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ABSTRACT

Three approximate methods of second-order analysis are
compared tb an "exact" second-order analysis. They are the Fey method,
the moment mégnifier method and the amplified lateral load method.

In general, the Fey method and the moment magnifier method
ére shown to give good approximations with a slight degree of
conservatism. The amplified lateral load method is shown to be very
conservative in the more flexible frames studied.

Column design following a second-order analysis is also
presented. It is shown that estimating the maximum design moment
within a column is underestimated when the calculations are based on
the btaced frame effective length and that an effective length equal

to the actual length should be used.
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NOTATION

cross—sectional area of bracing member

modulus of elasticity

storéy or building height

shear in a given storey

servicelstorey shear

ultimate storey shear

moment of inertia

H/A1 = lateral stiffness

effective length factor

length of éolumn, center to center of joints

length of brace

first-order moment

total second-order moment = first-order moment plus P-A
effect |
larger end moment in a column, always positive
smaller end moment in a column, poéitive if column is
bent in single curvature

axial load in a column

~ critical load of a column in a storey or frame in lateral

buckling

72EI/L?2 = Euler buckling load

~ultimate load in a column

ZPAl/Hh = stability index

 hP/EI, o2 = 1T2(P/PE)

slope of brace in Figure 2.4(b)
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moment magnifier

first-order deflection

Al + Aa’= total second-order deflection
additional deflection due to P-A effect

A/h = storey drift

xi



CHAPTER I

INTRODUCTION

1.1 What Problem Is

Design of a feinforced concrete frame is preceeded by a
structural analysis to determine member end forces and moments. The
analysis is usuallyveffected by a computer program based on the direct
stiffness method. The majority of such programs assume linear elastic
behaﬁior of all members and are first-order programs, that is, equilibrium
is formulated on the undeformed structure. While the assumption of
elastic behavior is reasonable for a structure under working loads,
the neglect of the effects of deformations represents a greater
restfiction, especially in flexible structures subjected to lateral
and vertical loads.

An analysis which formulates equilibrium on the deformed
stfucture is called a second-order analysis. If the lateral deflections
of the isolated storey shown in Figure 1.1 are ignored equilibrium

could be written as:

IM = Ml + M2 + M3 + M4 = Hh » 1.1

Had equilibrium been formulated on the deformed storey (second-order

solution), Equation 1.1 would have appeared as:

IM = Ml + M2 + M3 + M4 = Hh + PA2 1.2

The first-order solution ignores the term PAZ' It should also be

noted that the deflections computed in a first-order analysis, Al, are

less than those of a second-order analysis, AZ'
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FIGURE 1.1

DEFORMED STOREY UNDER

COMBINED LOADING



1.2 Scope of Thesis

Due to the cause and effect nature of the P-A phenomenon,
the determination of the second-order deflections is frequently done
infan itérative computation which can be tedious.

The intent of this thesis is to review and compare several
approximate procedures which obviate the need to perform succeszive
iterations. Design rules based on these analyses are also verified.

Chapter two presents a review of frame stébility and second-
order effects in frames. A series of eleven frames used to compare
‘the analyses are described in Chapter three. Chapter four discusses
the approximatevmethéds of analysis and compares the results of
these analyses to those from an "exact" analysis. Chapter five consiaers
the column design procedures which are necessary once a second-order

analysis has been carried out.



CHAPTER 2

BACKGROUND INFORMATION

2.1 Introducfion

This chapfer presents a brief review of frame stability by
' considering slenderness effects in buildings. A number of methods of

second—order anélysis are outlined(l’3’4’1o).

2.2 Frame Stability

2.2.1 Frame Response to Horizontal and Vertical Loads

The material in this section is based on Reference 10.

Similar analyses have been presented by Stevens(l6), Fey(17),

.Goldberg(ls) and Parme(lg).

'Figure 2.1(a) represents a storey in a frame subjected to
combined loading. Let Al denote the relative deflection between the
top and bottom floors of the given storey as a result of lateral forces
only. The corresponding storey stiffness may then be defined as K£v= H/A1
in which H is the storey shear.

Application of the vertical loads will tend to increase the
relative lateral deflection by an amount Aa. The total relative

deflection, A,, is then the sum of Al and Aa, The total storey moment

2’

(sum of top and bottom end moments in all the columns) will be

M2 = Hh + ZPA2 2.1 .

in which h is the storey height and IP is the sum of applied vertical .
loads down to the storey considered. If it is assumed that the moment

diagrams in the columns resulting from the action of the vertical loads



FIGURE 2.1(a) STOREY UNDER COMBINED LOAD

Py

FIGURE 2.1(b) DECOMPOSITION OF VERTICAL LOAD



'have the same shape as those produced by the lateral forces, which
‘ﬁill be essentially true if the columns are stiffer than the beams.

‘The storey moments can be taken equal to hKKAZ' Equation 2.1 then

gives
H
A2 = . TP 2.2
% h
and,
P

M, = Hh |1 +—2D 2.3

2 K. - xP ‘

' J'A h

Hence, slenderness effects are taken into account by introducing
a magnification factor given by Equation 2.3 that multiplies the nominal
storey moment Hh. Reference 2 proposes that all stresses and deformations
reSuiting from the sole action of the lateral forces be multiplied by
the same factor.

Approiimate proportionality of the bending moment diagrams
in columns, as a result of lateral and vertical forces, requires that
the columns in every storey deflect as nearly straight lines and that
A2 be nearly proportional to A in all the storeys, so thaf the storey
shear stiffness femains practically constant.

Considering again the deformed storey of Fig. 2.1(a), if
axial deformation and higher order terms are neglected, all joints
in a floor will remain in a horizontal plane as the frame deflects.
The storey drift is defined as Y = A/h and is the same for all the
columns in a given storey. The load P is now replaced by its horizontal
and inclined components as in Fig. 2.1(b). ' .

The horizontal component is equal to PP while the second is

essentially equal to P for small drifts and columns deflecting as straight



lines. Consequently, the combined action of vertical loads and én
applied storey shear, H, on the deflected frame is equivalent to the
action of the original axial loads on the columns, combined with an
increased storey shear, H + Py, as given by Equation 2.1,

If the beams are rigid in comparison with the columns, the
columns will not deflect as straight lines. Consider the case of
infiﬁitely rigid beams and the coordinate system of Figure 2.2.

Let A(y) denote the deflections of a column, as a result of the storey
shear alone. For a small axial load P, the bending moment increases
by PA. The deflection of the top relative to the bottom, due to P,

is found to be PAh%/9.87 EI assuming the column deflects as a sine
wave. Therefore, the increased lateral deflection due to the vertical

load is:

_ Ph?
by = [Al * Aa] 9.87 EI 2.4

But the iateral stiffness KZ due to lateral loads only is KR = 12(ZEI)/h3,

where the sum extends to all the columns in a storey considered. From

Equation 2.4 then,

A = |[—+A 2.5
a KZ a th
_ H
by = 1z 2.6
L h
and,
P
_ h
M2 = Hh (1 + . 1.27 5P 2.7
2 h

The term 1.22 will vary from 1.0 to 1.22 as the P-A moments

vary from a straight line distribution to a sinusoidal distribution.
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FIGURE 2.2 ISOLATED COLUMN WITH RIGID BEAMS




This is a function of P/Pcr and of the relative stiffnesses of the

columns and beams.

H
T T 28
2 h
P
M, = hH |1+ —B 2.9
2 o amp
2 h

The tilting effect of foundation rotation and of column
shortening and lengthening in an unsymmetrical building may be taken
into account by including these terms in Al.

2.2.2 Frame Buckling

The sway buckling load of a storey can be obtained by solving
Equations 2.8 and 2.9 with H set equal to zero.
For a non-trivial solution aZP/h must equal KQ in Equation 2.8.

Therefore, the critical load for the storey under consideration is

P = — 2.10
cr ] -

since K, = H/A1 this may be rewritten as:

ZP - Hh ‘ 2.11

cr Al

where o has been taken equal to 1.0.

2.3 Review of Second-Order Analyses

2.3.1 P-A Iteration

In section 2.2.1 it was shown that the total'storey moment
for the frame shown in Fig. 2.1(a) was given by Equation 2.1. The térm
"P-A effect" refers to the extra bending moments which are developed
throughout the structure when the vertical forces, IP, are displaced
laterally through a deflection A. These extra moments are not

determined by a conventional first-order structural analysis, since
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such analyses formulate equilibrium on the undeformed structure. If,
however, the shear in the storey was artificially increased by an
amount ZPAz/h, the sum of the column end moments in the storey as computed
by a first-order analysis would be correct.

These principlesvmay be readily extended to a more complex
structure. Initially the structure is analyzed under the given loading
to obtain the first-order lateral deflections, denoted as Ai’ Ai+l’ etc.
in Figure 2.3. The artificial storey shears, which would produce
column end moments equivalent to those caused by the vertical loads,

are then computed:

| p— — -
Vi = (A Ai) 2.12

i+l
The storey shears computed by Equation 2.12 may be represented by
additional sway forces H' which will produce moments and forces throughout

the structure which will simulate the P-A effect. The artificial sway

- forces due to the vertical loads, Hi, are then computed as the

difference between the additional storey shears at each level:

v - U -y
H) Vi, -V 2.13

The sway forces, Hi, are added to the applied lateral loads, and the
©  structure re-analyzed. When the Ai values at the end of a cycle are
nearly equal to those of the previous cycle, the method has converged,
- and the resulting forces and moments now include the P-A effect. It

- should be noted that the sway forces can be either positive or negative.

The application of P-A analyses is discussed by Adams(l),

12) (11)

- Wood, Beaulieu and Adams , MacGregor and many others. An

example of the application of such an analysis to a tall steel building

is given by Springfield and Adams(13).
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2.3.2 Simplified Second-Order Frame Analysis
Reference 3 shows that a direct solution of the second-
order deflections and moments can be obtained using a standard first-
order program by inserting a fictitious diagonal brace of negative
area in each storey as shown by the dashed lines in Fig. 2.4(a).
The brace area may be obtained by developing‘the second-order stiffness
matrix for the deformed column of Fig. 2.5. Static equilibrium of the

column gives:

_ Mt + Mb _ P(At - Ab) . e 2 14
L L b ’

Substituting the slope deflection equations for Mt and Mb into
Equation 2.14 yields the matrix of stiffness influence coefficients

given in Equation 2.15.

¢ N . (~ - ( 3
M, 4LEI/L 2EI/L -6EI/L? 6EI/L? 0,
M 2EI/L  4BI/L  -6EI/L® 6EI/L® o
ﬁFJ -6EI/L® -6EI/L? 12EI/1%® - P/L -12EI/L® + P/L 9 A, /
Fy 6EI/L? 6EI/L®> -12EI/L® + P/L  12EI/L’ - P/L A
\ P . - \ /
2.15

A first-order analysis omits the terms involving P/L. However,
if the structure contained bracing members as shown in Fig. 2.4(5),
the program would generate a stiffness matrix corresponding to the
degrees of f:eedom shown in Fig. 2.4(b), that is:

F cos?B -cos? A
L aE , ek | 2.16
Fb L |[-cos $) cos®B Ab



Hy—> g ———— > A,

Hz__;_c:”’,—” — = 42

H,—b-"’”/”’ ———=" LAY
/;/7/"’”’//;/;’ Y /4 07

FIGURE 2.4(a) FRAME WITH NEGATIVE BRACING

FIGURE 2.4(b) NEGATIVE BRACING MEMBER

13.



FIGURE 2.5  DEFORMED COLUMN
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The two by two matrix would be superimposed in the same position as the
P/L terms occupy in the second-order matrix. Considering the brace
of the Figure 2.4(b) the required brace area is obtained by equating

(AE/Lo cos?f) and (-P/L):

‘ -P Lo
A = ——— 2.17
L Ecos?B

The value of P in Equation 2.17 represents the sum of the axial loads
in the columns of a storey. Because the brace has a negative area, it
increases the flexibility of the frame, to account for the P-A effect.
A first-order analysis of a structure containing these
negative bracing members will compute forces and moments within the
structure which cbrrespond to the second-order values. The axial force
in the brace causes slight errors in column shears and axial loads
which can be coxrected by statics. These errors can be kept to a

minimum by using long flat bracing members.

2.3.3 Second-Order Finite Element Analysis

(4)

K. Aas-Jakobsen has described one type of solution of the
second-order moments and forces by means of the finite element method.

If a frame is visualized as an assemblage of elements inter-
connected at their ends, called nodes, the equilibrium configuration
of the complete structure can be expressed in terms of the nodal

displacements. The force-displacement relationship for the element.of

'Figure 2.6 can be written as:

K] {w} = {p} 2.18
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FIGURE 2.6 ELEMENT IN LOCAL COORDINATE SYSTEM
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The second-order element stiffness matrix is comprised of two parts,
a firét—ordef stiffness matrix, [Ki], and a non-linear geometrical
stiffness matrix, [sz. The matrix [Ké] is unique to the second-order
solution and represents the action of axial loads on a deformed
element. Both matrices are showﬁ in Figure 2.7.

For an element in a global system, at an angle 0 to the local

system, the global element stiffness matrix would be given as:

Kl = [&" [k [§] 2.19

The element end forces and displacements are transformed as:

{r} [R] {pr}

{w}

[R] {w} 2.20

The matrix [R] is shown in Figure 2.8.

The global element stiffness matrix, transformed by Equation
2.19, is shown in Figure 2.9.

Similar to the force-displacement relationship for the element
the force-displacement relationship for the complete structure, or the

complete system of elements, can be written as:
K] {w} = ({p} 2.21

in which {w} now contains all nodal displacements and {P} all nodal
loads.
Superpésition of the individual element stiffness matrices
is ﬁsed to dbtain the stiffness matrix for the complete structure.
Restrained displacements, boundary conditions, may be taken

into account by greatly magnifying the corresponding diagonal
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Fig. 2.7 First-Order
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stiffness influénce coefficient. A number in the order of 10°° was
suégested by Aas-Jakobsen.

The axial force P must be known in order to evaluate the
element matrix [ké] in Fig. 2.9. The axial force is usually not
known in advance, and an iterative procedure must be‘used. In the
first cycle P.is chosen equal to zero and the first order forces are
calculated. In the second cycle the axial forces found in the first
cycle are used.

| Usually the axial forcgs are practically not influenced by

the second-order effects, such that two cycles are generally sufficient.

In checking the accuracy of the method it was found that the
calculated moments for framgs permitted to sway were in excellent
agreement with the exact ones when the columns were represented by
one element. For braced columns and frames the errors in moments were
as large as 10 percent when the columns were represented by one elément

but vanished when the columns were divided into two elements.



CHAPTER 3

SELECTION AND SECOND-ORDER ANALYSIS OF BUILDINGS

3.1 Introduction

In this chapter eleven building frames. are derived. The
_ characteristics and loading conditions of each frame are discussed.
. Also, the "exact" method of second-order analysis used to check the

- approximate results is presented.

E 3.2 General Information

3.2.1 Material Characteristics

All frames studied were assumed to be constructed of normal
weight conérete with a strength of 4000 psi. The elastic modulus of

(7)

the concrete was given by the ACI Code expression, Equation 3.1:

EC = 57,000V fé : 3.1

The moment of inertia for all members was based on the
overall dimensions of the section. To represent the effect of cracking
at ultimate conditions the moment of inertia of the columns and beams
was multiplied by 0.8 and 0.4, respectively. These values were arbitrarily

(9) (14)

selected based on studies by Hage and the values proposed by Kordina
. The moments of inertia.of the shear walls at ultimate were multiplied
by 0.4 over their entire height, which, in effect, cotrresponds to the
"assumption that the wall is cracked over its entire height.

At service loads the members were assumed to be uncracked

_ and the gross moment df.inertia was used.

Creep deformations were not considered since the lateral

loads were all of short duration.

22
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3.2.2 Loading Conditions

All buildings were analyzed under combined dead and live load.
The dead load values were taken as:

i) Frame self-weight.

ii) Superimposed dead load, including weight of slabs, mgchanical
equipment and roofing weighing 80 psf on the roof and 100
psf on the floors.

iii) Exterior walls weighing 50 psf of surface area.

The live load values were taken as:

i)  Rectangular wind distribution of 20 psf.

ii) Superimposed live load of 30 psf on the roof and 100 psf on v
the floors.

The frames were analyzed at service and ultimate conditionms.
The loading cases were:

Service: 1.0D+ L+ W

Ultimate: .0.75(1.4D + 1.7L + 1.7W)
where the load combination factor, 0.75, and the ldad factors, 1.4 and
1.7, for ‘the ultimate load case are those of the 1971 ACI Building Code
~and CSA A23.3-1973.

Wind loading was applied as a concentrated load at each floor
level applied along the left column line. The right column line is
therefore denoted as the leeward face. Exterior walls, as noted, also
formed a dead load component. This loading was lumped into a point

load applied vertically at each floor level.

3.3 Details of Frames Studied

‘Figures 3.1 to 3.5 present the geometry and member sizes of

the frames studied. Frames one to five and eight to eleven are assumed
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to be typical interior frames in buildings containing no bracing not
- already included in the typical frames. In all cases the transverse
spacing of the frames in the building is assumed to be twenty feet,
iwhich means the_wind pressure,vdead andllive loads act. over a twenty
foot tributary width.

Frame type one is a twenty storey, two bay structure as shown
in Figure 3.1. The sizes of the beam and column cross-sections are
given immediately to the right of the frame elevation and apply to all
}frames in that figure. The larger of the two column sizes given denotes
the size of the iqterior column. The smaller dimensions refer to both
exterior columns.

With frame type one it was desired to represent a fairly
regular structure with a uniform change in stiffness along its height.

Frame type two, also shown in Figure 3.1, is éssentially the.
same as type one. It was desired, however, to investigate the effect
of a tall and more flexible ground storey, hence the first storey was

enlarged from twelve to eighteen feet.

Figure 3.2 illustrates frame type three which was”chosen to
vrepresent a structure of essentially constant stiffness. One change
“in column sizing was introduced at mid-height of the building because

it was desired to investigafe the effect of the uniform stiffness
yet reéresent a feasible structure.

Frame types four and five are shown in Figure 3.3. Both
represent shear wall frames with exterior columns and beams the same
as those of frame type one. The size of the shear wall in type four
was assumed to be such that its moment of inertia was five times the

sum of the moments of inertia of the exterior columns. For purposes
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of analysis the wall was input into the program as a straight line
member ignoring the effect of the wall width. Also, as previously
mentioned in section 3.2.1, the moment of inertia of the shear wall
at ultimate was taken as 0.4 times the gross moment of inertia over
the total height of the wall. Since some of the wall would probably
not crack in all storeys, the effect of wall cracking is probably
overestimated.

Frame type five was chosen to investigate the effect of a
heavier wall than that found in type four. 1In this stiffer structure
the wall moment of inertia at service loads was taken as fifty times
the sum of the moments of inertia of the exterior columns.

Figure 3.4 shows the plan of buildings six and seven. The
plan shown is one half of a symmetrical structure. The building is a
flat plate structure with dimensions as shown. The slab thickness is
taken as seven and one half inches at every floor level. Column and
shear wall sizing is constant for the total height of the building.

In modelling this twenty storey building, the frames were
lumped togethef and linked to the shear wall-frame as shown in Figure
3.5. The six inch links were pinned at each end and made axialiy stiff‘
to represent a>rigid floor diaphragm. The shear wall was modelled as
a vertical memﬁer with the correct axial stiffness along the center-
line of the wall and with essentially rigid arms extending from the
wall centerline to the ends qf the floor beams in each floor. This
allowed the use of a common plane frame analysis program.

Frame type six is shown in elevation in Figure 3.5. Frame
type seven was essentially the same as type six only that the shear

wall was terminated at the seventeenth storey and replaced by two lines
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of columns above this level. This was done to investigate a frame

subjected to the whipping action which might develop due to the change

~in stiffness.

Ffame types eight to eleven, shown in Figure 3.1, represent
a series of special case structures. These four frames are baéed upon
the geometry and member sizes of frame type two incorporating varioué
modifications to introduce soft storeys.

Frame type eight was created from type two by deleting tﬁe

- . second floor, thus creating a thirty foot first storey. Frame type

- nine was formed by deleting the tenth storey of type two. Frame type
ten was the most radical frame analyzed and was created by deleting
the second, tenth and top floors of type two. In each of these three
buildings it was desired to study the effect of the discontinuities.
Tt should be noted that these buildings were highly artificial since
" no attempt was made to stiffen the structure in the vicinity of the
missing floors.
Frame type eleven was identical to type two in construction.

However, increased loads, were applied to the roof and top two floors.

- The roof and floors of the nineteenth and twentieth storeys were subjected
f to a superimposed dead load of 480 psf and 500 psf, respectively.

' This additional load served to represent mechanical floors, and tended

to increase the P-A effect.

3.4 "Exact' Second-Order Analysis

To provide a check on the approximate methods of analysis
it was required to perform an accurate second-order analysis on each
frame. The negative bracing member method, as discussed in section 2.3.2,

was used to do this. A negative brace was sized for each storey and
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inserted with positive slope extending from the bottom of the windward
exterior column to the top of the leeward exterior columnm.
The analyses were carried out using the program PFT (plane

frames and trusses) described by Beaufait et al(ls).
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FIGURE 3.4 PLAN OF FRAME TYPE SIX
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CHAPTER 4
APPROXIMATE ANALYSIS

4.1 Introduction

Section 4.2 of this chapter presents the theory behind three
approximate methods of second-order analysis which will be compared to
accurate P-A analyses. These are the Fey method; the moment magnifier
method and the amplified lateral load method. The procedure used to
apply each method to the frames described in Chapter three is also
discussed. ‘The errors associated with each method are presented in
graphical form and is discussed in sectiom 4.3.

The column moments obtained by each analytical procedure are

. summarized in figures presented in Appendix A.

4.2 Theory and Application of Analyses

4.2.1 Fey Method

From the theory of section 2.2 it is seen that the second-
order deflections may be estimated from the first-order deflections

by the equation:

A
b, = ) Z%Al 4.1
Hh
where,
IP = total vertical load on the storey.
H = total lateral shear on the storey.

17)

This equation was derived by Fey , Goldberg(18) and in a slightly

different form by Parme(lg). Equation 4.1 was used to estimate second-
order moments in the manner described in the rest of this paragraph.

Initially, a first-order analysis was conducted on each frame at

33



. ultimate conditions. The relative lateral floor displacements then

34.

gave the Al value for each storey. Knowing the values of LP, H, and
the storey height, h, the value of A2 was calculated for each storey
from Equation 4.1. The A2 values for each storey then gave a displaced
structure which approximated the final shape including the second-
order effects. Based on these final approximate deflections, column
~end shears were determined as outlined in section 2.3.1. Using these
end shears, sway forces equal to the difference in end shears takén with
the appropriate sign were calculated. Finally, these sway forces were
. added to the original lateral load, and the total lateral loads were
used to estimate the second-order forces, moments and deflections.
Both the lateral and vertical load moments can be obtained together
in this analysis if desired.

Use of the Fey equation (Eqn. 4.1) avoided the necessity
for several cycles of iteration to compute AZ and the second-order moments
and forces.

The analysis described above was carried out at the ultimate
1 load level. The results from this analysis will be compared to an

~"accurate" second-order analysis in section 4.3.

4.2.2 Moment Magnifier Method

Considering the column of Figure 4.1, the bending moment,

' M2, at the base of the column shown by the dashed lines is:

M2 = Hh + ZPA2 4.2

" If the critical load for the column is denoted by PCr and Q = ZP/PCr

' then A2 is given as:

A, = =) A 4.3



FIGURE 4.1 - FORCES ON DEFLECTED COLUMN
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~ and the second-order bending moment is given as:

- 1 '
M, = Hh+ IPY, (l_Q) 4.4

From the theory of section 2.2 the value of Q may be approximated by:‘

LPA
qQ = 1 4.5

- Hh
“ . and the second-order moment, M2, can be approximated by:

- Q, . 1
M, Hh + Hh (72p) Hh (759 4.6

Thus, for a given lateral loading pattern leading to first-order frame

moments, Ml’ the total second-order moment, MZ’ is given as:
M, = M 4.7

where

5§ = -1 - 1 4.8

Initially, two first-order analyses were conducted on each
frame at ultimate conditions, one with vertical frame loading only, the
second with lateral loading only. From the first-order lateral load
analysis a value of Q, as given by Equation 4.5, was determined for
each storey. The moment magnifier, §, for each storey was then computed
by Equation 4.8. The column end moments obtained from the first-order
lateral load analysis were then magnified. These magnified moments
were added to those from the vertical load analysis to obtain final

end moments.
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4.2.3 Amplified Lateral Load Method

This method attempts to amplify the lateral load such that
convergence upon the final second-order moments is obtained in one
analysis. The lateral loads to be used in the analysis are taken as
1/(1-Qu) times the actual lateral loads where Qu = (ZPu/HU)(Au/h).
Initially, Qu is based on an assumed drift (Au/h). If the value of
Au/h in any storey computed in the frame analysis exceeds the assumed
valﬁe, the designer would have to rerun the analysis with still larger
lateral loads, or preferably, he should revise the structural framing
to reduce Au/h to the desired value.

The  serviceability reasons it is necessary to know the total
(ie. second-order) deflections at service loads. Reference (9) has
shown that the EI at service loads is roughly 1.7 times that at ultimate
loads. For the wind loading case the ACI load factors are 1.05 Dead +
1.28 Live + 1.28 Wind. Thus, the first-order lateral load deflection
at ultimate is 1.28 x 1.7 = 2.2 times the first-order service load
deflection. However, from Equation 4.1, the relationship between

service load and ultimate load deflections can be estimated as:

AZS - Als/h 4.9
h LP A -
1 - s 1s
Hh
s
and
A2u - ,Alu/h 4.10
h P A .
1 - u lu
H h
u

where the subscripts s and u refer to service and ultimate loads

respectively. If we let (AZS/h) = C(AZu/h)’ Hu = 1,28 HS,
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A A ‘
(—%2)/(—%§) =Kand P = (1.05 to 1.28) P then from Equations 4.9 and
4,10 we get:
c = % % 4.11
: K Q,

L - (1.05 to 1.28) x 1.7

For the eleven frames studied the value of K varied froﬁ 2.04
to 2.51,‘with an average value for frame buildings of 2.11 and for
buildings with walls of 2.42. The latter value is expected to be on
the high side in practice éince in the analyses the wall was assumed
cracked in all storeys. In applying this method to the eleven frames,
- the first-order deflection at ultimate was taken as 2.2 times the
first-order service load deflection (K = 2.2), which was roughly the
average value for all eleven buildings. Establishing Qu = 0.2, which
. is a reasonable upper limit on the allowable value of Q for a storey :
- and solving Equation 4.11 for a lower bound, gave c¢ = 0.40. Thus, the
ratio between the‘total second-order drift at service and ultimate
conditions is estimated to be 0.40.

In carrying out a design, the designer would determine the
service load sway index required for occupant comfort or to prevent
non-structural damage, would divide this by 0.4 and get an estimate of
Au/h and use this to compute Qu and the amplified lateral loads for
each storey. The value of Qu is then computed as:

5P A
Q = — == 4.12

From Equation 4.12 a value of Qu can be determined for each storey.

The amplified lateral load can then be computed as:
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Hu
B = T-q 4.13
u

In design, only one first-—order frame analysis would be needed
and would be carried out using this lateral load.

In order to apﬁly this method to the frames considered in
this thesis, a somewhat different procedure was used because the frames
ihad not been designed to meet any particular sway index. Rather than
arbitrarily assuming a value of A2/h at service loads, the maximum
AZs/h value in any storey of each building was used directly. The
average second-order service load drift was taken as 0.85 of the maximum
value based on studies of the drifts in frames one, two, three and four.
The ultimate second-order drift used in comparing this procedure to the

accurate analyses was then taken as:

A A
2 _ 1 2s
o = DX 0'85'_E—

A
_ 2s
= 2.125-—3—

4.3 Comparisons of the Three Approximate Methods to the
"Accurate'" Analysis

4.3.1 Comparison of Moments

The relative error in each of the approximate methods with
respect to the negative bracing solution is herein calculated for each
frame and presented graphically. The "error function", e, was defined
as the difference in a column end moment between the approximate and

"exact" value divided by the total storey moment times 100%. That is:

M
approx exact o
x 1007 4.15
Z(Mtop + Mbot)

The error function is expressed in this way to show the relative importance

of the error when compared to the total moment governing the design of

the storey.
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A different e can be defined for each end of the column. To condense
the presentation, only the error in the larger column end moment was
computed since this moment would govern the design of the column.

The results are presented in Figures 4.2 to 4.12. The errors are presented
for the center-line columns in frames one to five and eight to eleven,
The windward column moments were not considefed as they were relatively
low and would not govern the design. The errors in the leeward side
column moments were not plotted since, in general, the errors in these
moments were found to be about one-half those of the center line columns.
In frames six and seven the errors were calculated in the column line
immediately to the left of the shear wall. This corresponded approxi-
mately to a central column line and allowed investigation of the effect
of the shear wall. 1In Figures 4.2 to 4.12 the errors corresponding to
the Fey method are plotted with solid lines, the moment magnifier |
method with dashed lines and the amplified lateral load method with
broken lines. The horizontal scales change in some of the graphs.

As shown by the graphs, the approximate methods appear generally
conservative. In all frames the moments from the Fey method and the
moment magnifier method were within two percent with few exceptions,

. while the amplified lateral load method was generally considerably more
conservative. The errors would tend to be higher than expected in
practice due to the high degree of flexibility in the frames, which
resulted in higher than normal values of Q = ZPAl/Hh and hence higher
than normal second-order effects.

The errors in moments were larger and somewhat more erratic
in frame type five than in the other frames for two reasons. The

comparisons were carried out for the moments in the shear wall which
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resisted the majority of the moments hence erirors in these moments
were a larger percentage of the total storey moment. Secondly, there
were large discontinuities in the wall stiffnesé and inaccuracies
appeared at each discontinuity.

Frame types six and seven showed good results. The error
vaiues were small and generally conservative. The fact that these
frames were stiffer than the other frames studied improved the accuracy
of the amplified load method.

For the special case structures, types eight to eleven,
the Fey method was the most accurate. The moment magnifier method gave
similar results but became inaccurate in the area of the discontinuities,
in this case the large storeys. The amplified load method was shown
to be grossly conservative due to the fact that the calculations were
based on a large storey drift which occurred in the high storeys.

In a practical structure this error would be expected to be less since
the columns and beams in such a storey would be stiffened to reduce

the sway.

4.3.2 Comparison of Deflections

Téble 4.1 summarizes the roof deflectiqns for each building.
As seen in the table, each approximate method generally overestimates
the "exact" tip deflection. At the same time, however, the Fey method
and the moment magnifier method give a very good approximation for the . -
more regular frames, types one to five, and the frame-shear wall Structpres,
types six and seven. With these two analyses the approximation for the
special case buildings, types eight to eleven, is also good, with
errors in deflections of generally less than six percent. The amplified

lateral load method gives a greater degree of conservatism in estimating
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the roof deflection, consistent with the column moment approximations.
" The error in the amplified lateral load method was approximately ten
percent for frames one to seven and ranged as'high as fifty percent for
. the special case buildings, typeé eight to eleven. As pointed out
earlier this was due, in part, to the manner in which these frames
'were derived with one or more high storeys without increasing the
.stiffness in these regions.

Table 4.2 illustrates the average second-order drift for
_each building at ultimate conditions. These values are also compared
to the maximum drift in any storey for that building at ultimate
.conditions. In building types one to seven the maximum storey drift
~ranged from 1.1 to 1.7 times the average and could be taken roughly
as one and a half times the average. In buildings eight to eleven the
maximum storey drift was about twice the average. In the derivatién
g of the amplified lateral load method in section 4.2.3 this ratio was
taken as 1/0.85 = 1.18. As a result the amplified lateral loads tend
to be on the high side.

The computed maximum storey sways at ultimate ranged from
1/323 for frame six to a maximum of 1/76 for frame ten. These values,
particularly the second value, are higher than would normally be
expected in reinforced concrete buildings at ultimate(ZI). Since the
'accuracy of the approximate methods tended to increase as the frames

became stiffer, the inaccuracies observed in the comparisons made will

tend to be on the high side.
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TABLE 4.1 Comparison of Calculated Roof Deflections

Roof Deflections - Inches
Frame-

Type Service Ultimate
A1 A2 A1 A2 AFey AMom't. AAmp
Mag. Load
1 4.69 4.94 | 10.16  11.73 12.36 12.17 12.77
2 5.09 5.37 | 10.88 12,64 13.33 13.16 13.69
3 4.55 4.80 9.94 11.69 12.35 12.16 12.93
4 3.96 4.12 9.20 10.49 11.04 - 10.87 11.74
5 3.33 3.45 7.87 8.82 9.33 9.16 9.33
6 2.07 2.27 5.17 6.62 6.73 6.59 7.16
7 2.05 2.26 5.15 6.68 6.82 1 6.68 7.01
8 | 6.07 6.72 | 12,53 15.67 16.48 ' 16.19 25.82
9 5.84  6.35 | 12.35 15.11 16.00 15.70 22.79
10 7.04 7.95 | 14.39 18.64 18.95 18.53) 26.70
11 5.07 5.48 | 10.87 13.52 14.77 14.51 16.11

A2 values from negative brace method.




TABLE 4.2 Comparison of Maximum and Average Sway Angles

A2u/h Values
Frame .
Type Average Max. Storey
1 .0041 .0056 (6)*
2 .0043 .0057 (6)*
3 : .0041 .0069 (3)*
4 .0036 .0051 (6)*
5 0031 L0042 (7)%
6 .0023 .0031 (7)*
7 .0023 .0033 (9)*
8 .0053 L0124 (1)*
9 .0051 L0122 (9)*
10 .0063: L0132 (1)=*
11 .0046 .0060 (6)*

*Indicates storey in which maximum
value occurred.
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CHAPTER 5

COLUMN DESIGN FOLLOWING SECOND-ORDER ANALYSIS

5.1 Introduction

Figure 5.1 shows columns with and without lateral displace-
ments of the ends. If translation is prevented, the deflected shape

- is as shown in Figure 5.1(a). The moments MT and M_ are the applied

B
end moments while MRT and MRB are restraining moments caused by the
rotations of the end restraints as the column deflects. Horizontal

~ forces, H, are present if the end moments are unequal. At mid-height

there are secondary moments equal to the axial load times the deflection

- shown shaded. To account for the restraining moments MRT and MRB in

the design of this braced column an effective length less than the
" real length is used to compute the lateral deflections.
If, however, the column is free to sway laterally as shown

in Figure 5.1(b), the moments M) and M_ must equilibrate not only any

B
horizontal load, H, but also a moment PA, The secondary moments in
this column can be divided into two components, one due to the additional
hbrizontal reaction or sway force, PA/h, necessary to resist the axial
force in the deformed position, and the second equal to the axial load
times the déflection from the chord line, shown shaded in Figure 5.1(b);
Traditionally these have both been accounted for in design by using
the elastic effeqtive_length factors for the unbraced case in designing
the column.

On the other hand, if a second-order structural analysis

is carried out including the effects of both the applied loads and the

sway forces, the latter have been accounted for in the analysis and

56
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need not be considered a second time in evaluating the effective length.
Since the maximum moment theoretically may occur away from the ends of

~ the column it may be necessary to use a moment magnifier calculation

- to estimate this moment. A procedure for determining whether such a
magnification is required is presented in section 5.2, and the necessary
values of the éffective length factor, K, and the equivalent moment
-factor, Cm’ are discussed in section 5.3. The proposed column design
procedure is compared in section 5.4 to the second-order column moments
in a one storey frame and to lO‘columns selected from the 11 frames

.-analyzed in Chapter 4.

5.2 Test of Whether Maximum Column Moment Occurs at End of Column

(6)

Galambos shows that the maximum moment in an elastic

beam-column loaded with an axial load and end moments Ma and Mb is:

MMAX = GMa 5.1

J 1+ o /M )7 - 2(M, /M) cosa

§ = : 5.2
sino

“where M larger end moment in the column, always positive.
M5 = smaller end moment in the column, positive if column

is bent in single curvature.

o = hv P/EI = uv/ P/PE

S o2
T°EI
PE = Euler load = e
(11) \ .
MacGregor has used these equations to derive a test for

.determining whether a given column can be designed for the maximum end

moment , Ma’ or whether the moments between the ends of the column will
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exceed those at fhe ends, If it is assumed that stability effects can
be disregarded if MMAX is not more than 1.05 Ma’ Equation 5.2 can be
solved to determine the combinations of Mb/Ma and o corresponding to
6§ = 1.05. These are plotted with the solid line for § = 1.05 in
Figure 5.2. Columns represented by combinations of Mb/Ma and a?
falling below this line can be designed for the second-order end moments
without a further moment magnification. This line can be approximated
~ by the equation shown in Figure 5.2. Thus if:
" Pyl

5.3

n < Gl-=5E)
a

The maximum moment will always be less than 1.05 times that at the end

of the column.

5.3 Derivation of K-Factor

If Equation 5.3 shows that the maximum column moment occurs -
away from the end of the column, column design should be based on
amplified moments based on the ACI moment magnifier with the equivalent
moment factor, Cm’ taken for the braced frame case using the ratio of
end moments obtained:from the second-order analysis, and with the
effective length factor K = 1.0. This can be demonstrated by setting
the moment magnifier from Equation 5.2 equal to the ACI moment magnifier

given as:

5.4

where, Pu is the ultimate load on the column and PCr the critical load

equal to T2EI/(KL)2.



FIGURE 5.2

LIMITS ON COLUMNS WITH MAXIMUM MOMENT AT END OF COLUMN '
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and

"y

Cﬁ = 0.6 + 0.4 ﬁ; 5.5

Equating Equations 5.2 and 5.4 gives:

c i /1 + (M.b/Ma)2 - 2(M, /M) cosa
-K20L2 - sinQ

-

5.6

which reduces to:

' - / Cmsina
K = —=V/1 5.7
o

) V/l + (Mb/Ma)2 - 2(Mb/Ma) cosa

Equation 5.7 was solved for values of Mb/Ma from -1 to +1 and‘P/PE

from 0.03 to 0.63. The values of K computed using Equation 5.7 ranged
from 0.999 to 1.265. The values of K greater than 1.10 corresponded

to cases where Cm is underestimated by the ACI equation (columns with

o and Mb/Ma both low. See Reference 20.) If these values were excluded,
the average K value was equal to 1.05. The absence of any K values

less than 1.0 indicatés that the braced frame effective lengths should

not be used if the column end moments are known from a second-order

analysis.

5.4 Verification of Design Procedure

To verify the column design procedure, preéented in sections
5.2 and 5.3, the frame of Figure 5.3 was analyzed with a negative
bracing member. The loading was as shown and the column under
consideration was broken into four equal length segments to allow

calculation of the deflections and moments at points between the ends

of the column.
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The frame was assumed to be constructed of normal weight
concrete with a strength of 4000 psi and elastic modulus as given by
Equatipn 3.1. The column and beam moments of inertia were 15617 in"
and 16384 in“, respectively. The negative brace area was given by
Equation 2.17.

Initially, the frame was analyzed as shown in Figure 5.3
to obtain deflections and end moments in the windward column. From
the resulting deflections it was possible to calculate the relative
deflection from a chord line joining the upper and lower ends of the
column. The frame was then reanalyzed under the same loading but with
the node points in the position resulting from the first cycle. Three
cycles were required to obtain convergence. The moments in the windward
column of the frame are shown in Figure 5.4. During the iterations the
moments at mid-height of the column increased and those at the ends
decreased. The decrease in the end moments occurred because the lateral
deflections caused a slight decrease in the stiffness of the column.

Equation 5.3 may now be used to test whether design of the
column may be based on the larger end moment or whether a magnification

is required. The ratio of column end moments is found to be:

o™= |

The right—hand—side of Equation 5.3 is:

P L2 f N2
1.1 - -4 = 1.1 (5016 K) x (144 in)

3EI " 3 x 3605 ksi x 15617 in"

= 0.48
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Hence, the test sﬁows that the maximum moment occurs between the ends
of the column and design must be based on an amplified moment.

Design of this column by the ACI code would require calculating
MMAX as given by Equation 5.1.

For the frame of Figure 5.3, based on the second-order end

moments from the third cycle of iteration, Cm would be:

C = 0.6+ 0.40323

n 15.4) = 1.0

The critical buckling load assuming an effective length factor equal

to 1.0 would be:

(3.14)2 x 3605 ksi x 15617 in"

er (1.0 x 144 in)2 = 26769 K

Solving Equation 5.4 for the moment magnifier gives:

1.0
—_5016K
26769K

= 1.23

(o]
fl

1

Finally, the column design moment would be given by Equation 5.1 as:
MMAX = 1.23 x 15.4 ft-K = 18.9 ft-K

This compares to a maximum column moment of 19.7 ft~K from the iterative
analysis. Thus, the ACI procedure with K = 1.0 underestimated the
maximum column moment by 3.8 per cent.> Had the braced frame effective
length of 0.81 been used in the calculations, the magnified moment
would be estimated as 17.6 ft-K or 10.9 per cent low. This suggests
that the hinged end effective length (K = 1.0) gives a better estimate’
of the magnification than the braced effective length.

A number of columns were chosen from the eleven frames

studied in Chapter four to further check this design method. Table 5.1
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gi&es the second-order end moments of ten single curvature columns and
the ultima;e vertical load on the storey where that column is located.
1In calculating the second-order moments along the columns the total
vertical storey load was artificially assumed to act on the column in
>question to represent an extreme hypothetical condition for which the
second-order frame analysis was applicable. As shown in Table 5.1,
Equation 5.3 indicated that six of the ten columns required additional
moment magnification to estimate the maximum moments in the columns.
The moments computed using a moment magnifier analysis are
compared in Table 5.2 to those from the second-order analysis. In
bbofh calculations the entire axial load was assumed to act on the
- column in question. It can be seen that columns one, five, six and
.eight, which Equation 5.3 identified as not requiring additional moment
' magnification, indeed did not need moment magnification. All the
columns identified as requiring moment magnification, did need magni-—
fication except column ten which was marginal but did not require
magnification.
The values of the maximum column moment in Table 5.2 computed
~using K = 1.0 were conservative in all cases while those based on
~ the bréced frame K were unconservative in all cases when compared
_to the éolumn moments computed in one cycle of iteration by the

' procedure described earlier. This supports the observation that

" if the column end moments are known from a second-order analysis,

the effective length factor should be taken as K = 1.0 and the

equivalent moment factor, Cm, should be based on the braced frame case.
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TABLE 5.2 Comparison of Moments Computed Using Moment Magnifier

to Second-Order Moments

68.

Meax K=1.0 K < 1.0
No. Actual 8 Myax Error § Myax Error
1 182.9 .0%  182.9 0.0 .0%  182.9 0.0

2 78.1 .13 80.1  +2.6 .0 70.9  -9.2

3 25.6 .09 25.8  +0.8 .04 24.6  -3.9

4 190.0 .39 221.2  +16.4 .00  159.5 -16.1

5 165.1 .0%  165.1 0.0 0% 165.1 0.0

6 51.9 .0% 51.9 0.0 .0% 51.9 0.0

7 46.2 .08  46.2 0.0 .03 44,1 -4.5

8 51.7 .0% 51.7 0.0 . 0% 51.7 0.0

9 42.8 .10 43.2  +40.9 .06 41.7  -2.6
110 7.6 .0% 7.6 0.0 .0% 7.6 0.0

% Maximum moment at end of column.




CHAPTER 6
SUMMARY AND CONCLUSIONS

In this study a column design method, based on a second-
order analysis, was proposed. It was shown that the maximum moment
iﬁ a sinéle curvature column could be estimated by applying a moment
magnifier to the larger end moment.

Results indicated that the effective length used in
calculating the moment magnifier be taken equal to the actual
column length. The use of the braced frame effective length gave
approximations to the maximum column moment which were unconservative.

Three approximate methods of second-order analysis were
presehted and applied to eleven different building frames.

The Fey method énd the moment magnifier method were shown
to give essentially acceptable approximations to an "exact'" second-
order analysis. The amplified lateral load method, however, was
grossly conservative in some of the cases studied, but became comparable
to the Fey method and moment magnifier method for the stiffer frames.
Difficulties also arose in this method if the sway deflection angles

varied significantly from storey to storey.
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APPENDIX A

COLUMN END MOMENTS FOR FRAMES STUDIED

' A.1 Introduction

Ip this Appendix are tabulated all column end moments for
eéch'frame studied in this thesis. 1In each figure the upper right
hand box attached to the column indicates the top end moment. The
bottom end moment is listed in. the lower left hand box. The first
value in each box represents the "exact" second-order end moment.
The’sécond, third and fourth entries give the results of the Fey
method, the moment magnifier method and the amplified lateral load
- method, respectively. The arrow associated with each box indicates

the direction of the end moment on the columm.

72

e




S

VoS
o422 Vo3
=L %1 TN
VoI

o

W27

4.3
ITEECY ETEXSY
oAl s

2218 § 241
2200 [ 24k}
|-225-5 |
2380
2le
281

PREN Y]
rT2z4a

25
225 1 7144
oo J6y
%80 NS

28[9
[2lae | 28c¢
[2aSe ] 2813

514
78] ssi.5
320 337
S .
1] :
1] Xeo
X : ] G =&
-6l [< B I
iﬁﬂ;h EN P
133 -
2922
.S X
o] 2Nyl olo
<11 Sy
I0.5 3022
io%e 2 4479 O
COee2 ﬁ: [Ase 1 § 932
ez T
4074 M4
: X} 192
AS \91.8
o) K [ S7a.v | B3
3 - ﬁg =3 -
% 7

FIGURE A.1 FRAME TYPE ONE

73.



74,

joo-y T s %]
Te Lo o
%8l 002 | K4 0.2 JoAG o
RS ns [X-3 YK 1A G K
36T % A
LA
: 14.2
2.5 nAT
255 317 Woh { 13k2
E 353 0% § 1162
25 N Ne-G
X W2 My
s1q 125.6
539 1265
% 453 Y 27 218 [ i2se
% . To | sg.3 122.5 171289
? 405 1225
m*i 1.2 g 124
7%Y 13 [ETR
52.5 6.5 1X3O
= E [se6 | 50 I3 X
so5 § Sof [TXH KT 1218 £ \xsS
E-3 rit-]
s
1.1
157 1166
Q1 oy
161
184:5
huiby]
1H2
. 2.8
wes ] o
1665
162.8. ks
\RA S
i
gA £
1814 88 :
122 :
82.7.
1856
| 1867 | B
| 1a5.1 |
| 1=eC ]
1-2-;"4 '
2)5 5
285
255 | 2\v]7
2s9-5] 2239
2al.§
FICSA /]
2172
2233 .
216 2z\.8
2195 ¥ 271.2
215.2
2325
2209
2253 | 2352
22777 ] 2374
2273 !
2335,
2433 {
[222.6 1 2424
2212 1 2449
236G
F1-X) :
282.7.
A T
2022 | 2eks
26\, 3
23.&
2118
2z4 1 20e 4
FITLS Pt
2680
CX
2872
2000 | 2017
zeco | 2684
2840 '
AR
FaCT :
o | Zi8) b
297 8 2195
22
235
3117 H
312 |
355 ) 3204 L
Slie | 2 ’
Zoa
EILY
318
3123
Zooa § 307
o\ Y 23
Sl ]
3\
3313 ¢
2425
.S ) 3373
o 3441
=)
34v0
=]
351.Y B
FCEY
3
Alg G
4541
i,

FIGURE A.2 FRAME TYPE TWO

a—



1iee MY 1304 |

_:!_Ll 1656 1155
29

Y 28 \792
AL\ 2% Wi2 Oe.o 1672 § (%A
& 1 z2ia |ss.§ 189.2 1904 F 2071
\SX.. XY
.S, UsX e 138
23 184 2313
ns 17l - 210
a0 I G o ¥ 194\ 2004 | 2085
204 2.4 74 ¥ 21373 Z22X8 Y 2170
258 6.7 292.2
[ 8.2y “lﬂﬁ( FIv Al
4.8 2|52 20k-1
0.5 2233 o 2182
S3 o.3 3 I 917 2160
1.9 [X] 2a1.1 25&-5 22l 6] 206
11 2992
5.2 W ok
[ XY 2529
2.7 25637
oo 2317 | 2537
%Y =y 2355, 2¢54
RS 2%53.8
AIELY 2473
1\ 2543
[T 23le s1.4
243 2425 s
241G
S
2] 2622
m %87

X TRC 2802
4s.) 2% § 2022 226 1 2166
= o3 | I3ce 2661 1 2uxe
) 2658
ETerY 2128\
Ay g 22680
G2 2slo 2327
XY X 5;1& 2138 | 2a9.3
. (X7 3ol zs9 2172 2939
S22 | Stod Z]e.0
S4.! “( Fawd
TA- oA
I8 AR
QL Y 1) Z19.S 286G F Sold
__g 1 SSe 1) 362.6 276 ES 5]
--R
2] 3124
94.0 :&,8
1. b 7I} Zeo] § IWA2
|s, 2o AW EETEEY
| as.2 SoSh
1916 SR,
5% 3225
&l 1od7 3 3207
s 1 101y Sl BT
1256 241,
102 5157 N
FoTS
2%
.5 [sso] =s4
925G %l2 Z\S©
3 5o
17, 2133 1940
20:2, 20,8 \1%»2’
S . [%7W3 % A L8
2652 2.1 S31:1 . 2s535) 204
osmA G174 5
7. 4

FIGURE A.3 FRAME TYPE THREE



76. |

F159 124 (52
2 Y 129 a2l
L) 577 E 2 121 (753 BTG l
o3 ) S6.9 4.2 [7.90 A | €6
X A2 =3
X 5 %Y
* A Z YWY 4.3
4.2 42.5 S48
k% =4-¢ X 4.4 [+X4 sA4
& 2.5 203 § A1) &) [y
2.6 @27 :
Bﬁ-pb{ SA2 ) '
215 G4-\ 6.3
26 Y- 312
-2 ¥ 269 7St ¢S = 161
3 | 23 2 | 939 bl SETK) ;
[ I F 41.3 M.3 . :
33 S. 111 ;
165 855 5 :
1\9.0 217 4.6
IVE]Y 156 ca-2 1 o927 352 | sdo
162 1S [-XN j00.8 L, ] a8
oG XY -
X J64 Boo E
2.5 ;“ [Py R WG
is . 1119 174
23c F 17 Is] 1992 1066 isd
21.% X 83 ale ioBo § 1246
216 LT Y 5ES
o a13 Ni 2z ).(
$2 1§§ nad
2.8 1447 \2o6 ;
14 22 ool Wle use b 9.
22 1A [ %3 M nge f 1249
26 ok R 1154
S Lz 1201
43 (X ]
45 FA B I ko 1297
2.5 .-% IXA L 73 V82,1 3
1ESL 3.5 {
3 145.2 “( 1% H
22 ﬁs 129.8 :
2o Z [(7.¥] 1321 B
240 -5 1966 162.5 125.8 1347
Fakl %] 1%c § vid.y a4l 1368
| 2¢ 4 ] 120L8 127.8
=22 4. ﬁﬁ"ilf S
[ 289 ] A4S [dl MY
. £2. 3 [T 1599
’IE HETW €11 L ies 481 ) Is’.s
2].3 § 377 VA2 Y 2008 1512 1™
[WEN \So-2
5] K JS%.(
[q NN 2300 1601
A0. R 3 1SS
ok 325 1ISe.s f ez}
sxul 4] el ol H
¢ Ty ;
X Skl H
Al.% T
1A 18l
s 2.3 (1.
=7 § s7.1 VS WA
A3 S
3.9 Jg i 7 |
st ] 188 1
R 1730.° % ‘
S22 § 59.2 5o
| SAo § ¢S 1957
L. , 2263 B
& =12
El.‘l [~ 200 229.5
S.E | Jo 244 2xce
[S5.a ] 2138
s "I FFEEA Yy
7 ¢ Jes 2253
44 221
clG X 208 I 277 i
= 123 2242 | 2xho
S5.S 2231
X 2225
o 2372 B
1% 2427
7.3 I N [ =319 294§ 2823
139 822G ,_g;.s 20T 2441 § 2479
13\ Sho.| 22313 :
EXw i* '
ZMQ 2334
7 K= 2357 H
o | 131 [4ave ] =217 2412 203 ¢
022, 16 ATA L | 33% 2514 1 2429
100.G. 5 2502
X ﬁ‘ 251200
=357 Fali-%i H
- ER 281.5 i
21513 2210
212.1 {2940 i
.S i
2%6S
K 2688
XX 45028 sus 3 2806 ) 204
Be-l (=Y A44.61 4c97 2649) 2874
[ 2a.C ] 433\ | 2e3 | i
. 7Y # 23S
$1 2128 2515 B
1.7 X 2563
™ 9.7 [sT.S ] St X PR
TR X | SRX QR 33 sol Jdeo
718 SC3 3iye |
T2 ," S 338
23L L4 5.6 H
234 <3 144,‘.: :
ez § el P00 51 23 Fanas By :
ecel 1 978 % 2129 f 1592
1816 %43 2653
A 1}

FIGURE A.4 FRAME TYPE FOUR



£ %3 jAn
. 412
WL ER 252 GEA I
Mya 237 YA YR
152 36>
3. L BN 7}
o] 51
= 36
3 1o 355 55
2.2 ol Iho 368
1.0 252
N 2Cs
=0 AL o
Y AC.Q
=% ] 3.1 448 I 459
K=Y A< S § 4s
51 A4
_J;S__ﬁ{ A2
1s T s2¢
2.9 S37
6.2 9.7 1.3 § 527
=X TR a3 | sS4
Sl 41.6
i B | £ B
L Y 4 =T
204 as
134 132 Itz 2.4
s\ 2lo 21 ] €Az
[T53 149
Liss g 264 )
Fil- e\8
236 a3
2% oo 8a
23.6 ; 839

T FTX)
LS
Vi
32
=52 |
4.9 1 54
ATG 347
1o
412
oy
212
116 5.
: 1S 201
4.1
_‘13#
a1
JA.S
ALY 134
=1 121
.2
193 3
o 1e.4 R Y
AR 111
JA5
129 ¢
Iz4

FIGURE A.5

FRAME TYPE FIVE

; 855
G905
11.2 o0 .
oLl .S 2508L ) 352.9
8.0 253
Vi 5
126 ETES s
153 SoAd el
EEA T ST ETTES 109 Fi]r
1.2 Jdo 33368 SVo [TYCH iy AN
116, 4.7 1BS.2
4.7 AN Pl X
ﬂ 3o 180T L4 3
S 1636 18s.(
AR 1.4 @ 3924 92 \BLg
T $5.) S\S. 1135 o ¥ @wdG
QLS. 194
K [CEXN ¥
7T et
3.5
Itz S o471 3o 1o gl
BLS .S axjal 245 1925 1 igoo
- 133.S
ig;‘g 1325,
1 2603 [d NP
qSo 251 S 220:2
X} s 100k 34 04°s | 2377 42209
%Y 119 1224 K 2402 2323 8223
| 85.c | - 23\
912 2333
T2 XS faens
204 S5 1g2o
592 84 | HSeo.of 4700 218 1819
X L =>:1 15414 ] Ak S 22)c 186G
1.1 14550 215.6
13)s. 2
231 S ASe]
207 PN o T
e B o2l 2.2 §F s AT ko3
23 ] 2033 L1069 2255 1 Wlo
. )a;l‘.o 22\.3
K 28 23ke,
_&s—“ﬁcn ’(ms.s ;.‘;'l ]
q2.35 19027 g1o
ASE J1s:6 3126\ =3 \XB LS
4Als a1 22189 %255 o7 § 832
318 2830 1S

77.



i

78.

1SS SCE 8:1 4450
nEe A7 1151 440
859 a2 1112 ool J 1507 301} 4708 ;
1229 8So Yot 9.0 1850 24 19 i
| 81 | 289 414
[SEWN Pi XN P G
8T2 Tasle 1206 g
824 Q.S Ra S 2.9
&%-5 8] 150 Tmne 197 194§ 3<].7
S XN 862 Weo %S AL 3ilo -3 283 :
Slo %3 EAEA] i
.9 o3& K 2113 B
2 7Euda [ MvSTA shig
871 nle. 1786 3456
CA2 ety | 934 CIE KK 360 [ 344
6 817 |25 | 9.5 135 [ 3245 § 345@ B
C: w42 ETTLY
FEANN Fi 105G ;K 3266
(s3.S 4 NV VeSS 14 NETETS
jo2.2 130, 1420 3427
%E eye | 1229 i 6§ 139 =212 § 4o .
=X 1.5 1389 =29 iSo-o 3247 TheA
e32 789 TS
.S .2 S27.C .
ni-2 1408 Lisso 552.)
Ty 144.0 1S54.5 EXTX
o3 2te 1 1299 nie 1452 2o 73454 |
| 2442 1 200} 13§ 12A7 wo2 | 1521 yor J w22 =767 | 3537
2494 $4Q ns [ 526:)
241% 118 olo 1 g o B ST}
250 129.9 Tisze 4 NYTHA 4 NESPY
269 127.5 1S5 S KSe 2552
2% | 2234 24, W4 o1y § 4ze weal 14]s 1201 [ S8 535 § sslo
201 § 2129 836 1% 10975 | KA. 12 1661 MLS [RTY 3328 | 3590
243.5 186 iot6 jeoS'1 \S6 T3oh i
[2=s3 o8 lg [TYEWN Vi TCRIN P 1206 1( 3200 |
o8 4 1424 lgd.3 (S T 3624 N
s F=0) 1424 16]S 167.2 [av IS 3(o.S.
2%0% [ 215.¢ %S f o5 e _§ 1s8o 119.1 1613 e Pl 329.9] =572
2321 262 157 1503 1207 X 1223 L 3J7.6 1239 249 271al XA N
2XK 0 826 y Mé go \ﬂ]i =% H
Y o33 "{ [PCISN 7] 3.2 137 05N P
202: >¥] L4 N7 4 NGRS [ NETYN 4 IETAY
20377 1532, {119 th.s =& (s
2232 Y Jgo o726 1 WMC.Q 3o ] o [N ST 142 § \ES ) 3450 § =627 -
| 2253 § 1939 1oes | e 1322 1 yes 3 XY BTK tdo.7 § 194.C 3427 § o8
2217 odg 2BB 1319 4o S 422,
[ 22l% 161 [E=XN Vi 42s 4 g 3.0 34e]
1%.S ess 1€ T =47 [d \ST] 7T 3104
191.4 A9 18].5 K 1953 %0
257 290.9 1235 157.6 S 182.9 1437 18S5.© > 193 350.5 1 1.7
2161 1 1943 1239 f g 14to ¥ (949 IC7: 1535 | 224 | 5487 J 5724
292 1201 A3y 146 \S5H3 4G
zp.ga ( r.sl.oﬂ 153 T .24 (SR Vi 3
[TiK) WA 4 NTTES TR 4 X 2121
1935 +11.S 192.9 1944 2¢0.2 E3{%)
Zogo § 1953 eI TSRS 552 § 191\ s(s T\Is 8 1052 § 200] Ss5e ) Slo8
FI YN Mt TIA 4N iy 1511 | 2ets 157.2 [ 2027 TG PS5 3540 § 516 {
208 -4 \S18 .5 %12 sk H
251 e Bs3 7P RSN Pi [ve AN Pl ST B
[~ lee | Te.S Thazo [ NTT¥) 2023 Sz
1891 \e.2 191.5 118-G P 3123
o3 § 167Q 151.6 1 N8.s Mo 2a\-4 JaS_J 2el0 TS Ear S|
20071 | 196 1535 1 1A 2046 200 e f 218 3599 I Ss'g
2512 . REY S Kl
‘ﬁnﬁ( } K L 3N P4 =2 |
wi.2 1133 R4 193.S 2006 gg% '
1829} e 1948 1962 ook o f
1922 1€].8 wSo § e ¢ 1121 1988 == 28] Xe J 2051 sy | 329
1949 | 18AS 1641 8e & S | 2043 [CYRN NI mel [ 2093 339 3l48
1937 1675 s 17T 5.8
S [NFEIN ¥ NN TS ;‘ 1A C1.C
1616 L NIRTEED el 18e.2 A4 ZBS -
[Eak=] [¥ 251 1920 192.1 1955 1.7
[TYAN BT 7\ 18] [CERS W) 90.2 | 9e4d 1951 J 200 1o Jlos
s I 1R4.S re ] g3g 1944 1.8 1952 § 2008 1911 R 20X S 286 1 STV G
1855 1BLY 191.4 199 2626 ?’;}E
|E§.s; i §S-3“{ &'silf 201 S A L8 '( X
1912 1653 162 A1 1819 73619
1929 14:S et | 1172 IBLE ok
sl § 1vod a4 o3 191.S | 1wi4 | 985 | el 225 NG [ 363
gy § 181z 198 ¥ (151 203 1 1835 FEE] 1904 2637 1 1321 Fho P 3CC
=41 1701 2030 225.5 2e16 2.5
1] 1251 PN P 277 Mg 342 * SIS
Wi vg.e Tised \ST, 1621 3519
128 1508 6.5 162\ 628 3508
ss P yx.e 1953 L \Sh( K RK 20381 1 -5 2004 1 icTo 2R | 355
so 1 1y33 208c] 2.2 2025 § 1133 26 ]z 3128
(WK 2516 2972 2\: 2 3_1‘343
NIy 252 EIEEIN Pi 22 ES N ¥
2519 ”‘ 1R [¥33 ’1‘ 135S EX3E
2075 \ZZ A \34.2 V342 Al
NTEE X0 25 | 1glo 2054 Tize s PYSERN NS ESTZ N E33E]
FSEE B 227 | 1474 285 | Wi E3{RE IEZ7%T
2246 2058 2057 369.1
i8S 213204 285 1g S
4 DR 4 N xe =197
EIXS 73 98T S\8S
2552 f jooS prerd INSED 2:2S Jicod 9 | =19.5 |
200 1 Vo9 [ 263 1 wiA 2037 Qiot.6 SloBE 2242
\70.1 1994 \ LS 1.5
FACRN P 228 1d 2562 = % lé
= 517 26 S\Y 2125
531 sz HE) 2115,
1921 SO 128 | Sdo \55A § 525 =s3.3) 290
ge2 1 g8 1912 § €.S 1957 § €02 =s37 ) 2959 .
1813 182.9 1818 =412
! LS H
2 6.2
2331 2iso 191.7 E 2.5
220 1 21¢ wqq | 53 21
2253 LS o
FE-T X3
2512, S ;
25’ .5 it ] S
sse | 245 | 1se1 1 417 1sg1l so igo §sie 159s | sle ey 53
28 J 2537 a2 1 €62 1635 F by 1 L ale 162.5 111 183 X
fo® LX) 144 LY 95 V% 1184

FIGURE A.6(a) FRAME TYPE SIX
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