component that mix together, yet do not interact with each other. Denote the total

mass density as ρ = Nm/Ω and the superfluid and normal fraction as ρs and ρn

respectively, then we have

ρ = ρs + ρn (2.76)

At T = 0 K, the system is completely superfluid: ρ = ρs, while above the critical

temperature Tc the system is completely normal: ρ = ρn, interpolating between these

two states when 0 < T < Tc.

The defining feature of the superfluid portion of particles is that they are decoupled

from the boundary motion, unlike the normal portion. The Galilean transformation

between fluid rest and moving frames forms a crucial part of Landau’s original ar-

gument, and in fact, can be used in conjuction with the Tisza two-fluid picture to

derive a superfluid fraction estimator for quantum Monte Carlo simulations as shown

in Refs. [45, 46]. However, instead of a pipe, we consider the fluid as being sandwiched

between two cylinders of radii R and R + ϵ with ϵ << R. This setup is the same as

applying periodic boundary conditions to the pipe with periodicity 2πR. Since the

size of the apparatus is large compared to the microscopic scale, locally the particles

do not experience the curvature of the boundaries - they see only two planes on either

side that are moving with equal velocity v = ωR.

Now, let us assume that the two cylinders are driven to rotate with a low angular
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frequency ω. Above the critical temperature Tc, the fluid is completely normal, and

equilibrates with the moving walls of the container, rotating together at the same

frequency ω. Suppose that the system is then left in flywheel, i.e. left to freely rotate

without external intervention. When the temperature is decreased such that T < Tc,

the fluid acquires a non-zero superfluid portion that decouples from the boundary

motion, reducing the moment of inertia and resulting in an increased frequency ω′ > ω

by angular momentum conservation. This principle is what underlies how experiments

with torsional oscillators operate to detect superfluidity.

The distinction between ’low’ versus ’high’ rotation velocities can be made precise,

as there is a simple argument showing that the circulation of superflow is quantized.

Let us assume that the fluid particles form a condensate, that there is macroscopic

occupation of a single quantum state, forgetting the microscopic details of what the

individual particles are doing. The position-space wavefunction of the system can

then be written as

Ψ(r) = ⟨r|Ψ⟩ = |Ψ|eiϕ(r) (2.77)

where r runs over the volume of the container and the normalization of the state

is such that |Ψ|2 is the number density of particles at location r. The system’s

momentum is then ⟨︂
P̂
⟩︂

= −iℏ
∫︂

drΨ∗∇Ψ

= −iℏ
∫︂

dr|Ψ|∇|Ψ| + ℏ
∫︂

dr|Ψ|2∇ϕ(r)

= ℏ
∫︂

dr |Ψ|2∇ϕ(r)

(2.78)

where the third equality comes from the fact P̂ is Hermitian and hence its expectation

must be real. From Eq. (2.78), we can identify vs = ℏ∇ϕ(r)/m as the velocity field,

which is irrotational: ∇ × vs = 0. Thus, the superfluid’s circulation over a closed

loop Γ inside the annulus is then given by

C =

∮︂
Γ

vs · dr =
ℏ
m

∮︂
Γ

∇ϕ(r) · dr (2.79)
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Since the wavefunction (2.77) must be single valued, the net change in the phase ϕ(r)

as it winds around the path Γ must be an integer multiple of 2π. We thus have the

Onsager quantization condition for the circulation

C = 2πnℏ/m (2.80)

for integer n. We now have an answer for what ’low’ velocity means. If the velocity is

not high enough to drive a circulation of size h/m, then the superfluid remains at rest.

On the other hand, if velocity is ’high’, then Eq. (2.80) suggests that a superfluid

can settle into persistent, dissipationless currents when set flowing in circles. If the

region enclosed by Γ does not have any holes, then Γ can be continuously contracted

to a point without affecting the evaluation of Eq. (2.79), making the circulation

vanish, so it is necessary to have obstructions for the superfluid to circulate around.

Eq. (2.80) also suggests that the circulation may transition between levels through

the production of vortices. Indeed, such ’quantum vortices’ have been observed in

superfluid helium-4 [47] as well as in superconducting films via scanning SQUID

microscopy [48].

Due to the equivalence between the annulus and a pipe with periodic boundary

conditions, we are motivated to generalize to a system with N identical particles of

mass m within a container taken to be a box of dimensions Ω = L1 × · · · × Ld with

periodic boundary conditions applied to all sides, in other words, a higher-dimensional

torus. The box walls and normal fluid portion ρn move with a low velocity v and the

superfluid portion ρs is at rest in the lab frame S, while in the frame S ′ moving with

the walls the roles are reversed. Let P̂ denote the momentum operator. We have that

in S ′ the walls are at rest, and so the Hamiltonian H0 in this frame is independent of

v.

To proceed, it is easiest to work in the formalism of second quantization [46]. We

introduce the creation and annihilation field operators ψ̂
†
(r), ψ̂(r) which create/de-
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stroy particles at positions r, obeying the commutation relations

[ψ̂(r), ψ̂
†
(r′)] = δ(r− r′) (2.81)

[ψ̂(r), ψ̂(r′)] = [ψ̂
†
(r), ψ̂

†
(r′)] = 0 (2.82)

Several important physical observables can then be expressed in terms of these field

operators

N̂ =

∫︂
dr ψ̂

†
(r)ψ̂(r) (2.83)

R̂ =

∫︂
dr rψ̂

†
(r)ψ̂(r) (2.84)

P̂ = −iℏ
∫︂

dr ψ̂
†
(r)∇rψ̂(r) (2.85)

which are the number, many-body position, and total momentum operators respec-

tively. In the frame S ′, the average total momentum is given by⟨︂
P̂
⟩︂
S′

=
1

Z0

Tr
(︂
P̂e−βĤ0

)︂
(2.86)

where the partition function is given by Z0 = Tr
(︂
e−βĤ0

)︂
. To go to the lab frame S,

we need to boost from S ′ with velocity −v. In non-relativistic quantum mechanics,

boosts are Galilean transformations implemented via a unitary operator Û . Since we

are not interested in time evolution, one has the freedom to set t = 0 and the operator

is given by

Û = e−imv·R̂/ℏ (2.87)

describing a boost with velocity v and it can be verified that

Û
†
P̂Û = P̂−mvN̂

Û
†
R̂Û = R̂

(2.88)

as expected. It is also useful to derive the Galilean transformation laws for the field

operators using the Baker-Hausdorff lemma

Û
†
ψ̂

†
(r)Û = ψ̂

†
(r)ei

m
ℏ v·r

Û
†
ψ̂(r)Û = ψ̂(r)e−i

m
ℏ v·r

(2.89)
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In S the momentum is given by the inverse transformation ÛP̂Û
†
. A key point is

that e−βĤ/Z is unchanged when switching between frames. Physically, it means that

the probability distribution over states does not change if the system acquires a non

zero center-of-mass velocity. This means that in the lab frame:

⟨︂
P̂
⟩︂
S

=
1

Z0

Tr
(︂
ÛP̂Û

†
e−βĤ0

)︂
=

1

Z0

Tr
(︂
P̂e−βĤv

)︂
(2.90)

where Ĥv ≡ Û
†
Ĥ0Û . The classical momentum of the normal portion is now equated

with the thermal expectation of the momentum in the lab frame S, giving

ρnΩv =
1

Z0

Tr
(︂
P̂e−βĤv

)︂
(2.91)

Later, we will make use of the identity

∇vĤv = i
m

ℏ
Û

†
[r̂, Ĥ0]Û (2.92)

The superfluid density can be related to the system’s free energy in what follows,

starting from the expression for the free energy in the lab frame

Fv = − 1

β
lnZv (2.93)

with Zv = Tr
(︂
e−βĤv

)︂
. If the Hamiltonian is separable into a kinetic and potential

term: Ĥ0 = T̂ + V̂ with [V̂ , r̂] = 0 and T̂ as the kinetic energy

T̂ = − ℏ2

2m

∫︂
Ω

dr ψ̂
†
(r)∆rψ̂(r) (2.94)

Consequently, the commutator in (2.92) can be evaluated to give

∇vĤv = −P̂ +mvN̂ (2.95)

This allows the momentum carried by the normal fraction of particles to be expressed

in terms of the Hamiltonian and number operator. Substituting into Eq. (2.91) gives

ρnΩv = −Zv

Z0

∇vFv +
mv

Z0

Tr
[︂
N̂e−βĤv

]︂
(2.96)
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Taking the divergence of the above expression and then the limit that v → 0 yields

a formula for the superfluid fraction

ρs =
1

Ωd
lim
v→0

∆vFv (2.97)

and so the superfluid density is proportional to the Laplacian of the free energy in

the zero velocity limit. Now let us assume that we are in the canonical ensemble such

that the particle number is fixed: [N̂ , Ĥ0] = 0, meaning the partition function can be

expanded in terms of N -particle position eigenstates {|R⟩}

Zv = Tr
[︂
e−βĤv

]︂
=

∫︂
dR0 dR1 · · · dRn−1

n−1∏︂
j=0

⟨Rj| e−ϵĤv |Rj+1⟩ (2.98)

where |Rn⟩ ≡ |R0⟩. The action of Û on a position eigenstate can be readily evaluated

using the Galilean transformation law of the field operators

Û |R⟩ = Û
N∏︂
j=1

ψ̂(rj) |0⟩ = ei
m
ℏ v·

∑︁
j rj |R⟩ (2.99)

by commuting Û across all the field operators, and of course assuming that Û |0⟩ = |0⟩.

Applying the definition Ĥv = Û
†
Ĥ0Û to the the integrand gives

n−1∏︂
j=0

⟨Rj| e−ϵĤv |Rj+1⟩ = e−i
m
ℏ v·

∑︁N
j=1(r

(n)
j −r

(0)
j )

n−1∏︂
j=0

⟨Rj| e−ϵĤ0 |Rj+1⟩ (2.100)

where r
(i)
j refers to the position of the j-th particle in the i-th time slice. We have

|Rn⟩ ≡ |R0⟩ which is saying the world lines must close onto themselves. But with

periodic boundary conditions, this condition is satisfied by allowing the world line

ends to be separated by a lattice translation vector

N∑︂
j=1

r
(n)
j − r

(0)
j =

d∑︂
i=1

LiWiei (2.101)

where ei is the standard basis vector in the i-th direction and Wi is an integer called

the winding number, counting the net number of times that particle world lines cross

the boundary normal to ei. Putting it all together, the lab frame partition function
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derives from a ’Fourier transform’ of the world line probability distribution π(X) in

the moving frame

Zv =

∫︂
dX e−i

m
ℏ v·

∑︁d
i=1 LiWiei

n−1∏︂
j=0

⟨Rj| e−ϵĤ0 |Rj+1⟩ = Z0

⟨︂
e−i

m
ℏ v·

∑︁d
i=1 LiŴ iei

⟩︂
(2.102)

where Ŵ i is an operator taking on eigenvalues Wi when applied to sequences of

position eigenstates (world lines) and the thermal average is performed in the moving

frame S ′. Finally, the lab frame partition function (2.102) can be substituted into

the lab frame free energy (2.93) and compute the superfluid density from (2.97)

ρs =
1

βΩd

(︂m
ℏ

)︂2⟨︄(︄ d∑︂
j=1

Ŵ jLjej

)︄2⟩︄
(2.103)

This is the well-known winding number estimator that is used for calculating the

superfluid density during finite-temperature quantum Monte Carlo simulations. For

a hypercubic container i.e. Ω = Ld, the formula specializes to

ρs =
L2−d

βd

(︂m
ℏ

)︂2 ⟨︂
Ŵ

2
⟩︂

(2.104)

Eq. (2.104) implies that the superfluid fraction is related to fluctuations in the wind-

ing number, as for an isotropic system there is no preferred direction and hence
⟨︂
Ŵ
⟩︂

vanishes. In order for the winding number to fluctuate, a global update of the world

line configuration X is needed. The only way to achieve this is if there is cross-

linking from quantum exchanges to create a macroscopic chain spanning a simulation

cell length. Thus, an estimated N1/d atoms need to be moved simultaneously for the

winding number to change.

At zero-temperature however, the sampled paths cease to close onto themselves

and so the relation with the winding number (2.101) does not hold anymore. There-

fore, the superfluid estimator that is employed in the ground state projector meth-

ods discussed in Sections 2.4.1, 2.4.2 is a modification of Eq. (2.103). It can be

derived simply by rewriting Eq. (2.101) in terms of the system’s center-of-mass,
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RCM(t) = 1
N

∑︁N
i=1 ri(t), where we have identified the superscript index k in r

(k)
i with

the imaginary-time index t to help clarify the notation

N∑︂
j=1

r
(n)
j − r

(0)
j = N(RCM(β) −RCM(0)) (2.105)

where the distance RCM(β) − RCM(0) has to be calculated without invoking peri-

odic boundary conditions. Repeating the derivation with Eq. (2.105) instead of Eq.

(2.101), the superfluid fraction becomes

ρs
ρ

= lim
β→∞

N

2dλ

⟨[RCM(β) −RCM(0)]2⟩
β

(2.106)

where we have normalized by the total density ρ to get the dimensionless superfluid

fraction and recall that λ = ℏ2/2m is the ’inverse’ mass, having the interpretation as

the diffusion constant from considering the Schrödinger equation in imaginary time.

Now the superfluid fraction can be seen as the ratio of two diffusion coefficients:

ρs/ρ = λs/λ with λs being analogous to the long-time limit of the Einstein self-

diffusion of a classical fluid ⟨x2⟩ /2t [45].

2.6 Computational Implementation

Let us now discuss a few remaining details about the computational implementation

of the algorithm we have introduced.

2.6.1 Boundary conditions

We will first discuss the role of the boundary conditions for the simulation cell. Since

we are interested in bulk properties, we need some way to extrapolate the behavior of

the systems we study to the limit of infinite system size. We want the boundary effects

induced by having finite simulation cell to be immaterial towards the physics we are

interested in. A popular remedy for this is to apply periodic boundary conditions

(PBCs) to the simulation cell, which are depicted in Fig. 2.6.
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Figure 2.6: Schematic diagram of periodic boundary conditions, showing the main
unit cell (center, in yellow), as well as the image cells obtained by translating the
main cell by lattice vectors. A chosen reference particle is shown in red. The reference
particle can interact with any other particle that falls within the cutoff distance rc.

For convenience, let us assume that the system is enclosed inside a box with di-

mensions Lx × Ly × Lz. The way that PBCs work is that we take the main box as

our unit cell, and surround it with repeating copies of itself, creating a tessellation

over all space. Each particle in the main cell now has a ’periodic image’ of itself

in each of the cells, with each image particle position being the same as that of the

main cell particle modulo translation by a lattice vector R = nxLxx̂+nyLyŷ+nz Lz ẑ.

Effectively, what we have done is endow the main simulation cell with the topology

of a torus. Although PBCs do come with their own set of surface artifacts, they are

normally much less severe than those without their prescription.

Now, the question becomes about how to handle particle interactions. In this

work, we employ the minimum image convention, which is implemented through

allowing particles to interact with other particles in different cells, but truncating the

interaction potential at a cutoff radius rc so that particles only interact with those

within adjacent cells. We can do this because the interactions we will consider between
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particles in our systems are mainly short range, being zero to very good approximation

at distances of order of the cutoff radius. We also require that rc < L/2 where L is

the smallest dimension of the simulation cell, so that particles do not interact with

multiple periodic images of the same particle. However, applying a cutoff radius has

unwanted effects on the computation of the system’s energy since we are neglecting

contributions coming from the ’tail’ of the interaction potential. Therefore, we have

to apply a correction to the final total energy based on these considerations, which

we will derive in Appendix A for the helium-graphene system studied in Section 3.

2.6.2 Statistics

Just like with experiments in the real world, Monte Carlo simulations are subject

to statistical noise, which has to be accounted for when interpreting the results

obtained. Throughout a Monte Carlo simulation, we are making ’synthetic’ mea-

surements x1, ..., xn of some fluctuating physical quantity X when the system is at

thermal equilibrium, such as the energy. The best estimate of X given the available

information is from taking the average over all the measurements

x̄ =
1

n

n∑︂
i=1

xi (2.107)

for which we would like to assign an error. Let us model the consecutive measurements

x1, ..., xn as identical random variables. Computing the variance of the estimator x̄

gives us

σ2
x̄ =

1

n

[︄
A0 + 2

n−1∑︂
t=1

(1 − t/n)At

]︄
(2.108)

where we have exploited time-translation invariance in defining the autocorrelation

function At ≡ Aij such that t = |i− j|, with Aij being the covariance between xi and

xj

Aij = ⟨xixj⟩ − ⟨xi⟩ ⟨xj⟩ (2.109)
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Note that if the xi’s are independent i.e. At = 0 for t > 0, then Eq. (2.108) reduces

to the commonly-used formula for the standard error in the mean

σx̄ = σ/
√
n (2.110)

where σ is the standard deviation of the xi’s. The sample standard deviation can then

be substituted into Eq. (2.110) as an estimate of the error. However, it is always

the case that consecutive measurements are correlated with each other in Monte

Carlo simulations, with the correlations decaying according to some characteristic

time scale τ called the correlation time. By naively applying Eq. (2.110), we generally

underestimate the error in x̄ as we are overestimating the information content of our

measurements.

One way to think about this is to imagine a random number generator which

produces uniformly random integers between 0 and 10, with the twist that each

randomly drawn integer is repeated k times before drawing the next. A sample output

of this program could be for example: 1, 1, 1, 0, 0, 0, 5, 5, 5, 4, ... for k = 3. Suppose

that the program generates a sample of size n. If n is significantly less than k, then

the sample is likely to have variation, and we would be duped into thinking that the

underlying distribution is narrow instead of being uniform. Therefore, we need more

data points to see the true distribution emerge in the presence of correlations than

without.

For measurements coming from Monte Carlo, the solution is to divide the data into

n′ equally-sized blocks of size B such that n = n′B and compute the average of each

block, obtaining a set of blocked values x
(B)
1 , ..., x

(B)
n′ , which we then use to compute

the standard error. As shown in Ref. [49], the quantities x̄ and σ2
x̄ are invariants with

respect to the blocking transformation, and provided that At decays faster than 1/t,

At flows towards the fixed point At ∝ δ0t as B approaches τ , signalling the blocked

variables becoming independent. For our concocted number generator, the blocked

variables approach uniformity as B ≈ τ = k.
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Chapter 3

Superfluidity of helium-4 films
adsorbed onto graphene

3.1 Introduction

We now apply the framework developed in Section 2 to study the behavior of a

helium-4 monolayer adsorbed onto a graphene substrate.

The first helium adlayer on graphene exhibits several equilibrium crystalline phases,

which are classified as either commensurate, meaning the helium atoms are bound to

specific adsorption sites in the graphene lattice, or incommensurate, meaning the

helium crystal structure is independent of the underlying lattice. For the commensu-

rate phases, it is common in the literature to see the notation Cn where ’C’ stands

for commensurate and n is the filling fraction of graphene adsorption sites that are

occupied by a helium atom. As can be seen from Fig. 3.1, the first crystal phase

that can be observed is the C1/3 commensurate phase at coverage θ = 0.0636 Å−2,

afterwards the system transitions through commensurate crystal phases of increasing

filling fraction, separated by domain wall phases in-between, before finally transition-

ing to an incommensurate triangular crystal prior to the promotion of helium atoms

to the second layer.

Our work is primarily aimed at addressing some existing controversy about whether

a superfluid phase exists for C1/3 helium-4 crystal adsorbed onto graphene, as several

groups have obtained conflicting results. For instance, it was found through Diffusion
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Figure 3.1: Density maps for different crystalline phases exhibited by a helium mono-
layer over graphene from quantum Monte Carlo simulations at temperature T = 0.5
K. Top left: C1/3 commensurate phase at coverage θ = 0.0636 Å−2. Top right: Do-
main wall phase at coverage θ = 0.072 Å−2. Bottom left: C7/16 commensurate phase.
Bottom right: Incommensurate phase at coverage θ = 0.111 Å−2, which is the max
coverage prior to the promotion of atoms to the second layer. Reproduced from Ref.
[50].

Monte Carlo (DMC) calculations by Gordillo and Boronat [27] that there is a small

energy difference between the C1/3 phase and a liquid phase, opening up the possibility

of a metastable two-dimensional superfluid phase of helium-4. A follow-up DMC

study by the same authors examined the prospect of first-layer supersolidity in closer

detail, finding a small yet finite superfluid fraction (∼ 0.67%) for the C1/3 phase,

growing to as high as 14% when vacancies are introduced [26]. On the contrary, Path

Integral Monte Carlo (PIMC) simulations conducted by Kwon and Ceperly found

zero superfluidity in the first layer for a perfect C1/3 crystal when employing the

same helium-carbon pair potential [28], with the same finding by Happacher et al.
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using the continuous-space Worm algorithm [50].

Regardless, since the authors in Refs. [28, 50] simulated at finite temperature and

made extrapolated predictions towards the ground state, one could argue that they did

not reach the critical temperature for a superfluid signal to appear. When adsorbed

onto the graphene, the helium atoms behave as a two-dimensional system, and so the

superfluid transition is expected to conform with the Berezinskii–Kosterlitz–Thouless

(BKT) paradigm [51], which predicts a universal jump in the superfluid density of two-

dimensional fluids below a critical temperature [52]. The estimate of the superfluid

fraction given in Ref. [27] yields a transition temperature of the order of 5 mK, which

is below the temperature simulated by previous finite-temperature PIMC studies.

For zero-temperature methods like DMC however, this is not a concern. Thus, in

our work we utilize a comparable methodology, the PIGS method from Section 2.4.1,

which is also valid at T = 0 K. Additionally, we purposefully bias our calculation by

using a trial wavefunction that is translationally invariant unlike in Refs. [26, 27],

describing a state that is completely liquid despite us knowing a priori that the system

forms a C1/3 crystal at equilibrium. By doing so, we set at the beginning the most

favorable conditions for possibly observing a metastable liquid state as described in

[27], in search of a residual superfluid signal in the system’s ground state.

3.2 Model and Methodology

3.2.1 Microscopic model

We consider an assembly ofN helium atoms of massm enclosed in a three-dimensional

box with periodic boundary conditions, with the graphene substrate sheet the xy-

plane. The following Hamiltonian constitutes the microscopic model of our system

Ĥ = − ℏ2

2m

N∑︂
i=1

∇2
i +

∑︂
i<j

VHe-He(|r⃗i − r⃗j|) +
∑︂
i,I

VHe-C(|r⃗i − ℓ⃗I |) (3.1)

featuring pairwise interactions between helium-4 atoms, as well as between helium-4

and carbon atoms. We simulate all the carbon atoms in a honeycomb lattice structure,
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retaining the full corrugation of the graphene substrate as opposed to approximating

with a truncated Fourier expansion involving graphene reciprocal lattice vectors as

in Ref. [53]. However, as a simplifying approximation, the masses of the carbon

atoms were taken to be infinite so that they did not contribute to the kinetic energy.

Although the mass of a lone carbon atom is only around 3 times that of a helium-4

atom, carbon atoms in the graphene sheet are stabilized by strong σ-bonds, and so

it is an excellent approximation to treat them as static.

The helium-helium interaction potential was taken to be the Aziz potential [54]

V (r) = ϵV ⋆(x)

V ⋆(x) = A exp (−αx) −
(︃
C6

x6
+
C8

x8
+
C10

x10

)︃
F (x)

F (x) =

{︄
exp

[︂
−
{︁
D
x
− 1
}︁2]︂

for x < D

1 for x ≥ D

(3.2)

with parameters C6 = 1.3732412, C8 = 0.4253785, C10 = 0.1781, rm = 2.9673,

A = 544850, rm = 2.9673 and α = 13.353384 such that x ≡ r/rm. The helium-

carbon interactions were modelled with the Lennard-Jones (LJ) potential

VHe-C(r) = 4ϵ

[︃(︂σ
r

)︂12
−
(︂σ
r

)︂6]︃
(3.3)

where σ and ϵ represent the hard-core distance and depth of the attractive well

respectively. For consistency with previously performed calculations, we use the same

LJ parameters as in Refs. [26, 27, 55, 56], which are σ = 2.74 Å and ϵ = 16.25 K.

To avoid the issues described in Section 2.6.1, cutoffs were applied to both potentials

at rc = 14.75 Å and then smoothed to have vanishing derivatives dV
dr

⃓⃓
r=rc

= 0 at the

cutoff distance. The correction to the energies due to having these cutoffs are derived

in Appendix A.

Both potentials are quite similar in that they feature a combination of strong short

distance repulsion (mainly from Pauli exclusion) and weak long distance Van der

Waals attraction, which are prototypical for any kind of condensed matter interaction.

They are also isotropic, depending only on the relative distance between particles. For
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the helium-helium interaction, this is justified by the spherical symmetry of the helium

ground state. For the helium-carbon interaction however, it is less clear whether the

assumption of isotropy is sensible. In their study of helium adsorption onto graphene,

Kwon and Ceperly [28] also make use of an anisotropic pair potential determined to

give better agreement with helium-graphite scattering data [57]. They assert that the

monolayer properties at lower coverages θ < θ0 are strongly dependent on whether

the isotropic or anisotropic forms of the pair potential are employed, with the melting

of the C1/3 structure occuring with respect to decreasing coverage for the isotropic

pair potential. We critically assess this claim in Section 3.4.1 in light of our own

calculations at finite temperature.

The simulation cell dimensions were chosen to be Ω = Lx × Ly × Lz = 34.08Å ×

29.51Å × 50Å. The size in the z direction Lz was chosen arbitrarily, simply large

enough so that boundary effects in that direction became immaterial. However, Lx

and Ly were important, corresponding with the dimensions of a carefully chosen

graphene slice such that stitching together all the periodic images yields the correct

honeycomb lattice, free of defects. The slice of graphene we used contained a total

of 384 carbon atoms, with a carbon-carbon bond length of a ∼ 1.42Å. After fixing

the graphene slice, the number of helium atoms was fixed to be N = 64 so that the

resulting coverage was θ = N
LxLy

= 0.0636 Å−2, when a C1/3 commensurate crystal is

expected to be formed.

The C1/3 phase features the binding of helium atoms at the sites of a triangular

lattice, having the primitive translation vectors

a1 = 3a
(︂
−
√

3/2 1/2
)︂T

, a2 = 3a
(︂

0 1
)︂T

(3.4)

The corresponding primitive vectors for the reciprocal lattice are then given by

b1 =
4π

3
√

3a

(︂
−1 0

)︂T
, b2 =

4π

3
√

3a

(︂
1/2

√
3/2
)︂T

(3.5)

which is another triangular lattice, but rescaled and rotated 90 degrees relative to
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the direct lattice. The first Bragg peak in the static structure factor will hence occur

when q = 4π
3
√
3a

∼ 1.7Å−1, which we will keep in mind for later.

The remaining details of the methodology are completely standard. We employed

the fourth-order propagator (2.20) and performed convergence tests with respect to

time step and projection time to calibrate our simulations. For the results involving

the superfluid fraction, we used a time step of τ = 1
640

K−1, which was sufficient to see

convergence of the superfluid fraction. However, it was necessary to go to a 10x lower

time step to reach a convergent total energy. This is at least partially attributable to

the kinetic term in the total energy, which as seen from the Euclidean action (2.17)

is related to path curvature and hence needs smaller time steps to properly resolve,

especially when there are ’kinks’ in the world lines induced by short distance repulsion

between atoms.

3.2.2 Details of Monte Carlo calculations

We used the Worm Algorithm to perform all finite temperature calculations based on

the model (3.1) in the canonical ensemble (total number of particles N is fixed), for

a temperature range of T = 0.5 K to 4 K. For our zero-temperature calculations, we

used the PIGS algorithm, employing a Jastrow-type trial wavefunction

ψ0(r1, ..., rN) = exp

[︄
−1

2

∑︂
i<j

u(|ri − rj|)

]︄
(3.6)

embodying the pairwise correlations between helium atoms and the presence of a

repulsive core, where the pseudopotential u is given by

u(r) =
α

1 + βr5
(3.7)

with α and β as variational parameters to be adjusted in order to minimize the

expected energy with respect to the trial wavefunction, finding α = 19 and β =

0.12 Å−5. The most important features of Eq. (3.6) are that it goes to zero for

distances shorter than the hard-core distance, and saturates to a constant in the limit
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of large separation. Eq. (3.7) is a modification of the McMillan function u(r) = (b/r)5

[58], where e−u(r) solves the two-body scattering problem for helium atoms at low

energy.

Importantly, the trial wavefunction given in Eq. (3.6) is translationally invariant

and contains no information about the underlying graphene lattice, unlike the choice

in Refs. [26, 27], where solid order is built into their trial wavefunction by including

one-body factors which localize particles within a horizontal layer above the substrate

and at C1/3 adsorption sites. Additionally, the trial wavefunction given in Eq. (3.6) is

always positive and is thus guaranteed to have non-zero overlap with the true ground

state (allowing it to be projected out), although one may expect that this would take

an exceedingly long projection time because we haven’t given the algorithm ’enough’

physics at initialization. Assuming the claim made in Ref. [27] of the existence of a

low-lying fluid state having a small energy difference compared to the ground state,

one would also expect the system to remain disordered for a prolonged period as the

algorithm tries to eliminate the fluid state’s contribution. We wish to contest this

scenario, which is the reason behind our choice of trial wavefunction.

For short projection times, the computed physical estimates reflect more of the

trial wavefunction that was used as e−ΛĤ ≈ 1. Since the trial wavefunction we utilize

is oblivious to the presence of the substrate, there is no reason for helium atoms

to remain close to the substrate at short projection times, and we would witness the

evaporation of atoms off the graphene surface. This can be remedied by incorporating

a one-body factor ψ(z) in the trial wavefunction in a similar vein to what was done

in Ref. [27]. In our work however, we simply relied upon the projection algorithm

to stabilize the helium monolayer, finding projection times Λ ≥ 0.125 K−1 to be

sufficient with no detectable evaporation.
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3.3 Structure and energetics

As a test to see whether we could approach the regime where the ground state physics

dominates, we computed system’s total energy for a range of temperatures. Fig. 3.2

shows the total energy per helium-4 atom computed by the Worm Algorithm as a

function of temperature. It can be seen that the energy estimates below T = 1 K

are effectively constant, signalling that they can be treated as ground state estimates.

Since the low energy (long wavelength) excitations of the two-dimensional helium film

are phonons, the dominant term in the expansion of the energy is ∝ T 3. Hence, we

fit the purple data points in Fig. 3.2 with a cubic function e0 + αT 3, which is seen

to have good agreement. Using the fit, we extrapolate to T → 0 K, and read off a

ground state energy per particle of e0 = −129.550(25) K. The ground state energy

per particle from our PIGS calculations is −129.49(7) K, so both our finite and zero

temperature results are equivalent within error bars.

Figure 3.2: Energy per particle as a function of temperature The solid line is a fit of
the form e0 + αT 3. Solid circles refer to results obtained from the finite temperature
calculations. The estimate shown for T = 0 K (diamond) comes from our PIGS
calculation with a projection time Λ = 1 K−1; within its statistical uncertainty, this
estimate is consistent with our zero-temperature extrapolation of finite-temperature
estimates.

In contrast, Ref. [27] finds different values for the ground state energy per particle
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depending on the kind of trial wavefunction that is employed. From a trial wave-

function embodying translational invariance, i.e. one that is suitable for describing

a liquid, they find a ground state energy per particle of e0 = −129.221(9) K. After

incorporating a priori information about the C1/3 crystal into the trial wavefunction,

they find a slightly lower ground state energy per particle of e0 = −129.282(7) K.

Based on the small energy gap of roughly 0.06 K that they found between a C1/3

solid and liquid, the authors of Ref. [27] suggested that it pointed towards the exis-

tence of a metastable liquid phase that is energetically competitive with the insulating

crystalline ground state.

Comparing with our result however, we find that the ground state total energy

per particle we obtain is significantly lower (by ∼ 0.3 K) despite utilizing identical

pair potentials. The magnitude of this difference is three times than the solid-liquid

energy gap reported in Ref. [27]. Our results show that in fact, the DMC method in

Ref. [27] failed to reach the system’s true ground state. The same observation has

been made in the past [59], on account of issues with population size bias in DMC

[41, 42], which typically make path integral approaches the more reliable option for

studying properties of systems of bosons.

To quantitatively pinpoint the emergence of long-range crystalline order within the

monolayer, we computed the static structure factor at the commensurate coverage

θ = θ0 for wave vectors q lying within the graphene plane, then rotationally averaged

for expressing in terms of the magnitude q. The presence of solid order is evident

by the Bragg peak at q ∼ 1.7 Å−1 shown in the left of Fig. 3.3, consistent with

the formation of a C1/3 crystal. The right of Fig. 3.3 shows the density profile of

the helium monolayer, which is the same as that obtained in previous Monte Carlo

studies [27] and from solving the Schrödinger equation for particle moving transversely

relative to the plane in an averaged substrate potential V (z) [60].
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Figure 3.3: Left: Static structure factor S(q) for an adsorbed film of 4He on graphene,
calculated at T = 0.5 K for wave-vectors lying within the plane of the graphene. There
is a sharp peak in correspondence of q=1.7 Å−1. Right: Average 4He density as a
function of the perpendicular distance from the graphene plane, computed at the
same temperature.

3.4 Search for a metastable superfluid state

To search for a possible metastable superfluid state, we conducted the same compu-

tational experiment as in Refs. [61, 62]. Instead of a graphene substrate, helium-4

atoms were first simulated over a lithium substrate (modelled as a smooth, feature-

less plane due to the weakness of the lithium-helium interaction), maintaining the

same coverage as before θ = θ0, where it is known that the resultant helium film is

nearly 100% superfluid [3]. Once it was confirmed that the system had equilibrated,

an instantaneous snapshot of the helium world line configurations was taken. The

lithium substrate was then replaced with the original corrugated graphene substrate

and the simulation was resumed from the snapshot.

If a metastable superfluid state truly existed, then one might expect that the

simulation would have trouble ’finding’ the true crystalline ground state, requiring

the disentanglement of global exchange cycles that give rise to the superfluid signal.

Instead, what we find is that the exchange cycles disappear quite rapidly after trans-

ferring to the graphene substrate, with a resulting drop in the superfluid fraction.

On the left of Fig. 3.4a, nearly all of the particle world lines are cross-linked with
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(a) World line configurations for lithium substrate (left) and graphene (right). Solid circles
represent carbon atoms.

(b) P (n) for lithium substrate. (c) P (n) for graphene

Figure 3.4: Top: Snapshots of world line configurations for lithium (top left) and
graphene (top right) at T = 0.5 K. The system over lithium is almost entirely super-
fluid when the snapshot is taken, after which the substrate is replaced with graphene
and crystalline order quickly emerges. Bottom: Histogram of exchange cycles involv-
ing n particles P (n) for lithium (bottom left) and graphene (bottom right), at T = 0.5
K. Note that a logarithmic scale has been chosen for the y-axis. Upon transferring
to graphene, the vast majority of sampled permutations are the identity permutation
where the world lines are left as they are. The few remaining n > 0 cycles show up
as isolated peaks in P (n).

each other, forming macroscopic chains of exchanges spanning the entire lengths of

the simulation cell. On the right panel, however, we see that these are broken down

in the presence of the corrugated substrate, as the simulation algorithm continues to

sample new configurations. A crystalline arrangement emerges with particle world
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lines localized in periodic fashion, with a few resilient exchange cycles remaining.

Such cycles can lead to a finite superfluid signal provided that the simulation cell

is small enough (but we wish to point out that the superfluid signal is essentially not

measurable in the configuration shown on the right part of Fig. 3.4a). However, we

are skeptical that this effect persists in the thermodynamic limit. One way to tell is

through monitoring the histogram P (n) of exchange cycles involving n atoms. If P (n)

consists of a few isolated peaks, it is an indication that the sampling algorithm needs

more run-time to remove those resilient cycles rather than a genuine superfluid signal.

Indeed, this is what we observe in our P (n) histogram from Fig. 3.4c, suggesting

that there is no metastable superfluid phase. We revisit this point in Section 3.5.2 by

conducting a similar experiment with the zero-temperature PIGS method, starting

from a completely superfluid state and then projecting out the ground state in the

presence of a corrugated graphene substrate.

3.4.1 Low coverage

Figure 3.5: Left: Computed structure factor at T = 1 K at commensurate θ = 0.0636
Å−2 coverage, as well as at a lower coverage θ = 0.0577 Å−2, at which it is argued
in Ref. [28] to harbor a metastable superfluid state. Right: Snapshot of world line
configuration at the lower coverage. Solid circles represent the carbon atoms.

In Ref. [28], a claim is made that if the isotropic pair potential is used, then the

melting of the C1/3 crystal to form a superfluid phase occurs when the coverage is
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lowered from θ = θ0 to around 0.583 Å−2, which is grounded in the observation of a

corresponding drop by half in the height of the Bragg peak. If on the other hand, the

anisotropic LJ potential is used, then no appreciable change is observed. Based on

this comparison, the authors of Ref. [28] conclude that the choice of pair potential for

modelling the helium-carbon interactions greatly affects the physics of the system.

Our calculations at a coverage of θ = 0.0577 Å−2 indicate that this is not the case.

As shown in Fig. 3.4.1, although there is a reduction in the strength of the peak,

there is still solid order present as evident by its narrowness. Inspecting the world

line configurations in the right panel of Fig. 3.4.1, we see indeed that C1/3 solid order

is maintained. Examining the histogram of exchange cycles in Fig. 3.6, very rarely do

Figure 3.6: Histogram of exchange cycles involving n particles P (n) for simulations
at lower coverage θ = 0.0577 Å−2, with a logarithmic scale for the y-axis. Exchange
cycles involving a finite number of particles are relatively infrequent, and do not
induce a measurable superfluid signal (< 10−5).

exchange cycles involving a significant number of particles ∼ 10 get sampled. Even

so, the computed superfluid fraction at low coverage is less than 10−5, so these cycles

do not actually yield a measurable superfluid response. Based on our results for the

structure factor and superfluid fraction, we find that the C1/3 crystal structure is

maintained, and that there are no signs of a metastable fluid phase after doping the

helium crystal with vacancies.
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3.5 Zero temperature results

Our results at finite temperature suggest there is no metastable fluid, however, given

a BKT scenario for the superfluid transition, we are still well above the predicted

transition temperature of ∼ 5 mK. We now present the results of our zero-temperature

calculations using the PIGS method.

3.5.1 Structural properties

We start by discussing our results for the system’s structural properties. Upon equi-

libration of the system in our PIGS simulations, a helium monolayer was formed,

with an identical density profile as in our finite temperature calculations. Despite

Figure 3.7: Static structure factor computed by PIGS as a function of projection
time. The same Bragg peak at q ∼ 1.7Å−1 forms just as in our finite-T calculations.

employing a trial wavefunction with no solid order built into it, we witnessed the de-

velopment of long-range crystalline order, evident from the computed static structure

factor shown in Fig. 3.7. This underlies an important methodological point; the PIGS

algorithm is sufficiently reliable that it does not need to be hand-held, i.e. there is no

need to add additional physics to it by incorporating the one-body factors in Refs.

62



[26, 27]. At lower projection times Λ = 0.25 K−1, the system retains the liquid-like

characteristics of the trial wavefunction. But as projection time is increased, a suc-

cessively narrowing Bragg peak emerges at the expected location, agreeing with our

results at finite temperature. Without much struggle, the projected out state breaks

the translational symmetry of the trial wavefunction, with no signs of competition

from a metastable fluid state.

3.5.2 Zero-temperature superfluid response

It is quite evident by now that the system’s ground state is crystalline. Hence, we

now set our sights on addressing the possibility of a small, non-zero superfluid fraction

present in the C1/3 phase reported in Ref. [26]. For the following discussion, we will

write ρS = ρs/ρ to simplify the notation. The superfluid fraction in PIGS is computed

using the formula (2.106), which we reiterate below

ρS = lim
t→∞

D(t), D(t) =
N

2dλ

⟨︁
[RCM(t) −RCM(0)]2

⟩︁
t

(3.8)

where d is the dimensionality (set to be d = 2 because the helium layer is effectively

two-dimensional) and RCM(t) = (1/N)
∑︁N

i=1 ri(t) with ri(t) the position along the

i-th world line at imaginary time t and 0 ≤ t ≤ Λ. For a translationally invariant

system, ρS is equal to 1.
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Figure 3.8: Left: Fit to the superfluid fraction curve at projection time Λ = 4 K−1

using Eq. (3.9). Right: Computed distribution of fit parameter ρS. The dotted line
indicates the 99.99% confidence limit.
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Since the world lines have finite length Λ, the center of mass still propagates out

a finite distance, even if the distance in fact goes to zero in the infinite time limit.

Therefore, we extract the asymptotic limit through fitting the diffusion curve D(t)

with the expression from Ref. [63]

D(t) = ρS +
a

t

(︁
1 − e−bt

)︁
(3.9)

where ρS, a, and b are fitting parameters, ρS giving the extrapolated superfluid frac-

tion in the infinite projection time limit. Such a formula was introduced without

explanation in the original reference, but its use can be justified on the assumption

of an Einstein-type diffusion behavior (i.e., with the diffusion coefficient D(t) ∝ 1/t)

for the normal (i.e., non-superfluid) component, which is expected to set in for a

long time t, while for a short time the diffusion coefficient is expected to be mainly

influenced by the trial wave function, and therefore should start out from some finite

value. The form (3.9) simply interpolates between these two regimes.

We fit Eq. (3.9) to D(t) through a Metropolis random walk over the space of

parameters, obtaining the optimal fit parameters as well as their probability distri-

butions for uncertainty estimates, the details of which are given in Appendix B. The

fitting procedure is illustrated for Λ = 4 K−1 in Fig. 3.8 and can be seen to be reliable

over much of the domain.

Inspecting the distribution of ρS, we obtain an upper bound of ∼ 5 × 10−4 on the

superfluid fraction with 99.99% confidence, which is more than an order magnitude

lower than the superfluid fraction reported in [26]. The fact that the superfluid

fraction drops to an unmeasurably small amount during projection, despite starting

from a translationally invariant, fully superfluid trial wave function, constitutes in

our view strong evidence against the existence of superfluidity in the system’s ground

state.

We attribute the superfluid fraction (∼ 0.67%) observed in Ref. [26] as likely being

due to the population size bias issue mentioned in Section 2.4.2; specifically, the fact
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that one is working with a finite population of random walkers makes it impossible

to remove completely the bias associated to the initial trial wave function, which has

a nonzero superfluid component.
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Chapter 4

Conclusions

In this thesis, we presented the results of our investigations into the physics of a

helium-4 monolayer adsorbed onto graphene substrate, in search of a superfluid signal

in its ground state.

In order to do so, we employed a powerful computational methodology: path in-

tegral Monte Carlo. We developed the background for this technique in Chapter

2 starting from quantum statistical mechanics, recasting the calculation of thermal

expectation values as simple averages over imaginary-time paths that are statisti-

cally generated using the Metropolis algorithm. We showed how to incorporate the

indistinguishability of particles through the sampling of permutations, reviewed zero-

temperature variants of quantum Monte Carlo methods, and derived estimators for

the calculation of different physical quantities such as the energy, pair distribution

function, structure factor, and even superfluid fraction.

After developing the methodology, we applied it to our problem at hand, making

use of both finite-temperature and zero-temperature quantum Monte Carlo simula-

tions of a helium-4 monolayer over graphene. Through our finite-temperature cal-

culations for the C1/3 crystal phase, we obtained the system’s equation of state as

the total energy per particle as a function of temperature. We found a ground state

energy significantly lower than the ground state estimate given in Ref. [27], with the

magnitude of the difference three times greater than the proposed energy gap between
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the ground state and a metastable liquid state, indicating that the DMC procedure in

Ref. [27] had not actually converged to the ground state, likely due to methodological

issues with DMC such as population size bias.

To look for a metastable liquid state more directly, we conducted an experiment

involving first running the simulation over a lithium substrate to produce a completely

superfluid state and then swapping out the lithium for graphene. After the graphene

is introduced, we found that the superfluidity dissipates quite rapidly, concurrent

with the localization of world lines at C1/3 adsorption sites. A few isolated exchange

cycles remained, but the superfluid signal they induce is a finite-size effect as can be

deduced from monitoring the histogram P (n) of exchange cycles involving n particles.

We next addressed the claim raised in Ref. [28] that the system’s physics depends

heavily on the helium-carbon pair potential used for modelling their interactions,

their evidence being that a liquid state is harbored at lower coverages ∼ 0.0583

Å−2 for the isotropic pair potential due to the destabilization of the C1/3 structure

from vacancy-doping, while this does not occur with the anisotropic potential. We

simulated the system using the isotropic pair potential at a coverage θ = 0.0577

Å−2 with even more vacancies present and computed the static structure factor. We

indeed observed the same reduction of the C1/3 Bragg peak as in Ref. [28], but the

peak remains narrow and the system retains its crystalline character. We concluded

that the physics remains essentially the same whether the isotropic or anisotropic

forms of the He-C interaction are employed.

Finally, we performed simulations of the system at zero-temperature using the

PIGS method, to see whether a small yet finite superfluid fraction exists for the C1/3

phase as reported in Ref. [26]. To set up the most favorable conditions for superfluid-

ity at the beginning, we employed a translationally-invariant trial wavefunction with

no built-in information about the substrate. Nonetheless, through the PIGS projec-

tion algorithm we witnessed the development of C1/3 crystalline order in the system

with increasing projection time, providing further evidence against the existence of
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a low-lying liquid phase. To evaluate the presence of a ground-state superfluid re-

sponse, we computed the superfluid fraction in our PIGS simulations by fitting the

center-of-mass diffusion curve and extrapolating to the limit of infinite projection

time, finding a negligible superfluid signal with a high degree of confidence.

Altogether, our calculations at finite and zero temperature agree with each other

and provide strong evidence against the existence of a metastable superfluid phase,

and that the ground state of a helium monolayer over graphene is indeed, an insulating

C1/3 crystal.
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Appendix A: Tail correction to
total energy

We want to calculate the correction to the total energy due to imposing a cutoff radius

rc. For any pairwise interaction potential term, it was shown in Eq. (2.66) that the

total energy per particle due to interactions is

∆V

N
=
ρ

2

∫︂
drV (r)g(r) (A.1)

where ρ is the density of atoms and g(r) is the pair correlation function. Let us

consider first the contribution coming from interactions between helium atoms. Since

we are trying to include the contributions from all atoms outside the cutoff radius, we

integrate over all space such that r > rc. Additionally, assume that g(r) ≈ 1 outside

the cutoff radius and specialize to the two-dimensional case in light of the helium

atoms forming an effectively two-dimensional layer at distance d ≈ 2.8 Å above the

graphene plane. Thus, the correction has the formula(︃
∆V

N

)︃
He-He

= πθ

∫︂ ∞

rc

dr rVAziz(r) (A.2)

Evaluating this integral given the form of the Aziz potential in Eq. (3.2) then yields(︃
∆V

N

)︃
He-He

= ϵπθr2m

[︄(︃
Arc
αrm

+
2A

α3

)︃
e−αrc/rm − C6

4

(︃
rm
rc

)︃4

− C8

6

(︃
rm
rc

)︃6

− C10

8

(︃
rm
rc

)︃8
]︄

(A.3)

which is of order ∼ 0.01 K. Now consider the contribution coming from helium-carbon

interactions, where we note that there is no 1/2 factor as in Eq. (A.1) because helium

and carbon atoms are distinct from one another. The helium-carbon correction thus
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Figure A.1: Schematic diagram of computing the helium-carbon tail correction. We
approximate the helium layer as a plane at distance d = 2.8Å from the substrate,
neglecting zero-point motion in the transverse direction.

has the form (︃
∆V

N

)︃
He-C

= 2πρc

∫︂ ∞

√
r2c−d2

dr rVLJ(
√
r2 + d2) (A.4)

where ρC is the density of carbon atoms in the graphene plane. Evaluating the integral

using the form of the Lennard-Jones potential in Eq. (3.3) gives us(︃
∆V

N

)︃
He-C

= 8πϵρC

∫︂ ∞

√
r2c−d2

dr r

[︄(︃
σ2

r2 + d2

)︃6

−
(︃

σ2

r2 + d2

)︃3
]︄

= 2πϵσ2ρC

[︄
2

5

(︃
σ

rc

)︃10

−
(︃
σ

rc

)︃4
]︄ (A.5)

Note that there is no dependence on the distance d of the film from the substrate

unless the separation d > rc, which is implausible given the density profile in Fig.

3.3. The density of carbon atoms in the plane is ρ = Nc/LxLy ≈ 0.38177 Å−2.

Substituting in the values of the Lennard-Jones parameters, we obtain in the end a

tail correction of size ∆V/N ≈ −0.3485K.
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Appendix B: Details of Metropolis
fitting

As discussed before, the superfluid fraction in PIGS can be calculated through the

center-of-mass diffusion in imaginary-time RCM(t)−RCM(0) without invoking PBCs,

and taking the limit t→ ∞. We want to fit the diffusion curve in Eq. (3.8) with the

fitting function given by (3.9), obtaining an estimate of ρS as well as its uncertainty

induced by the noise present in Monte Carlo simulations.

To start, we estimate the fluctuation of each point in the diffusion curve by running

J independent simulations simultaneously with identical parameters, obtaining at the

end a set of diffusion curves {Di(t)}Ji=1. Then for each time value 0 ≤ t ≤ Λ, we

compute the blocked variables {D(B)
i (t)}Ki=1 over the dataset {Di(t)}Ji=1 where the

block size is B and J = BK. Denote the average over the blocked variables as

D̄(t) = 1
K

∑︁K
i=1D

(B)
i (t). It is clear that the block size does not affect the value of

D̄(t), but gives us better control over the error. Indeed, by the Central Limit theorem,

the blocked variables approach normally-distributed random variables centered at

D̄(t). The sample standard deviation of the blocked variables δD(t) then gives us an

estimate of the Gaussian error bar for each point D̄(t).

We now apply a fitting procedure to the averaged curve D̄(t), using the obtained

errors δD(t) to inform the uncertainty estimates for the fitting parameters. Denote

the set of fitting parameters as Ω = {ρS, a, b} and the fitting function by Df (Ω, t).

The probability of observing the datapoints {ti, D̄i} comprising D̄(t) as a function of
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the fitting parameters is then

P (Ω) =
∏︂
i

e−(D̄i−Df (Ω,ti))
2/2δD(ti)

2√︂
2πδD(ti)

2
(B.1)

which is a Gaussian distribution. Our goal is to perform maximum likelihood estima-

tion of fitting parameters given this distribution. It can be seen that the maximum

of Eq. (B.1) corresponds with fitting parameters which minimize the χ2 statistic

χ2 =
1

K

K∑︂
i=1

(︃
D̄i −Df (Ω, ti)

δD(ti)

)︃2

(B.2)

To estimate the optimal parameters, we perform a Metropolis random walk in the

space of fitting parameters based on the distribution given in Eq. (B.1). This ap-

proach also grants access to the probability distributions of the fitting parameters,

allowing for reliable estimation of parameter uncertainties.

During each step of the walk, a single component of Ω is updated. Trial parameters

Ω′ are proposed according to the rule

Ω′
i = Ωi + (u− 1/2) dΩi (B.3)

where Ωi, Ω′
i are the i-th components of Ω and Ω′ respectively, u is a uniform random

number on [0, 1], and dΩi is the magnitude of displacement which is tuned in order to

maintain an acceptance rate for parameter updates of around forty to sixty percent.

The acceptance probability Ωt → Ωt+1 = Ω′ according to the Metropolis recipe is

then

Pacceptance = min(1, P (Ω′)/P (Ω)) (B.4)

Through performing the random walk, we obtain distributions for each fitting param-

eter from the visited values. In particular, the sample means and sample standard

deviations of the distributions yield the optimal fitting parameters and uncertainty

estimates respectively.
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