
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright materia! had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

A n a l o g It e r a t iv e E r r o r C o n t r o l D e c o d e r s

by

C hris W instead

A thesis submitted to the Faculty o f Graduate Studies and Research in partial ful­
fillment o f the requirements for the degree of D octor o f Philosophy.

Department o f Electrical and Computer Engineering

Edmonton, Alberta
Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-08314-X

Your file Votre reference
ISBN:
Our file Noire reference
ISBN:

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L’auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced 'without the author’s
permission.

L’auteur conserve la propriete du droit d’auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

i * i

Canada

Bien que ces formulaires
aient inclus dans la pagination,
it n’y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

All communication and storage media are subject to corruption o f their digital in­

formation. Error control codes, in principle, permit communication and storage of

digital information with arbitrarily low probability of error. Iterative error control

decoding algorithms provide error protection close to theoretical limits. Conven­

tional implementations o f these algorithms, using digital circuits, are extremely

complex. Analog computation has been studied as an alternative approach for im ­

plementing iterative decoders.

Iterative decoders use a large-scale, parallel network o f “soft” probability calcu­

lators. These nodes exchange probability information with each other. A fter many

iterations, local information (individual noisy samples) is transformed into global

information (an estimate o f the word as a whole). These local fuzzy operations map

naturally to a family o f simple analog circuits.

In this thesis, we examine new circuit topologies and design principles for im­

plementing analog decoders using CMOS technology. We introduce novel circuit

structures for reducing complexity, and for minimum power supply voltage. We

examine issues in performance and scaling which are unique to analog decoding

circuits. We report results for the first successful analog decoder to be implemented

in CMOS technology. We also present the design o f and test results for an analog

Turbo product decoder with a coded block length o f 256, which is the largest and

m ost powerful analog iterative decoder to date.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Preface

This thesis presents the results of work which began at the University o f Utah in
2000, and continued at the University o f Alberta between 2002 and 2004. The
author has contributed to the design of seven analog decoder circuits fabricated
on five chips. These chips included the first successful CMOS implementation of
an analog MAP decoder. The author has also designed an analog Turbo Product
decoder, which is the largest and most powerful analog decoder design to have
been attempted as o f the writing o f this thesis.

The author’s original work includes new results on the performance of ana­
log decoders under the influence o f non-ideal analog effects, and resultant design
principles for optimizing the performance of analog decoders. Also among the au­
thor’s contributions are novel circuit topologies for implementing analog decoders,
including an approach which allows low supply voltage.

This thesis presents a nearly complete presentation o f concepts and vocabulary
which are required for a clear statement o f the author’s results. In many instances,
the terminology or definitions in the existing literature are not quite adequate. The
work o f this thesis requires a synthesis o f code construction, decoding techniques,
and circuit design. The designs are built upon concepts which are not necessarily
well-known to the audience of this thesis, and the source literature for these con­
cepts occasionally contain minor errors which cause confusion to new readers.

To avoid a clumsy collision o f vocabulary, and to rescue some readers from ob­
scure or difficult source literature, the author has presented the necessary concepts
under a unified vocabulary, which is outlined in the introductory chapters. Several
examples are given throughout the early chapters. The reader should be aware that,
in most instances, the examples represent portions o f the author’s designs. This
apparently verbose approach in early chapters allows for a more direct and unam­
biguous exhibition o f results in later chapters.

Throughout this thesis, whenever “speed” or “throughput” measurements are
reported, they reference the rate o f information bits per second. When throughput
is cited from other works, the author has converted the data where necessary to units
of information bits per second. Energy efficiency is also reported in units o f Joules
per information bit.

In order to clearly indicate the author’s work, sections which present mostly
original contributions are marked with an asterisk (‘*’). In some cases an entire
chapter contains mostly original work, and is also indicated by an asterisk.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

Many individuals made significant contributions to the ideas developed in this the­
sis. Our study of analog decoding began at the University o f Utah, in partner­
ship with Christian Schlegel, Chris Myers, Reid Harrison, Jie Dai, Scott Little and
Shuhuan Yu. The success o f the first CMOS analog decoder (presented in Chapter
8 of this thesis) is due to their influence and participation. Many design decisions
for the Product decoder (presented in Chapter 10 of this thesis) were also influenced
by Jie Dai and Shuhuan Yu.

At the University o f Alberta, this work was assisted by the additional super­
vision of Vincent Gaudet, who provided invaluable assistance during the layout,
fabrication and testing phases. Nhan (Dave) Nguyen collaborated on the design of
the test interface, which was used to obtain most o f the results reported in this the­
sis. Thanks are also owed to Sheryl Howard and David Haley for their comments
on designs and test procedures, and for reviewing portions o f this thesis.

I also extend my thanks to Anthony Rapley, Mimi Yiu and Siavash Sheikh Zein-
oddin for their friendship, and for many stimulating discussions o f communication
systems and iterative decoders.

Funding for the University of Utah project was provided by NSF grant CCR-
9971168. At the University o f Alberta, the project was continued under funding
from the Alberta Informatics Circle o f Research Excellence (iCORE). Design soft­
ware and fabrication services were provided by the Canadian Microelectronics Cor­
poration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 History o f analog decoding... 4

1.1.1 Physical demonstrations.. 8
1.1.2 Development of design principles... 12

1.2 Contributions o f this thesis.. 18
1.2.1 Contributions to coding theory... 19
1.2.2 A novel “reference input” sum-product topology........................... 19
1.2.3 A novel low-voltage sum-product topology.....................................20
1.2.4 Mismatch in analog decoders..20
1.2.5 Comparator offsets and yield.. 21
1.2.6 The first CMOS analog decoders... 22
1.2.7 A length-16 analog M AP d e c o d e r... 23
1.2.8 A length-256 Block Turbo d e c o d e r24

1.3 Outline of this thesis...24

2 Error-Control Codes and Decoders 27
2.1 Communications systems... 27

2.1.1 Probabilities and log-likelihood ratios.. 28
2.2 The Shannon limit.. 30
2.3 Linear binary block codes.. 32

2.3.1 Factor graphs and Normal graphs.. 34
2.3.2 Tanner graphs..36

2.4 Decoding algorithms..38
2.4.1 M AP versus M L decoding... 38
2.4.2 The sum-product algorithm... 39

2.5 Good codes.. 41
2.5.1 Parallel Concatenated Convolutional Codes: Turbo Codes. . 42
2.5.2 Serially Concatenated Convolutional Codes..................................... 45
2.5.3 Repeat-Accumulate codes..47
2.5.4 Low-Density Parity Check codes... 48
2.5.5 Block Turbo Codes.. 49
2.5.6 S u m m a ry ... 52

3 Trellis Codes 55
3.1 Trellis graphs for block and convolutional codes... 55
3.2 Soft-information trellis decoding.. 59

3.2.1 M AP decoding on trellises...59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.2 Transition m a tr ic e s ... 60
3.2.3 Details o f the BCJR algorithm... 61
3.2.4 An example decoder: (8,4) tailbiting Hamming trellis. . . . 62

3.3 Construction o f block code trellises.. 67
3.3.1 Generator matrices and the trellis product....................................... 67
3.3.2 Construction of tailbiting trellises... 69
3.3.3 Squaring construction for Hamming and Reed-Muller codes. 71
3.3.4 Example: (16,11) Hamming code construction..............................73
3.3.5 *Tailbiting squaring construction...78

3.4 *True-MAP decoding on tailbiting trellises.. 81
3.4.1 *Complexity of the exact MAP algorithm.......................................83
3.4.2 *Exact M AP for tailbiting (8,4) Hamming trellis...........................83

4 LD PC Codes 87
4.1 Regular and Irregular E n se m b le s .. 87

4.1.1 Regular LDPC c o d e s .. 87
4.1.2 Irregular LDPC C o d e s ...89

4.2 Density Evolution and Code S e le c tio n ...91
4.3 The AWGN channel and the Gaussian Approximation...............................93

4.3.1 Computing the threshold..95
4.3.2 Threshold D eterm ination ... 97
4.3.3 *Numerical methods for density evolution.................................... 101
4.3.4 ite ra te d integration.. 105

4.4 An algorithm for computing the threshold... 106

5 A nalog Decoding C ircu its 111
5.1 The translinear principle... I l l

5.1.1 Basic translinear circuits.. 113
5.1.2 The Gilbert vector multiplier. ... 115
5.1.3 Translinear sum-product circuits..116
5.1.4 Duality in translinear circuits... 117

5.2 CMOS translinear circuits... 118
5.2.1 MOS device models.. 120
5.2.2 The canonical CMOS sum-product circuit.................................... 123
5.2.3 Translinear analysis..125
5.2.4 Renormalization o f current vectors..126

5.3 * Supply voltage in canonical c i r c u i t s ... 127
5.3.1 M inimum allowable supply voltage...129
5.3.2 Approximations..130

5.4 *A reduced-complexity sum-product circuit..131
5.4.1 *Complexity o f the reference circuit... 132
5.4.2 im plem en ting all directions...134

6 *Low-voltage A nalog D ecoding C ircu its 139
6 .1 Eliminating V ref...139
6.2 Low-voltage sum-product c i r c u i t s .. 140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.1 A general low-voltage sum-product to p o lo g y142
6.2.2 Supply voltage in low-voltage c i rc u i ts ... 142
6.2.3 Approximations... 145
6.2.4 Process scaling and temperature effects... 145
6.2.5 R en o rm a liz a tio n ... 147

6.3 Decoder arch itec tu res... 151
6.3.1 Trellis d eco d e rs ...151
6.3.2 LDPC (Tanner Graph) D e c o d e rs ..153

6.4 An example d e c o d e r ..154

7 ^Scaling and Perform ance in Analog Ite ra tive Decoders. 159
7.1 Interface architecture... 160

7.1.1 Sample-and-hold input interfaces.. 161
7.1.2 Comparators and yield.. 167

7.2 Mismatch..170
7.2.1 Modeling mismatch in analog sum-product circuits..................171
7.2.2 Feed-forward analysis... 174
7.2.3 Density evolution analysis o f lateral effects...................................175
7.2.4 Comparison o f feed-forward and lateral mismatch effects. . 178

8 *A CM OS A nalog D ecoder for an (8,4) Tailbiting H am m ing Code. 181
8.1 The analog sum-product components.. 181

8.1.1 The Tree circuit...182
8.1.2 Trellis section one.. 182
8.1.3 Trellis section two.. 183
8.1.4 T\ (out).. 183
8.1.5 r 2 (out)...189

8.2 Interfaces...190
8.2.1 S/H input circuits..192
8.2.2 Comparator circuit..192

8.3 Physical test results...193
8.3.1 Dynamics of the decoder... 196
8.3.2 Measurements in strong inversion.. 197
8.3.3 Measurements in weak inversion... 198
8.3.4 Mixed-signal interference... 199

9 *A CM OS A nalog D ecoder for a (16,11) H am m ing Code. 203
9.1 The analog sum-product components.. 204

9.1.1 Subtrellis implementations...209
9.1.2 Reset switches...209

9.2 Interfaces...210
9.2.1 S/H input circuits..214
9.2.2 Comparator circuit..214

9.3 Test interface..216
9.3.1 Hardware.. 216
9.3.2 Software..217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.3.3 Noise in the test interface.. 218
9.3.4 Loop-back interface test.. 219
9.3.5 Discussion o f the interfaces.. 220

9.4 Characteristics of the d e c o d e r 221
9.4.1 Dynamics.. 222

10 *An Analog (16,l l) 2 Turbo Product Decoder. 227
10.1 Design o f the decoder. ... 228

10.1.1 Floorplan and interleaving.. 228
10.1.2 Scalability..228

10.2 Characteristics of the d e c o d e r 229
10.2.1 Speed..232
10.2.2 Performance... 232

11 Conclusions and Outlook. 237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

1.1 A summary o f published digital iterative decoder designs................. 13

1.2 A summary o f published analog iterative decoder designs................. 14

2.1 List of notation for communications and coding.......................................30

3.1 RM (p. v) codes and their partition degrees..75

4.1 Exact (SNR*) [69] and Gaussian-approximation (SNR^A) thresh­
olds for various rate-1 /2 degree distributions on the AWGN chan­
nel, in terms of E ^/N q (dB). The BPSK limit for this rate is 0.1870dB. 99

4.2 Exact (SNR*) [69] and Gaussian-approximation (SNRqa) thresh­
olds for various rate-1 /2 degree distributions on the AWGN chan­
nel, in terms of £/,/No (dB). The BPSK limit for this rate is 0.1870 dB. 100

4.3 Estimated parameters, bias (jis), error standard deviation (crs), and
threshold results for various regular LDPC ensembles. In all cases,
the tolerance is oy = 0.001 and Ar = 0.025... 104

8.1 Summary o f (8,4) Hamming decoder characteristics.............................. 194

9.1 Summary of (16,11) Hamming decoder characteristics. Speed
and power figures are estimated from simulations, and are not
within the range of accurate measurement for the test interface.
“Tested Speed” refers to the maximum speed of the test interface. 226

10.1 Summary o f (16.11)“ Product decoder characteristics. Speed and
power measurements are estimated based on simulations, but were
outside the accurately measurable range of available test equip­
ment. “Tested speed” refers to the maximum reliable test speed
o f our interface... 236

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.0.1 Decoder size vs performance, comparing a collection o f synthe­
sized digital decoders in a 0.5/rni CMOS process [94]. Two ana­
log decoders are shown as labeled. The Product decoder is shown
adjusted for the difference in process feature size. The analog
decoders are reported in this thesis.. 5

1.0.2 Decoder power vs performance, showing a collection o f simulated
digital decoders [94] alongside two fabricated analog decoders.
The analog decoders are labeled as an (8,4) Hamming decoder
and a (16,11)2 Product decoder. Results for the analog decoders
are reported in this thesis.. 6

1.1.1 Energy expense per bit for analog vs digital decoders. The cir­
cles represent reported digital decoders, and the stars represent
fabricated analog decoders... 12

2.1.1 Communications system model..28

2.2.1 Shannon and BPSK limits... 32

2.3.1 Example factor graph fo r /(x , y, z) = / i (x. y) • / t (x . z) - f 3 (y) •f i i y , z). 34
2.3.2 Factor graph with hidden variables..35

2.3.3 Normal graph corresponding to Figure 2.3.1.. 35
2.3.4 Normal graph corresponding to Figure 2.3.2.. 35

2.3.5 Example Tanner graph..37
2.3.6 Normalized Tanner graph corresponding to Figure 2.3.5.......................37

2.4.1 Hidden variable insertion...39

2.4.2 Function node for a Boolean constraint on three variables....................40
2.4.3 Implementation o f probability propagation in a node o f degree three. 41
2.5.1 PCCC Turbo Code encoder..43

2.5.2 Decoder for a PCCC Turbo Code.. 43

2.5.3 Factor graph for a PCCC Turbo Code...44
2.5.4 Performance o f the original rate-1/2 PCCC Turbo Code, with

length 65536 and 18 decoding iterations [15]. The BPSK limit
is also indicated.. 45

2.5.5 Encoder for an SCCC Turbo Code.. 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5.6 Decoder structure for SCCC Turbo Codes... 46

2.5.7 Factor graphs for SCCC Turbo Codes...46
2.5.8 Repeat-Accumulate e n c o d e r . ..47

2.5.9 Repeat-Accumulate code factor graph.. 47

2.5.10 LDPC code factor graphs... 48

2.5.11 BTC codeword structure...50
2.5.12 Concatenation o f component decoders using equality nodes. . . . 50

2.5.13 Factor graph for an (8 ,4)2 Hamming BTC..51
2.5.14 Performance of some Block Turbo Codes. The BPSK limits are

indicated by arrows for each code rate [37]... 53
2.5.15 Performance of various codes relative to the BPSK limit. Data

points represent the SNR needed to acieve a BER of 10-5 . Code
lengths are also indicated for regular LDPC [69], irregular LDPC
[20], PCCC Turbo [15], and SCCC Turbo codes [81].............................54

3.1.1 A simple two-state convolutional code..56
3.1.2 Valid and invalid paths in a tailbiting trellis with four sections. . . 57

3.1.3 Trellis-style constraint and factor-graph for f (x . y . z) = x + y +
z = 0 .. 57

3.1.4 Tailbiting trellis for the (8,4) Hamming code.. 58
3.1.5 Factor graph corresponding to the tailbiting trellis o f Figure 3.1.4. 58
3.2.1 Normal graph for (8,4) Hamming code..63

3.2.2 Illustration o f the “Tree” function node...63
3.2.3 M essage schematic diagram for the (8,4) Hamming decoder. . . . 64

3.2.4 Complete message and node schematic for (8,4) Hamming decoder. 65
3.2.5 Illustration o f constraint between information bit and state vari­

able (normal form)... 67

3.3.1 An example row subtrellis..68
3.3.2 Elementary subtrellises for a conventional (8,4) Hamming trellis. . 70

3.3.3 Trellis product o f rows one and two...70
3.3.4 Complete trellis after all row products are taken...................................... 70
3.3.5 Construction o f a tailbiting (8,4) Hamming code trellis.......................... 71

3.3.6 Illustration o f the squaring construction.. 72
3.3.7 Synthesis of a subtrellis for the two-level squaring construction. . 74
3.3.8 A complete trellis based on the two-level squaring construction. . 74

3.3.9 Coset subtrellis for (16,11) Hamming code. The complete trellis
includes a second, identical subtrellis connected as in Figure 3.3.8. 76

3.3.10 A trellis-style graph indicating the constraints among channel bits
z; and branch label / ...77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.11 Complete factor graph for the (16,11) Hamming code............................78

3.3.12 Shape of conventional trellises constructed with the two-level squar­
ing procedure...79

3.3.13 Shape of tailbiting trellises constructed with the two-level squar­
ing procedure...80

3.3.14 Tailbiting form o f Figure 3.3.9.. 81

3.3.15 Complete tailbiting trellis for the (16,11) Hamming code...................... 82

3.4.1 Tailbiting trellis for (8,4) Hamming code..84

4.2.1 Tree representation of an infinitely large LDPC code..............................92
4.3.1 Iterative behavior of h(s. r) .. 95

4.3.2 A detailed view of h (s , r) — r when s is just above, just below, and
equal to the threshold. These curves are for the irregular LDPC
ensemble defined in the first (leftmost) column o f Table 4.2. . . . 98

4.3.3 Iterated integration using only three-edge nodes..................................... 106

4.4.1 A sequence o f estimations of h (s , r) — r during a threshold search.
The initial low-precision search is shown as a dashed curve. The
sequence o f high-precision estimates o f y $ is joined by a solid
curve...109

4.4.2 A sequence o f slopes measured during threshold search....................... 109

5.1.1 A three-terminal translinear device... I l l

5.1.2 A simple translinear loop.. 113

5.1.3 Current m irror circuit... 113

5.1.4 A simple Gilbert m ultip lier...114

5.1.5 A Gilbert multiplier circuit for vector scaling.. 115
5.1.6 Gilbert vector m u lt ip l ie r . ..116

5.1.7 A Gilbert-multiplier implementation o f the equality node.................... 117
5.1.8 Differential pair circuit.. 118

5.2.1 Complementary MOS devices..119

5.2.2 Configuration o f devices as current sources and diode-connected
current loads...120

5.2.3 Unsaturated weak-inversion translinear MOS device............................. 123

5.2.4 Canonical sum-product circuit to p o lo g y ... 124

5.2.5 Symbol for a source-connected transistor a r r a y 124

5.2.6 A PMOS renormalization circuit for a two-element current vector. 127

5.2.7 Connection between two stages o f NMOS sum-product circuits
and PMOS normalizers... 128

5.3.1 A “slice” o f the canonical topology...129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.1 Use o f a reference input to restore the denominator of (5.1.12). . . 132

5.4.2 A trellis section with disjoint subsections...134

5.4.3 A trellis section with disjoint “butterfly” subtrellises.............................135

5.4.4 Implementation of a trellis section with disjoint butterfly subtrel­
lises. Dashed lines indicate incomplete probability masses. Solid
lines indicate complete probability masses. A dot indicates the
row input edge for each cell.. 136

5.4.5 Butterfly circuit with reference input...137

6.1.1 Translinear loop 1, derived from Fig. 5.2.4 with Vref = 0 140

6.1.2 Translinear loop 2, derived from Fig. 5.2.4...............................141

6.1.3 Translinear loop 3, derived from Fig. 5.2.4...............................141
6.2.1 Low-voltage sum-product circuit topology, using the box notation

of Fig. 5.2.5...143

6.2.2 A “slice” of the low-voltage topology..144
6.2.3 Allowable supply voltages for canonical and low-voltage topolo­

gies, as a function of process feature size and temperature.................. 148

6.2.4 Difference in minimum supply voltage between low-voltage and
canonical sum-product circuits, as a function of temperature. . . . 149

6.2.5 Iterated amplification of current magnitude k .. 150

6.2.6 Current magnitude transfer function for the low-voltage renormal­
ization circuit.. 152

6.3.1 A low-voltage circuit for trellis decoding based on the BCJR al­
gorithm...152

6.3.2 Low-voltage equality-node circuit for LDPC decoding.........................154

6.3.3 Low-voltage check-node circuit for LDPC decoding............................. 155

6.4.1 A Tanner graph decoder for the (7,4) Hamming code............................156
6.4.2 A complete node implementation, with a separate sum-product

circuit for each edge.. 157

6.4.3 Simulation results showing the decoder converge to a new code­
word decision..157

7.1.1 Analog decoder interface architecture... 161
7.1.2 Buffered cascade of S/H circuits, with differential p a i r163

7.1.3 Unbuffered S/H interface circuit... 163

7.1.4 S/H circuit showing the transmission gate.. 163

7.1.5 Model o f leakage current in S/H circuits.. 165

7.1.6 Physical origin o f substrate leakage... 165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.7 The increase in error probability due to comparator offsets. Off­
sets are assumed to be Gaussian distributed voltages, represented
in the Figure in normalized log-likelihood units.....................................169

7.2.1 Current mirror circuit.. 171
7.2.2 Density function of the mismatch factor (with exaggerated vari­

ance)..172

7.2.3 Basic Gilbert multiplier sum-product circuit..173

7.2.4 Mismatch referral for a differential-pair circuit. Vy represents the
offset voltage needed to make Iq — 1\ when the received channel
sample is r = 0 for a particular pair o f mismatch values, Si and
£2 . The effective additional channel noise, nm, is the offset in the
received sample which is needed to produce Vy..................................... 176

7.2.5 Performance loss due to mismatch in a feed-forward circuit, for a
rate-1/2 code at E ^/N q = 1.5 dB. The parameter v is varied from
0.25 to 8, as indicated to the right of each curve.....................................176

7.2.6 Illustration o f iterated VEGAS integration for nodes o f degree > 3 . 177
7.2.7 The threshold loss due to mismatch for regular LDPC ensembles

corrseponding to those in Table 4.3... 178
7.2.8 Comparison of feed-forward and lateral losses..179

8.1.1 Circuit for the “Tree” computation...183

8.1.2 Circuit implementation o f T\ (c) ..184
8.1.3 Circuit implementation o f T\ (cc)..185

8.1.4 Circuit implementation o f 73 (c)... 186
8.1.5 Circuit implementation o f 73 (cc)..187

8.1.6 Circuit for the T\ (out) operation.. 188

8.1.7 Circuit for the 73 (out) operation...189

8.2.1 Interface diagram for the (8,4) analog d ecoder.......................................190
8.2.2 Timing diagram for the analog (8,4) Hamming decoder interface. . 191

8.2.3 The input stage for the (8,4) d eco d er..192

8.2.4 The unity-gain buffer circuit...193
8.2.5 Latched current comparator circuit... 194

8.3.1 Photo o f the analog (8,4) decoder chip.. 195
8.3.2 Decoder performance vs speed in moderate inversion........................... 197

8.3.3 Measured performance in strong-inversion...198

8.3.4 Measured performance in weak inversion, sending only one code­
word. The solid curves represent uncoded BPSK and ideal Ham­
ming code performance. Measured points are indicated by circles.
Error bars indicate 99.9% confidence intervals.......................................200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3.5 Measured performance in weak inversion, varying the codeword.
The solid curves represent uncoded BPSK and ideal Hamming
code performance. Measured points are indicated by circles. Er­
ror bars indicate 99.9% confidence intervals... 201

8.3.6 Mixed-signal interference in outputs o f the (8,4) analog decoder. . 202

9.1.1 Subdivision o f the bit-combiner (Figure 3.3.10) into atomic trellis
components. The labels Z/ represent information input and output
for binary code variables. S represents a hidden state of the eight-
state trellis graph.. 204

9.1.2 Atomic subtrellises for the (16,11) Hamming code................................206

9.1.3 A block schematic for the (16,11) d eco d er...206
9.1.4 Layout o f the (16,11) analog decoder. .. 207

9.1.5 Use o f equality gates at decoder outputs.. 208

9.1.6 Layout o f (16,11) decoder, with equality gates....................................... 208

9.1.7 Creating a butterfly from a tree... 209

9.1.8 Upward Butterfly computation, with reference input.............................210
9.1.9 Use of reset switches in the Core sum-product component..................211

9.2.1 M odular S/H array..212
9.2.2 Signal timings for the bottom S/H array module.................................... 213
9.2.3 S/H circuit for the (16,11) d e c o d e r.. 214

9.2.4 Transmission gate circuit..215
9.2.5 Latched current comparator circuit.. 215

9.3.1 Photograph o f the FPGA-based test board... 217
9.3.2 Screen shot o f the test interface during a test o f an uncoded loop-

back interface chip... 218

9.3.3 Diagram of the test interface..219
9.3.4 Results for the loop-back test at maximum speed. The solid curve

indicates the ideal performance of uncoded BPSK. Circles indi­
cate measured error rates. Error bars indicate 99.9% confidence
intervals.. 220

9.3.5 Loop-back results at reduced speed. The solid curve indicates the
ideal performance o f uncoded BPSK. Circles indicate measured
error rates. Error bars indicate 99.9% confidence intervals..................221

9.4.1 Performance measurements for the (16,11) decoder. The solid
curves indicate performance of uncoded BPSK and an ideal (16,11)
Hamming decoder. Circles indicate measured error rates. Error
bars indicate 99.9% confidence intervals..223

9.4.2 Transient response o f the (16,11) decoder output for a single bit.
The solid curve indicates the output P (bit = 0) and the dashed
curve indactes P (b it = 1)...225

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.1.1 Floorplan o f the Product decoder..229

10.1.2 Layout o f the Product decoder chip...230

10.1.3 Alternative Turbo-like interleaver layout... 230

10.2.1 Die photo o f the Product decoder chip..231
10.2.2 Test results for the Product decoder. ..235

10.2.3 Error floors observed in measurements o f the Product decoder. . . 235

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Symbols

Communication Systems

u Information message (i.e. the source bits).
X Codeword, before transmission. Often refers to the modulated

codeword, as indicated by context.
n Gaussian noise pattern added by the channel.
r Received noisy samples at the channel’s output.
U Estimate of the information message, produced by the decoder.

P, Conditional probability mass for codeword symbol .v/, given re­
ceived sample r,-.

N q Channel noise power spectral density.
Sfi (r) Gaussian density function with mean p. and variance ./Vo/2.

Xi Log-likelihood ratio for sample r,-.
Eb Energy per information bit.
Es Energy per transmitted channel symbol.

SNR Signal to noise ratio (E t/N o) in dB.
S Signal to noise ratio (E t/No) in unitless form.
IV Transmission bandwidth.
R Code rate, Es/ E t .
C Channel Capacity (the maximum possible code rate).

® (r) The BPSK Limit (more restrictive than Capacity).

Block Codes

C Block code.
k Length o f the uncoded information block.
n Length o f a codeword.
G Generator matrix.
H Parity-check matrix.
Z 2 Finite field o f integers modulo 2.
z$ Space o f length-/: vectors over Z2.
*0 The all-zero codeword.

Hamming distance between x x and x 2.
^min M inimum Hamming distance between pairs of codewords in C.
Pe The bit error probability for C, for a given set of channel parame­

ters.
A (w) The multiplicity of codewords of weight w in C.

Factor Graphs

f (X) A factorable function o f several variables.
X The set o f variables on which / depends.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f i (X j) A factor o f f (X) .

x j A subset o fX .

Q A factor graph.
1 (H) The Tanner graph induced by parity-check matrix H.
H '(T) The parity-check matrix induced by Tanner graph T .

X. A normal graph.

Sum-Product Algorithm

X A discrete-type random variable (distinguished by bold-face type).
^x The set o f possible values for x.

Px The probability mass for x.

£ x (0 The ilh component of px-

/ (• w) A boolean constraint function on three discrete-type variables.

S f The set o f (x.y.z) for which / (x .y .z) is satisfied.
S / U) Subset o f S f for which z = j-

N A three-edge function node.
E An edge in the graph.

“n A normalizing constant.

Iterative Decoders

C], Ci Constituent codes.
n Interleaver which permutes bit order between Ci and Co.
u Information bits.

P) Parity bits from C].

P.2 Parity bits from C2 .

Trellis Codes

Si A column of trellis states.
Li The set o f trellis branches with Si on the left.
% A trellis section.
sq A left-hand state in a trellis section.
4 A right-hand state in a trellis section.

bqr The branch connecting sq on the left to on the right.
lqr The label on branch bqr, consisting o f a channel symbol and, op­

tionally, a corresponding information symbol.

The set o f possible states at time i.
Xi Probability mass for channel symbol x,-, locally conditioned on the

received sample r,-.
p,- Probability mass for the information symbol wy, globally condi­

tioned on the received sample block, r.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G; Probability mass for Si, globally conditioned.
jjk State transition probability; the probability o f moving to state k on

the right, given that we are in state j on the left.
T/ Transition probability matrix for %.

Ti ® *3]f+] Trellis section product, merging % with (Z/+i.
a. Forward-propagating (backward-conditioned) state probability

mass in the BCJR algorithm.
j3. Backward-propagating (forward-conditioned) state probability

mass.
a O p The term-by-term product o f a and p.
iD (a) Decision operation, returning the index of the maximum element

in vector a.

Block Code Trellises

gi A row of block generator matrix G.
Elementary subtrellis for gt.
Product of subtrellises, creating a larger subtrellis.

l\ © h Group product of branch labels.
a-, Number of active rows in column / o f G.
15 /1 Number of states in Si.
L Length o f trellis (number o f sections).

RM (p, v) Reed-M uller code with parameters p and v.
T /V A partition o f set T induced by coset V.

\T/V \~ Squaring operation applied to the partition T jV .
T /I J /V Two-level partition o f set T , induced by the partition U /V .

|T /U /V |4 Two-level squaring operation.

LDPC Codes

dc Check node degree (i.e. row weight in the parity check matrix) for
regular codes.

dv Variable node degree (column weight).
Cn (dv. dc) Ensemble o f (dv, J c)-regular LDPC codes of length n.

n (/) Interleaving function mapping variable node connections to check
node connections.

r Design rate of an LDPC ensemble,
y(x) An edge-oriented degree distribution polynomial for an irregular

LDPC code.
X Variable-node degree distribution (edge-oriented),
p Check-node degree distribution (edge-oriented).

J y Average inverse degree (serves as a normalizing constant).
X Node-oriented degree distribution.

Ne Total number o f edges in the code’s Tanner graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parametric description o f an irregular LDPC code ensemble.

Density Evolution

s Channel parameter, defined as E s/ N q = 1/No.
s* The threshold (best possible s) for a given LDPC ensemble.
Y A random LLR message.

Cp The variance o f Y.
m y The mean of Y.

G W Gaussian error integral, from x to °°.w 7
r (0 Error probability at variable nodes’ output, after / iterations.

h (s. r) Iterative transfer function for

4>() Function which converts mean LLR to mean probability mass.
Scalar parameters used for approxim ating <j).

Numerical Methods for Density Evolution

U Set o f i.i.d. random LLR messages from check nodes, arriving at a
variable node.

V Set o f i.i.d. messages from variable nodes, arriving at a check node.
f c (V) Check node function, governed by the sum-product algorithm.
M U) Variable node function.

P u PDF o f an element o f U.
Mu Mean of an element of U.
£»- Estimation error resulting from a M onte Carlo integration.

Mean and variance of £/.
y Estimate of h (5, r) — r.

A r Fixed distance between points for measuring dy/dr.
ym The maximum value of y (r) fo r a given s.
rm The r for which y = ym.
a Parabolic width parameter used for approximating y (r) near rm.
£r Error in estimate of rm.

^slope Error in estimate of dy/dr.
£v Error in estimate of y.
£m Error in estimate of ym.
£s Error in estimate of threshold, s*.
P The slope of ym w.r.t. s at 5 = s*.

Iterated Monte Carlo Integration

M u (jiv) M onte Carlo mean-output estim ator for check nodes, with mean
LLR input n v.

M v (jiu) M onte Carlo mean-output estim ator for variable nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flu The result of the estimator fM u .

The error in the estimate fiu.
i^out Mean LLR output by variable nodes.

1 Variance of the estimation o f /i0ut> accounting for the estimation
variance of fiu.

X The slope of f i out w.r.t. ^ jn , evaluated at ,ujn, for a particular M onte
Carlo estimation.

p C M Gaussian LLR density function with mean pi.

MOS Transistor Parameters

b Cument through an MOS device, flowing from drain to source.
V,h Threshold voltage, at which the device turns on.
Vro Threshold voltage with zero body effect.
M Mobility of charge carriers in the channel (may be N-type or P-type

carriers).
C'ox Gate oxide capacitance per unit area.
W Width of the physical transistor gate.
L Length o f the gate.
K Subthreshold channel pinch-off voltage slope (always less than 1).

U T The thermal voltage kg T fq .
Is Specific current, designating the boundary between weak and

strong inversion.
f s (vs) Function describing small non-linear modulation o f device current

due to v5.

f g (vg) Non-linear device current effect due to vg.
fd s i vds) Non-linear effect due to v js.

Vgs Voltage between the gate and source o f the MOS transistor.
vds Voltage between the drain and source.

v8 Voltage applied to the gate.
Vd Voltage at the drain.
Vs Voltage at the source.
§m Transconductance, the slope o f b w.r.t. vgs about a fixed bias cur-

rent I do-

Analog Sum-Product Circuits

IXi A row input (current) to a Gilbert multiplier or sum-product circuit.
x; The node (voltage) to which lx i is connected.

Jyj A column input to a sum-product circuit.

yj The node to which Jyj is attached.
b i j An output from a Gilbert m ultiplier o r sum-product circuit.

X A discrete-type random variable.
Ax The set o f possible values for x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lu Unit current, representing a probability of one.
A' Normalized current unit; 1 A' = Iu -
Vx A differential voltage proportional to LLR X .

The positive and negative components of V*.
X Ordered sequence of row input nodes.
Y Ordered sequence of column input nodes.
N Number of row inputs.
M Number o f column inputs.
kz Current magnitude; the sum over all elements of a current vector,

in normalized units A'.
n. m Geometry width factors for MOS devices in a renormalization cir­

cuit.
Kef Reference voltage applied to the source of row-input transistors, to

ensure that column-input transistors remain in saturation.

Reference Input Simplification

5X A subset o f row-inputs.
A A reference or remainder input, representing the sum of currents in

X \8 X .
8N The number of elements in 8X.
6 Y A subset of column inputs.
5M The number of elements in 8Y.

X ® Y The set o f all pairwise products between members of set X and
those o f set Y.

Low-Voltage Sum-Product Circuits

Idi Cumulative source current in column /.
/s Cumulative current through dummy transistors in a given column.

Analog Decoder Interfaces

s Scaling parameter relating LLRs to differential voltages, with units
V /LLR.

/leak Substrate leakage current in transmission gates.
Vc Voltage stored on a S/H capacitor C.

Ymax The maximum allowed drop in the common-mode of a stored dif­
ferential voltage.

fmax The time required for 7]eak to cause a loss equal to V ^x.
Ts; fs Sample time and frequency for a S/H circuit.
Ron Series resistance in a transmission gate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NS Maximum number of samples which can be serially stored for a
given block length and sample rate, before rmax is exceeded in at
least one S/H cell.

A<2 Extra charge deposited on C due to charge-injection by the trans­
mission gate.

k Linear slope o f A<2 w.r.t. Vc-
X 0 The comparator's input offset, expressed as a LLR.
L Maximum tolerated value o f |X0|.
£ Mismatch error term which modulates a device's current by a ran­

dom factor.
Channel noise variance, cj; = No/2.
Variance o f the mismatch term e.

*2Gtot Total effective noise at the decoder’s input (i.e. at the channel’s
output).

V Topology-dependent mismatch factor which can increase or de­
crease the effective mismatch variance.
Analog sum-product node.

X ,Y Input LLR messages to 9(_.
Mean of X and Y.

fn (X .Y •"?) Function characterizing the behavior of
Z The output LLR message from 5 /.

i“Z The mean of output message Z.
5 * (g£) The threshold of an LDPC ensemble, given mismatch standard de­

viation g£.
c*■’exact The ideal threshold of the same ensemble.

/loss (c>e) The ratio of the mismatch threshold to the ideal threshold. When
expressed in dB, this is an estimate o f the SNR loss caused by
lateral mismatch.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations

ADC Analog to digital converter.
AMI AMI Semiconductor Corporation.
AWGN Additive white Gaussian noise.
BER Bit error rate.
BCJR Bahl, Cocke, Jelinek, Raviv (the authors who created the

algorithm).
BPSK Binary phase-shift keying.
CDROM Compact disc read-only memory'.
BTC Block Turbo Code.
CMOS Complementary MOS technology.
DAC Digital to analog converter.
FIR Finite-impulse response.
GA Gaussian approximation.
GNU GNU is Not Unix - the GNU project.
i.i.d. Independent and identically distributed.
LDPC Low-density parity check (code).
LLR Log-likelihood ratio.
MAP M aximum a-posteriori.
M L M aximum likelihood.
MOS Metal-oxide-semiconductor device.
NMOS Negative MOS device.
PCCC Parallel concatenated convolutional codes.
PMOS Positive MOS device.
PN Positive-negative junction diode.
RM Reed-M uller code.
RV Random Variable.
SCCC Serially concatenated convolutional codes.
S/H Sample and hold.
SNR Signal to noise ratio.
SP Sum-product algorithm.
TPC Turbo Product Code.
TSMC Taiwan Semiconductor Manufacturing Corporation.
UMTS Universal M obile Telecommunications System.
w.r.t. With respect to.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Error control codes are used in a variety o f applications to reduce or effectively

eliminate the occurrence of errors in information which is transmitted or stored.

The Shannon Capacity Limit has long been known as a bound on the performance of

error control systems [78,23]. The fundamental problem of error control coding has

been to produce a system which achieves this limit. In 1993, with the introduction

of Turbo Codes, this problem was effectively solved for the additive Gaussian noise

channel [15,16]. It was quickly discovered that several other types o f known codes

- such as Low Density Parity Check codes [33] and Block Product codes [28] -

could also approach Capacity on the Gaussian channel [56, 69, 37, 67].

An important part o f the Capacity problem still exists: to implement an efficient

error control coding system which not only approaches capacity, but does so at a

minimal expense. Turbo codes achieve their good performance through iterated

estimation o f the transmitted message. First, an entire block of data is received and

decoded. Then the same block is decoded again and again, with improved results

after each iteration.

All o f these iterations must occur at a much higher rate than that of the data

itself. This means that the decoder must operate at a very high clock frequency if

large data rates are desired. This results in a substantial power drain, and generates a

significant amount o f heat. It may also cause high-frequency interference in nearby

circuits.

An alternative to a high-speed decoder is a fully parallel decoder. Iterative de­

coding algorithms are naturally parallel and distributed. A fully parallel decoder

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only needs to operate at a speed proportional to the data’s block rate (or fram e

rate). If the size of a frame is very large, then a correspondingly high bit rate is

achievable.

In a parallel architecture, decoding iterations can also be pipelined through

many instances of the decoder circuit [18]. Decoding iterations are thereby dis­

tributed across space rather than time, leading to very high-speed decoding. This

approach also has a high cost in power consumption, as a system can be extremely

large. An even greater cost lies in the circuit area required for a large parallel imple­

mentation. The cost of manufacturing a semiconductor chip is directly proportional

to area. When yield is taken into account in bulk semiconductor production, cost is

proportional to the area cubed [68].

The benefit o f an error control system is that it allows error-free transmission

with reduced signal energies, or extended range, or increased density in storage me­

dia. Iterative decoders run the risk o f overshadowing this benefit with the high cost

o f the error control system itself. System designers are therefore faced with task

o f assessing the total system efficiency o f any error control code implementation.

There is still a great deal o f argument about how to best approach this problem.

Frustrated with the cost and inefficiency of iterative decoder implementations,

some researchers have begun to explore analog computation. Very simple analog

circuits implement the basic operations needed for iterative decoding [38,52]. The

physical implementations o f these circuits are much smaller than their digital coun­

terparts, and typically require at least an order o f magnitude less power.

Analog decoders therefore provide a means o f improving the power-efficiency

and circuit complexity o f iterative decoders. Such an improvement would make

capacity-approaching error control codes suitable for a wider variety of applica­

tions. While analog computational circuits are known for their imperfections, these

imperfections are expected to be corrected by the error-reducing nature of iterative

decoders.

Many problems which arise in analog signal processing are reduced in analog

decoders because their circuit structure is fu lly differential. Information is never

communicated on a single wire. Instead, information is encoded in the relative

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proportions of two or more analog currents. Many instances o f signal interference

or device imperfection tend to affect all components o f differential signals equally.

While the absolute values of each signal are altered, the relative values remain in­

tact.

Several groups have announced successful results implementing small analog

decoders [54 ,59 ,86 ,35]. Most recently, an analog Turbo code has been announced

which implements a code defined in the UMTS communication standard [45]. This

is the first analog decoder to a complexity sufficient to meet the requirements o f a

commercial standard. While this most recent development is quite significant, no

analog decoder has yet been large enough to provide capacity-approaching perfor­

mance. The successful chips produced so far nevertheless demonstrate the concept

o f analog decoding, and provide estimates o f their performance when compared

against digital decoding circuits.

Some initial comparisons of analog and digital decoders are shown in Figures

1.0.1 and 1.0.2. The “performance” in these graphs is defined as the signal-to-noise

ratio (in dB) required to achieve a bit error-rate of 10-3 errors per bit. While based

on only a few samples of early designs, these figures illustrate the trends which are

expected to hold between analog and digital decoding circuits. Figure 1.0.1 shows

the improvement in circuit size offered by analog decoding circuits over digital

circuits, when implemented in the same technology. Similarly, Figure 1.0.2 shows

the improvement in power consumption offered by analog decoders. All decoders

in these figures are normalized to a 0.5,«m process, and are assumed to operate at

2Mbits per second.

In these figures, there are two labeled data points which represent analog de­

coders. The (8,4) Hamming analog decoder represents measured results from a

design presented in Chapter 8 o f this thesis. The (16,11)2 Product Decoder rep­

resents the results o f a design presented in Chapter 10 o f this thesis. The product

decoder data is adjusted to account for differences in the semiconductor process.

The figures represent a process with a supply voltage o f 3.3V and a minimum fea­

ture size of 0 .5pm . The product decoder is implemented in a 1.8V, 0.18/vm process.

The actual size and process-adjusted size are indicated explicitly in Figure 1.0.1.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The remaining data points represent digital decoders. The data points are de­

rived from a study on size and power consumption of various digital decoders pub­

lished by Worthen et. al. in 1999 [94]. The data include a range of decoders, rep­

resenting Turbo decoders, convolutional (Viterbi) decoders, and the simplest hard

decision decoders. All decoders in this study were synthesized and simulated, but

not actually fabricated. This data set is especially useful for comparisons because

all digital decoders were synthesized for the same 0.5/^m process using the same

methodology.

The actual improvement o f analog over digital decoders is probably larger than

shown in Figures 1.0.1 and 1.0.2 because interface and storage circuits are ac­

counted for in the analog circuits, but not in the digital ones. A digital decoder

also requires a digital-to-analog converter at its input, which significantly increases

its area and power consumption. The plots also do not account for differences be­

tween codes such as code rate, bandwidth efficiency, or data block size.

1.1 History of analog decoding.

Analog decoding circuits have a long history in communications research. The ear­

liest analog soft-information decoders were analog implementations o f the Viterbi

algorithm. Analog Viterbi decoders were reported at least as early as the m id-70’s

[4]. The Viterbi algorithm is a method of maximum-likelihood decoding for trellis

codes, and is asymptotically optimal on Gaussian noise channels [29,73].

Viterbi decoders implement a relatively simple sequential algorithm which is

useful for a wide range of applications, including equalization o f magnetic record­

ing channels, decoding for satellite channels, and wireless communication chan­

nels. Because o f these features, the Viterbi algorithm is very widely used. Inter­

est in analog Viterbi decoders has remained steady over the years, and numerous

authors have reported analog circuits which vastly outperform digital solutions in

terms o f speed and/or power and/or complexity [2 6 ,4 7 ,5 7 ,7 7 , 76, 80, 83].

The field o f analog iterative decoders began with nearly simultaneous proposals

by Loeliger, Lustenberger et. al. [54] and by Hagenauer, Moerz et. al. [38]. These

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Size vs. Performance
10

BAD CORNER

10
Digital Decoders

(15.11)* Product Decoder
,710

Actual

10
(8.4) Analog Decoder

.510'

GOOD CORNER

2 3 5 6 7 81 4

SNR at BER-tO*3, dB

Figure 1.0.1: Decoder size vs performance, comparing a collection o f synthesized
digital decoders in a 0.5/zm CMOS process [94]. Two analog decoders are shown
as labeled. The Product decoder is shown adjusted for the difference in process
feature size. The analog decoders are reported in this thesis.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Performance vs. Power

BAD CORNER

7

6
(8.4) Analog Decoder

Digital Decoderso■o
s 5
Itc

UJa
CO Acc
z
to

3

2 o\o
o (16,11)2 Product DecoderGOOD CORNER

.01 .1 10 1001

Power Dissipation, mW

Figure 1.0.2: Decoder power vs performance, showing a collection o f simulated
digital decoders [94] alongside two fabricated analog decoders. The analog de­
coders are labeled as an (8,4) Hamming decoder and a (16,11)2 Product decoder.
Results for the analog decoders are reported in this thesis.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

authors proposed using non-linear analog circuits, such as those used in neuromor-

phic analog circuits [58, 51], to implement decoding operations.

Analog iterative decoders thus emerged as a means of implementing Turbo

codes and LDPC codes. The standard Viterbi algorithm is insufficient for these

codes, because the decoders output is binary (i.e. hard information). A more com­

plex algorithm, known as BCJR [9], is required for Turbo codes. The output o f a

BCJR decoder is soft, allowing it to be exchanged with a network o f decoders for

multiple rounds o f decoding.

In 2001, Kschischang, Loeliger and Frey consolidated the theory of soft-information

algorithms, including BCJR. These algorithms were shown to be instances of a gen­

eral algorithm, called the sum-product algorithm, which is described in terms o f a

type of graph called the fa c to r graph [48]. It was further shown by Loeliger and

Lustenberger that a large class o f factor graphs could be mapped to analog circuits

[52]. At the same time, Forney introduced a refined factor graph notation, called

the normal graph, which clarified the correspondence between a code, its graph, and

the sum-product implementation [31]. In 2000, Lustenberger demonstrated that the

normal graph approach provides a systematic methodology for the synthesis o f ana­

log decoding circuits [53].

The principles of analog iterative decoding were also hinted at by earlier work.

As early as 1979, Rudolph et. al. proposed an analog soft algebraic decoder based

on sum and product operations [71]. This proposal was concerned with implement­

ing an asymptotically optimal soft decoding algorithm called “maximum radius”

decoding. Rudolph’s decoding algorithm applies specifically to cyclic block codes,

which are widely used but are far less powerful and complex than Turbo codes.

Rudolph’s algorithm appears very similar to the sum-product algorithm when

implemented on a systematically simplified factor graph. The proposed design even

included “iterative extensions” in which the decoder’s soft output is fed back to its

input. It is now known that such an iterative arrangement cannot achieve capacity-

approaching performance. Rudolph’s design was, however, painfully close to the

current structure of an analog iterative decoder. It was clearly a work ahead o f its

time.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The idea of applying analog neuromorphic circuits to analog decoding also

arose in earlier research. The earliest occurrence was evidently in 1996, when

Wang and Hacking described an “artificial neural net Viterbi decoder” [83]. Their

proposal was to implement a parallel network of analog “neurons” for Viterbi de­

coding. By computing in parallel, a higher speed is achieved. They also argued that

the analog decoder would have better power consumption and complexity than a

digital implementation. Precisely the same arguments are made in favor o f analog

iterative decoders. Neuromorphic analog Viterbi decoders were revisited by Kim

et. al. [47] in 2004.

1.1.1 Physical demonstrations.

Early demonstrations (1999-2000).

Physical demonstrations o f analog decoders were produced as early as 1999. Lus­

tenberger, Loeliger et. al., of ETH Zurich, were the first to publish results for an

actual chip [54], and were quickly followed by Moerz, Hagenauer et. al. [59], o f

the Munich University o f Technology (TUM). These decoders were implemented

in BiCMOS processes, and used bipolar junction transistors to perform the decod­

ing operations. In both cases, the authors also proposed using subthreshold CMOS

circuits to implement the decoding operations, but chose not to implement them

initially. A purely CMOS design, they argued, is desirable from the perspectives o f

power, cost, and integrability.

In 2000, a fully-CMOS analog decoder chip was designed by the author o f this

thesis, in collaboration with researchers at the University of Utah. Results for this

design were published in early 2001 [86]. This chip demonstrated micropower

analog decoding in a standard CMOS process.

A larger BiCMOS analog decoder was attempted by Lustenberger, as reported

in 2000 [53]. This design was evidently not successful. It employed digital-to-

analog conversion circuits at the input. Digital inputs were chosen to simplify test­

ing. It seems likely that the digital-to-analog converters failed to function properly,

resulting in the design’s overall failure.

W hile the early chips demonstrated the principle and the possibilities o f analog

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decoding, they all had several notable flaws. M ost severe among the flaws was

the lack o f an appropriate interface. All three chips used fully parallel interfaces,

making testing difficult. Furthermore, real communication channels tend to send

data in serial. It needed to be demonstrated that analog channel samples could be

reliably stored without reversing the advantages o f analog decoders.

In 2001, a second analog decoder chip was designed by the author of this thesis,

in collaboration with researchers at the University o f Utah. This chip incorporated

an analog serial-to-parallel convener based on an array o f sample-and-hold capac­

itors [87]. The chip was fabricated in a standard CMOS process, and test results

were published in January 2004 [90]. The second Utah decoder was the first to

demonstrate a small, micropower, fully CMOS analog decoder with a practicable

interface.

M ore com plex designs (2001-2004).

The first crop of analog decoder chips implemented simple codes o f limited value.

By 2002, several groups were working toward more powerful demonstrations. Xotta,

Amat, et. al., in collaboration with researchers at Torino, Padova, and ST M icro­

electronics, proposed the design of an analog Turbo decoder [95]. Their initial

proposal was to implement a Turbo code for magnetic recording channels, with a

length o f about 500. This design proved overly ambitious at that time.

Amat et. al. revised their proposed design in 2003, opting to implement a

UMTS standard Turbo code with a coded length o f 120. This design was fabricated,

and their results were published in 2004 [45], making it (quite temporarily) the

largest and best performing analog decoder.

The design was based on the methodology of Lustenberger [53], and used a

serial interface very similar to the Utah decoder [90]. A unique feature o f their

design is a single, successful digital-to-analog converter at the decoder’s input. The

chip’s inputs were therefore digital, but the channel samples were stored internally

as analog voltages. Fully digital input and output allows this chip to be used as a

drop-in replacement for standard digital decoders.

The first analog Turbo decoder was realized by Gaudet, et. al. in 2002 [34].

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Complete results were published in 2003 [35]. Gaudet’s Turbo code had a coded

length of 48, and was at that time the largest and best performing analog decoder.

G audet’s decoder introduced a programmable analog interleaver, making it the first

reconfigurable analog decoder. The design also made use of novel decoding circuits

which differed from the Loeliger and Hagenauer approaches. The chip used a multi­

channel analog serial-to-parallel conversion at its input. Each input channel was

processed through a sample-and-hold array, much like the Utah design. Use o f

multiple serial input channels made it possible for the decoder to operate at higher

speeds.

In 2003, Perenzoni et. al. (who were affiliated with Amat et. al.) reported

a CMOS analog Block Turbo decoder (a.k.a. Turbo Product decoder) [66]. This

code was represented as an LDPC-style code, and had a coded length of 40. It

was, at that time, the largest CMOS iterative analog decoder based on Loeliger and

Lustenberger’s methodology. The design included a serial analog input interface

with variable-gain amplifiers (VGAs). The VGAs allowed on-chip tuning of the

channel noise parameter. In other interface designs (including those reported in this

thesis), the input scaling done off-chip. To the author’s knowledge, physical test

results for Perenzoni’s decoder have not been published as o f the writing of this

thesis.

An analog Turbo Product decoder was proposed in 2001 by the author of this

thesis, in collaboration with researchers at the University o f Utah [85]. The pro­

posed design was for a length-256 analog decoder. The implementation o f this

decoder is the chief accomplishment reported in this thesis. The Product decoder

effort was moved in 2002 to the University o f Alberta. The design was finally com­

pleted in 2003, and the physical chip returned from fabrication in 2004. Based

on performance measurements, the chip is deemed a success, making it the largest

and best performing analog decoder to date. It is also the only analog decoder to

demonstrate performance superior to known digital designs.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Novel circuits and technologies (2002-2004).

In 2002, Moerz et. al. sought to demonstrate a very high speed analog decoder using

a silicon-germanium technology [36]. This decoder also implemented a small, weak

code (the very same code implemented in their earlier designs). At present, it is

not known to the author whether this design was a success. Further results have

evidently not been published, and M oerz’s doctoral dissertation is still forthcoming

as of the writing o f this thesis.

A high speed silicon-germanium analog Turbo decoder was attempted in 2003

by Huang et. al. o f the University of Virginia [43, 44]. This design was evidently

not successful. It employed digital-to-analog converters at the input. As with Lus­

tenberger’s failed design, the digital-to-analog converters are suspected to be the

root of this chip’s failure. To the author’s knowledge, there has been no report o f a

successful silicon-germanium analog decoder as o f the writing of this thesis.

A low-voltage analog decoder was designed in 2004 by Nguyen, in collabora­

tion with the author o f this thesis and others at the University o f Alberta [64]. The

low-voltage design implemented a small, weak code, but demonstrated the concept

o f analog decoding with a power supply o f less than one volt. The low-voltage

decoder requires the lowest energy-per-bit o f any known CMOS soft-information

decoder.

Digital implementations (1995-2004).

To provide context for the analog decoder achievements described above, it is im­

portant to compare them directly against digital implementations. While Turbo

codes are becoming widespread in communications systems, details have been pub­

lished for relatively few integrated iterative decoder chips.

O f the published digital implementations, the earliest was announced by Berrou

et. al. in 1995 [14]. Several other chips have since been reported, with steady im­

provements in energy efficiency (measured in Joules per information bit) and chip

size. Results for several digital decoders are summarized in Table 1.1. In this table,

the coding gain refers to the improvement in signal-to-noise ratio (SNR) relative to

uncoded BPSK modulation, at a bit error rate (BER) o f 10-3 . This somewhat high

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BER is chosen out of fairness to some decoders which have relatively high error

floors.

For comparison, a summary o f fabricated analog decoders is shown in Table

1.2. In many cases, the speed of a decoder is estimated using less-than-rigorous

arguments based on decoder dynamics. Some o f the results o f this thesis, reported

in Section 8.3.1, add experimental support to these estimates.

A plot comparing the energy efficiency o f analog and digital decoders is dis­

played in Figure 1.1.1. The analog decoders mostly have better energy efficiency

by up to an order o f magnitude.

10

10

10

c _9
•Z 1 0 9

Decoder Energy Efficiency

r : i : : : : : : : : : : : : : : : : : I : : : : : : : : : : I : : i i

• : ★ :
r : : : : : : : : : : : : : : : r : : : : : : : r : : : : : : : r : : : : : : : r •

10

10

-10

10,-12

I : ! : : : : : : : ! : : : : : : : ! : : : : : : : ! : : : : : : : 3 : : : : : : :

" I : : : : : : : : : : : : i : : : i : : : : I I : i : : : : : : : : i : i I I : : : : : I i I : : : : : : : : : : : : : I : i : : : :'

m \ \ \

: : : ; : : : : : : : \ : : : ; ̂) | ; : : : : : ; i : ; : ; : i : : : | ; ; ^ : ; :

• Digital
★ Analog

1 1.5 2 2.5 3 3.5 4 4.5 5 5.i
Supply Voltage (V)

Figure 1.1.1: Energy expense per bit for analog vs digital decoders. The circles rep­
resent reported digital decoders, and the stars represent fabricated analog decoders.

1.1.2 Development of design principles.
Synthesis and simulation (2001-2004).

In his doctoral thesis, Lustenberger constructed a systematic methodology for the

design of analog sum-product circuits, and for the synthesis o f complete decoders.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright ow
ner.

Further reproduction
prohibited

w
ithout perm

ission.

Reference Type Uncoiled

length

Speed Technology and

Supply Voltage

Power Size Coding

gain

J/bit

Bcrrou '95 {141 PCCC Turbo 2048 40M 0.8/im 5V

CMOS

1.6W per it. - 6.3dB 160n

Hong '98 [42]* PCCC Turbo 256 IM 0.6/un 3.3V 70mW (cst.) 10.25mm x 13.65mm 3.8dB 70n

BickerslafT ’02 [17] 3GPP Turbo 5114 max 2.5M (10

it.)

O.I8/<m6M 1.8 V

CMOS

306mW 9mm2 6.3dB

max

122n

Blanksby ’02(18] LDl’C 512 500M 0.16/un 5M 1.5 V

CMOS

630m\V 7.5mm x 7.0min 4.3dB 1.26n

Kaza '04 [46]* 3GPP Turbo 2048 6M 0.13/un 1.8 V

CMOS

6.63 mW 1.07mm2 5.3dB 1 .In

Al-Mohandes '04 [6]« 3GPP Turbo 5114 max 5M 0.18/un 1.8 V

CMOS

63mW 0.6mm2** N/A 12.5n

Table
1.1: A

sum
m

ary
of published

digital iterative
decoder

designs.

R
eproduced

with
perm

ission
of the

copyright ow
ner.

Further reproduction
prohibited

w
ithout perm

ission.

Reference Type Uncoded

length

Speed Technology and

Supply Voltage

Power Size Coding

gain

J/bit

Lustenberger ’99 [54] Tailbiting BCJR 9 I00M 0.8pm 2M 5V

BiCMOS

50nrW 1.7mm x 0.7mm N/A 125p

Mocrz ’00 [59] Tailbiling BCJR 8 I60M (cst.

max)

0.25/rm 3.3V

BiCMOS

20niW 1.68mm2 l.6dB I25p

Winstead ’00 [86] Tailbiting BCJR 4 20M (est.

max)

0.5/mr 3M 3.3V

CMOS

3.3mW 2.25inm2(total die size) I.Sdli 165p

Gaudct ’03 [35] PCCC Turbo 16 I3.3M 0.35pm 3.3V

CMOS

l85mW l.lmrn x 1.26mm l.9dB 13.9n

Amat '04 [45] 3GPP Turbo 40 2M 0.35/im 2V

CMOS

7.6mW 3.7mm x l .l mm 3.6dB 3.8n

This work, Chapter 8 Tailbiting BCJR 4 2M 0.5pm 3M 3.3V

CMOS

ImW 0.083mm2 (core area) l.6dB 500p

This work. Chapter 9 Tailbiting BCJR II I35M (cst.

max)

0.18pm 6M 1.8 V

CMOS

2.69mW 0.0266mm2 (core area) 2.2dB 20p

This work, Chapter 10 Turbo Product 121 IG (cst.

max)

0.18pm 6M 1.8V

CMOS

86. ImW 2.85mm2 5.3dB 86p

Table
1.2: A

sum
m

ary
of

published
analog

iterative
decoder

designs.

Significant attention was given to the automatic computer-aided design of analog

decoders [53]. Lustenberger also explored the requirements of high-speed analog

interfaces, and the sensitivity o f analog decoders to device mismatch [55].

In 2001, Jie Dai et. al. o f the University o f Utah reported additional progress

in the area o f automatic synthesis [25]. The Utah synthesis methodology added a

new type of sum-product building block, called the “reference cell” (described in

Section 5.4 of this thesis). Jie Dai constructed a library o f cells consisting o f all

possible cell structures below a certain complexity. He also produced software to

translate a code’s factor graph description into a cell-based decoder circuit [24].

Jie D ai’s software was also capable o f translating the cell-based decoder de­

scription into a VHDL model o f the analog decoder. The VHDL model incorpo­

rated single-pole dynamic models o f the cells, allowing high-level analog hardware

simulation for analog decoders. Based on simulations with these models, Jie Dai

predicted that a reset circuit - a circuit which initializes the decoder’s state before

decoding - is necessary for proper operation. Experimental evidence for this con­

clusion has only recently emerged (see Section 8.3.1 o f this thesis). The idea o f the

reset circuit was not new - it was originally suggested by Lustenberger - but Jie

D ai’s simulations provided concrete justification for using it.

The VHDL approach o f Jie Dai was continued by Xotta and Amat et. al., who

used similar one-pole models to simulate their analog Turbo decoders [45, 95].

Their results were not unlike Jie D ai’s. A reset circuit was included in their final

design, although it malfunctioned. The performance o f their decoder was somewhat

worse than expected. The poor results are blamed on the lack of a functioning reset

circuit.

Through the work of Lustenberger, the design o f analog sum-product circuits

seems to be well-established. In this thesis, the Lustenberger methodology is de­

scribed as canonical. The canonical approach has been validated by high-level

simulations as well as physical demonstrations.

In 2003, the author o f this thesis, in collaboration with Christian Schlegel at

the University o f Alberta, applied the method of importance sampling to physical-

level SPICE simulations o f analog decoders [88]. These simulations validated the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance o f canonical analog decoders in various physical processes, under the

influence o f sub-micron transistor effects. Simulations were also performed to study

the effect o f overbiasing canonical analog decoders. This study strengthened the

belief that analog decoders should be robust to a broad range of defects.

Device mismatch (2001-2004).

Researchers in analog decoding have long speculated that analog decoder should be

robust against device mismatch. Mismatch is a fatal phenomenon for many analog

solutions. Its effects are not directly captured by SPICE simulations, and can be

difficult to predict. W riting in 2001, Lustenberger treated mismatch as the analog

equivalent of quantization noise [55].

Lustenberger and Jie Dai separately presented results from large batches of ana­

log decoder simulations, accounting for mismatch [55,53, 24]. The results showed

an undeniable resilience of the decoders under various degrees o f mismatch. In

2003, Frey, Merkli and Loeliger conducted experiments using a set o f discrete “soft

gate” chips [32]. These chips had inter-chip mismatch on the order o f 10%. They

found that very little performance loss could be attributed to the mismatch. While

these experiments added weight to the mismatch-robustness theory, the evidence

was still only anecdotal. It remained unclear whether analog decoders would still

be robust when applied to very large, complex codes.

The first analytical study of mismatch was conducted by Jie Dai in 2001 [24].

This analysis applied a standard method o f “input referral” , in which the mismatch

is treated as a kind o f noise, which is then represented as an equivalent extra noise

source at the decoder’s input. If the decoder is large, then the per-bit effect of

mismatch is expected to appear like Gaussian noise. Jie Dai was thus able to de­

rive simple formulas relating the variance o f mismatch to the performance of the

decoder.

In 2003, the author of thesis argued that Jie Dai’s method is appropriate only

for the input interfaces of the decoder [91]. The interfaces are described as “feed­

forward” processing stages (see Section 7.2.2 in this thesis). This result is therefore

described as the feed-forward effect.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jie D ai’s work did not properly address the effects of mismatch in highly-

interconnected networks, especially considering that the function o f the network

is noise reduction. An iterative decoder is appropriately described as such a highly-

interconnected network, which is referred to as “lateral” processing (see Section 7.2

of this thesis).

The effect of mismatch in lateral processing was addressed by the author of this

thesis in 2004 [89]. Using regular LDPC codes as a model, it was determined that a

distinct lateral effect exists, giving rise to performance loss due to mismatch in the

lateral stages. It was also determined that the lateral effect is small for low levels of

mismatch. Canonical analog decoders are therefore quite robust to large amounts

of mismatch.

It was also discovered that Jie Dai’s feed-forward mismatch effect tends to be

dominant at low levels o f mismatch. Because o f this result, a major conclusion of

this thesis is that the input interfaces should be designed to minimize mismatch. The

sum-product circuits are much more resilient, and can therefore be implemented

with simpler layout techniques and smaller device sizes.

Alternative circuit topologies (2001-2004).

In 2001, M oerz and Schaefer et. al. also proposed an analog topology for imple­

menting iterative decoding algorithms based on dual trellises [60]. This architecture

would significantly reduce the complexity o f analog decoders for high-rate trellis

codes. The same authors also proposed a “rotating ring” architecture for analog

decoders in 2003 [72]. This proposal applied analog decoding to a very new type

of code, which the authors described as an “LDPC Convolutional” code. It is not

known to the author whether this concept has been physically demonstrated.

In 2002, M ondragon et. al. o f Texas A&M University proposed a sum-product

circuit based on floating-gate MOS devices [61, 62]. These circuits were closely

related to floating-gate CMOS circuits that are commonly used in neuromorphic

systems [51]. M ondragon demonstrated this concept with a fabricated chip, which

included a portion o f an iterative decoder. Results for this chip were reported in

2003 [62].

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Two unique approaches to analog decoding were suggested in 2002 and 2003

by Hemati and Banihashemi, o f Carleton University [10, 11]. The first approach

was designed as a solution for decoding in optical communication systems. Their

second proposal was to implement the min-sum iterative decoding algorithm using

a novel application o f CMOS winner-take-all circuits. The min-sum approach is de­

sirable, they argue, because the circuits operate above threshold and may therefore

achieve higher speeds.

Dave Haley et. al. o f the Institute for Telecommunications Research (affiliated

with the University o f South Australia) introduced the concept o f iterative encoding

in 2002 [39]. In 2003, he applied this idea to analog decoders [41], resulting in a

mode-switching circuit capable o f function both as a digital encoder and an ana­

log decoder. This idea has undergone some refinement [40], but has not yet been

physically demonstrated.

In 2003, a low-voltage sum-product topology was proposed by the author o f this

thesis, in collaboration with others from the University o f A lberta [92]. The low-

voltage topology was a modification o f the canonical topology, corrected to allow

proper operation with power supplies below one volt. The resulting circuits can be

substituted for canonical sum-product circuits. The methodologies of Lustenberger

and Jie Dai are directly applicable to the synthesis o f low-voltage analog decoders

using this topology.

1.2 Contributions of this thesis.

The contributions o f this thesis are divided into two areas: theoretical contributions

and physical demonstrations. The theoretical contributions include a few system-

level results (such as the construction o f efficient code graphs), analysis o f the per­

formance of large-scale analog decoders, and the design of novel circuit topologies.

Physical demonstrations include the design of the first subthreshold CMOS ana­

log decoder (of coded length eight), serial analog interfaces for analog decoders, a

length-16 analog decoder, and a length-256 analog Block Turbo decoder. A ll of

these decoders were designed according to the basic methodology of Lustenberger.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The length-16 and length-256 decoders also made use o f the “reference cell” de­

sign, which was devised by the author and described in Section 5.4 of this thesis.

1.2.1 Contributions to coding theory.

The author’s analog designs have frequently implemented trellis-based decoders.

The author has consequently given considerable thought to the construction of trel­

lis graphs. In Section 3.3.5, a new method for constructing tailbiting trellises o f

Reed-M uller codes is introduced. This is a tailbiting adaptation of the well-known

squaring construction, resulting in a lower state-complexity. It seems that tailbit­

ing trellises are particularly well-suited for analog implementations, which could

be made smaller by this result.

In Section 3.4, the author presents an algorithm for exact maximum-a-posteriori

(MAP) decoding on tailbiting trellises. To the author’s knowledge, this algorithm

has not been explicitly reported in the literature. W hile the author’s algorithm is in

general more complex, it is shown in Section 3.4.2 that the exact tailbiting M AP

algorithm is, in at least one case, less complex than standard tailbiting decoding

algorithms.

In Section 4.3.3, a method is presented for applying M onte Carlo integration

to the well known method of density evolution with Gaussian approximations. To

the author’s knowledge, this is the first application the Vegas algorithm to density

evolution. The author has consequently provided a thorough examination o f the

precision o f this algorithm, particularly when applied iteratively as examined in

Section 4.3.4. This presentation provides the necessary foundation for the author’s

study o f mismatch in analog decoders.

1.2.2 A novel “reference input” sum-product topology.

Section 5.4 presents a novel topology for sum-product circuits. This topology,

called the “reference cell” for short, was devised by the author. The reference cell

allows a greater diversity o f sum-product circuits to be synthesized from a sm aller

number o f standard cells. The reference cell also allows a significant reduction

in transistor count for many cases. In one common case - the term-wise product

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of two vectors - the reference cell complexity grows linearly with vector length,

whereas the canonical cell complexity grows with the square of the length.

1.2.3 A novel low-voltage sum-product topology.

Chapter 6 presents a novel topology for sum-product circuits with reduced supply

voltage. The new topology, devised by the author, eliminates the need for reference

voltages in analog decoding circuits. It is shown in Section 6.2.2 that the mini­

mum supply voltage in the new topology is 0.4V lower than the minimum required

voltage for canonical sum-product circuits.

Section 6.2.5 presents a circuit for iterative renormalization. It is shown that

canonical renormalization is inadequate for low-voltage design. By making slight

modifications, a low-voltage renormalization circuit is shown to be successful when

used in a large decoding network. Iterative renormalization is a novel concept in

the contexts o f subthreshold analog circuits and analog decoding.

A physical demonstration o f a low-voltage decoder has been designed by Nhan

(Dave) Nguyen, with the author’s assistance [64]. Results o f this design are not

presented as part o f this thesis.

1.2.4 Mismatch in analog decoders.

Section 7.2 introduces a clarification o f Jie Dai’s mismatch analysis, dividing the

decoder into feed-forward and lateral stages of operation. It is shown in that Jie

Dai’s results are applicable to the feed-forward stages, but not necessarily to the

lateral stages. In Section 7.2.3, the method of density evolution based on the Vegas

algorithm is applied to analog decoders as a means of evaluating the effect o f mis­

match in lateral processing stages. This is the first analytical study o f mismatch in

large-scale highly connected analog decoders.

The results of this examination yield new design principles for analog decoders.

It is shown in Section 7.2.4 that a distinct lateral mismatch effect exists, and that it

is quite small for suitably low values o f mismatch. The performance of analog de­

coders is found to degrade dramatically when mismatch exceeds 25%. This places a

very loose restriction on mismatch in lateral stages. The author therefore concludes

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that it is virtually unnecessary in many CMOS processes to optimize layouts for

circuits in the lateral stages.

It is shown in Section 7.2.4 that the feed-forward mismatch effect is dominant

for low to moderate levels of mismatch (e.g. below 20%). The author therefore con­

cludes that standard-cell “soft-gates” are acceptable for implementation o f analog

decoder cores. The author further concludes that mismatch optimization is essen­

tial for feed-forward stages, including all components of the input interface. These

conclusions offer the first clear design principles for managing mismatch in analog

decoders.

1.2.5 Comparator offsets and yield.

Section 7.1.2 presents an analysis o f how com parator offsets degrade performance.

This is, to the author’s knowledge, the first systematic analysis o f offset effects at the

output interface. It is found that the impact o f offsets is quite small, as long as the

offset does not exceed a fixed limit corresponding to the decoder’s expected output

range. The author concludes that the variation in comparator offsets is the most

significant phenomenon affecting the yield o f analog decoders. The author further

argues that any successful built-in self-test verification for analog decoders must be

able to test all comparators to confirm that their offsets are within the prescribed

limit.

This result, together with the mismatch analysis, leads the author to novel con­

clusions about design methodology. The core methodology of Lustenberger has

been well-demonstrated, in so much as it applies to lateral processing stages. Lus-

tenberger’s methods may be applied for a successful design without a great deal of

new design effort. For a successful analog decoder implementation, most design

effort should be focused on the interfaces. Input interfaces must be designed for

minimum mismatch, and output interfaces for minimum offset. The output inter­

face is especially critical, because it has the greatest influence on yield.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2.6 The first CMOS analog decoders.

The author’s first physical contributions included two CMOS analog decoders, which

were the first reported CMOS analog decoder designs. Both chips were fabricated

in a standard 0.5/jm CMOS logic process. The first of these designs was produced

by the author with collaborators at the University of Utah. The sum-product cir­

cuits for this decoder were designed and simulated by the author at the schematic

level. The layout of the decoder was carried out by Jie Dai. Interface circuits were

designed by Woo-Jin Kim and Yong-Bin Kim. The layout o f the interfaces was

carried out by Woo-Jin Kim and Jie Dai. The chip was tested by the author, with

the assistance o f Scott Little. The project was supervised by Christian Schlegel and

Chris Myers.

The first decoder chip proved difficult to test, and a flaw was found in one o f the

internal trellis connections [86], Interestingly, this flaw demonstrated that analog

decoders are robust to defects (even to some design defects). This also illustrated a

further difficulty in testing analog decoders: though it was flawed, the chip appeared

to function properly. The flaw would only have been detected by statistical tests at

relatively low bit error rates. The mistake therefore called attention to an open

problem of verification for analog decoders.

Chapter 8 presents design and test results for the second decoder chip, which

was designed for better testability. The sum-product circuits and the decoder layout

were produced by the author o f this thesis. The interface was conceptualized by

the author, with the assistance o f Reid Harrison and Shuhuan Yu. The interface

included sample-and-hold circuits, unity-gain buffers, and current comparators. All

o f these interface components were designed by Shuhuan Yu, who also produced

the layouts. Shuhuan Yu also evaluated the interface circuits for their mismatch

characteristics, and optimized the design to reduce offsets in the buffers and com ­

parators.

Detailed simulations were carried out by Jie Dai using analog VHDL m od­

els. These simulations evaluated the decoder’s performance in subthreshold, above

threshold, and under the influence o f device mismatch. These results were then

used for comparison against test results. Supervisors in this design were Christian

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Schlegel, Reid Harrison, and Chris Myers.

1.2.7 A length-16 analog MAP decoder.

Chapter 9 presents design and test results for a length-16 analog trellis-based maximum-

a-posteriori (MAP) decoder. This decoder is the first design to incorporate the

reference cell topology. The schematic and layout designs for this decoder were

produced by the author at the University o f Alberta. Interface circuits were based

on the designs of Shuhuan Yu, and were redesigned by the author in order to adapt

the interface architecture to a 0.18//m process.

An early schematic design o f the length-16 decoder was produced by the author

at the University o f Utah. Some design decisions, including the use o f reset circuits,

were influenced by Jie Dai. Jie Dai also produced analog VHDL simulations as

an initial verification of the length-16 decoder concept. The original design was

intended for a 0.5/ma process, to reuse interface designs from the previous chips.

A t the University o f U tah, this design was supervised by Christian Schlegel, Chris

Myers, and Reid Harrison.

The final design was completed at the University o f Alberta. The final design

made use o f the Utah architecture, but was redesigned for implementation in a

0.18/^m process. Layouts were also redrawn for the new process. It was im ple­

mented using the Tanner Tools Pro design software, and scripts were written to

interface these tools with the Cadence-based design flow used by the Canadian M i­

croelectronics Corporation. Paul Greidanus at the University o f A lberta was help­

ful in this migration. Supervisors o f this project at the University o f Alberta were

Christian Schlegel and Vincent Gaudet.

A test interface was also designed, in collaboration with Nhan (Dave) Nguyen

at the University o f Alberta. This test interface is described in Section 9.3. The test

interface includes a custom circuit board and a Linux-based interface. The hardware

includes a USB port, FPGA, DAC, adjustable buffers and reference sources. The

software, written in C++, generates test samples, communicates them to the test

board, and counts the resulting errors at the decoder chip’s output. Results are

displayed graphically using a custom extension of the PIPlot scientific visualization

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

library. The hardware was designed jointly by the author and Nguyen. The FPGA

program was written by Nguyen.

1.2.8 A length-256 Block Turbo decoder.

Chapter 10 presents design and test results for an analog Block Turbo decoder.

This decoder was designed entirely by the author, and is perhaps the most signifi­

cant contribution of this thesis. It was constructed from thirty-two instances o f the

length-16 analog decoder.

The Block Turbo decoder is the largest and best-performing analog decoder as

o f the writing o f this thesis. It is the first analog decoder to demonstrate performance

superior to a discrete-time iterative decoder for the same code. It is also the second

analog decoder to implement a commercial standard iterative code. This decoder

provides a clear proof-of-concept for large-scale analog iterative decoders.

1.3 Outline of this thesis.

The principles o f error control coding and decoding algorithms are presented in

Chapters 2 through 4. Analog decoding circuits are introduced in Chapter 5. The

principle contributions o f this thesis appear in Chapters 6 through 10. Some contri­

butions also appear in Chapters 3 ,4 and 5.

Chapter 2 presents fundamental definitions and theorems of coding theory, in­

cluding the Shannon limit and the BPSK limit for Gaussian noise channels. The

chapter discusses graphical representations o f codes, including Tanner, constraint,

and normal graphs. The sum-product decoding algorithm is given, and the extrin­

sic information principle is defined. Finally, the structure and design o f various

good codes are summarized, including Turbo codes, LDPC codes, and Block Turbo

codes. These codes are compared to each other in terms o f their typical perfor­

mance, complexity, rates, and nearness to the Shannon limit.

In Chapter 3, trellis codes are presented as a class of graphs for linear block

codes. The definition and construction o f tailbiting and conventional trellis graphs

are discussed. The BCJR decoding algorithm is explained as a special trellis-based

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

form of the sum-product algorithm. The first novel results o f this thesis are pre­

sented, which include a new tailbiting squaring construction for Reed-Muller and

Hamming codes. A new optimal tailbiting MAP algorithm is also presented, and

is shown to be less complex than BCJR for one example trellis, although it is in

general more complex.

Chapter 4 presents an introduction to the structure and design o f Low-Density

Parity Check codes. Regular and irregular code ensembles are defined and com­

pared against each other. The method of density evolution with Gaussian approx­

imation is explained. A new form of the density evolution algorithm is presented,

using M onte Carlo integration based on the Vegas algorithm. The precision of this

new method is investigated, and the propagation o f error is examined in case there

are iterated applications of the method.

Chapter 5 presents an introduction to weak inversion (subthreshold) CMOS cir­

cuits. The state o f the art of analog decoding is also summarized, and the “canoni­

cal” sum-product analog decoding topology is presented in detail. A novel analysis

is presented for the minimum allowable supply voltage o f canonical circuits. A

novel “reference input” simplification is also presented, which reduces the com­

plexity o f sum-product implementations in many cases.

A novel sum-product circuit topology for low supply voltage is presented in

Chapter 6. This topology is derived from the canonical sum-product circuit, which

is modified to eliminate reference voltages, thereby reducing the voltage overhead.

Error terms are corrected by the insertion o f “dummy” devices, and attenuation

is corrected by iterated renormalization, which is a novel concept The minimum

supply voltage for this topology is compared against the canonical form, and is

found to give an improvement o f 0.4V to 0.5 V.

Chapter 7 presents a collection of analyses which pertain to the design of large-

scale analog decoding architectures. The analyses are made, wherever possible,

using general approaches which should apply to a variety of CMOS processes. New

design principles are deduced, particularly pertaining to mismatch and comparator

offsets. The Monte Carlo method of density evolution (introduced in Chapter 4) is

applied to determine the effect o f mismatch in large analog decoding networks.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapters 8 ,9 and 10 present the design o f and results for three analog decoders,

based upon the principles elaborated in earlier chapters. Chapter 11 offers conclu­

sions.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Error-Control Codes and Decoders

2.1 Communications systems.

A simple com munications system model, shown in Figure 2.1.1, consists o f a trans­

mitter, a receiver, and a channel. The transm itter’s goal is to reliably communicate

an information message, u, to the receiver via the channel. To do this, the trans­

mitter encodes u to produce a codeword x. The purpose o f this is to add some

controlled redundancy to x so that errors are easily detected or corrected.

We will assume that the symbols of u are chosen from the binary alphabet

Ui € {0 ,1} , and the symbols o f x are chosen from the modulated alphabet x j G

{+ 1 , —1}- This notation provides an idealized model o f antipodal transmission, in

which data are transmitted by modulating the sign of some suitable pulse function

p{t). An example o f antipodal transmission is Binary Phase-Shift Keying (BPSK)

in which information is transmitted by modulating the sign o f a sinusoidal function.

To keep our discussion simple, we will only consider BPSK modulation.

We will consider transmission through the Additive White Gaussian Noise (AWGN)

channel, which is a very fundamental type o f channel. In the AWGN model, the

transmitted codeword x is altered by adding a zero-mean, Gaussian distributed noise

pattern n. The receiver then observes the channel information r = x + n . The re­

ceiver must then decode the channel information to produce a good estimate of the

information message, u.

This basic model is applicable to many types o f systems for communication and

storage o f information. Application areas include wireless systems (from satellites

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Encoder
Modulator

Demodulator
Decoder

Channel

Figure 2.1.1: Communications system model.

to Bluetooth to inter-chip communication), wireline systems (telephone modems,

wire networks, backplane transceivers), magnetic storage (hard disk drives and tape

storage media), optical storage (CDROM media), solid-state memories (Flash RAM

and DRAM) and so on. There are many other channels besides the AWGN, but

equalizers are commonly used to pre-process the channel information. With this

pre-processing in place, the channel behavior is made to be roughly equivalent to

that of the AWGN.

2.1.1 Probabilities and log-likelihood ratios.

When the channel observations, r, arrive at the receiver, they are analog in nature.

The discrete nature o f the original message x is corrupted by the analog channel

noise. The resulting samples may be represented in several ways.

In a hard-decision receiver, the samples in r are immediately resolved to a se­

quence of bits, x. This can be described as analog-to-digital conversion with one bit

resolution. The decoder must then delect errors in * and attempt to correct them by

guessing which bits are most likely to be mistakes.

In a soft-information receiver, the analog information in r is preserved, often by

digitizing r with a resolution of several bits. To be useful for decoding, this analog

information must be translated into probability information. The decoder may then

perform a detailed probability calculation to determine which bit-decisions should

be made.

One way to represent a sample r,- is through a probability mass p̂ .. For antipodal

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transmission on the AWGN channel, p. is defined as

(2 .1. 1)

Each r; is Gaussian distributed with mean ± 1 , and with variance /Vo/2, where No

is the channel’s noise power. We write the pdf o f r,- as g^ (r), where pi = ± 1 refers

to the mean. Let the vector p. be indexed by the mean, pi. Then p,- (pi) <* gM (r,j.

Because p̂ . is a probability mass, we know that px- (+ 1) + p,- (—1) = 1. To compute

p., we therefore calculate the Gaussian probability densities given pi = + 1 , and

pi = — 1, respectively, and then normalize the resulting vector.

The probability information related to r can also be expressed using log-likelihood

ratios (LLRs). LLRs provide a dual domain to that of probabilities, where compu­

tation is often simpler. A log-likelihood ratio X,- for the binary random variable x,-

is defined as

LLRs are particularly convenient for antipodal transmission on AWGN chan­

nels. It can be easily verified from (2.1.2) that the LLR for a transmitted symbol x,-

given a received sample r,- is equal to

The probability mass p . can be directly obtained from X,- through the transformation

When the decoder is provided information in one of these formats, it is possible

to produce an optimal estimate of the original data, u. Both probability and LLR

representations allow various sub-optimal approximations which provide good per­

formance while simplifying the computation. The choice of format depends on the

needs o f the particular algorithm and architecture.

(2.1.2)

(2.1.3)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2.1: List o f notation for communications and coding.

Ef, Energy per information bit. This may be in
Joules/bit, but we need assume no particular en­
ergy units.

Es Energy per transmitted (modulated) symbol. We
will assume that Es = 1 (normalized signal en­
ergy).

No Power spectral density o f the channel noise. The
channel noise is Gaussian distributed with vari­
ance a 2. No = 2 • a 2.

SNR Signal-to-noise ratio in dB, always defined as 10 •

loS i o (§) -
S Signal-to-noise energy ratio (unitless), defined as

Eh
N0'

W The bandwidth allowed for the transmission. We
will typically assume W = 1 (normalized band­
width).

R The transmission rate in units of information bits
per symbol. Thus Es = R-Et>. (R < 1).

C The channel’s capacity: R < C for reliable com­
munication [78].

2.2 The Shannon limit.

Error control coding can be used to reduce the probability o f error in a communi­

cation system such as Figure 2.1.1. In 1948, Claude Shannon demonstrated that

error-free communication is achievable through the use o f error-control codes, as

long as the transmission rate does not exceed the channel’s Capacity [78]. The

transmission rate refers to the number o f information bits per channel use. The

rate is always less than 1 for non-trivial codes, because every b it’s information is

“spread out” across more than one coded bit.

Before explaining the Shannon limit, some additional definitions are in order.

Table 2.1 provides a list o f symbols and associated definitions for the fundamen­

tal quantities o f Shannon’s communication theory. With these definitions in hand,

we may describe the capacity of the AWGN channel. I f the AWGN channel has

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

continuous inputs and continuous outputs, then the capacity lim it is

* < W M o g 10(l + £ s) . (2 .2 . 1)

Under the best possible circumstances, we have no bandwidth limitation, so IV —*■

The bound (2.2.1) is more useful when expressed as a limit on S. To do this, we

define r = ^ and solve for S. Taking the limit, we arrive at

2 r — 1
S > l im (2.2.2)

r—0 r
=► 5 > In (2) (2.2.3)

=► SNR > —1.6dB. (2.2.4)

This result dictates that, no matter what coding or modulation we use, and no

matter how much bandwidth is available, we can never transmit reliably with SNR <

— 1.6dB.

In a band-limited system, for which we assume W = 1, this lim it becomes a

function o f the rate:

SNR > 10 • log10 (2* — 1) - log10 (R) (2.2.5)

For antipodal modulations such as BPSK, the Shannon limit becomes even more

restrictive. The complete solution is somewhat ugly:

C = -J2^No(y)log2[^ (y)] d y - ^ \ o g 2 [eJcNo] (2.2.6)

where W = I {s + , } (2.2.7)

and where g(x) is the Gaussian probability density function with mean zero and

unit variance. The integral (2.2.6) can be carried out numerically, and provides C

as a function o f To express this result as a bound on SNR, we solve as follows:

* *= c S)

c_,w < i t

=► SNR > 101og,o [c _1 (/?)] - 101og10 [R]. (2.2.8)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'nadifevable for BPSF!

0.50.1 0.4 0.6 0.7

R

Figure 2.2.1: Shannon and BPSK limits.

We refer to (2.2.8) as the BPSK limit, which is more restrictive than the Shan­

non limit described by (2.2.5). The BPSK and Shannon limits are plotted in Figure

2.2.1. The exact BPSK limit is a somewhat complicated calculation. For the pur­

poses o f a thumbnail estimate, the following curve is a near fit to the BPSK limit:

<B (R) * - 2 + 3R 4- (dB)- (2-2 '9)

BPSK uses only two distinct signals in its modulation alphabet. There are other

modulation schemes which use substantially larger alphabets. A modulation with

a larger alphabet typically has its lim it closer to the Shannon limit than BPSK,

but may add substantial complexity to the communication system. We will always

assume BPSK modulation in our discussion on error control codes. The reader

should bear in mind, though, that a code which performs near the BPSK limit may

still perform far from the actual Shannon limit if it has a high rate.

2.3 Linear binary block codes.

A linear block code C is a set of vectors called codewords which are o f fixed length

n, and which constitute a linear space. A linear code is defined over some finite

Galois field. For our purposes it will suffice to consider only the binary field Z 2 .

For any two codewords £ i , * 2 e C, the vector sum jcj +xn is also in C- Also, C

contains an identity codeword (the all-zero codeword), written Xq.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The linear code space C is represented by the k x n generator matrix G. The

rows o f G are codewords which form a basis for C. If w is a /.'-dimensional binary

row vector, then a unique ^-dimensional codeword x is obtained from u by the

matrix product

x = u -G . (2.3.1)

G forms a one-to-one mapping from binary vectors o f length k to binary vectors

of length n. Thus G : Z 2 — Z? and G : Z 2 C, where the symbols and ’h-»’

denote mappings into and onto, respectively. In more plain English, the entire space

Z 2 is mapped to C, and C is a subset o f Z 2.

A linear code derives its strength from the fact that the set o f codewords C is

embedded in a much larger linear space. If x is a codeword, and all o f the nearest

neighbors o f x in Z \ are not codewords, then an error event is less likely to make

x look like a different codeword. A simple but useful measure o f distance is the

Hamming distance, h(x^ , x2), defined as the number o f positions in which Xj and x2

differ, where Xj, x~, 6 Z 2.

Another useful measure is the Hamming weight o f a codeword x, defined as

h(xQ,x). An im portant parameter in determining the error-correcting power o f a

code is its minimum distance, d ^ n , defined as the minimum of h(x \ , X2) between

any two codewords x 1 : x2 € C- For linear codes, dmi„ is equal to the smallest non­

zero Hamming weight among the codewords o f C-

The code described above is usually referred to as an (n, k, dmjn) code, or of­

ten just an (n, k) code. For a linear block code, it is easy to tell whether a given

sequence is a codeword or not.

The parity-check matrix H for C is defined as the generating matrix for the null

space o f C- That is, H is the matrix for which GHr = 0. The rows o f H are a basis

for a linear space in which every vector is orthogonal to any codeword. Therefore,

if x is a codeword,

x • H t = 0. (2.3.2)

If, for some x G Z j , x • H T ^ 0, then x £ C . The parity-check matrix thus provides a

convenient way to test whether a given sequence is a codeword. If x- H T = 0 then

we say that all parity checks are satisfied.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.3.1: Example factor graph for f (x , y, z) = f \ (x, y) - / 2 (x, z) z).

2.3.1 Factor graphs and Normal graphs.

There are various ways to graphically represent the linear space o f codewords, in­

cluding constraint graphs and trellis graphs. These are subclasses o f the more

general fac tor graphs [48]. We will consider a factor graph as a representation of

Boolean constraint functions on discrete domains. Such a function takes arguments

from a set o f discrete variables, and returns a Boolean result, indicating whether

those variables satisfy some formal constraint.

A factor graph consists o f nodes and edges. There are two types o f nodes:

variable nodes and function (or constraint) nodes. The overall graph represents a

function f (X) , where X is the set o f all variables on which / depends. It is assumed

that f (X) can be factored into a sequence of functions whose domains are subsets

o f X, i.e.

f (X) = f (Xi) - / 2 (X2) • - - f m(Xm) (2.3.3)

where each Xj C X.

For each f j (Xj) , there is a corresponding function node in the graph. For each

distinct variable in X, there is a corresponding variable node. An edge exists be­

tween a function node f j {Xf) and a variable node x t if and only if x t G Xj. Edges

exist only between variable and function nodes. An example factor graph is shown

in Figure 2.3.1. It is conventional to represent variable nodes with circles and func­

tion nodes with squares.

It is possible to construct a factor graph with hidden variables through variable

substitutions. A variable h in a factor graph o f f (X) is called “hidden” if h £

X . The hidden variable is a function o f variables in X, e.g. h — p (Xj) for some

hidden function p and for some Xj C X. As an example, the function f (x , y, p, q) =

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.3.2: Factor graph with hidden variables.

Figure 2.3.3: Normal graph corresponding to Figure 2.3.1.

(*+>•) • {p + q) can be rewritten as f (h\ , hi), where h\ = x + y and h i = p + q - The

corresponding factor graph is shown in Figure 2.3.2.

A slightly different approach to factor graphs is provided by Forney’s normal

graphs [31]. A normal graph allows direct connections between function nodes,

but requires that every variable node connect to only a single function node. The

puipose of this distinction is to provide an explicit representation o f all functional

relationships, while omitting possible hidden variables from the graph. Examples

o f normal graphs are shown in Figures 2.3.3 and 2.3.4.

Figure 2.3.4: Normal graph corresponding to Figure 2.3.2.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An important quality o f a factor graph is the presence or absence o f cycles. A

path from node x to node y is a connected sequence of edges and nodes which

begins at x and ends at y, in which no edge is traversed more than once. I f § is a

factor graph, and x is a node in (f, then a path from x to x is said to be a cycle. Q

is said to be a loopy graph if it contains more than one cycle. If (f contains a single

cycle, then it is called a tailbiting graph. If Q contains no cycles, then Q is said to

be a tree.

2.3.2 Tanner graphs.

An important representation o f a binary block code is the factor graph of its parity-

check equation, x - H T = 0. Let r be the number o f rows in H, and let hj be the / h

row o f H. The parity-check equation consists o f r functions o f the form f j (Xj) = x -

h p where X j = {*,• | h jt = 1}. Each function f j (X j) is the Z 2 sum over all variables

in X j . The resulting factor graph consists o f n variable nodes and r function nodes.

Each of the function nodes, called parity-check nodes, represents Z 2 addition. Such

a graph is known as a Tanner graph or constraint graph for H , written T (H) [84].

W hen constructed in this manner, there is a one-to-one correspondence between the

rows of H and the single-parity-check subgraphs o f T (H).

A constraint graph is a more restricted kind of graph than a factor graph. The

factor graph represents the factored structure of a function / (X). The constraint

graph adds one further condition: an implicit constraint f { X) = 0 (or sometimes

f (X) = ‘true’, or whatever Boolean constraint is m ost convenient). Thus if one

o f the factors is f j (x, y, z), such a constraint allows us to determine the value of x

based on y and z. We shall also see that the probability mass o f x can be determined

based on the masses o f y and z. This calculation, called probability propagation, is

the basis o f powerful iterative decoding algorithms.

A s an example, consider the parity-check matrix

H =
1 0 0 1 0
0 1 0 1 0
1 1 1 0 1

for which the corresponding Tanner graph is shown in Figure 2.3.5.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ + +

Figure 2.3.5: Example Tanner graph.

0 0 0 0 0

+ + +

Figure 2.3.6: Normalized Tanner graph corresponding to Figure 2.3.5.

Note that, for any linear combination o f parity checks H = hj+hjc (recall that

addition is in Z 2), U is also a parity check for code C. Let T ' (H) be the graph

which results from appending /z' to T (H). It is sometimes useful to add redundant

nodes in this way as a means o f modifying the graph’s structure. T ' (H) is still a

valid representation o f the parity checks o f C, although it no longer has a one-to-one

correspondence to H .

To be appropriately general, then, we define a Tanner Graph as any bipartite

graph, consisting o f variable nodes and parity-check nodes, in which each edge

connects one variable node to one parity check node. We may then speak o f T (H)

(the Tanner graph induced by H) and H ' (T) (the parity-check matrix H ' induced

by T). T is a representation o f C if all the rows of H are obtainable through linear

combinations o f the rows of H ' (T).

The normalized form o f the Tanner graph, is easily obtained from T by

substituting equality nodes for all variable nodes. The equality node denotes a con­

straint o f equality among all connected edges. Variable nodes are reinserted above

the equality nodes, which are connected by a single edge. An example normalized

Tanner graph is shown in Figure 2.3.6.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Decoding algorithms

In the communications model o f Figure 2.1.1, the receiving device must somehow

infer the intended message u based on channel observations r. The strength o f an

error control system is only partly determined by the geometric characteristics of

the code (e.g. dmin). Performance is also limited by the quality of the decoding

algorithm.

Description of decoding algorithms requires discussion o f probabilities, for which

we require some refined notation. A bold-face letter u shall indicate a random vari­

able, and an ordinary u shall indicate a particular (deterministic) value. We will use

the notation u to indicate an estimate o f u.

2.4.1 MAP versus ML decoding.

A maximum a posteriori (MAP) decoder determines the estimate w which maxi­

mizes

P (u = « | r) . (2.4.1)

A maximum likelihood (ML) decoder determines the estimate u which maximizes

P (L = r \ u) . (2.4.2)

These rules are equivalent if and only if the information messages u are all

equally probable. If this is not the case, then the decoder m ust know the probability

mass of u in order to calculate the M AP solution.

A M AP decoder can be “easily” implemented by computing P (u = wj r) for

every possible message u. This procedure is referred to as exhaustive search de­

coding. Exhaustive searches are absurdly complex and impossible to implement

efficiently for all but the most trivial error control codes.

In practice, approaches to decoding algorithms are informed by the M AP and

M L rules. The strongest decoders, however, are not exact M L or M AP decoders.

Their strength arises from a compromise between exactness and efficiency. The

great achievement o f iterative decoders is not just their high performance, but their

manageable complexity.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O- - O O- ~©~ ~ o

Figure 2.4.1: Hidden variable insertion.

M ost iterative decoding algorithms are instances o f probability propagation on

factor graphs. Probability propagation is carried out by the sum-product algorithm.

If the factor graph is a tree, then this algorithm is equivalent to M AP decoding.

Often, though, loopy graphs provide much more efficient implementations. The

algorithm is no longer exact on loopy graphs, but in many cases it can be fine-tuned

to produce near-MAP results.

2.4.2 The sum-product algorithm.

The sum-product algorithm (or SP algorithm) is a general framework for imple­

menting probability propagation on graphs [48]. The purpose of the algorithm is to

compute global conditional probabilities using only local constraints. Constraints

are expressed by factor graphs, which were examined in Section 2.3.1. The sum-

product algorithm is implemented by message passing between simple processing

nodes. Each node updates its outgoing messages based on messages received from

adjacent nodes. M essages between nodes consist o f probability information.

For most factor graphs, we only need to describe local processing in nodes with

three edges. Constraints on more than three variables can usually be reduced by

insertion o f a hidden variable, as in Figure 2.4.1. The graph for a three-variable

constraint is shown in Figure 2.4.2. The function / expresses a relationship be­

tween random variables x, y and z which can take values from discrete alphabets

!Ay, JT-, respectively. We say that f (x , y, z) is a Boolean constraint on (x, y, z) if

f (x , y, z) G {0,1} for all jc, y, and z. We say that the constraint / is satisfied if and

only if f (x , y, z) = 0 .

The local operations o f the sum-product algorithm are described as follows. The

constraint / is mapped to a processing node which receives probability masses for

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y

f(x,y,z)

Figure 2.4.2: Function node for a Boolean constraint on three variables.

variables x and y. These variables are assumed to be independent o f each other. The

processing node then computes the probability mass o f z based on the constraint /

and the masses of x and y. Let S f be the set o f combinations o f (x, y, z) for which

f (x , y, z) is satisfied.

Let S f (j) be the subset o f S f for which z = j , where j 6 SLZ. We then compute,

for each j , the function

P (z = j) = r] . X P(x = k) - P (y = l) (2.4.3)
(U)eSf(j)

where k € J Z x and I € SLy, and r | is any non-zero constant real number. The constant

ri is typically chosen so that X yF(z = j) = 1. In principle, though, r\ has no effect

on the accuracy o f the algorithm.

If the probability masses o f variables x and y are conditional, then their con­

ditionality is inherited by z after application o f (2.4.3). Thus the decoder begins

with a set o f symbol probabilities P (x j = j \ ri), conditioned on the channel obser­

vations r;. Through repeated iterations o f (2.4.3), the decoder ultimately arrives at

an estimate o f P (u; = j \ r) for every information bit U j.

The local computation (2.4.3) is the heart o f the sum-product algorithm. A

complete sum-product decoder consists o f many interconnected instances o f (2.4.3).

The propagation rule (2.4.3) must be implemented separately for each edge o f a

node. Thus each three-edged node in a factor graph requires three instances o f

(2.4.3), as illustrated in Figure 2.4.3.

The need for independent sum-product implementations in Figure 2.4.3 is a con­

sequence o f the extrinsic information principle. The extrinsic information principle

describes a necessary condition on message processing in any decoding network. It

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.4.3: Implementation o f probability propagation in a node o f degree three.

is essential to the successful implementation o f a complete sum-product decoder.

Definition 2.4.1. E x trinsic In fo rm ation Principle. The output message from node

N on edge E must be independent o f any message received by node N on edge E.

□
If this principle is upheld globally, then a sum-product decoder is equivalent to

a M AP decoder. Note that if there are cycles in the factor graph, then the extrinsic

information principle is violated (in a global sense). I f the cycle is long (i.e. if it

consists o f sufficiently many nodes) then the principle is only “weakly” violated, in

that the edge’s output is only weakly correlated writh its input.

Since the introduction o f Turbo Codes, a variety o f methods have been sug­

gested for meeting the extrinsic information principle. In the original Turbo Codes,

extrinsic information is obtained by dividing the input messages from the output

messages. This is a somewhat circuitous approach. If normal graphs are used, the

equality node always intervenes to ensure that the extrinsic information principle is

met. No rule other than (2.4.3) need ever be applied.

2.5 Good codes.

We are now able to discuss the structure of some of the best classes o f error control

codes for the AWGN channel. We loosely define a “good code” as one whose

performance approaches the Shannon and/or BPSK limits “relatively quickly” as

the block length is increased. We may sometimes also say that a code is “good”

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if it has an efficient decoder which performs significantly better than other codes

o f comparable complexity. Powerful codes are best described graphically, and we

shall see that their strength is owed to graph-based decoding algorithms.

Important classes of “good codes” include Turbo codes, Low-Density Parity

Check (LDPC) codes, and Block Product (aka Turbo Product) codes. All o f these

codes are constructed by “stitching together” simpler component codes in some

way. We will briefly describe the structures of some good codes, and describe the

ways in which they implement the sum-product algorithm for decoding.

Alternative (non-sum-product) algorithms are known for m ost o f these codes.

These alternatives are either approximations to the sum-product algorithm, or are

based on other sub-optimal approaches. Such algorithms may provide simplifica­

tions in particular decoder implementations (and may in some cases be more widely

used than the proper sum-product algorithm because o f improved efficiency or des-

ignability). We will only discuss sum-product implementations, because other al­

gorithms do not currently shed any light on analog implementations.

2.5.1 Parallel Concatenated Convolutional Codes: Turbo Codes.

Parallel Concatenated Convolutional Codes (PCCC) are the original Turbo Codes

[16]. These codes are constructed from a pair o f trellis codes, C\ and Ci, which are

called component codes. Component encoders for C\ and Ci are written E\ and E2,

respectively. Component decoders are D \ and D 2 .

The component codes are used to separately encode the same information se­

quence u, except that the order of the bits in u is scrambled before being encoded

by £ 2 . The bits are scrambled by a pseudo-random interleaver (or permuter), which

is typically denoted by the symbol f l . The two encoders produce distinct sequences

o f parity-check bits p : and p T The information sequence is multiplexed together

with all or some o f the two parity sequences to form the transmitted data stream

x. If only some o f the bits from p { and p^ are used (for example, half o f the bits

are selected from and the other half from p 2), then we say the codeword x is

punctured. This encoding procedure is illustrated in Figure 2.5.1.

The decoder for a PCCC Turbo Code consists of two component trellis decoders

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(puncturing) MUX

Figure 2.5.1: PCCC Turbo Code encoder.

channel probability

information

parity

information

parity

deMUX

Figure 2.5.2: Decoder for a PCCC Turbo Code.

which implement soft-output algorithms. Soft-output algorithms include the BCJR

algorithm [9], the SOVA algorithm [37], and a variety of suboptimal variations

[73]. The important feature of a Turbo Decoder is the the component decoders

collaborate with each other. This setup is illustrated in Figure 2.5.2. D\ and D i each

receive their respective data streams for decoding. Any punctured bit is replaced by

a probability o f 0.5. D\ and D i then decode assuming uniform a priori probabilities

for the information bits. A fter the symbol probabilities are all calculated, D \ and

£>2 decode the data again, only this time D\ uses the results from £>2 as an estimate

o f the a priori bit probabilities, and £>2 similarly uses the results from D \. This

process is iterated many times until reliable bit decisions are obtained.

This decoding scheme works because p] and p^ are approximately indepen­

dent of each other, thanks to the interleaver. The extrinsic information from D \ is

decorrelated from the channel information available to £>2 , and vice versa. The two

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1st Parity
Bits

Information
Bits

^ x<FHt;
O H t f - i -

• •
• • •

O — 0 —i —

T
lt j.-1-

T
L”t ■

1-
T

TT
T

T
L-pJ

•

•
l
T

u r J
T

2nd Parity
Bits

FO
FO
1—0
1 - 0

F O

Figure 2.5.3: Factor graph for a PCCC Turbo Code.

decoders are therefore able to exchange information without destructive feedback.

This observation led to the generalized extrinsic information principle, which is

fundamental to the success o f iterative decoders.

It is also possible to represent a PCCC decoder as a factor graph, as shown

in Figure 2.5.3. Both component codes in this graph are ra te -j. The component

trellis decoders are depicted vertically on the left and right o f the graph, separated

by the large interleaver, labeled n. Individual trellis sections are indicated by the

boxes labeled ‘T \ Notice that the parity bits are located at “le a f ’ positions in the

graph, while the information bits are nested in between the component decoders.

The iterative Turbo decoding algorithm is equivalent to the sum-product algorithm

on the factor graph o f Figure 2.5.3.

The performance of the original PCCC Turbo Code is shown in Figure 2.5.4.

Note that the BER reaches an abrupt floor at around 10-6 . This is a common char­

acteristic o f PCCC Turbo decoders. Numerous techniques have been explored to

lower the error floor of Turbo codes. Current Turbo codes have much lower floors,

but it remains a significant challenge in Turbo code design.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10'1

WaterfallU J

 Uncoded BPSK
 Turbo Code
- - BPSK Limit

Error
Floor

.-7

0.5 1.5
SNR (dB)

2.5

Figure 2.5.4: Performance o f the original rate-1 / 2 PCCC Turbo Code, with length
65536 and 18 decoding iterations [15]. The BPSK limit is also indicated.

Figure 2.5.5: Encoder for an SCCC Turbo Code.

2.5.2 Serially Concatenated Convolutional Codes.

Shortly after the unveiling o f PCCC Turbo Codes, a second class o f Turbo Codes

was introduced: Serially Concatenated Convolutional Code (SCCC) Turbo Codes

[12, 81]. The difference between SCCC and PCCC Turbo Codes is simple: instead

o f encoding the sam e data independently, £ 2 encodes the interleaved output from

£ j . An SCCC encoder is illustrated in Figure 2.5.5.

Decoding o f SCCC Turbo Codes is sim ilar to that of PCCC codes. A block

diagram for the decoder is shown in Figure 2.5.6. SCCC Turbo Codes are in some

ways simpler and more elegant than PCCC codes. There is still some argument as

to which class offers superior performance (or whether either class can be said to

be generally better than the other).

Factor graphs for systematic and non-systematic SCCC Turbo Codes are shown

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5.6: Decoder structure for SCCC Turbo Codes.

Inner Code Outer Code Inner Code Outer Code
Hidden

Coded BitsInformation
Bits

b. Non-systematic code.a. Systematic code.

Figure 2.5.7: Factor graphs for SCCC Turbo Codes.

in Figure 2.5.7. In the systematic graph, filled circles represent parity bits, and

open circles represent information bits. In the systematic code, all variables are

transmitted. In the non-systematic code, the open circles represent information bits.

The double-circles are the intermediate coded bits at the output o f E \ . These are

called “hidden” bits because they are never observed at the input or output o f the

encoder or decoder. They are purely internal. The filled circles are the final coded

bits which are transmitted. All component codes in Figure 2.5.7 are ra te -j.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

u

Figure 2.5.8: Repeat-Accumulate encoder.

Repeat Code

Information
Bits

o—j =

o - =

n

Accumulator

Transmitted
Bits

- S o - *

Figure 2.5.9: Repeat-Accumulate code factor graph.

2.5.3 Repeat-Accumulate codes.

One simple variety o f SCCC Turbo Codes are the Repeat-Accumulate (RA) codes.

These codes are extremely simple. The inner code is a repetition code1 o f rate ^

and the outer code is a rate-one accumulator. An RA encoder is illustrated in Figure

2.5.8. The corresponding factor graph is shown in Figure 2.5.9.

Repetition codes and accumulators are fairly trivial, weak codes by themselves.

Yet some RA codes have performance within IdB o f the Shannon Limit. This is

a dramatic demonstration o f the power of iterative decoding: two extremely weak

codes can be combined to produce a very good code, with very low complexity.

'A rate— repetition code takes a single bit as input and produces q copies of that bit as output.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(> - e h =
O - 0 <
O - 0 h ^

9 " ? ^

O H l h d
O - 0 H =
0 - 0 ^
0 - 0 ^
0 - 0 ^

Regular Code Irregular Code

Figure 2.5.10: LDPC code factor graphs.

2.5.4 Low-Density Parity Check codes.

Low-Density Parity Check (LDPC) codes are large binary block codes with sparse

parity-check matrices. They are divided into the classes o f regular and irregular

LDPC codes. A (dr, dc) regular LDPC code has a parity check matrix H in which

each row has dr ones and each column has dc ones. The number o f ones in a

column/row o f H is said to be the degree o f that column/row. Thus we say that dr

is the row degree o f H and dc is the column degree o f H . The pattern o f non-zero

entries in H is more-or-less random. The total density of ones in H is small, hence

the name “low-density” parity-check code.

An irregular LDPC code is one in which the row and column degrees are not

fixed to a single value. The degree distribution o f columns and rows in H is spec­

ified by a pair of probability masses X and p, respectively. Each X; is in the range

[0,1], denoting the fraction o f columns with degree i. Similarly, each p denotes

the number o f rows with degree j .

As shown in Section 2.3.2, the parity-check matrix H corresponds to a bipartite

Tanner graph. Tanner graphs are a sub-class o f factor graphs, so the sum-product

algorithm can be directly applied to their normalized form. LDPC decoders were

among the first to make explicit use o f iterative message-passing decoding on factor

graphs using the sum-product algorithm. Figure 2.5.10 shows Tanner graphs for a

(3,4)-regular and an irregular LDPC code.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A decoder for an LDPC factor graph follows a procedure similar to the follow­

ing:

1. A ll messages are initialized with a uniform probability mass.

2. Samples are received from the channel. The channel information is input

to the graph at the variable nodes. Each input message is in the form o f a

probability mass. Set number of iterations to zero.

3. The equality nodes update their outgoing messages for each edge using the

sum-product algorithm. The results are transmitted to the check nodes. Dur­

ing the first iteration, all outgoing messages are simply equal to the channel

information.

4. The parity-check nodes update their outgoing messages using the sum-product

algorithm. The results are transmitted back to the equality nodes. Increment

the number o f iterations.

5. A fter a “sufficient number” o f iterations, sample the output messages. Make

decisions on each variable based on maximum local probability, and stop.

6 . Otherwise, return to step 3.

LDPC codes have a very simple structure which is easy to analyze. A variety o f

techniques have been developed to design and implement good LDPC codes. U s­

ing these techniques, codes have been found which come within 0.005dB o f the

Shannon limit for very large block lengths [20].

2.5.5 Block Turbo Codes.

Block Turbo Codes (BTCs), also known as Turbo Product Codes (TPCs) or Block

Product Codes (BPCs), are two-dimensional constructions made from simple linear

block codes. The term “Product code” describes the code’s geometric construction.

The term ‘T urbo” indicates the use o f an iterative decoding algorithm. The IEEE

802.16a wireless communication standard refers to them as BTCs. For the purposes

of this thesis, it is often easiest to refer to them simply as “Product codes.”

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

row code

Information
Block

Column
Checks

Row
Checks

Checks
on

Checks

Figure 2.5.11: BTC codeword structure.

row decoder

r
Figure 2.5.12: Concatenation o f component decoders using equality nodes.

A BTC is defined by a (nr, kr) row code and a {nc. kc) column code. The infor­

mation bits are arranged in a kr x kc rectangle. Each row is encoded by the row code,

after which each column is encoded by the column code. The resulting rectangular

codeword is illustrated in Figure 2.5.11.

Suppose the row code is described by factor graph Qr, and the column code by

Qc. Then the product code’s factor graph, Qrxc, contains nc copies o f Qr and nr

copies o f Qc. Each bit b in the codeword is shared by exactly one row code instance

and exactly one column code instance. At the variable position corresponding to b,

the two graphs are joined by an equality node, as shown in Figure 2.5.12.

There are many ways to draw the complete factor graph for a product code,

and many ways to schedule message passing for sum-product decoding. A factor

graph for an (8 ,4) 2 Hamming BTC is depicted in Figure 2.5.13. The row codes are

labeled R l,..., R 8 and the column codes are labeled C l,..., C 8 . We could also draw

this factor graph by placing each Qr and Qc side-by-side in one long column on the

left, with all the equal nodes in a column on the right. The resulting graph would

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R1 R2 R3 R4

Cl

C2

C3

C4

•

00

* • '
/■»*»»
00

•

00
.u

* ~ ~ £

00

A | .r - H J L h -
— n nh -

— n n i - r
L U h -

‘ “ V
L h -

— n n h -

— n

L u h -

u L>
n r>

n r >
u L J

u
n r>

- r r —
u LJ-

- L L h —
- r r [—

■ r n -LI L ------

'V u ■ n r I- —

n n —
- L L -------

■ H U U — n f > -

n I p —
u U —

+
■ - M —

- LJ
- - n n —

| r r V

C5

C6

Cl

C8

[« (8,4) (8,4)]« (8,4))

□ denotes an equality node.
The complete node is:

• denotes the position of the
first bit in the component
code’s factor graph.

RS R6 R7 R8

Figure 2.5.13: Factor graph for an (8 , 4) 2 Hamming BTC.

look almost like an LDPC code, with a very regular, structured interleaver.

A simple decoding algorithm for BTCs, based on the sum-product algorithm, is

as follows [37]:

1. All internal messages are initialized with uniform probability masses.

2. Channel information is received. It is input to the equality nodes in the form

o f probability masses.

3. The equality nodes compute their output messages for each edge, and forward

the results to all component decoders.

4. The component decoders perform local APP decoding based on the sum-

product algorithm, and forward the results back to the equality nodes.

5. If a sufficient number o f iterations has elapsed, sample the outputs from the

equality nodes and stop.

6 . Otherwise, return to step 3.

Because they are constructed from very simple component block decoders, BTC de­

coders are quite easy to construct. BTC’s have been shown to approach the Shannon

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

limit with very short block lengths compared to other Turbo-style codes (although

BTCs usually have significantly higher rates).

One convenient feature of Product codes is their relatively simple geometric

structure. If row and column component codes have minimum distance dr and dc,

respectively, then the product code has minimum distance dr • dc. As an example,

extended Hamming codes have a minimum distance o f four. The product of two

Hamming codes therefore has a minimum distance o f 16.

It is also very easy to enumerate the number o f codewords which have minimum

distance. The number of codewords o f weight w in code C is often expressed as a

function A (w). This function is known as the distance spectrum for code C-

Knowing the distance spectrum for low-weight codewords allows us to esti­

mate the performance of a MAP decoder. This estimate [13], called the minimum-

distance approximation, is given by

P, « ^ - A (dm,„) -erfc ■ (2.5.1)

This approximation becomes increasingly accurate at high SNR, where minimum-

distance errors dominate the probability.

Performance curves for some BTCs are shown in Figure 2.5.14. Each code uses

identical Hamming codes for row and column components. The curves are derived

from (2.5.1). Sum-product decoders for BTCs tend to perform very close to the

M AP performance, so Figure 2.5.14 represents what we should expect to see from

a good implementation. The performance o f a BTC is not as close to Capacity as a

Turbo code, but the BTC has a dramatically shorter block length and no error floor.

2.5.6 Summary

There are a variety of good codes, most of which are constructed by weaving to­

gether simple component codes. Turbo and LDPC codes provide performance very

close to the Shannon limit, but may require enormous block lengths. Turbo codes

also require careful and often complex design procedures to avoid error floors.

Product Codes, by contrast, provide decent error correction with comparatively tiny

system size. These codes are compared in Figure 2.5.15, in which their performance

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Performance of Product Codes

Uncoded BPSK

(16,11)-
(32,36)'

H— (64,57)'

10'

8 10 120 2 4 6
SNR (dB)

Figure 2.5.14: Performance o f some Block Turbo Codes. The BPSK limits are
indicated by arrows for each code rate [37].

is plotted alongside the BPSK limit. The data points represent the SNR at which

each code attains a BER o f 10-5 . The performance of Hamming block codes is

shown alongside Product Codes constructed from Hamming components.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

0.8

0.7 (16.11)

0.6 SCCC Turbo,
N=1M©

ro
GC

+ (8.4)
t Regular LD PC \
I N=1M

PCCC Turbo Code. N=65k'■0.4
Hamming CodesIrregular LD PC N=10M

0.3

Product Codes
0.1

8 10-2 0 2 64

SNR (dB)

Figure 2.5.15: Performance o f various codes relative to the BPSK limit. Data points
represent the SNR needed to acieve a BER o f 10-5 . Code lengths are also indicated
for regular LDPC [69], irregular LDPC [20], PCCC Turbo [15], and SCCC Turbo
codes [81].

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Trellis Codes

3.1 Trellis graphs for block and convolutional codes.

A trellis is a graph which is usually thought to represent a convolutional code. In

a convolutional code, encoding is performed by something like a FIR filter, rather

than through explicit matrix multiplication as in (2.3.1). In practical terms, though,

all information messages end after some number of symbols.

It is common practice to terminate convolutionally coded messages after a fixed

number o f information symbols. W hen such terminations are imposed, a message

consists o f k information symbols and n coded symbols, and the convolutional code

is, in effect, a block code. Convolutional codes are also typically linear, so all the

concepts o f Section 2.3 can be applied. We will only discuss the ways in which a

trellis represents a linear block code.

The trellis may loosely be thought o f as a Markov model o f the encoding device.

A trellis consists o f states and labeled branches. The states are arranged in columns,

and each column Si represents the possible states o f the encoder at a particular time

i. Branches connect the states in Si to those in 5 /+ 1, and represent the allowable

transitions o f the encoder’s state.

A branch is defined by the ordered triple bqr = (sq, lqn 5 /r) , where sq G Si and

sfr G 5 /+ i. The label lqr is a sequence o f one or more channel symbols. Each branch

may also be associated with a sequence o f one or more information symbols. The

information symbols are interpreted as the input to the encoding device, and the

channel symbols are the output produced by the encoder.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D

Encoder

o/oi ' w o/oi ‘ w o/oi

Trellis

Figure 3.1.1: A simple two-state convolutional code.

E xam ple 3.1.1. : An encoder and its corresponding trellis for a two-state convolu­

tional code are shown in Figure 3.1.1. The encoder takes a single bit u as input, and

outputs a pair of bits (u , p). The box labeled D represents a delay (i.e. a one-bit

shift-register). Thus p = «, © « /_ i , where i is the time-index and © is modulo-2

addition. This code’s trellis has two states, which correspond to the value stored in

the shift-register. The branches are labeled with u/ up , representing the input and

output o f the encoder.

□

Let Li refer to the set o f branches which connect states in Si to those in Si+1. A

trellis section for time i is defined by the ordered triple % = (Si, Li, 5 ;+ i). For

clarity, we distinguish between the state variables Si and the state alphabet

To say that is to say that the trellis has the same set o f possible states at

time i and at time j . To say that Si = S j is to say that the encoder must be in exactly

the same state at time i and at time j .

A trellis must have some termination, which is a constraint on the initial and

final states. A path is a connected sequence of branches which traverses the entire

trellis and satisfies the termination condition. The conventional termination im­

poses, for a trellis with L sections, the condition that So and Sl each have a single

state (i.e. the encoder begins and finishes in a known state).

The tailbiting termination requires that Si = Si+L, meaning the encoder must

start and end in the same state. A tailbiting trellis is thus a circular structure in which

every path m ust revisit itself after L transitions. The paths in a trellis represent the

codewords in the corresponding block code.

In a tailbiting trellis, there are connected sequences o f branches, called pseu­

docodewords, which do not satisfy the termination condition. A pseudocodewords

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Valid Codeword Pseudocodeword

Figure 3.1.2: Valid and invalid paths in a tailbiting trellis with four sections.

Figure 3.1.3: Trellis-style constraint and factor-graph for f (x , y , z) = x + y + z = 0.

does not terminate in the same state as it began. A pseudocodeword and a valid

codeword are contrasted in the tailbiting trellis shown in Figure 3.1.2.

Each trellis section represents the functional relationship between variables Li,

Si, and 5 /+1- W hen these variables are binary, the trellis section’s constraint can be

represented in terms of Z 2 operations. An example of this is shown in Figure 3.1.3,

where *+’ denotes Z 2 addition. Thus while factor graphs represent the relationships

between component functions and variables, a trellis section represents the actual

constraint imposed at a function node.

The state variables in a trellis are hidden variables, and the labels Li are channel

symbol variables. It is therefore straightforward to draw and interpret the factor

graph o f a trellis.

E xam ple 3.1.2. A tailbiting trellis for the (8,4) Hamming code [19] is shown in

Figure 3.1.4, and a corresponding factor graph is shown in Figure 3.1.5. Each

branch in the trellis is labeled with a single information bit, £/;, and a pair o f channel

bits, U. The trellis thereby expresses functional relationships between u, x, and

the hidden state variables Si. The state variables are indicated in Figure 3.1.5 by

double-circles.

□

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.1.4: Tailbiting trellis for the (8,4) Hamming code.

Figure 3.1.5: Factor graph corresponding to the tailbiting trellis of Figure 3.1.4.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Soft-information trellis decoding,

The BCJR algorithm, named for the authors who introduced it [9], calculates the ex­

act trellis state probabilities when applied to conventional trellises. When applied to

tailbiting trellises, it produces approximate state probabilities which are corrupted

by the influence o f pseudocodewords. Good results are nevertheless obtainable with

tailbiting trellises.

The BCJR algorithm has also been shown to be an instance o f the sum-product

algorithm when the trellis is represented as a factor graph. From this perspective, a

conventional trellis is a tree, and therefore the sum-product algorithm is equivalent

to maximum a posteriori (MAP) decoding. In the tailbiting case, the graph has one

large cycle. Pseudocodewords can therefore be described in terms of loopy graphs,

as discussed in Section 2.4.2.

3.2.1 MAP decoding on trellises.

Before explaining the BCJR algorithm, w e reintroduce maximum a posteriori de­

coding in the context of trellises, to establish some necessary concepts and notation.

M AP decoding for block codes is discussed in Section 2.4.1.

We assume that the encoder traverses a complete trellis path, and that its output

is transmitted over some communications channel, beyond which lies a decoder.

The decoder attempts to infer the sequence of information symbols based on ob­

servations o f the channel’s output. Let the actual information symbol at time i be

written u „ and let the actual channel symbol at time i be written x,-. Further let

p refer to the actual path of trellis transitions traversed by the encoder, and let s,-

refer to the actual trellis state after symbol i. To the receiver, the information bits,

channel symbols, path and states are random variables.

The channel’s output is a sequence o f random samples, denoted r*. It is assumed

that the channel is memoiyless, so that /y depends only on x and that estimates are

available for

(3.2.1)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for every r,- and x ^ \ which x -^ refers to the / h member of the symbol alphabet Slx.

The maximum a posteriori (MAP) decoding solution for x,-, written is that

u which maximizes

PF} = ^ (u / = mP 1 r f-) (3.2.2)

A closely related problem is to find the conditional probabilities o f states in the

trellis. Let r refer to the complete sequence o f channel observations (n , ax ,..., ax).

The trellis state probability for the / h state at the ith time instant is defined as

c (ij) = p (s i = s\j) \r^ (3.2.3)

The a posteriori information symbol probabilities can generally be inferred from

the trellis state probabilities.

3.2.2 Transition matrices

A trellis section can be thought o f as a Markov model, and as such the evolution

o f conditional probabilities can be determined using the Markov transition matrix.

The Markov transition matrix for a trellis section % is an n x m matrix T; whose

entries are

yjk = P (s;+1 = *£>, | s.- = s{) (3.2.4)

where n = | i / j and m = |5;+i [. If the branch bjk does not exist, then = 0.

Let a,- be a row vector in which the / h element is equal to the trellis state prob­

ability If a,- and T,- are known, then the probability mass o,+1 is deduced from

the rule

S + i = S (3.2.5)

We are often interested in merging two trellis sections. Let % = (5/, Li, 5/+ i)

and $+1 = (5/+i, Li+ \,S i+ i) be two trellis sections. We define the trellis section

product ‘<g>’ as

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘T/ = ri®'ri+l = (shLl,si+2) (3.2.6)

where L[is the set o f branches which connect states in Si to those in 5/+2- A branch

bgS is in L \ if there exist branches bqrZ Li and brs 6 Xj+ i , where q, r, and s are state

indices. The label I' associated with b'qs is the ordered pair (lqr, lrs) .

The transition matrix for %' is

The algorithm consists o f two phases, forward and backward. For the forward

phase, each Si is assigned a forward probability mass a,-, which is a row vector, and

is conditioned only on channel observations prior to time i. The initial vector for a

conventional trellis is Oq = (1).

The transition matrices are populated with branch probabilities

Similarly, each Si is assigned a backward probability mass j^., which is condi­

tioned on channel observations at times greater than or equal to i. The backward

phase is carried out using a rule similar to (3.2.10):

r; = Ti x r/+1 (3.2.7)

3.2.3 Details of the BCJR algorithm.

where P (upt) is the a priori probability o f the information symbol ujk.

The forward phase is carried out by iteration o f the rule

(3.2.8)

(3.2.9)

S f + i = o / - n (3.2.10)

(3.2.11)

The trellis state probabilities are obtained by the product

g,- = a,-©P.

61

(3.2.12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where the ‘0 ’ product refers to element-wise multiplication.

For tailbiting trellises, the algorithm is slightly more complicated, and fails to

produce the exact trellis state probabilities. Because |5o| > 0, the initial forward

probability mass is not known (i.e. Oq ^ (1)). Usually for tailbiting trellises, Oq

is set to a uniform distribution, or some other similarly arbitrary distribution. The

forward and backward phases continue around the trellis more than once, so that

successive estimates o f clq are obtained.

Let Ao = n f = i In the tailbiting BCJR algorithm, let refer to the estimate

Oq after k passes around the trellis. As k increases, converges to an eigenvector

o f Ao. Similarly, (3^ converges to an eigenvector o f Aq. These eigenvectors are not

the exact probability solutions. The inexactness o f the tailbiting BCJR algorithm is

due to the influence of pseudocodewords.

3.2.4 An example decoder: (8,4) tailbiting Hamming trellis.

To fully illustrate the BCJR algorithm, we will now examine a complete decoder for

the tailbiting (8,4) Hamming trellis shown in Figure 3.1.4. Examination o f the trellis

reveals that there are only two sections with unique constraints. The corresponding

function nodes are labeled T\ and To in the factor graph of Figure 3.1.5.

The first step in designing a sum-product decoder is to specify the code’s nor­

mal graph. As described in Section 2.3.1, the normal graph should include every

input and output variable, while hidden variables are omitted. The normal graph

for the (8,4) Hamming code is shown in Figure 3.2.1. Note that the “L,” variable

nodes, which represent pairs o f channel bits in Figure 3.1.5, have been replaced by

the more explicit “Tree” function node in Figure 3.2.1. The variables “* / ’ are the

individual channel bits.

The next step in decoder design is to label all o f the messages in the graph, and

to identify the direction and degree o f all messages. We refer to this as the message

schematic, shown in Figure 3.2.3. The large boxes labeled 1, ..., 4 represent the

implementations of each trellis section. Boxes 1 and 3 are implementations of T\,

and boxes 2 and 4 are implementations o f 72. The triangle represents a comparator.

The messages labeled Xj represent the channel information. Each Xj is a binary

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tree

Tree

Tree

Tree

Figure 3.2.1: Normal graph for (8,4) Hamming code.

? iQ

0

10’1

^0 ^1

LA
Tree

TUT
Figure 3.2.2: Illustration of the “Tree” function node.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.2.3: Message schematic diagram for the (8,4) Hamming decoder.

probability mass (a column vector with two members). If rj is the measurement for

the / h b it of the channel’s output, then

There are two sets o f internal messages in the network, labeled a,- and P/. These

represent separate estimates o f the probability masses for hidden state nodes 5,-. The

a messages propagate around the graph in the clockwise direction, while the P mes­

sages propagate counter-clockwise. The decoder’s final digital output is produced

by a comparator, whose decisions are the information bit estimates u-t.

The next step in decoder design is to characterize the local sum-product opera­

tions for each node. To do this, we first need a more fine-grained node schematic,

which identifies the actual sum-product components. The complete decoder schematic

is shown in Figure 3.2.4, which reveals that eight distinct components must be im­

plemented to complete the decoder. These include T\ (c), T\ (cc)and T\ {out), which

implement propagation through Tjin the clockwise, counterclockwise and outward

directions, respectively. We need to implement the same components for node To.

The Tree node only needs implementation in one direction, as information is never

fed back into the channel. Lastly, a comparator is required to make the final bit

decisions.

(3.2.13)

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tree Tree

TreeTree

T„(c)

T,(c)

T, (c)

T, (c)

T, (cc)

T. (cc)

X ,(out)T. (out)

T, (out)
To (0Ut)

X7 X6 U3 ^5 ^4 %

Figure 3.2.4: Complete message and node schematic for (8,4) Hamming decoder.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We begin with the Tree node, illustrated in Figure 3.2.2. For a three-edge node

such as this one, the sum-product rule (2.4.3) can be expressed as a matrix multi­

plication: y = T r e e ^) -Xq, where y, Xq and Xj are probability-mass vectors. It is

easily verified that the matrix Tree (Xj) has the form

(3.2.14)

- y(00) -

y(01)
' x i 0)

xi1] r iAq
yOO)

1 •

}(1)
y (l l)

y = Tree(X l)-X 0. (3.2.15)

The 7Yee(Xj) matrix o f (3.2.14) is directly derived from the trellis section of

Figure 3.2.2. The columns o f Tree (Xj) are indexed by the left states, and the rows

are indexed by the right states of the trellis section. If a branch exists between state b

on the left and state c on the right, and that branch has label x, then the bcth position

o f Tree (Xj) contains X ^ . If no branch exists, then the bc^ position contains a zero.

The matrices for 7} (c) and 7} (cc) are derived from their trellises in similar man­

ner, resulting in

7, (c) =

■ y(00) 0
y(ll) 0

0 y(01)

0 y(10)

) = p i (c)]T

r 2 (c) =
y (0 0) ^ 1 1) < y (! 0) y (0 1)

y(H) y (0 0) y (0 1) y (1 0) (3.2.16)

r2(cc) = [r2(c)]T

The propagation rules for messages a and (3 are

«f+i — 7} * cc,

P; = ^'P,— 1 + 1

(3.2.17)

(3.2.18)

The T\ (out) matrix is slightly more complicated. We want to extract the infor­

mation bit probabilities. For any section in the (8, 4) Hamming trellis of Figure

3.1.4, the information symbol u induces a partition o f the right states o f the section.

The even-numbered states correspond to u = 0, and the odd-numbered states cor­

respond to u = 1. We may therefore express a constraint between u and the right

state variable S. There are several equivalent ways to represent this relationship in

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tree

even / odd

Tree

Figure 3.2.5: Illustration o f constraint between information bit and state variable
(normal form).

the factor graph, one o f which is shown in Figure 3.2.5. Implementation o f (2.4.3)

for this constraint consists of the Kronecker product a © P, followed by separate

summation over the odd and even members. In m atrix form, this can be written as

(3.2.19)

(3.2.20)

-p(0) 0 -p(0) 0 P(2) 0
0 1

1 2 (ou t) = 0 p0> 07i (out) =

with the propagation rules

u0 = <D{[7i (out)] - c^} mi = <D {[7*2 (out)] • p tj}
«2 = £>{[7i (out)] -Or,} m3 = 2>{[T2 (out)] -CC3}

where ID denotes the decision operation (less-than or greater-than).

3.3 Construction of block code trellises.

3.3.1 Generator matrices and the trellis product.

A trellis can be constructed from a linear block code’s generator matrix. To do this,

an elementary subtrellis is first constructed for each row in the generator matrix.

The subtrellises are then combined to form the com plete trellis graph using a trellis

product operation [49].

A generator matrix G consists o f rows g,-. The span o f a row g,- is defined as

a contiguous range o f indices which covers all non-zero elements of g,-. In a con­

ventional trellis construction, the span begins at the left-most position j for which

g i j 7^ 0. The span ends at the right-most position k fo r which g t f ^ 0. The row g,-

is said to be active in the range [f , k — l].

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3.1: An example row subtrellis.

An elementary subtrellis, consisting o f two paths, is constructed for each row

as follows. The first path is the zero sequence. The second path diverges from the

zero sequence at position j , and merges again with the zero sequence at position k.

The second path is labeled with the entries from g;.

E xam ple 3 3 .1 . A generator matrix G is shown with row spans in bold, and active

positions underlined. The subtrellis corresponding to row g4 is shown in Figure

3.3.1.

G =

1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

□
Let IRx and ifc be the elementary subtrellises for two rows, gi and g2 , respec­

tively. The product of two elementary trellises = may be taken one

section at a time. To simplify the discussion, we now omit certain indices and de­

scribe the states and branches o f using Roman letters, whereas those o f fTfc are

written with Greek letters.

Let b = (5 , 1, s') be a branch in section Tn o f subtrellis , and let (3 = (a , X, c/)

be a branch in section o f subtrellis $2 . To construct the corresponding section

*2/ of IRp, we take the product p = b © j3 for every b G % t- and (3 G The left-state

o f p is the ordered pair (s ,o), the right-state is the ordered pair (s ',o ') . The label

for p is equal to I © X, where © represents the group product associated with the

branch labels. Typically © is vector addition modulo two.

After taking the product for all branches in the corresponding elementary sub­

trellis sections, we arrive at a trellis section with |S],-| • |S2/| left-states and |Si(y+i)| •

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P 2 (i+i) | right-states. Taking the products over all branches for all sections in the

two trellises completes the product. By recursively applying this product to all

elementary subtrellises, the complete trellis is constructed.

E xam ple 3.3.2. The generator matrix for an (8,4) Hamming code is

11 11 00 00
01 01 10 10
00 11 11 00
00 00 u 11

Note that the columns have been arranged in pairs. We will construct a trellis

with four sections, in which each branch is labeled with a pair o f bits. Let c,- refer

to the number o f active (underlined) rows in column i, 0 < i < 3. In the final trellis

for this code, the number o f states |S/+i | = 2a‘. We will therefore arrive at a trellis

with the state profile 1 ,4 ,4 ,4 ,1 .

The elementary subtrellises for this code are shown in Figure 3.3.2. The prod­

uct o f the first two subtrellises is carried out in Figure 3.3.3. After applying the

procedure to every row, we arrive at the complete trellis shown in Figure 3.3.4.

To simplify the diagram, labels are indicated by the line-style o f branches. The

mapping between labels and line-styles is indicated in the first trellis section.

□

3.3.2 Construction of tailbiting trellises.

A tailbiting trellis for a block code can also be constructed using the trellis product

[19]. From the tailbiting perspective, the time index is periodic modulo L. We

therefore define the row span strictly as a contiguous range o f indices which covers

all non-zero entries in the row. Because the indices are periodic, the span may

“wrap around” from the left to the right o f the generator matrix. This is commonly

referred to as a circular span.

E xam ple 3 3 3 . A generator matrix for an (8,4) Hamming code is shown below,

illustrating the use of a circular span.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3.2: Elementary subtrellises for a conventional (8,4) Hamming trellis.

s

00

(1) O © (i)
• - — ♦

-•..10
(0) (0) (0)

------ 4 ------ - ♦ --------- - e

d o

•

. '(10) \

(01) \ '••■(1) (1)
...........

(00) ' VC0) (0)
-------------- • • —

00 00 00

Figure 3.3.3: Trellis product o f rows one and two.

Figure 3.3.4: Complete trellis after all row products are taken.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3.5: Construction o f a tailbiting (8,4) Hamming code trellis.

‘ 11 11 00 00 '

00 11 01 10
8 _ 00 00 11 11

01 10 00 11

The elementary subtrellises for this generator matrix are shown in Figure 3.3.5,

which also illustrates the step-by-step construction procedure.

□

333 Squaring construction for Hamming and Reed-Muller codes.

In this section we describe a method for constructing the well-known Reed-M uller

(RM) codes by “gluing together” a set o f smaller codes. This method produces very

compact trellises. The Hamming codes are also a subset o f the RM codes.

We present an abbreviated summary o f the squaring construction. For more

detailed information, the reader is referred to [30,22], and to the tutorial discussion

in Chapter 5 o f [73].

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3.6: Illustration of the squaring construction.

RM codes are defined by two parameters, p and v. An RM (p, v) code has length

n = T and redundancy r = 2v-p — 1. The information-block length is k = n — r.

RM (v, v) is the set o f all length-/! binary vectors, written RM (—1, v) consists of

the zero vector o f length n.

An RM (p, v) may be partitioned into a set o f cosets, each of which is an RM(p -

1, v) code. Such a partition is denoted RM (p, v)/RM (p — 1, v). Such a partition can

be used to construct a code RM (p, v + 1) using a squaring operation, written

RM (p, v + 1) = |RM (p, v) /R M (p - 1 , v)|2 . (3.3.1)

In general terms, the partition T /V consists o f several cosets 7). The squaring

operation constructs a space S = \T /V \ which consists o f all pairs (5 1 , 5 2) such that

both s\ and 52 are in the same coset 7). This construction is illustrated in Figure

3.3.6, in which each branch denotes an entire coset 7).

We now assume that 5, T , and V are linear spaces. Let C be a matrix whose rows

form a basis for V, and define Q as the matrix whose rows are all o f the distinct non­

zero, linearly independent coset selectors for the partition T /V . We say that a row

qi is a coset selector if 7) + qt is a coset in T /V , where the sum 7) + qt indicates the

addition o f all members o f 7} by qt.

We may now write a matrix whose rows form a basis for S as

' C
G S i = C . (3.3.2)

. Q Q .

I f S, T and V are all RM codes, then (3.3.2) is a generator matrix for the constructed

code.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For a given coset 7) in Figure 3.3.6, all vectors in 7) are labeled together on a

single branch. A branch with multiple labels is said to contain parallel branches.

The rows containing the C matrices in (3.3.2) are represented in the trellis as parallel

branches. As a result, only the submatrix [Q Q] is used for the trellis product

construction.

A more powerful form of the squaring construction is the two-level squaring

operation. This method uses a two-level partition T fU /V to construct S. Again let

C be the matrix whose rows form a basis for V. Let Q be the coset selector matrix

for the partition U /V , and let Q i be the coset selector matrix for the partition T fU .

Then the basis matrix for S is

" C

G si = (3.3.3)
Qi Qi Qi 0.2
Q Q

Q Q
Q Q

The occurrences o f C in G si again induce parallel branches, and can be ignored.

The row [02 Qi Q i Qi] induces a set o f disjoint subtrellises, which are con­

nected only at the initial and final states. The subtrellises all have the same form,

which is constructed using the trellis product procedure, as shown in Figure 3.3.7.

Figure 3.3.8 shows how the disjoint subtrellises are joined to form the complete

trellis.

The two-level squaring procedure is indicated using the notation 5 = \T /U JV j4 .

The method can be used to construct RM codes based on the relationship

RM (p , v + 2) = |RM (p, v) /R M (p - 1 , v) /R M (p - 2, v + 2) |4 . (3.3.4)

The parameters o f various RM codes and their relative partition degrees are shown

in Table 3.1, which is reproduced from [73].

3.3.4 Example: (16,11) Hamming code construction.

The extended Hamming codes are the set o f R M (v —2,v) codes. The R M (2 ,4)

code is therefore a (16,11) Hamming code. This code and its trellis can be con-

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3.7: Synthesis o f a subtrellis for the two-level squaring construction.

subtrellis
for T.

Figure 3.3.8: A complete trellis based on the two-level squaring construction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RM(1,1) - RM(2,2) - RM(3,3) - RM(4,4) - RM(5,5) - RM(6,6)
|2 1 2 1 2 1 2 1 2 ! 2

RM(0,1) - RM(1,2) - RM(2,3) - RM(3,4) - RM(4,5) - RM(5,6)
|2 14 |8 1 16 | 32 | 64

RM(-1,1) - RM(0,2) - RM(1,3) - RM(2,4) - RM(3,5) - RM(4,6)
|2 |8 | 64 | 1024 | 32768

RM(-1,2) - RM(0,3)
|2

RM(-1,3)

- RM(1,4)
1 16

- RM(0,4)
[2

RM(-1,4)

- RM(2,5)
| 1024

- RM(1,5)
f 32

- RM(0,5)
1 2

RM(-1,5)

- RM(3,6)
| 1048576

- RM(2,6)
f 32768

- RM(1,6)
| 64

- RM(0,6)
! 2

RM(-1,6)

Table 3.1: RM (p ,v) codes and their partition degrees.

structed using the two-level squaring operation

RM (2,4) = |RM (2,2) /R M (1,2) /R M (0,2) |4 . (3.3.5)

An RM (0,2) code consists of two length-four vectors, e.g. (0000) and (1111).

The matrix C therefore consists o f a single row, (1111).

As indicated in Table 3.1, there are four coset selectors for the partition RM (1,2) /R M (0,2).

These selectors can be chosen to be a = (1111), b = (0110), c = (1010), and

d = (1100). Only two of these are linearly independent. The matrix Q therefore

has two rows, which we choose to be b and c.

The partition RM (2,2) /R M (1,2) has degree two, and thus has only one non­

zero coset selector. The only unrepresented vector left is e = (0001). The matrix

02 consists o f a single row, e.

The subtrellis is now constructed based on the generator matrix

b b

Gh =

c c
b b
c c

b b
c c

(3.3.6)

The resulting coset subtrellis for Gh is shown in Figure 3.3.9. Each branch in

Figure 3.3.9 has two labels, I and / + (1111).

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3.9: Coset subtrellis for (16,11) Hamming code. The complete trellis
includes a second, identical subtrellis connected as in Figure 3.3.8.

A second coset subtrellis is generated by adding e = ' I I _ I) to every branch

label in the subtrellis:

The two coset subtrellises are merged at So, which completes the trellis.

To use this trellis in a sum-product decoder, we require a complete factor graph

which shows the relationships among information bits, parity hits, and the trellis

labels. Let z i, —,Z4 be a contiguous sequence o f four channel bits. The constraint

between (zi,Z 2 ,Z3,Z4) and I is depicted in the trellis-style graph of Figure 3.3.10.

With all constraints specified, we have sufficient information to construct a sum-

product decoder. The completed factor graph for this code is shown in Figure

3.3.11, in which the boxes labeled ‘1’, ‘2 ’ and ‘3’ are sections o f the label con­

straint trellis (Figure 3.3.10), and the solid boxes represent the two center sections

o f the constructed trellis.

The double-circles indicate hidden variable nodes. These only serve as labels,

and do not have any computational significance. The order o f the variable nodes

z i,...,z i6 has also been permuted in some places. This is done to ensure a system­

atic code. The necessary permutation is revealed by a construction o f the code’s

generator matrix.

a = f 1111 1
\ oooo j ea = e + a =

f 1110 \
\ 0001 J

(3.3.7)

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Figure 3.3.10: A trellis-style graph indicating the constraints among channel bits
and branch label I.

The generator matrix for the constructed (16,11) Hamm ing code is

a " 1111
a 1111

a 1111
a 1111

e e e e 0001 0001 0001 0001
b b 0110 0110
c c 0011 0011

b b 0110 0110
c c 0011 0011

b b 0110 0110
c c 0011 0011

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3.11: Complete factor graph for the (16,11) Hamming code.

After a sequence of linear row operations, Gi6 becomes

1000 0001 0001 0111
0100 0001 0001 0100
0010 0001 0001 0001
0001 0001 0001 0010

1001 0110
0101 0101
0011 0011

1001 0110
0101 0101
0011 0011

1111

G]6 is nearly systematic, except for parity-check columns in positions 8 and 12.

The matrix can be made systematic by a column transposition:

(16.11) systematic transposition = (1 ,2 ,3 ,4 ,5 ,6 ,7 ,9 ,1 0 ,1 1 ,1 3 ,8 ,1 2 ,1 4 ,1 5 ,1 6).

(3.3.9)

The construction is now complete. The trellis constraints are implemented as sum-

product nodes using the transition-matrix method, as discussed in Section 3.2.2.

3.3.5 *Tailbiting squaring construction.

The two-level squaring construction can be also used to construct tailbiting trellises

for Hamming and other RM codes. The resulting tailbiting trellises have a smaller

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3.12: Shape o f conventional trellises constructed with the two-level squar­
ing procedure.

maximum state complexity than the conventional trellises produced by the same

method. For large codes, the state-complexity can be reduced by 50%.

Recall from Section 3.3.3 that the trellis consists o f disjoint coset subtrellises.

A coset subtrellis is completely determined by the matrix Q, as in (3.3.3). Let the

rows o f Q be q \ , . . . ,q ^ . Then the generator matrix which corresponds to the coset

subtrellis is

£1 <71

<3n qN
q\ q\

Gs =

qN
q\ q\

qN qN

The state-complexity profile for Gs is (N ,N ,N , 0), and the number o f states at the

corresponding time-indices are 2N,2N,2N, 1. The shape of a trellis constructed us­

ing the conventional procedure is shown in Figure 3.3.12.

The coset subtrellis can be made tailbiting through a few row operations on Gs.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3.13: Shape o f tailbiting trellises constructed with the two-level squaring
procedure.

We split Gs horizontally at its midpoint, and separate the center Q matrices:

A trellis constructed from (3.3.10) has state-complexity profile

The matrix Gt can also be easily manipulated to produce state-complexity profile

(j , N , y.TV). By alternating these profiles between the disjoint coset subtrellises, a

more efficient state-complexity is obtained, as shown in Figure 3.3.13.

Suppose there are M coset subtrellises. Then a conventional trellis constructed

as in Section 3.3.3 has a maximum state-depth o f M • 2N. A tailbiting trellis con­

structed using our procedure has a maximum state-depth o f y • . The

<71 q\

qN qN
q\ q\

G j = (3.3.10)

qN
q\ q\

qN qN

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3.14: Tailbiting form o f Figure 3.3.9.

complexity ratio between the two is

2n ~] + 2T-1 1 VF* 1
. — — -4—----------- > —

2N 2 2 2

The tailbiting squaring construction therefore reduces maximum state-complexity

by up to 50%.

Trellises constructed with this method are completely uniform, in that they are

repetitions o f the sam e trellis sections, and they have the same state-complexity at

each time-index.

Exam ple 3 3 .4 . We now apply the squaring method to construct a tailbiting trel­

lis for a (16,11) Hamm ing code. The generator matrix corresponding to a coset

subtrellis, derived from (3.3.6), is

Gh =

b b
c c

b b

b
c

c
b
c

(3.3.11)

The tailbiting coset subtrellis constructed from Gh is shown in Figure 3.3.14. The

complete tailbiting trellis for the (16,11) code is shown in Figure 3.3.15.

□

3.4 *True-MAP decoding on tailbiting trellises.

For a tailbiting trellis, the exact trellis state probabilities can be obtained through

a calculation which excludes pseudocodewords. In general, to calculate the exact

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3.15: Complete tailbiting trellis for the (16,11) Hamming code.

state probabilities for one time-index, we must compute the product o f all transition

matrices in the trellis. This calculation must be done separately for each time-index,

resulting in a very complex set o f operations.

In certain special cases, however, the structure o f the transition matrices allows

the set o f products to be computed more efficiently. In some cases, the exact solu­

tion actually has lower complexity than the BCJR algorithm. This is the case for

some very small codes. A more efficient decoder for small codes may have appli­

cation when they form the basis o f larger codes, such as “braided” Turbo codes.

A general exact M AP algorithm for tailbiting trellises is as follows. Recall from

Section 3.2.2 that Ao = Ilf=i r,-. The matrix Aq can be interpreted as the transition

matrix o f the trellis, with all sections merged. It thus represents a single trellis

section % ,0 = (5o, L c , S l)> where L c is the set o f all connected sequences in the

trellis. But S l = So, so = (So, L c , So).

The elements aij o f A therefore represent the conditional probability o f travers­

ing a path from so = to so = S q \ The only genuine paths through the trellis are

those which connect So = to So = S q \ corresponding to the diagonal elements

o f Ao- All non-diagonal elements correspond to pseudocodewords.

To obtain the exact state probabilities, it therefore suffices to discard all but the

diagonal elements o f Ao. Let diag(Ao) be a row vector whose zlh member is equal

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to an. Then

Co = diag(A0) (3.4.1)

The remaining state probabilities g j , are found by taking cyclic shifts

o f the T,- products. Thus

L
■4 * = IJ [^'(/+0 mod L (3 .4 .2)

j= l
a - = diag (Ai) (3.4.3)

3.4.1 *CompIexity of the exact MAP algorithm.

In general, computing the permuted matrix products specified in (3.4.2) is very

complex. A matrix product r ,T l+i requires n r multiplications, where m is the

number of distinct branch labels in a trellis section. The BCJR algorithm requires

one multiplication per branch in a trellis section.

Exam ple 3.4.1. In the squared tailbiting trellis construction described in Section

3.3.5, each trellis section has 2N distinct branch labels. There are consequently

22/'/ multiplications required for a transition matrix product. Each section has 2 ir

branches, which is the number o f multiplications needed for one stage o f the BCJR

algorithm.

□

As the trellis’s state-depth and length increase, the complexity o f the exact M AP

algorithm grows more rapidly than that o f BCJR. For shorter, simpler trellises, how­

ever, less complex solutions are obtainable with the exact M AP approach. We il­

lustrate this with an example optimization for the (8,4) Hamming code.

3.4.2 *Exact MAP for tailbiting (8,4) Hamming trellis.

A tailbiting trellis for an (8,4) Hamming code is shown in Figure 3.4.1. In this fig­

ure, line-styles (e.g. solid, dotted, dash-dot, dashed) indicate the channel symbol.

Two branches are connected to the right of each state. The upper branch corre­

sponds to an information symbol o f ‘0 ’ and the lower branch to an information

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4.1: Tailbiting trellis for (8,4) Hamming code.

symbol o f ‘1’. These relationships are indicated explicitly in the left-most section,

and are implicit in the others.

The trellis sections To through T 3 are indicated in Figure 3.4.1, along with the

corresponding transition matrices To through T 3, and the state-variables So through

S3 . The tailbiting termination is indicated by the label So on both the left-most and

right-most state variables.

In this trellis, M AP decisions can be taken directly from the state-probabilities

a,-. The M AP solution for a,- is therefore equivalent to M AP decoding. Applying

(3.4.2) and (3.4.3), the M AP solutions for each state are found by

ao = diag(rorir2r3) a^diag^rsroTi)
aj =diag(rir2r3r0) 03 = diag(r3r0rir2)

These products are simple enough that they may be carried out by hand. It is

easily verified that the products (r i r 2) and (I^ Io) each have sixteen distinct prod­

ucts. In computing diag [(r iT 2) (I^To)], we find that an additional sixteen distinct

products are produced. Each o f these products represents a codeword. There are a

total o f sixteen codewords in the code. Once we have solved for G j, therefore, no

further multiplications are required. The remaining solutions require only addition

over these products.

We will now begin to count operations. We use the notation {*©, y© } to in­

dicate x multiplications and y additions. In obtaining Gj, we require { 4 8 0 ,1 2 0 } .

It is left as an exercise to verify that G3 requires { 1 2 0 } and Gq requires {12©}.

By judicious arrangement o f additions, G, can then be obtained with only {2©}

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

additional operations. The total required operations is {48© , 38© }.

For comparison, the BCJR algorithm requires { 2 4 0 ,1 2 ® } operations for a

forward or backward pass around the trellis. To approximate state probabilities,

BCJR requires one additional multiplication per state, which adds {12©}. Because

BCJR is approximate on tailbiting trellises, it is usually necessary to extend the

propagation more than once around the trellis. If we use the optimistic estimate of

1.5 passes around the trellis, then BCJR requires a total of { 8 4 0 ,3 6 ® } . The exact

M AP solution for this trellis therefore requires 43% fewer multiplications than the

BCJR algorithm.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

LDPC Codes

Low-Density Parity Check (LDPC) codes were first introduced by Gallager in 1962

[33]. It was not until very recently, mainly through the work of MacKay [56], that

the full potential o f these codes was discovered. Using probability propagation

along a code’s graph, suitably chosen LDPC codes can rival the performance of

Turbo codes with similar complexity [69,70].

An LDPC code is a large linear block code with a sparse matrix o f parity checks.

The design methods used for selecting LDPC codes and their decoders may be

thought o f as a prescription for selecting large random block codes, not unlike the

random codes suggested in the derivation o f Shannon’s coding theorem [78]. It

has also been shown that certain ensembles o f LDPC codes approach the Shan­

non limit exponentially fast in code length for some channels. Ensembles are also

known which converge exponentially in code length to limits within 0.1 dB of the

Shannon limit on the additive white Gaussian noise (AWGN) channel with binary

signaling. Codes are known which, on the AWGN channel, come within 0.04 dB

o f the Shannon limit at a code length o f 107, within O.ldB at 106, and within ldB

at 104[6 9 ,20].

4.1 Regular and Irregular Ensembles

4.1.1 Regular LDPC codes

The earliest LDPC codes were defined by Gallager in terms of their parity-check

matrices. A (dv, c?c)-Gallager code of length n, as defined in [70] has an n x m

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parity check matrix with random entries such that each row has exactly dc l ’s and

each column has exactly dv l ’s. The number o f rows m is given by m = n jA The

parameters dv and dc are chosen to be small, so that the resulting parity-check matrix

is sparse (hence the term “low-density”). In the corresponding graph, all variable

nodes have degree dv and all check nodes have degree dc. Such a code is also

referred to as a (dv,d c)-regu la r LD PC code.

LDPC codes are conventionally discussed in terms o f their non-normal Tanner

graphs. As explained in Section 2.3.2, the normal form o f a Tanner graph introduces

equality constraints at the variable nodes. In keeping with the LDPC literature, in

this Chapter we often refer to the sum-product “processing” at variable nodes. This

processing is actually performed by an implicit equality node.

Note that the pair (dv,dc), together with the code length n, specifies an ensemble

of codes, rather than any particular code. This ensemble is denoted by Cn(dv,dc).

Once we know the degrees of the nodes, we are still free to choose which particu­

lar connections are made in the graph. Some results indicate that the best way to

choose these connections is at random[69]. It is perhaps more appropriate to re­

word this result as follows: a formal construction procedure is unlikely to produce a

better code than those which could be selected at random. This result is more than

conjecture, but many researchers still prefer construction procedures which reduce

the complexity o f the decoder or encoder, and which reduce the occurrence o f short

cycles. Such methods may not produce better codes, but from many perspectives

they may result in better decoders in terms o f designability and efficient resource

utilization.

A socket refers to a point on a node to which an edge may be attached. For

example, we say that a variable node has dv sockets, meaning dv edges may be

attached to that node. There will be a total of ndv sockets on the left (variable) side

of any code graph G in Cn{dv,d c). The right (check) side o f G must also have ndv

sockets, as this is the number o f edges in the graph. A particular pattern o f edge

connections can therefore be described as a permutation n from left sockets to right

sockets. An individual edge is specified by the pair (i,7i(/)), which indicates that

the ith left socket is connected to the n (i)lh right socket.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Selecting a random code from the ensemble Cn(dv,dc) therefore amounts to

randomly selecting a permutation on ndv elements. M any permutations will result

in a graph which contains parallel edges, i.e. in which more than one edge join

the same variable and parity check nodes. Note that, in the parity check matrix,

an even number o f parallel edges will cancel. If they are deleted from the graph,

then the degrees o f some nodes will be changed and the code will cease to be a

regular LDPC code. I f not deleted, their presence will ruin the performance o f

message-passing decoding algorithms. We must therefore make the restriction that

permutations leading to parallel edges are disallowed.

The design rate o f a regular LDPC code is defined as

n dc

The design rate may differ from the actual code rate in that some check nodes may

be redundant.

4.1.2 Irregular LDPC Codes

Under probability propagation decoding, the performance o f regular LDPC codes is

disappointing. A Turbo code o f similar size will outperform a regular LDPC code

by about 0.5dB at BER=10-6 . It has been found that by allowing node degrees

to vary, LDPC codes’ performance using sum-product decoding may exceed that

o f Turbo codes. LDPC codes with non-constant node degrees are called irregular

codes [69].

An irregular code cannot be defined in terms o f the degree parameters dv and

dc. We must instead use degree distributions to describe the variety o f node degrees

in the graph. A degree distribution y(x) is a polynomial:

yM = (4 -L 2)
/

such that y (l) = 1. The coefficients y,- denote the fraction o f edges in the graph

which are connected to a node n € 9{, o f degree i, where 5\£ is a subset o f the graph’s

nodes. Usually 9 is the set o f all check nodes, or the set o f all equality/variable

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes. The degree distribution thus describes the pattern o f degrees among nodes

in one layer o f the code’s Tanner graph.

We also use the notation f y to denote the average inverse degree, which is

defined as

J y s j f ' ?(*)<& = Z y - (4.1.3)

To better understand (4.1.3), recall that y,- is the fraction of edges with degree i.

The fraction o f nodes with degree i, denoted by y , is proportional to j . We require

Xj-y- = 1. We use (4.1.3) as the proportionality constant, arriving at

i * = 7 7 ?

The code length n and two degree distributions - X and p for the variable and

check nodes, respectively - are sufficient to define an ensemble Cn(X, p) o f irregular

LDPC codes. A graph G from this ensemble will have n variable nodes. The

number o f check nodes, m, is given by:

m = n ^ . (4.1.5)
J 4.

The number o f degree-/ variable nodes in G is

i f X

Similarly, the number o f degree-/ check nodes in G is

Xi = T7T* (4-1.6)

£. = 77*-. (4.1.7)
U P

And the design rate o f the code represented by G is

n — m
r = -------- . (4.1.8)

n

Again, the design rate may differ from the actual rate. We can once again enu­

merate the left and right sockets o f the irregular code graph. Selection o f a code

from the ensemble is a selection of a permutation on Ne elements, where Ne is the

number o f edges in the graph, given by

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£ = -£ - . (4.1.9)
J A-

We rule out parallel edges in irregular codes as well.

4.2 Density Evolution and Code Selection

The notation defined so far allows us to define ensembles o f LDPC codes, but how

do we know which parameters to choose and which codes to pick for good per­

formance? The authors o f [70] use density evolution to compare the qualities of

different ensembles o f regular and irregular LDPC codes. They consider these en­

sembles on channels which can be ordered by a single channel parameter s (such

as N0 for the AWGN channel, or the crossover probability £ for the BSC). It is

convenient to define this parameter in such a way that the channel improves for

decreasing 5.

Each degree distribution pair (X, p), on a specific channel C(s) ordered by pa­

rameter s, has an associated threshold s*. The threshold is analogous to capacity:

the error-probability for transmission on C(s) for a randomly chosen (X.p)-code

can be made arbitrarily small if and only if s < s*. One degree-distribution pair is

better than another for a specified channel if its threshold is closer to the channel’s

capacity limit.

In designing good codes, we choose the ensemble with the best threshold, from

which we select a code with the largest feasible length. It also turns out that almost

all codes in the ensemble perform equally well. Code design may therefore consist

o f randomly sampling a few codes from the ensemble and selecting the best among

those.

The density evolution method is outlined as follows:

1. The channel is specified in terms of a single parameter s, and a decoding

algorithm is specified.

2. Assume the lim it o f infinitely long codes, in which the corresponding Tanner

graph is cycle-free.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

il-1)

Figure 4.2.1: Tree representation o f an infinitely large LDPC code.

3. Represent the decoder as a tree 7}. Note that the subtree 7}_i is indistinguish­

able from 7}, as illustrated in Figure 4.2.1. A subtree 7}_i is indicated in bold

in Figure 4.2.1

4. Based on the decoding algorithm, find a transformation jF which relates the

probability density function o f a message at iteration I to the density at itera­

tion / — 1. Thus if X is a message and p[X] is the probability density function

o f X , then p m fi = ^ { P }* '^ ie in itio density is determined

by the channel.

5. Based on the relation determine the set of parameters s for which the

density of incorrect messages converges to zero, i.e. the set o f s such that

the error probability converges to zero. The boundary of this set, s*, is the

ensemble’s threshold.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 The AWGN channel and the Gaussian Approxi­
mation.

The exact solution for density evolution is quite involved, but a close approximation

can be found with little effort if all messages in the decoder are assumed to have

a Gaussian density. This is in general not the case, but the Gaussian approxima­

tion greatly reduces the complexity and gives results which are close to the exact

solution.

When binary transmission is used on an AWGN channel, the probability density

o f log-likelihood ratio messages at the channel’s output is

fo (y) =

For a density fy (y) o f this form for a log-likelihood message Y, we can derive

the symmetry conditions [70]

(4.3.1)

M - y) = fy (y) e - y, (4.3.2)

m y = Y (4.3.3)

where my and d y are the mean and variance o f Y, respectively.

The condition (4.3.3) indicates that the density f y is completely determined by

the mean my. The Gaussian assumption thus allows us to consider the evolution of

a single decoder statistic.

This approach has another convenient property: in the log-likelihood domain,

there is a one-to-one relationship between the mean equality node output and the

error probability. I f we assume that the all-zero codeword has been transmitted,

then all correct messages should be negative. The error probability is therefore

simply

= (4.3.4)

where Q (x) is the well-known Gaussian integral from x to infinity, and m v is the

mean variable node message.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We can also describe this procedure for messages in the probability domain, in

ratio. Because the all-zero codeword is transmitted, a correct message should satisfy

Pq > p \ . The error probability is therefore the average p \ message at the variable

node’s output.

In terms o f computation, it is helpful to use both LLR and probability mes­

sages. There is a one-to-one correspondence between the two, so it is fair to switch

between them if doing so will improve the computation. Care m ust o f course be

taken to avoid biased averages. I f we generate an LLR from the average probability

message, the result is not necessarily the average LLR message. Such conversion

must take place before computing any averages.

The key problem of density evolution is to determine whether the error proba­

bility converges to zero. Let be the error probability at the output o f a variable

node after I iterations, and recall that s is the channel’s noise parameter, which for

a Gaussian channel is

In keeping with the notation used in [21], we define the function h (s,r) as the

error probability after one iteration, given r as the initial error probability. Thus

For error-free decoding, this sequence should converge to zero.

It is well known from the theory o f one-dimensional iterated maps that a re­

cursive sequence has a fixed point greater than zero if and only if there is a point

rp > 0 for which rp = h (s ,r p). This concept is visualized in Figure 4.3.1, which

shows various curves for h (s , r) along with the unit line h (r) = r. If h (s , r) does

not intersect the unit line, then the error probability converges to zero. If h (s, r)

intersects the unit line, as illustrated by the dashed curve, then there is a fixed point

greater than zero.

For large s (and therefore small c) , the error probability converges to zero.

For small s (large a), it does not. The boundary between convergence and non-

which a node’s output is a pair o f probabilities po and p\ instead o f a log-likelihood

This recursive relationship induces a sequence o f error probabilities, (= s , A]\ , .

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8 r

O ».9440

0-.8165

O-.7071

r

Figure 4.3.1: Iterative behavior o f h(s , r).

convergence is the threshold.

4.3.1 Computing the threshold.

In this section we review the procedure o f [21], which allows density evolution to be

carried out with minimal computation. The analytical results in this section assume

that “pure” sum-product decoding is used. This analysis therefore cannot account

for practical issues such as finite-precision arithmetic or approximate versions o f

the algorithm.

Thresholds calculated using this procedure are usually very close to the exact

thresholds for LDPC code ensembles. Although the true message probability den­

sities are not exactly Gaussian, very low error results from assuming that they are

[21]. We may therefore reasonably assume that the results provide a good estimate

of the bound on achievable performance for an LDPC ensemble.

We first examine density evolution in variable nodes. For variable nodes under

probability propagation in the log domain, the output message is simply the sum of

messages incoming on other edges. We assume the messages are independent and

identically distributed (i.i.d.), so that

mi1'1 = + (dv — 1 _1 ̂ (4.3.7)

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where m fi is the mean LLR output from the variable node at iteration I, and mji/-1 ̂

is the mean LLR output from a check node at iteration (I— 1), and m^ = s = j ^ .

The density evolution through a check node is more complicated. If V/ is an

incoming LLR message to the check node, i 6 { 1 , dc - 1 } , and U is the outgoing

LLR message, the update rule for a check node is

(4.3.8)
2 / AA V 2, z / 1=1 \ ,

To find the evolution of the mean LLR, we assume the messages are i.i.d and

take the expectation o f both sides:

-(S. tanh
'VT dc- l

(4.3.9)

To simplify the analysis, we define a function (j) as

<|)(m u) = 1 - E tanh | y (4.3.10)

1 - - j k z U tanh (!) exP H c b du if mu >.

1
$ 3 .1 1)

otherwise

The (J) function looks complicated and surprising, but it has a simple explanation.

In Section 4.3 it was mentioned that the LLR of the mean probabilities is not equal

to the mean LLR. Some more complicated relation is required to transform between

them. This relation is expressed by the <)) function:

$ (£ [L L R])= £ [p i]. (4.3.12)

By using the one-to-one functions § and <J>—1, we may easily switch between mean-

LLR and mean-probability messages. Unfortunately, <f> or <J>-1 must be approxi­

mated, either numerically or by some very inexact formulas. The author o f this

thesis uses Monte Carlo estimation to compute (j).

By converting from LLRs to probabilities, and switching between po and p\

whenever it is convenient, we find that the mean of the check node’s output message

is

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(/—I) m>u = r 1{ l - [l - < t) (m t ,“ 1))] </c (4.3.13)

The results (4.3.7) and (4.3.13) are sufficient to compute thresholds for regular

ensembles. We treat node degrees as random variables. The message densities are

now assumed to be Gaussian mixtures, with (4.3.7) and (4.3.13) as partial solu­

tions. Combining these partial solutions to produce the general density evolution

for irregular ensembles, we arrive at

1} = 1 j 1 - !))] | (4.3.14)

(4.3.15)

4.3.2 Threshold Determination

Equations 4.3.14 and 4.3.15 describe density evolution in the LLR domain. It is

much easier to work with evolution in the probability domain, as in (4.3.6). To

convert to the probability domain, we simply use the <(> function:

h j{ s ,r) = <)> s+(/-l)£Pi-<l> 1 (i — (i — '■)* *)
1=1

7=1

Note that for a regular ensemble, there is only one hj.

The threshold is explicitly defined as

(4.3.16)

(4.3.17)

s* = inf { s e R + : h{s, r) - r < 0, V r 6 (0, <J)(s))}. (4.3.18)

Using (4.3.18), the threshold can be found numerically using a simple search

algorithm. The search is made easier by examining the curve h (s ,r) — r, which

always has the shape shown in Figure 4.3.2. The threshold is the value o f s for

which h (s , r) — r barely touches zero at its maximum.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Density Transfer Functions

s below s*

s above s‘

0.05 0.1 0.15 0.2 0 2 5 0.3 0.35 0.4

Figure 4.3.2: A detailed view of h (s , r) — r when s is ju st above, just below, and
equal to the threshold. These curves are for the irregular LDPC ensemble defined
in the first (leftmost) column of Table 4.2.

Approximations

Exact computation o f (J) and (|)_1 can be computationally expensive. The compu­

tation speed can be greatly improved using a few approximations. For small x,

perhaps x < 10, a good approximation for <{> is

where a = —.4527, (3 = .0218, y = .86. For larger x, the following upper and lower

bounds become tight, so that their average can be used as a good approximation to

Tables 4.1 and 4.2 present thresholds for a variety o f rate-^ irregular LDPC en­

sembles. Exact thresholds from [69] are presented alongside thresholds computed

using the Gaussian message approximation and the cj> approximations (4.3.19) and

(4.3.20). The maximum observed error in these estimates is 0.19dB.

0 (x)« (4.3.19)

(4.3.20)

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1: Exact (SNR*) [69] and Gaussian-approximation (SNR£A) thresholds for
various rate-1 /2 degree distributions on the AWGN channel, in terms of Eb/No
(dB). The BPSK limit for this rate is 0.1870 dB.

max dv 4 8 9 10 11 12

X2 .38354 .30013 .27684 .25105 .23882 .24426
X3 .04237 .28395 .28342 .30938 .29515 .25907
X4. .57409 .00104 .03261 .01054
X5 .05510
^6
X~j
x% .41592 .01455
X9 .43974
X\o .43853 .01275
X n .43342
X \2 .40373

P5 .24123
P6 .75877 .22919 .01568
P7 .77081 .85244 .63676 .43011 .25475
P8 .13188 .36324 .56989 .73438
P9 .01087

SNR* .8058 .4483 .4090 .3923 .3799 .3727
SNR fc, .8459 .5569 .5088 .5135 .5125 .4941
Error .0401 .1086 .0998 .1212 .1326 .1214

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2: Exact (SNR*) [69] and Gaussian-approximation (SNR£A) thresholds for
various rate-1 /2 degree distributions on the AWGN channel, in terms o f Eb/No
(dB). The BPSK limit for this rate is 0.1870 dB.

max dv 15 20 30 50

X-2 .23802 .21991 .19606 .17120
X3 .20997 .23328 .24039 .21053
X4 .03492 .02058 .00273
?15 .12015
X& .08543 .00228
X7 .01587 .06540 .05516 .00009
x& .04767 .16602 .15269
Xq .01912 .04088 .09227

.01064 .02802
X.J4 .00480
^15 .37627 .01206
A.19 .08064
X20 .22798
>̂28 .00221

^30 .28636 .07212
^50 .25830

P8 .98013 .64584 .00749
P9 .01987 .34747 .99101 .33620
P10 .00399 .00150 .08883

Pll .57497

SNR* .3347 .3104 .2735 .2484

SNRca .5006 .4822 .4629 .4245
Error .1659 .1718 .1894 .1761

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.3 ^Numerical methods for density evolution.

Density evolution is a powerful tool for comparing the performance bounds of code

ensembles. It may also be used to compare performance bounds o f non-ideal or

suboptimal algorithms. With these algorithms, the analysis o f Section 4.3.1 may be

inappropriate.

In this Section, we present an alternative M onte Carlo approach to density evo­

lution. We still employ the Gaussian message approximation, but replace the formal

node update rules with “black-box” functions. We denote these functions by f v (U)

and f c (V), for variable and check nodes, respectively. The symbols U_ and V repre­

sent sets of messages from check and variable nodes, respectively, after the previous

iteration.

The quantities o f interest are r and h (s , r), the average p\ message at the input

and output o f an iteration. The mean input r is given. The mean output can be

computed through a sequence o f integrations:

r — f f c (V) - p v (V) - d V — * J f v {U)-9 u (U)-d U = h (s ,r)
fiv compute p u compute /*0ut

(4.3.21)

where pv and pu are the probability density functions o f variable and check mes­

sages, respectively, and fiv and p u are the corresponding mean values. We assume

that pv and pu are Gaussian densities obeying the symmetry conditions (4.3.2) and

(4.3.3).

The integrals in (4.3.21) can be computed through a variety o f numerical meth­

ods. In this Section we focus on the use o f M onte Carlo integration. The Vegas

algorithm [50] is a method o f adaptive Monte Carlo integration which uses a combi­

nation of importance sampling and stratified sampling to provide a fast and accurate

estimate of multi-dimensional integrals. An implementation o f the Vegas algorithm

is provided as part of the GNU Scientific Library [1], which is used to compute the

results presented in this chapter.

Using the Vegas algorithm, an estimate o f the integral is quickly obtained to

within a specified error tolerance o f ± to l. Each estimate % thus has an associated

error £,- which is assumed to be a Gaussian random variable with zero mean, and for

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which Czi = tol.

The maximum point of h (s, r) — r can be identified by measuring the curve’s

slope. Suppose we use the central difference method to estimate the slope at rm. We

choose two points r\ and r2 such that rm is their midpoint. Let y \ = h (5, n) — r\ and

y i = h (s , rn) — r2 . The slope is then simply (yi —y2) / (n — 2̂) = (yi —y2) /A r. Let

Gy refer to the standard deviation of error for h (s ,r) . Then the standard deviation

of the slope error, a siope> is
n/2

Aslope — Ar (4.3.22)

where the y / l factor arises because (yi — y2) is the sum o f two independent, identi­

cally distributed Gaussian random variables.

The resulting error in slope measurements results in a difficult trade-off. If the

points are too close together, then Gsiope will blow up. For Ar as small as 0.14, <Jsiope

is an order o f magnitude larger than Gy. It is also not possible to make Ar very large,

because the curve is not symmetric about the maximum (see Figure 4.3.2).

To see the effect that this has on the estimate o f rm, we model h (s. r) — r locally

as a parabola about rm. Thus y = ym — a (r —rm) , where a is a width parameter.

The estimate o f rm, written r^ , is equal to rm plus a Gaussian error term, er. The

slope of h (5, r) — r is

I ; = “ 2 a (r - r m)

^ ^slope = 20C£r

- * - f4 -3-235

The width parameter, ot, must be measured for each code ensemble. For a partic­

ular set o f degree distributions, a appears (based on observations) to stay constant

(or nearly constant) when s is varied.

We now know the variance o f our estimates o f rm and the slope at rm. The next

quantity of interest is ym and its corresponding estimation error, em. We evaluate

h (5, r) — r at r = r^. Then

ym ~ ym ot (r m rm) + Ey

=> £m = —ct£r+£y (4.3.24)

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where the ey term arises from the M onte Carlo integration, and the 0£~ term is due

to the error in Tm.

The error now has a component proportional to the square o f a Normal random

variable. The resulting error, £m, has a systematic bias, because the mean of £“ is

equal to aj:. It is also well known that the variance o f £^ is 2 • c f . The mean and

variance o f £m are therefore equal to

fim = OC •

= - (5) - (B) 2- (4-3-25>
= 2 - a - - o f + c$

= 2 a |^ m|+ o J . (4.3.26)

As long as oy/A r 1, the bias fim is very small, and <5m « o v.

Finally, we estimate the threshold, s*, using a sequence o f estimates. When

y ^ (s) is sufficiently close to zero, we terminate the search. We wish to evaluate the

error in this estimate. Let p be the slope o f y m (s), evaluated at s*:

(4.3.27)
s = s ’

Then the threshold error, £5, is approximated by

£s = j - (4.3.28)

This estimate is also biased. The mean and standard deviation o f the threshold

measurement are equal to those o f y ^ , scaled by 1 /P :

* - - (a ?) - (B) 2 (4-3-29>
c s = ^ 2 - ^ s|2 + c t 2 « ^ . (4.3.30)

The accuracy o f the threshold estimate is now specified in terms o f known or

measurable parameters. The parameters a and P are typically greater than 1. The

critical choice is the ratio Gy/A r , which should be on the order o f 0.01 for good

estimation.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3: Estimated parameters, bias (m5), error standard deviation and thresh­
old results for various regular LDPC ensembles. In all cases, the tolerance is
Gy = 0.001 and Ar = 0.025.

dv dc r a 0 Us Os s* (&) BPSK Limit (dB)

3 4 0.25 1.09 30.5 2.405 • 10"5 3.28-10"5 0.3012 0.8091 -0.762
3 5 0.4 1.88 32.6 1.305 -10-5 3.07-10"5 0.4755 0.7509 -0.203
3 6 0.5 2.45 35.7 9.15-10"6 2.80-10“5 0.6297 1.002 0.202
3 8 0.625 3.53 40.0 5.67-lO '6 2.50-10"5 0.885 1.511 0.774
3 9 2/3 4.01 41.9 4.76-10-6 2.39-10"5 0.9935 1.733 0.992
3 12 3/4 5.32 46.2 3.25-10“6 2.16-10~5 1.258 2.246 1.50
4 5 0.2 1.90 25.8 1.63-lO"5 3.88 • 10“5 0.343 2.34 -0.940
4 6 1/3 2.59 28.2 1.095-10"5 3.55-lO '5 0.4704 1.50 -0.457
4 8 0.5 3.60 32.6 6.82-10"6 3.07-10"5 0.6931 1.42 0.202
4 9 0.556 4.09 34.3 5.70-10-6 2.92-10"5 0.7886 1.52 0.444
4 10 0.6 4.61 35.7 4.86-10"6 2.80-10~5 0.8737 1.63 0.651
4 12 2/3 5.41 38.5 3.84-10-6 2.60-10"5 1.027 1.88 0.992

Exam ple 4 .3 .1 .: For a (3,4) regular LDPC ensemble, a set o f estimation parameters

are chosen and/or measured as follows:

°y = 0.001

Ar = 0.025

a « 1.09

P « 30.5.

This results in an estimation error with these characteristics:

lis = 2 .405 -1 0 "5

Gs = 3 .2 7 9 -10“ 5.

The calculated threshold for this ensemble is 0.3012. Results for several regular

ensembles are presented in Table 4.3.

□
104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.4 *Iterated integration.

The method proposed in Section 4.3.3 requires iterated Monte Carlo integration.

Each integration is an estimate with its own error. While a particular estimate may

have an error with variance cj;ic , the final estimate will have a greater error vari­

ance, because of the propagation of intermediate estimation errors.

Let (jiv) be the integral estimator for check nodes, and 9A.V (jiu) the estimator

for variable nodes. In the first estimation, we have

f lu — { f lv) = f lu -I- £w (4.3.31)

Then in the second estimation,

flou t = (j l u + £u)

where % =

j“out + £ v + X £«5

^flou t (f l)

dfl
(4.3.32)

H=fiu

The overall error eout has a 0ut = a v T + x , where a corresponds to o y in Section

4.3.3.

To properly account for the error in //out, it is necessary to compute an estimate

of %, which is given by

3 f
1 = dfl J

= J f (*) ^ [P (fl,x)]dx (4.3.33)

where p (ji.x) is the product of i.i.d. Gaussian LLR density functions with mean fl,

and x is a vector o f input messages. After evaluating the derivative, we find that (for

one dimension)

^ [p 0,jc)] = p{ji,x)
' x - f l \ f 2 , X - f l \ 1 (4.3.34)

4fl J \ fl J 2fl

When iterated integration is used, the parameter c y in Section 4.3.3 must be

replaced by a out, which is itself an estimate and must be computed numerically

using (4.3.33) and (4.3.34).

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rv My Mv M’c f̂ c f̂ c

Hv M-out

(0) (1) (2) (dc-2) (de-1) (dc) (dc+dv—4) (dc+dv-3)
r r r r r r r r

Figure 4.3.3: Iterated integration using only three-edge nodes.

It may also be necessary to generalize this error analysis to account for many

iterated integral estimations. Such a scenario is illustrated in Figure 4.3.3, in which

check and equality nodes are treated as a cascade o f three-edge nodes. This reduces

the number o f dimensions in the integrals o f (4.3.21), and may make the computa­

tion more efficient.

As indicated in Figure 4.3.3, this approach requires dc + d v — 3 integrations. The

corresponding exact integrals are labeled fi^l\ An iterated sequence o f Monte Carlo

integrations results in a sequence of estimations f i ^ , defined recursively as

$ = / ^ + £ / + £ / - 1 %i (iM(‘_1)) , I > 0 (4.3.35)

where Zi = 0.

Note that each is a function o f and is the input. The resulting standard

deviation of the estimate is also a recursive sequence:

(4.3.36)

The final error deviation calculated by (4.3.36) is the actual value of a y which

should be used in all expressions in Section 4.3.3.

4.4 An algorithm for computing the threshold.

In this section we present a practical algorithm for carrying out density evolution

with the Gaussian approximation. The algorithm is simple, and is not presented as

an optimal solution. It is presented in order to provide a tangible demonstration o f

density evolution.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As in previous sections, we use the notation y (r) = h (5 , r) — r. The algorithm

is divided into two phases. During the first phase, we ensure that the maximum is

large, and a coarse search with low precision is used to locate it. We then improve

the precision and find the point through small adjustments.

1. Initialize .s = so to a low value, perhaps near the BPSK Limit (Section 2.2).

This ensures that the maximum o fy ,y ffl, is greater than zero and easy to find.

2. Allow a high integration error tolerance, and compute y (r) for a sequence

o f r values, beginning with r slightly greater than zero. Increase r in small

increments, measuring the slope. Stop when the slope crosses zero. Call this

point ro.

3. Now switch to a low integration error tolerance. Choose two points r + and

r~ such that r~ < ro < r + and r + — r~ = Ar. M easure the slope at ro using

the formula / (ro) = (y+ — y~) /A r. Shift ro in decreasing increments until

the slope is sufficiently close to zero. Call the resulting point

Having measured r £ \ a is estimated according to

for some point r near rm 1.

In the next phase o f the algorithm, we increase s slightly so that s = s i > so,

and use rffl as an initial guess for the new maximum of h (s j.r) — r. We wish to

(4.4.1)

estimate the new maximum point (r m \ y „ ^ . To do this, we assume th a ty (r) is a

parabola in the neighborhood of and we assume that rffl is close to rjJK We

find the new maximum as follows:

1. Let ro = rffl. Compute / (ro) using the central difference method.

2. The maximum rm is approximately located at

(4.4.2)

We use this formula to generate a sequence o f guesses r,- = r/_i +

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. We stop when / (r,-) is sufficiently close to zero, and declare = r,- and

yi!} = y (n) .

Once a pair o f maximum points has been observed, we select the next threshold

guess, S2, by using a linear approximation. We arrive at a sequence of guesses

using the update rule:

y j) - y {J r l)R. = —— — — , (4.4.3)
s j - s j - 1

y [J)
Sj+\ = (4.4.4)

P j

This procedure is repeated until y $ is sufficiently close to zero. We then declare

5* S j .

A typical sequence o f y (r) estimates computed during execution o f this algo­

rithm is shown in Figure 4.4.1. Both the low-precision and high-precision estima­

tions are represented, by dashed and solid curves, respectively. The corresponding

sequence o f measured slopes, / (n), is shown in Figure 4.4.2. These curves repre­

sent the algorithm’s execution for a (4,12) regular ensemble.

In Figure 4.4.2, the fine-precision search begins as soon as a zero-slope is de­

tected. Each time s is altered, the slope jum ps away from zero, but is immediately

corrected after application o f the update rule (4.4.2).

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.20

0 .0 5

0.00
0 -

0.0 0.2 0 .3

Figure 4.4.1: A sequence of estimations of h (s ,r) — r during a threshold search.
The initial low-precision search is shown as a dashed curve. The sequence of high-
precision estimates o f y $ is joined by a solid curve.

0 .5

0.0

0.1 0 .2 0 .3
r

Figure 4.4.2: A sequence of slopes measured during threshold search.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Analog Decoding Circuits

5.1 The translinear principle.

In order to implement the sum-product algorithm, we need two operations: m ul­

tiplication and addition. A third operation, normalization, is also helpful in a real

implementation. Normalization of a vector x, written \x\, is defined by

lil = 5 T T - <5.1.1)

As we mentioned in Section 2.4.2, normalization o f probability masses does not

affect the correctness o f the algorithm.

These operations are conveniently provided by a class of circuits known as

translinear circuits [75]. A three-terminal translinear device, illustrated in Figure

5.1.1, is basically an idealized transistor.

For the purposes o f this thesis, we say that a translinear device has three ports:

the gate, the source and the drain. The drain current flows between the drain and

the source, and is controlled by the voltage between the gate and the source.

o H [

Figure 5.1.1: A three-terminal translinear device.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The idealized relationship between Id and vgs is

(5.1.2)

where To and n are proportionality constants with units o f A and V 1, respectively.

Such a device is called “translinear” because its transconductance, defined as

is linear with respect to a fixed bias current Ijo. In the case o f a device modeled

by (5.1.2), the transconductance is gm = n-Ido- We will see that MOS transistors,

biased in their subthreshold operating region, can be used as translinear devices.

Before exploring the details o f physical MOS transistors, we introduce fundamental

translinear building blocks using the very simple model (5.1.2).

Translinear devices can be used for multiplication o f analog currents because

they can be arranged in translinear loops. A translinear loop is a closed Kirchoff

voltage loop which traverses the vgs o f an even num ber o f translinear devices. An

example o f such a loop is shown in Figure 5.1.2. N ote that the bottom two transis­

tors are upside-down in this figure. By tracing a closed loop across devices 1,..., 4,

we anive at

Because o f the orientation o f voltages in the loop, we refer to currents on the

left-hand side o f (5.1.4) as clockwise currents, and those on the right-hand side as

counter-clockwise currents. It is a simple exercise to generalize (5.1.2), yielding

the following principle:

Definition 5 .1 .1 . T he T ranslinear P rincip le. In a translinear loop, the product o f

clockwise currents is equal to the product o f counter-clockwise currents.

vgsl "b vgs3 — vgs2 "b vgs4

= > • I\ - 12 = I2 ’ I 4 - (5.1.4)

□

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II 12

G2

G3G4

1314

Figure 5.1.2: A simple translinear loop.

I i I .

Figure 5.1.3: Current mirror circuit.

5.1.1 Basic translinear circuits.

We now apply the translinear principle to some important basic circuits. The sim­

plest is the current mirror, shown in Figure 5.1.3. In this circuit, /] and h have

opposite orientation. They are the only two currents in the loop, so I\ = h .

Another simple case is the Gilbert multiplier, shown in Figure 5.1.4, in which

we assume that Ix \, 1x 2 and /yi are known (inputs), while lz \ and l z i are unknown

(outputs). This circuit contains two distinct translinear loops. We recognize loop 1

as a current mirror, so that Is = I y i . Loop 2 traverses from node A to node B, and

then back to node A. The translinear principle dictates that

Ix\ ■ l z i = 1x 2 • Iz] ■ (5.1.5)

Because current only flows from the drain to the source o f a translinear device, it is

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

!x l !z l Jz2 rx2

I 1

VI

w - h b r- w - i

Loop 2

P ' W
Loop 1

also the case that

Figure 5.1.4: A simple Gilbert multiplier.

Is

iyi

= lz i +IZ2

=> Iz\ =
i y \ - i x i

7^1 -{-Ixo
(5.1.6)

The simple Gilbert multiplier circuit thus provides a normalized multiplication

(in the positive quadrant) o f analog currents. This takes care o f two of the neces­

sary operations for sum-product decoding. The third operation, addition o f analog

currents, is as simple as shorting wires together.

We may also expand the multiplier o f Figure 5.1.4 by adding an arbitrary num­

ber o f Ix inputs, as illustrated in Figure 5.1.5. Based on the derivation o f (5.1.6), it

is easy to verify that

IZi j —
Iyj-Ixi

J 1 U Itk
z = Iyj'\x |.

(5.1.7)

(5.1.8)

The circuit of Figure 5.1.5 therefore multiplies a vector of currents, {Ixi}f= l, by a

scalar Iy j, while normalizing to ensure that X;/z,- = Iy j. We could also describe

(5.1.7) as normalization o f a current vector. This normalizing operation is linear, so

that for any pair /, j , Ix i/Ix j = Iz i/Iz j.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IzNjI z l j 1x2

Ixl = 1

M4 Ml

M2

Figure 5.1.5: A Gilbert multiplier circuit for vector scaling.

5.1.2 The Gilbert vector multiplier.

The simple multiplier o f Figure 5.1.4 can be generalized to provide normalized

vector and matrix multiplications [52]. This circuit is shown in Figure 5.1.6, where

again we assume that Ixi and Iy j are known inputs, while Jzij are unknown outputs.

The circuit of Figure 5.1.6 is simply a repetition o f the basic Gilbert multiplier of

Figure 5.1.4. The current mirrors at the bottom have been replaced with current

sources to simplify the diagram.

The translinear loops in this circuit are replications of the loops from Figure

5.1.4. Applying the same analysis, we find that for 1 < i < n, 1 < k < n, and

1 < j < m ,

h i j - Ix k = h k j • Zxf. (5.1.9)

We also find that for 1 < j < m,

= (5.1.10)
A-=l

Equations 5.1.9 and 5.1.10 provide enough information to solve for the output

/ Zij'

h i j

J7 . . n

1X‘ lc= 1
i y j - ix j

Hk=ilx k
(5.1.11)

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

*ss ^ ^ " • ^ Ni.os ^ Nv<^

Figure 5.1.6: Gilbert vector multiplier.

We can also represent (5.1.11) in terms o f vector and matrix operations. L e t*

and y be column vectors whose elements are the currents { Ix \ , . . . , 7x„) and { /y i, . . . , Jym},

respectively. Let Z b e a n n x m matrix whose (/, j) * member is equal to I z i j . Then

T

Z = f e = " l“ | T ' (5 ' L 1 2)

5.13 Translinear sum-product circuits.

Suppose we design a Gilbert multiplier circuit so that x and y are proportional to

probability masses. Let I y be an arbitrary current which represents a probability

o f one. Suppose x is a discrete random variable with n possible outcomes =

{*i, ...,x„} . Then we say that x represents a probability mass for x if Ix i = I y •

Pr{x = x,}.

If we use the normalized current unit A ' = Iu , so that I y = 1 A ', then the denomi­

nator o f (5.1.12) becomes SfcXfc = and can be neglected. From this perspective,

the Gilbert vector multiplier supplies every multiplication between the probability

masses o f x and y. Because the products are output as analog currents, summation

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cpy(O) (n y (i)

Figure 5.1.7: A Gilbert-multiplier implementation of the equality node.

is as simple as shorting wires. The Gilbert m ultiplier therefore provides the core

operations needed to implement the sum-product algorithm expressed by (2.4.3).

E xam ple 5.1.2. E quality circuit. A translinear implementation o f the SP algo­

rithm for an equality node is shown in Figure 5.1.7. For this simple node, we only

need the products zo = *0'>’o and Z \ = x \ - y \ . The Gilbert multiplier produces those

products, as well as the unwanted products x q - y\ and x \ ■ yo, which are simply

discarded by tying them to Vdd-

□

5.1.4 Duality in translinear circuits.

In Section 2.1.1 we examined the duality between log-likelihood ratios and proba­

bility masses. The same duality exists naturally in translinear sum-product circuits.

W hen analog currents are used to represent probabilities, differential voltages are

proportional to log-likelihood ratios.

This duality is demonstrated with the differential pair circuit o f Figure 5.1.8.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P. Po

Figure 5.1.8: Differential pair circuit.

Let VX = V ^ — V~. The currents Po and P\ are given by

p0 = e (vP - ^) (5.1.13)

Pj = e{vt ~ vs) _ (5.1.14)

After a simple rearrangement, we see that

= In (* (v’+- ' ' - - v + v ,))

= V„

therefore Vx is proportional to a log-likelihood ratio. Every translinear sum-product

circuit is thus equally well described using the language o f probabilities (current)

or that of log-likelihood ratios (voltage).

5.2 CMOS translinear circuits.

Translinear devices are idealized circuit elements. As it turns out, MOS devices

(“Metal-Oxide-Semiconductor”) exhibit translinear behavior when their current bias

is very small (typically less than 1 fiA). This region o f operation is often referred

to as subthreshold o r weak-inversion. In this section, we re-examine the translinear

circuits o f Section 5.1, specialized to MOS devices.

There are two types o f MOS devices, positive channel (PMOS) and negative

channel (NMOS). These are actually four-terminal devices, as indicated in Figure

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D S

i t
g H E - B

G B

S D

NMOS PMOS

Figure 5.2.1: Complementary MOS devices.

5.2.1. Both types o f devices have gate, drain, source, and bulk (also known as

the body) terminals. Note that the source and drain terminals are reversed in the

PMOS device. The drain current Iq flows between the source and drain terminals.

Approximately no current flows through the gate o f either device (the gates act as

capacitors), and approximately no net current flows through the base.

For NMOS devices, the base is usually connected to the most negative potential

in the circuit, labeled Vss (or simply ground if the circuit has a single-sided power

supply). For PMOS devices, the base is almost always connected to the most posi­

tive potential in the circuit, labeled Vdd- For most “first-order” circuit analysis, the

base terminal is ignored. It is only relevant when the source-to-base voltage, vs&, is

non-zero.

In current-mode circuit design, it is helpful to distinguish between devices which

act as current sources, and those which act as loads. For the most part, any device

in which the gate and drain terminals are connected is a load. This is called a diode-

connected configuration. For the most part, any other device is a current source. In

translinear circuits, current inputs arrive at loads, and outputs are drawn from cur­

rent sources. Any PMOS current source must be connected to an NMOS load, and

any NMOS current source must be connected to a PMOS load. This is illustrated in

Figure 5.2.2.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vdd
xT

Vdd
✓r

s
J b n

D

PMOS Load NMOSNMOS Load

Figure 5.2.2: Configuration o f devices as current sources and diode-connected cur­
rent loads.

5.2.1 MOS device models.

In conventional digital design, MOS devices are treated like switches. Device op­

eration is governed with respect to a threshold voltage V*. If |vgJ| > then the

device is on (closed circuit). Otherwise, it is o ff (open circuit). A more detailed

standard model o f MOS devices is the so-called square law. The square law dic­

tates that the device current, under certain operating conditions, is proportional to

The square law applies when the drain-source voltage, v js, is greater than vgs —

yth, and when the transistor is in strong inversion. Usually, strong inversion is where

Vg5 > V*, as opposed to weak inversion or subthreshold operation, where < V^.

Definition 5.2.1. S trong-inversion. W hen vgs > Vth, the transistor is said to operate

in strong-inversion, which refers to the presence o f inverted charge carriers within

the device’s channel. In strong inversion, the physical mechanism of current flow

in the device is dominated by drift current.

I f the drain-source voltage satisfies v^s > vg, — Vth. and the device is operating

in strong inversion, then

where fi and C'ox are fixed parameters o f the fabrication process. W and L are the

width and length o f the MOS device, respectively.

(vgs ^ th) -

(5.2.1)

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□
W hen vgs is below the threshold, a very small device current flows. In conven­

tional CMOS circuit design, this subthreshold current is often said to be effectively

zero. In fact, the very small device currents in this region allow us to construct MOS

translinear circuits which provide analog computing functions with extremely low

power consumption.

Definition 5.2.2. W eak Inversion. W hen vgJ < Vth, and when the device current,

Id , is less than one-tenth o f the device’s specific current, Is , the device is said to

operate in weak inversion. In weak inversion, the dominant mechanism o f current

flow is diffusion.

The specific current is defined as

where p. is the mobility o f charge carriers in the device, Cox is the oxide capacitance,

U j ~ 0.025 V is the well-known thermal voltage, W and L are the device’s channel

width and length, respectively, and k and V7 0 are constants o f the fabrication pro­

cess. Typically k « 0.7 (unitless), but k may lie in a range between 0.5 and 0.99

[58]. VYo is closely related to the threshold voltage, and has units o f Volts. V70

is usually less than IV , and may be as low as 0.3 V, depending on the particular

fabrication process.

W hen operating in weak inversion, M OS transistors obey the model

where f s, f g, and f ds account for small non-linear fluctuations in the device model.

It is often sufficient to use the approximate model (5.2.4), where we consider Iq to

be a small constant current [82].

Circuits based on this subthreshold model were popularized by Vittoz, et. al.

[82] and Mead [58].

□

(5.2.2)

b = Is-fs(vs)-fg(yg) - e ^ ■ 1 - f ds(vds)-e (5.2.3)

(5.2.4)

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I f we write all voltages in units of V '« ^ • V, and assume that all devices have

equal dimensions, and if we write all currents in units of jr, then (5.2.4) becomes

ID = ev* - [l - e ~ Vd*] (5.2.5)

Furthermore, if v^s is sufficiently large (e.g. greater than 4Ut ~ 3V' ~ 200 mV),

then the term e~Vds in (5.2.5) can be neglected.

Definition 5.2.3. S a tu ra tio n . When an MOS device is operating in weak inversion,

and e~Vds is small enough to be neglected, then the device is said to be in saturation.

In this region, the device current is governed by

ID = ev**. (5.2.6)

□
We immediately recognize (5.2.6) as the model o f a translinear device. In weak-

inversion, saturated MOS transistors therefore operate as translinear devices. In

effect, this means we can do useful computation even when, from the conventional

perspective of operating above V ,̂, all o f the transistors in a circuit are turned off.

Definition 5.2.4. U nsa tu ra ted m odel. If v js is not sufficiently large, then the effect

o f e~Vds must be accounted for in the model. The equation for Ids can then be

expressed in terms o f forward and reverse components [74]:

Id = I f - I r

where I f = eVgs

and Ir = ev&d. (5.2.7)

In (5.2.7) we have used the same normalized current and voltage units as in (5.2.5).

This situation can be analyzed using the translinear principle, if the transistor is

modeled by a pair o f parallel translinear devices. The first device is an ordinary

transistor with device current / / . The second is a “backward” transistor, with device

current Ir, controlled by the voltage drop Vgj. This model is illustrated in Figure

5.2.3. To apply this model, we incorporate the backward transistor in an additional

set o f translinear loops.

□

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ID

Vgd

Vgs

+ iIf

Figure 5.2.3: Unsaturated weak-inversion translinear MOS device.

As a final note on MOS device models, we must address what happens when

Vgs ~ Vth and Id ~ h - In this case, the device is somewhere between weak-inversion

and strong inversion.

Definition 5.2.5. M oderate Inversion. When an MOS transistor has a device cur­

rent satisfying 0.1 < Id / I s < 1 0 , the device is said to operate in moderate inversion.

In this region, both drift and diffusion mechanisms make significant contributions

to the current flow. The device’s behavior is somewhere between the models (5.2.1)

and (5.2.3), but is difficult to describe in terms which are both precise and general.

5.2.2 The canonical CMOS sum-product circuit.

An approach for CMOS analog decoder designs, elaborated in [52], has emerged

as a popular topology for analog decoder designs. This topology, which is based on

the generalized Gilbert multiplier o f Figure 5.1.6, is shown in Figure 5.2.4. Figure

5.2.4 uses a simplified “box notation,” explained in Figure 5.2.5, in which an array

o f source-connected NMOS transistors is indicated by a large box. Because o f

its relative popularity, the architecture o f Figure 5.2.4 will be referred to as the

canonical topology.

In Figure 5.2.4, X denotes the ordered sequence of row inputs (nodes) < x \ , . . . , x/v > ,

and 7 denotes the ordered sequence of column inputs (nodes) < y i, > . The

current inputs Ix t and Iyk arrive at input nodes xt- and y*, located on the diode-

□

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input sets are X and Y.
Current to voltage conversion:

Ix, lxN
X , I ~ 7 1 X k,1 — | 1 T XN _

H[]«. -

Vref Vref

iyM

Outputs (currents directed toward ground)
Renormalization

(optional)

Connectivity

Figure 5.2.4: Canonical sum-product circuit topology.

— (N z

OutI Out2 OutN

In2 InNInl_j

src

Figure 5.2.5: Symbol for a source-connected transistor array.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

connected transistors on the left, labeled M l and M3. All devices typically have the

same dimensions in a canonical sum-product circuit. Each input Ix t is derived from

the probability px (/):

Intermediate outputs emerge from the top of the source-connected boxes in Fig­

ure 5.2.4. There ar t N x M such outputs, referred to as Jzij, corresponding to one

row position i and one column position j . The outputs represent multiplication of

row and column inputs. Unused products (those for which the constraint / is not

satisfied) must be shorted to Vdd-

5.2.3 Translinear analysis

In this section we present an analysis o f the canonical MOS sum-product topology

based on the translinear principle. Alternative forms o f this analysis are elaborated

in [52, 53]. In the canonical sum-product topology, all transistors are assumed to

be in saturation. A portion o f the canonical topology is shown in Figure 5.1.5, in

which M2 and M 4 must be in saturation. To ensure saturation, a reference voltage

V̂ ef ~ 0.3V is used at the source o f M l and related devices (labeled node A in

Figure 5.1.5). This maintains a sufficiently high voltage at the drain o f M 2 for M 2

to remain in saturation.

We now verify that the translinear principle is accurate for weak inversion MOS

circuits, in spite o f the extra non-linear factors in the detailed model (5.2.3). This

analysis is repeated from [74]. First, we write vgs in terms o f Id using the full

model:

By taking a closed loop in Figure 5.1.5, beginning and ending at A, and travers­

ing the gate voltages vj and V2 , we find that

IXi = Iu • px (0 - (5.2.8)

(5.2.9)

(vi - A) + (V2 ~ B)
Ix 1_________ {±2j_

(v2 —A) + (vi - B)

=>• Ix 1 • I z i j
I r f s (A) f g (v2) ' ls- fs{B)fs (v i)

IX2 'IZ \j.

(5.2.10)

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This is precisely the same loop expression that we derived for the ideal loops in

Section 5.1.1. We conclude that certain significant non-ideal device behaviors, in­

cluding the body effect, do not detract from the accuracy of the translinear principle

as applied to weak inversion MOS circuits.

5.2.4 Renormalization of current vectors.

In the idealized circuits o f Section 5.2.6, only NMOS devices are used. Because

PMOS and NMOS devices have symmetric behavior, any translinear circuit can

be turned “upside down” and implemented with PMOS devices. To satisfy cur­

rent source/load requirements, we must require that any NMOS translinear stage be

followed by a PMOS stage, and any PMOS stage must be followed by an NMOS

stage.

In translinear sum-product circuits, only a subset of outputs are typically de­

sired. This is the case with the equality node circuit o f Figure 5.1.7. The sum over

all outputs from the Gilbert multiplier is equal to Iu , our global unit current. Be­

cause we discard some o f those outputs, the output o f the sum-product circuit is

ultimately less than Iu . I f there are many stages o f sum-product circuits, this may

result in steady, unwanted attenuation of currents in the circuit.

Definition 5.2.6. C u rren t m agnitude. We refer to the sum over output currents as

the current magnitude, in units o f Iu ,

kz = ^ ± . (5.2.11)
Iu

□

To correct for the loss in current magnitude, a simple circuit such as that of

Figure 5.2.6 is often used [53, 52]. The parameters n and m are geometry factors,

*-e- (t) 6 = m ' (77) 5 * ®ne would typically choose n = m = 1. TransistorM 7 is a

current source whose drain current is equal to n -Iu . M8 is usually a global device

located outside o f the local node. The gate voltage of M 8 is distributed throughout

the network as a global bias voltage.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vdd Vdd

M7
M8

Vref(P)Vref(P)

M5 m m

Ix0

Figure 5.2.6: A PMOS renormalization circuit for a two-element current vector.

The PMOS renormalization circuit is equivalent to the translinear normalizer

from Figure 5.1.5. CMOS sum-product designs are greatly simplified if all sum-

product circuits are implemented in NMOS, and a PMOS normalization stage ex­

ists between all sum-product circuits. To illustrate this approach, two sum-product

stages, normalizers, and their connections are shown in Figure 5.2.7. The figure

demonstrates connecting an equality node to a parity-check node using CMOS

translinear circuits.

5.3 * Supply voltage in canonical circuits

The requirement for saturation imposes a minimum allowed supply voltage on

canonical sum-product circuits. It is common practice to use one canonical circuit

made of NMOS devices, o f which the outputs are “folded” into a second canonical

circuit made of PMOS devices. A “slice” o f this folded topology is illustrated in

Figure 5.3.1.

The PM OS canonical circuit can perform either a second sum-product operation

or provide renormalization of currents (“renormalization” means boosting the out­

put currents so that their sum equals a desired unit current). The PMOS transistors

must also be in saturation, and must have their own separate Vref. In Figure 5.3.1,

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vdd Vdd

RefRefRef

uoIxO

RefNRefN
Ix IIx 1

'RefN

lyOlyO

lyllyl

Equality Node Check Node

Figure 5.2.7: Connection between two stages o f NMOS sum-product circuits and
PMOS normalizers.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vû f d

Vref(P)

♦ T
/j M5 Ih — C

in

-H” M4
+

Vo

out

Vref(N)

m :

| ^ M2

Figure 5.3.1: A “slice” o f the canonical topology.

the separate Kef voltages are indicated by Kef(N) and Kef(F).

5.3.1 Minimum allowable supply voltage.

It is clear in Figure 5.3.1 that the D-S terminals o f M5, M 4 and M2 are traversed

between Vrcf (P) and ground. These three devices must remain in saturation for the

circuit to function properly. Let us assume that a voltage o f at least 200mV is

required for each device

We further assume that Vref(A) is chosen so that V3 = 200mV. To simplify the

notation, we refer to Kef as the “gap” between Vdd and Kef(F): Kef(F) = Vdd - K ef-

It then follows that V2 = Kid — K ef — vi — 0 .2 V. We also note that v\ and V3 are

greatest when I = Iu , i.e. when all of circuit’s current is steered through this slice.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From (5.2.6), we derive an equation for vj:

=^Vdd >

=£■ V2

0.4V + yref+ — In

> .2V (5.3.2)

(5.3.1)

(5.3.3)

The result (5.3.3) can be arranged in a more useful form by expanding /op. It

is also helpful to express Iu relative to a more realistic operating current, such as

lOOnA. By expanding the division in the logarithm, and incorporating the device

model (5.2.2), we arrive at

This result expresses a reaonable estimation o f the minimum supply voltage o f

canonical sum-product circuits. Numerical solutions for (5.3.4) are compared against

solutions for a low-voltage topology in Section 6.2.2. Results are also plotted as

functions o f temperature and process feature size in Section 6.2.2.

5.3.2 Approximations.

It is possible for (5.3.4) to be simplified if certain approximations are made. First,

note that Cox = j“ S and consequently fipC0X = £0 x ^ - If Up and tox are expressed in

units o f and//m , respectively, then, based on typical process values,

As CMOS technologies advance and the minimum feature size decreases, n p

tends to increase while tox tends to decrease. We have evaluated the ratio (5.3.5)

using parameters for several AM I and TSMC CM OS processes, ranging in feature

size from 1.5/ma to 0.18/^m. The value o f the mobility-to-oxide thickness ratio

(5.3.5) was found to be within the range of 0.6 to 2.0 for all processes. The data for

these processes was obtained through MOSIS.

+ ̂ r + £ In (, &) + £ to (* $ *)
f w \ Ur f 2ppC0XUf \ . .

- ̂ ln (f) “ ^ ln + VT0P.
(5.3.4)

(5.3.5)

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The ratio (5.3.5) therefore tends to increase in more advanced processes. Re­

calling that ^ « 0.0357, the corresponding logarithmic term, ^ - ln is

appreciable only when (5.3.5) is increased by almost two orders o f magnitude. In

TSMC and AM I processes, the logarithmic term is at most 0.035V, and more typi­

cally 0.013V. The logarithmic term is always positive in sub-micron processes, and

therefore can only improve the bound on Vdd- It is therefore reasonable to neglect

the effect o f (5.3.5) in (5.3.4). We then arrive at

VM > 0 .4 F + V ref+ a l n (^) + £ l n (li«M)

- ̂ 1” (z) - f (^ ' %) +
Finally, we may substitute approximate values for Up and tc, and neglect the

relatively small W /L term, arriving at the final bound

Vdd > 0.42V + Vref + VT0P + ^ In • (5.3.7)

As a concrete example, a typical 0.18//m CMOS logic process has Vjop =

0.39V. For a canonical analog sum-product decoder implemented in this pro­

cess, with a lOOnA operating current, (5.3.7) requires Vdd > 0 .8 1 + Vref. A t best,

Vref > 0.2V, therefore Vdd > IV is required.

5.4 *A reduced-complexity sum-product circuit.

The canonical CMOS sum-product topology o f Figure 5.2.4 can sometimes be mod­

ified to significantly reduce complexity. Consider, for example, the case in which

the inputs X and Y each have degree N , and we desire only the N products x t • y,-.

The canonical circuit produces N 2 products, wasting N 2 —N transistors.

This is necessary in the canonical circuit because all X inputs must be present

in each column, so that 2,-Zx/ = Iu is in the denominator. If only a subset SX C X

is used as input, then the denominator o f (5.1.11) is not a constant (in probability

terms).

To solve this problem, we introduce a reference input A, so that X/e s * /x /+ A =

Iu- This approach is illustrated in Figure 5.4.1. In this example, {a, b ,c ,d } is a

subset o f the alphabet J%x, so that 8X = (Ixa, Ixb, Ixc, I x f} , and X/eSx /+■ < Iu-

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Remainder Input Outputs

Figure 5.4.1: Use o f a reference input to restore the denominator of (5.1.12).

The reference input is created by transistor M9 at node A. The other inputs arrive

normally, as at M l 1. A t each input, a second transistor (e.g. M10) acts as a current

mirror to replicate the input. A ll such replicated input currents are connected to

node A.

A current Iu is supplied to node A, and then a current equal to X/sS*/*; is

siphoned away by the replicated input currents. At each source-connected box, the

input nodes are 8X and A. The denominator o f the outputs is therefore equal to

X,€5x I*i + A = Iu- The denominator is therefore restored and can be neglected as

usual.

5.4.1 *CompIexity of the reference circuit.

Let 8N = |8X| and 5M = |5 7 |, and let AT = |X| and M = |K|. We wish to compute all

pairs o f products for inputs in the sets 8X and 57. In the canonical circuit, we would

have N + 2M + M N transistors. In the reference circuit, we have 2 (8 N + 8 M) +

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 M (8 /V + 1) + 2 transistors.

This analysis is overly simplistic, because it may be necessary to compute prod­

ucts for several subsets. There are many possible scenarios with different complex­

ity results.

Exam ple 5.4.1. D iagonal p roducts. Suppose M = N and we only want the diag­

onal products lx i • Iyi for / = 1 ,..., N . We construct a separate reference circuit for

each of these products, so that 5N = 8M = 1. There are then eight transistors per

product, and N such products, leading to a total o f 8 N transistors. The canonical

circuit would require 3 N + N 2 transistors. The reference circuit for this situation is

more efficient when N > 5 .

□

E xam ple 5.4.2. D isjo in t subsets. A set o f products is divided into disjoint subsets

8 X1 <g> 5y j and 8X2 <8> 8Y2 (where X 0 Y denotes the set o f all pairwise products xy

for x E X and y E Y). This is represented by the trellis section in Figure 5.4.2. This

section is taken from the conventional (16,11) Hamming code trellis, produced by

the squaring construction in Example 3.3.4.

We wish to construct a sum-product circuit to calculate the probabilities o f Z

given those of X and Y. In the canonical approach, we would need N - (3 + N)

transistors, with N = 8, thus requiring 88 transistors. This approach would also

produce 32 unused outputs.

If we use reference inputs, then two subset products are required. Each subset

needs 2 (8) + 4 (5) + 2 = 38 transistors, for a total o f 76. There is a net savings of

twelve transistors with the reference approach.

□

A more important advantage of the reference circuit in Example 5.4.2 is the

simplicity of design. The disjoint trellis subsections are isomorphic to each other.

We only need to design one simple circuit to implement the sum-product algorithm

for a subsection. The same circuit can be reused for the other subsection.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X Y Z
a

b

d

ua

ub

uc

ud

Figure 5.4.2: A trellis section with disjoint subsections.

When a trellis is constructed o f disjoint subtrellises, as is the case with the squar­

ing construction, the reference circuit allows us to implement sum-product circuits

for the subtrellises only. These subtrellis implementations are then duplicated to

produce the complete decoder.

5.4.2 * Implementing all directions.

Full implementation o f a three-edge sum-product node requires three directions o f

computation, which we call forward, backward, and upward. W hen implementing

a trellis using disjoint subtrellises, as in Example 5.4.2, it is not always necessary

to use the reference circuit.

A reference input is required only when the circuit’s row inputs are split up

among the subtrellises. I f one o f the edges carries a binary variable, then the com­

putations can be arranged so that the binary variable is the row input. D isjoint

circuits can then be used without requiring a reference input.

This scenario is illustrated by the trellis section in Figure 5.4.3, in which the

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X Y Z

o

1

3

Figure 5.4.3: A trellis section with disjoint “butterfly” subtrellises.

variables X and Z are quaternary, while Y is binary. The trellis consists o f two

“butterfly” structures, which can be implemented using a single simple circuit. Im­

plementation of this trellis section is illustrated in Figure 5.4.4, in which dashed

lines represent incomplete probability masses, solid lines represent com plete prob­

ability masses, and a solid dot represents the edge designated as the row input.

In the forward direction, where output is on edge Z, the X inputs may be split

among the column inputs of two butterfly circuits, while Y arrives as the row input.

A similar arrangement is possible in the backward direction. In these cases, the row

input is always a complete probability mass, so no reference input is needed.

In the upward computation, w ith output on the Y edge, either X or Z must be

chosen as the row input. Splitting the row input’s probability mass is unavoidable

in this case, so a reference input is necessary.

To fully implement this trellis section with sum-product circuits, only two basic

circuits are needed. These are the butterfly circuit with no reference input, and the

butterfly circuit with a reference input. With no reference input, the butterfly circuit

is the same as the “check node” circuit on the right-hand side o f Figure 5.2.7. A

butterfly circuit with reference input is shown in Figure 5.4.5.

The reference circuit allows us to reduce complex sum-product circuits to sim­

ple primitive subtrellises. To create a complete decoder, it therefore suffices to have

only a small library o f subtrellis circuits, which also facilitates synthesis o f analog

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y

X

>— Z x — c

Forward Backward

♦ x«»->

X

Upward

Figure 5.4.4: Implementation o f a trellis section with disjoint butterfly subtrellises.
Dashed lines indicate incomplete probability masses. Solid lines indicate complete
probability masses. A dot indicates the row input edge for each cell.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vdd

Vddy
/

(p l u
Ref'Ref

1x0

Ix l
Vdd Vdd

R efN IyO

lyl

Figure 5.4.5: Butterfly circuit with reference input.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sum-product circuits. Approaches to synthesis based on subcircuit libraries, includ­

ing circuits with reference inputs, were explored by the author o f this thesis [25],

and in the doctoral thesis o f Jie Dai [24].

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

*Low-voltage Analog Decoding
Circuits

6.1 Eliminating Vref

It is clear from Section 5.3, in particular from (5.3.7), that the voltage needs o f the

canonical circuit can be reduced if we allow Vref = 0 in (5.3.7). If Vref = 0, M2

and related transistors (see Figures 5.2.4 and 5.3.1) are not in saturation. W hen this

happens, the reverse current term Ir becomes significant in (5.2.7).

This situation can be analyzed using the translinear principle, in which we re­

gard Ir as a second, parallel translinear current controlled by v ^ . We apply the

model introduced by Definition 5.2.4, as illustrated in Figure 5.2.3. Our analysis in

this section is based on the method introduced in [74].

With M2 unsaturated, the circuit consists o f the translinear loops shown in Fig­

ures 6.1.1, 6.1.2, and 6.1.3. The first two loops were studied in Section 5.2.3, and

yield the equations

Figure 6.1.2 introduces the unsaturated transistor, with its additional component

Ir . Also introduced is the current Idi, defined as

We also recognize the role o f the source-connected transistors, as in (5.1.10), so

139

IXj-lZik = I z i j - Ixk

I f = Iyt.

(6.1.1)

(6.1.2)

Id i = I f —Ir. (6.1.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.1.1: Translinear loop 1, derived from Fig. 5.2.4 with Vref = 0.

that

(6.1.4)I d i ^ I Z k i .
k

To solve for all currents in the circuit, we need one more equation, which is

provided by the third loop shown in Figure 6.1.3:

I Z i j - I f = I r - Ix j

=$■ I r = I y A
1Xj

Combining (6.1.1) through (6.1.6), we arrive at

Idi = I y i - I y i - j 11
lxj

=> J /z k = iyi-iyi—

* L J dIXk + Iyr I*L -

IxJ k Ix; = Iyt

Iy i - Ixj

(6.1.5)

(6.1.6)

(6.1.7)

(6.1.8)

(6.1.9)

(6.1.10)
J I k i x k + iy i '

The result (6.1.10) is almost the same as the normal canonical output (5.1.11),

except there is an additional term in the denominator. In probability terms, the

denominator o f (6.1.10) can no longer be neglected.

6.2 Low-voltage sum-product circuits

To solve the problem posed by the denominator o f (6.1.10), additional dummy tran­

sistors may be added with their sources connected to Idi. If these transistors repre-

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.1.2: Translinear loop 2, derived from Fig. 5.2.4.

Iz;;
h j

1 i

> > — IL

iy.

J . .

id.

♦ir

Figure 6.1.3: Translinear loop 3, derived from Fig. 5.2.4.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sent a current /g = 'Zi^ifyh then the output becomes

l*klxk + h + lyi
(6 .2 .1)

'Lk̂ k+Hî î yi +tyi
l y i ' i x j

I k i x k + h i y i '
(6.2.3)

(6.2.2)

In probability terms, the denominator o f (6.2.3) is a constant and can be ne­

glected. The addition o f redundant transistors therefore corrects the probability

calculation o f the canonical topology when Vref = 0. Because the outputs o f these

new transistors are o f no use, we refer to them as dummy transistors or dummy

inputs. The drains o f these transistors are simply connected to Vdd.

6.2.1 A general low-voltage sum-product topology

Figure 6.2.1 displays a general low-voltage sum-product circuit topology based on

these results. In Figure 6.2.1, X denotes the ordered sequence o f row inputs (volt­

ages) < x \ , xn > , and F* denotes the set o f column inputs (voltages) {yi : 1 < / < M and I ^ k}

which excludes the input y*. The members o f F;. need have no particular order.

The current inputs Ixi and Jy^ are converted into voltage inputs x-t and y* by the

diode-connected transistors on the left. Apart from the PMOS transistors used in

the Renormalization circuit, all devices have the same dimensions. This circuit pro­

duces all pairs o f products o f inputs from X and F. To complete the sum-product

computation (Section 2.4.2), desired products are summed together by shorting

wires (indicated by the “Connectivity” block). Unused products must be shorted

to Vdd.

6.2.2 Supply voltage in low-voltage circuits

To calculate the minimum allowed supply voltage in the low-voltage topology, we

repeat the analysis o f Section 5.3 with appropriate modifications. Figure 6.2.2

shows a slice o f the low-voltage topology, which is nearly the same as the canonical

slice o f Figure 5.3.1.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input sets are X and Y.
Current to voltage conversion:

Ix. lXu

■ {<

yr
iy, iyM

^ ••• ^

Outputs (currents directed toward ground)

Vdd Vdd

Renormalization

Connectivity

Figure 6.2.1: Low-voltage sum-product circuit topology, using the box notation o f
Fig. 5.2.5.

We again assume that all current is steered through this slice. In the low-voltage

topology, we may interpret Iu as a. maximum current level in the circuit (in Section

6.2.5 we discuss how the operating current is somewhat variable in low-voltage

circuits). To address the worst-case situation, we assume that both inputs in Figure

6.2.2 are equal to Iu- It can be easily verified in this case that I = 0.5 •/(/.

We no longer require M 2 to be in saturation, but for proper function it is still

necessary to have M 4 in saturation. Again applying the device model (5.2.6), we

arrive at the equations

K \ k p J
T/ t / r , (0 . 5 - I u \ v, = vdd_ _ l „ ^ - _ j - V3. (6.2.4)

To solve for V3 , we assume that M 2 is in saturation, that M 4 is not in saturation,

that both devices share the same gate voltage, vg, and that both devices share the

same device current. Then

A w ^ [l - < r §] = ' o » ^ [' " ^]

=>■ 1 —e~Vr = e~$r

=» v3 = t / r In (0.5). (6.2.5)

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m

m :

Vu.

Vdd
/

v, M 5 l h i f

I r M4 v2

d +
I ^ M 2

out

Figure 6.2.2: A “slice” o f the low-voltage topology.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We now substitute (6.2.5) into (6.2.4) to obtain

v, = Vdd — — In f — Ut In (0.5) > .2V
* \ Iop J

=» Vdd > 0.2V + — In (—7 —^) + Ut In (0 .5). (6.2.6)
K V IqP J

6.2.3 Approximations.

It is again possible to express this bound in a more usable form. We expand Iqp,

making the same approximations and adjusting the units as in Section 5.3. After

organizing all such adjustments and substituting approximations, we arrive at the

final form:

Vdd > 0 .2 1 1 + VT0P + — \ n (- £ -) . (6.2.7)
k \ 1 0 0 nAy

Comparing (6.2.7) with (5.3.7), we find that the low-voltage topology allows

Vdd to be reduced by at least 0.4V (assuming Vrcf > 0.2V). For the typical 0.18/un

process referenced in Section 5.3, Vjop = 0.39. For this process, a low-voltage

decoder is constrained by Vdd > 0.61V.

6.2.4 Process scaling and temperature effects.

A more accurate estimate o f minimum supply voltage can be made by accounting

explicitly for all parameters, and solving numerically. The mobility parameter, fi,

the thermal voltage, Ut , and the threshold voltage, Vtqp, all depend on temperature.

These parameters also depend on a host o f other process conditions such as doping

concentration and oxide thickness.

A collection o f semi-empirical models are suggested by Mead in [51]. These

models relate oxide thickness, impurity doping, threshold voltage, and other process

parameters to the scaling o f minimum feature-size in sub-micron processes. Using

these models, together with models for parametric dependence on temperature, it

is possible to evaluate the actual minimum supply voltage o f canonical and low-

voltage circuits, as a function o f temperature and process scaling.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First, the dependence o f mobility on temperature is given by [63]

, = 54.3.7-„-°-” + [j6 , (6.2.8)

where T is the temperature in K, Tn = T /300 , and N is the total dopant concentra­

tion.

According to Mead, the dopant density is approximately

W « 4 x 1016L ^ n6 (6.2.9)

where L min is the minimum feature size o f the process, specified in units o f ptm.

Similarly, the oxide thickness is estimated by

*ox m ax(210LS,140lf!i5) . (6'2'10)

The nominal threshold voltage scales as

Vr o « 0 .5 5 I ^ g . (6.2.11)

The relationship between V j and temperature is approximately expressed by

VT (T) ~ VT0 - 2 ^ 0 + 2xi/s (T) , (6.2.12)

where xj/5 o is the value of \^b at room temperature, and xj/5 is given by

(F) = Ut In » (6-2.13)

and where nt is the density of carriers in intrinsic (undoped) silicon (/z,- = 1.45 x

1010cm-3).

The subthreshold slope factor, k , is a function of xj/5 , N , Cox, and the gate-to-

bulk voltage. We approximate k by its near-minimum value, which occurs near

the boundary between weak-inversion and depletion. We begin with the depletion

depth under the gate, which is [51]

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where es is the permittivity of silicon, and q is the charge on the electron. The

corresponding depletion-layer capacitance is then given by

and k is defined as the capacitive divider relation between Cox and Q :

These equations are collected and solved numerically, yielding estimates of

(6.2.6) and (5.3.4) as functions o f temperature and feature size. The results o f this

calculation are reported in Figure 6.2.3. The difference in allowable supply voltage

between canonical and low-voltage circuits is shown in Figure 6.2.4 as a function

o f temperature. The supply-voltage reduction achieved by low-voltage circuits de­

pends only weakly on temperature, and evidently improves as the temperature is

increased.

6.2.5 Renormalization

For successful implementation o f a low-voltage decoder, renormalization o f cur­

rents between modules is essential. In a canonical sum-product circuit described

by (5.1.11), the denominator is equivalent to a probability o f one and can be truly

ignored. In a low voltage circuit described by (6.2.3), however, the denominator

is equivalent to two, substantially reducing the current magnitude at the output o f

each module.

In principle, linear attenuation will not change the result o f decoding. The sum-

product algorithm only depends on the relative proportions among input currents

(relative to each other), not on their precise magnitude. Repeated attenuation in a

large network, however, will cause the outputs to approach zero, making it impos­

sible to extract any results.

In a practical setting, the sum-product algorithm is carried out repeatedly in a

large network o f sum-product nodes. The output o f one node provides input for the

(6.2.15)

The oxide capacitance, Cox, is

(6.2.16)

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with

Minimum Supply Voltage

•T = 250K
- 6 — T = 275K

T = 300K
• - Q - • T = 325K

^ T = 350K canonical

------ A—---A—---A—---A—--- A—--- A-f 1 A—---A

_ - -e -
---*--- —*— —*--- - r ir —*_ "T

low voltage
°-2 0.3 0.4 0.5 0.6 0.7

Feature Size (microns) 0-8 0.9 1

Figure 6.2.3: Allowable supply voltages for canonical and low-voltage topologies,
as a function o f process feature size and temperature.

148

permission of the copyright owner. Further reprodunf
reproduction prohibited without permission.

Low-voltage vs Canonical VDD

0.474 -

0.472

0.47

0.468

c 0.466

o 0.464

0.462

0.46

0.458
350300250

Temperature (K)

Figure 6.2.4: Difference in minimum supply voltage between low-voltage and
canonical sum-product circuits, as a function o f temperature.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sum-Product Cell
(attenuation)

Sum-Product Cell
(attenuation)

Figure 6.2.5: Iterated amplification of current magnitude k .

next. By “unwrapping” the decoding network, the decoder may be regarded as a

cascaded array o f sum-product nodes. In terms of the current magnitude (Definition

5.2.6), the circuit becomes an iteration of attenuation and renormalization.

By inserting a suitably designed renormalization circuit between modules, the

currents are prevented from approaching zero. We utilize the circuit of Figure 5.2.6

with Vref(P) = Vdj. The circuit is now a form of the low-voltage topology described

by (6.2.3), so that the output is

n .m . J.-IX ,
n - Iu + m - ^ kIxk

As in (5.1.7), the low-voltage renormalization behavior (6.2.18) amplifies each

input by a constant factor. The output current magnitude, however, is not exactly

l a , and may in fact be significantly less than l a -
It is possible to choose n and m in Figure 5.2.6 so that upon iteration the current

magnitude, k, converges to a controlled fixed point greater than zero. In a parallel

analog decoder, these iterations occur over space, through successive nodes within

the network. The iterative process is illustrated in Figure 6.2.5, where f n is the

transfer function o f the low-voltage renormalization circuit.

This allows us to treat (6.2.18) as a simple one-dimensional transfer function,

k o m = f n (k in) = n ' m ' k! n ■ (6 .2 .1 9)n + m -k in

To determine the dynamic behavior o f this system, we identify the fixed points

(where kout = kin) and determine whether they are stable. It is easy to verify that

the fixed points occur at

ko = 0 (6.2.20)

iti = n - - . (6.2.21)
m

1 5 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is well known that a fixed point is stable and non-oscillating if and only if the

slope of the transfer function, f'n{k), satisfies 0 < f'„{kf) < 1 at the fixed point kf .

Also, a fixed point k f is unstable (i.e. it is a repeller) if and only if f'n(kf) > 1. It is

again easy to verify that

/ ' (0) = m (6.2.22)

f'n {kx) = - . (6.2.23)
m

(6.2.22) and (6.2.23) show that there is always a stable fixed point above zero when

m > 1. The canonical renormalizer uses m — 1, in which case there is no fixed point

greater than zero, thus driving all currents to zero in a low-voltage network. By

simply using m > 1 this can be avoided.

The transfer function (6.2.19) is shown for various values o f m in Figure 6.2.6,

in which n = 1.2. The iterated behavior is also illustrated, with fixed points rep­

resented by large circles. Figure 6.2.6 demonstrates that, with sufficiently large m,

the normalized current magnitude can be driven very close to the desired operating

point with only one iteration.

6.3 Decoder architectures

6.3.1 Trellis decoders

One very common class o f decoders employ the BCJR algorithm, which is de­

scribed in Section 3.2.3. Trellis-based M AP decoders are used to construct serial

and parallel concatenated Turbo codes.

An example of the low-voltage sum-product architecture for computing on trel­

lis graphs is shown in Figure 6.3.1. The branch variable y takes values from the

set {a, b, c, d} . The sum-product equation for this particular trellis section can be

written in matrix form as [7]

OutO ' a d ’ a 0 "

O utl b c a l
Out2 c b a 2
Out3 d a a3 _

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Renormalization Transfer Function, n = 1.2

m = 1
m = 10
m = 20

1.2

0.8
3

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.21 1.4

Figure 6.2.6: Current magnitude transfer function for the low-voltage renormaliza­
tion circuit.

Current to voltage conversion:

lap Ia)

u
u r T

Id

OutO Outl OuC Ou3

•H

•M

• Connectivity

Figure 6.3.1: A low-voltage circuit for trellis decoding based on the BCJR algo­
rithm.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The particular trellis function is determined by the Connectivity section. Also

shown is the Renormalization circuit. The circuit is shown with the state probabil­

ities as row inputs and the branch probabilities as column inputs, but these roles

can be reversed without affecting the results. Every stage o f the BCJR algorithm

consists o f a matrix multiplication of the form (6.3.1). Low-voltage sum-product

circuits can therefore be produced to implement a complete BCJR decoder of arbi­

trary size.

6.3.2 LDPC (Tanner Graph) Decoders

Decoders for binary LDPC codes are mapped from the code’s “normalized” Tanner

Graph, which is a direct visualization o f the code’s binary parity check matrix,

as explained in Section 2.3.2. The Tanner Graph contains two types o f constraint

nodes: check nodes and equality nodes. All variables in the graph are binary. For

implementation, this means that all probability masses have only two components.

For a three-edge check node, the constraint function is simply a logical XOR

operation. Applying this to the sum-product algorithm (Section 2.4.2), and labeling

the three edges X , Y, and Z, we obtain

p (Z = 0) = F (X = 0) - / , (y = 0) + / >(X = l) - P (y = l) (6.3.2)

P(Z = 1) = F(X = l) - P (y = l) + P (X = 0) - P (y = l) . (6.3.3)

For a three-edge equality node, we have

P (Z = 0) °c P (X = 0) - P (Y = 0) (6.3.4)

P (Z = 1) ~ P(X = l) - P (y = l) . (6.3.5)

Applying the general circuit o f Figure 6.2.1, and varying the connectivity to

produce the appropriate functions, we arrive at the circuits o f Figures 6.3.2 and

6.3.3. The ’y ’ inputs are the column inputs, and the ’.x’ inputs are the row inputs. M3

and M 4 are dummies. Complete decoders for linear binary block codes, including

LDPC codes, can be constructed from these three-edge circuits.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vdd

Inputs:

UO Ul
I V xO I V x l

lyO lyl

I |_ V y O I V y l

’"Mr

V y l

H L"

V xO •"I

"Hr

H r m3

VyO"H

r
vyO_J

M4

V,H ^

Outputs:

Figure 6.3.2: Low-voltage equality-node circuit for LDPC decoding.

6.4 An example decoder

A low-voltage LDPC-style decoder for a (7,4) Hamming code is shown in Figure

6.4.1. The circles labeled xt represent the channel sample probabilities, which are

the decoder’s input. The outputs emerge from the top-level equality nodes. The

triangles represent comparators, which make hard decisions based on the output

probability currents.

The boxes labeled ’=’ and ’+’ represent the circuits o f Figures 6.3.2 and 6.3.3,

respectively. A separate sum-product circuit is required for each o f the node’s

edges, as indicated in Figure 6.4.2. In this design, the base MOS transistor size

is L = 0.18/zm and W = 2/un. The renormalization parameters are M = 20 and

N = 4. The decoder is simulated using models for a TSMC 0.18//m digital CMOS

technology.

Simulation results for this decoder, operating at a supply voltage o f 0.6 V, are

presented in Figure 6.4.3. These results were obtained using BSIM3 V3.1 models,

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vdd

Inputs:

1x0 Ixl

, VxO

? ?

lyO lyl

1 VyO I |_V yl

Vo

VddVdd

Outputs:

tzl

IzO

VxOVxO

Vxl
VddVdd

VyO Vyl

Figure 6.3.3: Low-voltage check-node circuit for LDPC decoding.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

out outout out out out out
x4

Figure 6.4.1: A Tanner graph decoder for the (7,4) Hamming code.

obtained through the Canadian Microelectronics Corporation, with Tanner TSPICE.

In Figure 6.4.3, new channel samples arrive at time 2ms. The decoder begins de­

coding immediately. Individual bit-probabilities flip to their final decisions at about

l^s. After 3/ts, the decoder’s outputs have converged to their final probability esti­

mates. The decoder achieves a throughput o f 1.3 Mbit/sec. The power consumption

in the decoder itself, omitting SH circuits, gain stages, and comparators, is 7.8/iW

at a supply o f 0.6V.

The decoder thus consumes 6pJ o f energy per bit. For a larger decoder (i.e. one

with a larger block length), the throughput grows in proportion to the decoder’s size.

The power consumption also grows linearly with size. The energy per bit therefore

should not change dramatically for a large, powerful iterative analog decoder.

For comparison, a recently published low-power digital LDPC decoder con­

sumes a minimum of 1.38nJ per bit [18], with a maximum of 3.8nJ per bit at a

supply o f 1.5V. The low-voltage topology therefore requires approximately two or­

ders o f magnitude less energy per bit over the best known digital designs.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SP

SP

SP

Figure 6.4.2: A complete node implementation, with a separate sum-product circuit
for each edge.

8 5 :

8 0 ::

7 5 :

= 65 -

5 0 :

4 5 -

1.997 1.998 1.999 2.000 2.001 2.002 2.003 2.004 2.005 2.006 2.007
Time (ms)

Figure 6.4.3: Simulation results showing the decoder converge to a new codeword
decision.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

^Scaling and Performance in Analog
Iterative Decoders.

Analog sum-product circuits show great promise for the implementation of pow­

erful but complex iterative error control decoders. As discussed in Chapter 2, the

strength of an iterative decoder is a function o f its block length. As a rule o f thumb,

the larger the block length, the better the code. But large codes result in large de­

coding circuits, with many nodes and complex routing.

Analog decoders have been demonstrated with steadily increasing size. The

largest analog decoders to date include a Turbo decoder with a coded length o f 120

bits [45], and a Block Product decoder of length 256, presented in Chapter 10 o f

this thesis. The successful implementation o f these decoders is encouraging. There

are, however, lingering questions about the scalability o f analog decoders.

The principle questions are those of interfacing and parasitic or non-ideal ana­

log phenomena. From the system perspective, a decoder must coexist with many

other components in a complete receiver design. A decoder must have a set o f in­

terfaces which is suitable for inclusion in a real receiver system. Typically, these

include analog sample storage for serial-to-parallel data conversion, and an array o f

comparators.

It remains to be seen whether there are limits in the number o f analog samples

which can be reliably stored. It must also be demonstrated that these interfaces

do not cause unacceptable distortion in the input samples, that their yield can be

guaranteed in a large-scale design, and that their size and power consumption do

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not grow at a higher rate than that of the decoder. We attempt to answer some of

these questions in Section 7.1.

Scalability of analog decoders may also be limited by the influence o f non-ideal

characteristics in the decoding circuits themselves. The chief non-ideal character­

istic o f analog circuits is mismatch. M ismatch refers to tiny, random parametric

differences between transistors. M any simulations have indicated that mismatch

should have little effect on the performance o f various particular (usually small)

analog decoders.

One might speculate that, in a large decoder for a strong code, mismatch be­

comes equivalent to some additional channel noise. One might just as well specu­

late that the constant internal errors due to mismatch will only grow worse in a very

large decoder. This accumulation o f error could make it impossible for a large de­

coder to function at all. We address this question in Section 7.2, where we present

performance results, based on density evolution, for arbitrarily large decoders over

a range o f mismatch conditions.

7.1 Interface architecture.

In a sophisticated communication system, several components may precede the de­

coder in a receiver design. If the receiver consists only o f a demodulator which

outputs analog log-likelihood ratios, then an analog decoder can be directly used.

I f other processing must occur prior to decoding, then there are two options.

First, we might perform all preprocessing stages using analog circuits. This

is an attractive option in principle, in that it eliminates the need for an analog-to-

digital converter in the receiver. This suggestion may not be welcome if a receiver

system design is already in place, and all that is wanted is a powerful decoder.

A second approach allows a more graceful integration between the analog and

digital domains. We may simply insert a digital-to-analog converter at the front

of a sample-and-hold (S/H) array. I f a powerful code is to be used, then the gains

achieved through analog decoding outweigh the additional burden o f a DAC.

Some analog decoders have employed DACs at the input, using a separate

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Binary outputs
(serial)

SR - SR - SR - SR - SR - SR •— SR Binary shift-registers

Comparators

Decoder (fully parallel)

sm S/H smsm sm S/HDAC
(optional)

S/H sm sm sm S/H

Analog differential voltage input

Figure 7.1.1: Analog decoder interface architecture.

minimally-designed DAC for each channel sample. This approach exhibited poor

results [53, 44]. A single well-designed, high-quality DAC is a far superior solu­

tion, allowing analog decoders to be directly inserted in an existing receiver design

[45].

A complete architecture for analog decoding is shown in Figure 7.1.1. The in­

puts are first converted into analog differential voltages, which correspond to LLRs.

These analog voltages are then loaded step-by-step into an array o f S/H registers.

W hen a complete block is received, all samples are loaded into a second stage o f

S/H registers, which store the analog information for decoding. After decoding is

finished, the analog outputs are presented to an array o f comparators, whose binary

decisions are forwarded to a bank o f shift-registers. The decoded results are output

serially from the head of the shift-register chain.

7.1.1 Sample-and-hold input interfaces.

Information is most often communicated serially across a communication channel.

Analog decoders most often decode all bits in parallel. Channel samples must there­

fore be stored as they arrive, so that they may all be presented together for decoding.

The clear solution, used by several designs, is to employ an array o f Sample-and-

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hold (S/H) circuits, consisting o f switched capacitors, to store incoming voltages

[35,95, 90].

A S/H input array is effective if the incoming channel information is expressed

as a sequence of differential voltages, which correspond directly to log-likelihood

ratios, as explained in Section 5.1.4. In this case, parasitic effects such as clock

feed-through (or charge-injection) have no discernible impact on performance.

Another parasitic phenomenon - substrate leakage - is also shown to have little

effect on the stored differential sample [85J. Substrate leakage does have an effect

if the data is stored for a very long time (i.e. if the block length is extremely large).

For the serial-mode sample storage circuit used for the decoder in Chapter 8,

implemented in a 0.5/im CMOS process, operating at a rate of 1 million samples

per second, it is possible for millions o f samples to be stored before the decoder’s

performance is adversely affected [85]. It is therefore possible to use a S/H input

interface for an analog decoder with a fairly large block length.

The achievable block length for a serial analog storage array is a function of

physical process parameters and operating speed. In this section, w e examine the

limits imposed on block length and throughput due to various process parameters.

The S/H circuit.

A simple differential S/H circuit, shown in Figure 7.1.2, suffices to store incoming

analog samples. This circuit uses CMOS transmission gates as switches. The two

S/H stages may be isolated by a unity-gain buffer, shown in Figure 7.1.2. The

structure o f a typical transmission gate, using pass transistors which act as simple

switches, is detailed in Figure 7.1.4.

The stages may also be directly connected in an unbuffered configuration, as

shown in Figure 7.1.3. In the unbuffered case, the stored voltage in the second

stage is equal to half that o f the first stage. Thus the magnitude and common mode

of Vjn are multiplied by 0.5 before they reach the differential pair.

The interface accepts differential voltage inputs which represent log-likelihood

ratios (LLRs). The LLR format is commonly provided by analog receiver front-end

circuits. LLRs, represented by differential voltages, are converted into probability

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

select pipeline

select

o-eja-j irj
/

• C pipeline
Vin (LLR) - ± -

select pipeline

select ^ pipeline

P h

31— n r

Figure 7.1.2: Buffered cascade o f S/H circuits, with differential pair.

select pipeline

select pipeline
Vin (LLR) - L .

select pipeline

select pipeline

P h

Vdd

A

CD1.

31 HC

Figure 7.1.3: Unbuffered S/H interface circuit.

enable

out
o VV .in

enable

out

Figure 7.1.4: S/H circuit showing the transmission gate.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

currents by a differential pair biased in weak inversion. If the differential input

Vx = s - X for a suitable scaling constant 5 with units and all transistors are in

saturation, then the current outputs are approximately

(7-1-1)

(7-1-2)

When the differential pair is biased in strong-inversion, the fit to equations (7.1.1)

and (7.1.2) is less exact. An approximate fit is obtained by adjusting s.

strong-inversion the best fit m ust be found by simulation for each Iy . The best-fit

scaling factor in strong-inversion is approximately linearly proportional to Iu-

Duration of storage.

The scalability o f an S/H serial-to-parallel conversion circuit is limited by how long

a sample can be stored [85]. The physical phenomenon of substrate leakage causes

a small, nearly constant current to flow through the drain o f the switch transistors

when they are turned off. This causes a steady drop AVfc (0 in the voltage Vy stored

on capacitor C:

The current /leak is expected to be roughly constant, independent o f Vy. This is

because substrate leakage is caused by an effective reverse-biased diode between

the drain and substrate o f a transistor, as indicated in Figure 7.1.5. The physical

origin o f substrate leakage is indicated for an NMOS transistor in Figure 7.1.6. The

drain o f the device is doped with N-type material, while the substrate is P-type.

This makes a reverse-biased PN junction.

Because analog samples are stored differentially, some loss in Vy is acceptable.

The amount of permissible loss, V^ax. is established by the dynamic range o f the

differential pair circuit on the right in Figure 7.1.2, and by the common-mode volt-

In weak-inversion, the scaling factor is s = Q « -O^lEr- In moderate- and

(7.1.3)

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

out
o V

leak

Figure 7.1.5: Model o f leakage current in S/H circuits.

source

P-type bulk

Figure 7.1.6: Physical origin of substrate leakage.

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

age of input samples. This gives a maximum storage time of

C ’Vmax
W = —:----------• (7.1.4)

■•leak

Samples arrive serially at the S/H circuit, with a frequency f s. The minimum

allowable f s is l / t max- The maximum possible f s depends on the capacitance C,

and on the series-resistance Ron o f the pass-transistor. The time needed to store

each sample, t s, must satisfy

xi >20-/?onC, (7.1.5)

where the factor o f 20 has been added to ensure a conservative estimate.

The maximum num ber o f samples that can be stored, Ns, therefore satisfies

xr Vmax ,n .
Ns < — = , • (7.1.6)

Ts ZU - /ton'leak

For an AMI 0.5^um CMOS process, 7ieak has been measured at ~ 10“ 17A [96]. If

Ron ~ 10kQ. and Vmax = 0.0 IV, then Ns ~ 109 bits.

Note that (7.1.6) has no dependence on C. The choice o f C depends only on the

desired sample frequency. In general, C should be made as large as possible to meet

the desired speed.

Equation 7.1.6 can be further simplified if we account for the dependence o f R oa

and /leak on device dimensions. The channel resistance is inversely proportional to

the width, W , of the pass transistor. The leakage current is directly proportional to

W . Assuming a minimum-sized NMOS pass transistor, we arrive at

 T'min_______
°n “ pcnC0XW (V g s -V th)

/leak = &2 tV

=* Ns < (7.1.7)
20 • Lnunk2

This result expresses the sample storage limit mainly in terms o f fixed process pa­

rameters. The voltage Vcm represents the common-mode offset o f the stored chan­

nel samples. The average Vgs for pass transistors is equal to Vdd — Vcm, which is

substituted to obtain the final form of (7.1.7).

M ost o f the process constants in (7.1.7) are precisely known for a given process.

The leakage constant, hi, is often not well modeled or measured, and may need to

be directly measured to verify the suitability o f a S/H interface in a chosen process.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Charge-injection.

Charge-injection is a significant source of distortion in S/H circuits [79]. W hen a

CMOS transmission gate is switched off, the channel charge o f the transistor(s) is

expelled and a portion of it, AQ, is deposited on the capacitor C.

AQ is signal-dependent, so that, if the voltage stored on the capacitor is Vc,

then AQ = / (Vc). W hile / is in general a non-linear function, it is sometimes

appropriate to approximate it by a linear function AQ « k • Vc- This approximation

is especially appropriate when the variation in scaled LLR inputs is small (less than

lOOmV).

Let Vin — V it ~~ refer to the scaled-LLR differential input to the S/H circuit,

and let Vout = Vff^ — refer to the output. The circuit’s output after charge-

injection is approximately

As shown by (7.1.8), the effect o f charge-injection is approximately equivalent

to multiplication o f V)„ by a constant slightly greater than one. B it error rate sim­

ulations of several decoders indicate that performance is not affected when inputs

are scaled by factors as large as 2 and as small as 0.5. This is not a surprising result;

the textbook M AP decoding procedure for BPSK signals on the AWGN channel,

based on minimum-Euclidean distance, is completely invariant under scaling by a

constant factor.

7.1.2 Comparators and yield.

A complete analog decoding architecture m ust employ one or more comparators to

convert the analog soft outputs into digital decisions. It is somewhat easier to design

a good low-speed, low-energy decoder than a high-speed one, so a large array o f

output comparators is preferred. All comparators exhibit an unwanted input offset

voltage, which is mainly due to mismatch.

There are several techniques for compensating offset in comparator designs [8,

93], but for analog decoders we are interested in expending minimum resources

(7.1.8)

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the comparator. In a typical analog decoder with block length n, there are n

comparators in the output stage. If the comparator design is not very small, then the

expense of the output stage may overtake the benefits of implementing an analog

decoder. On the other hand, a very simple, low-energy comparator design may

exhibit a large variance o f offset voltages. We now address the effect this will have

on performance.

Performance loss due to comparator faults.

As in the Density Evolution analysis o f Section 4.2, we employ the Gaussian ap­

proximation, in which we assume that the log-likelihood ratio at the decoder’s out­

put, X , is Gaussian distributed, and that its mean is proportional to its variance. We

also assume that the offset voltage is Gaussian distributed with zero mean.

Because a differential voltage is directly proportional to a log-likelihood ratio,

we may speak in terms o f the comparator’s offset log-likelihood, X0. We further as­

sume that no comparator’s LLR offset exceeds a specified limit, L, which is chosen

to be a fraction o f the decoder’s maximum possible output.

Based on these assumptions, we may say that the zero-offset error probability,

Pe, is given by

Pe = 2 (~ y) , (7.1.9)

where Q () is the well-known Gaussian error integral function. When the offset is

accounted for, we find that the error probability with offset, Pe{X0), is given by

where Q () is the Normal density function.
P (X)Figure 7.1.7 displays the ratio p ° as a function of offset standard deviation

(expressed in the LLR domain). Results are presented for several zero-offset BERs.

If the offset deviation is less than two, then the BER is increased by a constant factor

independent o f SNR. It therefore seems that a large range o f offsets are acceptable.

In practice, the offset deviation depends on a variety of factors including the ex­

act circuit design, the fabrication technology, and the signal scaling between LLRs

and differential voltages. These factors can be evaluated for any particular design.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

1

0 1.5 30.5 1 2 3.5 4
Otfset standard deviation (LLR)

Figure 7.1.7: The increase in error probability due to comparator offsets. Offsets
are assumed to be Gaussian distributed voltages, represented in the Figure in nor­
malized log-likelihood units.

Note that a small voltage offset can correspond to a large LLR offset if the scaling

param eter (s in Section 7.1.1) is small.

Device yield.

In general, as Figure 7.1.7 demonstrates, the limiting concern in comparator design

is not performance but yield. Suppose we want a failure rate o f one chip per thou­

sand, and each chip has one thousand comparators. We must achieve a comparator

failure rate better than one in a million. Because we stipulate that no compara­

tor’s offset magnitude can exceed L, we require some means o f verifying that this

condition is satisfied in a fabricated design.

It is conceivable that an analog decoder design can employ a built-in self-test

(BIST) in which any offset magnitude greater than a specified limit L is detected,

and such chips are discarded as failures. A suitable BIST may or may not be feasible

for an analog decoding architecture. This thesis does not present a BIST solution

for comparators in analog decoders. Because o f the sensitivity between offset and

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

yield, we suggest that a comparator BIST solution is necessary for verification o f

analog decoders when manufactured in bulk.

The decoder determines L, and the comparator design must be adjusted accord­

ingly to meet yield requirements. An analog decoder design is only as good as the

comparators which resolve its output into useful digital information.

7.2 Mismatch.

By far the biggest concern about the performance o f large-scale analog decoders is

device mismatch. In this section we examine mismatch and demonstrate that, on a

large scale, mismatch can be dealt with as a kind o f noise. We conclude that two

types of mismatch effects exist: feed-forward and lateral.

Definition 7.2.1. F eed-F orw ard processing. Circuits, especially the input stages,

in an analog decoder in which signals flow from input to output, with little or

no connection to neighboring circuits. In feed-forward circuits, mismatch can be

straightforwardly referred to the channel’s output and treated as an equivalent in­

crease in channel noise [24].

Definition 7.2.2. L a te ra l processing. Circuits for which the outputs are dependent

on input from several adjacent cells; the iterative parts o f a decoder. In these highly-

connected processing stages, mismatch cannot be straightforwardly referred to the

channel.

It will be shown in Section 7.2.3 that a separate lateral effect exists. This effect

is severe when mismatch is large. When the mismatch variance is maintained at a

reasonable, controlled level, however, the lateral effect is negligible in comparison

to the feed-forward effect. Acceptable mismatch levels for lateral stages are attained

by minimum-sized devices in many current processes [27]. We conclude that it is

most important to optimize for mismatch in the input stages to an analog decoder.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ml M2

Figure 7.2.1: Current mirror circuit.

7.2.1 Modeling mismatch in analog sum-product circuits.

Mismatch is defined as a difference in the behavior of two devices which are de­

signed to be identical. Mismatch arises from a variety o f random and deterministic

events during device fabrication [65,27]. Deterministic mismatch components can

typically be neglected for devices which are small and closely spaced. The remain­

ing random phenomena are small, independent variations in parameters and device

geometry. Because mismatch variations are small, they can be considered additive.

The central limit theorem therefore applies, and the complete effect o f mismatch is

expressed as a Gaussian-distributed random variation in one o r more device param­

eters.

An important building block for analog circuits is the current mirror, shown in

Figure 7.2.1. Ideally for this circuit, we should find that / 2 = / i . In reality, mismatch

between devices M l and M 2 results in a random variation £, so that

72 = / i - (1 + £) (7.2.1)

where £ is a zero-mean Gaussian random variable. In this circuit, 1\ is considered

to be the input, and h the output.

This model is quite common in the semiconductor literature [27 ,55 ,65], though

£ cannot be considered a true Gaussian. The tail o f its distribution, where (1 + e) <

0, is not physically possible (it violates conservation o f energy). If the probability

density function for (1 + £) is pe (l + £) , then we must require

p e (l+ £) = 0 , V £< —1

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pd+e)

0.5 1.5-0.5 0 1 2

(1+e)

Figure 7.2.2: Density function o f the mismatch factor (with exaggerated variance).

(the resulting density function must, of course, be appropriately normalized). What

happens to the physical density function as (1 + £) approaches zero is unclear. Very

little experimental research is available on the tails o f the mismatch distribution.

When (1 + e) = 0, the device is completely destroyed and no current will flow.

This is a common failure event in large-scale digital circuits. Large chips are typ­

ically designed with a test procedure which can detect the presence of any failed

devices. After fabrication, any chips which fail this test are discarded. If we as-

sumeroon that such a test is available for analog decoder chips, then we may safely

exclude the complete failure case where (1 + £) = 0 from our analysis. The result­

ing physically plausible density function is illustrated in Figure 7.2.2.

We restrict our analysis to the canonical Gilbert multiplier sum-product circuit,

shown in Figure 7.2.3. This circuit is repeated to construct an iterative decoder for

any LDPC code [52, 31]. I f the devices were perfectly matched, this circuit would

produce outputs given by (5.1.11).

To account for the effect o f mismatch, we must modify the translinear principle

(Section 5.1) by applying the (1 + £) factor to the affected currents. Applying this

modified translinear principle on the two distinct loop topologies in Figure 7.2.3,

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output

1 I
Connectivity (2)

IzOO IzlO IzOl Iz ll

IxO
eOO eOl

Vref

Ixl
e lO ell

Vref

IyO

Iyl

Figure 7.2.3: Basic Gilbert multiplier sum-product circuit.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we arrive at the following equations:

(7.2.2)

I z o j+ Iz \ j = 7>’y (l + e;)
(7.2.3)

Izij (actual) =
IX i-ly j- (l + £;) (l + £ -)

Ixi ^1 + £ /y j + Ix- (l + £ /;)
(7.2.4)

The result (7.2.4) is the circuit’s output corrected for mismatch. Our model of

mismatch is almost identical to that used in [55].

7.2.2 Feed-forward analysis.

The feed-forward analysis o f mismatch was introduced by Jie Dai [24], and is based

on a sequence of Taylor approximations to simplify (7.2.4). We also neglect corre­

lation between the numerator and denominator o f (7.2.4). The important approxi­

mations are as follows:

We illustrate mismatch referral for a differential-pair input circuit, as shown in

Figure 7.2.4. In a decoder with a large block length, there are many instances of

this differential pair circuit which are independent o f each other. We may therefore

speak o f the mismatch as noise.

We first observe that, for To = 7i, we should have an input (ideally) o f zero. In

this case, we note that

aZ\+ bE2 = £ v fl2 + l'2

£]£2 « 0

l n (l + £) « E.

eV5, (7.2.5)

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where we have used the normalized units of voltage and current, as used in (5.2.5)

in Section 5.2.1.

W hen using normalized units, the scaling factor 5 (explained in Section 7.1.1)

is equal to one. To refer Vy to the channel’s output, we write the standard deviation

o f the channel’s noise as G~ = N o/2 , and the effective variance due to mismatch as

G^, so that the total effective noise, inclusive o f mismatch, is

= <% + <&
No [I N l d j

2 16
No (N p d j

2 \ 4

By placing (7.2.6) in the log domain, we arrive at the effective loss in SNR due

to mismatch:

loss (dB) = 10 • log10 ^1 + . (7.2.7)

Jie Dai found that this procedure could be applied in general to canonical CMOS

sum-product circuits, arriving at the general formula

loss (dB) = 10-log10 (l + v -A/o - g |) , (7.2.8)

where v is a constant, ranging from 0.25 to 8. The constant v depends on the circuit

topology, and increases as more feed-forward stages are added.

The loss due to the feed forward effect is plotted in Figure 7.2.5 for rate-1 /2

codes, for which the ideal SNR = 1.5 dB. The loss due to mismatch can become

quite large for moderate v. Because v is a fixed param eter of the circuit, it cannot

usually be improved. The only way to reduce the loss due to mismatch is to re­

duce g £, which can be accomplished by using several mismatch-optimizing layout

techniques in feed-forward stages.

7.2.3 Density evolution analysis of lateral effects.

The method o f density evolution provides a means o f evaluating upper limits to the

performance o f iterative decoders for arbitrarily large LDPC codes [21,70].

To apply density evolution to the Gilbert-multiplier decoding architecture, we

must be able to compute a node’s mean output message based on its mean input

175

(7.2.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N o

Figure 7.2.4: Mismatch referral for a differential-pair circuit. VV represents the
offset voltage needed to make Iq = 1\ when the received channel sample is r = 0
for a particular pair o f mismatch values, £j and £2 . The effective additional channel
noise, nm, is the offset in the received sample which is needed to produce VV.

L oss d u e to m ism atch in fe e d -fo rw a rd circuits
4.5

3.5

a 2.5

1.5

0.25

0.05 0.1 0.2 0.3 0.35 0.40.15

Figure 7.2.5: Performance loss due to mismatch in a feed-forward circuit, for a rate-
1 /2 code at Eb/No = 1.5 dB. The parameter v is varied from 0.25 to 8, as indicated
to the right o f each curve.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

He He He

He

Figure 7.2.6: Illustration o f iterated VEGAS integration for nodes of degree > 3.

message. Let X and Y be the input LLR messages to the analog node Let e

be the vector o f Gaussian-distributed mismatch parameters, each with variance G£.

Let fix and juy refer to the mean o f X and Y, respectively, and let g | and Gy be the

variances o f X and Y.

Let Z be the node’s output message, and let Z = f n (X,Y,~e) be the function

describing the behavior o f node Recall that f„ is determined by (7.2.4). Then

the mean of Z, fiz, is equal to

MZ =

f — S fn (*, y, "e) P (* § *) P (^) Pe (J) d x d y d t a 'Z 9)

where p is the zero-mean, unit-variance normal density function.

To compute this integral, we use a method o f adaptive Monte Carlo integration

known as the VEGAS algorithm [50] with the procedure described in Section 4.3.3

o f this thesis. An implementation o f the VEGAS algorithm is available in the GNU

Scientific Library [1].

To determine fiz for a node with degree greater than three, we iterate the VEGAS

integration, as illustrated in Figure 7.2.6. Each box labeled ' f f in Figure 7.2.6

represents an integration. Care has been taken in this iteration to ensure that the

final estimate fiz has acceptable precision (see Section 4.3.3 of this thesis).

Using this algorithm, the threshold o f a regular LDPC ensemble can be eval­

uated as a function s* (g £) o f the mismatch standard deviation a e. From [21] we

know the exact thresholds s*xact for a variety o f regular distributions. We therefore

define a function / i0Ss (<*e) = sJ Cc'> • This function has been computed for the regular

ensembles listed in Table 4.3. The results (in dB) are shown in Figure 7.2.7.

Figure 7.2.7 reveals similar exponential losses for each ensemble. We offer

the conjecture that a particular decoder would experience a performance loss due

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

0.8

0.7

0.6

CQ
■o^— ' 0.5

o 0.4

0.3

0.2

0.1

0.3 0.350 0.1 0.15 02 0.40.05

Figure 7.2.7: The threshold loss due to mismatch for regular LDPC ensembles
corrseponding to those in Table 4.3.

to mismatch similar to that o f the threshold itself in Figure 7.2.7. The designer

may therefore use these results as a “rule o f thumb” for sizing transistors. I f a

performance loss o f 0.2 dB is tolerable, then transistors should be sized such that

Ge < 30%.

Even in the most aggressive present CMOS processes, mismatch does not ex­

ceed Ge « 25% for even near-minimum sized devices [27], Obtaining mismatch

better than 10% is easily accomplished by slightly increasing the transistor size.

It should also be noted that a difference of 0.1 dB is near the error margin intro­

duced by the Gaussian approximation itself [21]. We therefore conclude that for

a sufficiently large code, no statistically significant performance loss occurs until

o e > 0.2.

7.2.4 Comparison of feed-forward and lateral mismatch effects.

To compare the effect o f lateral and feed forward effects, a pair o f representative

loss curves is shown in Figure 7.2.8. The lateral loss curve is for a (3 ,12) regular

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

Lateral
0.8

0.7

0.6

Feed-forward -0.5m■o
tn
<A

3 0.4
v=0.5

0.3

0.2

0.1

0.35 0.450.15 0.2 0.25 0.30 0.05 0.1 0.4

Figure 7.2.8: Comparison o f feed-forward and lateral losses.

LDPC ensemble. Recall that for an LDPC ensemble, the parameters are written as

(dv,dc), refering to node degrees as opposed to code length. The feed-forward curve

in in Figure 7.2.8 assumes v = 0.5. It is clear that the feed-forward effect dominates

at low levels o f mismatch, even for this small value o f v.

The lateral effect is catastrophic for high levels o f mismatch. For ordinary m is­

match conditions, it is essentially irrelevant. As long as mismatch in the circuit

does not exceed a critical variance o f about 25%, there is no danger due to the

lateral effect.

The feed-forward effect, however, has a more pronounced influence in low-

mismatch conditions. We therefore conclude that great emphasis m ust be placed

on mismatch optimization in feed-forward stages, while a more relaxed approach

is permissible in the lateral circuits. Input interface circuits, as part o f the feed­

forward section, m ust be optimized for low mismatch, while lateral stages can be

implemented with generic “soft-gate” components as prescribed by Lustenberger

[53] and JieD ai [24].

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

*A CMOS Analog Decoder for an
(8,4) Tailbiting Hamming Code.

A version o f this chapter is published in Ref. [90].

In this chapter we present an analog implementation o f the tailbiting (8,4) Ham­

ming trellis decoder. The structure and algorithm for this decoder are described in

Section 3.2.4. All o f the necessary decoding operations are implemented using the

canonical CMOS sum-product approach outlined in Section 5.2.2. We also present

the design of a serial-to-parallel S/H interface based on the principles o f Section

7.1.1. An array o f current comparators is used to resolve the circuit’s analog out­

puts to digital bits.

The decoder was implemented in an AMI 0.5fim digital CMOS process. All

transistors in sum-product circuits are sized 2/xm x 4/zm, which is about four times

the minimum transistor size for this process. The circuit accepts serial- or parallel-

mode analog differential voltages, corresponding to log-likelihood ratios, and out­

puts digital bits. The output can be selected to be serial- or parallel-mode, but the

serial mode is not available due to a layout fault.

8.1 The analog sum-product components.

According to Section 3.2.4, the decoder is divided into seven computational parts:

• The “Tree” which combines a pair o f individual bit-probabilities into two-bit

symbol probabilities.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The “clockwise” and “counter-clockwise” computations of the first trellis

section, T\.

• The “clockwise” and “counter-clockwise” computations o f the second trellis

section, Ti.

• The “upward” computation o f T\ (out).

• The “upward” computation o f T> (out).

8.1.1 The Tree circuit.

The “Tree” operation is represented by the matrix product

This computation is implemented by the circuit in Figure 8.1.1, which includes

renormalization.

8.1.2 Trellis section one.

The first trellis section has clockwise and counterclockwise components, repre­

sented by the matrix operations

The circuit for T\ (c) is shown in Figure 8.1.2, and that for T\ (cc) in Figure 8.1.3.

These circuits also show the renormalization portion.

- yCOO) -
y(01)
■yOO) (8.1.1)

y Tree(X \) -Xp. (8.1.2)

1" yC00) 0 1
7. / \ y W 0
r i (c) - 0 y 01)

0 y 10)
r ,(c c) = [7i (c)]t .

(8.1.3)

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0

s . / 11—

£ n

%

D h - C L h j H C
— I — J Y j(O l)

----------------- = Y:(l 1)
- = Yj(OO)

Y :d O)

Figure 8.1.1: Circuit for the “Tree” computation.

8.1.3 Trellis section two.

The matrix operations for the second trellis section are

r ^ o o) ^ n) y i o j y o i) -

Tl ^ = L 'Y(11) y oi) ^ 10)
r 2 (cc) = [t2 (c)]t .

(8.1.4)

The circuit for T2 (c) is shown in Figure 8.1.4, and that for T2 (cc) in Figure 8.1.5.

These circuits also show the renormalization portion.

8.1.4 T\ (out).

The T\ (out) computation is represented by the matrix operation

7] (out) =

The circuit for this computation is shown in Figure 8.1.6.

(8.1.5)

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CD i«

I□h-pir >jHr phpHr
.J=.a/P>
— 0 / 1)
— 0/2)
— 0,(3)

a ,(°) -

a ,(D -

Y,(00) -
Y,(01).

Y,00)—

Y.dD—

< T

^ = - 4:

P r

4

4

<L

Pi
P i

Figure 8.1.2: Circuit implementation o f T\ (c).

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O i

Figure 8.1.3: Circuit implementation o f 7j (cc).

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 ,(0)—

Figure 8.1.4: Circuit implementation o f T2 (c).

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q) i

p,(°)
p ,(d
P ,(2)

P ,(3)

Figure 8.1.5: Circuit implementation o f T2 (cc).

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— 11,(0)

— U ,(l)

a m —

Figure 8.1.6: Circuit for the T\ (out) operation.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© l u

0 ,(0)—

Figure 8.1.7: Circuit for the T2 (out) operation.

8.1.5 7o (out).

The T2 (out) computation is represented by the matrix operation

T2 (out) =
p(°) o p(2) 0

o p w o p(3)
(8.1.6)

The circuit for this computation is shown in Figure 8.1.7.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Digital out

= (m } = [S
0

0

0

0

0
SH r:---------1 SH

i s h F

DeccxJer

-0

-0

Figure 8.2.1: Interface diagram for the (8,4) analog decoder.

8.2 Interfaces.

To perform serial-to-parallel conversion of analog samples, an array of differential

S/H circuits is used. These circuits sample analog data from a common analog

bus, as indicated in Figure 8.2.1. The timing of the S/H circuits is controlled by a

chain of shift registers (SRs). The “enable” signal is passed from one shift-register

to the next, until a full codeword has been received. An array o f latching current

comparators is used at the output.

A clock-generator circuit coordinates the comparator latch signal and the input

select signals for the S/H buffer. There are eight separate select signals, as indicated

in the timing diagram shown in Figure 8.2.2. Each select signal is enabled, then

disabled, sequentially until a block o f samples is received. A global “reset” input

(provided from off-chip) signals the start of a block.

A “pipeline” signal coincides with the eighth select signal, and causes all stored

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clock

sclO

se ll

_ r r

sel2

se!3

sel7/pipeline 1

vian-h (computation) (latching)

Figure 8.2.2: Timing diagram for the analog (8,4) Hamming decoder interface.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vdd

select pipeline
4/2 4 / 2

select pipeline
Vin (LLR)

select pipeline

2 / 4

select pipeline

Figure 8.2.3: The input stage for the (8,4) decoder.

samples to be re-sampled simultaneously by a second S/H buffer. The second buffer

holds the samples, presenting them in parallel to the decoder until decoding is com­

plete. Five clock cycles are allocated for decoding (including the time during which

“pipeline” is high). During decoding, the comparator latch signal, “vlatch,” is low.

The “vlatch” signal is high during the fifth through the seventh clock cycles. This

pipelining scheme results in a two-codeword delay before outputs can be sampled.

8.2.1 S/H input circuits.

The input stage for the (8,4) analog decoder is shown in Figure 8.2.3. The W idth/Length

o f each transistor are indicated as 4 /2 and 2 /4 , where the units are /«n. The N and

P type transistors in the transmission gates have size W /L = 1.8^m/0.6/zm.

The two S/H stages are isolated by a unity-gain buffer, shown in Figure 8.2.4.

The buffer has a -3dB frequency o f 100MHz. Each S/H sub-circuit uses a 200fF

capacitor. The S/H circuits were fully characterized and optimized by Shuhuan Yu,

who also provided the buffer design [96].

8.2.2 Comparator circuit.

The final bit decisions are made by a latched current comparator, shown in Figure

8.2.5. M onte Carlo SPICE simulations were performed by Shuhuan Yu on the com­

parator circuit, using a measured estimate o f mismatch characteristics for the AMI

process [96]. Based on this analysis, the input offset of the current-comparator has

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vin

21 / 1.8 21 / 1.8
Vbias

12 / .9 12 / . 9

1 pF

12/ 1.812/3.6

12/3.6

Vout

Figure 8.2.4: The unity-gain buffer circuit.

an estimated standard deviation o f between 15% and 20% of the operating current

Iu-

8.3 Physical test results.

The decoder chip, shown in Figure 8.3.1, was fabricated in an AMI 0 .5um pro­

cess. A second chip containing test structures was also fabricated. Basic design

features o f the decoder chip are summarized in Table 8.1. Transistor sizes are re­

ported for the core decoder circuit, in which each transistor has a W /L ratio o f 2

for transistors used in Gilbert multipliers, and 0.5 for transistors used in current

mirrors. The reported decoder power consumption refers to the power consumed

in the core decoder, excluding the interfaces. The chip’s behavior was verified at

speeds from 1kbps to 2Mbps. Typical power consumption is between 10 and 100

fiW, corresponding to speeds between 1 and 100 kbps.

U sing a pair o f arbitrary waveform generators to produce input samples and a

synchronized clock signal, the chip is tested in full-speed serial mode. A Matlab

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transistor sizes (W/L):
PI = 1.8/z/.9/z
P2 = 3jM/ .9 a

p3 = 5.1/i/2.1/i
p4 = 3 .9^ /2 .1 //

P5 = 3f i / . 6fi
p6 = 1.8/ i / .6fi
p7 = 6n / . 6 / i

Figure 8.2.5: Latched current comparator circuit.

Table 8.1: Summary o f (8,4) Hamming decoder characteristics.

Die Size 1.5 mm x 1.5 mm
Technology 0.5^m 3M 3.3V CMOS
Circuit Area 0 .81m nr

D ecoder Area 0.083mm2
Transistor Size 2fim x Afim.
Tested Speed up to 2Mbps

Core Decoder Power
lm W at 1Mbps (Ju =2ptA)

16//W at 20kbps (Ju = 58nA)
Digital Power 44.2mW

Pad Power 135/fW

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.3.1: Photo o f the analog (8,4) decoder chip.

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

script is used to generate random information bits and encode them. The script

then adds Gaussian noise samples to simulate the Additive W hite Gaussian Noise

(AWGN) channel. The resulting samples are appropriately scaled so that they rep­

resent LLR values, thereby simulating the output of an idealized matched-filter re­

ceiver. The LLR samples are sent to the waveform generator via a GPIB interface,

where they are provided to the chip as a serial input stream. The chip’s digital out­

puts are sampled by an oscilloscope and returned to the M atlab script, which counts

the errors.

8.3.1 Dynamics of the decoder.

The decoder’s maximum throughput (the number of decoded bits per second) de­

pends on the bias current ly . SPICE simulations give an indication o f the allowable

operating speed, based on the cross-over time and the 90% rise time o f the analog

output decisions.

The cross-over time is the instant at which the sign o f a differential output has

attained its final value. The rise time is the time it takes for the output to attain

90% o f its final magnitude. Because the cross-over and rise times may vary from

sample to sample, we may only use them to roughly estimate the maximum speed.

The chip should operate somewhere between the limits predicted by the rise and

cross-over times.

With our test setup, the variation o f performance with speed is most conve­

niently observed when the decoder’s speed is limited to between 1kHz and 10kHz.

At Iu = 58 nA, the 90% rise-time for a transition in the output decisions is about

150/tf, corresponding to a speed o f 27 kbps. The output cross-over time (the time

after which the actual decision changes) is about 90ps, for a speed o f 44 kbps, which

should give some indication o f the maximum possible speed. Performance results

for this Iu at different speeds are shown in Figure 8.3.2. The power consumed in

the core decoder at this speed is 16pW .

All reported bit error-rate measurements have a 95% confidence interval o f bet­

ter than ±30% . Results are not available for the fourth output bit. A simple par­

allel/serial output mode-select circuit suffered from a floating node which should

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-© - 3.4 kbs
-* * - 34 kbs
-H - 68 kbs

ideal system

o«CC
o

LU
a

15.9 uW consum ed in decoder core

5.5

w dB>
6.5

Figure 8.3.2: Decoder performance vs speed in moderate inversion.

have been connected to ground. This mistake results in a stuck output on the fourth

bit. The analog outputs o f this bit are still measurable, but off-chip current com ­

parators introduced additional problems such as glitches, phase shifts and limited

speed, which corrupted test results. The reported results therefore represent the

three observable digital outputs.

8.3.2 Measurements in strong inversion.

Due to limitations in the oscilloscope, the serial-mode chip test can only mea­

sure performance at speeds above 1 kbps. The code’s small block length requires

moderate-inversion biasing (Iu > 14nA) to achieve testable speeds. While designed

to operate in weak inversion, the chip also functions with strong inversion bias cur­

rents, and has been tested up to Iu = 4 fiA, which is well into strong-inversion.

Some performance loss occurs in strong inversion, as seen in the Iu = 1.74/M

measurement reported in Figure 8.3.3. The test was conducted at a speed o f 424

kbps. The performance loss at this bias current agrees closely with simulations.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10'1
—I— Ideal Perfo rm ance
— S trong inversion (sim ulated)

O S trong Inversion (m easured)

trLUm

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
W dB>

Figure 8.3.3: Measured performance in strong-inversion.

The solid curve in Figure 8.3.3 was obtained using a hybrid analog model imple­

mented in VHDL. The model includes square-law transistor behavior and a one-

pole system to model the dynamics of Gilbert multiplier circuits [24]. The close

fit between simulated and measured points is taken to be a validation o f this simu­

lation model. Figure 8.3.3 reports simulation results alongside performance o f an

“ideal” Hamming decoder. The distance between the ideal and measured curves

is accounted for by moderate-inversion biasing. The performance loss o f roughly

0.3dB at BER=7 x 10-5 matches the prediction made by high-level simulations.

The measured points o f Figure 8.3.2 represent the performance averaged over

the three observable bit positions.

8.3.3 Measurements in weak inversion.

Using a specialized test interface, detailed in Section 9.3, it was possible to retest

the (8,4) Hamming decoder operating in weak inversion. The results reveal subtle

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

effects in the decoder’s dynamic transition from one sample block to the next.

One set o f results, shown in Figure 8.3.4, reveals exactly the expected perfor­

mance. The Figure shows solid curves representing the minimum-distance asymp­

tote for the (8,4) Hamming code, and the performance of uncoded BPSK. Measured

performance from the decoder is indicated by circles. 99.9% confidence intervals

are also shown.

The performance in Figure 8.3.4 is obtained by sending the same codeword

each time, varying only the noise. The same results are obtained, regardless of

which codeword is sent.

If the transmitted codeword is varied randomly, there is a dramatic change in

performance. The performance in this case is shown in Figure 8.3.5. The perfor­

mance loss is attributed to the decoder’s “memory” o f previously decoded samples.

In the design o f the (8,4) Hamming decoder, there is no mechanism for clearing the

decoder’s state before proceeding to a new block o f samples. Thus the outcome of

one sample block can bias the decoding of subsequent blocks. This problem can be

remedied by the inclusion of a reset circuit. Such a reset circuit is incorporated into

the designs o f Chapters 9 and 10.

8.3.4 Mixed-signal interference.

A measurable amount o f interference from on-chip digital circuitry occurs on the

first bit position, due to the layout proximity between the analog outputs for those

positions and the comparator latch signal. Figure 8.3.6 shows the measured ana­

log decoder output of a pair o f output pins with interference. The two waveforms

represent the probability values for an output bit.

The analog output wire labeled ’p i ’ in Figure 8.3.6 was found, upon exami­

nation o f the layout, to be routed parallel to the “vlatch” signal wire, at minimum

spacing, for a distance o f 187//m. The discontinuities in the interference pattern cor­

respond precisely to the rising and falling edges o f the vlatch signal. Interference

from vlatch is visible on one of the other analog outputs, but it is comparatively

faint. This amount o f interference seems to result in a very small performance loss

on the affected bit position, but the precise amount o f loss is too small to be resolved

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 2 4 6 8 1 0 1 2
E -b /N -0 (dB)

Figure 8.3.4: M easured performance in weak inversion, sending only one code­
word. The solid curves represent uncoded BPSK and ideal Hamming code per­
formance. M easured points are indicated by circles. Error bars indicate 99.9%
confidence intervals.

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.3.5: M easured performance in weak inversion, varying the codeword. The
solid curves represent uncoded BPSK and ideal Hamming code performance. M ea­
sured points are indicated by circles. Error bars indicate 99.9% confidence intervals.

by the current test method.

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O
ut

pu
t

(V
)

Vout(pO)
 V out(p l)

3.5

in terference
2.5

1.5

0.5

0.1480.1470.144 0.145
Tim e (s)

0.1460.142 0.143

Figure 8.3.6: Mixed-signal interference in outputs o f the (8,4) analog decoder.

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

*A CMOS Analog Decoder for a
(16,11) Hamming Code.

In this chapter we present an analog implementation o f the conventional (16,11)

Hamming trellis decoder developed using the squaring construction in Section 3.3.4.

We again use the canonical CMOS sum-product method of Section 5.2.2. This is

also the first fabricated decoder to make use o f the reference input method described

in Section 5.4.

The decoder was implemented in a TSMC six-metal 0.18/un six metal digital

CMOS process. Only the lowest three metal layers are used in the component

layout. All transistors in sum-product circuits are sized 1.15//m x 0.35/zm (W by

L), which is about 1.9 times the minimum transistor length for this process, and

five times the minimum width. The circuit accepts serial-mode analog differential

voltages corresponding to log-likelihood ratios. The circuit produces serial-mode

digital bits at its output.

The S/H interface and latched current comparators o f Section 8.2 are also re­

designed to make them suitable for the 0.18,win process. A specialized testing board

has been constructed, based on an FPGA, a DAC, and a C++ user interface, which

interfaces with the analog decoder. In this chapter, we present some details o f the

test interface, and examine issues in its use.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Z3 Z 4

Figure 9.1.1: Subdivision o f the bit-combiner (Figure 3.3.10) into atomic trellis
components. The labels Zy represent information input and output for binary code
variables. S represents a hidden state o f the eight-state trellis graph.

9.1 The analog sum-product components.

The analog components for this decoder are derived from the trellis o f Figure 3.3.9.

The decoder is divided into two major components: the bit combiner and the trellis

core. The bit com biner itself is divided into three sections. Each trellis section

requires three circuits to implement “forward,” “backward,” and “upward” sum-

product computations. Chapters 5 and 8 demonstrate how these circuits may be

synthesized from trellis descriptions.

The structure of the bit-combiner trellis allows it to be subdivided into simple

“atomic” trellis subsections. This subdivision is illustrated in Figure 9.1.1. The

first two stages o f the bit combiner can be constructed using only the “tree” trellis

structure. In the third bit combiner section, a set o f “butterfly” trellis components is

used.

When disjoint subsections are used to construct a trellis section, they must

sometimes be implemented using a “reference input,” as explained in Section 5.4.

The reference input is required only when the row inputs are divided among disjoint

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subtrellises. For each of the trellis sections of Figure 9.1.1, three circuit implemen­

tations are required. Some of these require reference inputs, others do not.

The core trellis section similarly requires three sum-product circuits. The ge­

ometry of the core section fortuitously dictates that all three of these circuits are

identical. Moreover, because the core trellis section is divided into identical dis­

jo in t subtrellises, the sum-product circuit may be simplified to a repetition of the

sum-product circuit for the subtrellis. The design for the (16,11) core subtrellis

circuit, using a reference input, is examined in Example 5.4.2.

The complete decoder is therefore constructed using only the three atomic sub­

trellises shown in Figure 9.1.2. Because o f the symmetry o f these subtrellises, only

six distinct circuit implementations are required:

• Tree

- Forward, backward, and upward computations,

- Upward computation with reference input,

• Butterfly

- Upward computation with reference input,

• Core

- Forward/backward/upward computation (all isomorphic) with reference

input.

The trellis section implementations are placed in a pinwheel configuration, as

shown in Figure 9.1.3. The bit combiner sections are enclosed by dashed boxes.

Each box in the schematic represents a group o f local sum-product circuits for the

forward, backward, and upward directions. The box labeled “T” represents an in­

stance of the Core subsection. The bus widths are also indicated between each

module, where a width o f “8” implies 8 wires in the forward direction and 8 wires

in the reverse direction.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tree

<
<

Butterfly Core

Figure 9.1.2: Atomic subtrellises for the (16,11) Hamming code.

B2 ea

w

B3

Figure 9.1.3: A block schematic for the (16,11) decoder.

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 9.1.4: Layout o f the (16,11) analog decoder.

The pinwheel configuration is also visible in the decoder’s layout, which is

shown in Figure 9.1.4. The layout for the (16,11) decoder is nearly square, and

is 163/mi on each side.

The implementation presented in Figures 9.1.3 and 9.1.4 uses strictly the sum-

product algorithm in accordance with the Extrinsic Information Principle (definition

2.4.1). As a result, the circuit’s output for each b it is extrinsic information only.

Thus the probability mass output for bit ut is conditioned on every sample in the

block except y,-. To complete the computation, the channel information for y-t must

be included. This is done through the insertion o f an equality node at the output of

each bit, as illustrated in Figure 9.1.5.

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 9.1.5: Use of equality gates at decoder outputs.

Figure 9.1.6: Layout of (16,11) decoder, with equality gates.

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 9.1.7: Creating a butterfly from a tree.

9.1.1 Subtrellis implementations.

The Tree circuit is rudimentary, and was examined in Chapter 8. The Butterfly cir­

cuits in the forward and backward direction are equivalent to a Tree circuit, varying

only the connectivity of the output nodes. This is illustrated in Figure 9.1.7. The

forward and backward Butterfly computations are therefore implemented by Tree

circuits.

The upward Butterfly computation requires use of a reference input, as illus­

trated in Section 5.4.2. The circuit for the upward Butterfly computation is shown

in Figure 5.4.5. The Core circuit was developed in Example 5.4.2. The equality

node circuit was also studied in Chapter 5, and is shown on the left-hand side of

Figure 5.2.7.

The only remaining sum-product circuit used in the (16,11) design is the upward

Tree computation. For completeness, this circuit is shown in Figure 9.1.8.

9.1.2 Reset switches.

It is desirable to reset the decoder to a uniform state after each decoded block o f

samples, before proceeding to the next block. A simple method for erasing the

decoder’s “memory” is the use o f reset switches, which are simple pass transistors

[53]. The reset switches are used to short all of the wires in a probability mass. This

equalizes their node voltages and creates a uniform distribution.

In the (16,11) circuit, reset switches are used in the Core trellis component.

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V d d

IxO

lyO

Figure 9.1.8: Upward Butterfly computation, with reference input.

Their connections are indicated in Figure 9.1.9.

9.2 Interfaces.

The interface design for the (16,11) decoder is nearly identical to that o f the (8,4)

decoder presented in Section 8.2. The (16,11) interface is a generalization o f Figure

8.2.1, and is divided into eight-sample subarrays which can be connected end-to-

end to create an input interface o f arbitrary size.

Within a subarray, a series connected sequence o f shift-registers is used to pass

control from one S/H circuit to the next. This arrangement is illustrated in Figure

9.2.1. The “top” and “bottom” modules differ only in their handling o f control

signals.

The “top” module receives a global “frame reset” signal, which synchronizes

the interface with the first sample of an incoming codeword. The reset signal is

forward from the top module to other modules in the chain. During synchronization,

the contents o f each shift-register (SR) m odule are set to zero, except for the first

SR which is set to one.

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inputs

reset

reset

reset

reset

reset

reset

reset

Figure 9.1.9: Use of reset switches in the Core sum-product component.

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SR reset frame reset

Eight-Sample S/H Bus Eight-Sample S/H
(bottom) (top)

select

| ! | s■I £ I •«C. 1/3

Serial Input Bus

loop-back (restart)

Figure 9.2.1: Modular S/H array.

The “bottom” S/H module generates timing signals for the rest o f the system.

The “pipeline” signal causes samples to be moved into a second stage o f S/H cells.

The “latch” signal causes the comparators to resolve their final bit-decisions. The

“sample” signal causes the out SR array to latch the comparators’ outputs. The

“clear” signal causes the second stage o f S/H cells to empty their charges just prior

to the “pipeline” event.

The signal timings for the “bottom” S/H module are shown in Figure 9.2.2. The

labels “sel3,” “sel4,” and so on refer to the numerical indices o f S/H cells local to

the module. Thus if the block length is sixteen, “sel3” actually refers to the eleventh

sample time.

The comparator’s input nodes are allowed to float until “latch” is activated. As

indicated by dotted vertical bars in the timing diagram, the comparators are given

two clock periods to rail to their final decisions before the “sample” event. Imme­

diately after sampling, the “clear” signal is activated.

An extra clock is devoted to the “pipeline” signal before proceeding to the next

block o f samples. This means that for a block length o f n, the input interface re­

quires n -1-1 clocks to latch in a complete block o f samples. In the (8,4) analog

interface, “pipeline” coincided with “sel8.” This was possible because the (8,4) in­

terface employed a unity-gain buffer between S/H stages. No such buffer is used in

the (16,11) design, so an extra clock is required.

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clock

sel3 ;_____ ;_______________________

seI4 •_____ j_______________________

sel5 !______

sel6 :_ ■___________________

sel7 / sample___________________ :_______________ ___________________

sel8 / clear ___________________ •_______________ j_______ ___________

pipeline / loopback

latch : ------------

Figure 9.2.2: Signal timings for the bottom S/H array module.

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

select

Vin (LLR)

±
select

pipeline

clcar_^ ̂ I
1/0.35 I/O.:nr jh

“ J~ C pipeline ~ j ~ C = 80 fF

select pipeline

" I ^ cic"H[J JL
select | ^ pipeline a==,<xl*l 1

IL-| 1.15/0.35

1 [f 'IL-| 1.15/035

Figure 9.2.3: S/H circuit for the (16,11) decoder.

9.2.1 S/H input circuits.

The input S/H circuit for the serial input module is shown in Figure 9.2.3. There

is no buffer between the S/H stages, so all voltages are divided in half when they

reach the second stage. To accommodate a lower common-mode voltage, P-type

differential pairs are used. Common centroid layouts are used for the differential

pairs to minimize mismatch.

The transmission gate, detailed in Figure 9.2.4, utilizes a well-known techniques

for reducing charge-injection. A pair o f dummy transistors, P2 and N2, are attached

to the output. The source and drain of these dummy transistors are shorted together,

so they have no logical effect on the circuit. When P I switches off, P2 is switched

on. The width o f P2 is 1 /2 that o f P I, so that the charge ejected from P I is mostly

absorbed into P2. The same approach applies to the NMOS devices.

9.2.2 Comparator circuit.

As in the (8,4) design, the final bit decisions are made by a latched current com ­

parator, shown in Figure 9.2.5. This comparator employs the same circuit topology

as Figure 9.2.5, but with sizes adjusted for the TSMC process.

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<t> 4>

Out

Nl,

N2

6

Figure 9.2.4: Transmission gate circuit.

Transistor sizes (W/L):
p i = 1.8f i /.9 fi

P 2 = 3 / t / .9fi
P3 = 5 .1 /t/2 .1 /i
p4 = 3 . 9 ^ / 2 .1 / t

p5 = 3Ju / .6 / t

p6 = 1.8n ! .6[i
P7 = 6fi/.6fi

Figure 9.2.5: Latched current comparator circuit.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.3 Test interface.

An FPGA test interface was designed and constructed to provide an efficient bridge

between the chip’s serial analog interface and a desktop computer. In effect, the test

interface provides a low-level USB-controlled single channel arbitrary waveform

generator, with a synchronized logic analyzer for up to four signals from the device-

under-test (DUT). The test interface can also generate synchronized digital control

signals (e.g. clock and frame). The test interface work was carried out in partnership

with Dave Nguyen.

9.3.1 Hardware.

The test interface is based on the Digilent Digilab 2E FPGA development board,

which uses a Xilinx Spartan 2E FPGA device. The Digilab board has a set o f

board-to-board headers which allow easy communication between the FPGA and

add-on boards.

A specialized daughterboard was designed and fabricated to mate with the Dig­

ilab FPGA platform. The daughter board includes a Texas Instruments AD9764

digital-to-analog converter, which has 14-bit resolution and operates at up to 125 M S/sec.

The DAC outputs are differential, and are passed through a high-speed AD8138

analog buffer which allows manual control o f the peak-to-peak amplitude and common­

mode voltage, which are adjusted by potentiometers on the board.

Also on the daughter board is a set of four potentiometers for setting arbitrary

bias voltages. These voltages are buffered through an LM 324 operational amplifier

array. An adjustable voltage supply is provided by an LM317 voltage regulator.

Digital signals are also buffered using LV125 and LVC244A digital driver chips.

To facilitate communication with a desktop computer, the daughter board also

includes a DLP245M USB-to-FIFO converter chip. This chip provides a seamless

interface between the FPGA and the USB bus. From the FPGA perspective, the

USB is simply an asynchronous eight-bit FIFO with a rudimentary handshaking

protocol.

Each chip to be tested is placed on its own DUT board, which mates to the

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 9.3.1: Photograph of the FPGA-based test board.

daughter board through a second set o f board-to-board headers. When analog de­

coder chips are designed using the generalized serial interface o f Figure 9.2.1, this

test configuration can be used for any analog decoder, without need for modifica­

tion. A photograph of the test hardware is shown in Figure 9.3.1.

9.3.2 Software.

To control the FPGA test device, a C++ class was written which allows direct

streaming of bytes to and from the USB interface. A set o f simulation classes,

written using GNU C++ on a RedHat 9 Linux platform, handles the generation o f

coded bits and Gaussian noise samples, and keeps track o f errors.

The software interface allows real-time graphical display o f error curves, and

produces plots of detailed bit-by-bit information about the decoder’s behavior. The

graphical interface uses the PIPlot library for scientific visualization.

The test software allows direct interfacing o f physical components with sophis­

ticated C and C++ based simulations of communication systems. The real-time

display o f data and the accessibility o f low-level hardware enable rapid discovery

o f faults, heuristic exploration of DUT behavior, and simple verification o f hard-

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 9.3.2: Screen shot of the test interface during a test o f an uncoded loop-back
interface chip.

ware performance.

9.3.3 Noise in the test interface.

The test interface introduces its own systematic noise, with variance o f , as indicated

in the interface diagram of Figure 9.3.3. The systematic noise can be measured

after sample generation and scaling. I f the correct scaling factor is used, namely

s = U[/k , then the systematic noise component appears, relative to the decoder, to

be additional noise in the LLR value.

To refer the systematic noise to the channel, we therefore ignore s and scale the

standard deviation, a ,, by the factor Nq/4 . The total channel noise is therefore

(9.3.1)

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software

FPGA Daughter board

Adds systematic noise O,

DAC
Random

Bits

Count
Errors

ModulateEncode

DUT

Figure 9.3.3: Diagram o f the test interface.

From (9.3.1) we derive the equivalent loss in SNR,

loss (dB) = 10 • log10 ^1 + ^ . (9.3.2)

Because the added noise is independent, additive, white, and Gaussian, it is ap­

propriate to shift the SNR used in sample generation by the amount determined in

(9.3.2). Therefore, to measure performance at a given SNR, we physically measure

o f , and then generate samples by assuming E^/No = (SNR + loss (a f)).

9.3.4 Loop-back interface test

A fully-integrated stand-alone I/O loop chip, in which outputs from the S/H array

arrive directly at an array o f comparators, was implemented in the TSMC 0.18/un

process by Dave Nguyen. The I/O loop circuits are precisely those described in this

section.

It is found that the S/H array functions as expected, whereas the comparator

design is severely prone to faults. In one tested I/O loop chip, only two o f eight

comparators functioned with acceptable reliability. For use with practical decoders

in a real communication system, a superior comparator design is necessary.

In any given chip, at least one of the comparators is expected to function with a

tolerable offset. This is fortunately the case with the I/O chip. The test configuration

is validated by measuring the b it error-rate at the output o f a good comparator. The

results for such tests are shown in Figures 9.3.4 and 9.3.5.

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

10

10

10
cr
L U
m

10

10

10

10
2

Figure 9.3.4: Results for the loop-back test at maximum speed. The solid curve
indicates the ideal performance o f uncoded BPSK. Circles indicate measured error
rates. Error bars indicate 99.9% confidence intervals.

The results o f Figure 9.3.4 were obtained with the test interface operating at

maximum speed, which is approximately 20 Msamples per second (MSps). A t this

speed, high noise and other effects, such as clock feed-through and ringing, were

observed at the output of the DAC. This evidently results in a maximum Es/N o o f

9dB, as indicated by the error floor in Figure 9.3.4.

The systematic noise is reduced considerably when the sample rate is lowered.

The results o f Figure 9.3.5 were collected at a sample rate o f 2.5 M Sps. The noise

can also be somewhat compensated in software by increasing the DAC scale, which

results in lower resolution for small log-likelihood samples. It is clear that the sys­

tematic noise in the system may make it difficult to reliably measure performance

for Es/N q greater than 9 dB.

9.3.5 Discussion of the interfaces.

The failure rate o f the comparator design o f Figure 9.2.5 in no way reflects a fun­

damental problem for analog decoders. High-quality com parator designs are in

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 2 4 6 8
E -b /N -0 (dB)

10 12

Figure 9.3.5: Loop-back results at reduced speed. The solid curve indicates the
ideal performance of uncoded BPSK. Circles indicate measured error rates. Error
bars indicate 99.9% confidence intervals.

plentiful supply [8, 93]. The failure is simply due to a poor design choice in the

final output interface of the decoder.

Interface problems have plagued analog decoding implementations [54,90, 86,

44, 53]. This is possibly due to the lack o f emphasis which designers place on

seemingly trivial, commonplace circuits such as comparators. The central goal o f

analog decoding research, to date, is to prove the concept. M ost o f the design effort

is directed at the decoding circuits. The interfaces, while o f less research value in

and o f themselves, have perhaps been given inadequate scrutiny.

9.4 Characteristics of the decoder.

The analog (16,11) Hamming decoder was fabricated inaT S M C 0.18 fim six-metal

digital CMOS process, and some performance tests are complete. The design was

implemented on the same chip as the (16, l l) 2 Product decoder discussed in Chap­

ter 10. A summary of results for the (16,11) decoder design is presented in Table

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.1.

The digital control signals have been verified, and it has been verified that the

decoder correctly decodes the all-zero and all-one codewords. A performance curve

has also been measured for a subset o f bits, and is shown in Figure 9.4.1. The Figure

also indicates 99.9% confidence intervals. The confidence interval is w ider for the

point at 8dB, where only a small number o f error observations is available.

To obtain the results o f Figure 9.4.1, a subset o f bits was chosen to represent

the performance o f the device. Bit-positions with good performance are readily

identified when only the all-zero and all-one codewords are used in the test. In

principle, the performance of a decoder can be accurately measured even if the

same codeword is transmitted each time, as long as a suitable noise pattern is added

to the signal.

With an analog decoder, it is also important to test the “memory” effect, the

importance o f which is illuminated in Section 8.3.3. When a new block o f samples

is input to the decoder, the decoder’s state is still somewhat influenced by the previ­

ous block. The reset switches, explained in Section 9.1.2, are intended to clear the

decoder’s memory. By alternating between the all-zero and all-one codewords, we

detect the effect o f any residual memory on performance.

Although most o f the output comparators have excessive input offsets, the re­

sults o f one or a few bits provide significant verification o f the decoder’s overall

performance. Because the decoder performs a block-wise computation, the perfor­

mance o f each bit-position is strongly correlated with that of every other position.

Verification o f one b it’s performance is therefore tantamount to verification of the

decoder. If the decoder itself is not properly functioning, then it is impossible for

any single bit to show good error performance. We therefore conclude that the

decoder’s actual functioning is at least as good as the test result in Figure 9.4.1.

9.4.1 Dynamics.

Figure 9.4.2 presents a series o f transient simulations o f the decoder which can be

used to estimate the maximum speed of the device. The outputs shown represent the

binary probability mass for one output bit. The operating current for this simulation

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 2 4 6 8 1 0 1 2
E -b /N -0 (d B)

Figure 9.4.1: Performance measurements for the (16,11) decoder. The solid curves
indicate performance o f uncoded BPSK and an ideal (16,11) Hamming decoder.
Circles indicate measured error rates. Error bars indicate 99.9% confidence inter­
vals.

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is Iu = lOOnA.

In Figure 9.4.2, we view the decoder’s output in increasingly fine-grained detail.

In these views, the decoder’s output is seen to respond in an approximately discrete

way to signals from its neighbors. Sudden output changes are observed as signals

propagate from distant parts o f the decoder. In the final view, a minimum response

time is visible, which is (to be conservative) roughly 1 ft s. This corresponds to a

maximum clock rate o f 1MHz for the overall decoder, resulting in a throughput o f

11Mbps.

We may say that the minimum response time is approximately equivalent to a

single iteration. A software version of this decoder, using conventional discrete­

time iterative decoding, requires about twelve iterations for optimal decoding. Ap­

plied to the analog decoder, this gives a thumbnail estimate o f 12/*s per codeword

(at Iu = lOOnA). This gives a maximum (uncoded) throughput o f 917kbps.

In weak inversion, the device’s speed is proportional to its transconductance,

which is directly proportional to the bias current, which in sum-product circuits is

directly proportional to the unit current, Iu- The power consumed in the decoder

is similarly proportional to Iu- By simulating the decoder at different values o f the

unit current, and estimating the minimum response time, it is possible to express

the decoder’s speed as a linear function o f its power consumption.

We find that the decoder’s speed scales at a rate o f 50 M bps/m W . For the

transistor sizes chosen in this design, and given the parameters o f the process, the

specific current is in the neighborhood o f 10/*A. When Iu = 1 /*A, the decoder is

therefore approaching moderate inversion. Designating this as the maximum unit

current, we arrive at an estimated maximum throughput of 135 M bps for the (16,11)

decoder.

The estimated speed applies to the decoder only. The interfaces are less flexible

in throughput than the decoder itself. I f the decoder is operated too slowly, then

the S/H circuits will lose too much o f their charge due to substrate leakage, thereby

degrading decoder performance. If the decoder is operated too fast, then the S/H

circuits may not have time to settle on the correct charge and/or the comparators

will not have sufficient time to rail to their correct final decisions.

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e 40

Time (ms)

100?:

Time(|Js)

0 1.0 Time (us)

Figure 9.4.2: Transient response o f the (16,11) decoder output for a single bit.
The solid curve indicates the output P (bit = 0) and the dashed curve indactes
F (b i t = l) .

225

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 9.1: Summary of (16,11) Hamming decoder characteristics. Speed and power
figures are estimated from simulations, and are not within the range o f accurate
measurement for the test interface. “Tested Speed” refers to the maximum speed of
the test interface.

Die Size 2.3 mm x 2.4 mm
Technology 0.18/rni 6M 1.8V CMOS

Circuit Area (with interfaces) 0.24 mm2
Decoder Area 0.0266 mm2
Transistor Size 1.15/«nx0.35/*m
Tested Speed up to 5 Mbps

Core Decoder Power (est.)
26.9JuW @ Ju = lOOnA
2.69 m W @ Iu = 1 piA

Decoder Speed (est.)
917kbps @ Iu = lOOnA
135M bps @ Iy = 1 <«A

Digital Power 6.84/zW
Comparator Power 1.54/iW /bit, avg.

S/H Power 1.8//W /bit, avg.
Total Power 87.2^W , avg. @ lu = lOOnA

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10

*An Analog (16,l l) 2 Turbo Product
Decoder.

A _
In this chapter we present an analog implementation of a (16,11) Turbo Product

decoder, based on the (16,11) Hamming trellis decoder described in Chapter 9. As

o f January 2003, the (16,11)2 Product code is part o f the IEEE 802.16a standard [3].

A commercial decoder for this code, using conventional digital circuits, is produced

by Comtech AHA (Advanced Hardware Architectures) [5].

The Product decoder is constructed by concatenating 32 o f the (16,11) compo­

nent trellis decoders. The resulting decoder has a coded length of 256 bits, making

it the largest analog decoder design, as o f the writing of this thesis. The largest ana­

log decoder prior to this design is a rate 1 /3 Turbo decoder for the UMTS standard

[2], with a coded length o f 120 bits [45].

The decoder was implemented in a TSM C 0.18/rm 6M digital CMOS process,

on the same chip as the single (16,11) decoder o f Chapter 9. Connections be­

tween component decoders are made using the top three metal layers. As with the

(16,11) decoder, the Product decoder circuit accepts serial-mode analog differential

voltages corresponding to log-likelihood ratios. The circuit produces serial-mode

digital bits at its output. The interface design is precisely that described in Section

9.2. The test interface o f Section 9.3 is used to evaluate the behavior and perfor­

mance o f the Product decoder chip.

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.1 Design of the decoder.

The design o f the Product code and its decoder are straightforwardly derived from

the construction described in Section 2.5.5. A Product codeword has the structure

of Figure 2.5.11. Thirty-two instances o f the com ponent (16,11) decoder are used

without modification. The component decoders and the I/O interfaces are bridged

using equality nodes, as illustrated in Figure 2.5.12.

10.1.1 Floorplan and interleaving.

The component decoders are divided into a set of sixteen column decoders and

sixteen row decoders. Equality nodes are attached to each of the bit positions on

column decoders. No equality nodes are attached to the row decoders. A block

interleaving pattern is then used to interconnect the row and column decoders.

The block interleaving is achieved by arranging the com ponent decoders in a

checker-board pattern, as shown in Figure 10.1.1. The pattern can also be seen in

the physical layout o f the Product decoder, shown in Figure 10.1.2. Note that there

is a gap in the lower-right com er o f the layout. The single (16,11) decoder is placed

in this location.

Each row and column decoder’s input and output wires are arranged in rows and

columns, respectively. The interconnect wires, located on the fourth and fifth metal

layers, run the full width and height o f the Product decoder’s layout. Each decoder

needs two wires per two directions per sixteen bit positions, thus 64 wires.

10.1.2 Scalability.

The floorplan shown in Figure 10.1.1 is adequate for the present design, but proba­

bly would be ill-suited for a larger product code. This is because the bus width o f

analog decoders tends to grow more rapidly than the decoder itself.

In the present design, the routing for three component decoders must occupy the

width or height o f a single decoder. For example, the top row o f decoders in Figure

10.1.1 includes three row decoders. The routing for all three o f these decoder must

fit within the height o f the row, or the rows will have to be spaced further apart,

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 10.1.1: Floorplan of the Product decoder.

which is a waste o f silicon area.

The routing for three component decoders requires 192 wires. These must be

spaced far enough apart to allow connections between every row and column. The

resulting height o f a bundle o f routing wires is slightly greater than the height o f a

component decoder. Some space is therefore wasted in the layout.

A t the outset o f the design, the component decoder was expected to be some­

what larger than the final layout, so that no space would be wasted. It is clear that for

larger designs, this kind of interleaving is not efficient. A Turbo-like arrangement

is no doubt superior for larger designs, as in Figure 10.1.3.

10.2 Characteristics of the decoder.

The analog Product decoder was fabricated in a TSM C 0.18/m i six metal process,

on the same chip as the (16,11) Hamming decoder reported in Chapter 9. A sum­

mary o f results for the Product decoder design is presented in Table 10.1. A die

photo o f the chip is shown in Figure 10.2.1.

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 10.1.2: Layout of the Product decoder chip.

Figure 10.1.3: Alternative Turbo-like interleaver layout.

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 10.2.1: Die photo of the Product decoder chip.

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.2.1 Speed.

The chip was tested using the interface described in Section 9.3. This interface

supports a narrow range of testable operating speeds, from 100 kSps to 3 MSps.

Because o f its parallelism, the Product decoder can theoretically operate at much

greater speeds. Presently untestable characteristics such as maximum speed, and

the corresponding power consumption, can be derived from the properties of the

(16,11) component decoder. The component decoder’s characteristics are described

in Section 9.4. The Product decoder is essentially a repetition o f thirty-two identical

components.

We use the same estimate o f response time for the component decoder as de­

termined in Section 9.4. Assuming that 50 iterations are required for good per­

formance in the product decoder, and noting that the code’s uncoded block size is

eleven times larger than that o f the component decoder, we arrive at the throughput

estimates reported in Table 10.1.

The Product decoder’s speed scales at a rate o f 17 M bps/m W in weak inversion,

and 13 M bps/m W in moderate inversion. Again the estimated speed applies to the

decoder only, and not the interfaces. The interfaces o f the Product decoder are the

same as those o f the component decoder. They therefore have the same limitations

and should operate at the same speed as the interface for the component decoder,

discussed in Section 9.2.

10.2.2 Performance.

Performance measurements for the Product decoder are shown in Figure 10.2.2.

The decoder was measured with ly = 50nA, at a speed o f 788 kbps. To obtain

the results o f Figure 10.2.2, only a single bit-position is observed. Fifty errors are

counted for each data point.

As explained in Section 9.3.4, the comparators used for the output interface have

very low yield. For this reason, only the bit position with the best performance is

shown. This measurement provides a reasonable verification o f the decoder itself,

based on the arguments outlined in Section 9.4.

232

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To identify the best bit position, the transmitted codeword is varied randomly

between all-zeros and all-ones. This makes it easy to distinguish between bits which

are stuck at zero or one and those which are switching appropriately.

In addition to measured performance, Figure 10.2.2 shows the dm\n asymptote,

adjusted to account for the error probability o f a fixed bit-position instead o f the

entire code. The multiplicity o f minimum-weight error patterns with a fixed error

position for the (16,11) component code is 35. In the Product code, this refers to

the number o f row error patterns for a fixed position. There are then 35 possible

column error patterns, which may occur on one o f four possible columns.

The total multiplicity is 35 • 35 • 4 = 4900. Substituting this multiplicity into the

dmin bound (Equation 2.5.1), we arrive at

o 0-2-1'

The measured performance in Figure 10.2.2 is very close to this bound.

Also shown is the performance o f a software simulation o f an iterative product

decoder. The software decoder was measured in precisely the same way as the de­

coder chip. Interestingly, for SNR less than 3dB the analog decoder outperforms

the software decoder by more than ldB . This is the first time that an apparent im­

plementation gain has been observed in an analog decoder.

It is o f course possible that the results shown in Figure 10.2.2 are biased or

otherwise erroneous. The measurement interface has been thoroughly examined,

and the author is quite confident o f its correctness. For additional verification, the

software decoder was substituted for the hardware interface within the same pro­

gram used to measure the chip’s performance. The results o f this simulation were

identical to the software decoder’s performance, as reported in Figure 10.2.2.

The remaining possible cause o f erroneous results is bias within the decoder

itself. This would require a block-wise bias toward both the all-zero and all-one

codewords. This is highly unlikely because there is nothing special about these

two codewords in the circuit. The two codewords could easily be exchanged with

another pair o f codewords by inverting the sign o f a subset o f bits at the interfaces.

This label-flipping procedure rotates the entire code space without modifying

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the decoder circuit at all. There are 210 such isomorphisms (one for each code­

word/inverse pair). The probability that two codewords have a simultaneous bias

in the decoder circuit, and that those two codewords happened to receive the labels

all-zero and all-one in this implementation, seems vanishingly small.

Lastly, we note that there is an error floor in the measured results at a BER of

approximately 10-5 . This error floor is likely caused by a constellation o f system­

atic effects, including thermal noise and clock feed-through in the DAC interface,

and leakage currents in the S/H array. Some of these effects were noted in Section

9.3.4, where they were found to cause artificial error floors in an uncoded interface

test.

The observed error floor in this case is strongly influenced by S/H leakage.

This is evident in a series o f measurements shown in Figure 10.2.3. A set o f four

measured curves is shown, in which the bit rate was increased, beginning at 394

kbps, then 591 kbps, 675 kbps and finally 788 kbps. The corresponding sample

rates are 833 kSps, 1.25 MSps, 1.43 MSps, and 1.67 MSps.

Each time the bit rate was increased, the error floor was seen to occur at a lower

BER. With the current test interface, it is not possible to increase the speed beyond

1.67 MSps, because clock feed-through and ringing become dominant components

in the DAC’s output, so that the performance is actually made worse.

There is reason to expect the error floor to disappear as the speed is increased.

In theory, the decoder can operate at several hundred megabits per second. It is

probable that testing speeds less than 1 Mbps are simply too slow, and allow for

additional data corruption.

Figure 10.2.3 also hints at the possibility that the “floors” are really “flares.”

This is evident in the first measured curve, which appears to floor at SNR=1.5dB,

but then resumes its downward slope at 3dB. The error floor therefore takes on a

“knee” shape. Similar phenomena may happen at the other tested speeds, but the

tests were too time-consuming to verify this behavior at error rates below 10“ 5.

234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uncoded BPSK

0.01
M easured

Software Decoder
0.001

Q£
W
CQ

0.0001

1 e -0 5

1e—0 6
3 .5 4 .51 .5 2 2 .5

SNR (dB)

0 .5

Figure 10.2.2: Test results for the Product decoder.

Uncoded BPSK

Software Decoder0.01

0.001

ta
ca

0.0001

M easured (1) — ►—
M easured (2) - o -
M easured (3) — o—
M easured (4) — '— d_min

4.51.5 2 2.5

SNR (dB)
0.5

Figure 10.2.3: Error floors observed in measurements o f the Product decoder.

235

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 10.1: Summary o f (16,11) Product decoder characteristics. Speed and
power measurements are estimated based on simulations, but were outside the ac­
curately measurable range o f available test equipment. “Tested speed” refers to the
maximum reliable test speed of our interface.

Die Size 2.3 mm x 2.4 mm

Technology 0.18/mi 6M 1.8 V CMOS
Circuit Area (with interfaces) 4 .0 mm2

Decoder Area 2.85 m m 2
Transistor Size 1.15/mi(W) x 0.35/mi(L)
Tested Speed up to 2 M bps

Core Decoder Power (est.)
861/iW @ Iu = lOOnA
86.1 mW @ Iu = 1 fiA

Decoder Speed (est.)
5M bps @ Iu = lOOnA

1 Gbps @ /{/ = 1 fiA
Digital Power (est.) 6.84/iW

Comparator Power (est.) 1.54/zW /bit, avg.
S/H Power (est.) 1.8/zW /bit, avg.

Total Power (est.) 1.72mW , avg. @ Iy = lOOnA

236

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 11

Conclusions and Outlook.

The theme o f this thesis, and its central conclusion, is that it is feasible to implement

large-scale iterative decoders using analog com putation in digital CMOS processes.

These decoders can be directly interfaced with other receiver components for full

o r partial system-on-chip solutions.

It is in principle possible to replace any digital iterative decoder with a pin-for-

pin analog replacement. There are several advantages to this transition:

• Analog decoders require dramatically less silicon area, and therefore dramat­

ically lower cost.

• Analog decoders save substantial power. A conventional (digital) iterative

decoder can consume power comparable to that o f other major receiver com­

ponents, often approaching 1W. CMOS analog decoders typically operate at

less than lOOmW.

These benefits notwithstanding, the semiconductor industry must respond to addi­

tional concerns, which affect the acceptability o f a new technology:

• Designability - how much expertise and cost is required to design the com­

ponents o f the novel architecture?

• Manufacturability:

— Yield - what are the design factors affecting device yield? How can they

be improved? How do they scale?

237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Performance margins - how do we define and verify the quality o f a

particular device? Is built-in-self-test (BIST) possible?

Some of these issues are isomorphic to existing mixed-signal design challenges. As

shown in this thesis, the performance of an analog decoder depends most critically

upon the interfaces. Issues o f designability and manufacturability, as they relate to

the input interface, are reducible to common design problems faced by DAC and

ADC designers. The challenge posed by the output interface is to create a dense

array of comparators with low offset variance. The same challenge is faced in the

design of DRAM circuits.

We first address the issue of designability. One emphasis o f the designs pre­

sented in this thesis is to demonstrate that complex analog decoders can be synthe­

sized from a small number o f simple standard cells. This is made especially clear

by the design o f the (16,11) Hamming decoder, which required only a few standard

cells.

Software is available which translates an error control code’s graph directly into

a standard-cell schematic for an analog decoder [24]. Schematic-level design for

the decoder itself can therefore be completely automated. W ith a suitable standard

cell library, the decoder itself simply poses a challenge of place-and-route.

For most o f the actual decoding circuits (which are referred to as the “lateral”

processing stages in Section 7.2), the design needs are, therefore, not very different

from those o f a large digital circuit. With a few days’ worth o f instruction, any

digital designer who is familiar with iterative decoders should be able to produce a

successful, complete analog decoder design.

For the front-end circuits, the situation is slightly more complicated. As dis­

cussed in Section 7.2, “feed-forward” analog processing circuits are highly sensi­

tive to mismatch. The sensitivity o f these circuits is dictated by a simple formula

(Equation 7.2.8, studied in more detail in [24]).

Conventional techniques for reducing mismatch, which are well-known to any

mixed-signal designer, can easily reduce mismatch to within 1%. With such a small

mismatch variance, the performance loss is always very small (as shown in Section

238

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2.2).

Mixed-signal circuits, such as analog-to-digital converters (ADCs), often re­

quire mismatch variance in some transistors to be smaller than 1%. The front-end

circuits to analog decoders consist primarily of differential pairs and current-mirror

circuits, which are the most fundamental and well-understood components of ana­

log and mixed-signal design.

Other issues affecting the front-end circuits include thermal noise, bandwidth,

charge-injection, and drive strength. None of these issues are foreign to an ADC de­

signer. Thus any experienced ADC designer should find a familiar set of problems

in the design o f front-end circuits for analog decoders. A design team consisting of

experienced digital VLSI designers and mixed-signal designers should therefore be

able to produce a complete analog decoder, with very little special training.

The next set of issues involve manufacturability, particularly yield. We know

from the discussion in Section 7.1.2 that the yield o f analog decoders is particularly

sensitive to the variance o f offsets in comparators used at the decoder’s output. A

large array of comparators is used, and each one must have an acceptably low input

offset, or the entire chip must be rejected.

A similar problem arises in the design of DRAM circuits, where a large, dense

anay o f latches (which are basically analog comparators) is needed to read stored

digital values. W hile this thesis does not investigate the details of comparator de­

signs, it appears that the problem of large, high-yield comparator arrays has already

been addressed and mostly solved by DRAM designers.

If the comparators are known to provide sufficiently high yield, then the ques­

tion o f yield and performance margins is shifted to the decoder itself. As shown

in Section 7.2, the performance of a large decoder is expected to be impacted very

little, as long as mismatch is within easily achieved limits. The only assumption

made in that analysis is that every transistor has a functioning gate. In effect, this

reduces the problem o f verification to the discovery o f stuck-at faults. This is the

same verification problem that arises in all digital circuits.

We therefore draw our final conclusions as follows. Analog iterative decoding

circuits are not only feasible. They have been demonstrated on small and moderate

239

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scales. They are known, analytically, to be robust against the analog imperfections,

including mismatch, which usually plague analog computational circuits.

The deployment of analog decoding circuits in the communications and semi­

conductor industries is also quite feasible. The problem of designing analog de­

coders is reducible to widely-used approaches for digital design. The interfaces

needed for analog decoders are simple extensions of the circuits already widely

used in ADC and DAC circuits, and in DRAM designs. There is thus no significant

barrier to the designability o f analog decoders.

Having addressed the issues o f performance, scaling, designability, and man­

ufacturability o f practical analog decoders, the only remaining question is that of

verification for analog decoders. Large-scale manufacturing relies on the possibility

o f built-in self test (BIST).

Based the density evolution analysis o f Section 7.2.3, most o f the BIST problem

for analog decoders is reducible to one o f digital verification. But the decoding

circuits are analog in nature. Some method is needed to “digitally verify” these

analog circuits by verifying the existence o f every gate.

It has been shown by Haley et. al. that analog sum-product circuits can be easily

“mode-switched” to make them temporarily behave as digital logic gates [40]. This

approach can feasibly be used to create a digital-mode BIST for analog decoding

circuits.

The benefits o f analog decoders over their digital counterparts are now well un­

derstood. With a successful demonstration o f a BIST approach for analog decoders,

the major barriers to their deployment should be solved. W hile such a demonstra­

tion is a matter for future research, once it is achieved, it is reasonable to declare that

analog decoding is a sufficiently mature technology to warrant industry attention.

240

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] GNU scientific library, http://www.gnu.org/software/gsl/.

[2] Third Generation Partnership Project (3GPP). 3G TS 25.212, v3.5.0, Multi­

plexing and Channel Coding (FDD), Dec 2000.

[3] IEEE Std. 802.16a 2003. Amendment 2: M edium access control modifica­

tions and additional physical layer specifications for 2-11 Ghz, January 2003.

[4] A. Acampora and R. Gilmore. Analog Viterbi decoding for high speed digi­

tal satellite channels. IEEE Transactions on Communications, 26(10): 1463—

1470, October 1978.

[5] Comtech AHA. http://www.aha.com, 2004.

[6] Ibrahim Al-Mohondes and M ohamed Elmasry. A low-power 5 M b/s Turbo de­

coder for third-generation wireless terminals. In Proc. 2004 Canadian Confer­

ence on Electrical and Computer Engineering (CCECE’04), volume 4, pages

2387-2390,2004.

[7] J.B. Anderson and S.M. Hladik. Tailbiting M AP decoders. IEEE Journal on

Selected Areas in Communications, 16(2):297-302, February 1998.

[8] J. H. Atherton and H. T. Simmonds. An offset reduction technique for use

with CMOS integrated comparators and amplifiers. IEEE Journal o f Solid-

State Circuits, 27(8): 1168—1175, August 1992.

[9] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding o f linear

codes for minimizing symbol error rate. IEEE Transactions on Information

Theory, pages 284-287, M arch 1974.

241

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gnu.org/software/gsl/
http://www.aha.com

[10] A.H. Banihashemi and S. Hemati. Decoding in optics. In Proc. International

Symposium on Information Theory, page 231, June 2002.

[11] A.H. Banihashemi and S. Hemati. Analog min-log APP decoder. In Proc.

2003 International Symposium on Information Theory (ISIT’03), June 2003.

[12] S. Benedetto and G. Montorsi. Unveiling Turbo codes: some results on paral­

lel concatenated coding schemes. IEEE Transactions on Information Theory,

42(2):409-428, March 1996.

[13] Sergio Benedetto and Ezio Biglieri. Principles o f Digital Transmission with

Wireless Applications. Kluwer Academic Press, 1999.

[14] C. Berrou, P. Combelles, P. Penard, and B. Talibart. An IC for Turbo-codes

encoding and decoding. In Proc. 1995 IEEE International Solid-State Circuits

Conference (ISSCC’95), pages 90-91 ,1995.

[15] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-

correcting coding and decoding: Turbo codes. In Proc. 1993 International

Communications Conference (ICC’93), pages 1064-1070, Geneva, Switzer­

land, M ay 1993.

[16] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon-limit error-

correcting coding and decoding: Turbo codes. IEEE Transactions on Com­

munications, 44(10): 1261-1271, October 1996.

[17] M. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup, G. Zhou,

C. Nicol, and R.-H. Yan. A unified Turbo / Viterbi channel decoder for 3GPP

mobile wireless in 0.18//m CMOS. Proc. 2002 IEEE International Solid State

Circuits Conference (ISSCC’02), pages 90-91, February 2002.

[18] Andrew J. Blanksby and Chris J. Howland. A 690-mW 1-Gb/s 1024-b, rate-

1/2 low-density parity-check code decoder. IEEE Journal o f Solid-State Cir­

cuits, 37(3):404-412, March 2002.

242

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[19] A. R. Calderbank, G. D. Forney, and A. Vardy. Minimal tail-biting trellises:

The Golay code and more. IEEE Transactions on Information Theory, pages

1435-1455, July 1999.

[20] Sae-Young Chung, G. David Forney Jr., Thomas J. Richardson, and Rudiger

Urbanke. On the design of low-density parity-check codes within 0.0045 dB

of the Shannon limit. IEEE Communications Letters, 5(2):58—60, February

2001.

[21] Sae-Young Chung, Thomas J. Richardson, and Rudiger Urbanke. Analysis

of sum-product decoding of low-density parity-check codes using a Gaussian

approximation. IEEE Transactions on Information Theory, pages 657-670,

February 2001.

[22] J. H. Conway and N. J. A. Sloane. Sphere-packings, lattices and groups.

Springer-Verglag, New York, 1988.

[23] T. M. Cover and J. Thomas. Elements o f Information Theory. Wiley, 1991.

[24] Jie Dai. Design Methodology fo r Analog VLSI Implementations o f Error Con­

trol Decoders. PhD thesis, University o f Utah, 2001.

[25] Jie Dai, C.J. Winstead, C.J. Myers, R.R. Harrison, and C. Schlegel. Cell

library for automatic synthesis o f analog error control decoders. In Proc. In ­

ternational Symposium on Circuits and Systems, volume 4, pages IV-481 -

IV-484, May 2002.

[26] A. Demosthenous and J. Taylor. A 100-Mb/s 2.8-V CMOS current-mode ana­

log Viterbi decoder. IEEE Journal o f Solid-State Circuits, 37(7):904-910,

July 2002.

[27] P. Drennan and C. McAndrew. Understanding MOSFET mismatch for analog

design. IEEE Journal o f Solid State Circuits, 38(3):450-456, March 2003.

[28] P. Elias. Error-free coding. IRE Trans, on Information Theory, IT-4:29-37,

September 1954.

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[29] G. D. Forney. The Viterbi algorithm. Proceedings o f the IEEE, 61(3):268-

278, M arch 1973.

[30] G. D. Forney. Coset codes - part II: binary lattices and related codes. IEEE

Transactions on Information Theory, IT-34(5):1152-1187, September 1988.

[31] G.D. Fomey. Codes on graphs: normal realizations. IEEE Transactions on

Information Theory, pages 520-548, February 2001.

[32] Matthias Frey, Hans-Andrea Loeliger, Felix Lustenberger, Patrick Merkli, and

Patrik Strebel. Analog-decoder experiments with subthreshold CMOS soft-

gates. In Proc. 2003 International Symposium on Circuits and Systems (IS-

CAS’03), pages 85-88, Bangkok, Thailand, May 2003.

[33] R. G. Gallager. Low-Density Parity Check Codes. M IT Press, Cambridge,

MA, 1963.

[34] V. Gaudet. Toward Gigabit-per-second decoding. In Proc. Analog Decoding

Workshop. Munich, June 2002.

[35] V. C. Gaudet and P. G. Gulak. A 13.3-Mb/s 0.35-//m CMOS analog turbo de­

coder IC with a configurable interleaver. IEEE Journal o f Solid-State Circuits,

38(11):2010-2015, November 2003.

[36] J. Hagenauer, M. Moerz, and A. Schaefer. Analog decoders and receivers for

high speed applications. In Proc. Int. Zurich Seminar on Broadband Comm.,

pages 3 - 1 - 3 - 8 ,2002.

[37] J. Hagenauer, E. Offer, and L. Papke. Iterative decoding o f binary block and

convolutional codes. IEEE Transactions on Information Theory, 42(2):429-

445, M arch 1996.

[38] J. Hagenauer and M . Winklhofer. The analog decoder. Proc. International

Symposium on Information Theory, August 1998.

[39] D. Haley, A. Grant, and J. Buetefuer. Iterative encoding o f low-density parity-

check codes. In Proc. IEEE Globecom, October 2002.

244

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[40] Dave Haley, Chris Winstead, Christian Schlegel, and Alex Grant. An analog

LDPC codec core. In International Symposium on Turbo Codes, pages 391—

394. Brest, France, 2003.

[41] Dave Haley, Chris Winstead, Christian Schlegel, and Alex Grant. Architec­

tures for error control in analog subthreshold CMOS. In Australian Commu­

nication Theory Workshop, 2003.

[42] S. Hong, J. Yi, and W. E. Stark. VLSI design and implementation o f low-

complexity adaptive Turbo-code encoder and decoder for wireless mobile

communication applications. In Proc. 1998 IEEE Workshop on Signal Pro­

cessing Systems (SIPS’98), pages 233-242, October 1998.

[43] W. Huang, V. Igure, G. Rose, Y. Zhang, and M. Stan. Analog Turbo decoder

implemented in SiGe BiCMOS technology. 40th DAC Student design contest,

2003.

[44] W. Huang, V. Igure, G. Rose, Y. Zhang, and M. Stan. Analog Turbo de­

coder implemented in SiGe BiCMOS technology, July 2003. Available at

http://www.ece.virginia.edu/hplp/turbo.html.

[45] Alexandre Graell i Amat, Sergio Benedetto, Guido Montorsi, Daniele Vogrig,

Andrea Neviani, and Andrea Gerosa. An analog Turbo decoder for the UMTS

standard. In Proc. International Symposium on Information Theory, 2004.

[46] Jagadeesh Kaza and Chaitali Chakrabarti. Design and implementation o f low-

energy Turbo decoders. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 12(9):968-977, September 2004.

[47] Hyongsuk Kim, Hongrak Son, T. Roska, and L. O. Chua. Very high speed

Viterbi decoder with circularly connected analog CNN cell array. Proc. 2004

I n f I Symposium on Circuits and Systems (ISCAS ’04), 3:111 - 97-100, May

2004.

245

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ece.virginia.edu/hplp/turbo.html

[48] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-

product algorithm. IEEE Transactions on Information Theory, 47(2):498-519,

February 2001.

[49] Frank Kschischang and Vladislav Sorokine. On the trellis structure of block

codes. IEEE Transactions on Information Theory, 41 (6): 1924—1937, Novem­

ber 1995.

[50] G.R Lepage. A new algorithm for adaptive multidimensional integration.

Journal o f Computational Physics, pages 192-203,1978.

[51] Shih-Chii Liu, Jorg Kramer, Giacomo Indiveri, Tobias Delbriick, and Rodney

Douglas. Analog VLSI: Circuits and Principles. MIT Press, 2002.

[52] H. A. Loeliger, F. Lustenberger, M. Helfenstein, and F. Tarkoy. Probability

propagation and decoding in analog VLSI. IEEE Transactions on Information

Theory, 47(2):837-843, February 2001.

[53] F. Lustenberger. On the Design o f Analog VLSI Iterative Decoders. PhD

thesis, Swiss Federal Institute o f Technology, 2000.

[54] F. Lustenberger, M. Helfenstein, G. S. Moschytz, H. A. Loeliger, and

F. Tarkoy. All analog decoder for (18,9,5) tail-biting trellis code. In Proc.

European Solid-State Circuits Conference (ESSCIRC), pages 362-365, Sept.

1999.

[55] F. Lustenberger and H. A. Loeliger. On mismatch errors in analog-VLSI er­

ror correcting decoders. In Proc. International Symposium on Circuits and

Systems, M ay 2001.

[56] D. J. C. MacKay. Good error-correcting codes based on very sparse matrices.

IEEE Transactions on Information Theory, 45:399-431, M ar 1999.

[57] T. W. M atthews and R. R. Spencer. An integrated analog CMOS Viterbi de­

tector for digital magnetic recording. IEEE Journal o f Solid-State Circuits,

28(12): 1294-1302, Decem ber 1993.

246

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[58] Carver Mead. Analog VLSI and Neural Systems. Addison-Wesley, 1989.

[59] M. Moerz, T. Gabara, R. Yan, and J. Hagenauer. An analog 0.25/un BiC­

MOS tailbiting M AP decoder. In International Solid State Circuits Confer­

ence, pages 356-357, February 2000.

[60] M. Moerz, A. Schaefer, and E. Offer. Analog decoding of high rate tailbiting

codes using the dual trellis. In Proc. International Symposium on Information

Theory, page 331, 2001.

[61] A. Mondragon-Torres and E. Sanchez-Sinencio. Floating gate analog imple­

mentation of the additive soft-input soft-output decoding algorithm. In Proc.

International Symposium on Circuits and Systems, pages 89-92, May 2002.

[62] A. F. Mondragon-Torres, E. Sanchez-Sinencio, and K. R. Narayanan.

Floating-gate analog implementation o f the additive soft-input soft-output de­

coding algorithm. IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, 50(10): 1256-1269, oct 2003.

[63] R. S. M uller and T. I. Kamins. Device electronics fo r integrated circuits. John

Wiley and Sons, 1977.

[64] V. Gaudet N. Nguyen, C. Winstead and C. Schlegel. A 0.8V CMOS analog

decoder for an (8,4,4) extended Hamming code. In Proc. International Sym­

posium on Circuits and Systems, volume 1, pages I - 1116-1119. Vancouver,

Canada, May 2004.

[65] M. Pelgrom, A. Duinmaijer, and A. Welbers. Matching properties of MOS

transistors. IEEE Journal o f Solid State Circuits, 24(5): 1433-1440, October

1989.

[66] M. Perenzoni, A. Gerosa, and A. Neviani. Analog CMOS implementation

o f Gallager’s iterative decoding algorithm applied to a block Turbo code. In

Proc. 2003 International Symposium on Circuits and Systems (ISCAS ’03),

volume V, pages V - 813-816, May 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[67] R. Pyndiah. Near optiumum decoding of product codes: Block Turbo codes.

IEEE Transactions on Information Theory, 42(8), August 1998.

[68] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Inte­

grated Circuits. Prentice Hall, 2nd edition, 2002.

[69] Thomas J. Richardson, M. Shokrollahi, and Rudiger Urbanke. Design of

capacity-approaching irregular low-density parity-check codes. IEEE Trans.

Inform. Theory, pages 619-637, February 2001.

[70] Thomas J. Richardson and Rudiger Urbanke. The capacity of low-density

parity-check codes under message-passing decoding. IEEE Trans. Inform.

Theory, pages 599-618, February 2001.

[71] L. D. Rudolph, C. R. P. Hartmann, T.-Y. Hwang, and N. Q. Due. Algebraic

analog decoding o f linear binary codes. IEEE Transactions on Information

Theory, IT-25(4):430-440, July 1979.

[72] A. Schaefer, M. Moerz, J. Hagenauer, A. Sridharan, and D. J. Costello Jr. Ana­

log rotating ring decoder for an LDPC convolutional code. In t’l Information

Theory Workshop, 31:226-229, April 2003.

[73] C. Schlegel and L. C. Perez. Trellis and Turbo Coding. IEEE Press, 2004.

[74] E. Seevinck, E. Vittoz, M. du Plessis, T.-H. Joubert, and W. Beetge. CMOS

translinear circuits for minimum supply voltage. IEEE transactions on circuits

and systems II, 47(12):1560-1564, December 2000.

[75] T. Serrano-Gotarredona, B. Linares-Barranco, and A. G. Andreou. A general

translinear principle for subthreshold MOS transistors. IEEE Transactions on

Circuits and Systems I: Fundamental Theory and Applications, 46(5):607-

616, M ay 1999.

[76] M. H. Shakiba, D. A. Johns, and K. W. Martin. BiCMOS circuits for analog

Viterbi decoders. IEEE Transactions on Circuits and Systems II, 45:1527-

1537, December 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[77] M.H. Shakiba, D.A. Johns, and K.W. Martin. An integrated 200M Hz 3.3V

BiCMOS class-IV partial-response analog Viterbi decoder. (l):61 -75 , Jan­

uary 1998.

[78] Claude Shannon. A mathematical theory of communication. Bell System

Technical Journal, July 1948.

[79] J.-H. Shieh, M. Patel, and B. J. Sheu. M easurement and analysis of charge

injection in MOS analog switches. IEEE Journal o f Solid-State Circuits,

22:277-281, April 1987.

[80] R. R. Spencer and P. J. Hurst. Analog implementation of sampling detectors.

IEEE Transactions on Magnetics, 27(6):4516-4521, November 1991.

[81] Stephan ten Brink. A rate one-half code for approaching the Shannon limit by

O.ldB. IEE Electronics Letters, 36(15): 1293-1294, July 2000.

[82] E. Vittoz and J. Fellrath. CMOS analog integrated circuits based on weak-

inversion operation. IEEE Journal o f Solid-State Circuits, SC-12:224-231,

1977.

[83] Xiao-An Wang and S. B. Wicker. An artificial neural net Viterbi decoder.

IEEE Transactions on Communications, 44(2): 165-171, February 1996.

[84] N. Wiberg, H. A. Loeliger, and R. Kotter. Codes and iterative decoding on

general graphs. European Transactions on Telecommunications, pages 513—

525, Sept/O ct. 1995.

[85] C. Winstead, J. Die, R. Harrison, C. J. Myers, and C. Schlegel. Analog de­

coding of product codes. In Information Theory Workshop, pages 131-133,

August 2001.

[86] C. Winstead, J. Die, W.J. Kim, S. Little, Y .-B. Kim, C. J. Myers, and

C. Schlegel. Analog M AP decoder for (8,4) Hamming code in subthreshold

CMOS. In Advanced Research in VLSI, pages 132-147, March 2001.

249

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[87] C. Winstead, J. Die, S. Yu, R. Harrison, C. J. M yers, and C. Schlegel. Ana­

log MAP decoder for (8,4) Hamming code in subthreshold CMOS. In Proc.

International Symposium on Information Theory, page 330, June 2001.

[88] C. Winstead and C. Schlegel. Importance sampling for SPICE-level verifi­

cation o f analog decoders. In Proc. International Symposium on Information

Theory, page 103. Yokohama, June 2003.

[89] C. Winstead and C. Schlegel. Density evolution analysis o f device mismatch

in analog decoders. In Proc. International Symposium on Information Theory.

Chicago, June 2004.

[90] Chris Winstead, Jie Dai, Shuhuan Yu, Reid Harrison, Chris J. M yers, and

Christian Schlegel. CMOS analog decoder for (8,4) Hamming code. IEEE

Journal o f Solid-State Circuits, pages 122-131, January 2004.

[91] Chris Winstead, Vincent C. Gaudet, and Christian Schlegel. Analog iterative

decoding o f error control codes. In Proc. 2003 IEEE Canadian Conference

on Electrical Engineering (CCECE ’03), volume 2, pages 1539-1542,2003.

[92] Chris Winstead, Nhan Nguyen, Vincent C. Gaudet, and Christian Schlegel.

Low-voltage CMOS circuits for analog decoders. In International Symposium

on Turbo Codes, pages 271-274. Brest, France, September 2003.

[93] Koon-Lun Jackie Wong and Chih-Kong Ken Yang. Offset compensation in

comparators with minimum input-referred supply noise. IEEE Journal o f

Solid-State Circuits, 39(5):837-840, M ay 2004.

[94] A. Worthen, S. Hong, R. Gupta, and W. Stark. Performance optimization of

VLSI transceivers for low-energy communications systems. Military Commu­

nications Conference, November 1999.

[95] A. Xotta, D. Vogrig, A. Gerosa, A. Neviani, A . Graell-Amat, G. M ontorsi,

M. Bruccoleri, and G. Betti. An all-analog CMOS implementation o f a Turbo

decoder for hard-disk drive read channels. Proc. International Symposium on

Circuits and Systems, pages 69 -72 ,2002 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[96] Shuhuan Yu. Design and test o f error control decoders in analog CMOS. PhD

thesis, University o f Utah, 2004.

251

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

