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Abstract

This thesis is offered as a step forward in our understanding of forgetting in

artificial neural networks. ANNs are a learning system loosely based on our

understanding of the brain and are responsible for recent breakthroughs in

artificial intelligence. However, they have been reported to be particularly

susceptible to forgetting. Specifically, existing research suggests that ANNs

may exhibit unexpectedly high rates of retroactive inhibition when compared

with results from psychology studies measuring forgetting in people. If this

phenomenon, dubbed catastrophic forgetting, exists, then explicit methods

intended to reduce it may increase the scope of problems ANNs can be suc-

cessfully applied to.

In this thesis, we contribute to the field by answering five questions re-

lated to forgetting in ANNs: How does forgetting in psychology relate to ideas

in machine learning? What is catastrophic forgetting? Does it exist in con-

temporary systems, and, if so, is it severe? How can we measure a system’s

susceptibility to it? Are the current optimization algorithms we use to train

ANNs adding to its severity?

This work answers each of the five questions sequentially. We begin by

answering the first and second of the five questions by providing an analytical

survey that looks at the concept of forgetting as it appears in psychology and

connects it to various ideas in machine learning such as generalization, transfer

learning, experience replay, and eligibility traces.

We subsequently confirm the existence and severity of catastrophic for-
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getting in some contemporary machine learning systems by showing that it

appears when a simple, modern ANN (multi-layered fully-connected network

with rectified linear unit activation) is trained using a conventional algorithm

(Stochastic Gradient Descent through backpropagation with normal random

initialization) incrementally on a well-known multi-class classification setting

(MNIST). We demonstrate that the phenomenon is a more subtle problem

than a simple reversal of learning. We accomplish this by noting that both

total learning time and relearning time are reduced when the multi-class classi-

fication problem is split into multiple phases containing samples from disjoint

subsets of the classes.

We then move on to looking at how we can measure the degree to which

ANN-based learning systems suffer from catastrophic forgetting by construct-

ing a principled testbed out of the previous multi-task supervised learning

problem and two well-studied reinforcement learning problems (Mountain Car

and Acrobot). We apply this testbed to answer the final of the five questions

by looking at how several modern gradient-based optimization algorithms used

to train ANNs (SGD, SGD with Momentum, RMSProp, and Adam) affect the

amount of catastrophic forgetting that occurs during training. While doing

so, we are able to confirm and expand previous hypotheses surrounding the

complexities of measuring catastrophic forgetting. We find that different al-

gorithms, even when applied to the same ANN, result in significantly different

amounts of catastrophic forgetting under a variety of different metrics.

We believe that our answers to the five questions constitute a step forward

in our understanding of forgetting as it appears in ANNs. Such an understand-

ing is essential for realizing the full potential that ANNs offer to the study of

artificial intelligence.
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Preface

This thesis is an original work by Dylan Robert Ashley under the supervision

of Dr. Richard S. Sutton. Parts of this thesis may be published under different

cover in the future. The source code for all experiments appearing in this work

is freely available at https://github.com/dylanashley/catastrophic-forgetting.
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Whenever we give up, leave behind, and forget too much, there is always the

danger that the things we have neglected will return with added force.

– Carl Gustav Jung in Memories, Dreams, Reflections
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Chapter 1

Introduction

This work is an investigation into the tendency for a type of learning sys-

tem known as an Artificial Neural Network to forget things it has previously

learned. Before doing that, it is critical first to establish what artificial intelli-

gence (AI) is, what artificial neural networks (ANNs) are, and why both merit

attention.

To understand why AI merits attention, we must be clear on precisely

what AI refers to. Obtaining this clarity is somewhat more challenging than

we would like, as there remains much disagreement regarding what consti-

tutes the field of AI (Russell and Norvig, 2003, pp. 1–5). In this thesis, we

adopt John McCarthy’s definition of AI, which states that intelligence is “the

computational part of the ability to achieve goals in the world” (McCarthy,

2007, p. 2), and AI is “the science and engineering of making intelligent ma-

chines” (McCarthy, 2007, p. 2). With that definition in mind, it is apparent

why AI has long captured the imagination of so many. On his deathbed,

John von Neumann thought about the connection between computers and the

brain (von Neumann, 1958). Alan Turing, the founder of theoretical computer

science, had a keen interest in AI and ended up making made several pio-

neering contributions to the field, e.g., The Turing Test (Turing, 1950). That

these giants gave pause to the topic should be of no surprise to anyone, as,

ultimately, AI has the potential of solving many of the grand challenges facing

our societies today.

Consider the problems facing many nations when they try to provide high-
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quality medical care for their citizens. The primary barrier facing governments

here is the simple reality that health care is expensive. In 2019, the Canadian

government expected that its annual health spending would amount to 11.6%

of Canada’s GDP (Canadian Institute for Health Information, 2019, p. 4).

This high price tag means that any reduction in the cost of providing health

care would free up societal resources to use for other purposes. However,

we must ask ourselves whether or not this can be done without lowering the

quality of the service provided. The answer is undeniably yes, as we could

achieve that with automation.

Imagine, if you will, waking up one morning a bit under the weather. You

pick up your phone and start lamenting to it. After describing your symptoms,

it gives you a diagnosis and recommends a course of treatment for you. If the

AI is good at its job, the diagnosis it offers you will come not just from your

description of the symptoms and your personal medical history, but also from

the more subtle information about you that only a companion as constant as

your phone will know. If the AI is especially good at its job, the effectiveness

of the treatment it offers you will rival or exceed the effectiveness of whatever

treatment a doctor would recommend to you. So here, AI has been successful

at automating away one part of the medical care process.

As a second example of the potential of AI, consider the challenge of build-

ing self-driving cars. In the United States, there were 37,133 fatalities due to

traffic accidents in 2017, and it was the leading cause of death for people aged

17 through 21 (National Highway Traffic Safety Administration, 2019, p. 6).

While many traffic accidents occur due to something beyond the reasonable

control of the driver, many more are the result of human error. A sufficiently

advanced, fully autonomous self-driving car, however, would be able to react

significantly faster than a human and consequently be substantially less prone

to error in this situation. Furthermore, a self-driving car would be incapable

of driving under the influence and would not be capable of distracted driving.

So here, AI technology has the potential to save many lives.

Both of the aforementioned examples refer to very active areas of ongoing

research. While these may be examples of yet unsolved problems, in the past
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decade, there has been a number of breakthroughs on other AI problems. Most

of these are due to advances relating to ANNs.

ANNs are loosely based on our knowledge regarding the underlying mech-

anisms of the human brain and have shown themselves to be astoundingly

flexible learning systems. They have been adapted to solve a wide range of

different AI problems which has resulted in substantial improvements in facial

recognition technology (Taigman et al., 2014), computers playing Atari games

at the level of a human (Mnih et al., 2015), computers beating professional

players at the ancient game of Go (Silver et al., 2016), automatic stylization

of photographs to look like they are paintings by famous artists (Gatys et al.,

2016), better text translation (Vaswani et al., 2017), automatic text genera-

tion (Radford et al., 2019), and major advancements in tackling the famous

protein folding problem (Senior et al., 2020). Notably, each of the aforemen-

tioned successes independently represents a major leap forward in AI.

1.1 Catastrophic Forgetting and Continual

Learning

ANNs, like most learning systems, try to learn specific functions by looking at

example applications of that function. One issue with ANNs is their sensitivity

to the way in which they are fed these examples. Problems where all the

examples are fed to the learning system at once are known as offline problems.

In contrast, problems where the examples are fed to the learning system one

after another are known as online problems. ANNs struggle when applied to

online problems as they tend to rapidly forget previously learned information

when in the presence of new information (French, 1991, p. 173). This has

been called catastrophic forgetting or catastrophic interference (McCloskey

and Cohen, 1989).

The presence of catastrophic forgetting in online learning is a serious issue

as there are many online problems in AI that we care about. In the earlier

medical example, to recommend suitable medical treatments, an AI would

need to be able to learn about you moment to moment. Thus it is a problem
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that fundamentally needs online solutions. As another example of an online

learning problem we care about, take the challenge of building AI companions

to help decrease the social isolation some individuals face. Social isolation is

a major problem in society with new evidence that it may be associated with

grave health concerns (Cacioppo and Cacioppo, 2014) coming at a time when

societal levels of social isolation are high (Cigna, 2018, p. 2). However, to

be an agreeable companion, an AI would need to again learn about a person

moment to moment as well as adapt as they change. An ANN-based learning

system would be able to manage catastrophic forgetting effectively if it is to

learn and adapt in such a manner.

Managing catastrophic forgetting is not only useful because it can reduce

how much forgetting occurs, but also because it can be used to free up resources

efficiently. In the AI companion example, if the AI companion is passed from

one person to another person, only part of what it has learned would usefully

carry over. If the companion was passed from a wine connoisseur to a cheese

connoisseur, knowing about wines might no longer be useful, but knowing

about the art of tasting would. So, here the AI could free up memory by

selectively forgetting useless information but still utilize the useful information

it had previously acquired.

The ability to selectively forget is one of the desiderata that defines continual–

sometimes called lifelong (Chen and Liu, 2018, p. 55)–learning. Continual

learning systems are learning systems able to retain previously learned knowl-

edge and apply that knowledge to new problems (Silver et al., 2013, p. 51;

Ring, 1997, pp. 77–78). To perform this without using arbitrarily vast amounts

of memory, some forgetting–which is necessary to compress sufficiently large

amounts of information in finite memory–must occur. Many instances of con-

tinual learning systems are ANNs, e.g., Ring (1997) and Tessler et al. (2017).

In such instances, effectively controlling forgetting to ensure efficient online

learning is essential.

The benefits provided by online learning systems has lead to a consider-

able amount of work developing ways to mitigate catastrophic forgetting, e.g.,

Goodfellow et al. (2013), Kirkpatrick et al. (2017), Lee et al. (2017), Zenke
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et al. (2017), Masse et al. (2018), Sodhani et al. (2020). However, it continues

to be an unsolved issue (Kemker et al., 2018). Its persistence is partly because

the catastrophic forgetting problem remains not yet well understood. Indeed,

most research into catastrophic forgetting is limited to the multi-task, batch

supervised learning setting (see Section 2.1). This is the same setting used

by the original work looking into catastrophic forgetting, i.e, McCloskey and

Cohen (1989), but is not the most connected to online learning nor to how

humans and other biological organisms operate.

We propose to revisit and expand on our understanding of what forgetting,

and catastrophic forgetting, is in ANNs. By furthering this understanding, we

hope to better equip the field in finding ways of understanding how our algo-

rithms can control it to their benefit. Advancing this understanding requires

not just meditating on it and how it relates to other topics, but also determin-

ing how we can build a testbed to measure different facets of it. To demonstrate

the value of the above, we apply our testbed to understand better whether or

not contemporary step-size adaption algorithms are affecting it and, if so, how.

Altogether, if realized, this enhanced understanding would represent a small

step forward in the field of AI.

1.2 Research Questions and Related

Contributions

Under the preceding motivation, this thesis seeks to further our understanding

of forgetting and catastrophic forgetting in ANNs. With that objective, this

thesis’s main research questions are the following:

• How does forgetting in psychology relate to ideas in machine learning?

• What is catastrophic forgetting?

• Does catastrophic forgetting exist in contemporary machine learning sys-

tems, and, if so, is it severe?

• How can we measure how a system experiences catastrophic forgetting?
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• Are the current optimization algorithms we use to train ANNs adding

to the severity of catastrophic forgetting?

The related contributions of this thesis are thus

1. an analytical survey that looks at the concept of forgetting as it appears

in psychology and connects it to various ideas in machine learning,

2. empirical evidence demonstrating the existence of catastrophic forgetting

in some contemporary ANNs,

3. a testbed that helps understand the degree to which some ANN-based

learning systems suffer from catastrophic forgetting, and

4. evidence that the choice of which modern gradient-based optimization

algorithm is used to train an ANN has a significant impact on the amount

of catastrophic forgetting that occurs during training.

1.3 Outline

Including the introduction, the thesis is divided into seven parts. Immediately

following this outline, we prepare the reader for the later chapters by provid-

ing essential background information in Chapter 2. We then attempt to distill

the concept of catastrophic forgetting and determine how it relates to other

concepts in machine learning and psychology in Chapter 3. Afterwards, we

provide an example of catastrophic forgetting and use it to demonstrates in

what way catastrophic forgetting is a problem worth investigation in Chap-

ter 4. Following that, we expand on Chapter 4 to construct a benchmark

with which we can measure catastrophic forgetting in Chapter 5. We then ap-

ply this benchmark to look at the effect of step-size adaptation algorithms on

catastrophic forgetting in Chapter 6. Finally, we conclude by reflecting on how

the previous chapters have served to fulfill the promises made in Section 1.2,

what the implications of that are, and what future work remains in Chapter 7.
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Chapter 2

Background

Machine learning (ML) is the branch of artificial intelligence concerned with

learning. More specifically, ML seeks to build autonomous systems that can

learn an underlying function from looking at examples. Over the years, ML

has grown from a minor topic within artificial intelligence to its dominant sub-

field. This growth is, in large part, a product of the success and promise of

modern ML methods (see Chapter 1).

This chapter seeks to provide the necessary ML background readers will

need to understand the remainder of this thesis. Individuals already well

versed in ML should feel free to skip it. It is assumed that readers already

have a strong background in computing science, mathematics, and statistics,

as providing the necessary introduction to these topics is outside the scope of

this work.

ML is a vast topic with many sub-problems and solution methods. Each

sub-problem presents a distinct set of challenges, and each solution method

carries with it both strengths and weaknesses. Sections 2.1, 2.2, and 2.3 pro-

vide details on the three sub-problems referenced in this work. In terms of so-

lution methods, this work only focuses on one specific, potent solution method

known as artificial neural networks, which are explained in Section 2.4.

Section 2.5 concludes the chapter by provides references to additional ma-

terial for the interested reader.
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“Cat”,( )
Figure 2.1: Supervised learning tries to learn the function that maps the first
element of pairs like this, i.e., a picture of an animal, to the second element,
i.e., the name of the animal in the image. When building a learning system
to solve problems like this, it is standard practice to transform this into a
classification problem by mapping the names of the animals to a subset of the
natural numbers.

2.1 Supervised Learning

Supervised learning (SL) is perhaps the most common problem setting in ML.

SL tries to learn a function from input-output examples. Mathematically,

we could say that SL learns an approximation f̂ of f : X → Y from a set

of examples (x0, y0), (x1, y1), ..., (xk, yk) where each yi = f(xi). Note that

it is generally assumed that x0, x1, ..., xk are Independent and Identically

Distributed, but, there is no restriction against, and it is not uncommon for f

to be a noisy function. Furthermore, it is not required that each xi be a vector

and each yi be a scalar. It is fairly normal for both xi and yi to be higher

dimensional tensors.

The nature of X and Y are undefined in the general SL problem. If Y is

a set of different classes, then a learning system that maps X to Y is known

as a classifier, and we say that the learning system is solving a classification

problem (see Figure 2.1). The same can be said if Y is a set of one-hot vectors,

i.e., unit vectors that each have a single non-zero element, in which case the

indices of the non-zero element in the vectors form an equivalent set of classes.

Alternatively, Y could be an interval in R, in which case a learning system

that maps X to Y is said to be solving a regression problem.
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When solving SL problems, it is generally desirable to obtain an estimate

of the performance of a trained learning system on unseen, novel examples.

To obtain this estimate, the set of examples is partitioned into several folds.

These folds are then split into a training set and a testing set, the latter of

which is used to evaluate the learning system. When solving a classification

problem, to ensure that each fold is similar to the complete dataset, the folds

are generally constructed such that each fold contains roughly the same dis-

tribution of classes as the full dataset. In this instance, the folds are called

stratified folds.

Many solution methods for SL problems involve algorithm-level parameters

known as hyperparameters. In order to find a setting for these hyperparameters

that facilitate a learning system in solving a given problem, the learning system

must be applied multiple times to the problem under different such settings.

To both select a good hyperparameter setting and obtain an unbiased estimate

of the performance of the learning system, the aforementioned folds must be

split into three sets: a training set, a validation set, and a testing set. The

validation set is then used to evaluate the performance of each hyperparameter

setting. The final performance estimate is then obtained by applying the

learning system with the best hyperparameter setting to the testing set.

2.2 Online Learning

Online learning is a variant of ML where examples only become available to the

learning system one after another. This can be contrasted to offline learning,

where all examples are available to the learning system at all times. While,

in some cases, it is possible to treat many online learning problems as offline

learning problems, this is, in general, not possible. In many cases, the stream

of examples has no defined termination point. In such a scenario, an offline

learning approach would be infeasible with only finite memory and finite time.

Also, it can be the case that, for example, as it is in reinforcement learning (see

Section 2.3), the contents of the stream of examples is a product of decisions

made by the learning system. When faced with such a situation, a learning
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system cannot wait for all or most of the data to become available before

learning.

To provide a mathematical example of online learning, consider the struc-

ture of an online SL problem. Here we would say that the objective of the

learning system is to learn an approximation f̂ of f : X → Y from a set of

examples (x0, y0), (x1, y1), ..., (xk, yk) where each yi = f(xi) and (xt, yt) only

becomes available to the learning system at time t. If, as opposed to storing

and using multiple examples, the learning system performs an update using

only (xt, yt) at each time t, we say that the learning system is an incremental

learning system.

Note that the online learning setting does not explicitly consider whether

or not the underlying distribution generating the examples changes over time.

If it does we say that it is a non-stationary problem as opposed to a stationary

problem.

2.3 Reinforcement Learning

The reinforcement learning (RL) problem considers an agent receiving rewards

through interacting with an environment. Mathematically, RL is generally

formulated as a Markov Decision Process consisting of

• a set of states S,

• a state-dependent action set A = ∪s∈SA(s),

• a transition function p : S × A × S → R with ∀s ∈ S, a ∈ A,∑
s′∈S p(s

′|s, a) = 1 where p(s, a, s′) gives the probability of action a

causing a transition from state s to s′, and

• a possibly stochastic reward function r : S ×A → R where r(s, a) gives

the reward for taking action a in state s.

In an MDP, at each timestep t ∈ N, while the environment is in state

st ∈ S, the agent takes action at ∈ A(st) according to its policy, π : S → A.
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Figure 2.2: Reinforcement learning considers an agent interacting with an
environment. At each step, the agent takes an action, and, in response, the
environment changes its state, and rewards the agent.

In response, the environment changes its state to a new state, St+1 ∈ S, and

the agent receives a reward Rt+1 (see Figure 2.2).

There are two kinds of RL domains we model under the MDP framework:

episodic and continuing. Episodic domains have a set of reachable states, T ,

such that each state s ∈ T terminates an episode when the agents reaches

it. Continuing domains, on the other hand, have no termination states. This

difference has important implications when defining when defining the perfor-

mance of agents.

In general, the quality of a policy is determined by the expected cumulative

discounted sum of future rewards, i.e., the expected value of the return, when

actions are selected according to that policy. The return is denoted by

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

where γ ∈ [0, 1] is the discount factor. In most continuing domains γ < 1.

This ensures Gt 6=∞. In most episodic domains, γ = 1 which, if the expected

length of an episode is less than infinity, still ensures Gt 6=∞.

We call the expected value of the return given a current state s and under

a policy π the value of state s under π. We denote this as

vπ(s) = Eπ[Gt|St = s]

Sometimes it makes sense to talk about the value of taking specific actions

in states. The expected value of the return under a policy π after action a has
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been taken while in state s, is known as the action-value of the state-action

pair (s, a) under π. We denote this as

qπ(s, a) = Eπ[Gt|St = s, At = a]

Action-values are generally used in the control setting, where the objective

is to find an optimal policy. An optimal policy π∗ ∈ Π, is a policy such

that ∀π ∈ Π, s ∈ S, vπ∗(s) ≥ vπ(s). In contrast to the control problem, the

prediction setting tries to determine what the value of states are under a given

policy π.

2.4 Artificial Neural Networks

Artificial neural networks (ANNs) are a learning system very loosely based on

our knowledge of how networks of biological neurons operate. They consist of a

sequence of layers composed of artificial neurons (see Figure 2.3). Each neuron

functions by taking an aggregate of the output of neurons in the previous layer

and then transmits a function of this aggregate to neurons in the next layer.

Aggregation is done by weighted averaging. It is the weights in the aggregation

process that determines the function the ANN computes.

The first layer in an ANN is the input layer and is the means by which an

input is given to the network. Following this are any number of hidden layers

and then an output layer that produces the output of the network. The number

of neurons in the input and output layer thus specifies the dimensionality of

the input and output of the learning system, respectively.

In addition to standard neurons, ANNs can also contain bias units. Bias

units function similarly to standard neurons except that they reject all input

and instead output a constant. In the function computed by an ANN, bias

units serve a similar purpose to the y-intercept in the equation of a straight

line (y = mx+ c with the y-intercept being c).

Prior to producing their output, neurons can apply a variety of transfor-

mations to the aggregate of their input. We call the functions that apply

these transformations activation functions. Two of the most common acti-

vation functions are the identity function, i.e., f(x) = x, and the Rectified
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Figure 2.3: ANN with an input layer (green), three hidden layers (yellow),
and an output layer (blue). Circles represent neurons, and the lines between
neurons indicate the flow of information in a forward pass as computation
proceeds from the input layer to the output layer. Each of the lines in the
image corresponds to one weight in the network. Bias units are shown in
orange. Note the lack of connections between bias units and previous layers.

Linear Unit, or ReLU activation function (Glorot et al., 2011; Jarrett et al.,

2009; Nair and Hinton, 2010). ReLU activation is, arguably, the dominant

activation function in contemporary ANN research, yet the only operation it

performs is clipping values below zero: f(x) = max{0, x}.

Using g(i) for the activation function of the i-th layer, W(i) for the weights,

and b(i) for the bias weights, an n-layered neural networks takes as input some

z(0), and outputs

z(n) = g(n)(W
T
(n)z(n−1) + b(n))

While the above equation makes it clear that even simple ANNs have the

power to represent a large class of functions, it also shows that a major obstacle

to the application of ANNs is the challenge of finding a suitable configuration

of weights. Thankfully, there is a considerable body of work devoted to this

exact process.

2.4.1 Training ANNs

The weights in ANNs determines the function that maps their input to their

output. As the main application of ANNs is finding a good approximation of
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an unknown function that generated some data, and as ANNs are, in general,

overparameterized (Zhang et al., 2017, p. 1), finding a good set of parameters

can be challenging.

ANNs are generally trained by performing some form of gradient descent

on a set of examples. Gradient descent is an iterative process over a set

of parameters and thus requires some set of initial parameters before it can

commence. In a neural network, there are several different ways that have

been proposed for initializing the parameters of a network. The most common

of these involves simply setting each parameter by sampling from a normal

distribution characterized by mean zero and a small standard deviation. While

often not ideal, such an initialization strategy often performs well in relatively

simple settings.

A more advanced but still commonplace strategy for initializing the pa-

rameters of an ANN is Xavier initialization (Glorot and Bengio, 2010). Xavier

initialization works by initializing each parameter θi,j in the network as

θi,j ∼ U

[
−

√
6

ni + ni+1

,

√
6

ni + ni+1

]

where θi,j is the j-th parameter in the i-th layer of the network, ni is the

number of parameters in the i-th layer, and U [a, b] is the uniform distribution

with a support consisting of all real numbers between a and b. The motivation

behind this procedure is that doing so ensures roughly equal variance between

layers in both forward and back propagation. While designed for deep ANNs,

Xavier initialization is equally applicable to shallow networks.

Xavier initialization was designed with a particular activation function in

mind (not covered here). He et al. took note of the complications this posed

and created a new initialization method with similar properties under ReLU

activation. Their method is known as He initialization (He et al., 2015) and

remains one of the more common ways of initializing parameters in a network

with ReLU activations. He initialization works by initializing each parameter

θi,j in the network as

θi,j ∼ U

[
−
√

2

ni
,

√
2

ni

]
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where θi,j, ni, and U [a, b] all have the same meaning as in Equation 2.4.1. In

both He initialization and Xaiver initialization, the parameters correspond-

ing to bias units are frequently initialized differently. One such initialization

strategy is to each such parameter by sampling from a normal distribution

characterized by mean zero and a small standard deviation.

After being provided with some set of initial parameters, at each step in its

iteration, gradient descent starts by computing the gradient of a function with

respect to some parameters. Gradient descent then shifts all the parameters

a step in the direction of their gradient and repeats. Since the gradient of the

true function is rarely available in practice, generally gradient descent with

ANNs is performed over some surrogate loss function describing how far the

function the ANN computes is to the function described by a set of examples.

We describe two such loss functions here.

Cross-entropy is a common loss function for SL classification settings.

Cross-entropy compares the class probability distribution a classifier assigns

to an example with the actual class that example belongs to. We can write

the cross-entropy of a distribution ŷ and a one-hot encoding, y, of the true

class as

L(ŷ,y) = −y · log(ŷ)

Instead of cross-entropy, in RL it is common to use the squared Temporal-

Difference error. TD error is a one-step prediction error. Using v as the

value estimate of the previous state, r as the immediate reward following a

transition, γ as the discount factor, and v′ as the value estimate of the next

state, we can write the squared TD error as

L(v, r, v′) = (r + γv′ − v)2

When performing gradient descent on a loss function over a set of exam-

ples, a decision has to be made as to how many examples to include in each

iteration. We call gradient descent with a single example per iteration Stochas-

tic Gradient Descent. When all the examples are included in each iteration,

we call it batch gradient descent. Finally, when each iteration considers some

intermediate number of examples, we call it mini-batch gradient descent. Of
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1: θ ← small random values
2: while termination criteria not met do
3: for i = 1 to n do
4: ŷi ← f(xi; θ)
5: θ ← θ − α∇θL(ŷi,yi)
6: end for
7: end while

Figure 2.4: Stochastic Gradient Descent algorithm for a set of examples
(x1,y1), (x2,y2), ..., (xn,yn). When using an ANN, θ contains the weights of
the network, and f(x; θ) is the output of the neural network when fed x as
input.

the three, only SGD is a purely incremental algorithm. Figure 2.4 shows the

SGD algorithm as applied to an ANN.

When applying SGD to train ANNs, it is necessary to derive the gradients

of the loss function with respect to the weights. Due to the structure of

ANNs, this is non-trivial. One of the most significant advancements in ANNs

was the popularization of the backpropogation algorithm (Rumelhart et al.,

1986), which recursively applies the chain rule to derive gradients. As an

understanding of backpropagation is not necessary to understand the contents

of this thesis, we omit a full description of it here.

In contemporary research, most ANNs are not trained with vanilla SGD

but are instead trained with a variant such as SGD with Momentum. SGD

with Momentum (Qian, 1999; Rumelhart et al., 1986) applies a simple math-

ematical model of physical momentum to gradient descent. This momentum

helps escape suboptimal local minima, i.e., locations in the space induced by

the parameters which score better on the loss function than the surrounding

area but worse than some other far away location. The SGD with Momen-

tum algorithm as applied to an ANN can be obtained by replacing Line 5 in

Figure 2.4 by

m← βm+ α∇θL(ŷi,yi)

θ ← θ −m

Note that the update equations for SGD with Momentum, like SGD, has

an α term but, unlike SGD, also has a β term. These are hyperparameters
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for SGD. Here α is called the step-size parameter, and β is the momentum

parameter.

Similar to momentum, RMSProp (Hinton et al., n.d.) can be viewed as

a kind of adaptive step-size method. RMSProp re-scales step-sizes using an

exponentially decaying average of the squared gradients. By re-scaling step-

sizes like this, RMSProp naturally discourages oscillatory behaviour in weight

updates. RMSProp as applied to an ANN can be obtained by replacing Line 5

in Figure 2.4 by

v ← βv + (1− β)(∇θL(ŷi,yi))
2

θ ← θ − α√
v + ε

∇θL(ŷi,yi)

Note that, like SGD with Momentum, RMSProp introduces some addi-

tional hyperparameters. Here, β is a smoothing constant and ε is a small

constant intended to prevent division by zero.

Combining SGD with Momentum and RMSProp, Adaptive Momentum

Estimation, or Adam (Kingma and Ba, 2014), is the dominant optimization

algorithm used to train ANNs. Like momentum, it keeps a running average

of the gradient, and, like RMSProp, it keeps a running average of the squared

gradient. Unlike both momentum and RMSProp, Adam additionally tries to

correct for bias resulting from initializing the running averages with zeros, as

is typically done in all three algorithms. Adam as applied to an ANN can be

obtained by replacing Line 5 in Figure 2.4 by

m← β1m+ (1− β1)∇θL(ŷi,yi)

v ← β2v + (1− β2)(∇θL(ŷi,yi))
2

m̂← m

1− βt1
v̂ ← v

1− βt2
θ ← θ − α√

v̂ + ε
m̂

Here, t refers to the number of updates that have occurred previously, β1

is analogous to β in momentum, β2 is analogous to β in RMSProp, and ε is as

in RMSProp.
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2.5 Further Reading

A reader with a background in computing science should now be well versed in

the topics necessary to understand the remainder of this thesis. The above sec-

tions, however, in the interests of brevity, represent significant simplifications

of the topics they claim to cover. An interested reader wishing to improve

their understanding of the above topics may wish to consult one or more of

the following texts:

• Hastie et al. (2009) is an excellent reference on ML in general.

• Sutton and Barto (1998) is the classical reference when it comes to the

topic of RL.

• Sutton and Barto (2018) provides an up-to-date overview of the RL

problem.

• Puterman (1994) remains the standard book on Markov Decision Pro-

cesses.

• Goodfellow et al. (2016) provides a contemporary, exhaustive overview

of ANNs.

18



Chapter 3

A Meditation on Forgetting

Forgetting, i.e., the inability of a learning system to recall what was previously

learned, has been a long-studied topic in several fields. Twenty-seven years

before Alan Turing was born, Hermann Ebbinghaus conducted the first set of

formal experimental studies looking into forgetting in humans (Ebbinghaus,

1913). Thirty-five years after Turing’s death, Michael McCloskey and Neal

Cohen published the first work looking into catastrophic forgetting in artificial

neural networks (McCloskey and Cohen, 1989), or ANNs.

What McCloskey and Cohen had published was a report regarding a phe-

nomenon that transpires when ANNs are applied to a not-purely-offline set-

ting. They felt this phenomenon was worth reporting as it seemed to suggest

a difference between forgetting as observed in humans and what they termed

forgetting as observed in ANNs. Thus the study of catastrophic forgetting

came to be as a consequence of scientists trying to ground research in ANNs

using research in psychology. This sequence of events suggests that research

into catastrophic forgetting cannot ignore its connection to psychological re-

search into forgetting. This chapter is an attempt to examine this connection

further and show how different, seemingly disparate ideas in machine learning

are bound together by it.

3.1 The Blessing of Forgetting

Before diving into the psychological perspective on forgetting, it is essential

first to address the crucial role forgetting plays in a learning system. Indeed,
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forgetting is not fundamentally a bad thing and is, in many cases, a necessary

part of many learning systems.

When we contemplate why forgetting may be beneficial, it is valuable to

recognize that the world is a complicated place. As highlighted by the com-

panion artificial intelligence (AI) example of Section 1.1, even just one human

represents quite a bit of complexity for a learning system to deal with, and

yet there are now more than 7.7 billion humans (United Nations, Department

of Economic and Social Affairs, Population Division, 2019, p. 1), each one as

complicated as the next. That 7.7 billion only accounts for only about 0.01

percent of the biomass on earth (Bar-On et al., 2018, p. 6507). Thus the pur-

suit of all knowledge is so utterly beyond hopeless that selective acquisition

and retention of it is not just useful but absolutely essential. From here on,

we refer to this argument as the complex-world hypothesis.

The complex-world hypothesis is not a cause for concern as, in most set-

tings, much of what it is possible to learn is not useful. If you wanted to serve

someone coffee, it does not matter if you know how to make a gin and tonic.

Furthermore, if you never again have cause to make a gin and tonic, it also

does not matter if you suddenly forget how to make one. In this way, even

much of what has been learnt by a learning system can be forgotten without

consequence.

Forgetting is also frequently to our advantage. In the above example, for-

getting how to make a gin and tonic would free up memory to learn something

new. Forgetting, in many ways, is a natural way to encourage new learn-

ing. This is particularly valuable when knowledge ends up becoming stale due

to the passage of time and the changing nature of the world. Consider, for

example, a doctor who has to decide what drug to administer to a patient

afflicted by an uncommon medical condition. If the doctor is unaware of the

usual variety of medications typically used to treat this condition, they will

likely consult with the latest literature and prescribe the most effective drug

currently known to treat it. If, however, they have treated this ailment before,

they may be inclined to, for the purposes of efficiency, prescribe instead what-

ever they prescribed previously. If medical theory has changed significantly
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since the last time they treated this ailment, this may end up being a mis-

take as the drug they prescribe in the second scenario may prove significantly

less effective than what the doctor would have prescribed in the first scenario.

Thus, forgetting here would help to prevent a doctor from making use of stale

knowledge and has instead forced them to seek out what they may otherwise

have considered irrelevant knowledge.

In the above example, the doctor who treated the condition before could

be said to be stuck in local minima; the doctor in the first scenario has found a

decent solution, and so is not motivated to see if there is a better one. Indeed,

the presence of prior knowledge can frequently lead to an optimizer being

trapped in local minima. In these kinds of situations, forgetting can encourage

exploration and consequently help an optimizer escape local minima. For a

second example, consider a chess-playing AI running an optimizer initialized

using examples of grandmaster chess moves. These moves represent a learned

strategy and, given the level of play this strategy represents, it is likely that

any small changes to the strategy that can produce a superior strategy have

already been explored. Thus only significant changes could ameliorate the

strategy, but without sufficient encouragement to explore, e.g., by forgetting,

the optimizer is unlikely ever to improve.

The aforementioned examples show that forgetting is not always a bad

thing, and the complex-world hypothesis shows that forgetting is not a problem

we can truly solve. Indeed, forgetting is an inevitable, and sometimes useful,

phenomenon that is, in many ways, merely a part of learning. Forgetting is

the discarding of old knowledge that is intrinsically linked to the acquisition

of new knowledge. If you believe a coin is fair then acquires evidence to say

it is, in fact, biased, then one may forget it is fair. Thus, rather than as a

problem, forgetting is better described as a mechanism that is both present

in, and employed by any decent learning system. The implications of this are

that we should seek to understand forgetting more and design ways to analyze

the properties of it exhibited by different algorithms rather than simply try to

“solve” it. In this way, we may refine the forgetting tool in our algorithms to

make ANNs more amenable to online learning.
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3.2 Origins and Theories in Psychology

Ebbinghaus (1913) was the original formal experimental work in the study of

forgetting. In order to measure forgetting, Ebbinghaus would himself memo-

rize sequences of nonsensical syllables. They would then wait several hours and

attempt to memorize the same sequences a second time. In order to measure

the amount of forgetting that had occurred, Ebbinghaus would look at how

much faster they could learn the sequences the second time. This way of mea-

suring forgetting became known as the relearning or savings method (Chance,

2014, p. 351).

The relearning method of measuring forgetting captures the fact that just

because someone can no longer recall exactly what they had once learnt does

not mean they have forgotten it. For example, say it had been the case that

Ebbinghaus could not repeat one of the sequences they learned several hours

after learning it. If they could still repeat the sequence after hearing the first

few syllables, then it is not wholly fair to say they had forgotten the entire

sequence.

Relearning has been used in ANN research, e.g., French (1991), but is

not the prevailing way of measuring forgetting in ANNs. This absenteeism

is interesting as it can provide markedly different conclusions regarding the

degree of forgetting (Hetherington and Seidenberg, 1989). That being said,

many other metrics have been proposed since then. Recall still, however,

remains the dominant one.

Since Ebbinghaus, the topic of forgetting has received considerable atten-

tion in psychology. Indeed, B. F. Skinner, one of the most notable psychologists

of the 20th century, carried out some now-famous research into forgetting:

Skinner (1950). To understand how contemporary psychology thinks about

forgetting, though, it makes sense to start by looking at how they define it.

The American Psychological Association defines forgetting to be “the failure

to remember material previously learned” (VandenBos, 2015, p. 432). They

go on to reference two notable theories around forgetting: decay theory and

interference theory. The connections of these to modern machine learning are
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explored in Section 3.3 and Section 3.4, respectively.

3.3 Decay Theory and Time

Decay theory, also called trace-decay theory, argues that, unless we use or

rehearse it, we gradually forget learned material as time passes. As we are

generally aware of some correlation between the time since we learned some-

thing and how well we remember it, this is a very natural way for us to think

about forgetting. For example, we would encourage the reader to try to re-

member the names of their elementary school teachers. Since it has probably

been several years since anyone reading this text interacted with them on a

day-to-day basis, they would likely have forgotten a number of their names.

Thus the passage of time has dulled the memory.

This way of thinking about time is incompatible with much of modern

AI research as, in most contemporary online learning research, there is no

explicit notion of time. Forgetting in ANNs is thought about as occurring over

examples rather than over seconds. We can reconcile this difference by turning

to ideas brought forward in McGeoch (1932). McGeoch argued that, for the

brain, time itself is a sequence of events, and therefore forgetting was a direct

consequence of new learning occurring. In an ANN context, decay theory is

then the argument that learning from a batch of examples will always incur

forgetting if that batch does not sufficiently overlap with prior learning.

Bridging the gap between decay theory and modern AI research reveals

several interesting connections. Experience replay (Lin, 1992), for example,

has long been an integral component of modern deep reinforcement learning

algorithms, e.g., DQN (Mnih et al., 2015), where it has mainly been used as a

way of mitigating catastrophic forgetting. The experience replay mechanism

works by storing recent experiences in a buffer and then drawing from that

buffer every so often to train an ANN. In that way, experience replay attempts

to slow forgetting through directly appealing to the above conclusions about

decay theory by ensuring there is an adequate amount of “rehearsing” of recent

experiences.
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Another interesting connection between decay theory and modern AI re-

search comes from thinking about its connection to eligibility traces (Sutton,

1988; Sutton and Barto, 1998; Sutton and Barto, 2018). In online reinforce-

ment learning, eligibility traces are a mechanism to help deal with the credit

assignment problem (see Section 2.3). They work by maintaining a visitation

tracker for each state. The tracker is set to decay as time passed but gets incre-

mented each time the state in question is visited. This tracker then indicates

the amount of time that has passed since the last time the agent visited that

state. Each update is then applied once for each state and weighted by the

current value of the visitation tracker for that state. In this way, visitations

to states leave an impression on the eligibility trace vector that slowly decays

over time.

The close association shown by the above examples implies that psycho-

logical work regarding forgetting has much to offer AI. Continuing AI research

motivated by decay theory may benefit from considering what contemporary

psychological research into decay theory has to say about differing rates of de-

cay for different memories. Whether or not the decay rate between memories

is shared or not shared appears to be one of the most substantial differences

between interference theory and decay theory as they are applied to AI.

3.4 Interference Theory and Transfer

In contrast to decay theory, interference theory argues that it is interference

between different instances of learned material that causes forgetting. That is

to say, when we learn something new, it may interfere with previously learned

material and thus cause us to forget either the new material or the previously

learned material. For example, imagine that you have a friend called Ted and

you just met someone who introduced themselves to you as Fred. It does

not stretch the imagination to believe that the next time you see your new

acquaintance Fred, you accidentally call him by the name of your good friend

Ted. Alternatively, you might find that you start calling Ted by the name Fred!

Here, interference between learned material has caused you to have difficulty
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in recall, i.e., it has caused you to forget one of the two names.

In interference theory, interference is divided into two categories: proactive

interference and retroactive interference. Proactive interference, also called

proactive inhibition, refers to previous learning causing us to forget things we

have just learned. In the name example, if we accidentally call Fred by the

name Ted, then we have been the victim of proactive interference, as having

a good friend called Ted has caused us to forget the name of our new ac-

quaintance Fred. In contrast, retroactive interference, also called retroactive

inhibition, refers to new learning causing us to forget things we learned previ-

ously. Again in the name example, if we accidentally called Ted by the name

Fred, then we have been subjected to retroactive interference, as meeting Fred

has caused us to forget about our good friend Ted.

Proactive interference is very closely related, but not the same as the phe-

nomenon of prior learning affecting new learning. When prior learning affects

new learning, rather than prior learning affecting the outcome of new learn-

ing, this is instead called the transfer of training. When the presence of prior

learning improves new learning, it is said that positive transfer has occurred.

When instead new learning is hampered by the presence of prior learning, it is

said that negative transfer has occurred. Again, while proactive interference

and negative transfer may seem similar, negative transfer is when old learning

is detrimental to new learning, and proactive interference is when old learning

is detrimental to the outcome of new learning (Reid, 1981). Similarly, the key

difference between transfer of training and forgetting is that transfer of train-

ing refers the impact of old learning on new learning, and forgetting refers to

the impact of new learning on the outcome of old learning.

When McCloskey and Cohen first reported the phenomenon of catastrophic

forgetting, they referred to it as retroactive inhibition. What McCloskey and

Cohen did in their work was train a network to perform addition on single-digit

numbers. They first taught their network to add one to single-digit numbers

and, once it had learned to perform that with high accuracy, they taught the

network to add two to single-digit numbers. They refer to these tasks as the

ones task and twos task, respectively. While they looked at a few different ways
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of measuring the accuracy of the learning system during and after training,

in all cases, the accuracy of the network on the ones task rapidly degraded

when learning the twos task. In fact, following training, the network began to

treat problems from the ones task as if they were problems from the twos task.

Thus they concluded that the network displayed something akin to retroactive

inhibition.

What was notable about the results of McCloskey and Cohen was that

the ANNs in their experiments seemed to show more retroactive inhibition

than what humans had demonstrated in Barnes and Underwood (1959). In

order to understand the implications of this, though, it is essential to review

the connections between McCloskey and Cohen’s experiments and Barnes and

Underwood’s experiments.

Barnes and Underwood, like Ebbinghaus, experimented with forgetting

through the medium of learning with words. Unlike Ebbinghaus, though, they

had people learn to associate pairs of words. Participants were given a list

of pairs where each pair on the list would consist of a nonsense syllable and

a two-syllable adjective. After learning to associate all the pairs on the list,

participants were given a second list containing the same nonsense syllables

paired with different two-syllable adjectives. The objective of this experiment

was to see what happened to the learned associations from the first list after

learning the associations in the second list. They were especially interested

in how the similarity of the adjectives in the first list to the adjectives in the

second list affected this, i.e., they were interested in the possibility of an effect

caused by transfer of training.

Barnes and Underwood measured the effect of transfer of training by run-

ning two experiments with only one key difference. In the first experiment,

subjects were given two lists such that adjectives in both lists were unrelated.

So, here, a participant might be given something like “aba-green” in the first

list and “aba-fast” in the second list. In the second experiment, subjects were

given two lists such that adjectives in the first list would always be paired with

a similar adjective in the second list. So in the latter experiment, a partici-

pant might given something like “aba-happy” in the first list and “aba-sunny”
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in the second list. The hope of this setup was that negative transfer would

occur during the learning of the second list in the former experiment, and pos-

itive transfer would occur during the learning of the second list in the latter

experiment.

In their experiments, Barnes and Underwood concluded that positive trans-

fer only occurred when the lists were similar. Notably, participants also re-

ported that, when the lists were similar, they used the learned associations

from the first list to learn the second list. More importantly here, Barnes and

Underwood concluded that when the lists were dissimilar, the more trials a

participant did on the second list, the less they remembered about the first

list. They showed this by directly asking the participants to write down the

adjectives from both of the lists that were associated with the given nonsense

syllable. The accuracy of their responses as a function of the number of tri-

als the participants did on the second list is the comparison point used by

McCloskey and Cohen.

The close relation between transfer of training and forgetting in psychology

is particularly notable here as transfer of training inspired a largely uncon-

nected topic of research in AI known as transfer learning. Transfer learning

explicitly seeks to utilize prior learning related to one task to assist when learn-

ing another task (Taylor and Stone, 2009, p. 1633). The fact that the results

of Barnes and Underwood suggested that positive transfer reduced retroactive

interference implies the same may be true in their AI counterparts. It remains

unclear to what degree this is true with Gutstein and Stump (2015) providing

some evidence supporting it, and Riemer et al. (2019) provided some evidence

against it.

It bears mention now that several later works support the results of Mc-

Closkey and Cohen. Hetherington and Seidenberg (1989), for example, repli-

cated McCloskey and Cohen’s experiments but determined that, after learning

the twos problem, the relearning time of the ANN for the ones problem was

shorter than the time it would take for the network learn a third problem. They

also provided some evidence that rehearsal when learning can potentially pre-

vent the network from forgetting how to solve some of the problems it has
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learned about. In this way, they presented early motivation for something like

experience replay.

Ratcliff (1990) also built scientific support for McCloskey and Cohen re-

sults. Ratcliff verified their results by first training an autoencoder on one

batch of random vectors, then training it incrementally on new, novel ran-

dom vectors. Their key conclusion was that the ability of the autoencoder to

recognize a specific vector would decrease in proportion to how many phases

of training had occurred since the autoencoder had last been trained on that

vector.

Thus, with the work of McCloskey and Cohen and others, it is clear that

ANNs do indeed exhibit some amount of retroactive interference, though the

circumstances and degree of it remain somewhat unclear. It also suggests that

psychological work into mitigating forgetting in humans could inspire new

methods of mitigating catastrophic forgetting in ANNs. To truly pursue that

though, requires a deeper understanding of the precise nature of catastrophic

forgetting in ANNs, something this work hopes to advance.

3.5 Synaptic Plasticity and Generalization

Unsurprisingly, neuroscience research, or the study of biological neural net-

works, has, for many years, had close ties to the study of ANNs. Many signif-

icant advancements, such as Convolutional Neural Networks, the mechanisms

behind many recent breakthroughs in Computer Vision (Goodfellow et al.,

2016, p. 326), are based on neuroscience results. When it comes to forgetting,

Abraham and Robins (2005) is perhaps the most notable recent neuroscience

study with implications for research into ANNs.

The question Abraham and Robins sought to answer in their work is

whether or not synaptic weights, i.e., the strength of the connections between

neurons in biological neural networks, are stable or not. If there is this synap-

tic stability, then it would imply that the encoding of individual memories in

the brain remains largely unchanged as time passes. If, on the other hand,

there was not a significant amount of synaptic stability, i.e., there was synaptic
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plasticity, then the encoding of memories in the brain would change as new

learning occurs. The presence of synaptic plasticity would imply that large

segments of our memories are being affected whenever new learning occurs.

The answer to the aforementioned question bears significant implications

for research into ANNs. The connection of ANNs to biological neural net-

works implies that, if neuroscience derives new results regarding the behaviour

of biological neural networks, it follows that AI might make further progress

by attempting to determining under what conditions ANNs display the same

behaviour. In this instance, the more synaptic stability biological neural net-

works display, the more we may want to encourage local representations, i.e.,

sparse representations, in ANNs, and vice-versa.

While the answer to the aforementioned question may have implications

for research into ANNs, interestingly, the authors actually used experiments

with an ANN to provide evidence for synaptic plasticity. To determine to

what degree ANNs exhibit synaptic stability, they, as with Ratcliff, trained an

autoencoder on random inputs online. They looked at the degree by which

weights changed when trained on only new examples at each step. They then

compared this to the degree by which weights changed when trained on the

first k examples at step k. They concluded that the latter training scheme

produces greater weight changes but also achieved higher accuracy. Thus,

in their experiment, synaptic plasticity was necessary for strong performance

from the ANN.

Abraham and Robins draw on the above evidence, as well as many ad-

ditional results in neuroscience, to conclude that there is evidence for both

synaptic stability and synaptic plasticity. They go on to conclude that there

is still not enough evidence yet to determine the degree to which the brain

demonstrates one or the other. For research into ANNs, this conclusion sup-

ports the idea that any event should at most make significant changes to some,

but not all weights. In other words, there should be some amount of, but not

total, locality in the representations.

The notion of locality as a desirable property of ANNs has been explored

before. French (1991) argued that the overlap of representations in ANNs,
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i.e., their ability to generalize, is one of the causes of catastrophic forget-

ting (p. 173). French proposed a novel way of creating more local representa-

tions in ANNs online. They went on to show that, under their experimental

setup, locality reduced the degree of catastrophic forgetting exhibited by the

ANN. Later results, e.g., Liu et al. (2019) and Srivastava et al. (2014), provided

some verification of this conclusion that locality reduces forgetting.

French’s results are intuitive as it is quite clear that local representations

should, in general, reduce the degree to which different pieces of learning in-

terfere with one another. This is true even if the learning system is not an

ANN. For example, a tabular representation, i.e., using one-hot vectors as

a representation, will naturally minimize interference. At the same time, a

tabular representation also minimizes generalization. Locality is indeed the

opposite of generality, and thus the more a learning system generalizes, the

less locality it exhibits. It follows then that more synaptic plasticity leads to

better generalization but at the cost of an increase in forgetting, a constant

supported by Riemer et al. (2019). This constant lends support to Abraham

and Robins’s conclusions and provides a solid rationale as to why neither pure

synaptic stability or pure synaptic plasticity should be sought in ANNs.

30



Chapter 4

An Example of Catastrophic
Forgetting

In this chapter, we seek to give an empirical example of catastrophic forgetting

in contemporary artificial neural networks (ANNs) and consequently provide

rigorous scientific validation for its existence and the meaningfulness of its ef-

fect. From Chapter 3, we know that catastrophic forgetting refers to when new

learning causes rapid forgetting of previously learned material, i.e., retroactive

interference. Thus we want to establish experimentally whether high rates of

retroactive interference occur when training modern ANNs.

The objective of showing that catastrophic forgetting exists permits us

tremendous flexibility in experimental design. However, confirming how mean-

ingful its effect, i.e., showing that its something we should care about, neces-

sitates a more precise construction. We can demonstrate that it is not a niche

phenomenon by ensuring our design conforms to contemporary practices in the

structure and study of ANNs, e.g., multi-layered feedforward networks trained

using backpropagation. We can then confirm that these results align with

some previous work, such as McCloskey and Cohen (1989) and Hetherington

and Seidenberg (1989), to lend them additional validity.

4.1 Experimental Setup

In order to demonstrate catastrophic forgetting in ANNs, we will have to

assemble and justify several experimental components including a suitable
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1. data-stream to feed to the networks,

2. ANN architecture to be trained,

3. optimization algorithm for training weights in the ANN, and

4. set of metrics to quantify retroactive interference.

In order to determine what makes a component suitable, it is useful to

establish the desiderata of this experiment. To begin, for aforementioned rea-

sons, we require the construction of this experiment to bear strong similarities

to the structure of conventional experiments with ANNs. That means we

must utilize widely-used datasets, build a network using components which

are near-ubiquitous in the literature, avoid niche optimization algorithms, and

only utilize common metrics for measuring catastrophic forgetting. We work

through collecting components that satisfy these constraints in Sections 4.1.1,

4.1.2, 4.1.3, and 4.1.4, respectively.

4.1.1 Assembling a Data-stream

When considering how to assemble the data-stream, we must note that current

belief suggests that catastrophic forgetting is, at least in part, a consequence of

how the dataset is presented to the learning system. Thus while we want to use

a well-known dataset to fill the data-stream, we would also like to ensure the

data-stream we form with it does test the network’s resistance to catastrophic

forgetting. The easiest way to do this is to ensure non-stationarity exists

within the data-stream.

When considering what dataset to use, we would be well-served by turning

to the Modified National Institute of Standards and Technology dataset, or

MNIST (LeCun et al., 1998). MNIST is one of the most ubiquitous datasets in

ANN research and has been referred to as “the drosophila of machine learning”

by Geoffrey Hinton (Goodfellow et al., 2016, p. 20). MNIST consists of 28×28

hand-written digits (see Figure 4.1). The conventional task for a learning

system with MNIST is to predict what the digit is given the image.
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Figure 4.1: Some of the handwritten digits as they appear in the MNIST
dataset. Each digit appears in the dataset as a labelled 28 × 28 greyscale
image.
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Fold
Digit

0 1 2 3 4 5 6 7 8 9

0 593 675 596 614 585 543 592 627 586 595
1 593 675 596 613 585 542 592 627 585 595
2 593 674 596 613 584 542 592 627 585 595
3 592 674 596 613 584 542 592 627 585 595
4 592 674 596 613 584 542 592 627 585 595
5 592 674 596 613 584 542 592 626 585 595
6 592 674 596 613 584 542 592 626 585 595
7 592 674 596 613 584 542 592 626 585 595
8 592 674 595 613 584 542 591 626 585 595
9 592 674 595 613 584 542 591 626 585 594

Holdout 980 1135 1032 1010 982 892 958 1028 974 1009

Table 4.1: Distribution of digits in MNIST after dividing it into a holdout set
and ten stratified folds. Note that each fold contains roughly the same number
of each digit.

As image classification under MNIST is a supervised learning task, the

first step in constructing our data-stream is to separate it into folds. We use

stratified folds to ensure similarity across experimental settings. Furthermore,

as MNIST is large enough, in all of our experiments, we choose to explicitly

prevent the same sample from appearing twice to the learning system in a

single run. This measure necessitates folds that have several thousand digits

each. The exact distribution of the resulting separation is shown in Table 4.1.

To build our data-stream out of the MNIST dataset, we must now divide it

into two tasks. These tasks will then be presented sequentially to the network

in separate phases. Here we separate the ones-and-twos from MNIST to create

the first task: a two-class classification task where a learning system must

decide from an image whether that image is of a one or a two. Similarly, we

separate the threes-and-fours from MNIST to create a second task. We can

then observe any forgetting that occurs after first providing the network with

samples from one task, then providing it with samples from the other task. At

each step, we can measure the network’s ability to perform on a given task by

checking its accuracy on novel samples from a set of test folds. While when

testing we can provide the network with all the digits in the test folds at once,

the same is not true when training the network. Indeed, the number of digits
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the network is provided at each step has a considerable effect on the learning

time.

For the reasons mentioned in Chapter 1, we are ultimately interested in

learning systems that can interact with the real world. While a sizable gap

exists between the real world and MNIST, to at least be more compatible

with the real world, it makes the most sense for us to present samples to the

ANN one-by-one. While we do not preclude a learning system that chooses to

collect samples and wait before performing updates, requiring that is severely

limiting.

With the number of samples at each step decided, we must now consider

when the data-stream will swap between tasks. As we do so, it is valuable to

recognize that learning something after already mastering it, i.e., overlearning,

can profoundly affect human forgetting (Chance, 2014, p. 366). So, while we

want to ensure the network has sufficient time to learn each task before it

changes, we do not want this to lead to overlearning. Having that could favour

systems that learn quickly, which, in turn, would produce results requiring

more complex interpretation.

We can achieve the required balance of tasks by keeping track of the net-

work’s running accuracy on a task and then swapping tasks once this running

average exceeds some threshold. In practice, we thus require the network, at

each time t, to make a guess ŷt when given an image xt, but before being

observing yt. We require the running average of correct guesses to exceed 90%

before swapping tasks. This necessitates the network demonstrating mastery

of the task but remains forgiving of early initial mistakes. To prevent predic-

tors that always guess uniformly at random from the set of possible answers,

i.e., random predictors, being able to achieve this accuracy regularly, we also

require the learning system to maintain this accuracy for several steps be-

fore moving to the next task. If we require it to maintain this accuracy for

five steps, the probability of a random predictor making five correct guesses

at the start of learning and therefore moving to the next stage quickly is

2−5 = 3.125%. Since this experiment will need multiple runs to establish

any conclusions with reasonable statistical confidence, these rare occurrences
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should have little effect on the final results of the experiment.

Speaking of multiple runs, to test the full range of hypotheses we present in

Section 4.2, we consider three different orderings for the tasks. In experiment

E(1,2) the ones-and-twos task appears in the first phase, followed by the threes-

and-fours task, then the ones-and-twos task appears again, and, finally, the

threes-and-fours task appears one last time. In experiment E(3,4), we use

the same phase structure as experiment E(1,2) but reverse their ordering. In

experiment E(1,2,3,4), which we use to test basic assumptions of this setup, we

drop the switching altogether and present all four digits to the network in a

single phase. In all cases, we use two of the folds for training and two of them

for testing. To eliminate any effect from the minor difference in fold sizes, we

restrict phases to 2500 examples. We sweep over permutations of the samples

in the folds for training and report averages.

4.1.2 Constructing a Network

When constructing a network to use in our experiments, we must ensure we

create a network that has the capacity to solve the problem but simultaneously

try to ensure the network is small; a small network is desirable as it can be

easier to understand its behaviour, but if the network is too small then it

will not be able to solve the problem no matter how much training it receives.

Furthermore, it is well-known that ANNs without hidden layers harbour severe

limitations (Goodfellow et al., 2016, p. 169), and so are infrequently used. The

consequence of this is that we will need to have at least one hidden layer in

our network.

With the above considerations in mind, we use a feedforward ANN with

three fully-connected layers: an input layer with 784 units, a hidden layer

with 100 units, and an output layer with 4 units. The images in the MNIST

dataset are greyscale pictures containing 28 × 28 = 784 pixels. Thus the

simplest preprocessing-free input layer for MNIST contains exactly 784 units.

Similarly, since, as noted in Section 4.1.1, our data-stream specifies a four-class

classification problem, the simplest output layer contains 4 units.

One notable feature of such an output layer in this setting is that, as noted
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by Farquhar and Gal (2018, Section 6.3.2.), having output neurons that are not

shared by tasks can have a significant impact on the degree of forgetting. While

having non-shared output neurons should, in theory, enforce some amount of

neural stability and thus decrease the effect of forgetting, since we only seek to

demonstrate the existence of catastrophic forgetting and its severity, if we are

able to observe a high degree of catastrophic forgetting, then this limitation

of our architecture is immaterial. Furthermore, the use of non-shared output

neurons does create a more traditional setting for MNIST classification. So,

provided we avoid algorithms that explicitly exploit this neural stability, it is

easier to justify using non-shared output neurons here.

When constructing the way by which information flows through the net-

work, we must determine how neurons in layers are connected and what acti-

vation functions they use. Since only the hidden layer requires a non-identity

activation function here, we use the contemporary and familiar ReLU activa-

tion for all the units in the hidden layer. To establish connections between

layers, the simplest and most common system we could use is to connect each

neuron in each layer to each neuron in the subsequent layer. Doing this means

that our network will have a total of 784× 100 + 100× 4 = 78800 parameters.

This is a small network and yet will likely have the representational capacity

to solve the given problem.

One final decision about the architecture that remains to be made is how

the parameters will be initialized. We adopt a common initialization strategy

that initializes each weight independently as a sample from a Gaussian with

mean zero and standard deviation equal to 0.1. As the exact initialization can

have a significant impact on performance, we, as we did with permuting the

data-stream in Section 4.1.1, sweep over random seeds and report an average.

4.1.3 Picking an Optimization Algorithm

Several algorithms that can be used to train ANNs were mentioned in Sec-

tion 2.4.1. The simplest fully-online one of these is Stochastic Gradient De-

scent. Moreover, SGD with Momentum, RMSProp, and Adam are all variants

of SGD with added embellishments. This consistency means that SGD forms
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the foundation by which almost all ANNs are trained and consequently is

an excellent choice for determining the existence and severity of catastrophic

forgetting.

To use SGD, we must select a loss function to minimize. As described in

Section 2.4.1, cross-entropy represents an excellent choice here for the same

reason SGD is a good choice of algorithm: because it is both simple and near-

ubiquitous in the literature. Altogether, using cross-entropy with SGD helps

ensure that the way the weights in the network are optimized is on par with

much of the contemporary literature.

In addition to a loss function, SGD needs one more quantity to be specified:

a step-size. Using a common strategy, we select a fixed step-size by trying each

of 20, 2−1, ..., 2−18. We then, for each of experiments E(1,2), E(3,4), and E(1,2,3,4),

select whichever step-size minimized the average total time spend cumulatively

in all phases while achieving the desired accuracy in each phase. We ran

the experiment with 50 seeds to perform this step-size selection procedure,

then used the resulting step-size with 500 other seeds to generate the results

reported in Section 4.3. The folds used in both training and testing for the

step-size selection were disjoint from the folds used later. Furthermore, each

seed was additionally used to permute the samples from the folds (as mentioned

in Section 4.1.1) and initialize the networks (as described in Section 4.1.2).

4.1.4 Selecting Metrics

We want to select metrics that can confirm catastrophic forgetting exists and

provide us with some insight into how severe an issue it is. In Section 3.4,

we described two ways in which forgetting has been previously measured: re-

tention and relearning time. Retention refers to the performance on a first,

previously-mastered task directly after mastering a second task. Relearning

time refers to how much more rapid it is to master a task for a second time

after first mastering that task then mastering a second task. Of these two,

retention is the more common one appearing in the catastrophic forgetting

literature. Furthermore, retention is sufficient to confirm the existence of for-

getting as if retention does decrease as time goes on, then it is true that some
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form of forgetting has occurred. Further on that, in specific tasks, retention

actually defines the precise kind of forgetting that is important. For these

reasons, we use retention here as our principal way of measuring catastrophic

forgetting.

While retention provides an excellent metric to show the existence and

severity of catastrophic forgetting, it is important to note that, as demon-

strated in Hetherington and Seidenberg (1989), using retention alone cannot

give an accurate picture of the full nature of forgetting in ANNs. Thus, in ad-

dition to using retention, we also employ relearning time to confirm whether or

not forgetting is absolute in our experiments. If it is absolute, we would expect

the relearning time for a task to not differ from the amount of time it took to

learn the task initially. If the time it takes to learn the first task the second

time around does differ, then catastrophic forgetting is not as straightforward

as a reversal of learning. Catastrophic forgetting can then be considered a

more complex phenomenon whereby obtaining comparable measurements of

catastrophic forgetting may be non-trivial in many problems of interest.

In this setting, retention is measured as the accuracy on the testing folds

for ones-and-twos after the second phase has been completed in experiment

E(1,2), and as the accuracy on the testing folds for threes-and-fours after the

second phase has been completed in experiment E(3,4). Similarly, relearning

time would be measured in both experiments E(1,2) and E(3,4) as the number

of steps needed to complete the first phase as a function of the number of steps

needed to complete the third phase.

4.2 Hypotheses

With the above experimental setup in hand, we now formalize the specific

hypotheses we will be testing with this experiment. These hypotheses are

described in plain English below and presented formally in Table 4.2. In

Table 4.2, and in later sections, we use D(1+2) to refer to the testing folds for

ones-and-twos, and we use D(3+4) to refer to the testing folds for threes-and-

fours. We also use E(1,2), E(3,4), and E(1,2,3,4) as defined in Section 4.1.1.
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Number Null Hypothesis Alternative Hypotheses

H1 In experiment E(1,2), the av-
erage accuracy of the learning
system on D(1+2) is less than
90% after the first phase of
training.

In experiment E(1,2), the av-
erage accuracy of the learn-
ing system on D(1+2) is greater
than or equal to 90% after the
first phase of training.

H2 In experiment E(1,2), the av-
erage accuracy of the learning
system on D(3+4) is less than
90% after the second phase of
training.

In experiment E(1,2), the av-
erage accuracy of the learn-
ing system on D(3+4) is greater
than or equal to 90% after the
second phase of training.

H3 In experiment E(1,2,3,4), the av-
erage accuracy of the learning
system on D(1+2) is less than
90% after training.

In experiment E(1,2,3,4), the av-
erage accuracy of the learn-
ing system on D(1+2) is greater
than or equal to 90% after
training.

H4 In experiment E(1,2,3,4), the av-
erage accuracy of the learning
system on D(3+4) is less than
90% after training.

In experiment E(1,2,3,4), the av-
erage accuracy of the learn-
ing system on D(3+4) is greater
than or equal to 90% after
training.

H5 In experiment E(1,2), the av-
erage accuracy of the learning
system on D(1+2) is greater or
equal to 90% after the second
phase of training.

In experiment E(1,2), the av-
erage accuracy of the learning
system on D(1+2) is less than
90% after the second phase of
training.

H6 In experiment E(3,4), the av-
erage accuracy of the learning
system on D(3+4) is less than
90% after the first phase of
training.

In experiment E(3,4), the av-
erage accuracy of the learn-
ing system on D(3+4) is greater
than or equal to 90% after the
first phase of training.

H7 In experiment E(3,4), the av-
erage accuracy of the learning
system on D(1+2) is less than
90% after the second phase of
training.

In experiment E(3,4), the av-
erage accuracy of the learn-
ing system on D(1+2) is greater
than or equal to 90% after the
second phase of training.

H8 In experiment E(3,4), the av-
erage accuracy of the learning
system on D(3+4) is greater or
equal to 90% after the second
phase of training.

In experiment E(3,4), the av-
erage accuracy of the learning
system on D(3+4) is less than
90% after the second phase of
training.
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Number Null Hypothesis Alternative Hypotheses

H9 In experiment E(1,2), the aver-
age number of steps required
to complete the third phase is
greater than or equal to the
average number of steps re-
quired to complete the first
phase.

In experiment E(1,2), the aver-
age number of steps required
to complete the third phase is
less than the average number
of steps required to complete
the first phase.

H10 In experiment E(1,2), the aver-
age number of steps required
to complete the fourth phase
is greater than or equal to the
average number of steps re-
quired to complete the second
phase.

In experiment E(1,2), the aver-
age number of steps required
to complete the fourth phase is
less than the average number
of steps required to complete
the second phase.

H11 The average number of total
steps required for the learning
system in experiment E(1,2,3,4)

is not different to the aver-
age number of total steps re-
quired for the learning sys-
tem to pass both the first and
second phase of experiment
E(1,2).

The average number of total
steps required for the learning
system in experiment E(1,2,3,4)

is different from the average
number of total steps required
for the learning system to
pass both the first and second
phase of experiment E(1,2).

Table 4.2: Null and alternative hypotheses to be tested. Each of the hypothesis
pairs either checks standard assumptions made about our experimental setup,
tries to answer a question of interest, or seeks to provide some insight into the
phenomenon of catastrophic forgetting if it exists.

Each of the hypotheses we test either checks standard properties of our

experimental setup (H1, H2, H3, H4, H6, H7, H8), answers a question of

interest (H5), or provides some insight into the phenomenon of catastrophic

forgetting if it exists (H9, H10, H11).

To begin, we test if the ones-and-twos problem is solvable by the network

(H1). We then test if the threes-and-fours problem is solvable by the network

after the network has previously solved the one-and-twos problem (H2). This

latter test also checks whether or not the initialization created by learning the

one-and-twos problem prohibits learning the threes-and-fours problem. We go

on to test whether or not both of the above hypotheses depend on the ordering

of the tasks (H6, H7).
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In addition to testing whether the problems are solvable by the network

independently, we also test whether the network has the capacity to solve both

problems simultaneously (H3, H4). If this is the case, then if any forgetting

occurs, it is not a result of the network lacking the representational capacity to

learn a solution to both problems at the same time. To determine whether the

nature of transfer is different in these two cases, we also test whether solving

both tasks sequentially takes a different amount of time than solving both

tasks independently (H11).

Next, we try to answer the key question we are asking with these exper-

iments; we next test whether or not some form of retroactive inhibition is

occurring, i.e., we check whether or not catastrophic forgetting exists. We do

so by observing what the retention of the network is with respect to what it

learned in the first phase, after the second phase has been completed (H5).

We additionally test to ensure that, if forgetting occurs, it is not merely a

consequence of the ordering of the problems (H8).

If forgetting has occurred, then we try to answer the question of whether or

not catastrophic forgetting as measured by retention differs from catastrophic

forgetting as measured by relearning (H9, H10). If so, then a simple reversal

of learning is not what occurred as the network’s weights are holding onto a

part of what otherwise appears to have been forgotten. If that is the case, it

suggests that measuring catastrophic forgetting may be non-trivial as retention

alone does not fully capture the phenomenon of catastrophic forgetting.

4.3 Results

We test each of the hypotheses in Table 4.2 using the experiment described

in Section 4.1. Figure 4.2 shows the results of this experiment. We calculate

p-values for each hypothesis using either a one or two sample t-test as appro-

priate. Based on the results of this, we reject all null hypotheses in H1 through

H11 in favour of their alternative hypotheses. For this, as a consequence of all

p-values being smaller than 0.0001, we report a family-wise error rate of less

than 0.01 using Bonferroni corrections.
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Experiment Phase 1 Phase 2 Phase 3 Phase 4
E(1,2) 116.87±2.64 123.38±2.05 48.80±1.46 35.27±1.33
E(3,4) 105.70±2.47 142.50±2.44 47.18±1.37 35.23±1.32
E(1,2,3,4) 1041.06±9.63 N/A N/A N/A

Table 4.3: Average number of steps needed to complete each phase in each
experiment.

There are several key observations to be made while looking at Figure 4.2.

First, each of experiments E(1,2), E(3,4), and E(1,2,3,4) was able to successfully

complete each phase in a reasonable number of steps. For reference, we pro-

vide the average phase lengths in Table 4.3. Notably, while experiments E(1,2)

and E(3,4) required relatively similar amounts of time for each phase, experi-

ment E(1,2,3,4) took considerably longer to complete the first phase. While the

optimal step-size for experiment E(1,2,3,4) was 0.03125 as opposed to 0.0625 for

both experiments E(1,2) and E(3,4), the step-size cannot be responsible for this

difference as the selection method outlined in Section 4.1.3 allowed both meth-

ods the opportunity to pick the step-size that minimized the total time. In

the case of experiment E(1,2,3,4), this means that, unlike in experiments E(1,2)

and E(3,4), the step-size used directly minimized the time it took to complete

the first phase.

Further on the number of steps in each phase, both experiments E(1,2) and

E(3,4) took substantially less time to get through all four phases than experi-

ment E(1,2,3,4) took to get through one. For experiment E(3,4), the second phase

was the longest, and for experiment E(1,2), both the first and second phases

were the longest. That being said, both the first and second phase for experi-

ment E(1,2) took less time than experiment E(3,4) in the second phase and more

time than experiment E(3,4) in the first phase. On that, for both experiments

E(1,2) and E(3,4), the fourth phase was the shortest and the third phase, the

second shortest. In both of these instances, though, both experiments E(1,2)

and E(3,4) took comparable amounts of time.

As hypothesized, catastrophic forgetting is observed in the second, third,

and fourth phase for both experiments E(1,2) and E(3,4). This is demonstrated

in both Table 4.4, which shows the retention, and Table 4.5, which shows the
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Experiment Phase Accuracy on D(1+2) Accuracy on D(3+4)

E(1,2)

1 0.9558±0.0030 0.0000±0.0000
2 0.0814±0.0053 0.9707±0.0011
3 0.9636±0.0021 0.2411±0.0088
4 0.4907±0.0095 0.9584±0.0019

E(3,4)

1 0.9575±0.0031 0.0000±0.0000
2 0.0294±0.0023 0.9706±0.0011
3 0.9680±0.0009 0.3652±0.0090
4 0.3944±0.0121 0.9460±0.0035

Table 4.4: Accuracy on each test dataset directly after completing a phase as
a function of the experiment. Values shown in bold represent the retention
metric.

Experiment Relearning
E(1,2) 4.15±0.19
E(3,4) 3.57±0.16

Table 4.5: Length of the first phase as a function of the third under each
optimizer in each experiment. These values represent the relearning metric.

relearning time. If no forgetting had occurred, we would expect retention to

be close to 0.9 and relearning time here to be close to average time spent in

the first phase divided by the minimum number of steps needed to complete a

phase: five. Interestingly, the rate of forgetting, while in all cases very severe,

varied drastically between both experiments E(1,2) and E(3,4). In addition, by

referring to Figure 4.3, we can see it varied a lot between phases as well. The

differences between the phases can be partially explained by the relearning

time being shorter than the original learning time for both tasks. Further on

that, the relearning time in the fourth phase was less than the relearning time

in the third phase. Also, in both the third and fourth phases, the rate of

forgetting was more severe on D(3,4) than D(1,2).

4.4 Discussion

The results provided in Section 4.3 allow us to reach several conclusions. First,

as high rates of retroactive interference were exhibited, catastrophic forgetting

exists. Second, as demonstrated by the near absolute loss of the ability to per-
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form the first task after learning the second, it is a severe problem. The careful

experimental design here provides evidence that the standard construction of

contemporary ANNs does not meaningfully mitigate catastrophic forgetting.

Furthermore, this phenomenon can occur in standard problems that we cur-

rently use ANNs to solve, e.g., image classification under MNIST. Thus the

key objective of this chapter, being to validate its existence and demonstrate

its severity, is achieved. That being said, several additional, interesting con-

clusions are also supported by the results.

Hetherington and Seidenberg had previously observed that the relearning

time seemed to paint a different picture then retroactive interference when it

came to forgetting in ANNs. The results of our experiment confirm that. The

lower relearning time shows that, while retention was inhibited, forgetting

was in no way absolute. This conclusion may indicate that the nature of

the forgetting exhibited by ANNs may not disadvantage them in all settings.

For example, if the ANN were being applied to a multi-task decision-making

setting where the first few actions in each task mattered little, this type of

forgetting might not be a meaningful issue.

The relearning time during the fourth phase being lower than the relearning

time during the third phase also may imply that the relearning time may

decrease as the network repeats tasks. To check this, we ran experiment E(1,2)

in the same manner with the same hyperparameters as before except that

we repeat the sequence of tasks a second time. Table 4.6 shows the number

of steps in each phase for this experiment. This supplementary experiment

provides clear evidence that, under some conditions, the relearning time will

continue to decrease as the same task is repeated, even if other tasks occur

in between repetitions. However, these results are preliminary, and further

investigation is required to determine what the aforementioned conditions are.

Such inquiry, though, remains beyond the scope of this work.

It was entirely unexpected to see the ANN take so much longer to learn

both tasks simultaneously. This occurrence may indicate that forgetting is

allowing the system to make more efficient use of its capacity. However, it

is also true that, when learning the tasks separately, there will be a lower
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Phase Steps
1 116.87±2.64
2 123.38±2.05
3 48.80±1.46
4 35.27±1.33
5 27.43±1.12
6 21.55±0.85
7 21.35±0.99
8 16.23±0.66

Table 4.6: Steps per phase in experiment E(1,2) when the sequence of tasks
is repeated a second time. Odd-numbered phases are the ones-and-twos task;
even number phases are the threes and four task.

average interference between samples within a phase. This low interference is

reminiscent of curriculum learning, which takes advantage of situations where

simpler tasks allow the network to learn exponentially more rapidly. This

speedup amplifies the motivation behind reducing catastrophic interference as

doing so could potentially provide us with more sample efficient online, i.i.d.,

single-task learning. Still, this hypothesis remains entirely conjecture at this

point, and future work must be conducted to verify or refute it with any degree

of certainty.

The considerably different behaviour of the learning system when the tasks

were reversed, compounded with the minor difference in performance over the

permutations of the dataset or initial weights of the network, carries with it

several implications. It, firstly, shows that minor differences in the dataset can

have a profound impact on both the quantity and rate of forgetting exhibited

by the network. This strong dependency on the dataset, as also noted by

Kemker et al. (2018), implies that considerable care and restraint must be

taken when reaching conclusions regarding the precise degree of forgetting

exhibited by a learning system.

The differences in behaviour also confirm that we were correct in being

concerned about the effect of overlearning. When the reversal of the tasks

caused a phase to be completed more quickly, the following phase appears

to exhibit a higher amount of forgetting, and vice-versa. This relation be-

tween time spent learning and subsequent forgetting may have consequences
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when using different optimization algorithms, e.g., SGD with Momentum, or

rehearsal methods, e.g., experience replay, as these could naturally lead to

overlearning. This conclusion, however, is at odds with the benefits of re-

hearsal demonstrated by Hetherington and Seidenberg. Thus further work

should be conducted to understand the relationship between overlearning and

catastrophic forgetting.

48



Chapter 5

Building a Testbed

In this chapter, we expand on the contents of the last chapter to create a

testbed for catastrophic forgetting. Our work towards this is motivated by

the recognition that, as outlined in Chapters 3 and 4, catastrophic forget-

ting remains a notably subtle problem. Both Hetherington and Seidenberg

(1989) and the results from Chapter 4 demonstrate that only considering one

family of metrics for catastrophic forgetting, e.g., retention, limits one’s abil-

ity to understand the phenomenon. Furthermore, as noted by Kemker et al.

(2018), both changes to the metric used to quantify it, even principled ones,

or changes to the experimental setting are likely to result in a different story

being told by the results; there is strong evidence that catastrophic forgetting

cannot be adequately studied under a single setting or with a single metric.

Thus catastrophic forgetting cannot be sufficiently well understood in a lim-

ited experimental setting, and a principled testbed, consisting of both multiple

settings and metrics, must be employed.

Few previous attempts have been made to explicitly construct proper testbeds

for measuring catastrophic forgetting, but many different scenarios have been

employed to measure it. We discuss a few of these testbeds and scenarios

here. However, it is worth noting that most modern research on catastrophic

forgetting focuses on strategies for mitigating it and, consequently, most re-

cent work only includes a demonstration showing that specific strategies are

capable of partially mitigating it under strict environmental conditions. For

example, Kirkpatrick et al. (2017), one of the more influential works in the
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area, looked at three distinct settings when presenting their method, Elas-

tic Weight Consolidation. However, their focus was not on understanding

catastrophic forgetting as exhibited by EWC and, so, when directly measur-

ing catastrophic forgetting, they limited their analyses to the retention metric.

Kemker et al. (2018) later showed that their method was much more vulnerable

to catastrophic forgetting than their analysis claimed.

Kemker et al. provided a testbed for catastrophic forgetting, which consid-

ered several different settings and multiple metrics. Their main contribution

was using this to demonstrate that the superiority of one method over another

method is very dependent on both the setting and metric experimented with.

However, like Kirkpatrick et al., they limited themselves to retention-based

metrics and, unlike Kirkpatrick et al., batch settings.

Goodfellow et al. (2013) sought to empirically understand catastrophic

forgetting as several different learning systems experienced it. In the process

of doing so, they developed a small testbed. However, like Kemker et al.

(2018), they only considered multi-task supervised learning batch classification

settings and only looked at retention as a metric. Their main objective was to

understand whether or not activation functions affected catastrophic forgetting

and whether or not a specific technique known as dropout (Srivastava et al.,

2014) was useful in partially mitigating it.

With the above examples in mind, in order to construct a principled testbed

for catastrophic forgetting, we start by first identifying the limitations of the

experimental setting from Chapter 4 in Section 5.1 and look at what can be

done to eliminate them. From this analysis, we decide on introducing two

new settings in Sections 5.2 and 5.3, respectively. We then formalize a set of

metrics for each setting in Section 5.4. In Chapter 6, we apply the testbed we

construct here to ameliorate our understanding of how step-size adaptation

methods impact catastrophic forgetting.
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5.1 A Retrospective on Limitations

Determining what the limitations the experimental setup described in Sec-

tion 4.1 would have if rebranded as a testbed and then building on that gives

us the shortest path to a principled testbed. By far, the biggest issue with

using the experimental setup described in Section 4.1 as a testbed is that it

only considers a multi-task supervised learning setting. In multi-task super-

vised learning, the samples within a phase are typically i.i.d., and so samples

are only weakly correlated with both their successors and predecessors. The

lack of a strong temporal correlation is significant when it comes to artificial

neural networks, as it is well-known that they struggle to learn when exposed

to such correlation (Mnih et al., 2015, p. 529). This is an issue as there are

many settings where incremental methods cannot avoid strong temporal cor-

relation in their data-stream, e.g., reinforcement learning. The implication

of this is that, as we care about learning systems that can operate under the

temporally-correlated data-streams in the real world, we need to either modify

the MNIST setting or include an additional setting with this property in the

testbed.

A second issue with the previous experimental design is that, as noted by

Farquhar and Gal (2018, Section 6.3.2.), the presence of non-shared output

neurons can have a significant impact on catastrophic forgetting. However,

using shared output neurons would represent a fundamental change in the

task the network is attempting to solve. In the previous experiment, this

would have meant the network was solving a two-class rather than a four-class

classification problem. Such an experimental design would not have been in

line with Barnes and Underwood (1959). Thus, the presence of the shared

output neurons does not represent an undesirable element of the experimental

design. That being said, if we were to include an additional setting, we should

endeavour to ensure it either uses shared output neurons or circumvents this

problem entirely as the above concern could then be put to rest.

The third and final shortcoming of the previous experimental design is

that, while it vaguely explores a second metric, it really only quantified for-
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getting using one metric. Kemker et al. (2018) notes that changes to the

metric, even principled ones, are likely to result in a different story being told

by an experiment. Thus, in addition to the metrics previously explored, we

need to consider additional metrics if we hope to construct a testbed that can

holistically demonstrate the catastrophic forgetting experienced by a method.

Resolving all the above is most easily accomplished by including both ad-

ditional setting in the testbed and additional metrics to measure catastrophic

forgetting. This change implies several other alterations to the previous ex-

perimental design. First, the value of looking at different orderings of tasks

is substantially diminished if we include additional settings. Thus this can be

safely discarded. We can also dispense with the experiment including both

tasks in one phase, i.e., experiment E(1,2,3,4), if we opt to use the same network

as before. Second, as we are now interested in using additional metrics to mea-

sure catastrophic forgetting, such as relearning time, it makes sense to optimize

hyperparameters such that they minimize the time it takes the learning agent

to move through all four phases. The results shown in Section 4.3 suggest that

this may not produce a particularly pronounced effect as the third and fourth

phases seemed to contribute less to the total time than the first and second

phases. Thus, such a change is unlikely to result in a meaningful change in

the other metrics. We refer to the result of applying the above changes to the

experimental setup described in Section 4.1 as the MNIST setting.

When constructing a testbed, for the reasons mentioned in Chapter 1,

it is desirable to limit ourselves to incremental settings. While a learning

system may choose to employ buffers to instead treat the problem as a mini-

batch problem, the incremental setting is the most natural setting to consider

catastrophic forgetting and so there is little incentive to ground a testbed in

such a consideration.

5.2 Electing a Second Setting

To determine what a second setting for the testbed should be, we need to

reflect on what properties we want it to have. From the above, we know that
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Goal

Figure 5.1: The Mountain Car setting simulates a car (shown in orange) whose
objective is to reach the goal on the right. The car starts at the bottom of the
valley and must rock back and forth in order to climb the mountain. Note that
the car is prevented from falling off the left edge of the world by an invisible
wall.

we want a setting that has a strong correlation between consecutive samples.

Thus we do not want a second multi-task supervised learning setting. For

obvious reasons, we also want to ensure that the setting we use is both simple

and well-studied. We do not expect the second setting will enable the testbed

to be all-encompassing; it is not desirable that the second setting is complicated

enough to be able to capture an excessively large number of additional settings.

Such an expectation is impossible to satisfy, and any attempt to do so will

either make the testbed unnecessarily cumbersome or render the results of an

application of the testbed incredibly challenging to interpret.

One setting that satisfies all the above desiderata is the Mountain Car

setting (Moore, 1990; Sutton and Barto, 1998). Mountain Car is a popular,

classic reinforcement learning setting that models a car trying to climb a hill

(see Figure 5.1). The car starts at the bottom of a valley and lacks sufficient

power to make it up the mountain by acceleration alone. Instead, it must rock

back and forth to build up sufficient momentum to climb the mountain.

Formally, Mountain Car is an undiscounted episodic domain where, at each

step, the car measures its position p ∈ [−1.2, 0.6] and velocity v ∈ [−0.07, 0.07],

and then either accelerates in the direction of the goal, decelerate, or does

neither. To capture the idea that the car should reach the goal quickly, it

receives a reward of −1 at each step. The episode ends when p ≥ 0.5. If, at
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any point, p ≤ −1.2, then p is set to be equal to −1.2 and v is set to be equal

to 0. This last rule simulates the effect of it harmlessly hitting an impassable

wall. With this last rule in mind, the position and velocity of the car in

Mountain Car is updated at each step according to the following equations:

pt+1 = pt + vt+1

vt+1 = vt + 0.001at − 0.0025cos(3pt)

where at = 0 when decelerating, at = 2 when accelerating, and at = 1 when

the action selected is to do neither.

As we have no specific interests in evaluating learning systems that learn a

good policy here, we are free to assign a fixed policy to the setting as it appears

in the testbed. Doing so would not interfere with any of the aforementioned

desiderata. It is desirable, however, that the policy we select should produce

an interesting and meaningful data stream. One such policy is to have the car

accelerate in the direction of movement. This policy does introduce an edge

case where the velocity is zero, but provided there is sufficient randomness

in the initialization of episodes, the probability of the car maintaining zero

velocity for two consecutive steps is effectively zero. Thus it is fair to simply

let the car neither accelerate or decelerate when its velocity is zero.

We plot the state-values in Mountain Car under the above policy in Fig-

ure 5.2. The key takeaway from this figure is that the episode lengths follow

a distinct pattern characteristic of strong policies in Mountain Car. Addition-

ally, no evidence appears here that the policy ever performs excessively poorly.

Altogether this suggests that, while potentially not optimal, the above policy

remains a strong policy.

The last two details we need to resolve before we can include Mountain

Car in the testbed is how episodes will be initialized and how performance

on the domain can be evaluated. For the former, we follow Sutton and Barto

(1998) in initializing each episode with v = 0 and p selected uniformly from

[−0.6, 0.4). For the latter, we can measure the Root Mean Squared Value
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Figure 5.2: Values of states in Mountain Car setting when the policy the car
follows is to always accelerate in the direction of movement. Note that the
value of a state in Mountain Car is the negation of the expected number of
steps before the car reaches the goal.

Error, or RMSVE under the above policy which is defined to be

RMSV E =

√∑
s∈S

dπ(s)(v̂π(s)− vπ(s))2

where S is the set of all states, dπ(s) is the proportion of time above policy π

spends in state s, v̂π(s) is the value estimate for state s under π, and vπ(s) is

the true value of state s under π.

Mountain Car has an unlimited number of states, so we approximate

RMSVE here by using a test set of states. We follow Ghiassian et al. (2020)

in generating this set by repeatedly running episodes to create a trajectory

containing 10, 000, 000 transitions. We then sample 500 test states from this

trajectory uniformly and with replacement. The full trajectory and resulting

sample are shown in Figure 5.3.

From the trajectory shown in Figure 5.3, it is clear that the policy and

initialization procedure we selected are leading the car through a large area

of the state space. This behaviour is desirable here. To ground this belief,

though, it makes sense to consider a comparison point. It seems natural that

we could get a more even coverage of the state space by forcing episodes to
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begin by sampling a position and velocity uniformly at random from the state

space. Using this initialization procedure with the above policy, we obtain

the trajectory shown in Figure 5.4. Clearly, trajectories under this modified

initialization procedure end up exploring the state space less evenly. Thus, the

previous initialization procedure and policy are more useful for our purposes.

5.3 Finding a Third Setting

While the Mountain Car setting presented in the previous section removes

many potential limitations from the testbed, it has some shortcomings when

included in the testbed. For reasons mentioned later in Section 5.4, the Moun-

tain Car setting is more limited than the MNIST setting in terms of which

measures of catastrophic forgetting it is compatible with. This deficiency ren-

ders analysis under the Mountain Car setting somewhat more limited than

may be desirable. We can easily and effectively mitigate this by introduc-

ing a third setting that retains some similarities with Mountain Car. In this

way, greater verification of conclusions reached through the application of the

testbed can occur.

For a third setting, we start by noting that the desiderata from Section 5.2

are also satisfied by the Acrobot setting (DeJong and Spong, 1994; Spong and

Vidyasagar, 1989; Sutton, 1995). Like Mountain Car, Acrobot is a popular,

classic reinforcement learning setting. It models a double pendulum combating

gravity in an attempt to invert itself (see Figure 5.5). The pendulum moves

through the application of force to the joint connecting the two pendulums.

However, not enough force can be applied to smoothly push the pendulum

such that it becomes inverted. Instead, like in Mountain Car, the force must

be applied in such a way that the pendulums build momentum by swinging

back and forth.

Formally, Acrobot is an undiscounted episodic domain where, at each step,

the acrobot measures the sin and cos of the angles of both joints as well as

their velocities. A fixed amount of force can then be optionally applied to the

joint between the two pendulums in either direction. Like with Mountain Car,
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Figure 5.3: On the right is the distribution of states when initialization is done
by setting v = 0 and selecting p uniformly from [−0.6, 0.4). On the left is a
uniform sample from this distribution that can be used for testing purposes.
Note the distinctive pattern which covers a wide area of the state space.
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values. Note the locality of the pattern this generates.
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Goal

Figure 5.5: The Acrobot setting simulates a double pendulum whose objective
is to place the end of the outer pendulum above a goal line. Force is applied
to the joint between the two pendulums. The pendulums must rock back and
forth in order for the outer pendulum to reach the goal.

the acrobot receives a reward of −1 at each step. Both pendulums have equal

lengths, and episodes terminate when the end of the second pendulum is at

least the pendulum’s length above the pivot. The velocity of the inner joint

angle in radian per second is bounded by [−4π, 4π], and the velocity of the

outer joint angle is bounded by [−9π, 9π].

We use the OpenAI Gym implementation of Acrobot (Brockman et al.,

2016), which is based on the RLPy version (Geramifard et al., 2015). The

most significant difference between the RLPy implementation of Acrobot and

the one used in Sutton (1995) is that it uses Runge-Kutta integration to pro-

vide more accuracy in approximating the system dynamics. The equations

of motion that describe the pendulum movements under this setup are sig-

nificantly more complicated than the equations for Mountain Car, and so are

omitted here. The original equations of motion can be found on page 1044 of

Sutton (1995), and the implementation we use can be found at https://github.

com/openai/gym/blob/master/gym/envs/classic control/acrobot.py.

Like for Mountain Car, we fix the policy of the agent. However, finding a

good, simple rule-based policy for Acrobat is not as straightforward. Inspired

by the policy we used in Mountain Car, we adopt a policy whereby force is

applied at each step according to the direction of motion of the inner joint.

To deal with situations where centripetal force renders the inner pendulum
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effectively immobile, we augment this policy with the rule that no force is

applied if the outer joint’s velocity is at least ten times greater than the velocity

of the inner joint.

We ran the above policy for 1,000,000 episodes and observed an average

episode length of 156.0191 with a standard deviation of 23.4310 steps. The

maximum number of steps in an episode was 847, and the minimum was 109.

Thus this policy displays sufficient consistency to be useful for learning but

enough variability to ensure a reasonably heterogeneous data-stream.

As before, we must still determine how we can evaluate performance in

this new setting. For consistency, we follow the exact same procedure as in

Section 5.2.

5.4 Measuring Catastrophic Forgetting

When comparing methods, there is a clear need to consider several alternate

ways of measuring catastrophic forgetting, if only because the metric used

to quantify catastrophic forgetting has a tremendous impact on the amount

of forgetting reported. Kemker et al. (2018) previously observed that and

our contrasting of retention and relearning in Chapter 4 corroborates this.

Furthermore, ideally, each of these metrics would be somewhat distinct from

one another. This distinctiveness is necessary in order to be able to reach

broad, valid conclusions through their application.

When considering what would be good metrics to include in our testbed,

it makes sense to prioritize heterogeneity and validity. That is to say, we

should select metrics that are distinct from one another but can all be said

to either measure catastrophic forgetting or a learning system’s susceptibil-

ity to it. This criteria makes the retention metric and relearning metric of

Chapter 4 an excellent starting point. Both have connections to psychological

research (see Section 3.2 and Section 3.4, respectively), already exists in the

literature as metrics for measuring catastrophic forgetting, and tell different

stories. However, while some attempts have been made under specific condi-

tions, e.g., Fedus et al. (2020), it is not so clear how these can be applied in
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both a general and a principled manner to a setting without clear task bound-

aries. So, while both can be, and should be, included in the testbed as a way

of measuring catastrophic forgetting, further metrics will be required for the

additional settings introduced in Sections 5.2 and 5.3.

To determine what additional metrics we can include in the testbed that

do not rely on clear task boundaries, we can turn to the work of French. In

French (1991), the authors put forward the claim that catastrophic forgetting

is a consequence of overlapping representations (p. 173), i.e., generalization.

We previously explored this idea in Section 3.5. As a way of measuring the

degree of generalization exhibited by a network–and therefore, theoretically,

the degree of catastrophic forgetting it is susceptible to–French put forward

activation overlap. The activation overlap of a network for two samples is

simply the shared activation of the network on both samples.

Activation overlap was originally conceived for dense activation functions

where most units would exhibit some amount of activation on any given sam-

ple. Thus, the activation overlap for a specific unit is the minimum activation

of that unit under each sample. To make it more amenable to modern networks

with sparser activation, e.g., networks using ReLU activation, we interpret the

activation overlap of a network with respect to two samples as the dot prod-

uct of the activations of the hidden units under each of the samples. The dot

product has been previously used to estimate the representational overlap of

networks, e.g., Kornblith et al. (2019), and thus this is both simple and accept-

ably in line with contemporary thought when measuring the activation overlap.

To avoid confusion between this and activation overlap as originally defined

by French, we refer to the former as activation similarity here. Importantly,

this naming distinction is not representative of any conceptual difference.

Mathematically, we can write the activation similarity of a network with

hidden units h0, h1, ..., hn with respect to two samples a and b as

s(a,b) =
1

n

n∑
i=0

ghi(a) · ghi(b)

where ghi(x) is the activation of the hidden unit hi with a network input x.

A more contemporary measure of catastrophic forgetting than activation
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similarity is pairwise interference (Ghiassian et al., 2020; Liu, 2019; Riemer

et al., 2019). Pairwise interference seeks to explicitly measure how much a

network learning from one sample would interfere with learning on another

sample. In this way, it corresponds to the tendency for a network under

its current weights to demonstrate positive transfer and retroactive inhibition.

Thus, pairwise interference considers the stability-plasticity approach to catas-

trophic forgetting. Mathematically, the pairwise interference of a network with

respect to two samples xt and xi at some instant t can be written as

PI(θt; xt,xi) = J(θt+1; xi)− J(θt; xi)

where J(θt; xi) is the performance of the optimizer on the objective function

J for xi and J(θt+1; xi) is the performance on J for xi after performing an

update at time t using xt as input. Note that pairwise interference could be

positive. In such a scenario, the effect of positive transfer is overwhelming any

instances of retroactive inhibition.

Both activation similarity and pairwise interference, unlike retention and

relearning, are suitable for use in a setting without clearly defined task bound-

aries, e.g., Mountain Car and Acrobot. However, they are only defined in

terms of pairs of examples. Thus some derivation must be done to produce

equivalent setting-wide metrics. In all cases, we follow Ghiassian et al. (2020)

to generate a setting-wide metric by getting the average of the metrics between

all pairs in a set of examples. For MNIST, we obtain this set by sampling ten

examples from each of the four classes in the test set. For Mountain Car, we

overlay a 6× 6 evenly-spaced grid over the state space (with position only up

to the goal position) and then using the center points of the cells in this grid as

examples. Finally, for Acrobot, we generate this set by sampling 180 random

states uniformly from the state space.
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Chapter 6

The Impact of Step-size
Adaptation

In this chapter, we apply the testbed developed in the last chapter to an-

swer a question regarding catastrophic forgetting in artificial neural networks

(ANNs). Here, we will try to determine whether or not step-size adaptation

methods have a meaningful effect. While previous work has been done ex-

plicitly looking at how other aspects of a learning system influence it, e.g.,

activation functions or dropout, little work, if any, has been done explicitly

looking at the influence of the step-size adaptation methods used to train most

contemporary ANNs. This absence is in contrast to the potential significance

of their effect.

Step-size adaptation methods remain dominant in batch, offline settings

where forgetting is rarely a concern. However, they are often blindly applied

to online–sometimes incremental–settings where forgetting remains a major

concern. Thus an answer to the above can potentially yield insight relevant to

a large body of contemporary work.

In addition to determining the existence of the effect of step-size adaptation

methods on catastrophic forgetting, we would also like to use this opportunity

to empirically understand the relationship between the metrics in the testbed.

The degree of conflict between these metrics would imply the degree to which

catastrophic forgetting is a subtle phenomenon.

With the above goals in mind, we first outline our experimental setup and

what we aim to observe under it in Section 6.1. We then present the results
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of the experiment in Section 6.2 and discuss the meaning and implication of

these results in Section 6.3.

6.1 Experimental Setup

To satisfy the objectives of this chapter, we need to assemble and justify

several experimental components. Unlike in Chapter 4, we will be working

with a formal testbed. The value of this is evident here as, despite conducting

a more complicated experiment, utilizing the testbed means there are fewer

additional components we need to select. The only remaining components we

have to decide on are

1. ANN architectures for each of the three settings, and

2. the optimization algorithms with adaptive step-sizes to use for training

weights in the ANNs.

We finalize each of the above components in Sections 6.1.1 and 6.1.2, re-

spectively. After fixing these, we discuss what we are interested in observing

under this setup in Section 6.1.3.

6.1.1 Choosing Architectures

When deciding on network architectures, our objectives are much the same as

they were in Section 4.1.2. We still want a modern ANN that has the capacity

to solve the problem and yet is sufficiently small to make subsequent analysis

of its behaviour easy. This desideratum means that, for the MNIST setting,

we can use the architecture described in Section 4.1.2.

For the Mountain Car and Acrobot settings, it is vital to keep in mind

that ANNs often struggle with temporally-correlated data. Thus, rather than

naively constructing architectures from scratch, we would be better-served by

borrowing architectures from the literature that satisfy the above desideratum.

For the Mountain Car setting, we can turn to Ghiassian et al. (2020). Their

architecture for Mountain Car is similar to the architecture we are employing

in the MNIST setting. The major differences between them, apart from the
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necessary changes to the input and output layer, are that the architecture

employed by Ghiassian et al. uses only 50 hidden units in the hidden layer

and initializes their non-bias units with Xavier initialization. Despite these

differences, the architecture they employ remains simple and modern, making

it ideal for our purposes.

For the Acrobot setting, to assert the above desideratum, we can model our

network architecture after Liu (2019). Doing so results in a network consisting

of an input layer, an output layer, and two hidden layers with ReLU activation.

The input layer of this network has 6 units, the first hidden layer has 32, the

second hidden layer has 256, and the output layer has 1. To be consistent

with Liu (2019), we must initialize the non-bias units with He initialization.

However, as with the network we decided on for the Mountain Car setting, bias

units can be initialized by sampling from a normal distribution with mean 0

and a standard deviation equal to 0.1.

6.1.2 Deciding on Step-size Adaptation Methods

To decide what step-size adaptation methods to include in our experiment, first

recall that we are most interested in whether step-size adaptation methods

affect catastrophic forgetting in ANNs if the answer affects a large body of

contemporary research. Thus we must aim to select only step-size adaptation

methods that remain prominent in the literature. Three such methods were

mentioned in Section 2.4.1: SGD with Momentum, RMSProp, and Adam.

While we must establish some basis by which we can believe that these could

affect catastrophic forgetting to justify including them here, if we can do so,

their prevalence makes them ideal for our purposes.

There are clear reasons to believe that all three of the above step-size

adaptation methods could affect catastrophic forgetting in ANNs. The sim-

plest reason is that all three of them maintain some form of a gradient trace

that is employed when updating parameters. Thus, in an incremental setting,

a single new sample will affect not only the immediate update but also sev-

eral subsequent updates. Under decay theory (see Section 3.3), this rehearsal

should reduce catastrophic forgetting. In a setting such as MNIST, however,
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it is also possible that a change in task could result in these traces leading

to an acceleration towards a set of parameters only optimal for the new task.

Thus there is some reason to believe that each of the above three methods has,

at least theoretically, both the potential to increase or decrease catastrophic

forgetting.

We are interested in seeing if such an effect exists in practice, what direction

it takes, and whether or not it is actually meaningful. To do so, for the MNIST

setting, as in Section 4.1.3, we select one α for each of the above optimizers

by trying each of 2−3, 2−4, ..., 2−18. As the Mountain Car setting and Acrobot

setting are likely to be harder for the ANN to learn, we instead select one α

for each setting by instead trying each of 2−3, 2−3.5, ..., 2−18. For SGD with

Momentum, we set β to 0.9: a commonly used value in the literature (Ruder,

2016, p. 4). For Adam, we fix β1 to be 0.9 and β2 to be 0.999 as recommended

by Adam’s creators (Kingma and Ba, 2014). To be consistent with Adam, for

RMSProp, we set β to 0.999. While Hinton recommends setting β to 0.9 in

RMSProp, we found that setting β to 0.9 severely harmed learning in both

the Mountain Car and Acrobot setting. For RMSProp and Adam, we set ε to

10−8.

As before, we ran each experiment with 50 different seeds to perform the

α selection procedure. We then used the resulting α with 500 other seeds

to generate the results reported in Section 6.2. In the case of the MNIST

setting, the folds used in both training and testing for the hyperparameter

selection were disjoint from the folds used later. For the Mountain Car and

Acrobot setting, each run consisted of 500 episodes, as in Ghiassian et al.

(2020). Each seed was additionally used to initialize the networks and, in the

MNIST setting, permute the samples from the folds.

To verify the consistency of our conclusions under different hyperparame-

ters, we repeat the above experiment setting with different values of β for SGD

with Momentum and RMSProp. For SGD with Momentum, we try setting β

to 0.81 and 0.9. For RMSProp, we try setting β to 0.81, 0.9, and 0.99. We

also conduct a sensitivity analysis for α in the original experiment.
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6.1.3 Variables of Interest

Unlike in Chapter 4, we do not formalize hypotheses here. We are interested

here in simply observing the nature of the effect of step-size adaptation meth-

ods on catastrophic forgetting in ANNs and how well the testbed does in dis-

playing this. It is not actually clear here what a formal, statistically-testable

yet useful hypothesis would be to accomplish this at such a stage.

The above means that we are most interested in observing whether or not

any of the metrics report a clear difference between the amount of forget-

ting exhibited by each of the step-size adaptation methods. For the retention

case, this means the accuracy on D(1+2) directly after the second phase in the

MNIST setting. For relearning, this means the length of the third phase as a

function of the first phase in the MNIST setting, i.e., the speedup. For acti-

vation similarity, this means the activation similarity after each phase in the

MNIST setting, and, in the Mountain Car and Acrobot setting, both an aver-

age activation similarity after each episode, and the final activation similarity

after all episodes have elapsed. Note that the final activation similarity can

be used to estimate what the average activation similarity would be if more

episodes were run. For pairwise interference, we want to observe the same set-

tings and summary groupings as with activation similarity. In reference to the

above, we want to observe how each of the above metrics ranks the different

methods and whether or not there is agreement between the metrics.

6.2 Results

We present our results in four sections. Sections 6.2.1, 6.2.2, and 6.2.3 gives

the results pertaining to the MNIST, Mountain Car, and Acrobot settings,

respectively. Section 6.2.4 then looks at how the above results change with

different hyperparameters. We discuss all these results later in Section 6.3.

6.2.1 Reading Writing With MNIST

Table 6.1 provides the average number of steps each optimizer took to complete

each phase. Of the four optimizers, RMSProp was consistently the fastest in
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Optimizer Phase 1 Phase 2 Phase 3 Phase 4
Adam 82.98±1.78 161.58±1.80 136.14±1.78 110.78±1.45

Momentum 135.88±2.86 192.18±2.38 155.03±2.67 116.55±1.90
RMSProp 60.19±1.25 100.08±1.28 49.29±1.11 24.54±0.81

SGD 105.67±2.26 120.82±1.97 52.12±1.51 29.81±0.90

Table 6.1: Average number of steps each of the four optimizers took to com-
plete each phase. Smallest values are shown in bold.

each phase, though all the optimizers were able to complete each phase in

a reasonable number of steps. Recall that E(1,2,3,4) from Chapter 4 took an

order of magnitude longer to get through the first phase than anything shown

here. Additionally, all the optimizers took more time, on average, to complete

the second phase as compared to the first phase. Similarly, they all took less

time to complete the fourth phase as compared to the second phase. Notably,

though, only RMSProp and SGD took, on average, less time to complete the

third phase as compared to the first phase.

Figure 6.1 shows the accuracies of the four optimizers over each phase.

Clearly, changes in accuracies are relatively smooth in each phase. This figure

also suggests that RMSProp and SGD seem to be forgetting at a distinctly

slower rate than Adam or Momentum. To confirm that we can refer to Ta-

ble 6.2, which provides the accuracy on both datasets after each phase. As

expected, high accuracy is achieved by each of the optimizers on whatever

dataset was presented in that phase. As previously defined, the retention

metric is the accuracy on D(1+2) after the second phase. When comparing op-

timizers, RMSProp shows by far the highest retention. RMSProp is followed

by SGD and then by both Adam and SGD with Momentum. Both showed

similar retention. While outside the definition of retention, this trend is pre-

served when looking at the accuracy of the optimizers on D(3+4) after the third

phase, and D(1+2) after the fourth phase. Also somewhat interesting, consis-

tent with what we noted in Section 4.4, the accuracy on D(1+2) after the fourth

phase is much higher than the accuracy on D(1+2) after the second phase.

Figure 6.2 compares the distribution of phase lengths for the first and third

phases, and Table 6.3 provides the corresponding relearning metric, i.e., the
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Figure 6.1: Performance of the four optimizers as a function of phase and step
in phase in the MNIST setting. Lines are averages of all runs currently in that
phase and are only plotted while at least half of the runs for a given optimizer
are still in that phase. Solid lines show the current running accuracy of the
learning system in that phase. Dashed lines show the accuracy on the test set
corresponding to the task not in that phase. So in phases one and three, the
dashed line is the accuracy on D(3+4). Likewise, in phases two and four, the
dashed line is the accuracy on D(1+2). Standard error is shown with shading.
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Optimizer Phase Accuracy on D(1+2) Accuracy on D(3+4)

Adam

1 0.9580±0.0031 0.0000±0.0000
2 0.0200±0.0025 0.9741±0.0007
3 0.9790±0.0006 0.0059±0.0010
4 0.2032±0.0068 0.9778±0.0006

Momentum

1 0.9533±0.0035 0.0000±0.0000
2 0.0177±0.0023 0.9689±0.0010
3 0.9701±0.0015 0.0171±0.0027
4 0.1527±0.0068 0.9703±0.0011

RMSProp

1 0.9573±0.0032 0.0000±0.0000
2 0.2635±0.0061 0.9756±0.0005
3 0.9615±0.0028 0.4645±0.0101
4 0.7767±0.0062 0.9362±0.0025

SGD

1 0.9570±0.0032 0.0000±0.0000
2 0.0768±0.0048 0.9711±0.0009
3 0.9638±0.0024 0.1931±0.0093
4 0.5123±0.0093 0.9564±0.0018

Table 6.2: Accuracy on each test dataset in the MNIST setting directly after
completing a phase as a function of the optimizer. Values shown in bold
represent the retention metric.

Optimizer Relearning
Adam 0.67±0.02

Momentum 1.18±0.07
RMSProp 1.80±0.09

SGD 3.43±0.18

Table 6.3: Length of the first phase as a function of the third under each
optimizer in the MNIST setting. These values represent the relearning metric.

average ratio between the length of the third phase and the first phase. While

RMSProp may have been dominant under the retention metric, SGD is dom-

inant here. When considering this, note the differences in the variability and

size of the first phase lengths under RMSProp and SGD visible in Figure 6.2.

Further on the differences between this and our observations relating to the

retention metric, a clear gap between Adam and SGD with Momentum is vis-

ible here. To this point, Adam actually has a relearning speed slower than its

original learning.

Figure 6.3 shows the activation similarity and pairwise interference for the

four optimizers as a function of phase and step in phase. Recall that, for
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Figure 6.2: Split violin plot showing the distribution of the lengths of the
first and third phase as a function of the optimizer. The width of a bar at
each point provides an estimate for how frequently the optimizer will take the
corresponding number of steps to complete the phase.

both activation similarity and pairwise interference, a high value indicates

a high degree of forgetting or susceptibility to forgetting. Consistent with

the retention and relearning metric, Adam exhibits the highest amount of

activation similarity here. However, in contrast to the retention and relearning

metric, RMSProp seems to exhibit the second highest. Only minimal amounts

are displayed with both SGD and SGD with Momentum.

When compared with activation similarity, looking at the pairwise inter-

ference reported here produces less straightforward analysis. In the first phase

Adam and SGD with Momentum exhibit less pairwise interference than SGD

and RMSProp. This ordering is then reversed in the later phases in which SGD

consistently displays less pairwise interference than RMSProp. RMSProp, in

turn, displays less pairwise interference than Adam and SGD with Momen-

tum. When resolving this, it is useful to recall that the weights in the first

phase are initialized randomly, which results in a somewhat different meaning

for pairwise interference in the first phase compared to the later phases.

6.2.2 Rocking up the Hill With Mountain Car

Figure 6.4 shows the post-episode performance, activation similarity, and pair-

wise interference for each of the four optimizers in the Mountain Car setting.
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To determine whether or not the optimizer has been able to achieve an ac-

ceptable performance in Mountain Car, we compare their performance to the

performance of a learning system that, at any given step, outputs a prediction

equal to the average return so far observed up to that step, i.e., a constant

predictor. When a learning system outperforms a constant predictor, it means

that the learning system is making use of the input it receives when gener-

ating an output. Here, all of the four optimizers were able to consistently

outperform the constant predictor in later episodes.

Table 6.4 shows the mean and final post-episode values for activation sim-

ilarity and pairwise interference. As shown here and in the preceding figure,

Adam exhibited both the highest mean and final activation similarity. As

such, Adam was, on average, susceptible to the most catastrophic forgetting

both during learning and after learning. In contrast, SGD with Momentum

exhibited both the least mean activation similarity and the least final activa-

tion similarity. This ranking vaguely corresponds to the ordering induced by

activation similarity under the MNIST setting. However, a noticeable gap has
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Figure 6.4: Performance and interference metrics for the four optimizers as
a function of episode in the Mountain Car setting. Lines are averages of all
runs, and standard error is shown with shading.
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Metric Optimizer Mean Value Final Value

Activation Similarity

Adam 218.32±0.90 247.32±1.32
Momentum 170.64±0.40 211.50±0.78
RMSProp 179.36±0.63 218.73±1.03

SGD 180.50±0.45 237.93±0.83

Pairwise Interference

Adam -124.82±0.88 -84.27±5.28
Momentum -156.11±1.20 -80.05±4.97
RMSProp -168.70±2.80 10.32±3.33

SGD -76.75±3.02 170.77±8.64

Table 6.4: Average and final post-episode activation similarity and pairwise in-
terference as a function of the optimizer in the Mountain Car setting. Smallest
values are shown in bold.

formed between SGD and SGD with Momentum. Additionally, while SGD

exhibited slightly less mean activation similarity than RMSProp, looking at

Figure 6.4, it is clear that this is transient. Thus we can safely conclude RM-

SProp exhibits more activation similarity in the Mountain Car setting than

SGD, further disputing the ranking under activation similarity in the MNIST

setting.

When considering pairwise interference, the mean and final values have less

correspondence than with activation similarity. Looking at the mean pairwise

interference, one should note that Figure 6.4 shows that pairwise interference

did not change smoothly in early episodes. This somewhat diminishes the

utility of looking at the mean pairwise interference as such values are then

highly dependent on the number of episodes. When looking at only later

episodes or final pairwise interference, SGD experienced the most, and SGD

with Momentum and Adam tied for experiencing the least. This is the first

instance so far where Adam has been meaningfully ranked as experiencing the

least catastrophic forgetting.

6.2.3 Defying Gravity With Acrobot

Figure 6.5 shows the post-episode performance, activation similarity, and pair-

wise interference for each of the four optimizers in the Acrobot setting. Like

with Mountain Car, we compare the performance of the four optimizers to

the performance of a constant predictor. Here, all the optimizers consistently
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Metric Optimizer Mean Value Final Value

Activation Similarity

Adam 46.88±0.24 72.69±0.41
Momentum 69.44±0.32 81.06±0.84
RMSProp 34.42±0.23 49.54±0.38

SGD 50.33±0.20 69.67±0.36

Pairwise Interference

Adam -287.47±4.27 -64.52±2.55
Momentum -861.73±6.41 -562.92±17.96
RMSProp -398.41±8.07 -74.13±12.39

SGD -1150.31±12.37 -463.38±16.35

Table 6.5: Average and final post-episode activation similarity and pairwise
interference as a function of the optimizer in the Acrobot setting. Smallest
values are shown in bold.

outperform the constant predictor in later episodes but vary quite substan-

tially in the magnitude by which they do so. Throughout training, RMSProp

seemed to outperform the other optimizers, and SGD with Momentum seemed

to struggle the most.

Table 6.5 shows the mean and final post-episode values for both activa-

tion similarity and pairwise interference. High consistency can be observed

between the mean and final values here. As also visible in Figure 6.5, SGD

with Momentum exhibits both the highest mean and final activation simi-

larity, whereas RMSProp exhibits the least. Adam and SGD exhibit similar

amounts. This ordering disagrees with every previous ordering induced by

activation similarity where Adam was consistently the worst.

When looking at pairwise interference in the Acrobot setting, much less

episode-to-episode variability is observed than in the Mountain Car setting.

This reduction in variability may correspond to the lower variability seen in

RMSVE early on. With respect to the final pairwise interference, SGD and

SGD with Momentum seemed to exhibit the least followed by RMSProp and

Adam, which exhibited similar amounts. Moving to mean pairwise interfer-

ence, the ordering remains generally preserved, but some gaps appear, causing

SGD to experience less mean pairwise interference than SGD with Momentum

and RMSProp to experience less mean pairwise interference than Adam.
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6.2.4 The Effect of Hyperparameters

The results shown in the previous sections show the behaviour of the optimizers

under one set of hyperparameters. With the exception of α, the hyperparam-

eters were all set to fixed values that align with contemporary practice. α

was selected by sweeping over multiple values and selecting the one that per-

formed the best in the given setting under the given optimizer. In MNIST,

this meant moving through the four phases the fastest, and, in Mountain Car

and Acrobot, this meant minimizing the area under the RMSVE curve.

While we were careful to select hyperparameters to ensure they represent

a standard setup, it is valuable to consider how sensitive these results are to

minor variations in these hyperparameters. That being said, it is infeasible to

empirically analyze the effect of every hyperparameter here: there are thou-

sands of network configurations that have been explored in recent works. For

this reason, we limit our investigation to α and β. That is to say, we explore

the sensitivity of the above results for the four optimizers with respect to α

and the sensitivity of the above results for SGD with Momentum and RM-

SProp with respect to β. While we do not analyze the effect of β1 and β2, note

that both of these hyperparameters are respectively related to β in SGD with

Momentum and RMSProp. Furthermore, variations in β1 and β2 are relatively

uncommon in, at least, the supervised learning literature.

We begin by looking at the effect of β. Table 6.6 shows how the retention

and relearning metrics in the MNIST setting vary as β changes. Under SGD

with Momentum, there is a clear trend showing retention and relearning in-

creasing as β tends to lower values. Recall that a lower β brings SGD with

Momentum closer to SGD. Under RMSProp, this trend as it pertains to the

retention metric is reversed with higher values of β leading to higher reten-

tion. Recall that RMSProp previously showed the highest rate of retention,

followed by SGD. Looking at relearning under RMSProp does not produce a

clear message, though, as both high and low values of β seem to produce worse

relearning. Again, recall that SGD previously showed the fastest relearning

time, followed by RMSProp.
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Figure 6.8: Performance and interference metrics for SGD with Momentum
and RMSProp as a function of β and episode in the Mountain Car setting.
Lines are averages of all runs, and standard error is shown with shading.
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Optimizer β Retention Relearning

Momentum
0.81 0.0378±0.0035 1.5635±0.0577
? 0.9 ? 0.0177±0.0023 1.1817±0.0749

0.99 0.0032±0.0010 0.3553±0.0115

RMSProp
0.81 0.0336±0.0034 1.5068±0.0685
0.9 0.0687±0.0045 2.1629±0.1016
0.99 0.2263±0.0065 2.0151±0.0911

? 0.999 ? 0.2635±0.0061 1.8019±0.0851

Table 6.6: Retention and relearning metrics exhibited by SGD with Momen-
tum under different values of β in the MNIST setting. Smallest values are
shown in bold. Values corresponding to the results shown in Sections 6.2.1,
6.2.2, and 6.2.3 are starred.

Figures 6.6 and 6.7 show how the accuracy, activation similarity, and pair-

wise interference vary as β changes in the MNIST setting for SGD with Mo-

mentum and RMSProp, respectively. For SGD with Momentum, it is clear

that higher values of β produce slower learning and, consistent with retention

and relearning, worse activation similarity. Simultaneously, lower values of

β tended to produce little difference in learning speed but markedly higher

rates of activation similarity. However, under both SGD with Momentum and

RMSProp, no meaningful change appears in the pairwise interference when β

changed.

Moving onto the Mountain Car setting, Figure 6.8 shows how β affects the

RMSVE, activation similarity, and pairwise interference under both SGD with

Momentum and RMSProp. For SGD with Momentum, β seems to play little

roll in the activation similarity exhibited by the system, yet simultaneously

lower values do seem to produce much lower amounts of pairwise interference.

Looking at RMSProp is more challenging as only under β = 0.999 was it able to

outperform the constant predictor consistently. Thankfully, little difference is

observed in the interference metrics between β = 0.81, β = 0.9, and β = 0.99.

Figure 6.9 shows the same data as Figure 6.8 but for the Acrobot setting.

Notably, unlike in Mountain Car, here, SGD with Momentum encountered

numerical instability in one or more of the runs. This missing data somewhat

hampers interpretation of the results. Despite that, there are still clear trends

visible here that higher values of β produced more activation similarity and
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more pairwise interference under SGD with Momentum. Under RMSProp,

as before, the learning system failed to consistently outperform the constant

predictor with certain values of β. Looking at only β = 0.99 and β = 0.999,

higher values of beta seemed to be associated with less activation similarity

and more pairwise interference. The non-convergent values of β = 0.81 and

β = 0.9 seem to contradict this though. Thus no clear conclusion can be drawn

here.

All of the optimizers appearing in this chapter maintain a hyperparameter

α, which either served as a step-size or pseudo step-size. The value of α can be

roughly described as what the magnitude of an update should be after observ-

ing some quantity of error. As such, α has a major effect on the performance

of the learning system. We previously selected a value of α for each of the

optimizers using the standard method: performing a sweep of different values

and selecting the value according to what performed the best. Despite this, it

would be useful to know whether or not small variations in α would produce

different conclusions. This would verify to what degree different granularity

sweeps would affect what we report here.

To begin, Figure 6.10 shows how the average post-phase accuracy and the

length of phases varies with α in the MNIST setting. As with later results,

some optimizer-α pairs were not able to effectively solve the problem, and so

are omitted. For the pairs that did, we can observe that, while drastically

different values of α produced widely varying behaviours, similar values of α

tended to present similar behaviour. Figure 6.11 shows that this extends to

the retention and relearning metrics. Interestingly, the shapes of the curves for

each optimizer under both retention and relearning were similar. Here, SGD

with Momentum seemed to only slightly be affected by α, but a pronounced

effect with varying patterns is visible for each of the other three optimizers.

Again in the MNIST setting, Figure 6.12 shows how the final post-phase

activation similarity and pairwise interference varied with α. Again here there

is local smoothness under α. However, while activation similarity showed clear

patterns of either minimal dependency on α or a strong positive correlation

with α, more erratic patterns appear with pairwise interference. Most promi-
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nently, in the first phase, RMSProp swaps between minimal pairwise interfer-

ence, to positive pairwise interference, then to negative pairwise interference

as α grows.

For the Mountain Car setting, Figure 6.13 shows how the mean RMSVE,

activation similarity, and pairwise interference varied with α. As we observed

when looking at β before, some of the optimizers experienced numerical in-

stability under certain values of α. These cases are omitted here but are

consistent with previous work (Ghiassian et al., 2020, pp. 441–443). Like with

the MNIST setting, little local differences appear with regards to the mean

RMSVE and the mean catastrophic forgetting measures, but major variations

can be observed with drastically varying values of α. For activation similarity,

we can observe that higher values of α were associated with a higher mean

value. In contrast, higher values of α also seemed to produce lower values of

pairwise interference for all the optimizers, with the exception of SGD.

Finally, Figure 6.14 provides the same data as Figure 6.13 but for the

Acrobot setting. Immediately obvious here is that changes to α seemed to

produce much of the same behavioural changes with respect to RMSVE as

with the Mountain Car setting. However, less clear trends are visible for

the mean catastrophic forgetting measures. Thankfully, local consistency still

appears to be mostly preserved outside of extremely large values of α.

6.3 Discussion

The results provided in Section 6.2 allow us to reach several conclusions. First

and foremost, as we observed a number of differences between the different

step-size adaptation methods over a variety of metrics and in a variety of

settings, we can safely conclude that there can be no doubt that step-size

adaptation does have a meaningful and large effect on catastrophic forgetting

in ANNs. The generic but careful construction of the experiments implies that

this effect is likely impacting a large amount of contemporary research in the

area.

As shown by Table 6.7, in most of our experiments, Adam appeared to be
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amongst the most vulnerable to catastrophic forgetting. We hypothesize that

Adam’s high rate of forgetting may be a consequence of Adam being loosely

defined as a union of SGD with Momentum and RMSProp. As a unification

of these two methods, Adam may be particularly vulnerable when either of

the methods is particularly vulnerable. This conjecture aligns with our ob-

servations where, in many of the previous results, either RMSProp or SGD

with Momentum was particularly vulnerable to catastrophic forgetting, and

Adam’s behaviour often vaguely matched the worse one, e.g., see Figure 6.3.

However, Adam’s implementation here includes a bias correction mechanism

usually skipped over in implementations of SGD with Momentum and RM-

SProp. Thus, further inquiry is needed to formally confirm or refute this, and,

for now, it remains conjecture.

When looking at SGD with Momentum and RMSProp under different val-

ues of β, we saw evidence that β has a pronounced effect on the amount of

catastrophic forgetting an algorithm experienced. In most cases, this depen-

dence was smooth, i.e., similar values of β produced similar results. We also

noted that the optimizer seemed to play a more substantial effect here, e.g.,

the best retention and relearning scores for SGD with Momentum we observed

were still only roughly as good as the worst such scores for RMSProp.

By observing the α selection procedure, we were able to obtain consistent,

strong evidence that catastrophic forgetting has a major dependence on α.

Thankfully, this dependence appears to be very smooth, given the optimizer,

under most metrics and in most settings. This dependence still suggests that α

is necessary to consider when measuring the amount of catastrophic forgetting

experienced by an optimizer, and higher consideration should be given to sen-

sitivity analysis in the future. Thankfully, our results also suggest that small

differences in α can be disregarded as they are unlikely to have a profound

effect on any of the metrics.

One metric that we explored was activation similarity. Recall that activa-

tion similarity is equivalent to the activation overlap metric proposed in French

(1991) and is only named differently to avoid future confusion regarding the

mathematical way we calculate it. In the Mountain Car and Acrobot setting,
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activation similarity showed properties of being a useful metric as rankings

under activation similarity seemed to correspond better than under pairwise

interference to rankings under RMSVE. However, while French (1991) argued

that more activation overlap is the cause of catastrophic forgetting and so

can serve as a viable metric for it (p. 173), in the MNIST setting activation

similarity seemed to be in opposition to the well-established retention and re-

learning metrics. These results suggested that, while Adam suffers a lot from

catastrophic forgetting, so too does RMSProp. Together, this suggests that

catastrophic forgetting cannot be a consequence of activation similarity alone.

Further studies must be conducted to understand why the unique represen-

tation learned by RMSProp here leads to it performing well on the retention

and relearning metrics despite having a greater representational similarity.

On the consistency of the results, the variety of rankings we observed in

Section 6.2 validate previous concerns regarding the challenge of measuring

catastrophic forgetting. Between settings, as well as between different met-

rics in a single setting, vastly different rankings were produced. While each

setting and metric was meaningful and thoughtfully selected, little agreement

appeared between them. Thus, we can conclude that, as we hypothesized,

catastrophic forgetting is a subtle phenomenon that cannot be characterized

by only limited metrics or limited problems. Thus, it is insufficient to utilize

scores on a single metric (or a single family of metrics) to conclude which of

a set of metrics best mitigates catastrophic forgetting. One could go as far as

to say that it is better to use such metrics to understand the nature of the

catastrophic forgetting exhibited by a learning system rather than to show one

algorithm’s superiority over another in mitigating it. As forgetting should be

considered, in general, unavoidable (see Section 3.1), research effort would be

more effectively used by doing so.
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Chapter 7

Conclusion

In this thesis, we sought to revisit and expand our understanding of what for-

getting and catastrophic forgetting are in artificial neural networks (ANNs),

a learning system loosely based on the brain that is behind several recent

breakthroughs in artificial intelligence. We sought to do so by answering five

questions of interest: How does forgetting in psychology relate to machine

learning (ML) ideas? What is catastrophic forgetting? Does it exist in con-

temporary systems, and, if so, is it severe? How can we measure a system’s

susceptibility to it? Are the modern algorithms we use to train ANNs affecting

the phenomenon?

To understand the relationship between forgetting in psychology and var-

ious ML ideas, we examined how both fields think about forgetting.

We started by mapping out the origins of the study of forgetting in each field.

We then noted that forgetting in both psychology and ML is not necessarily a

negative phenomenon and, in fact, serves a critical role in any good learning

system. Afterwards, we delved into how both decay theory and interference

theory, two perspectives about forgetting in psychology, unexpectedly connect

to several topics in ML, such as transfer learning. We noted here that catas-

trophic forgetting originally referred to retroactive interference, or

the phenomenon of new learning interfering with older learning. We

then connected this all to neuroscience research by noting how the nature of

connections between neurons suggests that generalization is crucial in studying

catastrophic forgetting.
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To validate the existence and show forgetting and catastrophic forgetting is

a problem worthy of further inquiry, we set up an experiment using a contem-

porary ML system. We showed that catastrophic forgetting appears

in large quantities, even when using a modern dataset, with a mod-

ern ANN trained with a modern algorithm, and measured with a

principled metric. We also noted here that the phenomenon of catastrophic

forgetting was much more subtle than a simple reversal of learning. At the

same time, we showed the value of having algorithms that could effectively

control forgetting by showing that learning problems one at a time can lead

to faster learning overall.

Following the above, we tried to understand how we can determine a sys-

tem’s susceptibility to catastrophic forgetting, and simultaneously determine

if the modern algorithms we use to train ANNs are affecting this phenomenon.

In doing so, we built a testbed we could use to understand the nature

of the catastrophic forgetting exhibited by a method. We build this

by first carefully assembling three data-streams from the MNIST dataset, the

Mountain Car problem, and the Acrobot problem. This variety ensured that

we covered explicitly multi-task settings as well as single-task settings with

temporally correlated examples. We then assembled several different ways of

measuring forgetting to ensure a diverse set of perspectives on catastrophic

forgetting was represented. Afterwards, we used this testbed to show

that contemporary optimizations algorithms used to train ANNs are

meaningfully affecting the amount of catastrophic forgetting occur-

ring. We also showed that the nature of the catastrophic forgetting

occurring differed and, consequently, showed that the phenomenon

of catastrophic forgetting cannot be explained using only one ex-

isting metric. As these algorithms we employed are widely used in modern

research related to catastrophic forgetting, this result has implications for a

large body of contemporary research.

In conclusion, this work sought to answer five questions about catastrophic

forgetting so as to further our understanding of it. Altogether, we believe that

it has succeeded in giving a satisfactory answer to each of the aforementioned
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questions. As such, this work is offered as a step forward for the field of

artificial intelligence.

7.1 Implications

The main implications of this work concern both the application of ANNs

to problems susceptible to catastrophic forgetting, and the study of forget-

ting and catastrophic forgetting in ANNs. The results of this study suggest

that catastrophic forgetting remains a severe problem in contemporary ANNs.

They also suggest that when applying ANNs to problems susceptible to catas-

trophic forgetting, users should be wary of the optimization algorithm they

use to train the network. This is especially true when that algorithm is Adam.

It is less true when that algorithm is SGD.

In addition to the above, the results of this study also imply that, when

studying forgetting or catastrophic forgetting in ANNs, a holistic perspective

must be considered; we have shown that catastrophic forgetting is a subtle

phenomenon and not an exact problem. This study builds on previous work

to reinforce the conclusion that considering only limited metrics on limited

settings can only produce very limited conclusions regarding its nature. The

testbed provided here gives one way of partially overcoming this concern, as we

have shown it can provide a more holistic view of forgetting and catastrophic

forgetting than much previous work.

7.2 Future Work

It is important to recognize here that the results of this study, as with most

studies, are not fully conclusive, and, as always, additional research should be

conducted to verify further and farther understanding of the claims put forward

here. In addition, much work remains to be done to apply the conclusions of

this work so as to reach meaningful ends.

While we constructed a principled testbed that used various metrics to

quantify catastrophic forgetting, we only applied it to answer whether one

set of particular mechanisms affected catastrophic forgetting. Moreover, no
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attempt was made to use the testbed to examine the effect of mechanisms

specifically designed to mitigate catastrophic forgetting. The decision to not

focus on such methods was made as Kemker et al. (2018) already showed that

these mechanisms’ effectiveness varies substantially as both the setting changes

and the metric used to quantify catastrophic forgetting changes. Kemker et

al., however, only considered the retention metric in their work, so some value

exists in again comparing these methods using the testbed provided here.

Our results regarding the testbed remained limited in that they only tested

ANNs with one hidden layer. Contemporary deep learning often utilizes

networks with many–sometimes hundreds–of hidden layers. Ghiassian et al.

(2020) showed that this might not be the most impactful factor in catastrophic

forgetting (p. 444). However, how deeper networks affect the nature of catas-

trophic forgetting seems largely unexplored. Applying the provided testbed to

this question would yield important insights for the field.

One final opportunity for future research lies in the fact that, while we

explored several settings and multiple metrics for quantifying catastrophic

forgetting, there are many other, more complicated settings, as well as several

still-unexplored metrics which also quantify catastrophic forgetting, e.g., Fedus

et al. (2020). Whether the results of this work extend to significantly more

complicated settings remains an important open question, as is the question of

whether or not these results carry over to the control case of the reinforcement

learning problem.

7.3 Closing Thoughts

Clarke (1973) unintentionally described ANNs the best when they said that

“any sufficiently advanced technology is indistinguishable from magic” (p. 21).

Artificial intelligence has managed to enter a golden age by moulding some sim-

ple cognitive hypotheses into something suitable for the structure of our cur-

rent computers. It is of no surprise to anyone, though, that such a translation

has inevitably created learning systems with unexpected behaviour and, con-

sequently, generated countless new scientific questions. This must be viewed
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as a fantastic opportunity for new, impactful research. While the results of

this thesis compound our belief that the challenge of building strong learn-

ing systems is a truly immense one, we must remember that progress on this

challenge is not only of immense value to society but is also a species-wide

objective defined in our very nature.
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