
University of Alberta

Detecting, correcting, and preventing the batch effects in
multi-site data, with a focus on gene expression Microarrays

by

Saman Vaisipour

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Saman Vaisipour
Spring 2014

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Abstract

Gene expression microarrays are widely used to better understand the complex

biological mechanisms inside cells. One of the main obstacles of applying statistical

learning algorithms to microarray data is the large gap between the number of

features (p) and the number of available instances (n), i.e., the “large p, small n”

challenge. This thesis explores two ways to deal with this challenge.

One approach is to increase n by combining similarly appropriate microarray

data sets together. This is appealing as there are now many publicly available

microarray studies. The main problem of this approach is the batch effect, i.e., the

influence of non-biological factors on expression intensities that can confound the

biological signal. As a result, combining gene expression studies without correcting

for batch effects may lead to misleading findings.

This thesis proposes a novel batch correction algorithm, called batch effect cor-

rection using canonical correlation analysis (BECCA), that assumes the batch ef-

fect is due to additive independent confounding factors and so utilizes canonical

correlation analysis to separate technical bias from the measured biological signal.

We compare BECCA to various existing batch correction algorithms using several

real-world gene expression studies and find that BECCA has similar performance.

The key advantage of utilizing BECCA, compared to other similar performing al-

gorithms, is its flexibility, as BECCA allows the user to adjust how much common

signal to preserve across the batches and how much batch related signal to remove

from each one by changing the values of BECCA parameters.

The second approach to batch correction considers the wisdom of reducing p by

selecting a subset of genes. Our experiments suggest that some genes in microarray

data sets contain very little biological signal, i.e., including only these genes in the

calculations makes all specimens highly correlated, regardless of their tissue of origin

or disease state. It is, therefore, desirable to identify and remove these misleading

genes before conducing downstream analysis or batch correction. For this purpose,

we propose an efficient algorithm to extend the single-study variance-based gene

selection method to a multi-study gene selection algorithm. Our empirical results

show this feature selection algorithm outperforms other algorithms in reducing the

destructive influence of batch effects.

Acknowledgements

I like to think of a PhD program as an adventurous exploration. You start from a certain
point but you never know where you will end up and what challenges you will face. The
ultimate goal of a PhD (besides writing a thesis) is to learn how to explore independently
without getting lost.

The most important factor in how one finishes this journey is the journey’s guide. The
guide should not walk too fast to leave you behind, or too slow to leave you confused. S/he
should also be patient and wise to understand what the student is going through. Without
a great guide finishing the journey, if not impossible, would be extremely difficult.

On my journey Russell Greiner was a great guide. He taught me numerous lessons with
his actions. I’d like to think that he made me a better person. I would like to express my
sincere gratitude to him for everything.

I would like to thank Andy Sims, whom I got to know 3 years ago when I read one of
his articles and asked him a couple of questions. Since then, he has been extremely helpful
with guiding me and raising many invaluable points in our discussions. His dedication and
commitment is extraordinary, I hope one day I will meet him and have a chance to thank
him in person.

I would also like to thank my committee members, Dale Schuurmans and David Wishart.
Their helpful comments were vital for finishing this work. My gratitude also goes to Paul
Boutro’s lab members at OICR.

Getting through my dissertation required more than academic support, and I have many,
many people to thank, for listening to and, at times, having to tolerate me over the past
years. I express my deepest gratitude to Arash for his friendship. Without his rational
advises throughout my life, I would get lost at many different stages of my life. I hope I will
have him beside me in the future. I am also grateful to many other people, mostly in the
CS department: Amir-Ali, Amir-Masoud, Amin, Babak, Bret, Davoud, Fatemeh, Fariba,
Farzaneh, Hootan, Hossein, Jake, Joan, Kiana, Laurie, Mays, Meysam, Mohsen, Nasimeh,
Parisa, Reihaneh, Reza N, Reza S, Saimak, Shadi, Shahab, Shahin, (C) Shahni, Sheehan,
Thatchin, Yasin, and Yavar. These people turned the cold nights of Edmonton into the
warmest memories of my life.

I want to make a very special mention of those friends at home who stood by me when
I left, when I came back and all the time in between: Armin, Farough, and Sina. Even
though they were thousands of kilometers away, I always knew I have them by my side.

Most importantly, none of this could have happened without my family. My grand-
mother always offered her encouragement through her simple honest prayers. My parents,
Mehri and Ayoub, are the best parents I could wish for. They raised my siblings and me to
be caring and kind. They spent everything they had into our education. This dissertation
stands as a testament to their unconditional love and encouragement. Without them, I
would not be writing these lines. I also like to thank Pakhshan and Sirwan. Having such a
great sister and brother makes me feel safe. If it was not for their sacrifices, I would not be
able to come back and continue my PhD, for that, I am forever grateful.

Lastly, I would also like to thank Mariana and appreciate her presence in my life. Even
in my native language, I cannot express how significant her role is in my life. She was such
a great companion on this journey. I cannot wait for our future journeys.

Table of Contents

1 Introduction 1
1.1 Contributions . 5

2 Background and Related Work 7
2.1 Microarray Analysis . 9

2.1.1 Phenotype Association Studies 11
2.1.2 Phenotype Prediction Studies 16

2.2 Large p small n Challenge . 19
2.3 Joint analysis of multiple gene expression studies 21

2.3.1 Meta Analysis Techniques . 24

2.3.2 Integrative Analysis Techniques 25
2.3.3 Issues and Challenges . 29

2.4 Summary . 30

3 Batch Effects in Microarray data 32
3.1 What is a batch? . 33

3.2 Identifying a significant batch effect 37
3.3 Batch effects and experimental design 39

3.4 Evaluation of batch effect minimization methods 45
3.5 Summary . 48

4 Feature Selection in microarrays 49

4.1 Distribution of gene expression intensities 50
4.2 Feature reduction in gene expression data sets 55

4.2.1 Integrative correlation analysis 56
4.2.2 Gene ranking analysis . 58
4.2.3 Correlation increment gene selection algorithm 61

4.3 Comparing the performance of feature selection methods 63
4.4 Variance of genes as an indicator of data set similarity 74

4.5 Clustering gene expression data sets using their variance-based gene
ranking . 81

4.6 Summary . 83

5 Batch Effect Detection 85
5.1 Using specifically designed data sets to evaluate the performance of

BE correction algorithms . 86
5.2 Unsupervised methods for detecting BE 91

5.3 Supervised methods for detecting BE 96
5.4 Summary . 102

6 Batch Effect Correction Using Canonical Correlation Analysis 104
6.1 Formulation Assumptions . 105

6.2 Canonical Correlation Analysis . 106
6.3 BECCA . 109
6.4 Implementation Details . 114

6.4.1 Step1: Separating the biological and technical signals 116
6.4.2 Step2: Removing the unwanted variation 117

6.4.3 Parameter Settings . 118
6.4.4 Properties . 118

6.5 Summary . 119

7 Empirical analysis of BE correction and gene selection methods 121
7.1 Feature selection and batch effects 121

7.2 Batch effect correction comparison 129
7.2.1 GSE33822 (mouse brain study) 130
7.2.2 Breast cancer study . 135

7.3 Summary . 139

8 Conclusion and Future Work 141

A Canonical Correlation Analysis Formulations 145

List of Abbreviations 157

Bibliography 160

Chapter 1

Introduction

Measuring gene expression levels (transcription of genes) using microarrays is now

a common practice for finding new insights about different diseases and condi-

tions. Examples of the wide range of microarray applications includes: finding

new biomarkers by exploring the relationship between the expression of genes and

the state of a disease, predicting the clinical outcomes such as the response of cancer

patients to particular adjuvant treatments or the chance of rejecting a transplanted

organ, and discovering processes taking place inside certain types of cells. Statistical

learning algorithms have been widely utilized to assist scientists with exploring gene

expression data.

One of the main challenges of elucidating meaningful results from microarray

experiments is that the number of observations, also know as sample size (n), is

typically significantly smaller than the number of measured features (p). The value

of n is often less than 100 while p is typically more than 10,000 [1]. In this thesis,

we consider two different approaches for this problem:

1. Increase n by combining several studies together.

2. Reduce p by applying a feature selection algorithm.

Combining available studies (that are appropriately “similar”) together to in-

crease n is an appealing solution to decrease the gap between n and p, especially

when there are many publicly available data sets. However, this task can be chal-

lenging if the different studies are done by different labs using different technologies

as these technical differences confound the biological signal of interest and influence

the measured expression intensities in a way that they might not be comparable

across studies. The influence of technical differences on the expression values is

1

known as the “batch effect” (BE) [2]. Before one can combine such datasets, it is

necessary to apply some correction procedure to these studies in order to remove the

batch effect [3] and make their expression values numerically comparable. In this

thesis we explore ways to detect, and remove, batch effects. We first study available

batch effect removal methods proposed for correcting gene expression studies.

We introduce a new batch removal method based on canonical correlation anal-

ysis (CCA) called BECCA. CCA is a well known statistical algorithm that is used

to find the directions of high correlation between two sets of features that have been

observed for a same set of instances [4–6]. Similar to principal component analy-

sis (PCA), which is used to reduce the dimensionality of one data set at a time,

CCA typically is used to reduce the number of features between a pair of data sets

by projecting them onto directions that makes their data maximally correlated [7].

The main requirement of our novel approach, BECCA, is that the data sets that are

being combined together contain a common correlated signal and that the signal

is influenced by batch effects independently in each data set. BECCA finds the

directions of high correlation between two data sets and projects them onto these

directions. The residuals are presumably batch effects, which can then be removed

from each data set independently. We empirically compare BECCA’s performance

to other available BE correction methods and find results indicating that BECCA

corrects the batch effect as effectively as other state of the art algorithms. One main

benefits of utilizing BECCA is its flexibility; users can decide how much common

signal to preserve across the batches and how much batch-related signal to remove

from each one by changing the values of BECCA’s parameters, i.e., to control the

“level of batch correction”.

Another approach to deal with this “large p small n” challenge is to perform fea-

ture selection, to reduce the number of genes that are used in downstream analysis.

The benefits of using gene selection algorithms to identify differentially expressed

genes is well-known [8]. An effective gene selection method is able to find a subset of

genes that are least influenced by the confounding factors and contain most of the

biological signal of interest. The findings in this thesis suggest that utilizing such

feature selection methods will improve the performance of learning algorithms not

only by reducing the gap between p and n but also by removing genes whose ex-

pression intensity is more severely influenced by non-biological confounding factors,

note that utilizing these gens for learning will degrade the performance. We studied

2

the relationship between the batch effect and the feature set used when combining

gene expression studies.

Our experiments also indicate that there are some genes that implicitly claim

that any pair of expression profiles are highly correlated regardless of their tissue

of origin or disease state. In other words, if we only take into account these genes

to calculate the correlation coefficients between profiles, then all the scores will be

almost 1, irrespective of the biological properties of profiled specimens. We believe

neglecting to filter these genes out of the data set can badly harm the effectiveness

of batch effect correction algorithms, especially the “matrix factorization-based”

correction algorithms [2], as well as the downstream analysis.

There are gene selection algorithms that can be applied successfully to single

study cases, including the variance-based gene selection that ranks genes based on

their variance assuming that high variance is caused by the biological variations of

instances. We propose an efficient algorithm to extend the single study variance-

based gene selection algorithm to the multi-study case. Our proposed algorithm

receives the variance-based ranking of several studies and generates one ranking

for genes by combining them. We compare this feature selection algorithm with

other available feature selection algorithms and evaluate them based on the reduced

confounding influence of batch effects. Our experiments indicates this algorithm

outperforms other feature selection algorithms. One might think of the feature

selection step as a pre-batch correction stage in order to remove misleading genes

whose expression intensities are highly influenced by confounding technical factors.

The literature shows that some correction algorithms distort the data, lead-

ing to a poorer result for the downstream analysis than the original batch-affected

data [2, 9]. Therefore, evaluating the performance of batch correction algorithms

to ensure that these “corrections” do not further distort the data is as important

as correcting the batch effect itself [2]. The performance evaluation is not a trivial

task as batch correction algorithms have two competing goals, namely removing

influence of technical factors on data and imposing minimum modification of true

biological differences between samples. Many of the qualitative evaluation methods

assess batch effect correction algorithms only according to one of these goals and

fail to consider the other one. In this thesis we study available evaluation meth-

ods and introduce two new evaluation methods by modifying available algorithms

to ensure they evaluate batch correction algorithms for both expected goals. This

3

thesis introduces a method that can measure the severity of batch effects influences

by utilizing a biological labeling associated with the instances. By comparing the

intensity of BE before and after applying a particular BE correction algorithm, we

can evaluate an algorithm’s performance under different circumstances.

As many authors have pointed out, the effectiveness of batch correction process

depends on how the technical factors confound the biological signal. Gagnon-Bartsch

and Speed [9] mentioned that, if the unwanted technical variation is not orthogonal

to the biological signal of interest, then a batch correction algorithm might not be

able to avoid also removing useful biological information. This mainly depends on

the experimental design and the processing order of samples, which determines how

the technical factors influence the expression values. If the instances (samples) are

grouped according to their biological properties, i.e., batches are formed according

to the biological properties, then the technical factors will confound the biological

signal and it will become impossible to correct the batch effect without losing useful

biological signal. In this thesis we provide general guidelines for experimental design

to reduce the confounding influence of batch effects and increase the likelihood that

correction algorithms will be able to remove the batch effects without distorting the

biological signal.

The thesis is organized as follows: Chapter 2 discusses the wide range of learning

algorithms applied to gene expression studies and the “large p small n” challenge

that is faced by all algorithms. Chapter 3 looks at the batch effect and explains

what prevents us from simply combining gene expression studies in order to increase

n. This chapter also proposes some basic guidelines to conduct experiments that

are known to reduce the influence of confounding factors. Chapter 4 explores the

available gene selection algorithms for reducing p, which is an alternative approach

to addressing the large p small n challenge, and it extends an available single study

gene selection algorithm to a multi-study methodology. Chapter 5 explores different

ways to test for the existence of batch effects and also evaluates the performance

of batch effect removal methods. Chapter 6 introduces our novel batch correction

method, BECCA, which utilizes canonical correlation analysis for performing batch

correction. Chapter 7 offers a more empirical analysis of ideas and methods in the

previous chapters. More specifically, Chapter 7 utilizes the findings of Chapters 4,

5, and 6 to conduct batch effect correction on gene expression data sets and com-

pares the performance of BECCA to other available correction algorithms. We also

4

included a full mathematical description of CCA in Appendix A.

1.1 Contributions

In summary, this thesis mainly deals with different solutions for the “large p small

n” challenge in gene expression microarrays. Our solutions are either based on

reducing p, by utilizing effective gene selection algorithms, or based on increasing n,

by combining several studies together and correcting for batch effects. The following

list provides an overview of the main contributions of this thesis:

Contribution 1

We introduce a new batch correction algorithm based on canonical correlation

analysis called BECCA. Assuming (1) additive batch effects confound each

study and also (2) these effects are independent from the biological signal and

(3) from each other, BECCA can separate the biological related signal from the

signal caused by technical factors. BECCA removes the variation caused by

technical factors by projecting each study onto the null space of the technical

factors’ main directions of variation (for more details see Chapter 6).

Contribution 2

Our empirical results demonstrate that, given the right parameter values,

BECCA can remove batch effects as effectively as the current leading and

widely used batch correction algorithm. This suggests the assumptions of

BECCA are reasonable in dealing with real-world gene expression data sets

(for more details see Chapter 7).

Contribution 3

Our analytic methods identify a set of biologically uninformative genes – using

just this subset of genes, the mean correlation between the profiles of any two

studies is around 0.95, regardless of their tissue of origin or disease state.

Filtering these genes out will improve the performance of batch correction

algorithms as well as the downstream analysis conducted on the data (for

more details see Section 4.2.3).

Contribution 4

We extend the effective single-study variance-based gene selection method to a

multi-study gene selection algorithm by proposing a computationally efficient

5

implementation that scales linearly with the number of datasets. Empirical

results indicate this feature selection algorithm can reduce the destructive role

of batch effects by identifying the genes that are most affected by technical

differences (for more details see Section 4.2.2).

Contribution 5

We extended an existing method for evaluating the performance of batch ef-

fect correction algorithms that operates based on the number of differentially

expressed genes, both within and across-batches. This evaluation method is

able to detect the influence and severity of batch effects and does so in a very

general way based on minimal assumptions (for more details see Chapter 5).

6

Chapter 2

Background and Related Work

The molecular processes underlying health and disease are extremely complex. Un-

derstanding how genes and proteins are responsible for complex diseases such as

cancer in individual patients and at the population level is a huge challenge. Ac-

cording to available statistics, cancer is one of the leading causes of death world-

wide [10]. Moreover, the rate of cancer is also increasing due to the influence of

aging and population growth [10]. There are many different inter-related factors

that make predicting, prognosis, and identifying the most appropriate treatment of

cancer extremely difficult. Not only can cancer affect different organs in the body,

but cancers in each organ are also very heterogeneous. For example breast cancer,

the most common malignant tumor in women, has two main histological subtypes,

and each one divides further into five subtypes based on its molecular properties[11–

13]. This diversity might be the main reason for observing different outcomes after

applying the same treatment to patients with apparently similar conditions. The

same reason applies to the difficult task of prediction of metastasis1 and recurrence2

in cancer patients [14].

To deal with this complexity, scientists have started using systems biology and

high-throughput molecular techniques to understand cellular cancer mechanisms at

the level of DNA, RNA, and proteins [15]. As explained by the central dogma of

molecular biology, many relevant properties of cells depends on a two step mecha-

nism: First, transcription of genetic information encoded in DNA into messenger

RNA (mRNA); and second, translation of mRNA into proteins, the major functional

and structural elements in cells. In recent years, high throughput system biology

1Migration of cancer from one organ to another organ in the host’s body.
2Return of cancer in the same position or the same organ, after being removed by surgery and

treated by chemotherapy and/or radiotherapy.

7

methods have made it possible to characterize cells at the level of DNA, RNA, and

proteins. Respectively this can be done by finding single-nucleotide polymorphisms

(SNPs) and copy-number variations (CNVs) in DNA, measuring transcribed mRNA

and microRNA (miRNA) levels, and the concentration of proteins and their post-

translational states. These measurements provide a snapshot of what is happening

inside cells in a comprehensive maner. Using these techniques has helped scientists

to learn a lot of important information about mechanisms and processes for different

types of cancer, which consequently has helped them to find new and more effective

treatments.

As mentioned above, one of these techniques is transcriptomics, which measures

gene expression levels (the amount of transcribed mRNA for each gene). Transcrip-

tomics has been used extensively in cancer research [16]. Using this technology,

researchers can measure the expression of several thousand genes simultaneously.

Each modern microarray chip is an array consisting of hundreds of thousands

of hybridization probes, each a short fragment of DNA, usually between 20 and 60

bases long [17, 18]. These probes are designed to bind to a specific mRNA or DNA

fragment that has the complementary sequence. The whole array of probes are

designed to essentially cover all of the transcribed genome. Gene expression studies

usually involve processing microarrays for a group of individuals. Different studies

involve different groups of individuals: they might be specimens of cancerous tissues

taken from cancer patients or tissues from mice that have been exposed to a specific

drug, or cell lines cultured in vitro that have been exposed to a particular chemical.

In the context of cancer and microarray studies, different researchers may have

different goals, with each such goal requiring its own specific algorithms and tech-

niques. The goal of a study might be finding differences between patients that suffer

from early relapse from those that do not. If physicians are able to predict accu-

rately which patients will experience early relapse, then they can justify the use of

more aggressive treatments to increase the chance of survival of only those high risk

patients. Another goal is to predict which adjuvant treatment will be effective for

a cancer patient. For each cancer type, several different chemicals can be used for

chemotherapy, each of which is helpful for some, but not all, patients. Predicting

the drug that works best for each patient is beneficial from several aspects. First,

it improves the survival rate of patients, by both eliminating cancer using the most

effective chemicals and not harming the general health of patients by exposing fewer

8

of them to more doses of dangerous chemicals. Second, it also reduces the imposed

cost to the health system. Third, microarrays can be used to predict cancer sub-

types, which consequently can help identify the appropriate treatments. Currently

pathologists use histology to determine such subtypes, which can be costly, slow,

and imperfect, due to human errors. We anticipate the techniques developed for

targeting one of these goals in one kind of cancer are applicable to other types of

cancer, especially among less common or less studied cancer types.

One major challenge for microarrays is their dimensionality: finding useful in-

formation from a relatively small number (n) of instances, each of which has a large

number of features (p), e.g., n is often less than 100 patients and p is often greater

than 10,000. We will need to use novel techniques to deal with this “large p small n”

challenge [8, 19, 20]. We anticipate these techniques will extend beyond microarray

analysis, and apply to many related tasks, including many other biological datasets,

such as SNPs, CNVs, proteomics, metabolomics, and others.

Section 2.1 we briefly summarize many previous results related to microarrays,

focusing on the ways that other researchers have extracted meaningful data from

them. We examine and compare attempts to deal with the “large p small n” chal-

lenge in Section 2.2, and analyze their abilities and limitations. Section 2.3 briefly

describes potential solutions for this challenge and Section 2.3.3 analyzes the asso-

ciated with those solutions.

2.1 Microarray Analysis

Microarrays have been used extensively in the context of cancer research. A simple

search in the two largest public microarray repositories, Gene Expression Omnibus

(GEO) [21] and Array Express [22], reveals that there are respectively 4151 and 4163

studies with the keyword “cancer” mentioned in their titles or description 3. The

availability of such an extensive set of microarray samples, all related to cancer, sup-

ports the claim that microarrays play an important role in cancer research. In this

chapter we present a brief overview of many of the tasks and algorithms commonly

used in microarray research. We categorize these tasks into two main subgroups,

association studies (Section 2.1.1) and prediction studies (Section 2.1.2).

3Using the GEOmetadb package [23], we were able to extract the number of arrays in each
4151 cancer studies of GEO repositories. The average number of samples in cancer gene expression
studies was 45.5471.

9

In order to measure the abundance of mRNA using microarrays, a lab technician

first extracts mRNA from the intended cells and then exposes it to the microarray

chip. Given enough time before washing the extracted mRNA off the array, each

strand of mRNA will bind to the associated hybridization probe on the array. The

higher the abundance of mRNA in the cell, the more of this mRNA will bind to

the associated probe. A special scanner reads these intensities from the array and

records them as an image; intensities on each probe shows the amount of mRNA

bound to that probe. Specific image processing algorithms read intensities from

these image files and save them into numerical files containing long list of numbers,

one number for each probe. This format is called the raw data. In many platforms,

a single gene has more than one probe measuring the transcription level of that

gene [24], so here we need to aggregate the values of these probes in a smart way to

find the best estimate for the gene expression values, respecting post-translational

effects; see Section 2.3.3. This aggregation step is a part of the preprocessing stage.

The output of this preprocessing step is again a list with p values in it, which

is usually one order of magnitude smaller than the raw data. Companies that

make microarrays have their own standard protocols for each step in this process.

Figure 2.2 in Section 2.3 depicts these data types and algorithms that produce them.

This process is repeated for all n individuals of a study, which result in a p× n

matrix of numbers. This chapter focuses on such p × n matrices of n instances

(samples or patients) with p features (the number of probesets or genes) [25]. To

simplify descriptions, we will assume that p is the number of genes.

Researchers have looked at this p × n matrix from two different perspectives.

One perspective is patient-based, which analyzes each patient as a vector of p genes

expression values. The second perspective, gene-based, looks at each gene as a n

dimensional vector that represents one gene’s expression levels across n patients

(samples). The gene-based perspective finds relationships between genes by analyz-

ing the relation between their vectors. For example, the normalized dot product of

these vectors shows the similarity between expression patterns of two genes across

different patients. As another example, the direction that these p individual vec-

tors from Rn mostly spread out is the direction of the principle component of the

data [26]. This perspective is useful for finding novel relations between genes; we,

however, will focus on the patient based perspective.

The patient-based perspective allows us to find similarities and relations among

10

Table 2.1: Categorizing of microarray tasks based on the two mentioned perspec-
tives.

Patient-Based Gene-Based

. Phenotype Association . Expanding Pathways
Supervised . Phenotype Prediction . Finding Novel

. Survival Analysis gene-gene interactions

Unspervised . Discovering Patient . Discovering consistent gene sets
sub-populations . Learning Causal relationships

a population of patients by looking at their gene expression profiles. For example,

by running an unsupervised learning algorithm (clustering) on expression profiles of

patients, we can find sub-populations of patients with similar transcription levels.

Later we can examine whether these sub-populations have similar clinical pheno-

types. Supervised learning algorithms are also used here; by using the label assigned

to each patient in the training set (e.g., high risk versus low risk cancer patients) and

applying a learner we can learn a relation between genes and the assigned labels.

The output of such a learning procedure is a classifier that can predict the label

for future patients based on their gene expression profile. Table 2.1 summarizes

several standard tasks, categorized into 4 subgroups according to their perspective

and learning method.

For supervised tasks that are“patient-based”, the label is the patient’s pheno-

type; when gene-based, the label could be a gene’s membership in some pathway for

“Expanding Pathways”, or could be the bit for whether a pair of genes are known

to interact, for the “Finding novel gene-gene interaction” task [27]. In this study

we only look at patient-based tasks, specifically association studies and predic-

tion studies are analyzed in Sections 2.1.1 and 2.1.2 respectively. Lee and Wang

[28] present further information about survival analysis in this setting. One of the

challenges faced by patient-based algorithms is “large p small n”, since typically

in a microarray dataset n � p, which is the opposite of the usual learning setting

n� p [19]. Section 2.2 explores this challenge in more detail.

2.1.1 Phenotype Association Studies

Table 2.1 notes that phenotype association studies are supervised patient-based

learning tasks. The main goal of these studies is to find a gene set that is closely

associated with the condition under study (i.e., the phenotype). The resulting set

of associated genes is sometimes called the expression signature of that phenotype.

11

For example, if the microarray study contains samples of two populations, i.e., high

risk versus low risk breast cancer patients, then the output of an association study

will be a set of k genes, k � p, that are each highly correlated with this high risk

versus low risk dichotomy, i.e., each gene in this set is differentially expressed (DE)

across these two conditions. One of the main issues with these association studies is

the way the research community assesses such findings. Usually the researchers who

conduct the association studies will then evaluate the expression signature against

the current biological knowledge, i.e., they compare their gene set with the set of

gene that are already known to be related to the condition according to biological

experiments. The fact that their new gene signature shares a non-trivial subset with

these known set of genes is enough to suggest their newly obtained gene signature

is “correct”. This allows them to claim that the other genes in the signature are

also probably associated with that condition, even if this is not yet supported by

biological evidence. Notice this is a biological validation, and not a computer science

one – i.e., it is based on prior biological knowledge. It is also difficult to quantify:

how good is it if 20 out of the 30 genes are known? How much better is knowing 25

out of 30?

There are two types of association studies, which differ based on whether they

use prior knowledge of gene sets. One type of association study, gene set analysis

(GSA) [29–31], receives an a priori defined gene set as input and decides whether

this set of genes (individually or collectively) are expressed significantly differently

between two conditions. The other division does not use any prior knowledge about

a gene set; instead these algorithms assign a score to each gene that attempts to

measure how ”correlated” this gene is to the phenotype, and then rank genes ac-

cording to their scores. We call them gene ranking methods; they are also known as

cutoff-based methods since they apply a cutoff threshold to ranked genes in order to

choose the top signature genes [29].

One can also categorize association studies based on the type of the statistic

they use, which can be associative or predictive [31]. Associative statistics try to

find differentially expressed genes by comparing the average expression of each gene

over all instances in each of the phenotypes. Genes that have large differences

between the averages of the two phenotypes are considered to be more “associated”

with these phenotypes. On the other hand, predictive statistics look at the power of

each gene for predicting the phenotype of a new instance. According to predictive

12

Table 2.2: Categorizing of phenotype association studies.

Gene Ranking Gene Set Analysis – GSA
(Without Prior) (With Prior)

Associative
Statistics

correlation,

p-value, q-value [33],

signal to noise ratio,

fold change, SAM [34],

GSRF [35], GSFLD [35]

Sample SAFE [29], SAM-GS [36]

Randomization

Gene PAGE [29], T-profiler [31]

Randomization GAGE [31], Random-Set [31]

Hybrid GSEA [37]

Predictive
Statistics

PAM [38], k-TSP [39] GLAPA [30]

statistics, if a gene value is a good indicator for accurately predicting the phenotype

of new instances then it is consider to be “associated” with the phenotype. In more

technical terms, training a classifier using such a gene set will result in a small

generalization error. Table 2.2 characterizes the tasks for association studies, based

on these two criteria4.

To assess the significance of a gene set under the null hypothesis that there

is no difference in expression between two phenotypes, GSA methods usually use

permutation tests [40]. The standard methods include “sample randomization”, gene

randomization, or hybrid, which is a combination of both. The small table inside

the Association Statistics/With Prior cell of Table 2.2 shows these three methods of

significance assessment. Sample randomization approaches compare test statistics

of the given gene set with the true label, versus the same gene sets statistics relative

to a random permutation of labels assigned to instances [29, 31]. In contrast, gene

randomization approach uses random permutation of the genes or a parametric

distribution over genes. Luo et al. [31] explain that sample randomization keeps the

correlation structure between genes in the gene set while gene randomization does

not. However, in order to have more accurate estimation, sample randomization

needs more instances of each phenotype.

Goeman and Bühlmann [41] call these two approaches self-contained null hy-

pothesis versus competitive null hypothesis, as the former method requires only the

genes in the given set to evaluate their significance while the latter methods “com-

petes” these genes with other sets of genes to find their significance. Goeman and

Bühlmann [41] analyzed these two approaches along with their assumptions pre-

4There are online tools like FatiScan [32] that let users utilize each of these methods through a
simple graphical interface.

13

cisely and interpreted the resulting p-values of each one. They concluded that

sample randomization approach is valid and its p-value is interpretable according

to the traditional statistical definition of p-value. On the other hand, in the gene

randomization approach, conclusions based on p-values are not trustworthy since

the assumption of i.i.d. genes is not valid in the context of gene expression datasets.

Researchers have compared the effectiveness of different GSA methods in dif-

ferent circumstances by comparing their performances [30, 31]. Researchers also

attempted to propose a general framework to cover all variates of GSA methods.

Ackermann and Strimmer [29] proposes a modular framework that covers most of

the GSA methods by trying all combinations of available algorithms for each module.

They extensively compared 261 GSA variants on 9 syntactic datasets and 2 real mi-

croarray studies. Their results show that the average of simple uni-variate statistics,

like t-statistics, combined with simple transformations, like ranking, and assessed

using permutation tests performs reliably well across a wide range of situations.

In another study, Adewale et al. [36] extended the works of [42–44] by introducing

significance analysis of microarray to gene-sets (SAM-GS), a unified measure based

on the ratio of the regression coefficients to their standard error. They calculate

this score for each gene in the set and then add up the squared scores to form the

whole set’s score. They apply this general settings to three types of phenotypes: un-

censored independent, uncensored correlated binary phenotypes, and also censored

survival analysis. These three types cover a wide range of applications and studies.

Dinu et al. [45] extended SAM-GS to perform a significance analysis of microarrays

for gene-set reduction (SAM-GSR) that not only declares the significance of a gene

set but it also finds a subset of “core genes” in the set that are mainly responsible for

the significance of the whole set. SAM-GSR gradually reduces a significant gene set

and analyzes the association of remaining genes with the phenotype. The reduction

stops at a certain threshold, which is chosen arbitrarily by the user without any

claimed statistical property.

Considering the extensive research done in the context of associative studies and

GSA algorithms, it seems the ultimate goal, finding a core gene set associated with

a given phenotype, still is far beyond reach. A brief survey of the currently available

expression signatures5 associated with a certain phenotype, shows that there is no or

5For the list of breast cancer related signatures, go to http://rock.icr.ac.uk/browse/browse_

14

http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp

very limited agreement between studies conducted by different researchers. Ein-Dor

et al. [46] studied this phenomenon toward determining whether there is a unique

set or not. They looked at one of the first studies that used expression profiling for

finding associated genes as well as predicting a phenotype, conducted by van’t Veer

et al. [47]. The original study used 77 breast cancer instances to find a prognostic

signature in the expression profiles based on the top 70 associated genes, then used

a disjoint set of 19 instances to evaluate the accuracy of this learned classifier. Ein-

Dor et al. [46] repeated this method, but using several different random subsets of 77

patients. Surprisingly they found that top 70 genes selected using different subsets

of patients is not unique and is strongly dependent to the subset of patients used

for gene selection. However, using any subset of 70 genes selected from top 5000

genes correlated with survival resulted in the classifiers with approximately similar

performances. Sims et al. [48] argues this is not surprising – findings are highly

“context specific” and depend upon the patient sample used.

Ein-Dor et al. [49] later claimed that “thousands of samples are needed to gen-

erate a robust gene list”. They claimed the main reasons of observing such an

inconsistency is the fact that there are lots of genes correlated with the phenotype

and the differences of these correlations are small. They hypothesized that one would

get more consistent results by first dividing patients into smaller, biologically-similar

subgroups and finding a separate gene signature for each subgroup [50]. Because

each random sample contains different proportions of patients belong to these finer

subgroups, genes correlations fluctuate strongly with the chosen random subset of

patients. Ein-Dor et al. [46] also emphasized the distinction between learning a

prognostic tool, i.e., a classifer, versus finding a gene signature. One might learn a

fairly reliable classifier using a large enough set of genes. However, the specific genes

used for this purpose will not necessarily play an important role in the histology of

the disease under study and so might not be the best potentials targets for treat-

ment. In the next section we will talk about methods of learning such prognostic

tools in more detail. We refer readers to von Heydebreck et al. [51] for a detailed

guide of conducting association studies in R.

gx_signature.jsp gathered by ROCK, Breast Cancer Functional Genomics.

15

http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp
http://rock.icr.ac.uk/browse/browse_gx_signature.jsp

2.1.2 Phenotype Prediction Studies

As we mentioned earlier in Table 2.1, prediction studies are supervised patient-based

learning methods, i.e., they work with vectors of expression profiles of patients.

Since many studies apply both unsupervised and supervised patient-based methods

to the microarray data in order to get more insights, we present both of them in

this section. In the rest of this section, we will use “prediction study” to refer to

either of these two learning schemes, interchangeably.

Some prediction studies start their analysis with a pre-filtering step in which

researchers apply a simple inter quantile range (IQR) filter [51] to the extensive

space of features in order to remove genes that have almost constant expression

values across all patients. This IQR step reduces the number of feature from p to

p′ where p′ ≤ p. Other researchers use statistical methods like principle component

analysis (PCA) to reduce the number of features, but this is less common in this

context as it is more difficult to interpret a feature set produced by PCA [52].

One type of prediction study is supervised learning, which learns a relation

between expression profiles of patients and some clinically interesting label, using

some training data in the form of a pair of expression profiles and labels: (X, y),

where X is the p× n matrix of expression values and y is a a 1× n vector of labels.

The output of a supervised learning algorithm is a classifier, which is an algorithm

that predicts labels of future unlabeled patients based on their expression profiles.

We evaluate these learned classifiers by how accurately they can predict labels of new

instances. The best way to assess the accuracy of a classifier is to use a dataset that

is disjoint from the training set, called a validation set. This approach is especially

problematic in the case of microarrays, since we already have very few instances

for training. Another common way for assessing accuracy is to use cross validation

(CV) scheme [19]: here, we estimate the performance of the classifier obtained by

applying a learner L to a dataset by dividing it into k disjoint subsets, known as

folds. A classifier is trained using k − 1 folds, whose accuracy is assessed using the

last unused fold. This process repeats k times and the average of accuracy for all

folds is reported as the estimate of overall accuracy. Conducting k = 5 or k = 10

folds cross validation is very usual; leave one out (LOO-CV) is a cross validation

where the number of folds is equal to the number of instances (k = n).

Unsupervised patient-based methods, on the other hand, try to assign patients

16

to one of the clusters of patients, based on the similarity of their expression profiles

and without looking at their labels (y vector). K-Means and hierarchical clustering

are two most widely used algorithms for clustering [53]. Multidimensional scaling

(MDS) is also used to find an intuitive visual representation of similarity among

expression profiles of patients [54]. In this context, it is very common to run a

feature selection algorithm before performing the unsupervised learning step to find

some “intrinsic” genes [11, 47, 50, 55], i.e., a subset of genes p′′ ≤ p′ chosen according

to their correlation with some phenotypic property. Thus, depending on the set of

features used by unsupervised method, they can find different types of clusters.

Unsupervised methods that only use p′′ intrinsic genes, versus those that use all

pre-filtered p′ genes, to find similarity among patients, will tend to find clusters that

are more “biased” toward the phenotype that was used for finding the intrinsic gene

set.

After finding clusters of patients, using either all genes or only intrinsic genes,

researchers try to establish clinical relevance of their discovered clusters by looking at

phenotypic properties of patients in each cluster. One of the common statistical ways

to validate discovered clusters is to compare survival time of patients in each cluster;

by first estimating survival distribution of that subset of patients using a Kaplan-

Meier survival curve [28]; then comparing these survival distributions to determine if

they are significantly different or not. For discrete phenotypic data such as pos/neg

recurrence, poor/good outcome, pos/neg lymph node invasion, low/medium/high

cancer grade, . . . , many researchers use a similar statistical validation procedure

(i.e., using a χ2 test) to compare the distribution of patients in these subsets and

in the discovered clusters [55]. Metrics like corrected rand index or adjusted mutual

information are also used for the same purpose, i.e., to compare the clusters with

the partitions defined by discrete phenotypes [54].

Many prediction studies apply a feature selection method; this leads to some

subtleties here, especially when conducing cross validation. Dupuy and Simon [53]

looked at many published prediction studies on microarrays and highlighted the

common mistakes that many researchers make when assessing their classifiers. To

avoid mistakes when conducting these two steps, feature selection and classifier

training, Dupuy and Simon [53] explicitly showed the correct way of conducing CV

on microarray datasets using a flowchart, similar to the one shown in Figure 2.1.

Choosing the best combination of feature selection and classification algorithm

17

Figure 2.1: How to perform (A) Split sample (B) LOO-CV properly to get valid
accuracy estimation, this is an estimate of the accuracy of the classifier produced
by running a particular learning algorithm, on the ENTIRE n training instances.
Adopted from [53].

18

is a hard task too. Popovici et al. [56] ran an extensive set of experiments to com-

pare performance of 5 different feature selection methods combined with 8 different

classification algorithms on 3 prediction tasks: an easy one, a medium one, and a

hard one. They also looked at the effect of training sample size on the performance

of classifier. They reported that the choice of a feature selection and classification

algorithm only has a modest affect on the performance of the final learned predictor.

However, they showed that the number of training samples mainly determines the

quality of predictor. This can be one of the explanations why so many researchers

recently are trying to reduce the huge gap between n and p by combining different

studies together. We will analyze these methods in the next section.

2.2 Large p small n Challenge

The “large p small n” challenge is a well studied phenomena in the context of

statistical learning methods. Hastie et al. [19] dedicates a whole chapter to “high-

dimensional” problems and using a simple example demonstrate “less fitting is bet-

ter” principal that applies to p � n scenarios. They generate three datasets, each

containing n = 100 samples, but with different number of features: p = 20, p = 100,

and p = 1000, and then they fit a simple ridge regression to each dataset. They ob-

serve that ridge regression can easily exploit the correlation between features when

p < n but not for p � n, because in this case there is not enough information

in the small number of samples, relative to the number of features, to effectively

estimate the high-dimensional covariance matrix. They concluded “analysis of high-

dimensional data requires either modification of procedures designed for the p < n

scenario, or entirely new procedures”. They then describe different techniques to

deal with high-dimensional problems, including many that add regularization terms

to the learning algorithms to reduce the number of used features in the final learned

model.

Having a small sample set not only makes a lot of learning algorithms inap-

plicable in the domain of microarrays but also raises the question of whether the

training sample is a good representation of the whole population. This is a very

important concern, especially for supervised learning methods that are expected to

classify all future instances correctly, regardless of the population that they belong

to. For example consider a classifier for predicting breast cancer metastasis, trained

by specimens of a hospital somewhere in North America, but then used by another

19

hospital somewhere else in the world, such as an Asian country. Clearly the training

sample is not necessarily a good representative of the test population. In summary

there are two concerns imposed by relatively small training samples: First, is a par-

ticular training set sufficiently large? Meaning, how will the learned model perform

on an independent test set with very similar subjects. And second, is training set

representative of the whole population? Meaning, how well the learned model will

performed when tried on a more diverse set of subjects; probably different ages,

ethnicities, and environmental factors?

Joint analysis of several available gene expression studies to increase n and conse-

quently solve both of these challenges seems like a very natural solution as there are

public repositories like GEO that have more than half of a million instances. While

individual studies may not provide sufficient statistical power to infer conclusions

about the relationship of genes and phenotype of interest, collectively analyzing gene

expression data sets studying the same biological phenomenon may provide substan-

tially more evidence to infer relationships [57]. We call techniques that combine gene

expression studies, explicitly or implicitly, joint analysis of gene expression studies.

Ideally, conducting joint analysis would involve these simple steps:

Algorithm 1 Naive algorithm for conducting joint analysis on K data sets that all
contain samples of a particular phenotype of interest.

Require: (X1, y1), · · · , (Xk, yk), · · · , (XK , yK)
where each Xk is a [pk × nk] matrix of gene expressions
Set of genes in each data set is denoted as Gk where ||Gk|| = pk
Vector of phenotype labels for nk patients is denoted by yk, which is a [1× nk]
Find genes in common across all K studies
G← {G1 ∩G2 ∩ · · · ∩GK} where ||G|| = p′

for k = 1, 2, · · · ,K do
Reduce each Xk to X ′k by making it to include only p′ shared genes
X ′k ← Xk[G, :]

end for
Concatenate all reduced X ′k matrices to make a large

[
p′ ×

∑K
k=1 nk

]
matrix

X ← [X ′1, X
′
2, · · · , X ′K]

Concatenate all yk vectors to make a
[
1×

∑K
k=1 nk

]
vector of phenotype labels

y ← [y1, y2, · · · , yK]
return X and y

In reality, however, there are several problems with this approach caused by

systematic differences among studies, such as: using different protocols in labs for

specimen preparation including hybridization, washing, and staining; variability of

20

Figure 2.2: Levels of data abstraction in a gene expression study, adopted from [1].

probes, probesets, and genes among different platforms and difficulty of finding a

way to map them together; varying scales and precisions used by different platforms

to measure gene expression values; and availability of several ways for preprocessing

and background correction of raw data. We call these systematic differences batch

effects [2, 3, 58]. Chapter 3 provides more details about batch effects and how this

complicates integrative analysis methods. For the rest of this chapter, we review the

joint analysis techniques without considering the batch effect and we discuss how

these methods tackle the challenging task of combining several studies. We should

note, however, many of these techniques are designed particularly to avoid the batch

effect problem.

2.3 Joint analysis of multiple gene expression studies

As the name suggests, joint analysis techniques combine (merge, or integrate) several

gene expression studies together at different levels of data abstraction. Ramasamy

et al. [1] showed four different types of data generated in gene expression studies,

see Figure 2.2. In these studies, the data processing phase starts with scanning hy-

bridized chips, producing an image file, which is later read by an image processing

algorithm to produce a feature-level extraction output (FLEO) file. This file, known

as raw data, contains raw intensity values for each probe on the chip. Preprocessing

algorithms read these raw data files and apply some scaling and background cor-

rection to these values, accordingly make a gene expression data matrix (GEDM),

which is a vector with p values. This process is repeated for all n patients in the

study and the final product will be a p×n matrix of expression values. This matrix

will typically undergo further analysis to extract some meaningful biological knowl-

edge from it, such as published gene list. Other than image files, the other 3 types

of data are targets for conducting joint analysis.

Based on the type of data targeted for combining, joint analysis technologies are

21

divided into two main groups, meta-analysis and integrative analysis [59]. Meta-

analysis methods analyze each gene expression study separately, and then combine

the resulting statistics together to form more robust and general conclusions. Meta-

analysis seeks a significant result that is observed in big enough number of individual

studies and generalizes it to the particular condition that the studies were analyz-

ing [2]. These results might be in the form of primary statistics, such as t-statistics

or p-values, or secondary statistics, such as list of significant genes derived from

individual studies [60]. As it is hard to derive rigorous statistical inference using

small sample sizes, meta-analysis faces limitations when individual studies that are

being pooled together are all small.

On the other hand, integrative analysis methods are cross-normalization algo-

rithms that are applied to raw data or gene expression data matrix of individual

studies, in the hope to make these data statistically comparable. After normaliza-

tion, these matrices are combined together to produce a single unified larger dataset

to which subsequent standard learning algorithms can be applied. The main ad-

vantage of the integrative analysis approach over the meta-analysis approach is its

more robust results due to a larger sample size. There is no consensus among

the researchers about meta-analysis and integrative analysis definitions. Campain

and Yang [61] calls them relative meta-analysis and absolute meta-analysis respec-

tively. Integrative analysis methods are also known as normalization methods [62]

and cross-platform classification [63]. Figure 2.3 which shows the distinction be-

tween meta-analysis and integrative analysis in an intuitive way.

Both methods somehow follow the general naive Algorithm 1 of joint analysis.

They both start with two, or more, gene expression studies, A and B. After pre-

processing the raw data, each study has an expression matrix, X1 and X2 of size

p1 × n1 and p2 × n2 respectively. Then we need to find common set of genes be-

tween them and reduce expression matrices to shard genes only; they will be p′×n1
and p′ × n2 respectively. The main difference between meta-analysis methods and

integrative methods happens in this stage. Meta-analysis methods extract a p′ × 1

vector of summary statistics from each study individually and then combine these

vectors, while in integrative analysis we normalize expression matrices to make two

new matrices with the same size, here called X ′1 and X ′2, and combine them together

to make a bigger p′ × (n1 + n2) gene expression matrix.

Several statistical methodologies have been used for conducting joint analysis of

22

Figure 2.3: Meta-analysis methods, left panel, versus integrative analysis methods,
right panel, adapted from [63].

23

Table 2.3: Categorizing of joint analysis of multiple gene expression studies.

Meta-analysis

Vote counting Combining ranks

Meta-signature [1] RankProd [1], METARADISC [1]

Combining p-values Combining effect sizes

Fisher’s inverse χ2 [1] GeneMeta [64], mDEDS [61]

BE correc-
tion

Discrete k-TSP [39], MRS [63], QD [63], POE [65], NORDI [66]

(Integrative
Analysis)

Continuous

Pairwise DWD [67], LTR [68], RUV-2 [9], XPN [60]

Multiple ComBat [69], SVA [70], BFRM [71], Weibul based

normalization [54], housekeeping gene based normalization [54],

FA [72], AGC [54]

gene expression studies; Table 2.3 categorizes them based on different criteria. In

the following sections we review these categories in more detail. In Section 2.3.1

we present available meta-analysis techniques and compare them together and then

in Section 2.3.2 we analyze different integrative analysis methods. Finally in Sec-

tion 2.3.3 we will describe the challenges of conducting a joint analysis and also the

measures used for assessing effectiveness of these methods.

2.3.1 Meta Analysis Techniques

Ramasamy et al. [1] provides a comprehensive review of meta-analysis methods and

categorizes them into four groups. Note that all of these methods use primary or

secondary results of gene expression studies and combine them together.

• Vote counting. This technique counts how many times a gene has been

declared differentially expressed across studies. It might use statistical meth-

ods, such as permutation tests, to find the null distribution of votes. Rhodes

et al. [73] proposed meta-signature method based on this technique and they

identified common transcriptional profiles of neoplastic cancers using it.

• Combining ranks. Unlike the vote counting, this technique accounts for

the rank of differentially expressed genes across studies. Different statistical

algorithms such as Markov chains, order-statistics, and Monte Carlo permuta-

tion test are used for estimating the null distribution. METRADISC [1] and

RankProd [1] from Table 2.3 each fall into this category.

• Combining p-values. As name suggests, this technique combines p-values

assigned to individual genes across studies to make a more robust score.

24

Fisher’s inverse chi square falls into this category [74].

• Combining effect sizes. Techniques in this category calculate effect size

for each gene, which is the difference of mean expression value of gene in two

groups of patients standardized by pooled standard deviation of the gene. Choi

et al. [64] used this technique and introduced GeneMeta method.

There are more advanced methods that use several DE measures to insure that

selected genes are robustly significant both across different measures and different

studies, such as meta differential expression via distance synthesis (mDEDS) [61].

After introducing these 4 categories, Ramasamy et al. [1] gives a simple guideline

for choosing the most suitable technique for different situations. Their guidelines

suggest incorporating the level of data, shown in Figure 2.2, and set of genes available

for each study. The other issue is concern with frequently-studied and rarely-studied

genes, especially when combining an old platform, which measures expression of a

limited set of genes, with a newer one. Clearly, in this case, vote counting is not a

suitable choice since all genes do not have the same chance to be DE in different

studies. Since some techniques need more studies to calculate the significance of

a DE gene, the other issue arises when one combines a small number of studies.

Another factor for choosing a meta-analysis is computational complexity; faster

methods are desired, especially when we combine several dozens of datasets and

computation time becomes a limiting factor. They concluded that techniques based

on the combining effect size are the most effective meta-analysis for two-class gene

expression studies. They mentioned a few reasons for this conclusion, including the

facility for combining data from one- versus two-channel microarrays.

2.3.2 Integrative Analysis Techniques

Table 2.3 shows that one major type of joint analysis is integrative analysis, in

which several gene expression studies are combined at expression value levels after

transforming them to be numerically comparable. In general, integrative analysis

involves three steps. First, one needs to find the common genes or probesets between

studies by cross-referencing genes to a common annotation, such as Entrez Gene

ID [75]. This is not a trivial task because of discrepancy of probes in different

platforms; see Section 2.3.3. After retaining only p′ shared genes in each study, the

second step is to apply some data transformation and data normalization technique

25

to the expression values of each study to make them numerically comparable with

each other. The main difference between integrative analysis methods mentioned in

Table 2.3 is the statistical methodology used for normalizing data. The last step is

to concatenate these normalized gene expression matrices together to make a new

gene expression matrix that contains instances of all integrated studies. After the

integration analysis is finished, we can apply any of the association and prediction

studies mentioned in Sections 2.1.1 and 2.1.2 to this new larger matrix of gene

expression.

If we ignore the biological properties of gene expression values and look at them

as a p′ × n matrix (i.e., n instances in a p′ dimensional space), then we can investi-

gate normalization methods under a broader range of algorithms known as transfer

learning [76]. Table 2.3 categorizes Integrative analysis methods at the highest level

into two groups: discrete and continuous. Most of the discrete methods are based

on equal frequency binning [63], i.e., all values in each gene expression profile are

sorted into b bins, 3 ≤ b ≤ p′, over all profiles in all studies. These algorithms

then assign the same value to all genes that fall into the same bin across all studies.

These values might be cardinal numbers or continuous numbers derived from mean

gene expression values. All ranking and quantile normalization methods, such as

median rank score (MRS) [63], quantile discretization (QD) [63], and k top-scoring

pairs (k-TSP) [39, 77], follow this simple methodology. The other type of discrete

methods divide genes into three groups under-expressed, over-expressed, and unex-

pressed and then replace each gene expression value by −1, +1, and 0 according to

its assigned group. Probability of expression (POE) [65] and normal discretization

(NORDI) [66] each implements this idea. They each fit a normal distribution to

genes expression values and then divide them into three groups using some statisti-

cal measures, such as a z-score. POE fits a normal distribution to each gene across

all instances in a study, while NORDI fits a normal distribution to each expression

profile, after eliminating outlier genes. There is no consensus among researchers on

which of these two ways is the better way to assign genes to under expressed and

over expressed groups. Warnat et al. [63] compared two discrete methods, MRS

and QD, and found that, in most of the cases, either of them improve the results

significantly compared to using no normalization. They also found that, except in

one of the experiments, where QD performed significantly better than MRS, they

performed equally.

26

The second big subset of integrative studies, in Table 2.3, are called continuous

methods. We further divide continuous methods into two subsets, pairwise and

multiple. As their names suggest, pairwise methods normalize studies in pairs. In

order to integrate several studies using a pairwise method there are two options:

one is to choose one study as reference and normalize all other non-reference studies

based on it. The other option proposed by Taminau et al. [78], is simply pairwise

merging of data sets and the intermediate results recursively until only one merged

dataset remains. As listed in the Table 2.3, multiple methods are not limited to pairs

of data sets and they can normalize multiple studies simultaneously.

All of the continuous integrative analysis methods work based on “shifting” the

gene expression measurements of all studies “toward” one another. For example,

the distance weighted discrimination (DWD) method [67] finds a hyperplane in p′

dimensional space that separates data points of the first study from the second

one and then shifts both of these “clouds” of points toward this hyperplane. The

Combat method [69] uses empirical Bayes (EB) techniques to remove batch effects

from gene expression values. They assume that the expression of each gene in a

study is affected by a known designed batch factor. They estimate these batch

effects, using one additive and one multiplicative term, for each gene in each study

and then remove them from the expression values of genes. Later, Bayesian factor

regression modeling (BFRM) [71] and surrogate variable analysis (SVA) [70] in two

independent, but very similar, ways extend the ComBat framework by incorporating

the effect of unmodeled latent factors on the expression values of each gene, in

addition to the effects of known designed factors. They both use an additive model

to find the effect of the latent factors on the residuals of expression values after

counting for the effect of known factors.

Another method called remove unwanted variation 2-step (RUV-2) [9] utilizes

the negative control genes, genes that are known or believed to be unrelated to the

biological signal of study and thus their intensity variation across patients is due

to unwanted variation, i.e., technical factors, and noise. They also assume that

the unwanted variation that affects the negative control genes, similarly affects all

other genes. To correct the batch effect, RUV first finds the top few directions of

unwanted variations of control genes, second it removes the variation of all genes

in these directions. The first step is performed simply by applying a SVD analysis

to the expression of negative control genes and finding the top k directions. The

27

second step projects all data into the orthogonal complement of subspace spanned

by the k unwanted directions.

Many researchers (including Autio et al. [62]) use a Weibull distribution to nor-

malize gene expression values, especially studies that are made using Affymetrix

platforms that result in logarithmic probeset values. Housekeeping genes6 have also

been used for normalizing studies [62]. M2DB [79] and ArrayMining [80], which are

two web applications that help users to integrate available gene expression studies,

offer some of the techniques mentioned in Table 2.3.

Note that some of these methods, however, might not be applicable in all integra-

tion scenarios because of their assumptions. For example, Boutros [68] used linear

transformation of replicates (LTR), which assumes that there are some replicated

instances shared between studies. LTR learns a mapping function between studies

using these replicated instances and then uses this function to integrate studies. Un-

fortunately, only some pairs of studies include replicated instances. Another example

is cross-platform normalization (XPN) [60], which is based on a block-linear model,

i.e., it assumes that each study consist of K×L bi-clusters, which involves K groups

of genes defined over all studies and L groups of statistically homogeneous samples

that are roughly similar between studies. Obviously finding equivalent bi-clusters

in all studies that undergo the integration analysis is not guaranteed. Furthermore,

most of the time integration analyses are done to extend the diversity of training

samples by combining studies that contain very different instances. Another ex-

treme example of methods with limited applicability is factor analysis (FA) [72],

which “unifies” gene expression values of a same specimen that has been measured

using several platforms.

The other characteristic of continuous integrative analysis methods is their scope,

i.e., what kind of batch effect (Chapter 3) they are able to remove. While most of the

methods we mentioned here, such as EB, XPN, and Weibull based normalization,

are suitable for removing cross batch and cross lab effects, despite their misleading

names, they are not very suitable for removing cross platform effects, which are

usually much more severe than other types of batch effect. Kilpinen et al. [54]

proposed the array generation gene centering (AGC) for removing cross platform

effects. Their method needs a large number of samples for its statistical modeling;

6Housekeeping genes are a specific set of genes that are assumed to be expressed identically
across all samples [62].

28

e.g., they used 9783 samples to integrate 5 platforms together. AGC assumes that

the mean of the expression values of each gene is equal across all platforms. If

this is not the case for one gene in one platform, that gene’s expression values

in that platform will be shifted toward common mean of the same gene in other

platforms. This AGC method needs to have relatively large number of samples

from each platform to normalize gene expressions values based on its assumptions.

Autio et al. [62] compared the performance of AGC combined with 4 cross-lab

normalization methods in a big prediction study containing 1461 instances of 35

anatomical classes of healthy tissues. They showed that the performance of all

4 normalization methods improved when they were used after removing the cross

platform effects by AGC.

So far we have looked at all joint analysis methods comprehensively and we saw

techniques that have been used for combining gene expression studies. In the next

section, we will briefly look at the issue and challenges faced by these methods.

2.3.3 Issues and Challenges

There are lots of issues that need to addressed when conducting a proper joint

microarray analysis. Ramasamy et al. [1] list seven issues regarding meta-analysis

and challenges faced by researchers who are conducting a meta-analysis. Some

of these issues and challenges are not specific to meta-analysis, i.e., they are also

encountered by integrative analysis too. One of these challenges is related to the

annotation of individual platforms and finding a way to map probes across platforms.

Microarrays do not use the full sequence of a gene for their probes; instead they use

a short highly specific region of a gene for a probe. Shortness of probes raises several

difficulties, such as binding of some probes to more than one gene’s transcript and

overlap of some of the probes with an intron, an alternative splicing region, or other

location, due to a single nucleotide polymorphisms (SNP). Moreover, platforms use

different regions of a gene for their own probes, which makes finding a mapping

between different platforms hard. The relationship between genes and probes is

“many-to-many”, i.e., there might be a probe that matches to several genes and

there might be several probes that match to a single gene. For probes that match

to several genes, the solution is clear; they are defective and should be removed

from the gene expression matrix. However, for matching of several probes to a same

gene there is no clear solution. Choosing one of them at random will clearly lose

29

information, by not only eliminating some potentially informative features but also

by losing the post-translational information such as alternative splicing. Instead

of choosing one probe at random, some researchers suggested to pick one with the

highest variance over the instances. Averaging is another solution, but will smooth

out some information, just like the alternative splicing effect. This is a very hard

issue to resolve for gene summarized data.

To find defective probes and remove them so as to decrease the level of noise

and misleading signals, researchers have been looking at probe quality, especially

for widely used platforms. Nurtdinov et al. [81] divides all Affymetrix probes into

4 classes, identified with four colors, green, yellow, black, and red. The best group,

green, meets three conditions: (1) the probe matches with the target gene, (2) it

does not match to any other gene, and (3) it does not match to any other non-coding

region. Yellow group violates only the third condition, red group violates the second

condition, and black, which contains the worst type of probes, violates the first

condition. Following this protocol, they showed that the latest Affymetrix platform

for human, HGU 133 Plus2 has less than 60% green probes. Dai et al. [82] also

look at the same problem by comparing probe sequences with the latest knowledge

of the human genome for a wider range of microarray platforms. They release

their updated probe definition via custom chip description files (CDF), known as

BrainArray, which can be used by preprocessing algorithms to filter out defective

probes and so produce a higher quality gene expression matrix. In their latest

release, version14, only 51% of the probes in HGU 133 Plus2 platform is retained.

Sandberg and Larsson [83] reported that using these custom cdf files, instead of

original probes definition provided by manufactures, improved both precision and

accuracy of expression intensity measurements(see Chapter 3).

2.4 Summary

This chapter has briefly covered the wide range of meta-analysis/data integration

algorithms that are being applied to gene expression studies. These algorithms

mainly serve two purposes, finding differentially expressed genes between two or

more phenotypic groups and distinguishing between different phenotypic group’s

instances. All algorithms utilized for this purpose suffer from the “large p small n

problem” that naturally exist in gene expression studies.

There are two solutions for reducing the large gap between p and n: one is to

30

reduce the number of features and the other is to increase the sample size. The

feature selection algorithms are explored in Chapter 4 and the current chapter re-

viewed integrative analysis, which combines multiple gene expression data sets in

order to increase n. Combining gene expression data sets is not a trivial task as

their expression values are influenced by the batch effect. One way to deal with this

problem is to extract some statistics from the gene expression studies and combine

these statistics instead of combining the intensity values directly. In these chapter

we reviewed some of the methods proposed and utilized for this purpose in the liter-

ature. In the next chapter we will be looking at the batch effect and methods that

are proposed to correct this confounding factor.

31

Chapter 3

Batch Effects in Microarray
data

Conducting large-scale genomic data analysis is highly desirable for two main rea-

sons. One is to increase the statistical power of the tests and produce more robust

the findings by studying larger sample sizes. The other benefit of conducting large

scale analysis is to cover the biological diversity of the phenomenon under study and

be able to infer relevant discoveries that are general enough to be applied to individ-

uals regardless of their environmental factors. A clear example that needs a large

collection of biologically diverse samples is the clinical outcome prediction where

thousands of samples are needed to generate robust gene/protein signatures [49, 84].

Because of the costs involved with gene expression analysis and also the time

and geographical/logistic limitations, it is not possible for one research center to

conduct huge genomic studies in isolation. However, the abundance of public gene

expression studies makes the integrative analysis approach a natural solution for

large-scale gene expression analysis. Indeed the capability of integrative analysis of

multiple gene expression studies has been acknowledged by several studies [2, 85]

As we saw in Chapter 2, conducting integrative analysis is not a trivial task due

to the confounding role of technical factors on the measured expression values, known

as batch effect. The influences of batch effect on the expression intensities makes

these values not directly comparable across data sets. This means if one integrates

data sets with similar biological properties, without correcting for differences due to

their technical factors, then the batch effect will mask the common biological signal

and learning algorithms will fail to effectively identify it. In this chapter we will

be looking at batch effect and learn about algorithms that have been proposed to

correct it.

32

Section 3.1 first explains what can be considered as a “batch” in gene expression

data sets and Section 3.2 examines possible sources of technical difference. Sec-

tion 3.3 reviews the basic principles of experimental design and proposes general

guidelines for conducting gene expression studies to reduce the chances of technical

factors confounding the signal of interest. The last section of this chapter introduces

the main ideas for detecting the batch effects and measuring their relative severity.

3.1 What is a batch?

There are many proposed definitions for batch effects. Lazar et al. [2] identified

five definitions and highlighted the two consistent ideas in them: (1) emphasizing

the distinction between batch effects and biological signals; (2) mentioning different

potential sources of batch effects. Based on these observations, Lazar et al. [2]

proposed this definition:

The batch effect represents the systematic technical differences when instances are

processed and measured in different batches. Batch effects are unrelated to any

biological variation recorded during the microarray gene expression experiment.

They added that the term “batch” refers to a collection of instances that are pro-

cessed at the same site over a short period of time using the same platform and

under approximately identical conditions [2]. We extended this definition by having

less restriction on what we call a “batch”.

In this thesis, the word “batch” refers to a set of instances (samples) that are

being grouped together and share some technical details. We study only gene ex-

pression microarrays for our experiments 1, however, these measurements might be

any other high-throughput technique such as microRNA, proteomics, metabolomics,

RNAseq, or perhaps any other data matrix where technical factors have a significant

effect on measured values. In the case of gene expression microarrays, the potential

technical commonality might occur at different scales [86–88]

• the same RNA extraction agent

• the same technician who handled the arrays

• the same microarray platform and/or chip generation

1Instances of gene expression microarrays are know as gene expression profiles, gene expression
arrays, or simply just profiles or arrays.

33

• the same scanner

• being profiled in the same day

• being profiled in the same lab

• being preprocessed in the same study

Different batches may have different settings for each of these technical differ-

ences, so each one can be a potential source of a batch effect. According to these

items, a batch has a very flexible definition. To better understand the meaning of

a batch, we use Figure 3.1, which schematically shows the gene expression matrices

of two studies (with sizes of [p × 12] and [p × 8] were p is the number of genes)

combined together, resulting in a [p× 20] data matrix. The first study’s arrays (one

per instance) A1, A2, · · · , A12 and the second study’s arrays are A13, A14, · · · , A20.

Note that these two studies each measure the expression values of the same set of p

genes, shown as G1, G2, · · · , Gp, so we can simply merge the two matrices together.

The element in ith row and jth column of this matrix contains the expression value

of gene Gi in array Aj . However, since this is just a schematic example we left all

elements of the matrix empty. The top 4 rows contain some information about each

gene expression array.

The entire matrix of combined gene expression studies in Figure 3.1 is grouped

along its columns into some sub-matrices. In the highest level of this nested group-

ing, arrays are grouped (based on their study of origin) into two groups, Study1

and Study2, as shown in the first row. The study itself is often the clearest “batch”

because it is normally the largest source of variation among all technical factors.

Instances belonging to the same study are generally processed using the same stan-

dard protocol, equipment, and algorithm for each step of RNA extraction, labeling,

hybridization, scanning, and preprocessing. This typically makes the instances of

each study very similar to one another and often different from instances of another

study, even if both studies are exploring the same biological phenomenon.

Within each study, there might be additional sources of technical differences,

such as different hybridization dates, different technicians conducting the profiling,

different scanners used for reading the slides, or any other recorded non-biological

factor that potentially might have an effect on the gene expression intensities. These

factors group arrays, within each study, into different batches. We represent these

34

1 Study1 Study2

2 Bt11 Bt12 Bt13 Bt11 Bt12 Bt13 Bt11 Bt12 Bt13 Bt21 Bt22

3 PhnTyp1 PhnTyp2 PhnTyp3 PhnTyp1 PhnTyp2 PhnTyp3

4 SubTyp1 SubTyp2 ST1 ST2 ST1 SubTyp1 ST2 SubType2 - - - - -

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

G1

G2

G3

G4

G5

G6

G7

· · ·
Gp

Figure 3.1: A schematic example of merging two gene expression studies which
results in a [p× 20] data matrix. Genes are annotated as G1, G2, · · · , Gp and arrays
are annotated as A1, A2, · · · , A20.
The top 4 rows contain some annotation for each array: technical factors are in
Row1-2 and biological factors are in Row3-4.

groups symbolically in the second row by Bt1i i = 1, 2, 3 and Bt2j j = 1, 2, respec-

tively, for Study1 and Study2. Studies might have more than one technical factor; if

so, they would need more than one row to represent their batches. This also means

that two studies might have different number of rows to represent their technical

factors.

After considering the batch related factors, we have the biological covariates

(row3-4). Again a nested relation exists among these factors. For example, at the

highest level we usually have the treatment factor (case versus control) and then

under these two groups we might have other biological properties such as different

cancer subtypes and grades, age, ethnicity, clinical outcome, etc. There is no need

for all studies to have the exact same biological annotations, e.g., one study might

include the age of patients while another study might not record the age. As an

example in Figure 3.1, Study1 has the full subtype annotation in row4 but Study2

does not.

One important difference between groups defined by batches versus groups de-

fined by biological factors is their correspondence across studies. As batches defined

inside one study are irrelevant to batches in other studies, we represent them with

35

different names in Figure 3.1 (Bt1i versus Bt2j). Note that these names are com-

pletely arbitrary and they do not correspond to any biological concept. On the

other hand, when two studies share some biological annotation in a row, then the

annotations are consistent across studies; we show this by using the same biological

names across the two studies in Figure 3.1 in row3-4. For example PhnTyp1 has the

same meaning across the two studies as it refers to the same biological phenomenon

in both Study1 and Study2. Names used for biological annotation correspond to

some biological phenomena that can be repeated and restudied by other researchers.

This important contrast between technical factors and biological factors, is the main

reason why they are modeled respectively as random effects and fixed effects in linear

mixed models [89].

Note that a particular array might belong to more than one batch, for example

A1 belongs to both Study1, which is inherently a batch grouping, and Bt11. Also

two arrays might share a few batches while they belong to some other batches

exclusively. For example A1 and A3 both belong to the Study1 batch while their

membership in Bt11 and Bt12 batches is exclusive from one another.

Because of this nested property of BEs, we might need to correct for them at

different levels, depending on what batches are merged together. For example, if we

are only using arrays in Study1 then we only need to correct for differences between

Bt1i i = 1, 2, 3. However, if we want to merge arrays in Study1 and Study2 then we

need to correct for three BEs: two internal BEs within each study (Bt1i i = 1, 2, 3

and Bt1j i = 1, 2), and BE across the studies (Study1 versus Study2). In this

chapter we will be mostly looking at studies as batches, for example, two breast

cancer studies that were conducted by two research groups in two different labs

completely independent from each other. Methods and ideas in this thesis, however,

are applicable to batch effects at any other scale.

The arrangement of the technical factors and biological factors with respect to

each other and the assignment of arrays to them determines how correctable the

BE is. More specifically, we say that (some of) the biological factors are confounded

with BE when their effects cannot be distinguished from one another. The batches

of Study2 in Figure 3.1 are an example of this phenomenon; one can see that

phenotypes are confounded with batches. For example, assume one gene’s expression

values is significantly difference between Phntype2 (arrays A15, A16) and Phntype3

(arrays A17, · · · , A20). In this case we can not determine whether its significant

36

difference is due to the phenotype effect or due to the batch effect.

In contrast, Study1 does not suffer from this phenomenon, i.e., batchs and

phenotypes are arranged in a way that makes it possible to distinguish the significant

differences in expression values due to phenotype versus those due to the batch

effect. Many researchers emphasized that applying batch correction algorithms in

cases like this, where the unwanted factors are correlated with the factor of interest,

will “harm” data rather than “help” it [9]. In Section 3.3 we briefly look at the

principles of experimental design and propose simple guidelines to avoid situations

like Study2.

3.2 Identifying a significant batch effect

To confirm the confounding role of batch effects on gene expression data, scien-

tists have conducted experiments under controlled perturbation of technical factors.

These experiments usually involve repeated gene expression profiling of a set of

specimens under a set of controlled technical conditions. There are also studies that

were conducted to evaluate the reliability of gene expression measurement tech-

niques and/or to validate the conclusions of a study by re-running it using a new

platform [57]. Even though these studies usually are not designed to analyze the

batch effect as a main goal, they often re-discover the batch effect when they attempt

to combine these parallel studies in order to increase the statistical power [57, 90].

These controled expriments usually study the effects of three types of technical

perturbations:

1. Cross platform effect: comparing the expression intensities of the same set

of specimens profiled using different platforms.

2. Cross lab effect: comparing the expression intensities of the same set of

specimens profiled using same platform but in different labs.

3. Cross batch effect: comparing the expression intensities of the same set of

specimens profiled using the same platform and in the same lab but possibly

by different lab technicians and/or at different times.

McCall and Irizarry [91] analyzed the cross platform effect by comparing the

precision of the measurements on three platforms, Affymetrix, Agilent, and Illumina,

using spike-in experiments where the outcome of measurements is known a priori.

37

They conclude Agilent and Illumina have better overall accuracy while Affymetrix

has better control of the precision, where they define accuracy as the ability to

detect 2× observed intensity when the nominal concentration of a gene is doubled,

precision as the variability of log-ratios, which are expected to be zero, generated

by comparison of genes that have the same nominal concentrations.

Weis [92] provided two specimens, rat liver specimens and a pooled specimen of

five organs of rats including their livers, to seven laboratories and asked them to

measure gene expressions of these two specimen using all platforms available in the

lab; this involved 12 microarray platforms overall. By comparing the measurements

from the labs they evaluated the facility of comparing results across labs and across

platforms, and so analyzed both cross platform and cross lab effects. They concluded

that the highest similarity between measurements is achieved by using commercial

platforms and following all standard protocols proposed by manufactures for per-

forming each step, from hybridization to preprocessing of raw data. They also

measured the relative contribution of each factor – platform, lab, replicate, and tis-

sue – in the variability of gene expression measurements using an ANOVA random

effect model. Their analysis revealed that more than half of the observed variability

is attributable to the platform; lab and replicate factors contributions are less.

Yang et al. [93] ran a similar experiment in a more controlled way, i.e., in-

stead of hybridizing on different platforms, they used the same platform, Affymetrix

GeneChip, in all labs. They prepared specimens from two male and two female mice

belonging to each of the 5 different stains and sent these (2 + 2)× 5 = 20 specimens

to 5 labs to measure gene expression following the existing standard protocols for

all steps of hybridization. The raw data returned from each lab was prepocessed

using the standard Affymetrix algorithm, MAS5 [94]; this way they avoided all di-

versities of data processing and acquisition. Then they compared gene expression

values across labs according to several metrics, including median and median abso-

lute deviation (MAD) of intensities, set of differently expressed (DE) genes for both

gender and stain phenotypes, number of shared high ranked significant genes, and

direction of principle components of genes for each lab.

Even though these expression profiles were measured under controlled situations

and using the same platform, Yang et al. [93] still observed large discrepancies in

expression profiles of same samples across labs. In particular, they found that the

number of DE genes associated with the phenotypes were very different across the

38

labs; for example the number of DE genes at a significance level of α = 0.001 for

stain phenotype was 377 for one of the labs but 1390 for another lab. They found

that only 17% to 50% of DE genes were shared between two labs. To explain this

considerable discrepancy between DE genes, they hypothesized that the calibration

of the statistical tests, p-value and q-value [33], might be a contributing factor.

To investigate this hypothesis, they ranked p-values of genes in each study and

then found the intersection between these ranked lists. For stain phenotype they

found that 60% to 80% of the 70 top ranked genes were declared significant in at

least two labs. Using a hierarchical clustering method to find similarities between

expression profiles, they found that the samples of each lab formed a cluster together

regardless of the strain or sex of the mice. However, after applying a normalization

method [95], the clusters were formed according to the sex and strain of mice rather

than the originating lab. They concluded that, not only does the cross lab effect

make systematic differences between samples, but also there is a considerable batch

effect within the same lab. To reduce this type of effect they proposed that labs

should avoid hybridization of samples in batches with similar phenotype and instead

make the process more randomized. We will look at this matter, and more generally

the correct experimental design principals, in the next section.

Note that batch effects might have many different sources other than the three

major ones we highlighted here. Scherer [58] studied all potential sources of batch

effect for the gene expression micorarrays and Lazar et al. [2] summarized them in

one informative plot, which is reproduced in Figure 3.2. As one can see, potential

confounding factors are present in all five main stages of gene expression profiling.

Following careful experimental design principles can avoid many of these sources of

technical differences.

3.3 Batch effects and experimental design

The ability to detect and correct batch effects is highly dependent on the way

subjects were assigned to batches [58], i.e., the experimental design process. Consider

a scenario where we have 16 male patients and 16 female patients and we want to

estimate a treatment effect using these patients. Here, we might want to assign half

of the patients to a new adjuvant therapy and the other half to the current commonly

used therapy. Assume we also know the age of the patients. We randomly assign

half of the male and half of the female patients to case group and the other half to

39

Figure 3.2: Potential sources of batch effect influencing the expression intensity in
each of the four main stages of expression profiling, from Lazar et al. [2].

control. Here the treatment factor (case versus control) is the primary variable of

interest, meaning that the primary goal of experiment is to study the influence of

this variable on the gene expression values. The other biological factors (gender and

age), which are known as biological confounding factors, are not of direct interest of

study but they could potentially influence the expression values.

Furthermore assume, because of technical limitations, the maximum number of

subjects we can process simultaneously is 8. Thus our batch size is limited to 8.

Here we have to group our 32 patients into 4 batches of size 8. The batch assignment

is a technical confounding factor that, similar to the biological confounding factors,

might affect the expression values. In order to model the effect of the primary

variable of interest correctly, the confounding factors need to be incorporated in the

analysis. 2 Now consider these two designs:

• One might decide to form batches by grouping similar patients together, i.e.,

we make the batches as homogeneous as possible. So one batch includes 8

male cases and another batch includes the 8 male controls. The two other

batches are formed by grouping female patients in the same way.

• Another way to order this experiment is to test the outcome of interest on

homogeneous subgroups, called blocks. First we form 4 blocks by assigning

2Factors that are not of direct interest but which might influence the outcome of experiment are
known as “nuisance variables” in the experimental design literature [96].

40

Male Female

Batch1 Case(8)

Batch2 Case(8)

Batch3 Control(8)

Batch4 Control(8)
(a) Design in which case/control and sex
may be confounded by batch effects

Male Female

Batch1 Case(4)-Control(4)

Batch2 Case(4)-Control(4)

Batch3 Case(4)-Control(4)

Batch4 Case(4)-Control(4)
(b) Design in which any batch effects
can be identified and minimized

Figure 3.3: Two different settings for experimental order of 32 patients, half male
half female, into 4 batches of size 8 and assigning them into case and control groups.

4 male and 4 female patients randomly to each block. Each block will be

processed as one batch. Then within each block we assign 2 men and 2 women

to case group and the other 4 to the control group.

Figure 3.3 summarizes these two design schemas. Now we want to analyze the

output data of these two different designs, for example we want to run a significant

analysis to find the genes most significantly related to the treatment factor. In the

former case (Figure 3.3(a)), it is not possible to compare the gene expression of

cases versus control without the influence of the technical confounding factor, i.e.,

the batch effect. In fact, it is impossible to separate differences in gene expression

values due to the treatment factor from differences that might be due to batch effects.

Here when we pool all case subjects together (batch 1 and 3) and compare them

with all control subjects (batch 2 and 4) the result will potentially be confounded by

the batch effect. As a result, one might mistakenly declare some genes significantly

associated with the treatment factor not because of biological differences but because

of the batch effect. Subset comparisons also have the same problem. For example

if one wants to evaluate the effect of the treatment factor only on male patients

then batch 1 needs to be compared with batch 2. Again in this case, the outcome

of interest is confounded with the batch effect because the experimental design did

not take account of possible batch effects.

This is a common problem observed in many high throughput molecular studies,

with examples published in prestigious journals such as Nature [97, 98]. The con-

founded design schema is appealing from a practical point of view as it is common

practice to organize biologically similar samples in groups and hybridize them to-

gether [98]. Especially in large studies involving several research centers, one might

think that assigning a treatment group to each center will make quality control eas-

41

Male Female

Batch1 Case(8)

Batch2 Case(8)

Batch3 Control(8)

Batch4 Control(8)

Figure 3.4: Another flawed design in which all male patients are assigned to the
case group and all female patients are assigned to the control group.

ier. However, this design makes the treatment effect completely confounded with

the technical differences between centers. This design is as flawed as choosing all

male patients in a study for case and all female patients for control as shown in Fig-

ure 3.4. This design would confound the treatment effect with gender effect, making

it impossible to estimate the treatment effect correctly. In such cases that experi-

mental factor is confounded with technical factors, using any correction algorithm

will effectively remove some of the biological signals [98].

In comparison, the later design schema (Figure 3.3(b)) does not suffer from the

limitation of design (a). In this design, both biological and technical confounding

factors are “blocked”, meaning that the subjects are grouped into homogeneous

subgroups, known as blocks, according to their gender and their processing batches.

Ideally the variability within each block is less than variability of the entire sample

(set of subjects). This will make the estimation of treatment effect more effective

in each block, compared to the entire sample [99]. Pooling these more effective

estimations across blocks will result in better estimation compared to the no blocking

scenario.

The other biological confounding factor in this experiment, age, is randomized in

the second design. We randomly assign 4 men and 4 women to each block regardless

of their ages. In some other circumstances we could block this variable too. For

example if we had 128 patients and batch sizes were 32 instead of 8, then we could

rank 64 male and 64 female patients based on their age and group them into 4 sets.

The youngest male and female group form the first block and will be processed as

a batch. The second youngest group form the second block and so on. Now within

each block, we randomly assign half patients to case and the other half to control.

Blocking the age makes the subgroups more homogeneous compared to randomizing

the age. Thus the estimation of treatment effect will be more effective.

The ultimate lesson is “blocking what you can and randomizing what you can

42

not” [97]. This is the most effective way to reduce the confounding influence of nui-

sance factors on the primary factor of interest. By blocking the measured biological

and technical confounding factors, we minimize the chance that their effect will be

mixed with the effect of primary factor of interest. However, since there might be

many more unmeasured subtle potential biological confounding factors (such as race,

smoking, weight, etc.) and technical confounding factors (technician who performed

the hybridization process, the temperature and humidity of lab, the condition that

specimens were preserved, ozone level [100], etc), randomly assigning instances to

blocks, after counting for measured confounding factors, is the best strategy for

reducing the chance of mixing the effect of the primary factor with the effect of

confounding factors. For experiments that contain two or more treatment factors or

two or more controlled nuisance factors, there are standard design techniques such

as split-plot and latin square respectively [101].

The influence of biological confounding factors on the response variable is a

well known fact in science. Therefore obvious biological confounding factors are

properly blocked in most clinical studies, e.g., it would by highly unusual to find a

study where all cases are male patients and all controls are female patients. However,

neglecting to block technical confounding factors, similar to the methodology of Fig-

ure 3.3(a), remains a major problem in high-throughput omics studies. Researchers

have shown that significant gene lists corresponding to flawed experimental designs

were substantially longer than gene lists obtained from similar studies where the

same technical confounding factor was not present [98]. In fact ignoring the techni-

cal confounding factors makes the data set have a technical bias and consequently

the result of downstream analysis will be misleadingly “too optimistic”–i.e.,

• In significant gene set analysis, when treatment groups are profiled on different

batches, too many will appear to be differentially expressed between treatment

groups. Here, most of the significant genes are caused by the batch effect.

• For the survival analysis, when the shorter survival and longer survival patients

are profiled on different batches, too many genes will have significant p-values

under the Cox model.

• In the case of training a classifier to distinguish between two phenotypes, when

each batch contains only instances of one phenotype, the classifier’s apparent

performance (e.g., 10 fold cross validation) will be artificially too high.

43

In all of these cases, since the primary factor of interest is “reinforced” with

the batch effect, the performance of learning algorithms appear better than the

situation where the study was blocked properly. In all three mentioned cases, the

learning algorithms fit to a signal that is a mixture of the primary biological signal of

interest and the signal of the technical factor. Therefore the results of such studies

are not reproducible and the learned models are not applicable to other data sets.

In other words, using an independent validation set to evaluate the findings of these

learning algorithms will show a significant degradation in their performance. This

is because we anticipate that the independent data set will not “benefit” from the

same flawed experimental design as the original data set. Because of the complicated

nature of technical confounding factors and their unpredictable effect on expression

values, even if the new data set suffers from bad experimental design too, it is very

unlikely that its technical bias is exactly the same as the original study’s bias (e.g.,

the exact same temperature and ozone level) and thus the bias will not affect the

expression values of the new data set in the exact same way that technical bias of

original data set did. We believe this might be one of the reasons that there is not

much consensus between several significant gene sets found for the same biological

phenomenon [46, 49, 102]

Poor experimental design also makes various batch correction methods inappli-

cable. Since the technical factors are completely confounding the biological factor

of interest, it will be impossible to distinguish between these two signals. In other

words, if we observe a significant change in the expression values of a gene, we can

not decide whether this change is due to the biological factor or due to the technical

factor. Therefore there will be no guarantee that utilizing batch effect correction

methods would not result in losing useful biological signals of interest along with

removing BE. So in the rest of this chapter we assume that BE correction algorithms

are being applied to data sets that are properly blocked for their known technical

confounding factors.

As Scherer [58] mentioned, we emphasize that different types of bias might affect

the reproduciblity of a gene expression study’s discoveries and limit their general-

ization power. Most notably, selection bias (the criterion used to select a “random

sample” of population to include in the study) and specimen collection bias (how

the specimens are selected and prepared to be profiled) each have a major impact on

how the results of a study are utilized and interpreted. Note that these biases and

44

their effects on gene expression values is different from batch effects. Attempting

to integrate a breast cancer study where all patients with poor clinical outcomes

were excluded from the final results, with another breast cancer study where no

filtering was applied to the set of participants, is fundamentally wrong and no batch

correction method can fix this discrepancy. These types of bias are better studied

in the context of covariate shift [103]. This thesis, however, will assume that batch

effect correction algorithms are applied to data sets that include unbiased random

samples of the same population.

3.4 Evaluation of batch effect minimization methods

Proper evaluation of batch effect correction algorithms, before running any down-

stream analysis on the corrected data, is as important as batch correction in the

first place [2, 9]. Batch correction algorithms are utilized in order to remove the un-

wanted influence of technical factors and consequently magnify the biological signal

in the data. “Under correcting” the batch effect will result in a situation where data

is still confounded by technical factors and thus different batches are distinguishable

only on the basis of the non-biological signal [104]. “Over correcting” the batch ef-

fect, however, might result in a distorted signal of interest, which might mislead the

downstream analysis into conclusions that are even worse than what we would get

without any batch correction. In this case, the combined data set contains less bio-

logical signal than its constituents [104]. Furthermore, as all sources of batch effects

are usually not known, it is impossible to insure all removed signals are batch related

and no useful biological information is lost during the correction procedure. This

means a good BE algorithm should simultaneously removed confounding signals

caused by technical factors and leave the biological signal unaffected. Therefore,

assessing the performance of batch correction algorithms involves two competing

criteria:

1. Confounding signal caused by technical factors is removed from data (batch

effect is removed).

2. Biological signal of interest is left unchanged by batch correction algorithm

(biological signal is retained).

Note the competition between these criteria: in the first criterion the batch correc-

tion algorithm attempts greater modification of the batches (to remove more batch

45

effect) while the second criterion attempts to modify the batches less (to retain the

biological signal). We will see most of the performance assessment methods evaluate

batch correction algorithms in only one aspect and ignore the other one. We believe

that not evaluating both of these aspects might result in misleading down stream

analysis of data. Lazar et al. [2] has a full review on the evaluation methods of

batch correction algorithms. They divided available evaluation methods into two

main groups: visualization tools and quantitative tools.

Visualization tools, mostly used for a fast inspection of the results, provide a

crude assessment of batch correction efficiency. Visual evaluation can be done in

either the “gene-wise” or “global” method. Gene-wise methods compare the distri-

bution of genes across batches, one at a time. For example the probability density of

a gene’s expression should be the same across batches after batch correction. This

is problematic as, unless the samples of two batches are selected from very similar

populations with the same phenotype proportions across batches (e.g., the tumor

to healthy ratio or the cancer sub-type proportions), the distribution of gene ex-

pression values for two batches would not be the same even in the absence of batch

effects.

The global visualization methods are less sensitive to the similarity of sample

batches. These methods utilize a unsupervised learning algorithm (such as clustering

and PCA plots) to depict the relation of instances of different batches with respect

to each other. In the absence of batch effects we expect that instances of the same

phenotypic class will group together regardless of their batches. For example, all

male-female, tumor-healthy, or cancer sub-types – depending on the type of study –

are expected to form specific clusters of their own. On the other hand, strong batch

influence will make the instances of each batch to form a separate cluster, regardless

of their biological properties.

As opposed to visualization tools, quantitative methods measure the “overlap”

between the batches [2]. These methods attempt to measure how much the “clouds”

of data points belong to each batch are mixed with each other. For this purpose,

they either measure the distance of the closest instance of other batch to each

data point or they count how many of an instance’s K closest neighbors belong

to another batch. By comparing these values before utilizing each batch effect

correction algorithm and then after applying it, they can assess how effectively it

minimizes the batch effect. The main shortcoming of these methods is that they fail

46

to look at both the aforementioned evaluation criteria; more specifically they fail

to check whether the biological data is preserved after batch correction. Thus if a

naive batch correction method simply transforms all gene expression arrays to one

point, these methods evaluate its performance as outstanding. In the same category,

Lazar et al. [2] reviewed a method that measures the symmetry of the distribution of

gene expression values before and after the batch correction. This method declares

a batch correction algorithm effective if it keeps the cumulative density functions

before and after correction, symmetric. Again this method fails to evaluate both

of the aforementioned criteria – here, this evaluation method does not check for

effective removal of batch effect.

Lazar et al. [2] also reviewed a couple of quantitative evaluation methods based

on differentially expressed genes. One of the methods uses a set of a priori known“positive

control genes” – i.e., genes that are known to be related to the biological phe-

nomenon under study – in order to evaluate how effective a particular batch correc-

tion algorithm is. This method compares the proportions of significant differently

expressed genes in common with the positive control gene set before and after the

batch correction algorithm. A batch effect correction algorithm is effective if it

increases the proportion of positive control genes that are declared significant.

Lazar et al. [2] reviewed another evaluation method based on differentially ex-

pressed genes, which was originally proposed by Sims et al. [86] and does not need

any prior knowledge about positive genes. This method assesses the performance

of a batch correction algorithm by finding the set of significant genes “between”

batches and “across” batches, and compares them before and after applying the

correction algorithm. Their method explicitly evaluates how effectively the batch

effect is corrected, but it does not check for retaining the biological signal. In Chap-

ter 5 we will extend this method to include both criteria explicitly in the evaluation

method.

Another evaluation method, proposed by Shabalin et al. [104], is based on inte-

grative correlation [105] (we study this method in detail in Section 4.2.1). It uses

integrative correlation analysis to quantify the similarity between batches before

and after applying correlation algorithm. This evaluation method ignores the sec-

ond criteria and does not evaluate how much of the biological signal is preserved.

Chapter 5 will introduce three methods for evaluating the performance of batch

correction algorithms which explicitly consider both of these competing criteria.

47

In addition to these measures, Autio et al. [62] introduced six key properties

for normalization methods that determine their influence on the gene expression

matrices: (1) profile-wise normalization, (2) gene-wise normalization, (3) does it

consider the array platform? (4) does it include scaling? (5) does it use distribution?

(6) does it change the order of the values within a profile?

3.5 Summary

This chapter introduces the batch effect and looks at its different sources, specifically

in gene expression data sets. By studying the confounding role of batch effects and

the possibility to correct them, this chapter proposes a set of general guidelines

for conducting gene expression analysis according to proper experimental design

principles.

This chapter also looks at several different evaluation methods for measuring

the effectiveness of batch correction algorithms. Following Lazar et al. [2], we group

evaluation methods into two main sets: visualization methods and quantitative

methods. We also propose two competing criteria that evaluation methods need to

consider for proper quality assessment of batch correction algorithms. We will use

these two criteria later in Chapter 5 and introduce 3 evaluation methods.

48

Chapter 4

Feature Selection in microarrays

In a typical learning setting, the number of subjects in the study (n), also known as

sample size, is at least an order of magnitude larger than the number of explanatory

variables (p), also known as features. In the other words, statistical learning algo-

rithms are designed for p� n situations. In high-throughput molecular approaches,

however, we are typically faced with the opposite setting n � p. Gene expression

studies, similar to other high throughput biological measurement technologies, re-

sult in a matrix whose rows each correspond to an individual, and whose columns

each correspond to a feature; here there are many such features and relatively few

instances. Applying standard statistical learning algorithms to these data matrices

and getting useful results is very challenging if not impossible. One way to address

this problem is to use only a subset of the features that most closely represent the

biological signals of interest; this is called “feature selection”. In this chapter we

will be looking at the effects of different feature selection methods on the similarity

between gene expression profiles.

This chapter first looks at three different ways to reduce the number of features

and empirically studies their effect. Based on the experimental results, we advo-

cate one method – variance-based feature selection – for gene expression studies.

Section 4.4 then considers the effect of reducing features based on their variability

within each batch. Section 4.5 then looks at the similarity of gene variances as a

similarity measure between gene expression studies.

The main findings of these chapter can be summarized as follows:

• Gene expression data sets almost always contain some genes that artificially

increase the correlation score, even between completely unrelated profiles.

• Variance-based gene selection is an effective way to reduce the feature space,

49

as well as improving the estimation of correlation scores.

• Comparing gene expression data sets based on their gene variance ranking is

a good measure of their underlying differences.

4.1 Distribution of gene expression intensities

The main goal of this chapter is to find a way to order genes by their statistical

properties in gene expression data sets and use this ordering to reduce the number

of genes by removing genes with lower rank. The main criterion for assessing genes

is their role in the relation between the gene expression profiles of two or more data

sets. This means if a gene exhibits similar intensities in the expression profiles of

two biologically similar instances and different intensities for two not-so-biologically-

similar instances, regardless of the data set of origin of the profiles, then we rank

that gene high. We are specifically interested in genes whose behavior is consistent

across data sets, as this entire thesis is about relation across data sets and finding

a way to combine these data sets.

A great way to visualize the relationship between genes for one pair of profiles is

by means of scatter plots. Here, each gene is shown as one point in a two dimensional

plane whose x-value represents the expression intensity of a gene in one profile and

whose y-value represents its expression intensity in the other profile. There will be p

points in the plot, one for showing the intensity of each gene in the profiles. As with

all other scatter plots, points that are close to the y = x line are those with high

concordance between the two profiles and those closer to upper-left or bottom-right

corners are those that have high intensity in one profile and low intensity in the

other profile.

The main limitation of scatter plots is the fact that they only show the relation

between a single pair of gene expression profiles. So if we want to compare two

data sets, one containing n profiles and one containing m profiles, then we end up

with n × m scatter plots, each containing p points. In this section we propose a

novel way to summarize all these scatter plots in one scatter plot, which we call

multi-scatter plot. In order to do this, we extract two summary statistics for each

gene in each data sets, the mean intensity value (measure of its location) and the

standard deviation (measure of its dispersion). Thus we summarize the p × n and

p×m expression matrices with four p×1 vectors, two mean vectors and two standard

50

deviation vectors, one for each data set.

Using this summarization schema, we have four values for each gene. In order

to show these four values in multi-scatter plots, we represent each gene with a cross

rather than a point as in ordinary scatter plot. The xy-value of the center of each

cross, i.e., the location, shows the mean intensity of one gene in the pair of data sets

and the length of the vertical and horizontal hands, which represent the dispersion

of the gene, show the standard deviation of the genes in the pair of data sets. We

used this technique to show the relation between four pairs of gene expression data

sets in Figure 4.1.

In the experiments of Figure 4.1 and Figure 4.2 we used five gene expression

data sets. In the rest of this chapter we will use these data sets again. All these

gene expression studies that were conducted using the same technology, namely

Affeymetrix U133A GeneChips. Normalization was performed using BrainArray [82]

custom cdf files (entrez) version 17.0.0 and the RMA [106] function in R version 3.0.1

(known as GoodSport) and bioconductor version 2.12. This version of the cdf files

contains 12098 probesets for U133A GeneChips and 18960 probesets for U133 plus

2.0, the other commonly used Affymetrix GeneChip. These two platforms share

12092 probesets using this cdf file. All of the experiments in this thesis use these

12092 probesets as the feature set for both types of Affymetrix GeneChips. This

way we are able to merge data sets conducted on both U133A or U133 plus 2.0

GeneChips. Here is a brief summary of each of the five data sets:

• Ovarian cancer: GSE26712 [107] includes 185 primary ovarian tumors (90

optimal and 95 suboptimal) and 10 normal ovarian surface epithelium.

• Prostate cancer: GSE8218 [108] includes 148 prostate specimens with various

amounts of tumor, stroma, BPH and atrophic gland.

• Lung cancer: GSE10072 [109] includes 107 lung specimens that are based on

122 samples, of which 15 duplicates were averaged. There are 58 tumor and 49

non-tumor tissues in the data set from 20 never smokers, 26 former smokers,

and 28 current smokers.

• Breast cancer1: GSE2034 [110] includes 286 lymph node negative breast

cancer specimens of which 180 were relapse free and 106 patients developed

distant metastasis. 77 patients, out of 286 patients, are ER negative (≈ 27%)

51

in this study.

• Breast cancer2: GSE7390 [111] includes 198 frozen primary breast cancer

specimens of which 32% are pathologically tagged as ER negative.

The position of the crosses in Figure 4.1 represent the mean expression intensity

of genes in the pair of data sets compared together and we interpret them the same

way we interpret the points in an ordinary scatter plot. The length of the cross’s

hands is what makes this type of scatter plot different. Larger crosses represent genes

with high variance in their expression intensities and smaller crosses represent genes

with more steady expression values. When both hands of a cross are approximately

the same length we can infer this gene has similar expression variances in the two

data sets. However, when one hand of the cross is significantly longer than the other

hand, we can infer that gene has significant different expression variances in the two

data sets.

To better visualize the difference in the variance of genes across two data sets,

one can remove the hand of the cross representing the data set with the lowest

variance, i.e., the shorter hand. Thus a horizontal line for a gene shows that specific

gene has higher variance in the data set on x-axes. A vertical line shows that the

vertical hand of that cross was longer so the variance of that gene in the data set

belong to y-axes had higher variance. This modified version of multiple scatter plots

of Figure 4.1 is shown in Figure 4.2.

There are a couple of interesting observations about Figure 4.2. One is about the

relation between the expression intensities of genes and their variance. For example

consider panels (a), (b), and (c) in Figure 4.2. As one can see, points under the

y = x line tend to be mostly horizontal lines and those that are above the y = x line

are mostly vertical lines. This means that genes with significantly higher intensities

in one data set usually exhibit higher variances too. In the other words, genes with

significantly different variations across two studies also have significantly different

intensities.

The other interesting observation relates to the average remaining standard de-

viation of data sets (written in red color in top-left and bottom-right corners of each

panel) in panel (a), (b), and (c) in comparison to panel (d). These average values

comparing the breast cancer data set 1 and 2 in panel (4.2d) are significantly smaller

than comparisons between data sets of different cancer types the other three panels.

52

2 4 6 8 10 12 14

2
4

6
8

10
12

14

Ovarian data set (#195)

P
ro

st
at

e
da

ta
 s

et
 (

#1
48

)

0.479

0.326

(a) Ovarian cancer versus prostate cancer

2 4 6 8 10 12 14

2
4

6
8

10
12

14

Ovarian data set (#195)
Lu

ng
 d

at
a

se
t (

#1
07

)

0.479

0.394

(b) Ovarian cancer versus lung cancer

4 6 8 10 12 14

4
6

8
10

12
14

Prostate data set (#148)

Lu
ng

 d
at

a
se

t (
#1

07
)

0.326

0.394

(c) Prostate cancer versus lung cancer

2 4 6 8 10 12 14

2
4

6
8

10
12

14

Breat data set1 (#286)

B
re

as
t d

at
a

se
t2

 (
#1

98
)

0.399

0.437

(d) Breast cancer1 versus breast cancer2

Figure 4.1: Four multi-scatter plots showing the pairwise relationship of the mean
expression of 12092 genes between four pairs of data sets of the same or different
cancer type, as indicated for each panel. The number of instances in each data set
is shown in the axis labels. The red bar in top-left and bottom-right corners, shows
the mean value of dispersion (mean of standard deviation of gene expression values)
for the pair of data sets compared in each panel. The six lines parallel to y = x line
mark the ±1, ±2, and ±3 intervals.

53

2 4 6 8 10 12 14

2
4

6
8

10
12

14

Ovarian data set (#195)

P
ro

st
at

e
da

ta
 s

et
 (

#1
48

)

0.192

0.169

(a) Ovarian cancer versus prostate cancer

2 4 6 8 10 12 14

2
4

6
8

10
12

14
Ovarian data set (#195)

Lu
ng

 d
at

a
se

t (
#1

07
)

0.161

0.155

(b) Ovarian cancer versus lung cancer

4 6 8 10 12 14

4
6

8
10

12
14

Prostate data set (#148)

Lu
ng

 d
at

a
se

t (
#1

07
)

0.114

0.142

(c) Prostate cancer versus lung cancer

2 4 6 8 10 12 14

2
4

6
8

10
12

14

Breat data set1 (#286)

B
re

as
t d

at
a

se
t2

 (
#1

98
)

0.045

0.088

(d) Breast cancer1 versus breast cancer2

Figure 4.2: Half crosses of multi-scatter plot – either horizontal or vertical lines de-
pending on which data set standard deviation was larger. Horizontal lines represent
the genes that have larger variance in the data set shown on x-axes. Vertical lines
represent the genes that have larger variance in the data set shown on y-axes. The
average of horizontal and vertical lines are shown by red color in bottom-right and
top-left corners of each panel.

54

For the breast cancer pair the length of most of the lines is close to zero, which

means in the original multi-scatter plot, i.e., Figure 4.1(d), most of the crosses had

hands with approximately equal lengths. Later in Section 4.4, we will see that using

this observation, we can accurately determine the similarity of two data sets.

The following section introduces three feature selection methods that use the

intrinsic statistical properties of genes to rank them. Subsets of genes chosen by

these three algorithms will be assessed to examine the correlation coefficients across

the paired data sets.

4.2 Feature reduction in gene expression data sets

There are many incentives to perform feature selection on gene expression data sets.

As mentioned earlier, the large gap between the number of genes p and the sample

size n is a major obstacle on applying most of the machine learning algorithms to

this type of data. Thus reducing the size of feature set will improve the performance

of learning algorithms. Some genes are only expressed in certain tissues or at certain

times, in addition there may be artifacts, such as mislabeled spots on the arrays or

chip-specific problems induced by the experimental conditions, that makes some of

the measured transcription values unreliable [105]. It is therefore useful to utilize

special techniques called detection calls [112–114] to answer the question “Is the

gene detectable in the given sample?” [113]. Filtering genes based on the results of

detection calls increases the number of differentially expressed genes while reducing

the number of false positives [112, 113, 115]. Detection calls are also an effective

method to detect transcripts whose expression levels are close to the limits of de-

tection of the platform [112]. Running a feature selection step in order to remove

features that are not detected is an important, but sometimes ignored, step in the

downstream analysis of gene expression studies, which can improve interpretation

of the findings.

Moreover, performing cross-platform or cross-study comparisons yields better

results when we limit the analysis to a subset of substantial biologically relevant

genes [116]. The subset of relevant genes depends on many different factors, such as

the platform used, the tissue under study, the demographics of population and the

way each study sampled from it. Nevertheless, identifying the relevant genes using

the detection call filtering or integrative correlation has shown to result in more

meaningful correlation scores across data sets [115, 117]. The result of different

55

studies have shown that identifying a subset of genes whose transcripts are reliably

and consistently measured across studies is the first and most critical step in cross-

study analysis of gene expression data sets.

In this section we empirically compare the reliability of gene expression measure-

ments by applying different feature reduction methods and then quantifying to what

extend they estimate the Pearson correlation coefficients across studies. As Pearson

correlation coefficients do not rely on direct assimilation of expression intensities,

they are commonly used for cross-platform and cross-study performance analysis

of gene expression samples [105, 115, 117]. There are different ways to represent

the Pearson correlation coefficients across two studies. More specifically, when we

are comparing two studies, one with n instances and one with m instances, then

we will be dealing with a n × m correlation matrix. In the following section we

summarize this n × m matrix with the mean correlation value along with the 10

and 90 percentiles. The mean represents the average correlation score and it can

be interpreted as the average similarity between the n instances of the first study

to the m instances of the second one. The 10 to 90 percentile range represents the

dynamic range of the correlation values across the two studies.

In the following section we introduce three novel methods to select genes across

the gene expression data sets and compare them empirically with two widely used

gene selection algorithms, namely integrative correlation and detection calling. Two

of our methods, intensity-based and variance-based, are proposed based on the in-

tuition of how we expect an informative gene should be distributed. The third

method, correlation increment, is purposefully designed to choose a subset of genes

that poorly represent the biological signal of interest. The performance of genes

selected by this method will prove whether there are some genes in the gene expres-

sion data sets whose inclusion in downstream analysis will distort the results. In the

following sections we first briefly introduce the available gene selection algorithms

and then we explain our three proposed methods.

4.2.1 Integrative correlation analysis

Evaluating the consistency of transcript measurements of a gene across a pair of

studies is easy if they contain matched instances. In this case, we expect the ex-

pression value patterns for a gene to be the same for the set of matched instances

across studies – called “technical replicates”. Therefore we can estimate the reliabil-

56

ity of measured values for a particular gene in each study and its consistency across

studies by calculating the correlation between the two matched vectors of measured

expression values of the gene in each study.

However, this luxurious condition does not exist in most cases, as our goal is typ-

ically to combine multiple gene expression studies to increase the sample size and

consequently increase the statistical power. For this more practically interesting

situation, Parmigiani et al. [118] proposed an idea that works based on matching

studies at the gene level: While a pair of studies do not contain any matched in-

stances, they do contain the same set of genes and assuming that their instances are

sampled from the same population then the relationship between genes within each

study should be similar across the studies. This method detects the inconsistencies

of genes expression values by looking at how genes vary in relation to other genes

within a data set. In their approach, in order to quantify gene’s consistency and

reproducibility across studies, they construct a “virtual sample” corresponding to

each gene in each study and then calculate the correlation between these virtual

samples across studies.

The virtual sample for a particular gene is constructed by calculating the cor-

relation between its expression values and the genes expression values of each other

gene over the set of arrays in each study. Assume the studies are X [n × p] and

Y [m × p], each containing the expression values of the same p genes. For each

gene i in the first study, they construct a sample with size p − 1. Each of these

p−1 values is the Pearson correlation between the expression vector of ith gene and

another gene calculated over the n instances of the first study. We show this sample

as

ρXi =
[
CorX(i, 1), CorX(i, 2), · · · , CorX(i, i− 1), CorX(i, i+ 1), · · · , CorX(i, p)

]
where CorX(i, j) = Cor (X[·, i],X[·, j]) is the correlation between the ith and jth gene

over the n instances of data set X. Using the same process they construct the virtual

sample for genes in the second study ρYi . The size of the virtual samples of genes are

again p− 1 however each element of this virtual sample is calculated by calculating

the correlation over m instances of Y, i.e., CorY(i, j) = Cor (Y[·, i],Y[·, j]). The

reproducibility of the ith gene across the two studies is estimated by calculating the

correlation of its virtual samples.

ρi = Cor
(
ρXi , ρ

Y
i

)
57

Since the score of each gene is found by calculating the correlation of correlation

coefficients, the method is called integrative correlation [105, 116, 118]. Integrative

correlation identifies genes with concordant expression across studies [104], this idea

is used in several studies to measure the consistency and reproducibility of cross-

study and cross-platform gene expression profiling [119, 120], which show empirically

that filtering of genes using integrative correlation can effectively increase the ratio

of shared significant differentialy expressed genes across data sets.

4.2.2 Gene ranking analysis

In this section we introduce two of our proposed gene selection algorithms that

work by matching ranked gene lists across two studies and then choosing genes

by aggregating paired ranked lists. By extracting meaningful ranked lists from

each study, we compare the patterns of gene expression values across studies. This

allows us to perform gene selection across different types of chips (e.g., Affymetrix

oligonucleotide GeneChips versus spotted cDNA arrays), different generations of

chips (e.g., Affymetrix U133A versus U133 plus 2.0), and different studies that use

same GeneChips arrays.

The core of the idea lays in an algorithm for combining two ranked gene lists.

Consider two gene expression studies that share p common genes. We sort genes in

each study according to some meaningful criterion. If we want to pick the top, say

p1 < p, features, we look at top of the two ranked lists of genes and find p1 genes that

are ranked high in both lists. Given the two ranked lists and the desired number of

top genes p1, algorithm 2 simply finds the top p1 genes that both ranked lists agree

on. This algorithm can easily be extended to handle more than two ranked lists.

Before discussing the way we rank genes in each study, we must consider a better

implementation of Algorithm 2. Algorithm 2 is a very straightforward implemen-

tation for combining two ranked lists. However, it is not the most efficient one.

With an efficient implementation of intersect function the worst case complexity

of Algorithm 2, assuming p1 � p, is O
(
p1p

2
)
. The complexity of intersect(A,B)

where ||A|| = n and ||B|| = m is O (mn). However, if A and B are partially ordered

sets, then we can find their intersection by first sorting them and then merge the

sorted lists. Here the time complexities of the two steps are O (n log(n) +m log(m))

and O (m+ n), respectively. Thus the time complexity of intersect function can

be improved to O (n log(n) +m log(m)) if we can sort the two sets. In the case

58

Algorithm 2 How to combine two ranked list and find top n1 elements that they
both agree on. One can easily extend this algorithm to combine more than two
ranked lists.

Require: RankedList1 [1 · · · p]
Require: RankedList2 [1 · · · p]
Require: number of desired features q ≤ p
Threshold← q
TopRank ← RankedList1 [1 · · ·Threshold] ∩RankedList2 [1 · · ·Threshold]
while length(TopRank) < q do
Threshold← Threshold+ 1
TopRank ← RankedList1 [1 · · ·Threshold] ∩RankedList2 [1 · · ·Threshold]

end while
return TopRank[1 · · · q]

of ranked gene lists, we will be working with the index of genes so we can benefit

from this more efficient implementation. Running an algorithm that has quadratic

dependence on the number of genes is computationally very expensive. To solve

this problem we proposed the following algorithm that produces the same results as

Algorithm 2 with more efficient time complexity.

Algorithm 3, using the indexing variable i, analyzes ranked genes one by one,

starting from the highest ranked genes in the two lists. It also keeps track of the

genes that were claimed highly ranked in one of the two lists, but not both of them,

using the Unused array. If the ith element of the two ranked lists are the same then

we add it to the result list. Otherwise we compare each of the two genes to the

Unused list. If we can find each of them in the Unused list, it means this gene was

added to the Unused list as it was considered highly ranked in the other list. Thus

we add it to the result list and we remove it from the Unused list (only for better

performance for future find calls). We repeat this process until the result list has

a sufficient number (p1) of elements.

Using an efficient implementation of the three main functions in Algorithm 3, i.e.,

find, add, and remove, each iteration of the main while loop will take O (log(p)). 1

Since the main loop will execute at most p/2+p1 times, the overall time complexity of

the second implementation is O ((p+ p1) log(p)), which is better than the quadratic

performance of earlier implementation in Algorithm 2. One can easily extend this

implementation to apply it to more than two ranked lists by utilizing a counter for

1A max (min) heap is able to add and remove elements on average with O (log(n)) where n is
the length of the heap array. These two functions perform their task (adding a new element or
removing an existing element, respectively) in a way that they preserve the special structure of the
heap array. As a result, the find function is able to search for elements on average in O (log(n)).

59

Algorithm 3 More efficient implementation for combining two ranked list and find
top p1 elements that they both agree on. Here we showed the set difference operator
by \ symbol.

Require: RankedList1 [1 · · · p]
Require: RankedList2 [1 · · · p]
Require: number of desired features q ≤ p
TopRank ← RankedList1 [1 · · · q] ∩RankedList2 [1 · · · q]
All← RankedList1 [1 · · · q] ∪RankedList2 [1 · · · q]
Unused← All \ TopRank
i← q + 1
while length(TopRank) < q do

if RankedList1 [i] == RankedList2 [i] then
TopRank ← TopRank ∪RankedList1 [i]

else
if (RankedList1 [i] ∈ Unused) == true then
TopRank ← TopRank ∪RankedList1 [i]
Unused← Unused \RankedList1 [i]

else
Unused← Unused ∪RankedList1 [i]

end if
if (RankedList2 [i] ∈ Unused) == true then
TopRank ← TopRank ∪RankedList2 [i]
Unused← Unused \RankedList2 [i]

else
Unused← Unused ∪RankedList2 [i]

end if
end if
i← i+ 1

end while
return TopRank[1 · · · q]

each element in the Unused list. These counters keep track of the number of ranked

lists that this gene has appeared in them as highly ranked. As soon as all lists (or

maybe a majority of them) declare a gene as highly ranked, we will add it to the

result array TopRank.

We utilized Algorithm 3 for two gene selection algorithms. The only difference

between these two gene selection algorithm is the criterion that was used for ranking

the genes in the paired studies. The first one, called intensity-based feature selection,

ranks the genes based on their mean expression intensity (from highest to lowest) in

each data set to form two ranked lists. These lists are fed into the Algorithm 3 to

select the top p1 genes. Here we assume that higher mean intensity values are due to

real biological artifacts while low intensities are due to noise in measurements. Thus

60

by selecting genes with higher mean expression intensities, we are able to capture

the biological differences between the instances more clearly. When we combine the

ranked lists of two data sets using the Algorithm 3, we will be able to see these

biological distinctions across data sets.

The second gene selection method, called variance-based feature selection, sorts

the genes in each study using their variance and then selects the top genes with

higher variance. Here we assume that variations of genes with low variance is likely

due to random noise not caused by biological signals. Therefore genes with low

variance will not be helpful in distinguishing between biological classes. This means

genes that show significant variability across samples gain their high variance from

the biological heterogeneity of samples and thus they are able to distinguish between

the biological classes within each data set. Genes that have this property across

data sets are expected to be able to distinguish between the biological classes across

the data sets. Later in Section 4.3 we will compare the performance of these two

methods.

4.2.3 Correlation increment gene selection algorithm

Our third gene selection method is purposefully designed to pick the most uninfor-

mative genes, to demonstrate how irrelevant some of the genes are, especially for

learning tasks. This emphasizes the importance of performing feature selection on

gene expression data sets before conducting any downstream learning analysis on

data in order to remove these irrelevant genes. As we will see in Section 7.1, these

genes do not contain any biological information and their expression intensities are

highly correlated across different data sets, regardless of the biological phenomenon

under study. Removing these genes will significantly increase the average correlation

coefficients between the samples across data sets.

This feature selection method, which we call correlation increment, applies a

heuristic search to find genes that increase the average correlation between gene

expression profiles across a pair of data sets as much as possible. For this purpose,

we use the following formulation of Pearson correlation between two vectors of

x = [x1, x2, · · · , xq]T and y = [y1, y2, · · · , yq]T

Cor(x,y) =
1

q − 1

q∑
i=1

(
xi − x̄

Sx

) (
yi − ȳ

Sy

)
(4.1)

where x̄ and ȳ are the mean value of vectors x and y and Sx and Sy are their

61

respective standard deviations. Equation 4.1 expresses the Pearson correlation as

the average of multiplication of standardized features (z-scores) of the components

of x and y. We use this formulation to estimate the effect of adding a new feature,

xp1+1 and yp1+1, on the correlation value between x and y. If we want to find the

exact value of correlation after adding the new feature, we have to recalculate the

mean and standard deviation values and then use Equation 4.1, this time with p1+1

terms inside the sum. However, if we just want to approximate the effect of adding

the new feature, we can assume that means and standard deviations of two vectors

(x̄, ȳ, Sx, and Sy) are unchanged. Using this simplifying assumption, including a

new feature only adds one new term to the sum. Here is the approximated new

correlation value between two vectors of p1 + 1 features.

Cor ([x, xq+1] , [y, yq+1]) ≈ q − 1

q
Cor(x,y) +

1

q

(
xq+1 − x̄

Sx

) (
yq+1 − ȳ

Sy

)
(4.2)

In fact, if we only intend to compare the effect of adding the (p1 + 1)th feature to

x and y for all available features (xi, yi), we only need the numerator of the second

term. The following equation sets ∆Cor(x,y)
(xi,yi)

to approximate the effect of adding a

new feature (xi, yi) on the correlation between the two vectors of x and y:

∆Cor(x,y)
(xi,yi)

≈ (xi − x̄) (yi − ȳ) (4.3)

The complexity analysis of Equation 4.3 shows why we need this approximation.

We assume the total number of features is p, the initial length of x and y is p1,

and we want to add k new elements to these two vectors where p1 � p and k � p.

Adding each new element requires calculating Equation 4.3 for all p available genes

O (p) and finding one feature that has maximum the value of Equation 4.3.

index = Argmax
i

(
∆Cor(x,y)

(xi,yi)

)
x = [x, xindex] y = [y, yindex]

After finding this feature, we concatenate it to the existing x and y and then need to

recalculate the mean and standard deviations O (p1 + k). As we need to repeat these

two steps k times, the time complexity of using Equation 4.3 is O (k(p+ p1 + k)).

In comparison, if we want to calculate the exact value of correlation using Equa-

tion 4.1, we need to recalculate the means and standard deviation for evaluating

each feature and the complexity would be O (kp(p1 + k)). In this implementation

62

for adding each of the k new elements, we need to consider all p available features,

which for each we need to recalculate the mean and standard deviation. Thus

adding one new element will take O (p(b+ k)) and we need to repeat this k times.

Comparing this complexity with the approximate version complexity shows we are

saving a lot in the computations using the approximation of Equation 4.3. This

saving is more significant when we take into account that we calculate the cross-

correlation matrix between several x vectors and several y vectors rather than only

one correlation score.

We can use Equation 4.3 to estimate how much a new feature on average changes

the correlation values between a set of x vectors a the set of y vectors, i.e., the cross

correlation between two data sets X and Y. Our third proposed feature selection

algorithm will use this heuristic to reduce the number of features. At each step, it

starts with the current set of selected features then uses Equation 4.3 to find the

one feature that increases the correlation the most and add it to the set of selected

features. We recalculate the x̄, ȳ, Sx, and Sy for the new set of features and continue

until we reach the desired number of features. We compare the effect of these three

feature selection algorithms empirically on the cross correlation between two sets of

gene expression profiles.

4.3 Comparing the performance of feature selection meth-
ods

In this section we compare the performance of the five feature selection methods

applied to gene expression data sets. For performance analysis we conduct the

correlation analysis that is common in the context of gene expression data [90, 105,

116, 118]. For this purpose we use the cancer data sets we mentioned in Section 4.1.

We pair two gene expression data sets and then study the distribution of cross

correlation coefficients. Hence if one data set has n instances and the other data

set has m instances, there will be a n × m correlation coefficient matrix. In the

following we look at the distribution of these values using three summarizing values,

the mean of n×m correlation coefficients plus the 10% and 90% intervals.

In these comparisons we pair apparently completely unrelated data sets together

so a feature selection method that leads to a lower mean correlation is assumed to

be more accurate. Also a larger 10% − 90% interval shows a larger dynamic range

of correlation coefficients, which suggests the feature set is able to capture the fine

63

similarities between pairs of gene expression profiles. Thus feature sets that result

in larger intervals are more desired comparing to feature set with shorter intervals.

Figure 4.3 shows the cross correlation coefficients between the ovarian cancer

data set and prostate cancer data sets. We measure the similarity between two

gene expression profiles using the Pearson correlation. The cross correlation matrix

includes 195 × 148 = 28860 values. We plot the mean correlation value of 28860

correlation scores (black dots) along with their 10% to 90% percentiles as the lower

and upper bars in Figure 4.3. In this figure we measure the correlation values using

several sets of features with different sizes chosen by four gene selection methods of

Section 4.2. In all 6 panels we started with a same set of 50 base features (which

were selected using the variance ranking method to have a fair comparison between

all methods) and then we incrementally added 100 more features each time, up

to the limit of 2000. Panel (a) shows the result of integrative correlation feature

selection, panel (b) shows the correlation increment gene selection method, panel

(c) shows the intensity-based ranking feature selection, and (d) show the variance-

based feature selection results. In each of these four panels, the average 10%− 90%

interval length is shown with red color.

In order to better compare the behavior of the four feature selection methods, we

plot the average of 28860 correlation scores between ovarian samples and prostate

samples using different feature sets in panel (e) and (f). Panel (e) summarizes the

mean correlations coefficients shown in panel (a)-(d) for the gene set of size up

to 2000. Panel (f) shows the same result over the course of entire possible gene

set sizes 1 − 12092. As one can see, all four lines start from a same point with

average correlation of approximately 0.18 as we start with a same subset genes for

all four feature selection methods. They also converge to the same correlation value

of 0.83 for which all 12092 genes are used. The correlation increment gene selection

method manages to increase the average correlation to around 0.95 by using 1000

irrelevant genes. This artificially high average correlation score decreases later on

when meaningful genes are incorporated in the model. Also note that variance-based

method has significantly low correlation values in the range of [1, 3000] and after

that it converges towards the mean-based feature selection results.

There are some important observations related to Figure 4.3 that one needs to

consider:

• There are many genes in these data sets that according to them unrelated

64

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n,
 [1

0
−

90
] P

er
ce

nt
ile

s

●

●

●

● ●

Average width of
[10 − 90] Percentiles: 0.2

(a) Integrative correlation feature selection

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n,
 [1

0
−

90
] P

er
ce

nt
ile

s

●

●

●

●
●

● ●

Average width of
[10 − 90] Percentiles: 0.048

(b) Correlation increment feature selection

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n,
 [1

0
−

90
] P

er
ce

nt
ile

s

●

●

●
●

●
●

● ● ●
● ●

● ● ● ● ●
● ● ●

● ●

Average width of
[10 − 90] Percentiles: 0.246

(c) Intensity-based ranking feature selection

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n,
 [1

0
−

90
] P

er
ce

nt
ile

s

●

●
●

●

●

● ● ● ●
●

●

●
●

●
● ●

● ● ● ● ●
● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

Average width of
[10 − 90] Percentiles: 0.209

(d) Variance-based ranking feature selection

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n

Integrative cor
Correlation inc
Mean based
Variance based

(e) Comparison of all four methods

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n

Integrative cor
Correlation inc
Mean based
Variance based

(f) Comparison of all four methods over the
range of all genes

Figure 4.3: Cross-correlation scores between 195 ovarian cancer instances and 148 prostate cancer
instances are plotted as a function of the number of selected genes.
(a)-(d)The 195 × 148 = 28860 correlation scores are summarized by three values: the mean (black
dots) and the 10% and 90% percentiles (upper and lower bars) for 4 gene selection algorithms, as
indicated in the captions. The average 10% − 90% interval length is written in red on each panel.
(e),(f) Average of cross correlation coefficient (without the 10%−90% bars) between ovarian cancer
samples and prostate cancer samples plotted as a function of the number of genes selected by
four feature selection algorithms (a)-(d) panels for easier comparison of their performance. (e) has
limited x-axis range (1−2000 similar to (a)-(d)) while (f) covers the entire available genes 1−12092.

65

profiles appear to be highly correlated. Panel (f) of Figure 4.3 shows this

phenomenon, as the plots of integrative correlation feature selection and cor-

relation increment feature selection method increase to respectively 0.95 and

0.98 using a limited number of genes (less than 2000) and later decreases to

0.82 when all genes are included. This indicates these two feature selection

methods are able to select a subset of “problematic genes” genes that claim

the average correlation between 195 ovarian cancer specimens and 148 prostate

cancer specimens is more than 0.95! By incorporating other genes in the cal-

culations, the effect of these problematic genes is reduced and the average

correlation score decreases to 0.8.

• Using misleading highly-correlated genes also decreases the “dynamic range”

of correlation values. The average width of 10% to 90% percentile for correla-

tion increment method is 0.048 while for intensity-based, variance-based, and

integrative correlation gene selection method this value is 0.246, 0.209, and

0.200 respectively.

This means that the whole 28860 correlation values tend to converge to a

very small range of values (i.e., very short 10% and 90% bars) when we use

correlation increment gene selection method. This subset of genes fails to

capture the fine differences between pairs of profiles as they suggest that all

correlation scores are almost the same.

• Among these three methods, the genes selected by variance-based method tend

to result in the lowest average correlation coefficients.

Using the variance-based feature selection we were able to select 3000 genes

that result in correlation coefficients that are significantly less than the corre-

lation values resulted by the other three feature selection methods. Moreover,

the dynamic range of correlation values is almost as high as the mean-based

feature selection method.

• Panels (e) and (f), which compare the integrative correlation feature selection

method with the novel correlation increment feature selection method, shows

this new method is more successful in finding genes that can increase the cross

correlation coefficient. Despite the fact that integrative correlation feature

selection method was originally proposed to find the set of genes that increase

66

the cross correlation between the two biologically related data sets, here our

simple heuristic is more successful in finding these genes.

More meaningful correlation scores when using only the high variance genes is not

a surprise and can be explained by biological knowledge. Genes with high variance

are in fact genuinely expressed genes in the biological specimen under study. The

variation of expression values is due to existing differences of mRNA abundance in

the population, i.e., a transcribed gene in one specimen has a different expression

value in another specimen due to the intrinsic differences between two individuals. In

comparison, low variance genes are most likely just noise, whose variability is due to

inaccuracies of measurement. The intuition behind the variance-based gene selection

is very similar to the intuition behind the well known feature selection method

principal component analysis (PCA), which assumes that high variance directions

contain more information that low variance directions. De Bie et al. [7] explains

that, if we assume noise is uniformly spread, then high variance directions will have

higher signal to noise ratio.

This is a general trend, which we observed for every pair of studies that we

compared. In Figure 4.4 we show three plots similar to Figure 4.3 panel (f). Panel

(a) compares the 195 ovarian samples with 107 lung cancer specimens, which were

both profiled using the same Affymetrix U133a microarray GeneChips. Panel (b)

compares the 148 prostate cancer samples to the lung cancer ones. These are two

other examples of gene expression data sets that are expected to have lower cross

correlation coefficients. We again observe that there are some genes that make

the average cross correlation values very high and close to 1, and these genes are

selected by our correlation increment gene selection. In these two cases, again,

variance-based feature selection is able to successfully choose up to 3000 genes that

make the average correlation score significantly smaller and depict the expected

cross correlation better than other two methods. Panel (c), unlike the other two

panels, compare two similar data sets, i.e., two breast cancer data sets. Comparing

panel (c) to panel (a) and (b) shows that the variance-based feature selection has

significantly higher cross correlation coefficients while the other 3 methods exhibits

approximately similar behaviors for similar paired data sets (c) and different paired

data sets (a) and (b).

67

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n

Integrative cor
Correlation inc
Mean based
Variance based

(a) correlation between 195 ovarian cancer and
107 lung cancer cases

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n

Integrative cor
Correlation inc
Mean based
Variance based

(b) correlation between 148 prostate cancer and
107 lung cancer cases

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n

Integrative cor
Correlation inc
Mean based
Variance based

(c) correlation between 286 breast cancer and
198 other breast cancer cases belong to another
data set

Figure 4.4: Average of cross correlation scores between three pairs of gene expression
data sets, plotted as a function of the number of used genes selected by four different
gene selection methods. The top row (a), (b) compares two unrelated data sets while
the bottom row (c) compares a pair of related data sets.

68

Comparing proposed feature selection methods when combined with
Detection calls

In order to incorporate the effect of detection call algorithm and removing genes

labeled as “absent”, we repeated the experiment of Figure 4.3(f). This time, before

applying any gene selection algorithm, we first apply the detection call (DC) algo-

rithm, which removes all genes that seemed to have very little amount of detectable

mRNA abundance. We ran the DC algorithm using each of the five different thresh-

old values: 0.25, 0.40, 0.55, 0.70, and 0.85. The threshold value determines the

proportion of arrays needed to declare a gene as “present” in order to retain that

genes. For example, picking the threshold to be 0.25 means that we tag a gene as

present if at least 25% of arrays in a data set mark that gene as“present” (i.e., the

expression of gene is above a certain level)and we retain it as a feature in the data

set. When we pair two data sets, we only retain genes that are marked as present

in both data sets. Figure 4.5 shows the results.

As one can see, applying detection calls at different threshold levels reduced the

number of genes used in analysis from 12092 down to 6378, 5705, 5028, 4220, and

3025 respectively for threshold values of 0.25, 0.40, 0.55, 0.70, and 0.85. Note that

deploying detection calls slightly decreases the average correlation values, compared

to tagging all features as “present”. The first row of Table 4.1 summarizes the

average correlation coefficients using all genes.

Figure 4.5 shows that more aggressive detection call threshold values push the

lower curves (mean-based and variance-based feature selection methods) toward

higher curves (correlation increment and integrative correlation methods) and de-

creases the gap between them. In order to better observe this phenomenon, Table 4.1

summarizes the average correlation values of 2000 genes selected by 4 different fea-

ture selection methods for each detection call threshold. This table shows only one

data point of Figure 4.5 for each curve in each panel, i.e., the value of curves at

x = 2000. The last row of this table includes the “maximum gap”, which is the

difference between the lowest value and the highest value of each column. Examin-

ing the values of “maximum gap” shows that deploying detection call decreases the

gap between the high and low curves. As one can see, the gap size shrinks when we

deploy detection call algorithm with more aggressive threshold values. This means

that applying detection call reduces the significant difference between the perfor-

mance of different features selection algorithms, which in turn means that deploying

69

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n

Integrative cor
Correlation inc
Mean based
Variance based

(a) Without Detection Call (12092)

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n

Integrative cor
Correlation inc
Mean based
Variance based

(b) At least 25% Present (6413)

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n

Integrative cor
Correlation inc
Mean based
Variance based

(c) At least 40% Present (5705)

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n

Integrative cor
Correlation inc
Mean based
Variance based

(d) At least 55% Present (5028)

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n

Integrative cor
Correlation inc
Mean based
Variance based

(e) At least 70% Present (4220)

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of used features

M
ea

n
C

or
re

la
tio

n

Integrative cor
Correlation inc
Mean based
Variance based

(f) At least 85% Present (3025)

Figure 4.5: Utilizing the 4 aforementioned gene selection methods after applying
the detection call algorithm to the ovarian cancer and prostate cancer paired data
sets. In (a)-(f), different threshold values were applied for detection call algorithm
to filter out “absent” genes and retain “present” ones. The number of remaining
genes after applying the detection call is written under each panel in the brackets.
Note the 6 panels have different x-axes scales.

70

No DC DC=25% DC=40% DC=55% DC=70% DC=85%

No of remaining genes [12092] [6413] [5705] [5028] [4220] [3025]
Avg Cor - all remaining genes 0.829 0.789 0.787 0.788 0.789 0.781

Integrative correlation 0.956 0.924 0.915 0.907 0.897 0.863
Correlation increment 0.891 0.811 0.808 0.800 0.795 0.791
Mean-based ranking 0.646 0.641 0.648 0.651 0.668 0.692

Variance-based ranking 0.572 0.590 0.610 0.632 0.660 0.698

Maximum gap 0.384 0.334 0.305 0.275 0.237 0.171

Table 4.1: The average cross correlation coefficient of 195 ovarian cancer instances
and 148 prostate cancer instances using 2000 genes selected by 4 different feature
selection algorithms under different threshold values for detection call (DC) method.
Values in this table are extracted from Figure 4.5 by recording the values of each
curve in each panel at x = 2000.
The top row shows the number of genes that passed the criterion of detection call
algorithm, as well as the average cross correlation values over all genes that pass the
detection call threshold.

the detection call algorithm reduces the need to perform feature selection.

However, examining Figure 4.5 and especially the correlation increment feature

selection curve indicates that the detection call algorithm does not appear to remove

genes that increase the average cross correlation values artificially. In other words,

correlation increment curves in panels (b)-(f) follows the same trend as its curve

in panel (a), where no detection call is applied. In all panels shown in Figure 4.5,

each correlation increment curve has a pick point when approximately 10% of the

genes are selected and then it decreases to the final value (the average cross correla-

tion value produced when using all available genes). This shows that filtering genes

based on DC metrics does not remove all “problematic” genes that cause high corre-

lation across biologically different tumor types and indicates that deploying the DC

algorithm, while it removes some of these genes, it does not completely eliminate

the problem caused by them and thus applying a feature selection algorithm is still

necessary.

We designed another experiment to show that some genes do no distinguish

between different biological phenomena, i.e., genes whose expression values seems

independent of biological characteristics such as the tissue of origin. This experiment

uses the five data sets introduced in Section 4.1. We merge all their instances

together to form one data set with 195 + 148 + 286 + 107 + 198 = 934 instances of

12,092 measured gene expressions, i.e., a 934 × 12092 matrix of expression values.

We then calculate the correlation between all pairs of these 934 instances using all

genes. The resulting correlation matrix is shown in Figure 4.6(a) and assesses how

71

the correlation matrix depends on the feature set used in its construction. Hence

we apply the four aforementioned feature selection methods to this large data set

and choose four sets of selected genes. For this experiment we chose 150 genes using

each feature selection algorithm, however, these results are approximately the same

for any sized gene set less than 2000. We used these four sets of genes to reduce the

number of genes from 12092 to 150 and then recalculate the correlation between all

pairs of instances in 5 data sets.

Note that the resulting 934× 934 correlation matrices, similar to Figure 4.6(a),

are symmetrical so we only plot half of them in each of the 4 parts of Figure 4.6(b).

(b)-(i) plots the correlation matrix between the 934 gene expression instances using

the 150 genes selected by the correlation increment feature selection algorithm.

(b)-(ii) shows the correlation scores resulting from features selected by integrative

correlation feature selection. Intensity-based ranking and variance-based ranking

results are shown in (b)-(iii) and (b)-(iv) respectively.

There are a few key properties we ideally expect to observe in this big correlation

matrix:

• “Within data set correlation coefficients”, should be high. This occurs here,

as we see bright yellow squares on the main diagonal of Figure 4.6 (a) and also

bright yellow triangles on the edges of each four parts of Figure 4.6 (b).

• “Cross data set correlation coefficients” should be low. This occurs here, as

we see red rectangles in the (half) correlation matrices.

• “Cross breast cancer dataset correlation coefficients” should be higher than

other cross correlation values but still lower than within correlation values.

Out of the five correlation matrices plotted in Figure 4.6, the one produced by

variance-based gene selection (b)-(iv) is closest to our expectations, representing

the biological rather than the technical differences. As one would expect, each data

set has high a correlation with itself (the 5 “yellow” triangles on the edge of the

panel (b)-(iv)) while the correlation across data sets is much lower (multiple “red”

rectangular blocks of panel (b)-(iv)). Moreover, the cross correlation between the

two breast cancer studies is relatively higher than other cross correlation scores (the

only “yellow” rectangular block in panel (b)-(iv)). In contrast to this close-to-ideal

behavior, panel (b)-(i) shows essentially no visible difference between correlation

72

(a) 934 × 934 correlation coefficient matrix cal-
culated using all 12092 genes

(i)	
 (ii)	

(iii)	

(iv)	

(b) Four 934 (half) correlation matrices calculated using four set
of 150 genes selected by four algorithms

Figure 4.6: Correlation heatmap between 934 instances of 5 data sets calculated
using different sets of genes:
(a) All 12092 available genes
(b)-(i) 150 genes selected using correlation increment feature selection algorithms.
(b)-(ii) 150 genes selected by integrative correlation feature selection algorithm.
(b)-(iii) 150 genes selected by intensity-based ranking feature selection algorithm.
(b)-(iv) 150 genes selected by variance-based ranking feature selection algorithm.
Yellow to white colors represent high correlations, orange and red represent the
lowest correlations.

73

scores within data sets and across data sets. In other words, according to the 150

genes selected by correlation increment gene selection method, gene expression pro-

files of different cancer types, originating from different tissue specimens, belonging

to different patients, are all similar! This clearly shows that these irrelevant genes

artificially increases the correlation coefficients between gene expression profiles and

looses all meaningful biological distinction between gene expression profiles.

Between these two extreme cases lays the integrative correlation and intensity-

based ranking feature selection methods in panels (b)-(ii) and (b)-(iii) respectively.

Sets of 150 features selected by these two feature selection methods are able to

distinguish between within data set correlation scores (yellow triangles) and across

data set scores (red triangles). However, the distinction is less emphasized (higher

correlations between cancers from different sites) comparing to the variance-based

selected features.

Finally, by studying panel (a), one can say that using all available features to

construct the correlation matrix will definitely eliminate the range of correlation

scores, i.e., the gap between scores of similar instances (yellow regions) and not

similar instances (red regions) is less emphasized in the correlation matrix (a) as

most of the scores are close to 1. This is expected as we are using all genes, including

those in panel (b)-(i) that make all instances look highly correlated. This experiment

again shows that utilizing a gene selection algorithm to remove these irrelevant

genes is a necessary step before conducting any analysis on gene expression profiles.

This empirical study also reinforces our previous finding that variance-based gene

selection method is an effective way to select informative genes.

Chapter 7 will show that selecting genes with high variance also is an effective

way to reduce the amount of the BE confounding the gene expression analysis. The

following section will show how we can use the variance of genes in each study and

compare it with the variances of their corresponding genes in other studies to define

a similarity measure between studies.

4.4 Variance of genes as an indicator of data set simi-
larity

As we saw in the previous section, variance-based feature selection is an effective

way to reduce the number of features in gene expression profiles. In this section we

will be looking at relation of ranked genes based on their variance across two gene

74

g9

g2

g11

g7

g5

g6

g1

g8

g10

g12

g3

g4

g4

g8

g3

g10

g2

g12

g5

g9

g1

g6

g11

g7

g5

g3

g8

g11

g2

g7

g9

g1

g4

g10

g12

g6

g3

g8

g5

g11

g1

g9

g2

g7

g10

g6

g12

g4

Gene ranking in
study 1

Gene ranking in
study 2

Gene ranking in
study 1

Gene ranking in
study 2

Comparing two not so
similar studies

Comparing two similar
studies

Top 5 genes
contains 1

shared gene

Top 5 genes
contains 4

shared genes

Figure 4.7: Schematically showing the relationship between two pairs of 12 ranked
genes. The pair on the right show the greater similarity of ranking than the pair on
the left. Genes are marked as g1 to g12. Arrows connect the ranking of same genes
together for easier comparison. The red dotted line shows a cut-off threshold.

expression data sets. As we will see, the similarity of ranked genes across two studies

is a strong indicator of their similarity in terms of the biological phenomenon under

study. In order to illustrate the idea behind similarity of ranked lists, we show two

schematic examples in Figure 4.7.

Each of the columns in this figure contains a ranked ordering of 12 genes based

on their variance, marked as g1, g2, · · · , g12. On the right side we have a pair of

similar ranked lists. For visual ease we connect the corresponding genes in the two

ranked lists with arrows to one another. In general, if a gene is ranked as the ith

highest variance gene in one study, it is ranked as (i ± m)th in the second study,

where m is an integer that represents some kind of margin of error. When these

two rankings are very similar, this m will be small. In the case of similar data sets

(right pair), the maximum margin is m = 3.

In comparison, on the left side of Figure 4.7 we are comparing a pair of two not-

so-similar ranked lists. Here there is a lot of disagreement between the two rankings,

i.e., there are genes that have very high ranking on one column and very low ranking

on the other column. This fact is visually observable by long arrows that connect

75

top of one column to the bottom on the other column. Here the maximum value of

the margin is m = 11, meaning that the highest ranked gene in one study is ranked

as the lowest in the other study (g4).

One way to quantize the similarity of two ranked list is to look at the number

of shared elements at different cut-offs of ranked list. For example, in Figure 4.7 we

draw a red dotted line to show a cut-off at 5. Now we look at the both ranked lists

and count how many genes are shared between the two lists above this threshold.

On the right side, where we have two similar lists, there are 4 genes shared by the

two lists, so the shared ratio is 4/5 = 0.8. This number for the not-so-similar pair of

ranked lists on left is 1/5 = 0.2. These two numbers indicate the similarity between

these two pairs of ranked lists. Note that we can find the ratio of shared genes for

different cut-off values 1, 2, · · · , 12; one shared ratio for each cut-off threshold.

This idea was used to show the relationship between four pairs of gene expression

studies in Figure 4.8. The data sets used in this analysis are all conducted using the

Affeymetrix U133A GeneChips and have 12092 gene measurements using the custom

cdf file. In each plot, there are 12092 shared ratio values (shown by black dots)

measured at different s thresholds 1, 2, · · · , 12092. Thus the dot with coordinates

(2000, 0.6) corresponds to a situation that the top 2000 genes in two ranked gene

lists have 0.6 = 1200 common genes. This plot is know as a “correspondence at the

top” plot (CAT) [90] and it was originally used to for comparing two procedures for

detecting differentially expressed genes. Dots with y-values close to 1 indicate that

the content of two lists are almost identical, i.e., 100% common genes. On the other

hand, dots with y-values close to 0 show that the two list are completely different

and they contain 0% common genes. We fitted a line to all 12092 points and show

its slope in each panel. The slope of this line is an indicator of relation between the

paired top genes lists over all possible list lengths.

Figure 4.8 includes 4 panels: panel (d) shows the relationship between the vari-

ance ranking of two breast cancer studies while the other 3 panels, (a, b, c), show

the relationship between pairs of unrelated cancer types, namely (a) ovarian can-

cer versus prostate cancer, (b) ovarian cancer versus lung cancer, and (c) prostate

cancer versus lung cancer. Note, when we compare two similar data sets, panel (d),

the shared ratio is close to 1 for all lengths of top genes. Ideally, when two data

sets ranked lists agree completely with each other, the shared ratio will be 1 for all

cut-off values, meaning that all the black dots will have 1 for their y-value. In this

76

0 2000 4000 6000 8000 10000 12000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of top selected genes

R
a
ti
o
 o

f
s
h
a
re

d
 t
o
p
 g

e
n
e
s

slope: 0.54

(a) Ovarian cancer ranking vs Prostate cancer
ranking

0 2000 4000 6000 8000 10000 12000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of top selected genes

R
a
ti
o
 o

f
s
h
a
re

d
 t
o
p
 g

e
n
e
s

slope: 0.577

(b) Ovarian cancer ranking vs Lung cancer rank-
ing

0 2000 4000 6000 8000 10000 12000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of top selected genes

R
a
ti
o
 o

f
s
h
a
re

d
 t
o
p
 g

e
n
e
s

slope: 0.584

(c) Prostate cancer ranking vs Lung cancer rank-
ing

0 2000 4000 6000 8000 10000 12000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of top selected genes

R
a
ti
o
 o

f
s
h
a
re

d
 t
o
p
 g

e
n
e
s

slope: 0.216

(d) Breast cancer1 ranking vs Breast cancer2
ranking

Figure 4.8: Correspondence at the top (CAT) plots: shared ratios plotted as a
function of the number of top selected genes ranked by their variance. The red line
depicts the result of linear regression fitted to all data points. The slope of the line
is written on each plot.
(a)(b)(c) depict relation between biologically unrelated data sets containing different
types of cancer specimens.
(d) depicts the relation between two biologically similar data sets (both containing
breast cancer specimens).

77

case the slope of the red line will be 0. Thus the closer the slope to 0 is, the more

similar two data sets are.

In comparison, panels (a), (b), and (c) of Figure 4.8 show less agreement between

the ranked genes. This is not unexpected since we are comparing pairs of different

cancer types. In all three cases the shared ratios are below 0.8 for lists with lengths

less than 6000. In contrast, in panel (d), almost all points have shared ratio more

than 0.8. If two ranked lists are completely random and independent from each

other, then we expect the dots will all lie on y = x line, whose slope would be 1.

This means that if the two lists do not agree with each other at all, then the slope

of the fitted line will be 1.

To summarize the behavior of all shared ratio values by a single number, we use

the slope of the line fitted to all 12092 points. Panel (d) has the slope of 0.216 while

other panels(a, b, c) have larger slopes, 0.54, 0.577, and 0.584 respectively. The

ideal best match between two ranked list will have score of 0, i.e., the red line will

be a horizontal line on the top of the plane (y = 1) meaning that the shared ratio

is 1 independent of the number of selected genes. The shared ratio between two

independent random ranked lists will lay on the y = x line and thus its score (slope)

will be 1. In the next section we will see how using this scoring system we are able

to find distances between 36 gene expression studies and cluster them according to

their similarity.

Another way to depict the similarity between two variance-based ranked lists

of Figure 4.7 is to use a scatter plot. Figure 4.9 uses this technique to show the

relationship between the 4 aforementioned pairs of gene expression studies. Each

point in these scatter plots represent one gene, whose x-coordinate depicts its ranked

variance in one data set and its y-coordinate depicts its ranking in the second study.

As in any other scatter plot, the concentration of points on the main diagonal depicts

the high concordance between the two ranked lists. In contrast, having data points

randomly scattered all over the plane depicts no linear relationship between the

values of x-axis and y-axis which means the two ranked lists do not agree with each

other on many genes.

By comparing panel (d) in Figure 4.9 to the 3 other panels, one can see that the

ranking of two breast cancer data sets are much more similar. In panel (d), most

of the data points are close to main diagonal (y = x line) meaning that most of

the points have almost equal x and y coordinate values, i.e., almost equal variance

78

Ovarian data set variance ranking

P
ro

st
at

e
da

ta
 s

et
 v

ar
ia

nc
e

ra
nk

in
g

1
4
7
10
13
16
19
22
26
29
32
35
38
41
44
47
50

Counts

(a) Ovarian cancer ranking vs Prostate cancer
ranking

Ovarian data set variance ranking

Lu
ng

 d
at

a
se

t v
ar

ia
nc

e
ra

nk
in

g

1
3
5
7
9
11
13
15
18
20
22
24
26
28
30
32
34

Counts

(b) Ovarian cancer ranking vs Lung cancer rank-
ing

Lung data set variance ranking

P
ro

st
at

e
da

ta
 s

et
 v

ar
ia

nc
e

ra
nk

in
g

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33

Counts

(c) Prostate cancer ranking vs Lung cancer rank-
ing

Breast data set1 variance ranking

B
re

as
t d

at
a

se
t2

 v
ar

ia
nc

e
ra

nk
in

g

1
5
9
13
16
20
24
28
32
36
40
44
48
51
55
59
63

Counts

(d) Breast cancer1 ranking vs Breast cancer2
ranking

Figure 4.9: Scatter plots comparing variance-based ranking of genes for paired data
sets. Each point represents a gene whose x-coordinate is its ranked variance in one
data set and its y-coordinate is its ranked variance in the other data set. Instead of
depicting all 12092 dots (one for each gene) we use a binning technique whose grey
level intensity represents the number of dots in each bin.
(a) (b) (c) Pairs of biologically different data sets, comparing different types of
cancer.
(d) A pair of biologically similar data sets, both breast cancer.

79

based rankings of genes in two breast cancer studies. Ideally, when two data sets

completely agree about the ranking of genes based on variance, then in their scatter

plot all points land on the main diagonal line. In comparison, the other 3 panels of

Figure 4.9, (a, b, c) have points scattered all over the plane. In these three panels

there are many points close to upper-left and bottom-right corners, which means

there are many genes that are ranked high in one data sets while ranked low in the

other data set.

Comparing the four panels of Figure 4.9 to Figure 4.2 is also informative. In

Figure 4.2 the length of (vertical and horizontal) bars are indicator of the difference

between the value of variance of each gene in two data sets while in Figure 4.9, the

distance of dots from y = x is caused by the rank of the variance of genes in two

data sets. The relationship is comparable to the relationship between the Pearson

correlation and Spearman correlation. Nevertheless, both of these figures indicate

the same relationship between the four paired data sets in their four panels. Pairing

different cancer tissue types in panels (a) , (b) , and (c) causes a lot of disagreement

between the variance of genes and their ranking. Figure 4.2 shows this by many

long bars (subtracting the length of two hands of crosses in Figure 4.1 did not

result in zero length bar) while Figure 4.9 shows the disagreement by many points

scattered close to top-left and bottom-right corners. On the other hand, pairing two

biologically related data sets (both breast cancer) results in high level of agreement

between the variance of genes and their ranking, thus Figure 4.2 has fewer bars and

the Figure 4.9 dots are mostly close to y = x.

To quantify the “degree of matching”, we calculated the sum of the distance of

each point to the y = x line, which is the sum of squared differences between the

ranks of the genes in the two sorted lists.

distance(X,Y) =

p∑
i=1

(rankXi − rankYi)2 (4.4)

where rankXi means the rank of ith gene in data set X. This is a second method to

summarize the difference between the ranking of gene’s variances between two data

sets. In the following section we show how we can use this metric to cluster a large

set of gene expression data sets.

80

G
S

E
1

4
3
1

5

G
S

E
4

8
2

4

G
S

E
1

6
7
9

5

G
S

E
1

2
7
7

7

G
S

E
1

0
8
9

0

G
S

E
9

9
3
6

G
S

E
2
0

1
9
4

G
S

E
2
0

2
7
1

G
S

E
2
5

0
5
5

G
S

E
2
5

0
6
5

G
S

E
2

4
1
8

5

G
S

E
1

7
7
0

5

G
S

E
1

2
0
9

3

G
S

E
2

0
3
4

G
S

E
1

4
5
6

G
S

E
1
1

1
2
1

G
S

E
3

4
9
4

G
S

E
4

9
2
2

G
S

E
6

5
3
2

a

G
S

E
2

9
9

0

G
S

E
7

3
9
0

G
S

E
2

6
0
3

G
S

E
5

3
2
7

G
S

E
3
1

5
1
9

G
S

E
6

5
3

2
P

2

G
S

E
1

6
4
4

6

G
S

E
2

1
6
5

3

G
S

E
1

2
2
7

6

G
S

E
2

0
6
8

5

G
S

E
1

9
6
1

5

G
S

E
5

4
6

0

G
S

E
1

9
8
0

4

G
S

E
1

0
0
7

2

G
S

E
1

8
8
4

2

G
S

E
1

2
6
6

7

G
S

E
1

0
4
4

5

0
1

0
0
0

3
0
0

0

Microarray study clustering

S
D

 D
is

t
[T

o
p

 5
%

 p
ro

b
e
s
e

ts
]

Tumor Sample
Cell Line
Breast

Lung
Frozen Tmumor
FNA/CB

mixed/unkown
Not App
GPL96

GPL570
ER+
ER−

Mixed ER+/−

Sample Type
Source Tissue

Biopsy Type
Technology

ER Status

Figure 4.10: Clustering of 36 gene expression data sets (a total of 5744 gene expres-
sion profiles) using the variance-based ranking of genes within each data set.

4.5 Clustering gene expression data sets using their variance-
based gene ranking

We used the two similarity measures defined in the previous section to cluster 36

gene expression studies representing almost 6000 breast and lung cancer profiles.

All studies were conducted on Affymetrix GeneChips, either U133A or U133 plus

2.0. and were processed as explained in Section 4.2. Five of the data sets contain

cell lines of breast cancer and lung cancer and the rest of the data sets contain

tumor tissue. For some of the cancer studies, the specimen origin is known, either

frozen tumor, fine needle aspiration, core biopsy, or a mixture. For some of the

breast cancer studies the ER status is known, meaning that breast cancer studies

can contain only ER+ patients, only ER- patients, or mixture of both.

We used the two metrics introduced in the previous section to find the pairwise

distance between every pairs of data sets, i.e.,
(
36
2

)
= 630 distance scores were

calculated. Then all these distances were fed into a hierarchical clustering algorithm

with average agglomeration method. The result of the clustering was the same for

both metrics and is shown in Figure 4.10.

The main clusters in the Figure 4.10 are highlighted using the triangles with

colored dotted border lines. At the highest level we have the tumor cluster versus

cell line cluster showing that according to the variance of genes, these two types

of specimens are the most different ones. Within each of these two clusters, there

are both breast cancer and lung cancer data sets. This means that the difference

between cell line specimens and tumor specimens is more significant than difference

between breast cancer and lung cancer.

81

Within the tumor cluster, there are two main clusters; One formed by breast

cancer data sets and the other one contains lung cancer data sets. This is not sur-

prising as data sets with the same tissue type are expected to be similar. The same

applies to the cell line cluster where same cancer types are more closely clustered

together.

The breast cancer cluster further divides into two main clusters that are formed

by the technology used for profiling, namely U133A and U133 plus 2.0.. This

shows the effect of chip type on the distribution of gene expression values in a

data set. By further analyzing the relation within each of these two clusters, one

can see that data sets with only ER+ or only ER- patients are clustered closely

together. This is again showing that ranking of the gene’s variances within data

sets depends on the phenotype of instances in the data sets. Therefore if two data

sets contain instances with similar phenotypic distribution then their variance-based

ranked genes will be similar. As the last note, the gray rectangle containing 4

data sets in the middle of Figure 4.10 shows a group of breast cancer studies that

cluster together very closely, indicated by branches with almost zero vertical length

connecting them together. Further investigations showed these 4 data sets shared a

large number of the same samples.

We would like to emphasize that the likely relationship between these 36 gene

expression data sets were known a priori by considering their composition of pa-

tients and their phenotypic properties, i.e., this clustering does not contain any

new knowledge. What is interesting here is that we were able to extract these re-

lations solely based on the variance of the genes in each data set. This experiment

again reinforces our hypothesis that the variance of expression values of each gene

is an important indicator of their importance for explaining the phenomenon under

study. Also the similarity of the variances of genes across two data sets indicates

the similarity of their underlying biological signals. Note that here the batch correc-

tion method was not performed as we were comparing the data sets independently

without integrating their expression intensities.

Here we emphasize the exceptional ability of gene expression variances to cor-

rectly estimate the similarity of microarray data sets does not apply to other statis-

tics of expression values, including their mean expression intensity. This is mainly

because additive factors do not affect the variance of gene expression values. In

other words, if we show the true expression of gene g of array i in data set j by xigj

82

and we assume that being profiled in data set j causes an additive factor to the true

expression value x′igj = xigj + bgj , then under this model the variance of the true

expression values and effected expression values will be equal:

Var(x′igj) = Var(xigj + bgj) = Var(xigj) + Var(bgj) + 2Cov(xigj + bgj) = Var(xigj)

(4.5)

This is why comparing the variance of genes across two data sets can accurately

represent their similarity. Section 7.1 will later look at this similarity in more detail.

4.6 Summary

In this chapter we introduced and evaluated three novel feature selection algorithms

that were applied to pairs of gene expression studies in order to select a feature set

that truly represents the correlation across the two studies. Two of these feature

selection methods use a simple algorithm to merge the ranked lists of the genes. In

one algorithm, we rank genes (within each data set) based on their variance and in

the other one, based on their expression intensity. The third algorithm uses a simple

heuristic that maximizes the cross correlation scores between the two data sets. We

compared our methods with integrative correlation feature selection method. We

evaluated these methods with and without utilizing the detection call algorithm.

Given two (or more) gene expression data sets, these algorithms select a subset of

genes that have different effects on the cross correlation matrix of the two data sets.

We empirically studied the effect of performing each feature selection algorithm on

the cross correlation matrices between different tissue/cancer types as well as similar

cancer types.

The correlation increment algorithm is purposefully designed to select the genes

that according to them arrays become highly correlated regardless of the tissue

of origin, cancer type, or the individual whose specimens were profiled. Genes

selected by this method fail to reflect the real relationship between gene expression

profiles and are unable to capture the fine similarities between expression levels.

We empirically showed there are some genes whose expression intensities are very

similar across a wide range of different tissues and cancer types. Removing these

genes is likely to substantially improve the performance of learning algorithms not

only by reducing the gap between the number of features and the sample size but

also by discarding misleading signals in those genes. We strongly suggest that

83

researchers remove these genes before performing any learning analysis on gene

expression studies.

Our empirical results show that variance-based ranking feature selection chooses

a subset of genes that reflects the expected correlation better than intensity based

feature selection and integrative correlation algorithm. These genes were able to

capture the fine correlation coefficient changes across data sets with different tissue

origins. We also showed that filtering of genes using detection call algorithm, which

is a standard filtering method applied to Affymetrix data sets, is not sufficient

to remove all the irrelevant genes and utilizing more complicated gene selection

algorithm still is needed. We briefly showed why variance of gene expression is a

prosperous measure for selecting them as it is robust against additive factors that

might affect gene expression values. We also believe that higher variance of a gene

means it is biologically “active” in the population under study and thus keeping

them is a biologically sensible action.

As an alternative way to support the idea of keeping high variance genes, we

conducted a large scale experiment that includes 36 gene expression data sets (5744

gene expression profiles overall). In this experiment we used the similarity between

the variance-based ranked gene lists of 36 data sets to cluster them. The result

of clustering was highly in concordance with our prior knowledge about the data

sets. This experiment reassured us that ranking genes based on their variance is

an effective way to assess the importance of genes. Section 7.1 will later show that

filtering genes based on their variance also can reduce the confounding role of BE

on the biological signals.

84

Chapter 5

Batch Effect Detection

Gene expression experiments are conducted in order to study how gene expression

relates to the underlying biological phenotype or clinical measures. When exper-

iments are performed in different labs, or using different platforms, the biological

signal might be confounded by technical factors, leading to so-called “batch effects”

(BE). The main obstacle to pooling several gene expression data sets together and

study their underlying biological phenomenon is the unwanted influence of technical

factors on the expression values. BE distorts the signals of interest in a way that

is hard to detect, mainly because it is mixed with the signal of interest, making it

difficult to distinguish them from one another. In this chapter we introduce three

methods that can be used for detecting the existence of BE. We will also show how

these techniques can measure the effectiveness of BE removal methods.

The methods introduced in this chapter mainly serve two purposes:

• Given a gene expression study with known potential sources of BE, this chap-

ter’s methods will clarify whether there is any systematic bias due to the batch

effects present in the study.

• Given a BE correction algorithm and a set of gene expression studies, this

chapter’s methods will evaluate the performance of the BE correction algo-

rithm empirically, to allow us to compare various BE correction algorithms.

Chapter 7 compares the performance of our proposed BE correction algorithm (de-

fined in Chapter 6) to several other available BE correction algorithms using this

chapter’s techniques.

85

5.1 Using specifically designed data sets to evaluate the
performance of BE correction algorithms

In this section we look at gene expression data sets that are specially designed for

batch effect analysis. The main characteristics of these data sets is that they include

at least two technical replicates of some subjects. These technical replicates are

profiled under some controlled conditions to study the effect of a specific factor, such

as different platforms or different lab technicians. Since each technical replicate is

measuring the same biological phenomenon under different technical perturbations,

we expect them to have equal values. Therefore the dissimilarity between technical

replicates is an indicator of batch effect caused by the technical factor under study.

We use this simple key observation to utilize data sets with technical replicates to

evaluate the performance of BE correction algorithms. Basically we compare the

similarity between technical replicates before BE correction to the similarity after

applying BE correction as a way to evaluate the performance of a particular BE

correction method. We will measure the similarity between two gene expression

profiles using the Pearson correlation coefficient between the two arrays. Since

negative correlation shows an (inverse) linear relationship, we use the absolute value

of correlation as the score of similarity, meaning that the similarity score will be in

the range of [0,+1].

To illustrate how we use the relationship between technical replicates, we use

Figure 5.1, which schematically shows the similarity between two batches of nine

technical replicates. As one can observe, the correlation between each subject and

its technical replicate is very high (shown by almost-white squares). This figure also

groups the nine subjects into three sets of biological replicates, marked as S1, S2,

and S3. Each set contains a group of biologically very similar instances such as a

few mice of a particular mouse strain. Biological replicates also have high similarity

with each other since they share very similar biological signals. The similarity of

biological replicates are shown with yellow squares, whose similarity values are less

than the similarity of technical replicates, which are represented by white squares.

Finally the red squares show the low similarity between unrelated subjects. This is

expected as these subjects are not closely related to each other, and so we expect

them to have lower similarity values.

Figure 5.1 shows the similarity matrix across batches. We can construct a similar

86

Biological
Replicates

Unrelated
Subjects

Technical
Replicates

Batch 2

Batch
1

 S1 S2 S3

S1

S2

S3

Biological
Replicates

Paired
Subjects

Unpaired
Subjects

0 Correlation +1

Figure 5.1: The schematic cross correlation between two batches of 9 technical
replicated samples. Note that instances belong to 3 sets of biological replicates,
annotated with S1, S2, and S3.

matrix within batches too. Ideally, in the absence of BE, the within-batch similarity

matrices should be exactly equal to across-batch similarity matrix. This means if

profiling gene expressions under different technical conditions, say in two different

labs, does not have any effect on the measured values, then the technical repli-

cated gene expression arrays will be exactly equal and thus the correlation between

them will be exactly equal to 1.0 . The discrepancy between “across” and “within”

similarity matrices is an indicator of the BE confounding role.

In order to summarize the discrepancy of within versus across similarity ma-

trices with some numerical scores, we partition matrices into two sets, paired and

unpaired. The paired set includes all correlation values between biological or techni-

cal replicates (white and yellow squares) while the unpaired set includes correlation

values between unrelated subjects (red squares). When we extract these values from

the cross correlation matrix, we call them across-paired and across-unpaired 1,

respectively. Paired and unpaired notions can also be applied to similarity scores

of gene expression profiles within batches. Thus we partition the within-correlation

matrices of each batch in the same manner and extract two sets of scores, within-

paired and within-unpaired. The relation between density of these 4 correlation

sets leads us to a numerical score that indicates the severeness of the batch effect.

In Figure 5.2 we show the schematic distributions of these 4 sets of correlation

1We will use this color coding for the illustrative purposes in the Figures 5.2 and 5.3 and also
in the similar plots of Chapter 7

87

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Correlation score

D
en

si
ty

Within Paired
Across Paired
Within Unpaired
Across Unpaired

(1)	
 Dis%nc%on	
 between	
 “Paired”	
 and	

“Unpaired"	
 correla%on	
 distribu%ons	

(2)	
 Discrepancy	
 caused	
 by	
 batch	
 effect	
 between	

“Within”	
 and	
 “Across”	
 correla%on	
 distribu%ons	

Figure 5.2: Schematic distribution of the correlation coefficient of paired and un-
paired sets within and across batches.

coefficients.

The most important observations about Figure 5.2 are the two highlighted gaps

between the distributions. One is the distinction between “paired” and “unpaired”

curves, which exist in both across and within sets. This gap is caused by the

biological signals. Replicated subjects are biologically related and thus have higher

similarity scores to each other. However, unrelated subjects are not as biologically

related and thus we anticipate they will have lower similarity scores. This gap is

desirable and BE correction methods should preserve this distinction. The other gap

is the discrepancy between “across” and “within” curves. This gap is caused by BE.

For example, let’s compare the within-paired versus the across-paired curves. These

two curves include the correlation values between the same pairs of gene expression

arrays, with only one difference: The across-curve contains the correlation coefficient

measured for replicated subjects that were profiled in two different batches. The

within-curve contains the correlation between the same set of subjects that were

profiled in the same batch. Ideally, in the absence of BE, these two curve should

be exactly the same. However, BE confounds gene expression values in a way that

makes the technical replicates look less alike each other. A good BE correction

method should shifts across distributions towards the within ones.

Figure 5.3 schematically shows how a poor performing (b) and good performing

(c) BE correction method changes the relation between the original distributions

88

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Correlation score

D
en

si
ty

Within Paired
Across Paired
Within Unpaired
Across Unpaired

(a) Original

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Correlation score

D
en

si
ty

Within−Paired
Across−Paired
Within−Unpaired
Across−Unpaired

(b) Bad performance

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12
14

Correlation score

D
en

si
ty

Within−Paired
Across−Paired
Within−Unpaired
Across−Unpaired

(c) Good performance

Figure 5.3: The outcome of utilizing BE correction methods applied to the original
distributions (a).
(b) Poor performance: correction causes mixing “paired” and “unpaired” curves.
(c) Good performance: correction shifts “across” curves towards “within” curves.

(a). On the middle panel we can see that applying poor BE correction shifts the

“across” curves towards the “within” curves. It also causes the “paired” and “un-

paired” curves to intermix and the clear distinction between them, as shown clearly

in Figure 5.2, disappears. This shows that BE correction not only removes the dif-

ferences caused by BE (shifting the “across” towards “within”) but also it removes

the biological signals of interest (mixing “paired” and “unpaired”). This situation

usually is observed for BE correction methods that aggressively change batches to

look alike. We observed this behavior for the DWD method in our experiments.

Figure 5.3(c) shows the ideal behavior of a BE correction method. In this case,

the “across” curves are shifted towards “within” curves without mixing “paired”

and “unpaired” distributions. BE correction should only remove the differences

caused by BE while preserving the biological signals in data. In other words, after

removing the BE the correlation between gene expression arrays was very similar to

the correlation between them and their technical replicates.

This evaluation method cannot distinguish between a powerful BE correction

method that truly removes the confounding factor from two batches and a naive

one that simply replace one batch with the other one. In both cases, this evaluation

method will indicate a high performance while the naive method technically deletes

one of the batches.

We searched the gene expression omnibus (GEO) [21] repository to find data sets

with technical replicates and we found two suitable cases. One is GSE17700 [121], a

89

breast cancer study where 16 breast tumor specimens were sent to two labs to be pro-

filed on two Affymetrix gene expression Chips, U133A and U133 plus 2.0 GeneChips.

As we explained the details of preprocessing method applied to Affymetrix data sets

in Section 4.1, the resulting data sets contain 12092 genes (probesets). This means

we have four technical replicates of 16 subjects. For the sample preparation and

profiling, the standard protocols proposed by Affymetrix were precisely followed.

The goal of the study is to find how reproducible the gene expression profiling can

be when there are different labs and different platforms involved. We refer to this

date set as breast cancer study and represent its 4 batches as Lab1-96, Lab1-570,

Lab2-96, and Lab2-570.

The second data set with similar properties is GSE38822 [122], which includes

48 mouse brain specimens divided into 2 strains × 2 drug treatments × 3 brain

regions × 4 mice. As mentioned in the original study [122], the drug treatment

did not have any effect on the gene expression values. Thus they consider their

design as 2 strains × 3 brain regions × 8 mice. Since the 8 mice are very similar

to one another, we can consider them as biological replicates. These 48 specimens

were profiled on two different Affymetrix mouse arrays, Mouse Gene 1.0 and 1.1, to

produce two technical replicates for each of the 48 mouse brain specimens. We will

refer to this study as mouse study and its two batches as batch-10 and batch-11.

We used this study to reproduce a real example of Figure 5.2 and plotted the dis-

tributions of correlation scores in Figure 5.4(a). Before calculating the correlations

between the profiles of GSE33822, we used the variance-based feature ranking (see

Section 4.2.2) to reduce the number of genes to 500 2. As expected, in this figure the

within-batch curves are higher than across-batch curves. This is a clear indication of

batch effect influence, as the correlations between the same set of samples is smaller

under the influence of technical factors. In Figure 5.4(b) we plotted the same curves

after applying ComBat to correct the batch effect. ComBat successfully shifts the

within-batch and across-batch curves toward each other and removes the negative

influence of technical factors on the correlation scores.

The following sections will use these two studies to explain the ideas of unsuper-

vised and supervised BE detection.

2Without performing this gene selection step, because of “problematic genes” (see Section 4.2.3),
all correlation scores are very close to 1.0 without any clear distinction between the curves.

90

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
2

4
6

8

Density of 4 sets of correlation scores of
 Batch10 vs. Batch11 [500 top genes] (Uncorrected)

Correlation score

D
en

si
ty

Within−Paired
Across−Paired
Within−Unpaired
Across−Unpaired

(a) Uncorrected data

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
2

4
6

8

Density of 4 sets of correlation scores of
 Batch10 vs. Batch11 [500 top genes] (ComBat)

Correlation score

D
en

si
ty

Within−Paired
Across−Paired
Within−Unpaired
Across−Unpaired

(b) ComBat corrected data

Figure 5.4: Distribution of four correlation score sets for mouse study (GSE33822).
(a) Under the influence of the batch effect, the across-batch curves are lower than
within-batch curves, i.e., Across-Paired vs. Within-Paired and Across-Unpaird vs.
Within-Unpaired. (b) An effective batch correction algorithm can shift the within-
batch curves towards the across-batch curves. Note, Across-Unpaird and Within-
Unpaired curves essentially overlap after correction.

5.2 Unsupervised methods for detecting BE

In this group of methods, we look for evidence of batch effects without knowing

anything about the subjects in the batches. This differs from supervised methods,

which require that subjects are annotated, perhaps as case versus control. In un-

supervised methods, clustering, or some other unsupervised separation techniques

such as PCA or MDS, is used to group subjects, after which we can look at the

relation between the groups found by unsupervised methods and the batches. If

the formed groups are highly related to the batches, then one can assume that the

prominent signal in the data is the batch effect that is dominating any other more

subtle biological effects. In this section we will explain two types of unsupervised

methods: one based on k-means clustering and the other one based on hierarchical

clustering.

Any method of clustering requires a similarity measure to find the distance be-

tween data points that are being clustered, which in this case are gene expression

profiles. For this purpose we use the Pearson correlation coefficient, defining the

91

similarity between two profiles as 1 minus the absolute value of their Pearson cor-

relation, leading to values in the range of [0, 1]. When the correlation coefficient

between two profiles is 0, then their distance will have its maximum value, 1. On

the other hand, when the correlation between two profiles is 1.0, meaning that they

completely agree with each other, then their distance will be minimum 0.

Assume we are analyzing a data set containing d batches. In order to determine

whether this data is influenced by batch effects, we apply a clustering method to

group profiles. For this purpose we use a clustering method that, unlike hierarchical

clustering, assigns each instance exclusively to one of the mutually disjoint clusters,

i.e., clusters form a partition for the set of instances. These clustering methods

require setting a parameter for the number of clusters a priori. We use the number

of batches, d, for this parameter. After clustering the data, we measure the concor-

dance between the formed clusters and the batches, where a high concordance shows

the prominent effect of a batch effect signal. We considered two ways to measure the

concordance: Corrected Rand Index (CRI) and Variation of Information (VI) index.

Comparing the values of these scores before applying some specific BE correction

method and after, indicates the quality of this BE correction method.

CRI is a modified version of the rand index that is used to find the similarity

between the two different partitionings of n subjects. Imagine we have a k class

labeling for n subjects and we use some clustering algorithm to group them into k

groups. The random index (RI) is related to the number of pairs of subjects that

were in the same group under both partitionings (n11) and the number of pairs of

subjects that were in different groups under both partitionings (n00).

RI =
n11 + n00
Cn2

=
n11 + n00
n(n− 1)/2

The RI score is supposed to be close to 0 for random assignment of subjects to

groups. However, when the number of groups is in the same order of magnitude

as the number of subjects, this will not happen. To correct this problem CRI was

proposed [123]

CRI =
RI − E[RI]

max(RI)− E[RI]

whose value is in [0, 1] and is 0 when RI is equal to its expected value [124].

Variation of information [125] is closely related to the mutual information con-

cept. Again if we assume two partitionings of n subjects into k setsA = {A1, A2, · · · , Ak}

92

H(A)
H(B)

H(B|A)H(A|B) I(A,B)

VI(A,B)

Figure 5.5: The variation of information (VI) depicted as the sum of two areas in
the Venn diagram that show the relationship between the two partitionings A and
B.

and B = {B1, B2, · · · , Bk}, then the VI index will be

V I(A,B) = H(A) +H(B)− 2I(A,B)

where H(·) is the entropy of a partition and I(·, ·) is the mutual information between

two partitionings. Figure 5.5 explains the VI index using a Venn diagram that shows

the relation between two partitionings.

The lower bound of VI is zero, which happens when the two partitionings com-

pletely agree with each other. Its upper bound is limited to [125]

V I(A,B) ≤ min(log(n), 2log(k))

The clustering analysis of BE detection is applicable to any gene expression study

with known batches. However, for illustrative purposes we study its performance

using the two specially designed studies that we mentioned earlier in Section 5.1. In

Figure 5.6 we show the result of clustering on the two aforementioned gene expression

studies. On the left panel the breast cancer study is grouped into 4 groups and on the

right the mouse study is grouped into 2 groups. As one can see, in both cases there

is a strong BE influence on the clustering results, i.e., each cluster is formed almost

only by the instances of one of the batches. This relationship perfectly exists for the

mouse study and therefore both of the CRI and VI scores have their extreme value,

which indicates the complete agreement between the clustering and batch labels.

Later in Chapter 7 we will see how different BE correction methods changes these

scores. For visual comparison we plot gene expression profiles of each study in the 2

dimensional space spanned by the top two principal components in Figure 5.7 (top

93

Lab1-96 Lab2-96 Lab1-570 Lab2-570 Sum

Cluster1 14 2 0 0 16

Cluster2 2 14 0 0 16

Cluster3 0 0 13 2 15

Cluster4 0 0 3 14 17

(a) Breast cancer study. (CRI=0.663, VI=0.807).

Batch-10 Batch-11 Sum

Cluster1 48 0 48

Cluster2 0 48 48

(b) Mouse study (CRI=1, VI=0).

Figure 5.6: Clustering of the two gene expression studies by the partitioning around
medoids (PAM) algorithm [126, 127] using correlation-based distance measure. PAM
requires the number of clusters a priori, for which we used the number of batches.

row). In the bottom row of Figure 5.7 we show the result of hierarchical clustering

of gene expression profiles of each study.

The influence of BE on the mouse study is very obvious in both (b) and (d) panels

of Figure 5.7. Members of each batch form a separate “cloud” in principal compo-

nent plot of Figure 5.7(b). Also in the hierarchical clustering plot (Figure 5.7(d)),

members of each batch are clustered together with short vertical branches, indicating

small distances between them. As opposed to these short branches, the whole cluster

of batch-10 is connected to the cluster of batch-11 with a relatively longer vertical

branch, which indicates the significant distance between the two groups. From both

of these plots, one can safely assume that mouse study data is confounded by BE

due to the platform on which the samples were processed.

However, in the case of breast cancer study, the results are more subtle. The

principal component plot (Figure 5.7(a)) shows two main “clouds”, one for GPL96

(which includes data from both labs) and one for GPL570. It seems that the chip

type dominates as the major batch effect over the site at which the samples were

processed. The hierarchical clustering results also show that patients with the same

chip type are paired together (the interchanging color pattern in the two main clus-

ters of panel (c)) with relatively short branches, indicating small distance between

them. However the GPL96 and GPL570 form two clusters that are connected with

relatively longer branches. Later in Chapter 7 we will see that, in the absence of

BE, all 4 technical replicates are connected with each other by shorter branches,

which indicates the very small distance between them.

We also should note there is BE related to the lab for the samples of the same

chip type. However, since this BE is less severe than BE related to chip type, it

is not clearly observable in the panel (a) of Figure 5.7. In order to see it more

clearly, we plot the samples of each chip type separately in Figure 5.8. As one can

94

PC1 [37%]

P
C

2
 [9

.1
%

]

Lab1_96
Lab2_96
Lab1_570
Lab2_570

(a)

PC1 [55.1%]

P
C

2
 [7

.9
%

]

batch_10
batch_11

(b)

0.
00

0.
02

0.
04

0.
06

0.
08

hclust (*, "average")
as.dist(dist)

1
−

 |C
or

r(
x,

y)
|

Lab1_96
Lab2_96
Lab1_570
Lab2_570

Batch

Patient

(c)

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

hclust (*, "average")
as.dist(dist)

1
−

 |C
or

r(
x,

y)
|

batch_10
batch_11

Batch

(d)

Figure 5.7: Visual analysis of gene expression profiles of the breast cancer study
(left column) and the mouse study (right column).
The top row plots each gene expression profile as a dot in the 2 dimensional spaces
of the top 2 principal components.
The bottow row shows the result of hierarchical clustering using the correlation-
based distance measure.

95

PC1 [47%]

P
C

2
 [4

.6
%

]

Lab1_96
Lab2_96

(a)

PC1 [47.4%]

P
C

2
 [5

%
]

Lab1_570_all
Lab2_570_all

(b)

Figure 5.8: Principal Component plots for breast cancer study grouped by the chip
type.
(a) GPL96 samples, CRI=0.548 VI=0.754
(b) GPL570 samples, CRI=0.758 VI=0.468

see, in this case there is a clear distinction between lab1 and lab2 samples in both

plots. This suggests that the lab related BE is partially responsible for the observed

variability along the first and second principal components. Later in Chapter 7 we

will see that BE correction methods can effectively correct both chip related BE and

lab related BE in the breast cancer study.

5.3 Supervised methods for detecting BE

In this section, we study methods of BE detection that need genuine biological

differences between instances that are known a priori via some class labeling for

instances, and therefore are called supervised. The class labeling can be any bio-

logical variable of interest. In the case of cancer patients, for example, we might be

dealing with relapse/no-relapse or long/medium/short survival, or subtype labeling

such as ER+/ER- for breast tumors, or patient sub-groups that received different

adjuvant therapies. We refer to this labeling as treatment factor and assume it is

binary (e.g., case versus control). However, it can have more than two levels and

all the methods in this section will be applicable to such non-binary treatment fac-

96

tors. The main idea in this category is to apply some sort of supervised learning

algorithm (classification, regression, or significant analysis of features) within the

batches and then extend the learned model across batches. Significant differences

between within-batch results and across-batch results is an indicator of BE.

First we look at the method based on significant analysis. The main purpose

of significant analysis is to find the set of genes that are differentially expressed

between two treatment conditions. Most of the methods used for this purpose are

some kind of statistical hypothesis test that corrects for multiple testing by using a

mechanism to control the false discovery rate (FDR). By using one of these methods,

one can find the set of genes with significantly different expression values between

the case group and the control group within each batch. We call the union of these

sets for all batches the “within” significant genes. Next we use the same algorithm

to compare case sample in one batch to the control group in the other batch and vice

versa to find the “across” significant genes. Figure 5.9 shows this idea schematically.

Note this idea was first proposed by Sims et al. [86] and later Parker and Leek [128]

combined it with cross-validation schema to measure the influence of batch effects

on biological labeling. We extended the Parker and Leek [128] ideas by considering

all possible combinations of batch and case/control labeling. If there are more than

two phenotypic classes in the data sets, we can repeat this process for every pair of

phenotype comparisons.

The relationship between “across” significant genes and “within” significant

genes is an indicator of BE. In the absence of BE, these two situations should exhibit

very similar behaviors, showing that the relation between the case and control group

is independent of their originating batch; if this is the case, then within-batch and

across-batch significant gene sets will have a large overlap with each other. How-

ever, in the presence of BE, there is always a big discrepancy between these two

sets and the across-batch set includes many more apparent significant genes. This is

because the biological signals are confounded with the BE signal. Thus we observe

many more significant genes. The other way to examine the existence of a batch

effect is by analyzing the across-batch false positive genes. As shown in Figure 5.9,

false positive genes are found by comparing case (control) instances across batches.

Comparing the two sets of case (control) instances across batches should essentially

result in no significant gene as we essentially are comparing two random samples

of a same population. However, in the presence of a batch effect, there will be

97

Case Control

C
a
s
e

Control

Batch1 Batch2

DE within1 DE within2

DE Across2DE Across1

Within-batch significant genes

Across-batch significant genes

DE
Control

DE
Case

Across-batch false positive genes

Figure 5.9: Finding the set of significant differently expressed genes between case
and control groups, within-batch (bottom), across-batch (top-right), and across-batch
false positives (top-left).

many significant genes when we compare the same treatment conditions. In order

to depict this phenomenon and demonstrate the relationship between these sets of

significant genes we use the following example.

Two breast cancer studies: GSE2034 [110] and GSE7390 [111] (these two data

sets were introduced in Section 4.1 as Breast cancer1 and Breast cancer2) are ana-

lyzed here to find genes that are differentially expressed between the two subgroups

of patients, ER+ versus ER-, identified by student t-test that is used to calculate

the significance of each gene individually. Figure 5.10 illustrates the p-values density

of genes that have a p-value less than 0.05. As one can see, in the case of within

batch sets (top row), fewer than 50% of the genes are declared significant, which

is substantially less than the across batch sets (bottom row), which includes more

than 80% of genes. An effective BE correction method will make the bottom plots

look like the top plots.

Figure 5.11 summarizes the number of significant genes found by the 3 different

types of comparisons shown in Figure 5.9, i.e., within-batch, across-batch, and

false positives, for the same two breast cancer data sets. The numbers of the left

98

p−values

F
re

qu
en

cy

0.00 0.01 0.02 0.03 0.04 0.05

0
20

00
40

00
60

00
80

00

5900 out of 12140 genes (48.6%)
 had p−value less than 0.05

(a) ER+ GSE2034 vs. ER- GSE2034

p−values

F
re

qu
en

cy
0.00 0.01 0.02 0.03 0.04 0.05

0
20

00
40

00
60

00
80

00

5395 out of 12140 genes (44.4%)
 had p−value less than 0.05

(b) ER+ GSE7390 vs. ER- GSE7390

p−values

F
re

qu
en

cy

0.00 0.01 0.02 0.03 0.04 0.05

0
20

00
40

00
60

00
80

00

10011 out of 12140 genes (82.5%)
 had p−value less than 0.05

(c) ER+ GSE2034 vs. ER- GSE7390

p−values

F
re

qu
en

cy

0.00 0.01 0.02 0.03 0.04 0.05

0
20

00
40

00
60

00
80

00

10171 out of 12140 genes (83.8%)
 had p−value less than 0.05

(d) ER+ GSE7390 vs. ER- GSE2034

Figure 5.10: Differentially expressed genes between the ER+ and ER- paitients.
The top row shows within-batch p-value distributions (both case (ER+) and control
(ER-) samples belong to the same batch).
The bottom row shows across-batch p-values (case and control samples belong to
different batches).

99

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 3323 11640 11630
ER- . - 11532 11847

GSE7390
ER+ . . - 2644
ER- . . . -

Shared Across 11191 (93.48%) out of 11971

Shared Within 1974 (49.41%) out of 3995

Shared All 1585 (13.23%) out of 11982

(a) Uncorrected data

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 3323 3 3088
ER- . - 2534 0

GSE7390
ER+ . . - 2645
ER- . . . -

Shared Across 2293 (68.84%) out of 3331

Shared Within 1974 (49.4%) out of 3996

Shared All 1947 (48.25%) out of 4035

(b) Corrected data (ComBat)

Figure 5.11: The number of significant genes (out of 12092 genes) at 0.001 signifi-
cant level fount by comparing ER+ and ER- instances of two breast cancer studies:
GSE2034 and GSE7390.
Highlighted cells contain the within-batch numbers. As table is symmetric, redun-
dant values are avoided by putting . in some cells. The main diagonal cells are filled
with - indicating there is no significant genes associated with them.

table (a) indicate the existence of batch effect: while the number of within-batch

significant genes are almost the same in each batch (3323 and 2644) and they share

49.41% of their genes, the across-batch sets contain significantly larger number of

significant genes (11630 and 11532) which is clearly due to the batch effect. As a

result, the within-batch and across-batch significant genes share only 13.23% of their

contents. This is evidence of batch effect confounding the gene expression values,

which increases the number of “across-genes” significant genes. Also note that the

number of false positive significant genes are almost as numerous as the across batch

ones. This shows that the significant genes discovered across batches are influenced

by the batch effect in addition to the biological signal, here, ER+ breast cancer

instances comparing to ER- ones.

To make the comparison easier, we also included the batch corrected results in

Figure 5.11 (b). In this case, the number of within-batch significant genes is very

close to the number of across-batch significant genes and these two sets include a

larger numbers of common genes. Also the number of false positive genes is almost

equal to zero, which is much smaller than the number of false positives in the table

(a), uncorrected data. In Chapter 7 we will use tables similar to Table 5.11 in

order to demonstrate the effect of different batch correction algorithms on the set

of significant genes.

The second supervised way to detect the existence of BE is to use a classifier.

Here, in a manner similar to Figure 5.9, we collect the case and control samples once

within the batches and once across the batches. If we use exact similar settings for

100

GSE2034 GSE7093
ER+ ER- ER+ ER-

GSE2034
ER+ - 0.80 1.0 1.0
ER- - 0.99 1.0

GSE7093
ER+ - 0.74
ER- -

(a) KNN (k=3) classifier.

GSE2034 GSE7093
ER+ ER- ER+ ER-

GSE2034
ER+ - 0.89 1.0 1.0
ER- - 1.0 1.0

GSE7093
ER+ - 0.87
ER- -

(b) Linear SVN classifier.

Figure 5.12: Leave one out classification accuracy of ER status prediction. Com-
paring within-batch performance (shaded area) to across-batch perfromance shows
a significant difference between them which indicates the existance of BE.
The highlighted values are related to the classification of sample of the same
biological group. They possess no biological distinction and only BE makes them
distinguishable. Note we did not repeat numbers in the lower half of symmetric
tables for clarity.

the classifier that separates case and control instances then its performance should

be very similar for both situations. In other words, regardless of the origin of the case

and control instances, the power to separate them should be the same assuming there

is no technical bias caused by BE. However, in the presence of BE, distinguishing

between case and control instances that belong to different batches is much easier,

as here we are classifying batch1 versus batch2 rather than case versus control.

In order to quantify the difference between within-batch and across-batch classi-

fication performance, we measure the performance of classifiers with standard meth-

ods such as 10-fold or leave-one-out cross-validation [19]. We use the same learner

with the exact same parameter settings for both within-batch and across-batch cases

to make sure that their performance differences are based on only BE. The result

of such an analysis is shown in Figure 5.12 for two different types of classification

algorithms. The left panel shows the k nearest neighbors results with k = 3 and the

right panel shows the linear SVM results. As one can observe, both classifiers sep-

arate the case and control samples across-batches perfectly (except for KNN which

has a 0.99 accuracy for one of the across-batch combinations) while they have a

lower performance when dealing with within-batch samples. This is strong evidence

of the confounding role of BE. In fact, if we classify instances of the same biological

group across-batches, for example ER+ instances, we still get perfect prediction

accuracy. Those values are highlighted in both tables. The fact that classifiers

can clearly distinguish between the samples of one batch from another, even though

they belong to the same biological group, is an indicator of the presence of a strong

batch effect.

101

The results of both supervised methods indicates that these two data sets have

technical bias caused by a batch effect. This means that before combining them

together, one should first apply a BE correction method to them. These two super-

vised techniques can be applied to any other group of data sets that are intended

to be combined and they will decide whether or not these data sets have technical

bias and so should be corrected for BE before combining them. The only condition

is that all data sets in the group are required to have at least one same biological

annotation for their instances. This annotation could be any biologically meaningful

feature such as healthy tissue versus tumor tissue, clinical outcome such as short

survival versus long survival, and tumor subtypes.

5.4 Summary

This chapter introduces two types of techniques that can systematically detect the

existence of BE, namely supervised BE detection and unsupervised BE detection.

Before combining a set of gene expression data sets, one can utilize these two pro-

posed methods to determine whether the biological signal is confounded with BE.

Supervised BE detection methods require all data sets include at least one biological

annotation for their instances.

In addition to verifying the possibility of combining gene expression data sets,

these two types of techniques can evaluate the performance of BE correction algo-

rithms. For this purpose, one needs a group of gene expression data sets that are

known to have technical bias caused by BE. Using the aforementioned techniques,

we can estimate the severeness of BE before and after applying a particular BE

correction algorithm. The difference between the two estimations is an indicator of

the performance of applied BE correction algorithm.

This chapter also introduces another method for evaluating the performance

of BE correction methods. This method is taking advantage of specially designed

gene expression data sets that include some technical replicates, that are profiled

under different conditions, such as in different labs, different chips, or different

platforms. Because of the special design of these data sets and the relationship

among technical replicates, we expect their correlation matrix follows a particular

pattern. However, because of the BE, the correlation matrix is not exactly what we

expect. By applying a particular BE correction algorithm to these specially designed

data sets and measuring how the corrected correlation matrix follows the expected

102

pattern we can estimate the performance of the BE correction algorithms.

Finally this chapter briefly talks about the problems caused by poor experimental

design that is fairly common in the microarray community. We explained why using

this design confounds the biological signals with the BE and consequently makes

BE correction impossible.

103

Chapter 6

Batch Effect Correction Using
Canonical Correlation Analysis

As we have seen so far, large p small n is a major challenge in gene expression

analysis. One possible solution – combining available data sets to increase n – is

constrained by the batch effect, i.e., the confounding influence of technical factors

on the biological signal in gene expression studies. Therefore, removing this con-

founding component from the biological signal of interest is needed before we are

able to combine gene expression studies together.

In this chapter we introduce a novel batch correction method, which is based

on canonical correlation analysis (CCA) [5, 7, 129]. For this purpose, we took

advantage of transposablility of gene expression data [130] and applied CCA in a

non-standard way, i.e., unlike the usual applications of CCA, in bioinformatics or

elsewhere [131–136], where the sample/subjects are matched across two views, we

instead match the feature (here genes) across the two views. We call this method

BECCA. BECCA uses CCA to extract the common signal across two data sets and

separate it from the confounding component in each data sets.

As we will see in CCA formulations, its performance mainly depends on the accu-

rate estimations of covariance matrices between gene expression instances in batches

and also their cross-covariance values. Therefore accurate estimation of covariance

matrices is essential for the BECCA algorithm. We use the ideas of Chapter 4 to

reduce the number of features and consequently have a better estimations of these

matrices. Conducting this feature selection step is especially necessary in the high

dimensional space of noisy gene expression measurements.

Section 6.1 introduces the notation used in the rest of the chapter. Section 6.2

continues with a brief introduction of direct CCA, the usual way of utilizing CCA,

104

and some of the CCA fundamental formulations that are essential to understand

the mechanism of BECCA. See Appendix for a full review of CCA formulations

and different ways to implement it and a discussion of different properties and vari-

ant formulations. Section 6.3 uses these formulations to demonstrate the BECCA

mechanism and its special way of removing BE from the batches. This section in-

troduces non-standard CCA, which is our modification of CCA for performing BE

correction. We will compare the performance of BECCA algorithms against other

BE correction algorithms using some empirical studies in Chapter 7.

6.1 Formulation Assumptions

We assume data matrices (batches) contain observations in the rows and features in

the columns. So X1 [n×p1] includes observations vectors of x1i ∈ Rp1 for i = 1 · · ·n .

We can show data matrices using their rows

X1 = [x11, · · · ,x1n]t

X2 = [x21, · · · ,x2n]t

CCA analysis typically assumes X1 [n×p1] and X2 [n×p2] are two views of n same

objects, expressed using p1 and p2 features respectively. We show the column-wise

merging of two views by X = [X1 X2] which is a n× (p1 + p2) data matrix. We also

assume each of these data matrices is mean centred, i.e., the mean value of each

feature is 0 (so the sum is 0 too):

Xt
11 = 0 (6.1)

Xt
21 = 0

(6.2)

where 1 is a column vector of all 1’s. This assumption makes the scatter matrices

S = XtX proportional to covariance matrices Σ

Σ11 = Cov(X1,X1) = E[(X1 − E[X1])
t(X1 − E[X1])]

= E[Xt
1X1]

=
1

n
Xt

1X1 =
1

n
S11

and similarly

Σ22 = Cov(X2,X2) =
1

n
Xt

2X2 =
1

n
S22

105

the same applies to the cross-covariance matrix

Σ12 = Cov(X1,X2) =
1

n
Xt

1X2 =
1

n
S12

One might use the following transform to make all features decorrelated and

have unit variance.

X̄1 = X1Σ
−1/2
11

This transformation, known as whitening, will change the covariance of transformed

data into the identity matrix.

Σ̄11 = Cov(X̄1, X̄1) =
1

n
X̄t

1X̄1 = Σ
−1/2
11

(
1

n
Xt

1X1

)
Σ
−1/2
11 = In1

where In1 represents the [n1 × n1] identity matrix.

6.2 Canonical Correlation Analysis

The most intuitive way to understand CCA is to study the problem that originally

inspired Hotelling [4] to introduce CCA. Given a sample set of n students, we ex-

amine their “reading ability” by p1 tests and their “arithmetic ability” using some

other p2 tests. Now we would like to inquire what is the relation between reading

and arithmetic abilities indicated by these tests; CCA produces the answer to this

question. Here, the main assumption is that the same cohort of n students were

used for both reading and arithmetic tests. Given these two views (size p1 and p2)

of n subjects, CCA seeks a pair of linear transforms w1 ∈ Rp1 and w2 ∈ Rp2 such

that correlation between transformed data is maximized:

λ = max
w1,w2

cor(X1w1,X2w2) (6.3)

= max
w1,w2

cov(X1w1,X2w2)√
var(X1w1)

√
var(X2w2)

= max
w1,w2

w1
tXt

1X2w2√
(w1

tXt
1X1w1)

√
(w2

tXt
2X2w2)

= max
w1,w2

w1
tS12w2√

(w1
tS11w1)

√
(w2

tS22w2)

where S corresponds the scatter matrices as defined in Equation 6.4

Cov(X1,X2) =

[
Σ11 Σ12

Σ21 Σ22

]
=

1

n

[
Xt

1X1 Xt
1X2

Xt
2X1 Xt

2X2

]
=

1

n

[
S11 S12

S21 S22

]
(6.4)

106

Since the norm of the weight vectors does not affect the overall max value, we

can fix their value by considering them as constraints

max
w1,w2

w1
tS12w2 (6.5)

such that || X1w1 ||22 = w1
tS11w1 = 1

and || X2w2 ||22 = w2
tS22w2 = 1

Using Equation 6.5 one can derive the Lagrangian [5]

L(w1,w2, λ1, λ2) = w1
tS12w2 − λ1w1

tS11w1 − λ2w2
tS22w2 (6.6)

whose differentiation with respect to w1 and w2 results in{
∂L
∂w1

= S12w2 − λ1S11w1 = 0
∂L
∂w2

= S21w1 − λ2S22w2 = 0

=⇒
{

S12w2 = λ1S11w1

S21w1 = λ2S22w2
(6.7)

We can use Equation 6.7 to show that λ1 = λ2 by observing

λ1w
t
1S11w1 = wt

1S12w2 = wt
2S21w1 = λ2w

t
2S22w2

and the constraints wt
1S11w1 = wt

2S22w2 = 1. Thus one can rewrite Equation 6.7

as {
S12w2 = λS11w1

S21w1 = λS22w2
(6.8)

By defining

A =

[
0 S12

S21 0

]
B =

[
S11 0
0 S22

]
w =

[
w1

w2

]
one can rewrite Equation 6.8 as a generalized eigenvalue problem.

Aw = λBw (6.9)

This problem has p1 + p2 eigenvalues {λ1,−λ1, λ2,−λ2, · · · , λp,−λp, 0, · · · , 0}

where p = min(p1, p2). The eigen vectors corresponding to the paired positive and

negative eigenvalues differ only in a negative sign. These eigen vectors relate to each

other as [w1, w2]
t and [w1, −w2]

t. Thus only finding the set of positive eigenvalues

is sufficient to fully solve the Equation 6.9.

Similar to other methods formulated as an eigenvalue problem, CCA finds up to

p = min(p1, p2) paired projection vectors (w1,i,w2,i) and corresponding correlation

107

values λi. One can construct two transform matrices by concatenating these column

vectors:

W1 = Wp
1 = [w1,1, w1,2, . . . , w1,p]

W2 = Wp
2 = [w2,1, w2,2, . . . , w2,p]

Projecting data using these transform matrices decorrelates data. More specifically,

the covariance of the transformed data, Z1 = X1W1 and Z2 = X2W2, is:

Cov(Z1,Z2) =
1

n

[
Wt

1X
t
1X1W1 Wt

1X
t
1X2W2

Wt
2X

t
2X1W1 Wt

2X
t
2X2W2

]
=

1

n

[
Wt

1S11W1 Wt
1S12W2

Wt
2S21W1 Wt

2S22W2

]
=

[
Wt

1Σ11W1 Wt
1Σ12W2

Wt
2Σ21W1 Wt

2Σ22W2

]
=

[
Ip1 Λ
Λt Ip2

]
where Λ is a [p1 × p2] diagonal matrix with (λ1, . . . , λp) as diagonal values, sorted

in the descending order λ1 ≥ λ2 ≥ · · · ≥ λp. Columns of transformation matrices

W1 W2 are called canonical vectors (weights). Columns of transformed data,

Z1 and Z2, are called canonical variates. λi values are canonical correlations,

which are the correlations between pairs of canonical variates.

In Appendix A we review many relevant properties of CCA method and several

of its formulations. Here we just mention one of the formulations of CCA, which

reduces CCA to a SVD decomposition problem. In this formulation we need to

construct matrix C and use the singular value decomposition (SVD) [7] method to

decompose it into three matrices U , Λ, and V :

C = S
−1/2
11 S12S

−1/2
22 = Σ

−1/2
11 Σ12Σ

−1/2
22 = UΛVt (6.10)

In this setting, the CCA directions are formed using the SVD results:{
W1 = S

−1/2
11 U

W2 = S
−1/2
22 V

(6.11)

Using this formulation, we can define reflexive generalized inverse of CCA trans-

formation matrices: {
W∗

1 = UtS
1/2
11

W∗
2 = VtS

1/2
22

(6.12)

108

One can show these two matrices satisfy the two properties of reflexive generalized

inverse of matrices, namely

W∗
iWiW

∗
i = W∗

i and WiW
∗
iWi = Wi for i = 1, 2

By comparing Equation 6.11 and Equation 6.12, one can see the direct relationship{
W∗

1 = Wt
1S11

W∗
2 = Wt

2S22

The Wi and W∗
i , i = 1, 2 form two consecutive transforms for each view Xi

that first project data onto the CCA directions Zi = Xi Wi and then transform

them back to the original space X̃i = Zi W
∗
i . During these two transformations, all

signals in the null space of the CCA transformation will be removed from the data.

In the other words, X̃1 and X̃2 contain only the correlated signal that CCA was

able to match across the two views.

In the next section we will show how we use this idea to extract the common

biological signal between two batches and use these two modified versions of data

sets to conduct our batch effect correction algorithm.

6.3 BECCA

In this section we introduce our batch correction method, BECCA, based on canon-

ical correlation analysis. Without loss of generality, here we consider merging two

batches (note that all results are expandable to more than two batches using mul-

tiple CCA ideas; for more details see Appendix A.) Also here we use gene and

probeset interchangeably, to mean the features/covariates present in gene expres-

sion microarray.

As the main assumption of CCA indicates, we need two views of the same set of

objects. Here views are batches and common objects across them are genes. In this

setting, we have two gene expression data sets X1 [n×p1] and X2 [n×p2] that we want

to merge. They share n genes (probesets) while the number of profiles/patients is p1

and p2 respectively. In this setting, each gene is considered as one subject that has

been observed using two sets of features: its expression for p1 patients in the first

study and p2 patients in the second study. Note this setting is different from “direct

CCA” in which subject are patients, see Parkhomenko et al. [131] which matched the

expression intensity of 3554 genes of 194 individuals with their genotypes measured

109

by 2882 SNP loci to find the relationship between genetic loci and gene expression

phenotypes.

We assume these two batches include random samples of one common popula-

tion, for example both batches are studying breast cancer patients in the age range

of 40 to 60. The ith row of these two batches, x1i ∈ Rp1 and x2i ∈ Rp2 , contain

p1 and p2 realizations of expression value of ith gene for i = 1 · · ·n. We are assum-

ing these two sets share some underlying biological signal that is being confounded

by their technical differences. Comparing this setting to cross-language document

models [135] is very intuitive. Each document is represented by a vector of term

frequencies. Matched translated documents are used to make the two views needed

for CCA. We assume there is a semantic relationship between the documents that

is being confounded by unwanted factors such as intrinsic details of each language

and/or the specific writing style of individual writers.

Here, we assume the expression matrix of each batch consists of two components:

the biological-related component and technical-related component, which is the main

confounding factor: {
X1 = αY1 + β1Z1 + ε1
X2 = αY2 + β2Z2 + ε2

(6.13)

Here, the first terms in each equation represent the biological components and the

second terms represent the technical confounding components. More specifically,

Yi, i = 1, 2 is a q × pi design matrix containing q biological annotations for pi

patients in the form of an incidence matrix and α is a n × q matrix of coefficients

that relates these q biological factors to the expression values of n genes. Note

that the coefficients of biological factors (α) is the same in the both equations of

the two batches, indicating the implicit assumption that both batches are sharing

a same biological background. On the other hand, Z1 [r1×p1] and Z2 [r2×p1], which

are design matrices containing the technical factors that potentially can influence

the gene expression values, are specific to the equation of each batch and different

from one another. As Z1 and Z2 essentially contain different technical factors that

are affecting each batch, in general r1 6= r2. The coefficients of technical factors, β1

and β2, determine how the technical factors affect the expression value of genes in

each batch. Again, we indicate the independence of these two sets of coefficients by

assigning them different subscripts. Figure 6.1 schematically represent the Equa-

tion 6.13 and uses colors to show the relation between the coefficient vectors across

the two batches.

110

X1 α

Y1

β1

Z1

X2 α

Y2

β
2

Z2

[n x p1] [n x q]

[q x p1]

[n x r1]

[r1 x p1]

[n x p2] [n x q]

[q x p2]

[n x r2]

[r2 x p2]

ε1

ε2

Biological component Technical component Noise

Figure 6.1: Schematic representation of the Equations underlying the BECCA
method (see Section 6.13 for details). The dimensions of the matrices are drawn to
reflect the expected reality: the larger dimension of X1 and X2 (n) correspond to
the genes while the smaller directions (p1 and p2) are the patients in each study.
Also note that β1 and β2 have different widths to show that generally their number
of columns are different.
The color coding of matrices show the relation between the coefficients across the two
batches: while the technical factors that influences each batch are different (blue)
versus red), the common biological factor (yellow) is the same. The confounding
role of different technical factors results in data matrices (X1 and X2) with different
color blend (green versus orange).
Matrices with dashed border lines represent the hidden data while ones with solid
border lines represent the observed data.

In a typical setting, all of the factors and coefficients in Equation 6.13 are hidden,

as shown in Figure 6.1. The goal of batch effect removal is to remove the second

term (confounding component) without modifying the first term (biological compo-

nent) so the main challenge is to find a way to extract these two components from

the expression matrix. Different authors address this problem in different ways.

Leek and Storey [70] proposed surrogate variable analysis (SVA), which assumes

that Y1 and Y2 are given. Thus SVA first estimates the α coefficients and sub-

tracts the biological component (αY1 and αY2) from the data and then it identifies

the surrogate variables by calculating the SVD transform of the residuals matrix

and finding top “eigen-genes”. Gagnon-Bartsch and Speed [9] proposed removal

111

of unwanted variation (RUV), which utilize a different approach for separating the

biological component from the technical component. RUV assumes there exists a

set of genes called negative control genes that are a priori known to be unrelated

to the biological factors Yi, thus the coefficients α for these genes is zero. RUV

uses this assumption to estimate the Z1 and Z2 from the negative control genes.

Similar to the SVA approach, RUV finds the direction of high variance for the neg-

ative control genes by calculating the SVD transform of the expression matrix of

the negative control genes. These “eigen-genes” span the negative control gene’s

directions of variation, which is the “unwanted variation”. RUV clears the data

from this unwanted variation by projecting the data on to the null span of these

eigen-genes.

Our approach, unlike SVA and RUV, does not need any prior knowledge to

separate the biological component and confounding technical component; instead,

it uses CCA to extract the common signal. BECCA assumes that the additive batch

effects of Equation 6.13 are orthogonal to one another as well to the biological signal.

αt β1 = 0

αt β2 = 0 (6.14)

βt1 β2 = 0

Additionally, in concordance of zero mean assumption for the columns of data ma-

trices (6.2), we assume that the biological and technical factors’ coefficients are zero

mean.

αt 1 = 0

βt1 1 = 0 (6.15)

βt2 1 = 0

These two sets of assumptions (6.14, 6.15) entail uncorrelated coefficient vectors [137]:

Cor(α, β1) = Cor(α, β2) = Cor(β1, β2) = 0 (6.16)

One can use this fact to simply prove the following lemma:

Lemma 1. Assuming the generative model of Equation 6.13 and the two sets of

assumptions 6.14 and 6.15, the cross scatter matrix only contains the covariance

112

induced by biological coefficients:

S12 = Xt
1 X2 = (αY1 + β1Z1)

t (αY2 + β2Z2)

= Yt
1 Sα Y2

where Sα = αt α.

Assuming that the confounding factors that influence the expression values of

each batch are uncorrelated to one another and also to the biological signal, the

correlated signal across two batches found by CCA will be in the column space of

α and thus only contain the biological signal. This is the main idea of BECCA,

which enables us to separate the biological components of Equation 6.13 from the

technical component.

BECCA subtracts the extracted biological components for each batch from the

gene expression matrix, the resulting residual in each batch is the signal that CCA

was unable to correlate across the two views and potentially is due to the technical

factors. We remove these unwanted variations from the data using the same ap-

proach as the RUV and SVA algorithms [89], by projecting the data in each batch

to the null spaces of the high variance directions of the residuals. In summary, the

algorithm consists of two steps:

1. It separates the biological component from the confounding technical com-

ponent by extracting the biological component, that is done by finding the

correlated signal across two batches using CCA.

2. It removes the confounding component from the data by finding the top direc-

tions of variance in the confounding component and projecting the data onto

the null space of these directions.

The main benefit of BECCA is its ability to separate the unwanted variability

from the biological signal given only observed batches. BECCA separate them

effectively even if the unwanted variability is also caused by hidden factors other

than the observed batch. Any signal that is not shared across the batches is assumed

to be due to unwanted factors and will be removed from the data.

This benefit will turn into the main disadvantage of BECCA if the data does not

follow the BECCA assumptions. For example, if one batch contains one subtype

(of the disease under study) and the other batch contains the another subtype then

113

BECCA will mark the subtype signal as a batch effect, as the subtype signal does

not exist in both batches and so CCA can not correlated them across the batches.

Note this design is a clear violation of the experimental design rules (3.3) and also

against the assumption of BECCA that requires the batches to be random samples

of the same population.

In the following section we will examine the details of BECCA and its special

way of removing the batch effect. The actual implementation of the method in R is

available on my personal website 1 and soon it will be available as a bioconductor

package.

6.4 Implementation Details

As we saw earlier in Section 6.2, CCA finds the linear relationships between two

views in a special way that results in high correlation across the views. Here two

views are two sets of patients, X1 with p1 and X2 with p2 patients, which are respec-

tively two sets of features for the same n objects –here n genes. More specifically

CCA finds a pair of weight vectors, such as w11 ∈ Rp1 and w21 ∈ Rp2 , that linearly

combine the patients in each batch to form two super-patients, a11 = X1w11 and

a21 = X2w21. By construction, the arrays of these super-patients are highly cor-

related with each other Cor(a11,a21) = λ1. The next super-patients are formed

by the next pair of linear transforms of CCA, producing correlation that typi-

cally is high, but is guaranteed to be less than the first pair of super-patients

Cor(a12,a22) = λ2 < λ1. This new pair is uncorrelated with the previous pair

Cor(a12,a11) = Cor(a21,a22) = Cor(a11,a22) = Cor(a21,a12) = 0. Ideally, each

super-patient pair represents one set of biological conditions that is present in pa-

tients in both batches. Considering the cross-language example is again helpful to

intuitively understand its mechanism: CCA projections, which are just a weight vec-

tor for terms in each language, form pairs of “concepts” that are highly correlated

across the two languages.

Stacking all weight vectors as columns of a matrix produces transform matri-

ces for each batch W1 = [w11,w12, · · ·w1p] and W2 = [w21,w22, · · ·w2p] where

p = min(p1, p2). Using these two transform matrices we can rewrite the CCA trans-

formations of X1 and X2 into the two sets of p highly correlated super-patients in

1https://sites.google.com/site/svaisipour/utilities

114

https://sites.google.com/site/svaisipour/utilities

matrix format: {
A1 = X1 W1

A2 = X2 W2
(6.17)

where A1 and A2 are both n × p matrices containing p super-patients in their

columns. Note that the cross correlation of these two sets of super-patients is

Cor(A1,A2) = Λ, where Λ is a p × p diagonal matrix with λ1, λ2, · · · , λp values

on its main diagonal. Earlier in Lemma 1 we showed that the only component of

cross correlation between X1 and X2 is the biological coefficients α in Equation 6.13.

Based on this observation we can infer the following:

Lemma 2. A1 and A2 are in the column space of α.

Proof. Without loss of generality, we prove this property for the first pairs of weight

vectors w1 and w2 and the resulting first pair of super-patients a1 and a2. Assume

the w1 and w2 are the optimal solution of the Equation 6.6 and the corresponding

super-patients are {
a1 = X1 w1

a2 = X2 w2
(6.18)

We assume that this pair of super-patients is not in the column space of α, therefore,

they each have two components: one in the column space of α (denoted by a·‖) and

one in the null space of α (denoted by a·⊥):{
a1 = a1‖ + a1⊥ = X1w1 = αw1‖ + β1w1⊥
a2 = a2‖ + a2⊥ = X2w2 = αw2‖ + β2w2⊥

(6.19)

where we used the assumed additive batch model in Equation 6.13 to write the a·‖

component as a linear combination of columns of α and the a1⊥ and a2⊥ respectively

as the linear combination of columns of β1 and β2. Note that, according to the

Lemma 1, the following properties holds for the two components of super-patient

pair:

a1‖ a1⊥ = a1‖ a2⊥ = a2‖ a1⊥ = a2‖ a2⊥ = 0 (6.20)

Using the two orthogonal components of super-patient pair, we can rewrite the

optimum value of Lagrangian function Equations 6.6, which was achieved by the

115

optimum answers w1 and w2:

L∗ = w1
tS12w2− λ1w1

tS11w1− λ2w2
tS22w2

= w1
t
(
X1

tX2

)
w2− λ1w1

t
(
X1

tX1

)
w1− λ2w2

t
(
X2

tX2

)
w2

= a1
ta2− λ1a1

ta1− λ2a2
ta2

=
(
a1‖ + a1⊥

)t (
a2‖ + a2⊥

)
− λ1

(
a1‖ + a1⊥

)t (
a1‖ + a1⊥

)
− λ2

(
a2‖ + a2⊥

)t (
a2‖ + a2⊥

)
= a1‖

t a2‖− λ1
(
a1‖

t a1‖ + a1⊥
t a1⊥

)
− λ2

(
a2‖

t a2‖ + a2⊥
t a2⊥

)
Evaluating the value of L∗ shows that one could achieve higher value for the La-

grangian function if the a1 and a2 did not include the component that lies in the

null space of the α. Thus the w1 and w2 can not be the optimal answers. This

contradiction shows that the optimal answers must lie in the column space of α.

6.4.1 Step1: Separating the biological and technical signals

The main idea of BECCA is to reconstruct X1 and X2 using a few top super-patients.

In the other words, we project each batch (view) into the space spanned by k ≤ p

highly cross-correlated vectors discovered by CCA to keep only the correlated signal

shared by X1 and X2. If we show the first k columns of W1 and W2 by Wk
1 and Wk

2

then the batch corrected data X̃1 and X̃2 are made by following linear transform{
X̃1 = Ak

1 Wk∗
1 =

(
X1 Wk

1

)
Wk∗

1

X̃2 = Ak
2 Wk∗

2 =
(
X2 Wk

2

)
Wk∗

2

(6.21)

where Wk∗
1 and Wk∗

2 are generalized reflexive inverse of projection matrices defined

in Equation 6.12. X̃1 and X̃2 are the transformed data matrices that are made

by projecting the batches onto the top k CCA direction and then projected back

into their original space. In other words, transformation 6.21 projects each batch

on the top k super-patients and then transform them back to the original space.

As a result, this transformation removes all the signal that are orthogonal to the

directions of the top k super-patients, meaning that X̃1 and X̃2 only contain the

signal that is common between the paired batches, i.e., the shared biological signal.

This way BECCA extracts the biological component of signal from each batch.

In order to separate the biological signal from the confounding technical sig-

nal, BECCA continues with subtracting the transformed batches from the original

batches. The resulting residual matrices contain the confounding signal in each

116

batch:

{
R1 = X1 − X̃1

R2 = X2 − X̃2
(6.22)

At this point, the first step of BECCA, which is separating the biological com-

ponent from the confounding technical component, is done.

6.4.2 Step2: Removing the unwanted variation

The second step of BECCA is simply finding the high variance directions of residual

matrices (R1 and R2) and removing them from the batches. This step, which is

adopted from SVA and RUV, simply calculates the SVD transformations of R1 and

R2 and finds the high variance directions. These are “unwanted variations” that

are caused by factors other than biological ones. BECCA simply removes these

unwanted variations by projecting each batch onto the orthogonal space spanned

by these high variance directions, i.e., their null space. Thus the second step start

with SVD transformations of R1 and R2:{
R1 = U1 D1 Vt

1

R2 = U2 D2 Vt
2

(6.23)

According to the singular values, we pick k1 and k2 directions as the unwanted

ones. In practice, usually the top one (or two) singular value is several orders

of magnitude larger than the rest of the singular values; thus by evaluating the

distribution of singular values one can simply pick the correct number of k1 and k2.

After deciding on the values of k1 and k2, BECCA forms two projector matrices,

one for each batch:  Project1 = Vk1
1

(
Vk1

1

)t
Project2 = Vk2

2

(
Vk2

2

)t (6.24)

where Vki
i denotes the top ki right singular vectors, i.e., the columns of Vi, for

i = 1, 2. By applying these two projectors to the original data matrices, X1 and X2,

one can project the data to the directions of the unwanted variations. Thus the null

space of these projectors will be free of the unwanted variations due to confounding

technical factors: {
X∗1 = X1 (I − Project1)
X∗2 = X2 (I − Project2)

(6.25)

Finally, X∗1 and X∗2 are the corrected data using BECCA.

117

6.4.3 Parameter Settings

BECCA has three parameters that need to be set by the user, namely k, k1, and

k2. For easier understanding here is a brief explanation of each one’s role:

• k: the number of CCA directions that are used to retain the biological signal

between the two batches, 1 ≤ k ≤ p = min(p1, p2).

• k1: the number of directions of unwanted variation in batch one, 1 ≤ k1 ≤ p1.

• k2: the number of directions of unwanted variation in batch two, 1 ≤ k2 ≤ p2.

Note that the other two similar algorithms, SVA and RUV, also have the k1 and

k2 parameters, however, the parameter k only is needed by BECCA. This extra

parameter is the price we pay for not using any prior knowledge, as SVA and RUV

do.

Setting the values of k1 and k2 is very straightforward. By considering the

singular values of Equation 6.23 for each batch, one can decide how many of the

“eigen-genes” of the residual matrices contain the variations due to the batch effect.

In practice, usually, the 1-2 top singular values are several orders of magnitude

larger than the rest of them. Thus setting k1 and k2 to be equal to this number

will result in the best performance, removing the unwanted variations from data,

without removing all the variations that are due to intrinsic differences between the

subjects in the study.

Setting the value of k is harder, as values that are too big will cause BECCA to

include some of the confounding signal as biological signal, but setting it to be too

small will cause BECCA to ignore a lot of biological signal and potentially loosing

them. In Chapter 7 we will see the effect of setting the value of this parameter on

the performance of BECCA.

6.4.4 Properties

We show below that the transformation 6.21 reduces the rank of covariance and

cross-covariance matrices to k. We believe this rank reduction is due to the removal

of unwanted variations that are caused by technical factors that independently in-

118

fluenced each batch.

Cov(X̃1) = Σ̃11 =
1

n
X̃t

1X̃1 =
1

n
W∗k

1
t
Wk

1
t
X1

t X1 Wk
1 W∗k

1

=
1

n
S
1/2
11 Uk UktS

−1/2
11 S11 S

−1/2
11 Uk UktS

1/2
11

=
1

n
S
1/2
11 Uk UktS

1/2
11

=Σ
1/2
11 Uk UktΣ

1/2
11 =

(
Σ

1/2
11 Uk

) (
Σ

1/2
11 Uk

)t
where Uk is the first k columns of U. One can similarly show that the covariance

of the second view is

Cov(X̃2) = Σ̃22 = Σ
1/2
22 Vk VktΣ

1/2
22 =

(
VktΣ

1/2
22

)t (
VktΣ

1/2
22

)
and the cross covariance is

Cov(X̃1, X̃2) = Σ̃12 = Σ
1/2
12 UkΛkVkt Σ

1/2
22 = Σ̃

1/2
11 Λk Σ̃

1/2
22

Using the covariances of the transformed views, one can reconstruct the SVD

based formulation of CCA (Equation 6.10) for the transformed data

C̃ =Σ̃
−1/2
11 Σ̃12 Σ̃

−1/2
22 (6.26)

=Σ̃
−1/2
11

(
Σ̃

1/2
11 Λk Σ̃

1/2
22

)
Σ̃
−1/2
22 = Λk (6.27)

thus the 6.21 transformations modifies each view in a way that changes the rela-

tionship between their covariances and cross-covariances in C̃ (Equation 6.27) to a

diagonal matrix.

6.5 Summary

This chapter introduced BECCA, a batch effect correction method using canoni-

cal correlation analysis (CCA). First it offers a basic intuitive introduction of CCA

along with its fundamental formulations. As CCA has been utilized in many differ-

ent applications and disciplines, there are several different perspectives to analyze

its algorithm and consequently formulate and implement it. Studying all these per-

spectives is beneficial for better understanding of the method; we summarize most

of the available approaches in Appendix A.

After introducing the CCA in Section 6.2, we introduced our batch correction

method. Conceptually, our method is very similar to SVA [70] and RUV-2 [9] as it

119

first separates the biological signals from the non-biological signals and then uses

a SVD transform to discover the main directions of variation in the non-biological

data. These methods assume that the variations along these discovered directions

are only due to the technical factors, and so removes them from the data to cor-

rect the batch effects. The only difference between these methods and ours is the

way the biological and non-biological signal are separated. SVA relies on a compre-

hensive biological annotation and RUV-2 relies on the assumption of the existence

of “negative control genes” (genes whose expression intensities are assumed to be

independent of biological factors).

Our method, however, assumes that the batch effects, which influence the ex-

pressions of each batch, are independent from each other and therefore the highly

correlated direction discovered by CCA contains only common biological signals

across batches. We find the signal orthogonal to these common directions and con-

sider it to be the non-biological signal. At this point our method proceeds in the

same way as the other two batch correction algorithms, by finding the main di-

rections of variation in the non-biological part. As Gagnon-Bartsch and Speed [9]

mentioned, the orthogonality of technical factors and biological factors plays an im-

portant role in the effectiveness of their algorithm. This will apply to our method

too. In Chapter 7 we will see how our method’s performance stands versus other

batch correction algorithms.

120

Chapter 7

Empirical analysis of BE
correction and gene selection
methods

This chapter presents the results of our experimental results and showcases all ideas

presented in this dissertation. More specifically, the experiments will demonstrate

how the feature selection algorithms of Chapter 4 can reduce the influence of batch

effects on the performance of downstream analysis. For this purpose, we will utilize

the algorithms proposed in Chapter 5 to quantify the influence of the technical

factors. We also use the data sets introduced in Section 5.1 to empirically compare

the performance of different batch correction algorithms and rank them against our

proposed method, BECCA.

This chapter is organized as follows: first we look at the effect of gene selection

algorithms on the confounding influence of batch effects in Section 7.1. This section

describes experiments that show the importance of selecting a relevant subset of

genes before any down-stream analysis, in order to remove the misleading genes.

Section 7.2.1 compares the performance of several batch correction methods applied

to the mouse study, introduced in Section 5.1.

7.1 Feature selection and batch effects

In this section we look at the effects of feature selection algorithms on the BE.

Combining gene expression data sets that are conducted under different technical

conditions results in some “evidence” that suggests the existence of batch effects.

Chapter 5 introduced some techniques to quantify the existence of batch effects.

This section, specifically, studies the effect of running gene selection algorithms on a

121

data set that has batch effects. In other words, this section studies how limiting the

analysis to a subset of genes reduces the confounding influence of technical factors.

In the first experiment we analyze the breast cancer study that was introduced

in Section 5.1. This study is a 2 × 2 factorial study conducted on 16 breast can-

cer samples that are profiled in 2 labs using 2 types of Affymetrix GeneChips, i.e.,

16 × 2 × 2 = 64 profiles that are 4 technical replicates of 16 specimens. We used

the unsupervised BE detection method (introduced in Section 5.2) to evaluate the

effect of gene selection algorithms on the influence of technical factors, here, the lab

that conducted the experiment and the used GeneChip. We use k-mean clustering

with number of clusters set to k = 4 (as there are 4 batches) to cluster these 64 gene

expression profiles and then compare the result of clustering with the batch labeling.

If the formed clusters are very similar to the batches then we can infer that unfortu-

nately BE is the dominant signal. On the other hand, if the 4 technical replicates of

each of the 16 patients are close together and there is no sign of technical difference

between them, then we can infer that the biological signal is dominant and the BE

is absent or less strong. We use two metrics to measure the concordance between

the formed clusters and the batches, corrected rand index (CRI) and variation of

information (VI); for more details about these metrics see Section 5.2. Note that

the ideal score of CRI is 0 (meaning that there is no relation between the batches

and the clusters) while for VI, larger numbers are better.

We repeat this unsupervised analysis five times, once using all 12092 genes during

the clustering process and the other four times using only the 1000 genes that

were selected by the four algorithms introduced in Chapter 4. The result of this

analysis is summarized in Table 7.1, one column for each analysis. Note 3 of these

feature selection algorithms (variance based ranking, mean intensity ranking, and

integrating correlation) improved these scores, presumably by choosing a subset of

genes that are less influenced by technical factors. In the other words, when we

use the genes selected by these methods, BE seems to have less influence on the

data. The correlation increment method, however, manages to find a subset of

genes whose expression values are more confounded by technical factors and as a

result are unable to cluster the data according to the biological differences, instead

the formed clusters almost perfectly correspond to the batches. Note this method

is purposefully designed to choose the most misleading genes (see Section 4.2.3) to

demonstrate that there are some genes that are more severely influenced by technical

122

factors.

All genes Var rank Mean rank Intgr Cor Cor Inc
(12092) (1000) (1000) (1000) (1000)

Corrected Rand Inx (CRI) 0.663 0.026 0.043 0.119 0.847
Variation of Info (VI) 0.807 2.535 2.417 2.280 0.362

Table 7.1: Comparison of the scores of clustering analysis of 64 gene expression
profiles of GSE17700 [121] into 4 clusters. This data set contains 16 breast cancer
specimens that are profiled on two different Affymetrix GeneChips in two different
labs – so there are 16× 2× 2 = 64 instances (see Section 5.1 for more details).
The scores of using all genes is compared to 1000 genes selected by 4 feature selection
algorithms. The best scores for each row (cluster analysis metric) is highlighted in
bold, i.e., the smallest CRI score and the largest VI score.

Table 7.1 shows that filtering out some of the genes reveals the biological rela-

tions between gene expression profiles that otherwise would be masked by technical

factors when all the genes were considered. Also note that, among the three feature

selection algorithms that improved the CRI and VI scores, our proposed algorithm

(variance based ranking) achieved the best performance. As we will see in the other

experiments of this section, this feature selection algorithm consistently achieves the

best empirical performance in all conducted experiments. For visual comparison,

Figure 7.1 compares the results of the clustering using all genes (first row) to the

best (second row) and worst (third row) performing gene selection algorithms.

Figure 7.1(a) shows that, when we use all 12092 genes, the instances of batches

that are conducted on the same GeneChip are closely clustered to each other in

the 2-dimensional space of the top principal components (lab1-96 and lab2-96 cloud

versus lab1-570 and lab2-570 cloud). Panel (b) shows the same behavior: the two

main clusters are formed by instances of the same platforms. Note the “Batch”

color bar on bottom has two main clusters: lab1-96 and lab2-96 versus lab1-570

and lab2-570. Also note that, in the hierarchical clustering result, pairs of technical

factors are clustered together (top color code bar tagged as “patient”). However, the

4 technical replicates of each patients are not all clustered together as they instead

formed 2 clusters, each containing a pair of technical replicates.

The correct clustering of all 4 replicates together happens in panel (d), which

shows the clustering using the 1000 genes selected by variance-based feature selec-

tion (see Section 4.2.2). Studying the length of vertical branches in the hierarchical

clustering of panel (d) shows that most of the distance is caused by difference from

one patient to another while the 4 technical replicates of each patient are very

123

PC1 [37%]

P
C

2
 [9

.1
%

]

Lab1_96
Lab2_96
Lab1_570
Lab2_570

(a) All 12092 genes

0.
00

0.
02

0.
04

0.
06

0.
08

hclust (*, "average")
as.dist(dist)

1
−

|C
or

r(
x,

y)
|

Lab1_96
Lab2_96
Lab1_570
Lab2_570

Batch

Patient

(b) All 12092 genes

PC1 [23.8%]

P
C

2
 [6

.7
%

]

Lab1_96
Lab2_96
Lab1_570
Lab2_570

(c) 1000 genes (variance based ranking)

0.
00

0.
05

0.
10

0.
15

0.
20

hclust (*, "average")
as.dist(dist)

1
−

|C
or

r(
x,

y)
|

Lab1_96
Lab2_96
Lab1_570
Lab2_570

Batch

Patient

(d) 1000 genes (variance based ranking)

PC1 [49.4%]

P
C

2
 [7

.4
%

]

Lab1_96
Lab2_96
Lab1_570
Lab2_570

(e) 1000 genes (correlation increment)

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

hclust (*, "average")
as.dist(dist)

1
−

|C
or

r(
x,

y)
|

Lab1_96
Lab2_96
Lab1_570
Lab2_570

Batch

Patient

(f) 1000 genes (correlation increment)

Figure 7.1: Visual analysis of unsupervised analysis of GSE17700 (breast cancer study): left
column depicts the first two principal components plot where each cross is one gene expression
profile in this 2-dimensional space colored according to its batch, and the right column depicts
the hierarchical clustering results marked with two color coding bars; the upper bar represents the
patient id and the lower bar represents the batches.

124

similar. This panel clearly shows how, by limiting the calculations to a meaningful

subset of genes, the unsupervised learning algorithm was able to discover the biolog-

ical relation between the technical replicates. Panel (c), which depicts the principal

component plot based on the same set of genes, also shows a very good mixing of the

instances of 4 batches and there is no clear bound between the instances of batches,

similar to panel (a)

Finally, panels (e) and (f) show the analysis of 64 profiles using the 1000 most

misleading genes selected by correlation increment gene selection algorithm. Recall

this algorithm is designed to degrade the results by finding genes that increase

the correlation across batches. Panel (e) shows more clear boundaries between the

batches, especially the lab1-570 and lab2-570 cloud are not mixed the way they

were in panel (a). Here, the set of genes selected by correlation increment algorithm

even further emphasizes the technical differences between the batches. The same

interpretation applies to panel (f) where we not only have two big cluster similar

to panel (b), but also some of the pairs of technical replicates that are not matched

with each other, indicating that, less biological signal is present in this restricted

data.

In the second set of experiments in this section, we use the idea of Figure 5.9 to

relate gene selection in the severeness of BE. As we saw in Section 5.3, comparing the

set of differentially expressed genes that are found within-batch, versus across-batch,

shows that the confounding factors strongly affected the data. More specifically,

when the number of significant genes across-batches is an order of magnitude larger

than the number of significant genes found within-batches, one can reason that the

across-batch significant genes are caused by technical differences rather than the

biological differences between case and control groups.

A large gap between the number of significant genes across-batch and the number

of significant genes within-batch indicates the stronger confounding influence of BE

on gene expression intensities. A good feature selection, however, will filter out the

genes that are more influenced by batch effects and, as a result, will shrink the

gap between the across-batch and within-batch significant genes. Note that feature

selection is not a general cure for batch effects; it only reduces BE’s destructive

influence by focusing on genes that are less influenced by technical factors.

In the first experiment, we study the two breast cancer studies we introduced in

Section 4.1, GSE2034 [110] and GSE7390 [111], which seeks the set of genes that are

125

differentially expressed between ER+ and ER- patients. Table 7.2 summarizes the

results of comparing the performance of 5 feature selection algorithms (introduced in

Chapter 4): random (with 100 repetitions), variance-based ranking (Section 4.2.2),

mean intensity based ranking (Section 4.2.2), integrative correlation (Section 4.2.1),

and correlation increment (Section 4.2.3).

No. of selected genes All 10000 8000 6000 4000 2000 1000

Random
% Within 16.32 16.31±0.15 16.34±0.25 16.36±0.38 16.35±0.42 16.29±0.29 16.51±1.19
% Across 92.55 92.55±0.13 92.54±0.17 92.54±0.21 92.55±0.31 92.56±0.56 92.64±0.77

Var Rnk
% Within - 19.37 22.84 25.97 30.03 36.20 42.00
% Across - 91.07 89.00 86.12 81.67 72.50 60.00

Mean Rnk
% Within - 18.42 20.52 22.10 22.75 23.55 23.50
% Across - 91.48 90.52 89.90 88.40 86.45 83.90

Integ Cor
% Within - 19.35 22.79 26.53 30.55 34.75 39.30
% Across - 92.34 91.85 91.32 90.18 87.80 85.10

Cor Incr
% Within - 15.82 15.01 14.50 13.50 12.20 11.10
% Across - 92.96 92.76 92.85 92.53 92.20 92.10

Table 7.2: The percentage of significant genes between ER+ and ER- breast cancer patients
discovered using two studies: GSE2034(209 ER+, 77 ER-) and GSE7390 (134 ER+, 34 ER-) and
by performing t-test at 0.001 significance level. Each column indicates the number of genes used for
the experiment, starting with all genes (12092). Each row contains one feature selection algorithm:
Random (randomly choose genes, reported results are for 100 repetitions), Var Rnk (variance
based ranking 4.2.2), Mean Rnk (mean intensity based ranking 4.2.2), Integ Cor (Integrative
correlation analysis 4.2.1), and Cor Incr (correlation increment gene selection algorithm 4.2.3).
For each combination of feature selection algorithm and number of features, two numbers are
reported % Within (the number of common significant genes found by two within-batch analyses)
and % Across (the number of common significant genes found two across-batches analyses). The
best performance in each column is highlighted: the highest for % Within values and the lowest for
% Across values.

In each cell of this table (i.e., the combination of gene number and algorithm)

there are two numbers, % Within and % Across, which are the percentage of genes

that are found significant within-batch and the percentage of genes that are found

significant across batches, respectively. In the other words, the % Within shows

how many genes (out of, say 12092 genes) are tagged as significant by both within-

batch significant analyses (Figure 5.9, the two bottom ovals) and the % Across

shows how many genes are tagged significant by two across-batch significant analyses

(Figure 5.9, the two top-right ovals). For example, according to Table 7.2, when all

12092 genes are included in the calculations, the % Within is 16.32 and % Across

is 92.55, meaning that, out of 12092 genes, only 1973 genes are tagged significant

by both within-batch analyses while 11,191 genes are tagged significant by both

across-batch analyses.

Ideally, in the absence of any technical difference between the two batches, we

expect these two numbers to be: % Within ≈ % Across i.e., the set of signif-

icant differently expressed genes between case and control instances should not be

affected by the batch from which the case and control instance are chosen. In reality,

126

however, there is a big discrepancy between the % Within and % Across sets. For

example, according to Table 7.2, when all 12092 genes are included in the analysis,

within-batch analyses find only 1973 significant genes while across-batch analyses

find 11,191 genes. Obviously, this big discrepancy between these two numbers is

due to the batch effect, i.e., most of the genes that are tagged significant when we

compare case versus control across batches are due to the technical difference be-

tween case and control rather than the biological differences between them. What

we expect from an effective gene selection algorithm is to shrink the gap between

these two sets by filtering out genes whose expression intensity does not reflect the

biological relationship between the instances due to the confounding influence of

unwanted technical factors. Note that a gene selection algorithm does not remove

the batch effect; it only reduces the damaging impact of batch effects by filtering

out genes that are more influenced by these unwanted technical factors.

Also note that the % Within value without applying any feature selection is 16.32

and it remains approximately the same when we apply random feature selection

algorithm. This means that when we choose a random sample of, say size 1000,

from 12092 available genes, on average 16.32% of them will be called significant

by both within-batch significant analyses. The same applies to % Across: without

any feature selection its values is 92.55 and for all random samples this values is

approximately the same.

An unsupervised gene selection algorithm that increases the % Within scores is

probably filtering out uninformative genes that do not contain important biological

information. One can safely infer that this algorithm’s criteria for choosing genes

is trustworthy and applying it before the downstream analysis will be beneficial.

On the other hand, a gene selection algorithm that decreases the % Within value is

probably choosing genes based on a problematic criterion, which means filtering out

genes using this algorithm may lose informative genes. Therefore, a desired gene

selection algorithm should increase % Within values and decrease % Across values

and thus shrink the gap between these two scores. In fact, the “oracle” feature

selection algorithm will choose a set of features that produced scores 100% for both.

By examining the performance of algorithms in Table 7.2, one can observe three

trends: (1) random feature selection algorithm: does not change the scores; (2)

variance ranking, mean intensity ranking, and integrative ranking follow the desired

pattern (increase the % Within values and decrease the % Across values); and (3)

127

correlation increment algorithm follows the inverse of desired pattern (note this

algorithm was purposefully designed to harm the data (Section 4.2.3) by selecting

the most misleading genes). For each column in this table, we highlighted the best

scores (the highest % Within and the lowest % Across values) and see that almost

all best scores are achieve by variance based ranking algorithm. By limiting the

number of genes from all 12092 genes to just (a good set of) 1000, this algorithm

is able to decrease the gap between % Within and % Across from 92.55 − 16.32 =

76.23% to 60.00 − 42.00 = 18.00%. In this experiment, the integrative correlation

based feature selection algorithm’s performance is very close to the variance based

ranking. However, the computation time of these two methods are not comparable:

while the proposed method (variance based ranking) runs seemingly instantly on a

machine with 8GB available memory, we were not able to run integrative correlation

algorithm on the same machine. The running time of integrative correlation on a

machine with 20GB memory was more than 5 minutes.

We performed the same analysis on the mouse study (for more details, refer to

Section 5.1 and Section 7.2.1) to find the significant differentially expressed genes

between the two strains of mouse used in this study. Table 7.3 summarizes the

results of this experiment. Most of the findings of Table 7.2 also occur in Table 7.3:

Random feature selection does not change the scores for % Within and % Across

and their values stay the same as when we use all 21187 genes; variance based

ranking consistently improves both scores and manages to decrease the gap between

% Within and % Across from 96.51−5.98 = 90.53 to 69.60−13.80 = 55.8. The mean

based ranking and integrative correlation analysis manages to increase the % Within

a little bit by choosing 10,000 and 8,000 genes, but their performance degrades as the

number of selection genes become smaller. In fact, integrative correlation algorithm

manages to achieve the worst % Within score of 0.20% for 1000 selected genes,

meaning that both within-batch analyses only agreed that 2 genes out of these

1000 genes were significant. Finally, correlation increment algorithm consistently

degrades both % Within and % Across scores. Again the best scores in each column

is highlighted and in this case, for all selected gene numbers, variance-based gene

ranking algorithm achieved the best scores.

This section’s experiments suggest that conducting an effective gene selection

algorithm in order to remove genes that are highly influenced by batch effects is

a useful practice. Gene selection does not replace the batch correction algorithms;

128

No. of selected genes All 10000 8000 6000 4000 2000 1000

Random
% Within 5.89 5.86±0.16 5.92±0.22 5.85±0.27 5.91±0.36 6.00±0.55 6.01±0.65
% Across 96.51 96.52±0.13 96.52±0.15 96.52±0.21 96.49±0.25 96.53±0.37 96.58±0.53

Stnd Dev
% Within - 9.65 10.93 11.78 12.55 12.30 13.80
% Across - 93.71 92.51 90.68 87.67 80.50 69.60

Mean
% Within - 7.70 7.55 7.08 6.55 6.80 6.00
% Across - 95.16 94.75 94.53 94.17 94.55 95.00

Integ Cor
% Within - 9.13 7.61 4.92 2.45 0.85 0.20
% Across - 94.62 93.90 93.10 91.47 87.65 82.60

Cor Incr
% Within - 4.26 3.96 3.92 3.72 3.20 2.10
% Across - 95.59 95.31 94.63 93.70 91.55 88.00

Table 7.3: The percentage of significant genes between two mouse strains (B6 versus NOD) dis-
covered using two batches, one conducted using Mouse Gene 1.0 ST Array and other one Mouse
Gene 1.1 ST Array, and by performing t-test at 0.001 significance level. Each column indicates the
number of genes used for the experiment, starting with all genes (21187). Each row contains one
feature selection algorithm: Random (randomly choose genes, reported results are for 100 repe-
titions), Stnd Dev (variance based ranking 4.2.2), Mean (mean intensity based ranking 4.2.2),
Integ Cor (Integrative correlation analysis 4.2.1), and Cor Incr (correlation increment gene se-
lection algorithm 4.2.3).
For each combination of feature selection algorithm and number of feature, two numbers are re-
ported % Within (the number of common significant genes found by two within-batch analyses)
and % Across (the number of common significant genes found two across-batches analyses). The
best performance in each column is highlighted: the highest for % Within values and the lowest for
% Across values.

however, it does improve their performance (and also the performance of all other

downstream analyses) by removing genes that seem contain no useful biological

information. The next section will look at the actual batch correction algorithms

and compare their performance using several experiments.

7.2 Batch effect correction comparison

This section describes several BE correction algorithms and compares their perfor-

mance using the techniques introduced in Chapter 5. More specifically, using the

supervised detection algorithms introduced in Section 5.3, we compare the set of dif-

ferentially expressed genes before and after applying the BE correction algorithms.

For finding the set of significant differentially expressed genes between two groups

of biologically different profiles, such as case versus control, we use the simple t-test

statistic and then use a particular significance level to determine whether a gene is

significant.

The following two sections compare the performance of our proposed method,

BECCA, to four other batch correction algorithms: ComBat [69], RUV2 [9], BMC [86],

and DWD [67]. All BE correction methods are conducted in an unsupervised mode,

i.e., the biological labeling of gene expression profiles is not observed by BE cor-

rection algorithms. The only observed information is the batch grouping, meaning

that the algorithms know to which batch each profile belongs.

129

In addition to this, RUV2 requires a priori known set of negative control genes

(see Section 6.3). We used Affymetrix GeneChip documentations to find the house-

keeping probesets and used them as negative control genes. Affymetrix’s human

GeneChip platforms, such as HGU95A, HGU95Av2, HGU133A, or HGU133Plus2,

annotate the housekeeping probesets with AFFX labels. We used these genes as

negative control genes for RUV2 method.

We run all algorithms using R version 3.0.1 and bioconductor version 2.12. For

ComBat we used the implementation provided by authors, available at http://www.

bu.edu/jlab/wp-assets/ComBat/Download.html. We used the inSilicoMerging

package [138] to run BMC and DWD methods. We implemented the RUV2 method

according to the details provided by Gagnon-Bartsch and Speed [9], Jacob et al.

[89]. We implemented the naive unsupervised RUV2 and estimated the unobserved

technical covariates W using SVD and considered the unobserved coefficients as

fixed effects.

7.2.1 GSE33822 (mouse brain study)

As Section 5.1 earlier explained, Sun et al. [122] conducted a study that includes

48 = 2×8×3 mouse brain spicemens: 2 mouse strains C57BL/6J versus NOD/ShiLtJ

(here referred as B6 and NOD), 8 mice per strain, and 3 spicemens from each mouse:

forebrain, hindbrain, and whole brain. Each of these 48 specimens was profiled on

two Affymetrix GeneChips: Mouse Gene 1.0 ST Array and Mouse Gene 1.1 ST

Array, which share 21187 common probesets. We refer to these two 48 × 21187

expression matrices as batch-10 and batch-11. Here, the main biological signals that

should lead to differential expressed genes are mouse strain and brain region; and

the main source of batch effect is the platform.

In this section we use the idea of Figure 7.2 to compare 3 sets of significant

differentially expressed genes: (1) within-batch, (2) across-batch, and (3) across-

batch false positive. For all significant analysis tests we used the Student t-test with

significant level 0.05 applied to p-values. By comparing the number of genes in these

three sets, one can evaluate the confounding influence of unwanted technical factors

on biological signal. Two evaluative criteria indicate the influence of batch effects:

• Number of genes in across-batch false positive 6= zero.

• Number of genes in within-batch � number of genes in across-batch.

130

http://www.bu.edu/jlab/wp-assets/ComBat/Download.html
http://www.bu.edu/jlab/wp-assets/ComBat/Download.html

Case Control

C
a
s
e

Control

Batch1 Batch2

DE within1 DE within2

DE Across2DE Across1

Within-batch significant genes

Across-batch significant genes

DE
Control

DE
Case

Across-batch false positive genes

Figure 7.2: Finding the set of significant differently expressed genes between case
and control groups, within-batch (bottom), across-batch (top-right), and across-batch
false positives (top-left).
This figure is the same as Figure 5.9, just redrawn for easier reference.

The reason why these two criteria indicate BE is very straightforward: comparing

two case groups (or two control groups) from different batches should essentially

result in no significant genes, as we are comparing two sets of profiles that have

similar biological condition. If we find any genes that appears significant, it means

the significance is due to the batch factors rather than the biological factor, there-

fore, across-batch false positive 6= zero is an indication of BE influence. Similarly,

comparing the case group versus the control group should result in approximately

the same number of significant genes, regardless of the batch to which these groups

belong. Again, if the number of across-batch significant genes are much larger than

the number of within-batch significant genes, one can infer that the across batch

comparison is influenced by the technical differences between the two batches.

We use these two criteria to evaluate how different BE correction algorithms

reduce the confounding influence of BE. Moreover, if the two within-batch significant

genes have many genes in common with each other, then one can be more certain

that these genes are truly associated with the biological factor of interest. Similarly,

131

if a particular gene is declared significant by both across-batch analyses, there is

a higher chance that this gene’s expression is truly related to the biological signal.

Therefore, if all 4 significant analyses have many genes in common we suggest there

is less batch effect influence on the biological signal.

We summarize all these numbers using tabular structure similar to the two tables

in Figure 5.11. Figure 7.3 has 12 replicates of this table. As one can see, the within-

batch numbers are highlighted by the grey cell colors and the redundant values in

these tables are replaced with “.” as the table is symmetrical. Also cells on the main

diagonal contain “-” to indicate the absence of any significant genes (comparing

a group of gene expression profiles to itself does not result in any significant gene).

These tables also include numbers that show the consistency of two within-batch

analyses, two across-batch analysis, and all four of them.

Figure 7.3 is organized as 2 columns and 6 rows; each row contains the results

of one correction algorithm (the first row is the uncorrected data), whereas the

columns are related to the biological annotation used for dividing the profiles into

case versus control groups. The left column contains the significant analysis of two

brain regions (i.e., forebrian versus hindbrain) and the right column has the results

of mouse strain comparison (i.e., B6 versus NOD).

We start analyzing Figure 7.3 by looking at the top-left table, i.e., the uncor-

rected results for brain region comparison. The two evaluative criteria for this table

are:

• Number of genes in across-batch false positive

– 21049 (Batch-10/FB vs. Batch11/FB)

– 21079 (Batch-10/HB vs. Batch11/HB)

is 6= zero.

• Number of genes in within-batch

– 13980 (Batch-10/FB vs. Batch10/HB)

– 12247 (Batch-11/FB vs. Batch11/HB)

is � number of genes in across-batch

– 20755 (Batch-10/FB vs. Batch11/HB)

132

Tissue : forebrain (FB) vs. hindbrain (HB) Strain: B6 vs. NOD

Uncorrected

Batch-10 Batch-11
FB HB FB HB

Batch-10
FB - 13980 21049 20755
HB . - 20844 21079

Batch-11
FB . . - 12247
HB . . . -

Shared Across 20464 (96.83%) out of 21135
Shared Within 10985 (71.13%) out of 15444
Shared All 10406 (49.23%) out of 21139

Batch-10 Batch-11
B6 NOD B6 NOD

Batch-10
B6 - 5370 21071 21024
NOD . - 21039 21072

Batch-11
B6 . . - 5725
NOD . . . -

Shared Across 20923 (98.97%) out of 21140
Shared Within 4110 (58.82%) out of 6987
Shared All 4009 (18.96%) out of 21145

BECCA

Batch-10 Batch-11
FB HB FB HB

Batch-10
FB - 13822 115 14625
HB . - 12861 93

Batch-11
FB . . - 14255
HB . . . -

Shared Across 12618 (84.85%) out of 14871
Shared Within 12131 (76.07%) out of 15948
Shared All 11712 (72.5%) out of 16154

Batch-10 Batch-11
B6 NOD B6 NOD

Batch-10
B6 - 3545 93 2803
NOD . - 3052 79

Batch-11
B6 . . - 2816
NOD . . . -

Shared Across 2564 (77.86%) out of 3293
Shared Within 2389 (60.12%) out of 3974
Shared All 2287 (56.37%) out of 4057

ComBat

Batch-10 Batch-11
FB HB FB HB

Batch-10
FB - 13978 254 13064
HB . - 13096 372

Batch-11
FB . . - 12452
HB . . . -

Shared Across 11968 (84.32%) out of 14194
Shared Within 10989 (71.16%) out of 15443
Shared All 10772 (68.59%) out of 15706

Batch-10 Batch-11
B6 NOD B6 NOD

Batch-10
B6 - 5373 51 4990
NOD . - 5320 66

Batch-11
B6 . . - 5729
NOD . . . -

Shared Across 4763 (85.84%) out of 5549
Shared Within 4113 (58.83%) out of 6991
Shared All 4062 (57.45%) out of 7070

RUV2

Batch-10 Batch-11
FB HB FB HB

Batch-10
FB - 12091 1168 11162
HB . - 11636 925

Batch-11
FB . . - 11426
HB . . . -

Shared Across 10196 (80.89%) out of 12604
Shared Within 9882 (72.46%) out of 13637
Shared All 9562 (67.98%) out of 14065

Batch-10 Batch-11
B6 NOD B6 NOD

Batch-10
B6 - 6466 265 6905
NOD . - 6526 322

Batch-11
B6 . . - 7696
NOD . . . -

Shared Across 5827 (76.61%) out of 7606
Shared Within 4988 (54.36%) out of 9176
Shared All 4837 (51.69%) out of 9357

BMC

Batch-10 Batch-11
FB HB FB HB

Batch-10
FB - 13980 904 12966
HB . - 13172 1301

Batch-11
FB . . - 12247
HB . . . -

Shared Across 11926 (83.9%) out of 14214
Shared Within 10985 (71.13%) out of 15444
Shared All 10721 (68.26%) out of 15707

Batch-10 Batch-11
B6 NOD B6 NOD

Batch-10
B6 - 5370 225 4981
NOD . - 5290 265

Batch-11
B6 . . - 5725
NOD . . . -

Shared Across 4740 (85.67%) out of 5533
Shared Within 4110 (58.82%) out of 6987
Shared All 4043 (57.21%) out of 7067

DWD

Batch-10 Batch-11
FB HB FB HB

Batch-10
FB - 13980 865 13251
HB . - 12882 1275

Batch-11
FB . . - 12447
HB . . . -

Shared Across 11949 (84.23%) out of 14186
Shared Within 10985 (71.13%) out of 15444
Shared All 10733 (68.38%) out of 15695

Batch-10 Batch-11
B6 NOD B6 NOD

Batch-10
B6 - 5370 245 5033
NOD . - 5267 264

Batch-11
B6 . . - 5725
NOD . . . -

Shared Across 4567 (79.63%) out of 5735
Shared Within 4110 (58.82%) out of 6987
Shared All 4007 (56.25%) out of 7124

Figure 7.3

133

– 20844 (Batch-10/HB vs. Batch11/FB)

In comparison, the results of the BECCA (left column, second row) suggest much

less influence of BE:

• Number of genes in across-batch false positive

– 115 (Batch-10/FB vs. Batch11/FB)

– 93 (Batch-10/HB vs. Batch11/HB)

is ≈ zero.

• Number of genes in within-batch

– 13822 (Batch-10/FB vs. Batch10/HB)

– 14255 (Batch-11/FB vs. Batch11/HB)

is ≈ number of genes in across-batch

– 14625 (Batch-10/FB vs. Batch11/HB)

– 12861 (Batch-10/HB vs. Batch11/FB)

The same trend is observed for the other 4 BE correction methods, however,

none reduced the number of across-batch false positive as much as BECCA. The

sum of the across-batch false positive for BECCA is 115 + 93 = 208, while this

number for ComBat is 626, for RUV2 is 2093, for DWD is 2140, and for BMC is

2205.

The other interesting consequence of conducting the BE correction algorithms

on data is how they change the consistency of significant gene sets. According to

the uncorrected results, although 21139 (out of 21187 genes, ≈ 99.8%) genes are

declared significant by at least one of the 4 sets (two within-batch and two across-

batch significant analyses), only 49.23% of them are declared significant by all 4

sets. BECCA increases this number to 72.5%, suggesting that now the 4 significant

sets are more consistent with each other. Note that BECCA’s number is larger than

other 4 correction algorithms and thus, according to this measure, it ranks better

than those algorithms.

The right column of Figure 7.3, which shows the number of significant genes

between the two strains of mouse used in the study, exhibits the same results. While

134

in the uncorrected data, there are many across-batch false positive genes (21071 and

21072), utilizing BECCA reduces these numbers to 93 + 79 = 172. According to

this criteria, BECCA ranked second best BE correction algorithm after ComBat

with 51+66 = 117 across-batch false positive. Note that utilizing the BE correction

algorithms increases the consistency of significant genes from 18.96% in uncorrected

data to ≈ 57%.

7.2.2 Breast cancer study

In this section we will compare the significant genes between two subtypes of breast

cancer, ER+ and ER- . For this purpose, we use instances of two publicly available

gene expression data sets: GSE2034 and GSE7390 (for more details see Section 4.1).

We process both data sets using the BrainArray [82] custom cdf files version 17.0.0

and the RMA [106] function in R, resulting in 12092 probesets. We use the stu-

dent t-test to identify the genes that are differentially expressed between the two

subgroups of patients, ER+ versus ER-. The number of significant genes (out of

12092 genes) at a 0.001 significant level is reported in each of the 12 tables in Fig-

ure 7.4. Highlighted grey cells contain the within-batch numbers and as each table

is symmetrical, redundant values are avoided by putting “.” in corresponding cells.

The main diagonal cells are filled with “-” indicating there are no significant genes

associated with them.

Reading and analyzing the 12 tables of Figure 7.4 is done the same way as we

studied Figure 7.3. Here, both of the 2 main columns analyze the ER+ versus ER-;

the left column considers all 12092 genes while the right column deals only with the

1000 genes with the highest variance.

Studying the two evaluative criteria, introduced in Section 7.2, for the top-left

table (all genes in uncorrected data) will suggest the strong confounding influence

of BE:

• Number of genes in across-batch false positive

– 11640 (GSE2034/ER+ vs. GSE7390/ER+)

– 11847 (GSE2034/ER- vs. GSE7390/ER-)

is 6= zero.

• Number of genes in within-batch

135

ER+ versus ER-
All genes (12092) 1000 high variance genes

Uncorrected

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 3323 11640 11630
ER- . - 11532 11847

GSE7390
ER+ . . - 2644
ER- . . . -

Shared Across 11191 (93.48%) out of 11971
Shared Within 1974 (49.41%) out of 3995
Shared All 1585 (13.23%) out of 11982

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 584 854 803
ER- . - 767 921

GSE7390
ER+ . . - 463
ER- . . . -

Shared Across 600 (61.79%) out of 971
Shared Within 420 (66.99%) out of 627
Shared All 183 (18.83%) out of 972

BECCA

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 2514 2 2120
ER- . - 1311 0

GSE7390
ER+ . . - 1276
ER- . . . -

Shared Across 1227 (55.62%) out of 2206
Shared Within 1061 (38.85%) out of 2731
Shared All 991 (35.81%) out of 2767

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 504 0 453
ER- . - 365 0

GSE7390
ER+ . . - 324
ER- . . . -

Shared Across 354 (75.97%) out of 466
Shared Within 297 (55.72%) out of 533
Shared All 291 (54.6%) out of 533

ComBat

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 3323 3 3088
ER- . - 2534 0

GSE7390
ER+ . . - 2645
ER- . . . -

Shared Across 2293 (68.84%) out of 3331
Shared Within 1974 (49.4%) out of 3996
Shared All 1947 (48.25%) out of 4035

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 584 1 554
ER- . - 471 0

GSE7390
ER+ . . - 463
ER- . . . -

Shared Across 445 (76.72%) out of 580
Shared Within 420 (66.99%) out of 627
Shared All 404 (63.82%) out of 633

RUV2

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 957 73 836
ER- . - 660 61

GSE7390
ER+ . . - 754
ER- . . . -

Shared Across 504 (50.7%) out of 994
Shared Within 356 (26.23%) out of 1357
Shared All 330 (22.76%) out of 1450

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 251 8 239
ER- . - 180 6

GSE7390
ER+ . . - 175
ER- . . . -

Shared Across 158 (60.08%) out of 263
Shared Within 113 (35.87%) out of 315
Shared All 112 (34.04%) out of 329

BMC

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 3325 24 3044
ER- . - 2483 9

GSE7390
ER+ . . - 2644
ER- . . . -

Shared Across 2237 (67.95%) out of 3292
Shared Within 1974 (49.39%) out of 3997
Shared All 1920 (47.49%) out of 4043

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 584 3 555
ER- . - 466 0

GSE7390
ER+ . . - 463
ER- . . . -

Shared Across 450 (78.81%) out of 571
Shared Within 420 (66.99%) out of 627
Shared All 407 (64.4%) out of 632

DWD

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 3325 22 3104
ER- . - 2461 13

GSE7390
ER+ . . - 2644
ER- . . . -

Shared Across 2218 (66.23%) out of 3349
Shared Within 1974 (49.39%) out of 3997
Shared All 1901 (46.65%) out of 4075

GSE2034 GSE7390
ER+ ER- ER+ ER-

GSE2034
ER+ - 584 27 596
ER- . - 484 22

GSE7390
ER+ . . - 463
ER- . . . -

Shared Across 389 (56.3%) out of 691
Shared Within 420 (66.99%) out of 627
Shared All 362 (50.42%) out of 718

Figure 7.4

136

– 3323 (GSE2034/ER+ vs. GSE2034/ER-)

– 2644 (GSE7390/ER+ vs. GSE7390/ER-)

is � number of genes in across-batch

– 11630 (GSE2034/ER+ vs. GSE7390/ER-)

– 11532 (GSE2034/ER- vs. GSE7390/ER+)

BECCA removes the BE from the data successfully and improves both evaluative

criteria:

• Number of genes in across-batch false positive

– 2 (GSE2034/ER+ vs. GSE7390/ER+)

– 0 (GSE2034/ER- vs. GSE7390/ER-)

is ≈ zero.

• Number of genes in within-batch

– 2514 (GSE2034/ER+ vs. GSE2034/ER-)

– 1276 (GSE7390/ER+ vs. GSE7390/ER-)

is ≈ number of genes in across-batch

– 2120 (GSE2034/ER+ vs. GSE7390/ER-)

– 1311 (GSE2034/ER- vs. GSE7390/ER+)

BECCA removes the BE signal more conservatively than ComBat. Thus the

number of true significant genes within-batch and across-batch is lower. Further

analysis of other BE correction algorithms shows that RUV2 is even more conser-

vative and its number of significant genes is less than BECCA. Better performance

of ComBat is also manifested by the consistency of significant genes: ComBat finds

1947 genes significant by all 4 analyses (two within-batch and 2 across-batch), which

is 48.25% of declared significant genes. In comparison, BECCA only finds 35.81%

of genes consistently significant by all 4 analysis and RUV2 22.76%.

We can understand the reason of this lower performance by comparing BMC

results to ComBat results. As one can see, BMC results are very similar to ComBat

results, especially the across-batch and within-batch numbers. This means that the

137

BE influence in this data set is less complicated and by subtracting means one can

remove the confounding influence of BE. ComBat, being a location-scale method [2],

manages to perform accordingly and remove BE without distorting the biological

signal. On the other hand, BECCA and RUV2, being matrix-factorization based,

fail to produce the same result. Therefore, we anticipate that BECCA will perform

better than ComBat when the batch effect is more complex.

Comparing the left column to the right column, one can see another evidence

supporting the claim of Section 7.1 regarding the better performance of high vari-

anced genes. In all 6 rows of Figure 7.4, the consistency of significant genes in better

in the right column, i.e., when using only the 1000 genes with high variance. For ex-

ample, 13.23% of the genes are declared significant by all 4 analyses for uncorrected

data, but when we only consider 1000 high variance genes, this number increases

to 18.83%. The same improvement is observed for all other rows: BECCA from

35.81% to 54.6%, ComBat from 48.25% to 63.82%, RUV2 from 22.76% to 34.03%,

BMC from 47.49% to 64.40%, and DWD from 46.65% to 50.42%,

Our classifier-based analysis of batch effects (see Section 5.3), confirms the find-

ings of the DE based analysis. Figure 7.5 summarizes the results of applying KNN

(k = 3) classification algorithm to the task of distinguishing ER+ breast cancer

samples from ER- samples. The classifier is trained within each batch (grey cells in

each table) as well as across the batches. Here, the same two datasets of Figure 7.4

(GSE2034 and GSE7390) are used as the two batches. The left column contains the

results using all available genes while the right column displays the results based on

the top 1000 high variance genes.

Both tables in the top row contain a block of four 100.0 scores, which means four

across-batch classification tasks perfectly distinguished samples of the two classes,

even when these samples are biologically the same (ER+ versus ER+ and ER-

versus ER-). This is caused by the same phenomena that we observed earlier in

Figure 7.4 and discussed it in Section 3.3. These four classifiers perfectly separate

samples because of the technical bias caused by the BE, rather than the biological

differences between samples.

The bottom row shows the affect of removing the technical bias between the

batches using the BECCA method. We like to emphasize three important observa-

tions about comparing the top row and the bottom row:

1. Within-batch accuracies are almost constant after the batch correction.

138

ER+ versus ER-
All genes (12092) 1000 high variance genes

Uncorrected

GSE2034 GSE7093
ER+ ER- ER+ ER-

GSE2034
ER+ - 81.12 100.0 100.0
ER- 74.74 - 100.0 100.0

GSE7093
ER+ -
ER- -

GSE2034 GSE7093
ER+ ER- ER+ ER-

GSE2034
ER+ - 83.92 100.0 100.0
ER- 81.31 - 100.0 100.0

GSE7093
ER+ -
ER- -

BECCA

GSE2034 GSE7093
ER+ ER- ER+ ER-

GSE2034
ER+ - 80.07 58.87 85.31
ER- 74.24 - 85.71 66.76

GSE7093
ER+ -
ER- -

GSE2034 GSE7093
ER+ ER- ER+ ER-

GSE2034
ER+ - 84.62 57.45 84.83
ER- 80.81 - 83.52 60.93

GSE7093
ER+ -
ER- -

Figure 7.5: Leave one out classification accuracy of ER status prediction using KNN
algorithm (k = 3).
Comparing within-batch performance (shaded area) to across-batch perfromance in
top row shows a significant difference between them which indicates the existance
of BE in the uncorrected data.
The highlighted values (ER+/ER+ and ER-/ER- across batches) are related
to the classification of sample of the same biological group. There is no biological
distinction between these paitients and only the technical bias makes them different.
Note that after batch correction, these classification accuracies reduces from 100.0 to
≈ 50.00. This indicates that, after correction, there is no evident difference between
biologically similar patients, as desired.

2. After correction, across-batch accuracies are almost equal to within-batch

numbers.

3. After correction, ER+/ER+ and ER-/ER- accuracies are ≈ 50.00.

These three criteria confirm that, in this example, the BE correction algorithm was

able to successfully remove the technical differences without distorting the biological

signal of interest.

By comparing the left column of Figure 7.5 to its right column, one can see

the affect of removing low variance genes on the severity of BE. Especially in the

bottom row, using high variance genes improves all three criteria. This is consistent

with our previous observations regarding the benefits of using variance-based feature

selection to reduce the negative affect of technical bias.

7.3 Summary

This chapter examines how the ideas and algorithms proposed throughout this thesis

perform when using real gene expression data sets. These experiments are designed

to explore two goals: (1) to demonstrate the influence of feature selection on batch

effects, and (2) to compare the performance of batch effect correction algorithms.

139

In all experiments of this chapter to measure the amount of batch effect influence,

we used the techniques introduced in Chapter 5.

Section 7.1 looked at the effect of feature selection on reducing the influence of

confounding factors. According to our results, in the big pool of measured gene

expressions in microarray data sets, there exist some genes that are less influenced

by unwanted technical factors and contain more useful biological signal for learning

algorithms; and there are some genes that appear to contain very little, or no bio-

logical information. If an unsupervised gene selection algorithm (one that does not

use any gene or instance labeling) is able to utilize some heuristics to choose genes

from the former group, then it can effectively reduce the influence of unwanted tech-

nical factors and emphasize the biological relation between the instances across the

batches. Our experiments show that the variance based ranking feature selection,

introduced in Section 4.2.2, consistently chooses the best subset of genes compar-

ing to other feature selection algorithms introduced in Chapter 4. In contrast, the

correlation increment gene selection algorithm, introduced in Section 4.2.3, which

was purposefully designed to choose the most misleading genes, consistently chooses

a subset of genes that are more influenced by batch effects and thus limiting the

analysis to these genes will result in worse results. In summary, these experiments

show that it is essential to remove these genes before conducting the batch correction

algorithms or down stream analysis.

Section 7.2 studies the effect of conducting different BE correction algorithms

and compares their performance to our proposed method BECCA (see Chpater 6).

These empirical results show that BECCA performs as effectively as state-of-the-art

algorithms such as ComBat and RUV. Our experiments show BECCA transforms

data in a way that the set of significant genes found within-batch and across-batch

agree with each other and that the number of false-positives across-batches is signif-

icantly reduced. This behavior was consistently observed in all experiments. That

section also looked at the performance of BE correction algorithms after applying

variance-based ranking gene selection; the performance of all BE correction algo-

rithms improved when they were applied to the selected features. This experiment

shows that using variance-based feature selection not only is effective on its own

(as experiments of Section 7.1 showed) but also it improves the performance of BE

correction algorithms by removing severely confounded genes.

140

Chapter 8

Conclusion and Future Work

As the number of features (p) is much smaller than the number of samples (n) in

gene expression microarrays, applying many of the standard leaning algorithms to

gene expression studies will not produce effective classifiers. This thesis deals with

the “large p, small n” challenge in the gene expression microarrays and compares

different ways to reduce the gap between these two numbers. Solutions for this chal-

lenge can be divided into two main groups: (1) methods that reduce p by applying

feature selection algorithms and (2) methods that increase n by combining several

gene expression studies together.

We considered several unsupervised gene selection algorithms in Chapter 4 and

compared their performance experimentally in Section 7.1. Our results show that the

best performing gene selection algorithm is variance-based gene ranking; it basically

ranks genes by aggregating their ranked variance in each batch and then removes

genes with lower rankings. We proposed an algorithm that efficiently aggregates

the variance ranking of genes in several batches and produces one final ranking

for them, i.e., we extend the single-study variance-based feature selection into a

multi-study gene selection algorithms that computationally is linear in the number

of studies. The feature selection algorithm based on this idea consistently achieved

better results compared to other gene selection algorithms in our experiments. In

fact, in Section 4.5 we observed that similarity between the variance of genes across

two gene expression studies, is a strong indicator of the similarity of the biological

phenomenons in each study [Contribution 4, Section 1.1].

The other main finding related to the feature reduction was achieved by propos-

ing a novel algorithm that ranks genes based on a criterion that increases the correla-

tion between gene expression profiles across studies. This feature selection algorithm

141

is able to identify a set of “less informative” or misleading genes that do not repre-

sent the biological differences between samples – using just this subset of genes, the

mean correlation between the profiles of any two studies is around 0.95, regardless

of the biological properties of the profiles such as their tissue of origin. For exam-

ple, in Section 4.3 we observed that using these genes the mean correlation between

ovarian cancer instances and prostate cancer instances was more than 0.95, while

using another subset of genes the mean correlation was less than 0.6, which is a

more reasonable correlation score for cancers from different tissues. Experimental

results of Section 7.1 confirmed that these “less informative” genes are significantly

more influenced by technical factors comparing to all other genes selected by other

algorithms as well as random selection of genes. These results suggest that there

are some genes in gene expression studies that do not contain any useful biological

information and are heavily influenced by technical factors; failing to remove them

will degrade the performance of downstream analysis. Therefore, we highly recom-

mend applying a feature selection algorithm to every gene expression data set before

conducting any analysis on it [Contribution 3, Section 1.1].

The alternative way to deal with “large p, small n” problem is to increase n

by combining publicly available gene expression data sets containing profiles with

similar biological properties. The main obstacle to use this solution is the batch

effects, the unwanted influence of technical factors on gene expression intensities that

confounds the effect of biological factors in each data set differently and therefore

makes the intensities across data sets not comparable. Therefore, in order to combine

several gene expression studies together, first one needs to remove the batch effects

from each study. Several algorithms have been proposed for this purpose; in this

thesis we introduce a novel batch correction algorithm based on canonical correlation

analysis (CCA) called BECCA.

Our method’s main assumption is that the common signal across studies is the

biological signal while the signal caused by the technical factors in each study is in-

dependent from the others and also from the biological signal. BECCA first deploys

CCA to find the common signal across data sets and then subtracts this component

from the expression values. The variance in the resulting residual matrix is believed

to be due to the unwanted technical factors, which one needs to remove from the

data. We remove their influence by finding the main directions of variance in the

residual matrix of each batch and subtract it from the associated expression matrix

142

[Contribution 1, Section 1.1].

We experimentally compared the performance of BECCA to other popular batch

correction algorithms using several real-world gene expression data sets in Sec-

tion 7.2. In order to evaluate their performance, we used the ideas proposed in

Chapter 5. According to these measures, BECCA performs competitively in all ex-

periments and successfully removes the influence of technical factors from the gene

expression data sets. The performance of BECCA in Chapter 7 suggests that our

method’s assumptions are valid in real-world gene expression microarrays [Contri-

bution 2, Section 1.1].

To compare the performance of different batch correction algorithms and also

to measure the amount of confounding influence of technical factors as a function

of selected genes, we used the evaluation techniques introduced in the Chapter 5.

These techniques provide a wide range of visual and qualitative measures to evaluate

the amount of batch effects present in a dataset. In the experiments of Chapter 7,

we mostly used the performance measure based on the number of differentially

expressed genes within and across batches (see Section 5.3) which is an extension

to the analyses conducted by Sims et al. [86]. We believe this evaluation method,

with its minimal assumptions and simple computations, is a very effective way to

evaluate the existence of batch effects [Contribution 5, Section 1.1].

One of the main challenges of using BECCA is setting the correct value of its

parameters: the number of canonical directions preserved to separate the shared

biological signal, and the number of high-variance dimensions in residual matrices

chosen to subtract from the data. Currently, we are using a simple heuristic for this

purpose, as running exhaustive search to find the optimal values of all 3 parameters

is computationally very expensive. In the future, we plan to explore better ways to

set the BECCA parameters to isolate and subtract the batch effect more effectively.

Another challenge faced by batch effects correction algorithms is the compo-

sition of the batches, i.e., the biological properties, such as cancer sub-types and

clinical outcomes, of instances in each batch. Many batch correction algorithms,

including BECCA, assume the biological composition of batches are similar, i.e.,

instances of all batches are random samples of one common population and there is

no major biological difference between batches. Therefore, batches are assumed to

have proportionally equal number of instances from each biological group. This is

an assumption that is hard to evaluate as in some cases the key biological properties

143

may not even be known. Sims et al. [86] conducted some experiments on two main

sub-types of breast cancer (ER+ versus ER-) and concluded that the accuracy of

predictions and batch corrections is highly dependent upon the composition of the

data sets and patient characteristics. Finding a way to distinguish the differences in

biological composition from the technical differences across batches is a very impor-

tant task to decide whether two batches are good candidates to be merged together.

Dealing with the covariate shift [139] in the presence of batch effects is another

challenge we would like to explore in the future.

As BECCA does not depend on the biological labeling of instances or any spe-

cial properties of genes and because it does not make any strong assumptions

about the generating source of the batch effects and their distribution, we be-

lieve it will perform effectively in other domains where the signal of interest is

confounded by the influence of irrelevant technical factors – including other biolog-

ical high-throughput technologies such as proteomics, bead chips, mass spectrom-

eters, and next-generation DNA sequencing [3]. Applying BECCA to data from

other domains and evaluating its performance is another direction we would like

to explore. For this purpose we have implemented BECCA in an R script that

is freely from https://sites.google.com/site/svaisipour/utilities so other

researchers can easily apply it to their data sets.

144

https://sites.google.com/site/svaisipour/utilities

Appendix A

Canonical Correlation Analysis
Formulations

This chapter provides a detailed review of canonical correlation (CCA) analysis and

its different formulations. It shares some materials with Chapter 6, as in that chapter

we provided the basic idea behind CCA. This appendix provides a full overview of

different ways to solve CCA problem.

Formulation Assumptions

We assume data matrices (batches) contain observations in the rows and features in

the columns. So X1 [n×p1] includes observations vectors of x1i ∈ Rp1 for i = 1 · · ·n .

We can show data matrices using their rows

X1 = [x11, · · · ,x1n]t

X2 = [x21, · · · ,x2n]t

CCA analysis typically assumes X1 [n×p1] and X2 [n×p2] are two views of n same

objects that study them by p1 and p2 features respectively. We show the column-

wise merging of two views by X = [X1 X2] which is a n × (p1 + p2) data matrix.

We also assume each of these data matrices is mean centered.

Xt
11 = 0

Xt
21 = 0

145

where 1 is a column vector of all 1’s. This assumption makes the scatter matrices

S proportional to covariance matrices Σ

Σ11 = Cov(X1,X1) = E[(X1 − E[X1])
t(X1 − E[X1])]

= E[Xt
1X1]

=
1

n
Xt

1X1 =
1

n
S11

and similarly

Σ22 = Cov(X2,X2) =
1

n
Xt

2X2 =
1

n
S22

the same applies to the cross-covariance matrix

Σ12 = Cov(X1,X2) =
1

n
Xt

1X2 =
1

n
S12

One might use the following transform to make all features decorrelated and

have unit variance.

X̄1 = X1Σ
−1/2
11

This transformation is known as whitening and it will change the covariance of

transformed data into identity matrix.

Σ̄11 = Cov(X̄1, X̄1) =
1

n
X̄t

1X̄1 = Σ
−1/2
11

(
1

n
Xt

1X1

)
Σ
−1/2
11 = In1

where In1 represents [n1 × n1] identity matrix.

CCA

Given two views of size p1 and p2 of n subjects, CCA seeks a pair of transforms w1 ∈

Rp1 and w2 ∈ Rp2 such that correlation between transformed data is maximized

λ = max
w1,w2

cor(X1w1,X2w2) (A.1)

= max
w1

1,w2

cov(X1w1,X2w2)√
var(X1w1)

√
var(X2w2)

= max
w1,w2

w1
tXt

1X2w2√
(w1

tXt
1X1w1)

√
(w2

tXt
2X2w2)

= max
w1,w2

w1
tS12w2√

(w1
tS11w1)

√
(w2

tS22w2)

where S corresponds the scatter matrices as defined in Equation A.2

Cov(X1,X2) =

[
Σ11 Σ12

Σ21 Σ22

]
=

1

n

[
Xt

1X1 Xt
1X2

Xt
2X1 Xt

2X2

]
=

1

n

[
S11 S12

S21 S22

]
(A.2)

146

Since the norm of the weight vectors does not affect the overall max value, we

can fix their value by considering them as constraints

max
w1,w2

w1
tS12w2 (A.3)

such that || X1w1 ||22 = w1
tS11w1 = 1

and || X2w2 ||22 = w2
tS22w2 = 1

one can easily show that optimization problem in Equation A.3 is equal to minimiz-

ing the distance between transformed X1 and transformed X2

min
w1,w2

|| X1w1 −X2w2 ||F (A.4)

such that || X1w1 ||2 = w1
tS11w1 = 1

and || X2w2 ||2 = w2
tS22w2 = 1

where || · ||F is the Frobenius norm, defined as || A ||F =
√
trace(AtA).

Using Equation A.3 we can derive the Lagrangian

L(w1,w2, λ1, λ2) = w1
tS12w2 − λ1w1

tS11w1 − λ2w2
tS22w2 (A.5)

whose differentiation with respect to w1 and w2results in{
∂L
∂w1

= S12w2 − λ1S11w1 = 0
∂L
∂w2

= S21w1 − λ2S22w2 = 0

=⇒
{

S12w2 = λ1S11w1

S21w1 = λ2S22w2
(A.6)

We can use Equation A.6 to show that λ1 = λ2 by observing

λ1w
t
1S11w1 = wt

1S12w2 = wt
2S21w1 = λ2w

t
2S22w2

and the constraints wt
1S11w1 = wt

2S22w2 = 1. Thus one can rewrite Equation A.6

as {
S12w2 = λS11w1

S21w1 = λS22w2
(A.7)

By defining

A =

[
0 S12

S21 0

]
B =

[
S11 0
0 S22

]
w =

[
w1

w2

]
one can rewrite A.7 as a generalized eigenvalue problem.

Aw = λBw (A.8)

147

This problem has p1 + p2 eigenvalues {λ1,−λ1, λ2,−λ2, · · · , λp,−λp, 0, · · · , 0}

where p = min(p1, p2). The eigen vectors corresponding to the paired positive and

negative eigenvalues differ only in a negative sign. These eigen vectors relate to each

other as [w1, w2]
t and [w1, −w2]

t. Thus only finding the set of positive eigenvalues

is sufficient to fully solve the Equation A.8. Bach and Jordan [140] used a modified

version of generalized eigenvalue problem A.8 that is a more suitable formulation to

extend CCA for more than two views, i.e., multiCCA. By adding Bw to both sides

of A.8 they constructed a new generalized eigenvalue problem

Aw + Bw =λBw + Bw

=⇒ (A + B)w = (1 + λ)Bw

=⇒ Cw = (1 + λ)Bw (A.9)

where

C =

[
S11 S12

S21 S22

]
whose eigenvalues of this problem are{1 + λ1, 1− λ1, 1 + λ2, 1− λ2, · · · , 1 + λp, 1−

λp, 1, · · · , 1}. Based on the special relationship between ±λi, Bach and Jordan [140]

showed that finding the maximum eigenvalues of A.9, 1 + λmax, is equivalent to

finding its minimum eigenvalue, 1− λmax.

Properties

• Similar to other methods formulated as eigenvalue problems, CCA finds up

to p = min(p1, p2) paired projection vectors (w1,i,w2,i) and corresponding

correlation values λi. One can construct two transform matrices such as

W1 = [w1,1w1,2 . . .w1,p]

W2 = [w2,2w2,2 . . .w2,p]

Projecting data using these transform matrices decorrelates data. More specif-

ically, transformed data, Z1 = X1W1 and Z2 = X2W2, covariance is

Cov(Z1,Z2) =
1

n

[
Wt

1X
t
1X1W1 Wt

1X
t
1X2W2

Wt
2X

t
2X1W1 Wt

2X
t
2X2W2

]
=

1

n

[
Wt

1S11W1 Wt
1S12W2

Wt
2S21W1 Wt

2S22W2

]
=

[
Wt

1Σ11W1 Wt
1Σ12W2

Wt
2Σ21W1 Wt

2Σ22W2

]
=

[
Ip1 Λ
Λt Ip2

]

148

where Λ is a [p1 × p2] diagonal matrix with (λ1, . . . , λp) as diagonal values,

sorted in the descending order λ1 ≥ λ2 ≥ · · · ≥ λp. Columns of transforma-

tion matrices W1 W2 are called canonical vectors (weights). Columns of

transformed data, Z1 and Z2, are called canonical variates. λi values are

canonical correlations, correlation between pairs of canonical variates.

Note that transformation matrices Wi enforce the within view covariances

to identity matrix Wt
iΣiiWi = Ipi , for i = 1, 2, while they make the cross

covariance matrices to become diagonal Wt
1Σ12W2 = Λ.

• One can reduce principal component analysis (PCA), partial least square

(PLS), and multiple linear regression (MLR) as a generalized eigenvalue prob-

lem too [5]. The following table summarizes the values of two matrices of

Aw = λBw for each algorithm

A B

PCA S11 I

PLS

(
0 S12

S21 0

) (
I 0
0 I

)
CCA

(
0 S12

S21 0

) (
S11 0
0 S22

)
MLR

(
0 S12

S21 0

) (
S11 0
0 I

)
OPCA S N

(A.10)

Oriented principal component analysis (OPCA) is solving wtSw
wtNw where S and

N are signal and noise covariance matrices [135].

• Recall least square regression (LSR) answer is β = (XtX)−1Xty. Here if we

assume that X2 = y and w1 = 1 we can rewrite the first line of A.7 as

X1y = Xt
1X1w1

=⇒ w1 = (Xt
1X1)

−1Xt
1y

which shows that CCA reduced to least square regression when one of the data

spaces is one dimensional.

• CCA correlation values are related to the mutual information between X1 and

X2. Assuming Normal distribution for features in these two views, Tripathi

149

et al. [141] showed

I(X1,X2) = −1

2
log

(
det(Σ)

det(Σ11) det(Σ22)

)
= −1

2
log

(
det(S)

det(S11) det(S22)

)
= −1

2
log

(
p∏
i=1

(1− λi)(1 + λi)

)

= −1

2

p∑
i=1

log(1− λ2i) (A.11)

The ratio det(S)
det(S11) det(S22)

is called generalized variance. Note that maximum

mutual information between a pair of one dimension linear projections of two

views is equal to the largest term of the above sum −1
2 log(1− λ21), which cor-

responds to the first canonical direction, i.e., the highest canonical correlation

value λ1.

Other formulations of CCA

Here we show some other reformulations of CCA beside the generalized eigenvalue

problem A.8. We start by assuming that S11 and S22 are nonsingular. One can re-

formulate the generalized eigenvalue problem A.8 as an ordinary eigenvalue problem

B−1Aw = λw =⇒
[

0 S−111 S12

S−122 S21 0

] [
w1

w2

]
= λ

[
w1

w2

]
(A.12)

We can turn this into a symmetric eigenvalue problem using the substitution

u = S
1/2
11 w1 and v = S

1/2
22 w2.[

0 S
−1/2
11 S12S

−1/2
22

S
−1/2
22 S21S

−1/2
11 0

] [
u
v

]
= λ

[
u
v

]
(A.13)

by using the relation between SVD transforms of a matrix, say A, and the eigenvec-

tors of the matrix

[
0 A
At 0

]
, one can verify A.13 is the PCA reformulation of SVD

decomposition of off-diagonal component S
−1/2
11 S12S

−1/2
22 . Here u and v are right and

left singular vectors. Thus one can reduce CCA problem to a SVD decomposition

problem

C = S
−1/2
11 S12S

−1/2
22 = Σ

−1/2
11 Σ12Σ

−1/2
22 = UΛVt (A.14)

In this setting the CCA directions are{
W1 = S

−1/2
11 U

W2 = S
−1/2
22 V

(A.15)

150

using this formulation, we can define reflexive generalized inverse of CCA transfor-

mations. {
W∗

1 = UtS
1/2
11

W∗
2 = VtS

1/2
22

(A.16)

One can show these two matrices satisfy the two properties of reflexive generalized

inverse of matrices, namely

W∗
iWiW

∗
i = W∗

i and WiW
∗
iWi = Wi for i = 1, 2

By comparing A.15 and A.16, one can see the direct relationship{
W∗

1 = Wt
1S11

W∗
2 = Wt

2S22

The other way to solve the SVD problem in A.14 is to solve the PCA solution for

CCt and CtC (based on Equation A.14. This will lead into a new formulation of

CCA in which one can find pairs of canonical vectors as two independent eigenvalue

problems

CCt = S
−1/2
11 S12S

−1
22 S21S

−1/2
11 = UΛ2Ut

This PCA problem is solved by an ordinary eigenvalue problem

S
−1/2
11 S12S

−1
22 S21S

−1/2
11 u = λ2u

with the familiar change of variable u = S
1/2
11 w1, we then have

S
−1/2
11 S12S

−1
22 S21w1 = λ2S

1/2
11 w1

We can then left multiply both side with S
−1/2
11 to change this into an ordinary

eigenvalue problem. One achieves a similar result for w2 by PCA analysis of CtC.{
S−111 S12S

−1
22 S21 w1 = λ2w1

S−122 S21S
−1
11 S12 w2 = λ2w2

(A.17)

This is a new formulation to solve CCA. Note that in this case the eigenvalues are

the square of the canonical correlation values.

Another way to look at CCA is by applying whitening transformation on both

views X1 and X2 and applying PCA to the merged whitened SAMAN data set. First

we show that whitening transformation does not affect the final transformed data

under CCA. In the other words, if we represent the whiten views by X̄1 = X1Σ
−1/2
11

and X̄2 = X2Σ
−1/2
2 then we can show

X̄1W̄1 = X1W1

X̄2W̄2 = X2W2

Λ̄ = Λ
(A.18)

151

To proof this we assume X̄ = [X̄1 X̄2]. Observe that

Cov(X̄) = Σ̄ =

[
Σ̄11 Σ̄12

Σ̄21 Σ̄22

]
=

[
I Σ

−1/2
11 Σ12Σ

−1/2
22

Σ
−1/2
22 Σ21Σ

−1/2
11 I

]

we use the A.14 formulation to solve the CCA problem for X̄1 and X̄2

Σ̄
−1/2
11 Σ̄12Σ̄

−1/2
22 = ŪΛ̄IV̄t = (A.19)

I Σ̄12 I =

Σ
−1/2
11 Σ12Σ

−1/2
22 = UΛVt

thus we show Λ̄ = Λ. Using the left and right singular vectors of A.19 we can drive

the CCA weights for whiten data sets{
W̄1 = Σ̄

−1/2
11 Ū = I Ū = U

W̄2 = Σ̄
−1/2
22 V̄ = I V̄ = V

and finally we can show{
X̄1W̄1 = X̄1U = X1Σ

−1/2
11 U = X1W1

X̄2W̄2 = X̄2V = X2Σ
−1/2
22 V = X2W2

There is also an interesting relation between the PCA transformation of whiten

merged data X̄ and the CCA transformations of X1 and X2. Here we represent top

d ≤ p1 + p2 principal components of X̄ by T̄d and their corresponding eigenvalues

by D̄d = diag(α1, · · · , αd). By solving the following eigenvalue problem one can find

these directions

Σ̄ T̄d = T̄d D̄ (A.20)

be using the partitioned values of Σ̄ one can show[
I Σ

−1/2
11 Σ12Σ

−1/2
22

Σ
−1/2
22 Σ21Σ

−1/2
11 I

]
T̄d = T̄d D̄

=⇒

[
0 Σ

−1/2
11 Σ12Σ

−1/2
22

Σ
−1/2
22 Σ21Σ

−1/2
11 0

]
T̄d = T̄d (D̄− I)

earlier in A.19 we looked at the SVD transform of off diagonal components. ,we

can show that columns of T̄d are composed of left and right singular vectors of

Σ
−1/2
11 Σ12Σ

−1/2
22

T̄d =

[[
u1

v1

]
· · ·

[
ud
vd

]]

152

and D̄ = Λ + 1. One might use the T̄d to reduce the dimensions of X̄ from p1 + p2

to d

X̄d = X̄ T̄d = [X̄1 X̄2] T̄d

= [X1Σ
−1/2
11 X2Σ

−1/2
22] T̄d

= [X1Σ
−1/2
11 X2Σ

−1/2
22]

[[
u1

v1

]
· · ·

[
ud
vd

]]
= [X1 X2]

[[
Σ
−1/2
11 u1

Σ
−1/2
22 v1

]
· · ·

[
Σ
−1/2
11 ud

Σ
−1/2
22 vd

]]

= [X1 X2]

[[
w11

w21

]
· · ·

[
w1d

w2d

]]
= X1 W1d + X2 W2d

this means that if one whitens the two views of objects and then apply PCA to it

to reduce the dimensionality to d the result will be the same as applying CCA to

each view and adding the transformed views together. So far we have formulated

CCA as

• Generalized eigenvalue problem A.8 and A.9

• Symmetric eigenvalue problem A.13

• SVD problem A.14

• Two independent ordinary eigenvalue problems A.17

• PCA problem of whiten views A.20

Note all these formulations are in primal space as opposed to the dual space. Also

note all of them are based on within and across scatter matrix components A.2.

Probabilistic interpretation of CCA

All formulations of CCA so far were based on linear algebraic formulations. Bach

and Jordan [142] proposed a latent variable interpretation of CCA problem in a

probabilistic framework. In this setting CCA is studied under a generative model

assumption. Here instead of studying X1 and X1 as two data sets with p1 and p2

features that are observerd for n objects, we look at them as two random vectors

x1 ∈ Rp1 and x2 ∈ Rp2 each with n realizations as in the rows of X1 and X2. Note

each of these i = 1, · · · , n observations are two views of a same object, i.e., paired

153

h

x1 x2

Figure A.1: Graphical model of relationship between random variables in CCA
model.

observation (x1i,x2i). Bach and Jordan [142] proposed a generative model for CCA

by assuming that x1 and x2 are independent given a latent random vector h ∈ Rk

where 1 ≤ k ≤ min(p1, p2). This relationship is shown in the simple graphical model

of Figure A.1. They also assumed multi-variate normal distributions for all these

three random variable.


h ∼ N (0, Ik)
x1|h ∼ N (T1h + µ1,Φ1)
x2|h ∼ N (T2h + µ2,Φ2)

(A.21)

where T1 [p1×k] and T2 [p2×k] are transform matrices and Φ1 � 0 and Φ2 � 0.

This conditional independence relationship between x1 and x2 imposes a special

partitioned formate on marginal covariance of concatenated random variable x =[
x1

x2

]
Cov(x) =

[
T1T

t
1 + Φ1 T1T

t
2

T2T
t
1 T2T

t
2 + Φ1

]
The maximum likelihood estimation for these parameters are:

T̂1 = Σ̃11W1Λ
1/2

T̂2 = Σ̃22W2Λ
1/2

Φ̂1 = Σ̃11 − T̂1T̂
t
1

Φ̂2 = Σ̃22 − T̂2T̂
t
2

µ̂1 = µ̃1

µ̂2 = µ̃2

as one can see the transformation matrices T̂1 and T̂2 are directly related to the

CCA transformations W1 and W1.

154

h

x_1 x_2

h_1h_2

Figure A.2: Graphical model of relationship between random variables in CCA
model with three latent variables.

under this model the posterior expectations of h given x1 and x2 is

E[h|x1] = Λ1/2tWt
1(x1 − µ1)

E[h|x2] = Λ1/2tWt
2(x2 − µ2)

E[h|x1,x2] =

[
Λ1/2

Λ1/2
t

] [
(I−Λ2)−1 (I−Λ2)−1Λ

(I−Λ2)−1Λ (I−Λ2)−1

] [
Wt

1(x1 − µ1)
Wt

2(x2 − µ2)

]
Klami and Kaski [6] showed that as long as we have a model with identical

marginal covariance structure we will achieve the same relationship between maxi-

mum likelihood results and CCA projections. They formulated the maximum like-

lihood for the generative model in Figure A.2.

Multiple CCA

There are several ways to expand CCA formulation to more than two views. Here

we assume Xi is a [n × pi] matrix contains observations xij ∈ Rpi for j = 1, · · · , n

same objects that are being observed in all i = 1, 2, · · · d views. Bach and Jordan

[140] used the generalized eigenvalue problem A.9 to extend binary CCA to multiple

CCA:


S11 S12 · · · S1d

S21 S22 · · · S2d
...

...
...

Sd1 Sd2 · · · Sdd




w1

w2
...

wd

 = α


S11 0 · · · 0
0 S22 · · · 0
...

...
...

0 0 · · · Sdd




w1

w2
...

wd

 (A.22)

they showed the relationship between mutual information and eigenvalues of A.22

still exist:

I(X1,X2, · · · ,Xd) = −1

2
log

(
det(Σ)

det(Σ11) det(Σ22) · · · det(Σdd)

)
= −1

2
log

(
det(S)

det(S11) det(S22) · · · det(Sdd)

)
= −1

2

P∑
i=1

log(αi) (A.23)

155

where P =
∑d

i=1 pi and αi are eigenvalues of generalized eigenvalue problem A.22.

Similar to two view CCA, if we want the maximum canonical correlation, we should

find the largest positive term in sum A.23 which corresponds to the smallest eigen-

value of A.22, here we represent as α1.

There are some differences between multiple CCA and binary CCA. In the case of

multiple CCA, eigenvalues are not paired as in two views case A.9. Also in two views

case the canonical correlation values are related to eigenvalues of A.9 λi = αi − 1

which is equal to the correlation of transformed views λi = Cor(X1w1i,X2w2i). In

the case of multiple CCA, instead of one correlation value, we have a d×d correlation

matrix for each one-dimensional projection of views X1w1i,X2w2i, · · · ,Xdwdi. Here

we represent the correlation of one dimensional projections by C̃i = Cor(X1w1i,X2w2i, · · · ,Xdwdi).

Note that C̃i being the correlation matrix, is a symmetric positive semidefinite with

trace of d. This means its eigenvalues are non-negative and sum up to d. The

minimum eigenvalue is in [0, 1] range. If the minimum eigenvalue is 1 then all eigen-

values are 1 and C̃i = Id. This means one dimensional projections are uncorrelated.

Here we represent the minimum eigenvalue of correlation matrix of one dimensional

projections by ν(X1w1i,X2w2i, · · · ,Xdwdi). Bach and Jordan [140] proved the min-

imum eigenvalue of generalized problem A.22 is equal to the minimum eigenvalue

of correlation matrix of all possible one-dimensional projection of views

α1 = min
t1,t2,··· ,td

ν(X1t1,X2t2, · · · ,Xdtd) (A.24)

they also proved that α1 = 1 if and only if X1,X2, · · · ,Xd are uncorrelated.

156

List of Abbreviations

AGC Array Generation gene Centering

BECCA Batch Effects Correction using CCA

BFRM Bayesian Factor Regression Modeling

CAT Correspondence At The Top

CCA Canonical Correlation Analysis

CFD Chip Description Files

CNV copy-number variations

ComBat Combining Batches

CV Cross Validation

DC Detection call

DE Differentially Expressed

DWD Distance Weighted Discrimination

EB Empirical Bayes

FA Factor Analysis

FLEO Feature Level Extraction Output

GAGE Generally Applicable Gene set Enrichment

GEDM Gene Expression Data Matrix

GEO Gene Expression Omnibus

GLAPA Gene List Analysis with Prediction Accuracy

157

GSA Gene Set Analysis

GSEA Gene Set Enrichment Analysis

GSFLD Gene Shaving based on Fisher Linear Discrimination

GSRF Gene Shaving based on Random Forest

i.i.d. independent and identically distributed

IQR Inter Quantile Range

k-TSP k Top Scored Pairs

LOO Leave One Out

LTR Linear Transformation of Replicates

MAD Median Absolute Deviation

mDEDS Meta differential expression via distance synthesis

MDS Multidimensional Scaling

METRADISC METa-analysis of RAnked DISCovery

miRNA microRNA

mRNA messenger RNA

MRS Median Rank Score

NORDI Normal Discretization

PAGE Parametric Analysis of Gene Set Enrichment

PAM Predictive Analysis of Microarrays

PCA Principal Component Analysis

POE Probability of Expression

QD Quantile Discretization

RUV Remove Unwanted Variation, 2-step

SAFE Significance Analysis of Function and Expression

158

SAM Significance Analysis of Microarrays

SAM-GS Significance Analysis of Microarray (SAM) to gene-set

SAM-GSR Significance Analysis of Microarray for Gene-Set Reduction

SNP single-nucleotide polymorphism

SVA Surrogate Variable Analysis

XPN Cross Platform Normalization

159

Bibliography

[1] Adaikalavan Ramasamy, Adrian Mondry, Chris C Holmes, and Douglas G Alt-
man. Key issues in conducting a meta-analysis of gene expression microarray
datasets. PLoS medicine, 5(9):e184, 2008.

[2] Cosmin Lazar, Stijn Meganck, Jonatan Taminau, David Steenhoff, Alain Co-
letta, Colin Molter, David Y Weiss-Soĺıs, Robin Duque, Hugues Bersini, and
Ann Nowé. Batch effect removal methods for microarray gene expression data
integration: a survey. Briefings in Bioinformatics, 2012.

[3] Jeffrey T Leek, Robert B Scharpf, Héctor Corrada Bravo, David Simcha,
Benjamin Langmead, W Evan Johnson, Donald Geman, Keith Baggerly, and
Rafael A Irizarry. Tackling the widespread and critical impact of batch effects
in high-throughput data. Nature Reviews Genetics, 11(10):733–739, 2010.

[4] Harold Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):
321–377, 1936.

[5] Magnus Borga. Canonical correlation: a tutorial. On line tutorial
http://people. imt. liu. se/magnus/cca, 2001.

[6] Arto Klami and Samuel Kaski. Generative models that discover dependencies
between data sets. pages 123–128, 2006.

[7] Tijl De Bie, Nello Cristianini, and Roman Rosipal. Eigenproblems in pattern
recognition. In Handbook of Geometric Computing, pages 129–167. Springer,
2005.

[8] Cosmin Lazar, Jonatan Taminau, Stijn Meganck, David Steenhoff, Alain Co-
letta, Colin Molter, Virginie de Schaetzen, Robin Duque, Hugues Bersini, and
Ann Nowé. A survey on filter techniques for feature selection in gene expres-
sion microarray analysis. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB), 9(4):1106–1119, 2012.

[9] Johann A Gagnon-Bartsch and Terence P Speed. Using control genes to cor-
rect for unwanted variation in microarray data. Biostatistics, 13(3):539–552,
2012.

[10] Ahmedin Jemal, Rebecca Siegel, Jiaquan Xu, and Elizabeth Ward. Cancer
statistics, 2010. CA: a cancer journal for clinicians, 60(5):277–300, 2010.

[11] Charles M Perou, Therese Sørlie, Michael B Eisen, Matt van de Rijn, Ste-
fanie S Jeffrey, Christian A Rees, Jonathan R Pollack, Douglas T Ross, Hilde
Johnsen, Lars A Akslen, et al. Molecular portraits of human breast tumours.
Nature, 406(6797):747–752, 2000.

[12] Martin H van Vliet, Christiaan N Klijn, Lodewyk FA Wessels, and Marcel JT
Reinders. Module-based outcome prediction using breast cancer compendia.
PLoS One, 2(10):e1047, 2007.

160

[13] Michael L Gatza, Joseph E Lucas, William T Barry, Jong Wook Kim, Quanli
Wang, Matthew D Crawford, Michael B Datto, Michael Kelley, Bernard
Mathey-Prevot, Anil Potti, et al. A pathway-based classification of human
breast cancer. Proceedings of the National Academy of Sciences, 107(15):
6994–6999, 2010.

[14] S.M. Tu. Heterogeneity of cancer. Origin of Cancers, pages 129–136, 2010.

[15] Adel Tabchy, Bryan T Hennessy, Gabriel Hortobagyi, and Gordon B Mills.
Systems biology of breast cancer. Current Breast Cancer Reports, 1(4):238–
245, 2009.

[16] Sofia K Gruvberger-Saal, Heather E Cunliffe, Kristen M Carr, and Ingrid A
Hedenfalk. Microarrays in breast cancer research and clinical practice–the
future lies ahead. Endocrine-related cancer, 13(4):1017–1031, 2006.

[17] Carole L Yauk, M Lynn Berndt, Andrew Williams, and George R Douglas.
Comprehensive comparison of six microarray technologies. Nucleic Acids Re-
search, 32(15):e124–e124, 2004.

[18] Nancy Mah, Anders Thelin, Tim Lu, Susanna Nikolaus, Tanja Kühbacher,
Yesim Gurbuz, Holger Eickhoff, Günther Klöppel, Hans Lehrach, Björn
Mellg̊ard, et al. A comparison of oligonucleotide and cdna-based microarray
systems. Physiological genomics, 16(3):361–370, 2004.

[19] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The
elements of statistical learning: data mining, inference and prediction, vol-
ume 27. Springer, 2005.

[20] Liangjiang Wang, Anand Srivastava, and Charles Schwartz. Microarray data
integration for genome-wide analysis of human tissue-selective gene expression.
BMC genomics, 11(Suppl 2):S15, 2010.

[21] Ron Edgar, Michael Domrachev, and Alex E Lash. Gene expression omnibus:
Ncbi gene expression and hybridization array data repository. Nucleic acids
research, 30(1):207–210, 2002.

[22] Helen Parkinson, Misha Kapushesky, Nikolay Kolesnikov, Gabriella Rustici,
Mohammad Shojatalab, Niran Abeygunawardena, Hugo Berube, Miroslaw
Dylag, Ibrahim Emam, Anna Farne, et al. Arrayexpress updatefrom an archive
of functional genomics experiments to the atlas of gene expression. Nucleic
acids research, 37(suppl 1):D868–D872, 2009.

[23] Jack Zhu and Sean Davis. GEOmetadb: A compilation of metadata from
NCBI GEO, 2011. URL http://gbnci.abcc.ncifcrf.gov/geo/. R package
version 1.20.0.

[24] R.A. Irizarry, B. Hobbs, F. Collin, Y.D. Beazer-Barclay, K.J. Antonellis,
U. Scherf, T.P. Speed, et al. Exploration, normalization, and summaries of
high density oligonucleotide array probe level data. Biostatistics, 4(2):249–
264, 2003.

[25] F. Hahne, W. Huber, R. Gentleman, and S. Falcon. Bioconductor case studies.
Springer Verlag, 2008.

[26] Yosef Prat, Menachem Fromer, Nathan Linial, and Michal Linial. Recovering
key biological constituents through sparse representation of gene expression.
Bioinformatics, 27(5):655–661, 2011.

[27] Daniel Marbach, Robert J Prill, Thomas Schaffter, Claudio Mattiussi, Dario
Floreano, and Gustavo Stolovitzky. Revealing strengths and weaknesses of
methods for gene network inference. Proceedings of the National Academy of
Sciences, 107(14):6286–6291, 2010.

161

http://gbnci.abcc.ncifcrf.gov/geo/

[28] Elisa T Lee and John Wang. Statistical methods for survival data analysis,
volume 476. Wiley. com, 2003.

[29] Marit Ackermann and Korbinian Strimmer. A general modular framework for
gene set enrichment analysis. BMC bioinformatics, 10(1):47, 2009.

[30] Luca Abatangelo, Rosalia Maglietta, Angela Distaso, Annarita D’Addabbo,
Teresa M Creanza, Sayan Mukherjee, and Nicola Ancona. Comparative study
of gene set enrichment methods. BMC bioinformatics, 10(1):275, 2009.

[31] Weijun Luo, Michael Friedman, Kerby Shedden, Kurt Hankenson, and Peter
Woolf. Gage: generally applicable gene set enrichment for pathway analysis.
BMC bioinformatics, 10(1):161, 2009.

[32] Fátima Al-Shahrour, Leonardo Arbiza, Hernán Dopazo, Jaime Huerta-Cepas,
Pablo Mı́nguez, David Montaner, and Joaqúın Dopazo. From genes to func-
tional classes in the study of biological systems. BMC bioinformatics, 8(1):
114, 2007.

[33] John D Storey and Robert Tibshirani. Statistical significance for genomewide
studies. Proceedings of the National Academy of Sciences, 100(16):9440–9445,
2003.

[34] Virginia Goss Tusher, Robert Tibshirani, and Gilbert Chu. Significance anal-
ysis of microarrays applied to the ionizing radiation response. Proceedings of
the National Academy of Sciences, 98(9):5116–5121, 2001.

[35] Hongying Jiang, Youping Deng, Huann-Sheng Chen, Lin Tao, Qiuying Sha,
Jun Chen, Chung-Jui Tsai, and Shuanglin Zhang. Joint analysis of two
microarray gene-expression data sets to select lung adenocarcinoma marker
genes. BMC bioinformatics, 5(1):81, 2004.

[36] Adeniyi J Adewale, Irina Dinu, John D Potter, Qi Liu, and Yutaka Yasui.
Pathway analysis of microarray data via regression. Journal of Computational
Biology, 15(3):269–277, 2008.

[37] Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee,
Benjamin L Ebert, Michael A Gillette, Amanda Paulovich, Scott L Pomeroy,
Todd R Golub, Eric S Lander, et al. Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression profiles.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 102(43):15545–15550, 2005.

[38] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert
Chu. Diagnosis of multiple cancer types by shrunken centroids of gene ex-
pression. Proceedings of the National Academy of Sciences, 99(10):6567–6572,
2002.

[39] Lei Xu, Aik C Tan, Raimond L Winslow, and Donald Geman. Merging mi-
croarray data from separate breast cancer studies provides a robust prognostic
test. BMC bioinformatics, 9(1):125, 2008.

[40] Larry Wasserman. All of statistics: a concise course in statistical inference.
Springer, 2004.

[41] Jelle J Goeman and Peter Bühlmann. Analyzing gene expression data in terms
of gene sets: methodological issues. Bioinformatics, 23(8):980–987, 2007.

[42] Jelle J Goeman, Sara A Van De Geer, Floor De Kort, and Hans C
Van Houwelingen. A global test for groups of genes: testing association with
a clinical outcome. Bioinformatics, 20(1):93–99, 2004.

162

[43] Jelle J Goeman, Jan Oosting, Anne-Marie Cleton-Jansen, Jakob K Anninga,
and Hans C Van Houwelingen. Testing association of a pathway with survival
using gene expression data. Bioinformatics, 21(9):1950–1957, 2005.

[44] Irina Dinu, John D Potter, Thomas Mueller, Qi Liu, Adeniyi J Adewale,
Gian S Jhangri, Gunilla Einecke, Konrad S Famulski, Philip Halloran, and
Yutaka Yasui. Improving gene set analysis of microarray data by sam-gs.
BMC bioinformatics, 8(1):242, 2007.

[45] Irina Dinu, John D Potter, Thomas Mueller, Qi Liu, Adeniyi J Adewale,
Gian S Jhangri, Gunilla Einecke, Konrad S Famulski, Philip Halloran, and
Yutaka Yasui. Gene-set analysis and reduction. Briefings in bioinformatics,
10(1):24–34, 2009.

[46] Liat Ein-Dor, Itai Kela, Gad Getz, David Givol, and Eytan Domany. Outcome
signature genes in breast cancer: is there a unique set? Bioinformatics, 21
(2):171–178, 2005.

[47] Laura J van’t Veer, Hongyue Dai, Marc J Van De Vijver, Yudong D He, Au-
gustinus AM Hart, Mao Mao, Hans L Peterse, Karin van der Kooy, Matthew J
Marton, Anke T Witteveen, et al. Gene expression profiling predicts clinical
outcome of breast cancer. nature, 415(6871):530–536, 2002.

[48] Andrew H Sims, Kai Ren Ong, Robert B Clarke, and Anthony Howell. Ex-
ploiting the potential of gene expression profiling: Is it ready for the clinic.
Breast Cancer Res, 8(5):214–220, 2006.

[49] Liat Ein-Dor, Or Zuk, and Eytan Domany. Thousands of samples are needed
to generate a robust gene list for predicting outcome in cancer. Proceedings
of the National Academy of Sciences, 103(15):5923–5928, 2006.

[50] Therese Sørlie, Robert Tibshirani, Joel Parker, Trevor Hastie, JS Marron, An-
drew Nobel, Shibing Deng, Hilde Johnsen, Robert Pesich, Stephanie Geisler,
et al. Repeated observation of breast tumor subtypes in independent gene
expression data sets. Proceedings of the National Academy of Sciences, 100
(14):8418–8423, 2003.

[51] Anja von Heydebreck, Wolfgang Huber, and Robert Gentleman. Differential
expression with the bioconductor project. 2004.

[52] Sofia Gruvberger, Markus Ringnér, Yidong Chen, Sujatha Panavally, Lao H
Saal, Åke Borg, Mårten Fernö, Carsten Peterson, and Paul S Meltzer. Estrogen
receptor status in breast cancer is associated with remarkably distinct gene
expression patterns. Cancer research, 61(16):5979–5984, 2001.

[53] Alain Dupuy and Richard M Simon. Critical review of published microarray
studies for cancer outcome and guidelines on statistical analysis and reporting.
Journal of the National Cancer Institute, 99(2):147–157, 2007.

[54] Sami Kilpinen, Reija Autio, Kalle Ojala, Kristiina Iljin, Elmar Bucher, Henri
Sara, Tommi Pisto, Matti Saarela, Rolf I Skotheim, Mari Bjorkman, et al.
Systematic bioinformatic analysis of expression levels of 17,330 human genes
across 9,783 samples from 175 types of healthy and pathological tissues.
Genome Biol, 9(9):R139, 2008.

[55] Greg Finak, Nicholas Bertos, Francois Pepin, Svetlana Sadekova, Margarita
Souleimanova, Hong Zhao, Haiying Chen, Gulbeyaz Omeroglu, Sarkis Me-
terissian, Atilla Omeroglu, et al. Stromal gene expression predicts clinical
outcome in breast cancer. Nature medicine, 14(5):518–527, 2008.

163

[56] Vlad Popovici, Weijie Chen, Brandon G Gallas, Christos Hatzis, Weiwei Shi,
Frank W Samuelson, Yuri Nikolsky, Marina Tsyganova, Alex Ishkin, Tatiana
Nikolskaya, et al. Effect of training-sample size and classification difficulty on
the accuracy of genomic predictors. Breast Cancer Res, 12(1):R5, 2010.

[57] Elizabeth Garrett-Mayer, Giovanni Parmigiani, Xiaogang Zhong, Leslie Cope,
and Edward Gabrielson. Cross-study validation and combined analysis of gene
expression microarray data. Biostatistics, 9(2):333–354, 2008.

[58] Andreas Scherer. Batch effects and noise in microarray experiments: sources
and solutions, volume 868. Wiley. com, 2009.

[59] Shuangge Ma. Integrative analysis of cancer genomic data. 2009.

[60] Andrey A Shabalin, H̊akon Tjelmeland, Cheng Fan, Charles M Perou, and
Andrew B Nobel. Merging two gene-expression studies via cross-platform
normalization. Bioinformatics, 24(9):1154–1160, 2008.

[61] Anna Campain and Yee H Yang. Comparison study of microarray meta-
analysis methods. BMC bioinformatics, 11(1):408, 2010.

[62] Reija Autio, Sami Kilpinen, Matti Saarela, Olli Kallioniemi, Sampsa Hau-
taniemi, and Jaakko Astola. Comparison of affymetrix data normalization
methods using 6,926 experiments across five array generations. BMC bioin-
formatics, 10(Suppl 1):S24, 2009.

[63] Patrick Warnat, Roland Eils, and Benedikt Brors. Cross-platform analysis
of cancer microarray data improves gene expression based classification of
phenotypes. BMC bioinformatics, 6(1):265, 2005.

[64] Jung Kyoon Choi, Ungsik Yu, Sangsoo Kim, and Ook Joon Yoo. Combining
multiple microarray studies and modeling interstudy variation. Bioinformat-
ics, 19(suppl 1):i84–i90, 2003.

[65] Giovanni Parmigiani, Elizabeth S Garrett, Ramaswamy Anbazhagan, and Ed-
ward Gabrielson. A statistical framework for expression-based molecular clas-
sification in cancer. Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), 64(4):717–736, 2002.

[66] Ricardo Martinez, Claude Pasquier, and Nicolas Pasquier. Genminer: mining
informative association rules from genomic data. pages 15–22, 2007.

[67] JS Marron, Michael J Todd, and Jeongyoun Ahn. Distance-weighted discrim-
ination. Journal of the American Statistical Association, 102(480):1267–1271,
2007.

[68] Paul C Boutros. Ltr: Linear cross-platform integration of microarray data.
Cancer informatics, 9:197, 2010.

[69] W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in
microarray expression data using empirical bayes methods. Biostatistics, 8(1):
118–127, 2007.

[70] Jeffrey T Leek and John D Storey. Capturing heterogeneity in gene expression
studies by surrogate variable analysis. PLoS Genetics, 3(9):e161, 2007.

[71] Carlos M Carvalho, Jeffrey Chang, Joseph E Lucas, Joseph R Nevins, Quanli
Wang, and Mike West. High-dimensional sparse factor modeling: applications
in gene expression genomics. Journal of the American Statistical Association,
103(484), 2008.

164

[72] Xin Victoria Wang, Roel GW Verhaak, Elizabeth Purdom, Paul T Spellman,
and Terence P Speed. Unifying gene expression measures from multiple plat-
forms using factor analysis. PloS one, 6(3):e17691, 2011.

[73] Daniel R Rhodes, Jianjun Yu, K Shanker, Nandan Deshpande, Radhika
Varambally, Debashis Ghosh, Terrence Barrette, Akhilesh Pandey, and Arul M
Chinnaiyan. Large-scale meta-analysis of cancer microarray data identifies
common transcriptional profiles of neoplastic transformation and progression.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 101(25):9309–9314, 2004.

[74] Babak Damavandi, Chun-Nam Yu, Sambasivarao Damaraju, and Russell
Greiner. Explaining the gene signature anomaly: Estimating the overlap of
two ranked lists. Breast Cancer, 44(45):70–76, 2012.

[75] Donna Maglott, Jim Ostell, Kim D Pruitt, and Tatiana Tatusova. Entrez
gene: gene-centered information at ncbi. Nucleic acids research, 39(suppl 1):
D52–D57, 2011.

[76] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. Knowledge
and Data Engineering, IEEE Transactions on, 22(10):1345–1359, 2010.

[77] Lei Xu, Aik Choon Tan, Daniel Q Naiman, Donald Geman, and Raimond L
Winslow. Robust prostate cancer marker genes emerge from direct integration
of inter-study microarray data. Bioinformatics, 21(20):3905–3911, 2005.

[78] Jonatan Taminau, Stijn Meganck, Cosmin Lazar, David Steenhoff, Alain Co-
letta, Colin Molter, Robin Duque, Virginie de Schaetzen, David Y Weiss Soĺıs,
Hugues Bersini, et al. Unlocking the potential of publicly available microar-
ray data using insilicodb and insilicomerging r/bioconductor packages. BMC
bioinformatics, 13(1):335, 2012.

[79] Wei-Chung Cheng, Min-Lung Tsai, Cheng-Wei Chang, Ching-Lung Huang,
Chaang-Ray Chen, Wun-Yi Shu, Yun-Shien Lee, Tzu-Hao Wang, Ji-Hong
Hong, Chia-Yang Li, et al. Microarray meta-analysis database (m2db): a uni-
formly pre-processed, quality controlled, and manually curated human clinical
microarray database. BMC bioinformatics, 11(1):421, 2010.

[80] Enrico Glaab, Jonathan Garibaldi, and Natalio Krasnogor. Arraymining: a
modular web-application for microarray analysis combining ensemble and con-
sensus methods with cross-study normalization. BMC Bioinformatics, 10(1):
358, 2009.

[81] Ramil N Nurtdinov, Mikhail O Vasiliev, Anna S Ershova, Ilia S Lossev, and
Anna S Karyagina. Plandbaffy: probe-level annotation database for affymetrix
expression microarrays. Nucleic acids research, 38(suppl 1):D726–D730, 2010.

[82] Manhong Dai, Pinglang Wang, Andrew D Boyd, Georgi Kostov, Brian Athey,
Edward G Jones, William E Bunney, Richard M Myers, Terry P Speed, Huda
Akil, et al. Evolving gene/transcript definitions significantly alter the inter-
pretation of genechip data. Nucleic acids research, 33(20):e175–e175, 2005.

[83] Rickard Sandberg and Ola Larsson. Improved precision and accuracy for
microarrays using updated probe set definitions. BMC bioinformatics, 8(1):
48, 2007.

[84] Stefan Michiels, Serge Koscielny, and Catherine Hill. Prediction of cancer
outcome with microarrays: a multiple random validation strategy. The Lancet,
365(9458):488–492, 2005.

[85] Daniel R Rhodes and Arul M Chinnaiyan. Integrative analysis of the cancer
transcriptome. Nature genetics, 37:S31–S37, 2005.

165

[86] Andrew H Sims, Graeme J Smethurst, Yvonne Hey, Michal J Okoniewski,
Stuart D Pepper, Anthony Howell, Crispin J Miller, and Robert B Clarke.
The removal of multiplicative, systematic bias allows integration of breast
cancer gene expression datasets–improving meta-analysis and prediction of
prognosis. BMC medical genomics, 1(1):42, 2008.

[87] Robert Kitchen, Vicky Sabine, Andrew Sims, E Jane Macaskill, Lorna Ren-
shaw, Jeremy Thomas, Jano van Hemert, J Michael Dixon, and John Bartlett.
Correcting for intra-experiment variation in illumina beadchip data is neces-
sary to generate robust gene-expression profiles. BMC Genomics, 11(1):134,
2010.

[88] Robert R Kitchen, Vicky S Sabine, Arthur A Simen, J Michael Dixon,
John MS Bartlett, and Andrew H Sims. Relative impact of key sources of
systematic noise in affymetrix and illumina gene-expression microarray exper-
iments. BMC genomics, 12(1):589, 2011.

[89] Laurent Jacob, Johann Gagnon-Bartsch, and Terence P Speed. Correcting
gene expression data when neither the unwanted variation nor the factor of
interest are observed. arXiv preprint arXiv:1211.4259, 2012.

[90] Rafael A Irizarry, Daniel Warren, Forrest Spencer, Irene F Kim, Shyam Biswal,
Bryan C Frank, Edward Gabrielson, Joe GN Garcia, Joel Geoghegan, Gre-
gory Germino, et al. Multiple-laboratory comparison of microarray platforms.
Nature methods, 2(5):345–350, 2005.

[91] Matthew N McCall and Rafael A Irizarry. Consolidated strategy for the anal-
ysis of microarray spike-in data. Nucleic acids research, 36(17):e108–e108,
2008.

[92] BK Weis. Standardizing global gene expression analysis between laboratories
and across platforms. Nature methods, 2(5):351–356, 2005.

[93] Hyuna Yang, Christina A Harrington, Kristina Vartanian, Christopher D Col-
dren, Rob Hall, and Gary A Churchill. Randomization in laboratory procedure
is key to obtaining reproducible microarray results. PLoS One, 3(11):e3724,
2008.

[94] Earl Hubbell, Wei-Min Liu, and Rui Mei. Robust estimators for expression
analysis. Bioinformatics, 18(12):1585–1592, 2002.

[95] Pablo Tamayo, Daniel Scanfeld, Benjamin L Ebert, Michael A Gillette,
Charles WM Roberts, and Jill P Mesirov. Metagene projection for cross-
platform, cross-species characterization of global transcriptional states. vol-
ume 104, pages 5959–5964. National Acad Sciences, 2007.

[96] Dan Nettleton. A discussion of statistical methods for design and analysis
of microarray experiments for plant scientists. The Plant Cell Online, 18(9):
2112–2121, 2006.

[97] Christophe G Lambert and Laura J Black. Learning from our gwas mistakes:
from experimental design to scientific method. Biostatistics, 13(2):195–203,
2012.

[98] Hyuna Yang, Christina A Harrington, Kristina Vartanian, Christopher D Col-
dren, Rob Hall, and Gary A Churchill. Randomization in laboratory procedure
is key to obtaining reproducible microarray results. PLoS One, 3(11):e3724,
2008.

[99] C Kendziorski, RA Irizarry, K-S Chen, JD Haag, and MN Gould. On the
utility of pooling biological samples in microarray experiments. Proceedings of
the National Academy of Sciences of the United States of America, 102(12):
4252–4257, 2005.

166

[100] William S Branham, Cathy D Melvin, Tao Han, Varsha G Desai, Carrie L
Moland, Adam T Scully, and James C Fuscoe. Elimination of laboratory
ozone leads to a dramatic improvement in the reproducibility of microarray
gene expression measurements. BMC biotechnology, 7(1):8, 2007.

[101] Douglas C Montgomery, Douglas C Montgomery, and Douglas C Montgomery.
Design and analysis of experiments, volume 7. Wiley New York, 1984.

[102] Kun Yang, Jianzhong Li, and Hong Gao. The impact of sample imbalance on
identifying differentially expressed genes. BMC Bioinformatics, 7(Suppl 4):
S8, 2006.

[103] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and
Neil D Lawrence. Dataset shift in machine learning. The MIT Press, 2009.

[104] Andrey A Shabalin, H̊akon Tjelmeland, Cheng Fan, Charles M Perou, and
Andrew B Nobel. Merging two gene-expression studies via cross-platform
normalization. Bioinformatics, 24(9):1154–1160, 2008.

[105] Leslie M Cope, Liz Garrett-Mayer, Edward Gabrielson, and Giovanni Parmi-
giani. The integrative correlation coefficient: A measure of cross-study repro-
ducibility for gene expressionea array data. 2007.

[106] Rafael A Irizarry, Bridget Hobbs, Francois Collin, Yasmin D Beazer-Barclay,
Kristen J Antonellis, Uwe Scherf, and Terence P Speed. Exploration, normal-
ization, and summaries of high density oligonucleotide array probe level data.
Biostatistics, 4(2):249–264, 2003.

[107] Tomas Bonome, Douglas A Levine, Joanna Shih, Mike Randonovich, Cindy A
Pise-Masison, Faina Bogomolniy, Laurent Ozbun, John Brady, J Carl Barrett,
Jeff Boyd, et al. A gene signature predicting for survival in suboptimally
debulked patients with ovarian cancer. Cancer research, 68(13):5478–5486,
2008.

[108] Zhenyu Jia, Yipeng Wang, Anne Sawyers, Huazhen Yao, Farahnaz Rahmat-
panah, Xiao-Qin Xia, Qiang Xu, Rebecca Pio, Tolga Turan, James A Koziol,
et al. Diagnosis of prostate cancer using differentially expressed genes in
stroma. Cancer research, 71(7):2476–2487, 2011.

[109] Maria Teresa Landi, Tatiana Dracheva, Melissa Rotunno, Jonine D Figueroa,
Huaitian Liu, Abhijit Dasgupta, Felecia E Mann, Junya Fukuoka, Megan
Hames, Andrew W Bergen, et al. Gene expression signature of cigarette smok-
ing and its role in lung adenocarcinoma development and survival. PLoS One,
3(2):e1651, 2008.

[110] Yixin Wang, Jan GM Klijn, Yi Zhang, Anieta M Sieuwerts, Maxime P Look,
Fei Yang, Dmitri Talantov, Mieke Timmermans, Marion E Meijer-van Gelder,
Jack Yu, et al. Gene-expression profiles to predict distant metastasis of lymph-
node-negative primary breast cancer. The Lancet, 365(9460):671–679, 2005.

[111] Christine Desmedt, Fanny Piette, Sherene Loi, Yixin Wang, Françoise Lalle-
mand, Benjamin Haibe-Kains, Giuseppe Viale, Mauro Delorenzi, Yi Zhang,
Mahasti Saghatchian d’Assignies, et al. Strong time dependence of the 76-gene
prognostic signature for node-negative breast cancer patients in the transbig
multicenter independent validation series. Clinical cancer research, 13(11):
3207–3214, 2007.

[112] Stuart D Pepper, Emma K Saunders, Laura E Edwards, Claire L Wilson, and
Crispin J Miller. The utility of mas5 expression summary and detection call
algorithms. BMC bioinformatics, 8(1):273, 2007.

167

[113] Kellie J Archer and Sarah E Reese. Detection call algorithms for high-
throughput gene expression microarray data. Briefings in bioinformatics, 11
(2):244–252, 2010.

[114] Jeanette N McClintick and Howard J Edenberg. Effects of filtering by present
call on analysis of microarray experiments. BMC bioinformatics, 7(1):49, 2006.

[115] Richard Shippy, Timothy Sendera, Randall Lockner, Chockalingam Palaniap-
pan, Tamma Kaysser-Kranich, George Watts, and John Alsobrook. Perfor-
mance evaluation of commercial short-oligonucleotide microarrays and the im-
pact of noise in making cross-platform correlations. BMC genomics, 5(1):61,
2004.

[116] Elizabeth Garrett-Mayer, Giovanni Parmigiani, Xiaogang Zhong, Leslie Cope,
and Edward Gabrielson. Cross-study validation and combined analysis of gene
expression microarray data. Biostatistics, 9(2):333–354, 2008.

[117] Roberta Bosotti, Giuseppe Locatelli, Sandra Healy, Emanuela Scacheri, Luca
Sartori, Ciro Mercurio, Raffaele Calogero, and Antonella Isacchi. Cross plat-
form microarray analysis for robust identification of differentially expressed
genes. BMC bioinformatics, 8(Suppl 1):S5, 2007.

[118] Giovanni Parmigiani, Elizabeth S Garrett-Mayer, Ramaswamy Anbazhagan,
and Edward Gabrielson. A cross-study comparison of gene expression studies
for the molecular classification of lung cancer. Clinical cancer research, 10(9):
2922–2927, 2004.

[119] Xiaogang Zhong, Luigi Marchionni, Leslie Cope, Edwin S Iversen, ELIZ-
ABETH S GARRETTMAYER, Edward Gabrielson, and Giovanni Parmi-
giani. Optimized cross-study analysis of microarray-based predictors. Ad-
vances in Statistical Bioinformatics: Models and Integrative Inference for
High-Throughput Data, page 398, 2013.

[120] Giovanni Parmigiani, Elizabeth S Garrett-Mayer, Ramaswamy Anbazhagan,
and Edward Gabrielson. A cross-study comparison of gene expression studies
for the molecular classification of lung cancer. Clinical cancer research, 10(9):
2922–2927, 2004.

[121] W Fraser Symmans, Christos Hatzis, Christos Sotiriou, Fabrice Andre, Flo-
rentia Peintinger, Peter Regitnig, Guenter Daxenbichler, Christine Desmedt,
Julien Domont, Christian Marth, et al. Genomic index of sensitivity to en-
docrine therapy for breast cancer. Journal of clinical oncology, 28(27):4111–
4119, 2010.

[122] Wei Sun, Seunggeun Lee, Vasyl Zhabotynsky, Fei Zou, Fred A Wright, James J
Crowley, Zaining Yun, Ryan J Buus, Darla R Miller, Jeremy Wang, et al.
Transcriptome atlases of mouse brain reveals differential expression across
brain regions and genetic backgrounds. G3: Genes— Genomes— Genetics, 2
(2):203–211, 2012.

[123] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic
measures for clusterings comparison: is a correction for chance necessary? In
Proceedings of the 26th Annual International Conference on Machine Learn-
ing, pages 1073–1080. ACM, 2009.

[124] Douglas Steinley. Properties of the hubert-arable adjusted rand index. Psy-
chological methods, 9(3):386, 2004.

[125] Marina Meilă. Comparing clusterings by the variation of information. In
Learning theory and kernel machines, pages 173–187. Springer, 2003.

168

[126] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an intro-
duction to cluster analysis, volume 344. Wiley. com, 2009.

[127] Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt
Hornik. cluster: Cluster Analysis Basics and Extensions, 2013.

[128] Hilary S Parker and Jeffrey T Leek. The practical effect of batch on genomic
prediction. Statistical applications in genetics and molecular biology, 11(3),
2012.

[129] David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical cor-
relation analysis: An overview with application to learning methods. Neural
Computation, 16(12):2639–2664, 2004.

[130] Genevera I Allen. Transposable Regularized Covariance Models with Applica-
tions to High-Dimensional Data. PhD thesis, Stanford University, 2010.

[131] Elena Parkhomenko, David Tritchler, and Joseph Beyene. Genome-wide sparse
canonical correlation of gene expression with genotypes. In BMC proceedings,
volume 1, page S119. BioMed Central Ltd, 2007.

[132] Sandra Waaijenborg and Aeilko H Zwinderman. Penalized canonical corre-
lation analysis to quantify the association between gene expression and dna
markers. In BMC proceedings, volume 1, page S122. BioMed Central Ltd,
2007.

[133] Waaijenborg Sandra and Zwinderman Aeilko. Sparse canonical correlation
analysis for identifying, connecting and completing gene-expression networks.
BMC Bioinformatics, 10.

[134] Morine Melissa, McMonagle Jolene, Reynolds Clare, Moloney Aidan, Gormley
Isobel, Gaora Peadar, and Roche Helen. Bi-directional gene set enrichment
and canonical correlation analysis identify key diet-sensitive pathways and
biomarkers of metabolic syndrome. BMC Bioinformatics, 11.

[135] John C Platt, Kristina Toutanova, and Wen-tau Yih. Translingual document
representations from discriminative projections. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pages 251–
261. Association for Computational Linguistics, 2010.

[136] Alexei Vinokourov, Nello Cristianini, and John S Shawe-taylor. Inferring a
semantic representation of text via cross-language correlation analysis. In
Advances in neural information processing systems, pages 1473–1480, 2002.

[137] Joseph Lee Rodgers, W Alan Nicewander, and Larry Toothaker. Linearly inde-
pendent, orthogonal, and uncorrelated variables. The American Statistician,
38(2):133–134, 1984.

[138] Jonatan Taminau. inSilicoMerging: Collection of Merging Techniques for
Gene Expression Data, 2013. R package version 1.4.1.

[139] Hidetoshi Shimodaira. Improving predictive inference under covariate shift
by weighting the log-likelihood function. Journal of statistical planning and
inference, 90(2):227–244, 2000.

[140] Francis R Bach and Michael I Jordan. Kernel independent component analysis.
The Journal of Machine Learning Research, 3:1–48, 2003.

[141] Abhishek Tripathi et al. Data fusion and matching by maximizing statistical
dependencies. 2011.

[142] Francis R Bach and Michael I Jordan. A probabilistic interpretation of canon-
ical correlation analysis. 2005.

169

	Frontmatter
	Title Page
	Abstract
	Acknowledgements

	Table of Contents
	Introduction
	Contributions

	Background and Related Work
	Microarray Analysis
	Phenotype Association Studies
	Phenotype Prediction Studies

	Large p small n Challenge
	Joint analysis of multiple gene expression studies
	Meta Analysis Techniques
	Integrative Analysis Techniques
	Issues and Challenges

	Summary

	Batch Effects in Microarray data
	What is a batch?
	Identifying a significant batch effect
	Batch effects and experimental design
	Evaluation of batch effect minimization methods
	Summary

	Feature Selection in microarrays
	Distribution of gene expression intensities
	Feature reduction in gene expression data sets
	Integrative correlation analysis
	Gene ranking analysis
	Correlation increment gene selection algorithm

	Comparing the performance of feature selection methods
	Variance of genes as an indicator of data set similarity
	Clustering gene expression data sets using their variance-based gene ranking
	Summary

	Batch Effect Detection
	Using specifically designed data sets to evaluate the performance of BE correction algorithms
	Unsupervised methods for detecting BE
	Supervised methods for detecting BE
	Summary

	Batch Effect Correction Using Canonical Correlation Analysis
	Formulation Assumptions
	Canonical Correlation Analysis
	BECCA
	Implementation Details
	Step1: Separating the biological and technical signals
	Step2: Removing the unwanted variation
	Parameter Settings
	Properties

	Summary

	Empirical analysis of BE correction and gene selection methods
	Feature selection and batch effects
	Batch effect correction comparison
	GSE33822 (mouse brain study)
	Breast cancer study

	Summary

	Conclusion and Future Work
	Canonical Correlation Analysis Formulations
	List of Abbreviations
	Bibliography

