[LL]]

£q University of Alberta

S

LS

Query Languages in Multimedia Database Systems

by

John Z. Li, M. Tamer (3zsu, Duane Szafron
Laboratory for Database Systems Research
Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1
{zhong,ozsu,duane}@cs.ualberta.ca

Technical Report TR 95-25
December 1995

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Query Languages in Multimedia Database Systems

December 26, 1995

Abstract

Declarative query languages are an important feature of database management systems and have
played an important role in their success. As database management technology enters the multimedia
information system area, the availability of special-purpose query languages for multimedia applications
will be equally important. In this report!, we survey multimedia query languages and query models.
Particularly, we look at those systems from the point of view of well-defined queries, fuzzy queries, visual
queries, and query presentations. Several research issues, such as generic multimedia query languages,
incremental queries, fuzzy queries, spatio-temporal queries, feature storage and organization, are also
identified. In our opinion these are vital issues for the success and development of a multimedia query

language.

!This research has been supported by a grant from the Canadian Institute for Telecommunication Research (CITR), a

Federal Network of Cetre of Excellence funded by the Government of Canada.

Contents

1 Introduction
1.1 Why Database Techniques Are Necessary vt
1.2 Multimedia Query Languagesin DBMSs L L oo

2 Multimedia Query Models and Languages

2.1 Well-defined Queries L e e
2.2 Fuzzy Queries e e e e e e e e e e
2.3 Visual Queries oL e e e e
2.4 Query Presentations e e e e e e

3 Research Issues

3.1 Generalization of Query Models o
3.2 Spatial Queries L L e e e e e
3.3 Temporal Queries L e e e e e e
3.4 Fuzzy Queries L L L L e e e e

4 Conclusion

14
16
21

26
26
27
28
29

30

List of Figures

[R "]

People in the G7 Summit Lo 9
Query Data Definition oL oL e 10
Symbolic Images L e e e 17
Skeleton Images L e e 18
Sample Graphical Temporal Primitives o oL 20
Query Filters for Specifying Relative Temporal Position Queries 21

List of Tables

1

3

Template Querying in PICQUERY+ o o o o o 13
Template Querying in PICQUERY+ o o o o o 24
Media Presentation in PICQUERY+, 24

1 Introduction

In the past few years, we have seen a growing trend in the computer industry to provide support for
multimedia data. Many of the new computer applications involve multimedia data. Although multimedia
has been a buzzword for quite a few years, it is actually difficult to give it a formal definition. In fact, in
the most general setting, multimedia data could mean arbitrary data types and data from arbitrary sources
[Kim95]. These data include, in addition to traditional data types like numeric data and character strings,
graphics, images, audio and video.

Multimedia query languages are important since query languages are an integral feature of database
management systems (DBMS). We focus on the latest development of many multimedia query languages
and query models. In particular, we discuss how those systems deal with the spatial and temporal re-
lationships among multimedia data, uncertainties in exact-match and similarity-match queries, and the
presentation and synchronization issues for the delivery of queries. We also discuss some pending re-
search issues, including the generality of multimedia query languages, incremental queries, fuzzy queries,
spatio-temporal queries, feature classification and organization. These issues are vital to the success of a
multimedia query language.

The report is organized as follows. The rest of this section provides an introduction to multimedia
database systems and multimedia queries. We give the motivation for having multimedia query languages
and the basic features of a multimedia language. In Section 2 we discuss different functionalities and
facilities provided by different systems. Query languages are classified into four categories: well-defined,
fuzzy, visual, and presentational. Section 3 contains our ideas about what are the most important research

problems in multimedia query languages at the present time. We give our conclusions in the last section.

1.1 Why Database Techniques Are Necessary

Many multimedia systems or media servers are implemented using multimedia file systems. These systems
leave to the user the responsibility of formatting the file for multimedia objects as well as the management
of large amounts of data. The development of multimedia computing systems can benefit from traditional
DBMS services such as data independence (data abstraction), high-level access through query languages,
application neutrality (openness), controlled multi-user access (concurrency control), fault tolerance (trans-
actions, recovery), and authorization (access control).

Another important reason for using a DBMS is that the existence of temporal and spatial relationships

and the related data output synchronization requirements complicate data management and delivery. These

relationships need to be modeled explicitly as part of the stored data. Thus, even if the multimedia data
are stored in files, their relationships need to be stored as part of the meta-information in a DBMS.

An object-oriented approach is an elegant basis for addressing all data modeling requirements of multi-
media applications [WK87, CK95]. It accommodates various data types while providing a uniform interface

to access them.

1.2 Multimedia Query Languages in DBMSs

One of the basic functionalities of a DBMS is to be able to process declarative user queries. This is
achieved by defining a query language as part of the DBMS. The complex spatial and temporal relationships
inherited in the wide range of multimedia data types make a multimedia query language quite different
from its counterpart in traditional database systems. Many have proposed object-oriented technology as a
promising tool for dealing with multimedia data. As a result almost all multimedia database systems are
directly or indirectly (by extending relational models into object-oriented models) based on object-oriented
technology.

A powerful query language significantly helps users to manipulate a multimedia DBMS. It also helps to
maintain the desired independence between the database and the application. Effective query languages
must be user friendly for both naive and expert users. This is especially important in multimedia systems
because of the many different kinds of media and the large volume of data. Furthermore, the presentation of
query results is another key issue in multimedia query languages since it usually requires the synchronization
of continuous media.

The query languages of traditional DBMSs only deal with exact-match queries on conventional data
types. This might be sufficient to deal with queries posed against metadata and annotations of multimedia
data. These queries are definitely important. However, content-based information retrieval requires non-
exact-match (fuzzy) queries which go beyond the traditional approaches. Further research is necessary to
deal with fuzzy queries. Some research [HK95, PS95b] has been done in supporting multimedia content
specification and retrieval in the design of a multimedia query language.

There is a common misconception that WWW browsers, such as Netscape or Mosaic, are sufficient
to query multimedia repositories available on the Internet. A browser enables the user to look for useful
data, but the user has to know where the data is located. In order to facilitate the search, many search
engines have been created, such as Yahoo, Lycos, WebCrawler etc. These search engines occasionally
scan the WWW and construct indexes of interesting keywords. These indexes are useful in locating

information by using browsers or other automatic tools. However, they are fundamentally different from

query languages. This is because in WWW sgsystems the arrangement of multimedia objects is static.
Documents are generated and linked together before a user queries them and the whole WWW system is
based on a structureless Internet organization. A browser usually treats multimedia data as Binary Large
OBjects (BLOB). Therefore, content-based information retrieval is not possible. Furthermore, a user is
not allowed to issue sophisticated queries because queries are restricted to certain patterns. On the other
hand, database query systems usually deal with multimedia objects in a dynamic way in the sense that

objects are not hard-wired to other objects by static hyperlinks.

2 Multimedia Query Models and Languages

Retrieving multimedia information requires powerful query languages that support semantic data retrieval.
That is, information retrieved from multimedia databases should be obtained not only by means of keyword
search or indexes on keywords, but also by the contents of multimedia objects. In terms of properties,
queries can be classified into two general categories: well-defined and fuzzy. A query is well-defined if the
properties of objects being queried belong to some well defined set of labels, and the conditional operators
are also well defined. In these queries, users have perfect knowledge of the underlying database and what
they want from the system. They want their queries to be executed with exact matches. The query “Show
me all the video clips from the G7 Summit’95 database in which president Clinton appears” is a good
example of a well-defined query.

A query is fuzzy if the properties of objects being queried cannot be certain (like grey hair) or the
comparison operators in the query cannot provide exact matches. For example, the query “What are
the most interesting places in Canada” is a fuzzy query. If the system has to derive all the interesting
places from other features, the result is uncertain since different people may have different opinions about
interesting places. A person who likes hiking may interpret interesting places differently than a person who
likes camping. Although novice users are a source for fuzzy queries, knowledgeable users may use fuzzy
queries too. “Find all the pictures 1ike this one”. The operator like is a fuzzy operator because it does
not require exact matches.

Three different multimedia query methods have been studied: keyword querying, visual querying, and
semantic querying. Usually keyword querying only handles well-defined queries. Both visual querying
and semantic querying are designed primarily to deal with fuzzy queries although they can also be used
in handling well-defined queries. In order to aid users’ access and retrieval, some systems incorporate a

combination of the above methods.

Keyword querying is the easiest method. It requires each object to carry some tags (or keywords)
and entire objects (BLOBs) are retrieved. For any given video or audio, we can store many keywords
to accurately describe the content of the video or audio. For example, if we have a video describing the
interesting traveling sites of Canada, then Canada, Rocky Mountains, Jasper, Banff, Toronto, Vancouver,
Montreal, etc. could be the keywords. It is very efficient to do keyword searching and matching. Most
of the searching techniques in multimedia databases are based on the use of keywords associated with the
images or the video segments [LPZ93, OT93]. Part of the reason for using keyword querying is that such
queries can be easily formulated using a standard query language, such as SQL.

Two major drawbacks of keyword querying are the limitation of keywords and information loss. In many
cases there are no proper words to describe an image or video, so we are restricted by the keywords and our
knowledge of a language (say English). Alternately, there may be too many words to describe an object
and there may be no consensus as to which are better or the best. The second problem is information loss.
Keywords cannot preserve all the spatial and temporal relationships, which are critical, among the media,
such as the shape of an object or the space an object occupies in an image (the old saying “A picture is
worth a thousand words” is relevant to this context). Furthermore, it may not be possible to enumerate
all the features in a picture. The unavoidable information loss may be intolerable.

Despite these disadvantages, keyword querying is still present in most systems. It is usually coupled
with other query facilities because of the simplicity and efficiency of keyword retrieving.

Visual query languages are helpful for users to formalize complicated queries. Querying by pictorial
example is a natural extension of relational database’s query by example. The query system provides
some typical samples (say pictures, video frames, or audio sampling) extracted from the database. A user
is asked to select one of those samples and then the system will try to retrieve all the possible matches
from the database. A typical system is Query By Image Content (QBIC) [NBET93], which is an image
management system. Another form of visual querying is querying by icon [BCN93]. In an iconic query
system, the sample objects are simplified to very few objects. For example, an image icon represents just
a car; a video icon represents just a person; an audio icon represents a period of lullaby. For this type
of querying, the underlying system must be able to support common features in multimedia data, such
as shape, texture, size, and color. It is possible to express spatial and temporal relationships in query by
pictorial example. However, visual query systems are usually domain-dependent because of the difficulty
of generalizing sample pictures and icons.

Semantic querying (or content-based querying) is the most challenging approach of all, in terms of

indexing, pattern matching or searching, and its access structure [HK95]. The presentation of information

from a database requires inclusion of semantics, either explicitly or implicitly [Jai92]. Explicit semantics
can be introduced by declarative knowledge representation techniques. We may also specify procedures
to assign semantics to data. The semantics or content of an object is usually expressed by its features,
which include the object’s attributes and relationships between objects. Therefore, the functionalities of
such features depend on many techniques of multimedia data processing. These techniques include image
processing, pattern recognition, speech recognition, motion detection etc., which are being studied broadly
by many researchers. One of major goals of those techniques is to make accurate feature extraction from
input data. In an image database, for example, semantic querying allows images to be retrieved by a
variety of image content descriptors (both spatial and content information) including color, texture, and
shape. These attributes may describe not only the image as a whole but also the individual objects in it.
It also offers the opportunity to pose virtually an unlimited set of queries rather than having the system
automatically classify and organize sample queries into a small number of predefined classes.

Another type of feature in multimedia data is metadata, i.e., the data about data. Metadata has received
considerable attention in multimedia research [KS94, JH94, AS94]. Typical metadata are media type
description, image size, playing speed, service quality requirements, statistical data (e.g., how frequently
has this type of query been asked, how many images include this kind of car etc.). Metadata assumes more
importance when managing multimedia data than when managing traditional structured data [KS94].
Some of the reasons are the inability to do exact matches in many cases, the inability to do content-
based search in some cases with large data sets that are hard to analyze, and the greater role of derived
data, interpreted data, context, as well as semantics when dealing with audio-visual data. For example,
content-descriptive metadata [BR94] is ubiquitous in multimedia systems. This metadata is determined
intellectually or by means of semi-automatic or automatic methods. In the last two cases, these methods
are media-type-specific. Examples of content-descriptive metadata are a list of persons or institutions

having some relation to a particular multimedia document’s content.

2.1 Well-defined Queries

Exact match queries are ubiquitous in traditional DBMSs. Since multimedia database systems must also
support traditional DBMS functionalities, multimedia query languages have to accommodate well-defined
queries. We will use Figure 1 as our running example throughout the paper. In Figure 1, US President Bill
Clinton is in the middle of the image, Canadian Prime Minister Jean Chretien is at the left, and British
Prime Minister John Major is at the right. Figure 2 shows a data definition of an image in a C+4-like

format. The well-defined query in this subsection is “Is there any image such that Jean Chretien is at the

left of Bill Clinton”.

John Major Bill Clinton Jean Chretien

Figure 1: People in the G7 Summit

EVA [DG92] is one of the early query languages designated for multimedia information systems. Based
on functional language features, EVA has its roots in conventional set theory. It is formally defined using

the mathematical framework of many sorted algebra. In EVA the sample query can be expressed as follows:

{ (title(PIC) | (Image(PIC) and exists PERSON PERSON2 and

PERSON isin object(feature(PIC)) and

PERSON?2 isin object(feature(PIC)) and

name(PERSON) is “Bill Clinton” and

name(PERSON2) is “Jean Chretien” and

left(PERSON2, PERSON))}
where left(OBJ, OBJ2) is a feature predicate which detects whether object OBJ is at the left of object
OBJ2. isin and is are built-in functions. EVA is object-oriented and supports objects, classes, and
relationships between objects. It also supports set operations like isin, union, intersection etc., which
are useful for many well-defined queries. However, EVA does not support any spatial queries (see next

section) and currently does not support video data.

Garlic is an object-oriented multimedia middleware and object-based management system developed at
IBM Almaden Research Center [CHN'95]. Query By Image Content (QBIC), which is an image retrieval
system (see Section 2.3 for details), has been successfully integrated into Garlic. The Garlic data model is
a variant of the ODMG-93 object model [Cat94]. Query processing and data manipulation services, espe-
cially for queries where the target data resides in more than one place, are provided by the Garlic Query
Services and Runtime System. Queries are broken into pieces, each of which can be handled by a single
media manager. Garlic extends standard SQL with additional constructs for traversing paths composed

of inter-object relationships, for querying collection-valued attributes of objects, and for invoking methods

class Person {
public:

char sin[9]; // Social Insurance Number
char name[40];
char address[80];
date birthdate; // suppose “date” is already defined
char sex;
int age();

}

class Image {
public:

char title[40];
int format; // format of the image: bitmap, GIF, JPEG, TIFF etc.
int resolution;
date date; // creation date
ImageFile xcontent; // a pointer pointed to the image file
Feature feature; // features extracted from an image
void compress();
void resize();
void move();
void display();
void hide();

class Feature { // only some spatial features
public:
CollectionOfObject object; // interesting objects as the features
Keyword keyword;
Boolean left();
Boolean front();
Color color();

Figure 2: Query Data Definition

10

with queries. Most of these are actually adopted from ODMG-93 OQL (Object Query Language). The

same query is expressed in Garlic’'s SQL as follows:

select PIC.title

from Image PIC, Person PERSON PERSON2

where PIC.feature.object(PERSON) and
PIC feature.object(PERSON2) and
PERSON.name(“Bill Clinton”) and
PERSON2.name(“Jean Chretien”) and
PIC feature.left(PERSON2, PERSON)

Since the Garlic query language is intended for querying databases that contain data in a variety of
repositories, including multimedia repositories with associative search capabilities, Garlic’s SQL extension

must also take into account the needs of such repositories.

OMEGA (Object-Oriented Multimedia Database Environment for General Application) [Mas91] is an
object-oriented database system for managing multimedia data that is under development at the Univer-
sity of Library and Information Science, Japan. In this model an acceptor is defined to allow a user to
communicate with the system. Such an acceptor can recognize and describe a real world entity by using
any symbol system that is allowed in specified media. A collection of designer’s impression about the real
world in terms of objects is organized as a kernel object base for integration. This kernel object base is
used as a glue to integrate various conceptual models in different media. An object is defined by three
properties: identifier, protocol, and state. Some extensions are made in OMEGA for representing part
hierarchies and temporal and spatial information about multimedia data. OMEGA has some facility for
supporting three types of user language interfaces: an object-oriented interface, an SQL-like interface and a
Graphic interface. Syntactically the query example expressed in OMEGA’s SQL is very similar to Garlic’s
SQL.

Marcus and Subrahmanian [MS93] have proposed a formal theoretical framework for characterizing mul-
timedia information systems. It also provides a logical query language that integrates diverse media. This
is a first attempt at mathematically characterizing multimedia database systems. The model is indepen-
dent of any specific application domain and provides the possibility of uniformly incorporating both query
languages and access methods based on multimedia index structures. A special data structure, called a

frame, is defined in this model for data accessing. The corresponding query language is called Frame-Based

11

Query Language (FBQL). Under FBQL, the example query is:

(3 IMG) Image(IMG), Person(PERSON), Person(PERSON?2)
name(PERSON)=“Bill Clinton” & name(PERSON2)=*“Jean Chretien”
PERSON € IMG .feature.object() & PERSON2 € IMG feature.object() &
IMG feature.left(PERSON2, PERSON))

A similar approach has been used in AVIS (Advanced Video Information System [ACCT95]). A video
database is defined by a 9-tuple in AVIS

(RVD,0BJ,EVT,\,ACT,R,P,ROLE, PLAYERS)

where RV D is a set of integers {1,...,n}; OBJ is a set of objects; ACT is a set of activity types which
describe the subject of a given video frame-sequence (for instance, car chasing, holding a party); EVT
is a set of events which could be considered instances of activity types; A is a function which maps each
element from OBJ U EVT into a set of frame-sequences; R is a set of roles which is a description of
certain aspect of an activity (roles may involve objects: drivers are roles in the activity car chasing); P
is a function which maps an event to an activity type; ROLF is a function which maps a frame-sequence
EVT U (U,copsA0)), an activity in A € P, and a role in R(A) into an element of OB.J; PLAY ERS is
a function which maps an event and its activity type into a mapping from the roles of the activity to the
entities in the database and to strings.

The clear separation of salient objects and events in a video helps to model these two entities because
they have very different structures. Furthermore ROLFE and PLAY FRS are introduced to describe a
real world event. This kind of generalization is very close to a human’s perception of the real world. The
events that are of the same activity type are differentiated from each other by the set of objects involved in
them. However, the conditions placed on segmenting a video many be too restrictive to capture all events.
Although the authors have claimed that their frame data structures, designed to process different types of
queries, are good and that there exist polynomial-time algorithms for traversing these structures, they do
not define a clear query model or query language. A procedural querying facility is supported in AVIS in

contrast to a declarative one.

A knowledge-based object-oriented query language, called PICQUERY™, is proposed in [CIT193].
PICQUERY+ is a high-level domain-independent query language designed for image and alphanumeric

database management. It allows users to specify conventional arithmetic queries as well as evolutionary

12

and temporal queries. The main PICQUERY+ operations include panning, rotating, zooming, superim-
posing, color transforming, edge detecting, similarity retrieving, segmenting, and geometric operations. A
template technique has been used in PICQUERY+ for user accesses. Query templates in PICQUERY+

are used to specify predicates to constrain the database view. The example query is shown in Table 1. Five

Object | RO | Object Value LO | Group
PERSON | IN | IMG.feature.object AND 1
PERSON2 | IN | IMG.feature.object AND 1
PERSON.name = | “Bill Clinton” AND 1
PERSON2.name = | “Jean Chretien” AND 1
IMG feature.left | IS | (PERSON2, PERSON)

Table 1: Template Querying in PICQUERY 4+

columns are defined in Table 1. The Object column defines the interesting objects or objects’ attributes.
The RO column defines relation operators which show how data should be correlated with the object value
template in order to satisfy the query conditions. Typical relation operators are arithmetic comparison op-
erators (=, <, > etc.), temporal interval comparison operators (OVERLAPS, DURING, PRECEDES etc.),
and fuzzy operators (SIMILAR_TO etc.). The Object Value column defines what kind of values could be
assigned to the object so that the relation operator evaluates to be true. The LO column defines logical
operators which are standard, such as AND, OR, and NOT. The Group defines parenthesized clauses in
complex predicates. As an example of using the Group column, let us change the query slightly “Is there
any tmage such that Jean Chretien is at the left of Bill Clinton or John Major is at the right of Bill
Clinton”. Then, two more rows must be inserted into the template: one describes PERSON John Major
and another one is for predicate right. Also the Group column value must be set to 2 for newly added two
TOWS.

OVID (Object-Oriented Video Information Database) [OT93] is an object-oriented video model. It
introduces the notion of a video object which can identify an arbitrary video frame sequence (a meaningful
scene) as an independent object and describe its contents in a dynamic and incremental way. However,
the OVID model has no schema and the traditional class hierarchy of OODB systems is not assumed. An
inheritance based on an interval inclusion relationship is introduced to share descriptional data among

video objects. Intuitively if a video frame sequence Vj includes another video frame sequence V5, then

13

some of V1’s attributes and attribute values are automatically inherited by V5. This means that instances,
not types, inherit attributes. Therefore, the hierarchical structure of a video object would be described
by a series of derivations, and not by composition. Queries are processed in OVID by VideoChart and
VideoSQL. VideoChart is a bar-chart type, pictorial (visual) query interface. VideoSQL facilitates retrieval
of a collection of video-objects that satisfy a given condition. VideoSQL supports queries to retrieve video-
objects that contain a specified video-object as their attribute value. For sophisticated queries, both
VideoSQL and VideoChart must be used.

Since VideoSQL in the OVID system only deals with video media, we are going to change the query
slightly to “Is there any video such that Jean Chretien is at the left of Bill Clinton”. Here is the query in
VideoSQL:

select anyObject

from G7 Summit Database

where “Jean Chretien” is at left “Bill Clinton”
Note that VideoSQL is quite different from standard SQL. The select clause specifies only the category
of the resulting video-objects. Video-objects are classified into three categories: continuous, noncon-
tinuous, and anyObject (either continuous or noncontinuous). Continuous video objects consist of a
sequence of video frames while noncontinuous video objects have just one video frame. The from clause
specifies only the name of the database, in which the query will be posted. A unique feature of the OVID
system is that users are allowed to have the ability to identify a meaningful scene at any time and to
define the meaningful scene with its descriptional data as a video-object. This is because the video object
data model does assume the existence of a database schema. As the OVID model depends heavily on the
video description, it has no strong support for content-based video retrieval. Another drawback of the
OVID system is the lack of a powerful query model or query language because not many query primitives
(e.g., query synchronization operators) are defined in OVID. The general usage and the implementation

efficiency of interval inclusion inheritance needs further verification.

2.2 Fuzzy Queries

One of the unique properties of multimedia database systems compared to traditional text-based database
systems is the necessity of fuzzy queries. In practice, exact matches on features rarely produce useful
output [Gro94]. Users may have to use fuzzy queries either because of the difficulty in describing some
scene or because of an intention to relax search conditions in order to make sure that all requested objects

are present. Therefore, each feature should have its own tunable notion of what a close (or similarity)

14

match means. The closeness of two multimedia objects should be calculated based on a weighted average
of the closeness of their respective components.

Now let us look at another query example. Suppose we have a query “Find any video that includes
Jean Chretien shaking hands with Bill Clinton with an airplane in the background that looks like a Boeing
767 . This is a very difficult query even for a specialized video DBMS. This query is fuzzy because of
the fuzzy operator looks like and uncertain attributes shaking hands and background. Most query systems
discussed above, especially those that are SQL-based, cannot answer this query because such kind of scenes
(background, shaking hands) are difficult to describe precisely by just using words. The fuzzy nature means
that they are usually easier to process by visual query language systems, such as QBIC [NBE193], assuming
that appropriately similar images or icons have been defined. The concept of similarity has received
significant attention in multimedia research. It is generally understood that a mathematical definition of
distance provide a good model of human similarity perception. Some quite sophisticated techniques have
been developed for similarity measurement [BW92, LP94, SJ95].

It is common to post a query such as “Find all the images that look like this one” to an image database
if a face has been sketched by an artist. First a number of features must be extracted from the sketch and
they are used to assess the similarity to other images. Some feature transformations are necessary because
two faces may have been observed under different conditions. The group of invariant transformations
dictates the geometry of the space where we measure similarity [SJ95]. In this scenario, the object we want
to retrieve from the database is not the same as the object in the query, but something that it is semilar
in a perceptual sense. Most query languages deal with this problem by providing a SIMILAR operator
to compute the similarity between multimedia objects —— SIMILAR.TO in PICQUERY+, imageSim and
audioSimin EVA, and Simin SCORE.

SCORE (a System for COntent based REtrieval of pictures [ATYT95]) is a visual query interface for
image databases. SCORE makes use of a refined E-R model to represent the content of images. The refined
E-R model is introduced to handle the traditional E-R model’s type mismatches, i.e., the ambiguity among
its components: entities, attributes, and relationships. For example, it is sometimes difficult to state
whether a subject is of type entity, attribute, or relationship. The associations among the objects are
classified into two types: actions which describes action relationships (typically this includes verbs or
verb phrases) and space which describes the relative positions of two objects. A set of graphical input
primitives has been provided. Fuzzy queries are allowed by using fuzzy matching of attribute values,
imprecise matching of non-spatial relationships, and a controlled process of deduction (and reduction) of

spatial relationships. A unique feature of SCORE fuzzy query processing is its novel definition of object

15

similarity. Two objects are similar if both of the following points are satisfied

e the names of the objects are either the same, or they are synonyms, or the two objects appear in an

IS-A relationship hierarchy, and
e the attribute values of the two objects do not conflict.

Let us look at the comparison of similarity values for the attribute position within a picture. The position
is relative to the image. An image may be divided into 9 regions, such as northWest, SouthFast, Center
etc. If two attribute values indicate the same region or neighboring regions, they are similar. Otherwise,
they are in conflict.

The extended FBQL [MS95] has a special feature for supporting fuzzy queries. It provides a method of
relazing a query when the original query does not have an answer (i.e, returning empty). Intuitively, if there
are two features f; and fo, then f; < f5 indicates that feature f; is considered to be a subfeature of f5.
Here, < is a partial order defined on the set of features. A vice president and a deputy prime minister are
typical subfeatures of a president and a prime minister respectively. A function (RPL) is used to determine
what constitutes a “possible” answer to a query. For example, assume that we want to search for an image
in which President Clinton is signing a document on a particular day, and there is no such image in the
database. However, assume that the vice president was actually signing the document on that day because
the president was unavailable. If the vice president is a subfeature of president, the query system may
retrieve an image with the vice president signing the document on that day instead of returning no image.
The same idea applies to object attributes and that is exactly what the SUBST function does in extended
FBQL.

2.3 Visual Queries

Data visualization is vital in multimedia database systems because of the complex structure and spatio-
temporal relationships inherent in multimedia data. Intuitively, a visual query is a query that includes not
only alphanumeric expressions, but also some other non-alphanumeric expressions, such as icons, pictures
drawn by users, sample audio etc. A visual language is one that allows users to post visual queries.
Since visual queries have to be transformed into lower level query primitives (such as query algebra, query
calculus), visual languages can be seen as an interface between query models and users.

Fuzzy queries can be easily expressed in a visual language by partial or approximate drawings. Graphical
tools are necessary to capture and sketch images. Mapping functions must be provided by query systems to

map the images into internal query representations. The same approach applies to audio data. Therefore,

16

visual query models are more difficult to implement than non-visual query models since visual query
systems have to take the responsibility of translating user requests into lower level query primitives.

QBIC (Query By Content of Image [NBET93]) is an image retrieval system that uses the content of
images as the basis of queries. The content used by QBIC includes colors, textures, shapes, and locations
of user-specified objects (e.g., a person, flower, etc.) or areas (e.g., the lake area) in images, and/or the
overall distribution and placement of colors, textures, and edges in an image as a whole. Queries are
posed visually, by drawing, sketching, or selecting examples of what is desired. A typical QBIC query
is “Find images where President Bill Clinton is wearing a black suit and sitting at a round table”. The
image predicates (President, black, round, ...) are specified graphically using person icons, color wheels,
and drawing tools, by selecting samples, and so on.

The Pictorial Query- By-Example (PQBE) [PS95a] language is aimed at the retrieval of direction re-
lations from symbolic images. A symbolic image is an array representing a set of objects and a set of
direction relations among them. As in the case of relational Query-By-Example, PQBE generalizes from
the example given by the user. However, instead of having queries in the form of skeleton tables showing
the relation scheme, PQBE has skeleton images which are themselves symbolic images.

Figure 3 shows some symbolic images which could correspond to visual scenes, geographic maps or other
forms of spatial data. PQBE supports nine primitive binary, pairwise disjoint direction relations in symbolic
images: {NorthWest, RestrictedNorth, NorthEast, RestrictedWest, SamePosition, RestrictedEast,
SouthWest, RestrictedSouth,

SouthEast}. These primitive relations correspond to the highest resolution that can be achieved using one
symbol per object in symbolic images [PS94]. The query “Is there any image such that Jean Chretien is
at the left of Bill Clinton” could be posted as shown in Figure 4.

J

Figure 3: Symbolic Images

From Figure 3 and Figure 4 we can see that symbolic images are just a way of representing direction
constraints and they do not preserve absolute metric information but only spatial order. As a consequence,

the information preserved in an image does not change if we add or remove empty rows and columns. In

17

P P P

Bill_Clinton | Jean_Chretien Bill_Clinton Jean_Chretien
Jean_Chretien Bill_Clinton

Figure 4: Skeleton Images

Figure 3, symbol characters, such as A, B, C denote reference objects. The objects to be located are called
primary objects. Primary objects are preceded with “P” as shown in Figure 4. The symbolic images used
for retrieving other images are called skeleton images. We can formally describe the example query in the

PQBE internal representation by
Jean_Chretien € 0(I) A Bill_Clinton € 0(I) A West(Bull Clinton, Jean_Chretien)

where 0(I) is the set of interesting objects in image I, West(X,Y) = NorthWest(X,Y)VRestrictedWest(X,Y)V
SouthWest(X,Y). Actually, PQBE has the ability to express negation, independent sub-conditions in the
form of multiple skeleton images, union, intersection, and join operations, image and relation retrieval, and

to perform inference. It is not difficult to apply PQBE to some multimedia applications, such as GIS and
image databases.

However, there are some drawbacks in PQBE approach. First, no quantitative spatial operations are
supported, although there is a rich set of qualitative spatial operations. Users cannot ask queries like “Find
an object that is 10 meters above this one”. Secondly, no computational functions are supported. Typical
computational functions are region area, line length etc. Thirdly, no object similarity match functions are
supported.

Little et al [LAF193] have developed a video-on-demand (VOD) system to model a real-world video
rental store. A VOD system allows the viewing preferences of each individual to be tailored and adapted
to the available programs (for example, one viewer’s interest in classic movies, another’s restriction to
children’s programs). A prototype system, called Virtual Video Browser (VVB), is designed to support
temporal access control operations (such as fastforward, reverse playback, loop, middle-point suspension,
middle-point resumption etc.) based on data structures achieved by using a domain-specific model for mo-
tion pictures. With this domain-specific model, the time-based representation is translated to a conceptual
schema in the form of a temporal hierarchy representing the semantics of the original specification. Leaf
elements in this model typically represent base multimedia objects (audio, video, text, etc.); only audio

and video (and subtitles) elements are used for the video-on-demand application. Timing information is

18

also captured with node attributes, allowing the assembly of component elements during playback. The
VVB application characterizes motion pictures and their attributes to the level of movie scenes by using a
movie-specific data schema. This schema interfaces a temporal model to provide temporal access control
operations such as fast-forward and reverse playing.

After selecting a video category, users are directed into a virtual shelf screen which is a virtual display
of the available movies as patterned after a video rental store. Fach of the movies on the virtual shelf
screen is represented by a rectangular icon which resembles the shape of an actual VHS video box. When
the query button is pressed, a query input screen appears. This screen allows users to input queries that
identify scenes or identify desired movies. The interface permits users to make queries to the database on
any content within the realm of movies, scenes, or actors. In addition to the iconic visual representation of
the selected movies, the VVB can display any textual data from the database by using available attributes
of title, director, actors, year, synopsis, etc.

The VVB database is implemented using the POSTGRES DBMS [SK91] and temporal access control
schemata which captures the relative timing relationships between components of the videos. The query

language, called PQUEL, has the following simplified format:

retrieve < determined by output selections >
from < m in movie, s in scene, ¢ in actor >

where < determined by input selections >

In terms of diversity of supported semantic content, VVB is limited by the domain-specific attributes. A
significant problem with VVB is that no quantitative media presentation control (e.g., playing this video
clip for 5 minutes) is supported.

SCORE is another visual query interface for image databases [ATYT95]. The user query interface of
SCORE can facilitate effective query construction in an intuitive manner for casual users while it provides
efficient mechanisms for experienced users. The spatial relationships are based on a set of spatial relation-
ship operators {Over, Under, Left, Right, Behind, In-Front-0f, Overlap, Inside, Outside}. A
set of sound and complete reasoning rules [SYH94] have been provided to eliminate redundant spatial
relationships. SCORE is restricted to image databases and the use of image contents (texture, color, etc.)
is not as sophisticated as in QBIC.

A temporal visual query language (TVQL) has been developed by Hibino and Rundensteiner [HR95].

In such a language users are able to identify temporal trends in video data by querying for relationships

19

between video annotations. They can analyze a video in terms of temporal relationships between events
(for example, events of type A always follow events of type B). They can also specify relative temporal
queries or browse video data in a temporally continuous manner. Relative temporal queries have two
components: relative temporal position, which describes starting points and ending points of temporal
relationships among events, and relative duration, which describes the long (or short) active time of some
events compared to others. The primitive temporal operators have been visualized by some graphical
primitives as shown in Figure 5. Although all the thirteen temporal primitives (based on Allen’s work

[AlI83]) can be used in user queries, TVQL provides another method to express those primitives.

o—~o>——1 o6& 1 Oot———a [&=—=—=10I

before overlap finish during
Figure 5: Sample Graphical Temporal Primitives

Consider two events A and B, with starting and ending points Ag, Ay, and By, B;. There are four

pairwise endpoint relationships between these two events:
A()OBO; A(JOBl7 A10B0, A10B1

where § € {<,>,=}. If we suppose the ending time is always greater than the starting time (i.e., A; >
Ag and By > By), these relationships can be redefined by starting and ending point differences (e.g.
(Ao — Bp)8 0, (A1 — By)# 0). The benefit of using a difference representation is that it allows users to
specify quantitative and continuous ranges of values. Therefore, it is a natural specification to be handled
by graphical sliders. All the thirteen temporal relationships can be expressed by one to three of these
endpoint relationships. Figure 6 tells us that “The start of A is before the end of B”, where the difference
of the end time of A and the start time of B is between 0.0 and 5.0 minutes while the difference of the start
time of A and the end time of B is between -5.0 and 0.0 minutes. A major problem with this language is
in describing complex relationships among multiple events.

Generally, visual query systems are especially good for novice or casual users. Without any knowledge
of the underlying system, a user can manipulate the database easily. For experienced users, visual queries
can still be beneficial in cases where queries are difficult to express in verbal query forms. Fuzzy queries
can be handled much more naturally in visual query models than in verbal query models. However, a
major drawback of visual query languages is that specifying well-defined, exact-match queries is not easy
in comparison to verbal languages. That is why some multimedia systems, such as OVID, Garlic, and

VOD, incorporate both verbal and visual query languages into their systems.

20

before equal after

0.0 0.0
end A
start B | D ‘
-4.6 5.0
-5.0 0.0 0.0
start A } q
end B |

Figure 6: Query Filters for Specifying Relative Temporal Position Queries

2.4 Query Presentations

A query presentation refers to the way query results are presented. Presentation of multimedia data is
more complex than traditional databases. This is because the modeling of multimedia presentations has
to take into account the different aspects important for the presentation and it has to meet the demands

of the users of a multimedia presentation. Those different aspects include:

o Media Composition: Free composition of different media to a new multimedia product is an essential
requirement of any multimedia query model. This kind of composition must describe all temporal

and spatial relationships between the media.

o Interactive Operation: One of the features of a presentation is the user interaction in the course of a
presentation. Some interactive operations (like fastforward, fastbackward, pause etc.) are particularly
important in real applications. Furthermore, allowing users to dynamically change presentation

parameters (such as the volume of an audio or the speed of a video) is also necessary.

o Media Synchronization: Synchronization constraints are needed in order to specify to what extent
operations are executed consistent with their temporal constraints, with respect to an ideal execution.
In general achieving ideal execution is technically not feasible. The requirements of a multimedia
application have to be tied to the functionality of system components. This is why the quality of
service is introduced to characterize the performance of multimedia system. Some important quality
of service parameters are average delay, speed ratio (between the original intended and the actually
achieved), data utilization, jitter (the temporal deviation of two simultaneous presentations at a

certain point in time), and reliability [KA95].

21

The query language has to deal with the integration of all retrieved objects of different media types
in a synchronized way. For example, consider displaying a sequence of video frames in which someone
is speaking, and playing a sequence of speech samples in a news-on-demand video system. The final
presentation makes sense only if the speaking person’s lip movement is synchronized with the starting
time and the playing speed of audio data. This requires fine-grain synchronization (such kind of fine-grain
synchronization usually has 25 or 30 synchronization points per second [L.G93]). This requires incorporation
of synchronization algorithms into query systems.

Because of the importance of delivering the output of query results, supporting query presentation has
become one of the most important functions in a query system. Both spatial and temporal information
must be used to present query results for multimedia data. The spatial information will tell a query system
what the layout of the presentation is on physical output devices, and the temporal information will tell
a query system the sequence of the presentation along a time line (either absolute time or relative time).
In order to support the spatio-temporal requirement of query presentations, many spatial and temporal
operators are provided by different query models. Some typical spatial operators are left, above, overlap,
neighbor, etc. and some typical temporal operators are before, start, meet, finish, etc.

We will see how different query models or languages deal with query presentation by using another
example query in this subsection. Consider the query “Show the videos where Bill Clinton, Jean Chretien,
and John Major are chatting at the G7 summit and simultaneously play the audio of their talks; then show
the G'7 summit logo”.

The representation of the relationship between different objects in EVA is based on the logic of temporal
intervals and timed Petri Nets. The temporal relationships are expressed dynamically. The synchronization

operators are applied to the objects after the query is evaluated. Following is the query in the EVA system:

{ (content(V) sim audio(V) meets display(IMG) |
(Video(V) and exists Image(IMG) and
PERSON isin feature(object(V)) and
PERSON?2 isin feature(object(V)) and
PERSON3 isin feature(object(V)) and
name(PERSON) is “Bill Clinton” and
name(PERSON2) is “Jean Chretien” and
name(PERSON3) is “John Major” and
isKeywordIn(“G7”, keyword(V)) and
logo(IMG) is “G7”) isin feature(object(IMG))

22

Here sim means simultaneously and » meets y means that object y will be started right after object x
terminates. Suppose z and y are time-dependent media objects, then EVA supports the following temporal

operators:
e x before y: object z is shown before object y
e x meets y: object y will be started after z finishes
e x sim y: object x and object y are presented simultaneously
e x starts y: as soon as object x starts object y start too
e x finishes y: as soon as object x ends object y ends too
e x at y: object x will be displayed at time y
As for the spatial operators, EVA supports (let 2 and y be spatial objects):
e — left y: object y will be displayed in the left part of the screen (right, bottom, up are similar)

e z showlIn y: display object # in a window defined by object y which provides the window’s upper

left corner and lower right corner

e arrange(x,y,z): the window of object = covers some portion of the window of object y with degree
of visibility z; if z = 0, then the portion of the window y that is in the intersection is not visible; if

z = 1, then all the common points are visible

Although EVA has a rich set of spatio-temporal operators, it lacks some useful operations, such as changing
the playing or displaying speed, conditional displaying or playing some objects (e.g., if condition then

present some objects), and playing at a time constraint (e.g., present some objects for 20 minutes).

PICQUERY + [CIT*93] is a medical image database query language. In PICQUERY+ the same query is
shown in Table 2 and the presentation of this query is shown in Table 3. The output of Table 2 is the input of
Table 3. Fventis a general temporal event defined in PICQUERY 4. The generality of expressing complex
objects and events as an object is a challenging functional feature in multimedia systems. Furthermore,
PICQUERY+ undertakes this requirement to integrate a wide range of presentation formats for powerful
visualization of query and data processing results.

PICQUERY+ also has a set of spatial operators, like INTERSECTS, CONTAINS, IS COLLINEAR WITH,

INFILTRATES, BEHIND etc., and a set of temporal operators, like DURING, BETWEEN, EQUIVALENT, ADJACENT,

23

Object/Event | RO | Object/Event Value LO | Group
PERSON | IN | V.feature.object AND 1
PERSON2 | IN | V.feature.object AND 1
PERSON3 | IN | V.feature.object AND 1
PERSON.name | = | “Bill Clinton” AND 1
PERSON2.name | = | “Jean Chretien” AND 1
PERSON3.name | = | “John Major” AND 1
V.feature.keyword | = | “G7” AND 1
IMG.feature.logo | = | “GT7”

Table 2: Template Querying in PICQUERY 4+

Object | Presentation Method
A% MovieLoop
IMG ShowImage

Table 3: Media Presentation in PICQUERY +

24

PRECEDES etc. Furthermore, PICQUERY+ supports some evolutionary operators which are unique to
PICQUERY+.

e EVOLVES_INTO: properties of an object can change generally with respect to time or more specifically

with respect to a maturation process
e FUSES_INTO: two or more objects can fuse into a new single object
e SPLITS_INTO: an object can be split into two or more objects

By combining these evolutionary operators with temporal operators, the system is able to answer queries
like “Show in a movie loop all images with delay between image frames 2 seconds from signing a documen-
tation ceremony which demonstrates the fusion of an agreement reached during the G7 Summit’95”. Here,
for a particular political or economical issue each participating country’s position is modeled as a different
original object. After many negotiations the final agreement can be seen as an evolved object obtained
from the fusion of those original objects. One of the problems with PICQUERY+ is the lack of facilities
for interactive presentation (such as pause, resume) or conditional presentation.

The algebraic video data model [WDG94] allows users to model nested video structures such as shots,
scenes and sequences and to define the output characteristics of video segments. Users can also associate
content information with logical video segments, provide multiple coexisting views and annotations of the
same data, and provide associative access based on the content, structure and temporal information. A
quite comprehensive set of temporal operators has been defined within the algebraic video system. All the

operators are classified into four categories:
e Creation: constructing new video objects from existing video objects.
¢ Composition: defining temporal relationships among video objects.
e Output: defining spatial layout and audio output among video objects.
o Description: associating media content attributes with a video object.

The algebraic video data model consists of hierarchical compositions of video expressions with some seman-
tic descriptions. A video expression is constructed by video algebraic operators. Because multiple video
frame sequences can be scheduled to play at any specific time within one video expression, the playback
may require multiple screen displays and audio outputs. In the algebraic video system, all video expres-

sions are associated with some rectangular screen region in which they are displayed. The layout of all the

25

components of a query result is decided by the video expression spatial constraints. As expressions can
be nested, the spatial layout of any particular video expression is defined relative to the parent rectangle.
The parent rectangle is the screen region associated with the encompassing expression.

Besides some basic spatio-temporal operators as presented in EVA and PICQUERY+, the algebraic
video system has some extra operators and some of the operators found in other systems have different
features. For example, the window operator defines a rectangular region within the parent rectangle
where the given video expression is displayed. A unique feature about the window operator is its priority
parameter which is used to resolve overlap conflicts of window displays. To repeat a video expression V E
for a duration of time ¢, a user can express it as loop V E t where t could be forever. Another operator,
stretch VE factor, defines a duration of the presentation which is equal to factor times the duration of
VE (where VE is a video expression). The stretch operator changes the playback speed of the video
presentation, but does not alter the playback speed of other presentations. The expression limit VFE ¢ sets
the duration of the presentation to be equal to the minimum of ¢ and the duration of VE, but the playing
speed of VIV is not changed.

Although the query presentation functionality of the algebraic video system is quite rich, it is not a
full-fledged multimedia query model. The data retrieval part of the system is poor. The content-based
query access has the format

search query
which searches a collection of algebraic nodes for video expressions that match query. An algebraic node
provides a means of abstraction by which video expressions can be named, stored, and manipulated as
units while a query is a boolean combination of attributes. The latest work on FBQL [MS95] has shown
that all the algebraic composition operators in the algebraic video system can be expressed as constrained

queries in the FBQL system.

3 Research Issues

In this section we discuss open problems in multimedia query languages. We will concentrate on the

generalization and formalization of query models, spatial queries, temporal queries, and fuzzy queries.

3.1 Generalization of Query Models

Although there are numerous multimedia information systems, not many systems have appropriate query

languages to support their applications. Even for those which do have appropriate query languages, they

26

are designed only for specific applications, and not for general use. For example, OVID and OMEGA are
good for video media databases while PICQUERY+ and EVA are designed mostly for image databases.
Most systems only address narrow applications, such as medical images or news-on-demand video systems.

Are there any general query languages for multimedia systems? What are multimedia query languages
in general, and how can they be formally defined so that they are independent of any specific applications?
As far as we know, the only work towards answering the above questions is the FBQL [MS93, MS95] work
mentioned earlier. The media-instance model introduced in [MS93] can capture all the media models. As
for the query language, some constant symbols, variable symbols, and predicate symbols are defined. Also
there is a function symbol flist, which stands for feature list, defined as a binary function in the query
language. FBQL is based on logic programming, which makes it quite powerful in the sense of expressiveness
and correctness because logic programming has a strong mathematical background. However, FBQL
does not support enough spatial and temporal presentation properties. It lacks support for content-based
information retrieval and heavily depends on user defined features. As we have discussed, metadata features
are very important in supporting content-based retrieval, but this vital issue has not been addressed in
the FBQL system. The soundness and completeness of FBQL’s functions need further investigation.

Furthermore, aggregate operations are not allowed in FBQL.

3.2 Spatial Queries

Many applications depend on spatial relationships among the data. Spatial data pertains to the space
occupied by objects in a database. Typical spatial data includes points, lines, squares, polygons, surfaces,
regions, and volumes. The special requirements of multimedia query languages in supporting spatial
relationships have been investigated within the context of specific applications such as image database
systems and geographic information systems [RFS88, SA95]. The following requirements are necessary for

supporting spatial queries from the users point of view:

e Support should be provided for object domains which consist of complex (structured) space objects
in addition to the simple (unstructured) point and alphanumeric domains. Reference of these spatial
objects through their spatial domains must be directed by pointing to or describing the space they

occupy and not by referencing their encodings.

e Support should exist for direct spatial search, which locates the spatial objects in a given area of
images. This can resolve queries of the form “Find all the faces in a given area within an image or

a video frame”.

27

e It should be possible to perform hybrid spatial search, which locates objects based on some alphanu-
meric attributes and uses the associations between alphanumeric attributes and the spatial objects to
facilitate the output. This can resolve queries of the form “Display the person’s name, age, and neck
X-ray image if the person’s age is greater than 307 where the neck X-ray image may be extracted

directly from the person’s X-ray image, whose age is greater than 30.

e Support should exist for complex spatial search, which locates spatial objects across the database by
using set-theoretic operations over spatial attributes. This can resolve the queries of the form “Find
all the roads which pass through city X7 where one may need to get the location coordinates of city

X and then do an intersection with road maps.

e Finally it should be possible to perform direct spatial computation, which computes specialized simple
and aggregate functions from the images. This can resolve queries of the form “Tell me the area of

this object and find another object which is closest to this one”.

Many query languages we have discussed do not support spatial queries. Visual query languages (or
interfaces) usually support spatial queries by the inherited spatial relationships in the icons or user drawings.
It should be noted that spatial queries are different from spatial presentation of query results. However,
since many query languages have defined a set of spatial operators for data presentation, it is legitimate
to investigate whether the semantics of those operators can be extended so they could be used in spatial

queries and satisfy the above spatial query requirements.

3.3 Temporal Queries

The inclusion of temporal data modeling in multimedia query languages is an essential requirement. Re-
search in temporal queries has focused more on historical (discrete) databases rather than on databases
of temporal media (e.g., [Sno95]). The focus is on the reflections of changes of the representation of real
world objects in a database (e.g., President Clinton gave a speech at 2:00pm on July 4, 1995), rather than
changes in continuous, dynamic media such as video. A typical temporal query is “Find a scene where
Prime Minister Jean Chretien is shaking hands with President Bill Clinton after Bill Clinton steps off an
airplane”. While some systems can identify objects that contain shaking hands and stepping off features,
the specification of the temporal relationship (after) needs special support from query languages.

There are many different approaches for describing temporal relationships (hierarchical, timeline, syn-
chronization points, events etc.) [Bla92]. In the OMEGA system [Mas91], for example, there are no

temporal operators, so two temporal relations have been defined. If an OMEGA object has a temporal

28

property it is called an OMEGA temporal object. The class TemporalObject consists of all the temporal
objects. Two internal state variables, birthTime and deathTime, are assigned to each temporal object,
where birthTime indicates when the temporal object is created while deathTime specifies when the tem-
poral object is destroyed. To present temporal precedence and synchronization between objects, those
relations are computed first by using the birth time and the death time information, and then their values
are assigned to relevant objects with two internal state variables, tempoPrec and tempoSync, which are
defined on temporal objects. That is, the internal state variable tempoPrecis used to indicate which object
immediately precedes another one, and by how many time units. For example, if a temporal object o
is created ¢ seconds before object o' and there are no temporal objects created in this interval, then the
tempoPrec value of object o/ will be object (o,1).

Most query languages discussed do not support temporal queries. A unification of temporal specification
between temporal objects and the temporal presentation of query results will definitely ease both multi-
media database design and querying tasks. Different query systems have different temporal (and spatial)
operators defined. There is no systematic investigation as to how complete those sets of operators are. It
is necessary to clarify the basic user requirements of a multimedia system, in order to build a complete
system on those basic temporal (and spatial) operators. This completeness is important for evaluating a

query language’s expressiveness. A sound mathematical definition of those operators is essential.

3.4 Fuzzy Queries

Multimedia query languages should allow fuzzy queries. The nature of queries has to be vague, not due
to a lack of user knowledge about a multimedia system, but due to the nature of information and the
size of a multimedia database. For example, a personnel information system should be searchable for a
male with short black hair, big eyes, and unsymmetric ears. Although many existing query languages have
some facilities to accept fuzzy queries, they can and should be extended. For example, FBQL provides
a framework for relaxing a query by defining a substitute feature set. However, it does not address the
feature selection problem in case there are multiple substitutions. A straightforward approach to attack
this problem is to assign priorities to those substitute features. Another approach is to build a feature
hierarchy, then incorporate this hierarchy into the query model by using an object-oriented inheritance
facility. Since extracting features from multimedia objects is an uncertain affair [Gro94], based on current
image interpretation and speech recognition, each extracted feature should also have a corresponding
certainty factor indicating the accuracy of the given extracted feature. This certainty factor should then

influence any feature similarity calculations. Some research results from fuzzy logic should be incorporated

29

into multimedia query processing.

Support for incremental queries is another functional requirement for multimedia query languages. An
incremental query is a query posed over previous ones. For example, if the result of the example personnel
information retrieval is too big to check out manually, a second query should be allowed (saying for example
that the distance between the mouth and nose should be less) after the user takes a glance at some of
the results and provides more restrictions [Jai92]. The important point here is that the second query is
only executed against the previous result, not the original multimedia database. This procedure could
be repeated until the user is satisfied with the result. None of the known multimedia query languages
support incremental queries. As most multimedia queries are fuzzy, this is a very important feature for a
query language. Powerful graphic navigation tools (browsers) are necessary for assisting users to complete
a sequence of incremental queries.

It is well known that different applications may require different features [Jai92]. To extract all the
features is either impractical or time consuming. Since the features must be stored at the time of data
entry, we must carefully decide what features will be used in a system. Some features need to be shared
by applications and some do not. Furthermore, in order to improve performance some features have to be
stored permanently in the system while others may be generated on the fly from existing features. None

of the existing query languages at present have probed this issue.

4 Conclusion

In this report we surveyed the query languages for multimedia information systems and justifications are
provided for their inclusion in multimedia systems. As far as we know, this is the first survey of its kind.
The characteristics of multimedia query languages are classified into four categories: well-defined queries,
fuzzy queries, visual queries, and query presentation. The functionalities of different query systems are
discussed according to this classification.

Some problems have been identified in this paper. There are important research issues which remain
unresolved. First, most multimedia database systems are designed for specific applications. Therefore, the
query languages are inherently restricted to a particular domain. This is not acceptable in a dynamically
changing research area as new techniques emerge. Second, spatial queries and temporal queries are not
supported by most multimedia query systems. This is certainly a serious problem. Furthermore, the
uniform processing of spatio-temporal operators in both the data model and the query model is necessary

in order to provide a uniform user interface. Third, fuzzy queries should be allowed and supported by

30

query models. A multimedia DBMS must accept user queries without the requirement of knowing anything
about the existing model and structure of the system. Incremental queries can further enhance fuzzy query
functionality when a user’s initial fuzzy query generates huge results. Furthermore, the completeness and
expressiveness of spatial and temporal operators in multimedia query languages need further systematical
investigation. The ad-hoc way of adding new operators on top of some other systems results in a poor
mathematical base. Last, but not least, is the feature extraction and organization problem. What kind of
features are necessary for a particular multimedia database application and what kind of techniques are
necessary for using those features in query languages, especially in fuzzy queries?

Most current implementations of multimedia systems are multimedia servers (i.e., no sophisticated query
languages, no concurrent control, no data access authorization facility etc). There are more features and
functions required than simply the ability to store and deliver multimedia information. These features
include and extend typical DBMS functionalities. Multimedia DBMSs should use regular file systems (for
efficiently handling traditional data) and multimedia servers (for effectively handling multimedia data) as
underlying storage systems and provide additional functions [CC95]. A high level query language is one

such additional function and its support is essential in powerful multimedia DBMSs.

References

[ACCT95] S. Adali, K. S. Candan, S. S. Chen, K. Erol, and V. S. Subrahmanian. Advanced video in-
formation system: Data structures and query processing. accepted for publication by ACM
Multimedia Journal, 1995.

[All83] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of ACM,
26(11):832—843, 1983.

[AS94] J. T. Anderson and M. Stonebraker. Sequoia 2000 metadata schema for satellite images. SIG-
MOD RECORD, 23(4):42—48, December 1994.

ATYT95] Y. A. Aslandogan, C. Thier, C. T. Yu, C. Liu, and K. R. Nai. Design, implementation and
g g
evaluation of SCORE (a system for content based retrieval of pictures). In Proceedings of the
11th International Conference on Data Engineering, pages 280—287, Taipei, Taiwan, 1995.

[BCN93] A. Bimbo, M. Campanai, and P. Nesi. A three-dimensional iconic environment for image
database querying. IFEFE Transactions on Software Engineering, 19(20):997—1011, October
1993.

[Bla92] G. Blakowski. Tool support for the synchronization and presentation of distributed multimedia.
Computer Communications, 15(10):611—618, 1992.

[BR94] K. Béhm and T. C. Rakow. Metadata for multimedia documents. SIGMOD RECORD,
23(4):21—26, December 1994.

31

[BW92]

[Cat94]

[CC95]

[CHN*95]

[CIT*93]

[CK95]

[DG92]

[Gro94]

[HK95]

[HR95]

[Jai92]

[JH94]

[KA95]

[Kim95]

[KS94]

R. Basri and D. Weinshall. Distance metric between 3d models and 2d images for recognition
classification. A.I. Memo 1373, Artificial Intelligence Laboratory, M.L.T., July 1992.

R. Cattell. The Object Database Standard: ODMG-93 (Release 1.1). Morgan Kaufmann Pub-
lishers, San Francisco, CA, 1994.

S.T. Campbell and S. M. Chung. The role of database systems in the management of multimedia
information. In Proceedings of International Workshop on Multimedia Database Management
Systems’95, Blue Mountain Lake, New York, August 1995.

W.F. Cody, L. M. Haas, W. Niblack, M. Arya, M. J. Carey, R. Fagin, M. Flickner, D. Lee,
D. Petkovic, P. M. Schwarz, J. Thomas, M. T. Roth, J. H. Wiliams, and E. L. Wimmers.
Querying multimedia data from multiple repositories by content: the garlic project. In Third
Working Conference on Visual Database Systems (VDB-3), Lausanne, Switzerland, March 1995.

A. F. Cardenas, I. T. leong, R. K. Taira, R. Barker, and C. M. Breant. The knowledge-based
object-oriented PICQUERY + language. IEFFE Transactions on knowledge and data engineering,
5(4):644—657, August 1993.

S. Christodoulakis and L. Koveos. Multimedia information systems: Issues and approaches.
In W. Kim, editor, Modern Database Systems, pages 318—337. Addison-Wesley Publishing
Company, 1995.

N. Dimitrova and F. Golshani. FEva: A query language for multimedia information systems. In
Proceedings of Multimedia Information Systems, Tempe, Arizona, February 1992.

W. I. Grosky. Multimedia information systems. IFFE Multimedia Systems, 1(1):12—24, Spring
1994.

N. Hirzalla and A. Karmouch. The role of database systems in the management of multimedia
information. In Proceedings of International Workshop on Multimedia Database Management
Systems, Blue Mountain Lake, New York, August 1995.

S. Hibino and E. A. Rundensteiner. A visual query language for identifying temporal trends in
video data. In Proceedings of International Workshop on Multi-Media Database Management
Systems, pages 74—S81, Blue Mountain Lake, New York, August 1995.

R. Jain. Infoscopes: Multimedia information systems. Technical Report VCL-95-107, Visual
Computing Laboratory, Department of Electrical and Computer Engineering, University of
California at San Diego, 1992.

R. Jain and A. Hampapur. Metadata in video database. SIGMOD RECORD, 23(4):27—33,
December 1994.

W. Klas and K. Aberer. Multimedia applications and their implications on database archi-
tectures. In P. Apers and H. Blanken, editors, Advanced Course on Multimedia Databases in
Perspective, The Netherlands, 1995. University of Twente.

W. Kim. Multimedia information systems: Issues and approaches. In W. Kim, editor, Modern
Database Systems, pages 5—17. Addison-Wesley Publishing Company, 1995.

W. Klas and A. Sheth. Metadata for digital media: Introduction to the special issue. SIGMOD
RECORD, 23(4):19—20, December 1994.

32

[LAF+93]

[LGY3]

[LP94]

[LPZ93]

[Mas91]

[MS93]

[MS95]

[NBE+93]

[0T93]

[PS94]

[PS95a]

[PS95b]

[REFSSS]

[SA95]

[$J95]

[SK91]

T. D. C. Little, G. Ahanger, R. J. Folz, J. F. Gibbon, I'. W. Reeve, D. H. Schelleng, and
D. Venkatesh. Digital on-demand video service supporting content-based queries. In Proceedings
of the First ACM International Conference on Multimedia, Anaheim, CA, 1993.

T. C. C. Little and A. Ghafoor. Interval-based conceptual models for time-dependent multi-
media data. [FEE Transactions on knowledge and data engineering, 5(4):551—563, August
1993.

F. Liu and R. W. Picard. Periodicity, directionality, and randomness: Wold features for per-
ceptual pattern recognition. In Proceedings of the 12th International Conference on Pattern
Recognition, October 1994.

D. Lucarella, S. Parisotto, and A. Zanzi. MORE: Multimedia object retrieval environment. In
Proceedings of Hypertext’93, pages 39—50, November 1993.

Y. Masunaga. Design issues of OMEGA: An object-oriented multimedia database management
system. Journal of Information Processing, 14(1):60—74, 1991.

S. Marcus and V. S. Subrahmanian. Multimedia database systems. Submitted for publication,
1993.

S. Marcus and V. S. Subrahmanian. Foundations of multimedia information systems. In S. Ja-
jodia and V. S. Subrahmanian, editors, Multimedia Database Systems: Issues and Research
Directions. Springer Verlag, November 1995.

W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, and P. Yanker. The
QBIC project: Querying images by content using color, texture and shape. In Proceedings of
SPIE, San Jose, CA, February 1993.

E. Oomoto and K. Tanaka. OVID: Design and implementation of a video-object database
system. IEEE Transactions on knowledge and data engineering, 5(4):629—643, August 1993.

D. Papadias and T. Sellis. The qualitative representation of spatial knowledge in two-
dimensional space. Very Large Data Bases Journal (Special Issue on Spatial Databases), 4:100—
138, 1994.

D. Papadias and T. Sellis. A pictorial query-by-example language. Journal of Visual Languages
and Computing (Special Issue on Visual Query Systems), March 1995.

P. Pazandak and J. Srivastawa. The language components of DAMSEL: An embedable event-
driven declarative multimedia specification language. In Proceedings of SPIE Photonics, pages
121—128, October 1995.

N. Roussopoulos, C. Faloutsos, and T. Sellis. Spatial data models and query processing. [FEFE
Transactions on on Software Fngineering, 14(5):639—650, May 1988.

H. Samet and W. G. Aref. Spatial data models and query processing. In W. Kim, editor,
Modern Database Systems, pages 338—360. Addison-Wesley Publishing Company, 1995.

S. Santini and R. Jain. Similarity matching. Submitted to: IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1995.

M. Stonebraker and G. Kemnitz. The POSTGRES next generation database management
system. Communications of the ACM, 34(10):78—92, 1991.

33

[Sno95]

[SYH94]

[WDG94]

[WKST]

R. Snodgrass. Temporal object-oriented databases: A critical comparison. In W. Kim, editor,
Modern Database Systems, pages 386—408. Addison-Wesley Publishing Company, 1995.

P. Sistla, C. Yu, and R. Haddock. Reasoning about spatial relationships in picture retrieval
systems. In Proceedings of VLDB, 1994.

R. Weiss, A. Duda, and D. K. Gifford. Content-based access to algebraic video. In Proceedings
of the International Conference on Multimedia Computing and Systems, pages 140—151, 1994.

D. Woelk and W. Kim. Multimedia information management in an object-oriented database
system. In Proceedings of the 13th International Conference on Very Large Data Bases, pages
319—329, Brighton, England, September 1987.

34

