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Giving one a fish is only for a meal, but teaching one to fish can benefit one for a life.
—  Chinese Proverb
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Chapter 1 

Introduction and Organization

Computational Complexity is one part of the study in the Theory of Computation 

dealing w ith  the resources required during the computation to solve a given problem. 

The most commonly examined resources are time and space [21]. W hile the given 

computational problem can be of arbitrary form, as long as i t  specifies the input and 

the desired output, there are two categories of problems which are of practical inter­

est in Computer Science. One category is optim ization problems, where the input 

includes an objective function and the output is the best of all possible solutions. 

The other category is decision problems, where the output is either “yes” or “no” . 

Considering decision problems using two computational models, namely, the deter­

ministic Turing machine and the non-deterministic Turing machine, two classical 

complexity classes can be defined. The class P consists of all the decision problems 

that can be solved on a deterministic Turing machine in  an amount of time that is 

polynomial in  the size o f the input. The class NP consists of all the decision problems 

whose positive solutions can be verified, given the right information, on a determinis­

tic  Turing machine in  polynomial time; or equivalently, i t  consists of all the decision 

problems whose solutions can be found in polynomial tim e on a non-deterministic 

Turing machine [21].

For a decision problem I I  in class NP, i f  solving i t  in  polynomial time means that 

every problem in class NP can be solved in  polynomial time, then II  is a hardest 

problem in class NP. A  hardest problem in class NP is also called an NP-complete 

problem. A well-known, NP-complete problem firs t proven by Cook is the Satisfia-

1
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bility problem [2, 25].

In general, proof o f NP-completeness can be divided into two phases, one of which 

is to show tha t the decision problem belongs to  class NP and the other is to show that 

i t  is a hardest problem. Failing in the first phase gives another notion of “hardness” 

—  NP-hard. A  computational problem is non-deterministic polynomial-time hard 

(NP-hard) i f  an algorithm for solving i t  can be translated, for any decision problem 

n  in class NP, in to an algorithm in polynomial tim e to solve II. Clearly, an NP-hard 

problem is not easier than any NP-complete problem [12, 31, 21].

For an optim ization problem, sometimes we are able to transform i t  into a decision 

problem via adding a parameter associated w ith  the objective function. For this 

reason, an algorithm solving the optim ization version implies an algorithm for solving 

the decision version, and vice versa. Therefore, i f  i t  happens tha t the decision version 

is NP-complete, then the optim ization version is NP-hard, as an optim ization problem 

doesn’t  belong to  class NP. Our real computational problems in the world are usually 

this kind of optim ization problems, and i t  occurs quite often tha t these problems are 

NP-hard. In this thesis, two such problems are considered, which are the Multicast 

Routing problem and the Binary Fingerprint Clustering problem, to  be detailed.

The NP-hardness of an optim ization problem I I  implies that, i f  P ^  NP, an op­

tim al solution o f I I  cannot be obtained in polynomial time. Depending on practical 

needs, usually there are two ways to approach the problem. I f  time is one of the key 

considerations while non-optimal solutions are allowed, then heuristics and approxi­

mation algorithms which run in  polynomial tim e are suitable; on the other hand, i f  

time is not really an issue but the quality o f the solutions is the first consideration, 

then exact algorithms, which hopefully run fast although s till in exponential time in 

the worst case, are desired.

We note tha t the difference between heuristics and approximation algorithms is 

usually characterized as follow: approximation algorithms provide a certain level of 

performance guarantee (in the worst case) while heuristics don’t. In  the next two 

sections, we w ill provide some basic notions used in the studies of approximation 

algorithms and exact algorithms, respectively.

2
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1.1 Approxim ation A lgorithm s

As stated above, for those NP-hard optim ization problems in which fast near-optimal 

solutions are required, design and analysis o f approximation algorithms come to play. 

Obviously, two key ingredients of an approximation algorithm are polynomial run­

ning tim e and guaranteed performance in the worst case. One additional advantage 

of designing approximation algorithms is that, often we do not need extra assump­

tions about inputs. Nonetheless, we should note tha t not every NP-haxd optim ization 

problem admits good approximation algorithms. In  fact, for some NP-hard optimiza­

tion problems, designing a “good” approximation algorithm is itse lf a hard problem. 

Bu t tha t falls in to the study of inapproximability which we w ill not get into in this 

thesis. In  the literature, there are various existing general techniques for designing 

approximation algorithms, such as linear programming and rounding, the primal-dual 

method, and greedy method.

D e fin it io n  1.1.1 [2] An algorithm A  is an a-approximation algorithm for an opti­

mization problem I I  containing a minimization (maximization) objective function, if 

A  runs in polynomial time and always produces a solution that is within a factor of 

a  >  1 (< 1 ,  respectively) to the optimal solution.

In  the first part o f this thesis, we w ill concentrate on Multicast Routing problems. One 

version o f the routing problem is the so-called Multicast k-Path Routing (fcMPR), to 

be detailed. In  &MPR, the underlying communication network is modeled as an edge- 

weighted complete graph G(s, V, D), where s is the source node, D  is the destination 

node set and V  is the set of all the nodes in  the network including those nodes that 

can only be used as intermediate nodes (called Steiner nodes). During the routing, 

a message is sent out from the source node s along a routing path meaning that 

only those destination nodes on the path can receive the message. Furthermore, the 

number o f such receiving destination nodes is not greater than k, a prespecified routing 

parameter. The goal o f the routing is to partition  the destination node set D  into a 

collection o f subsets such that each subset o f destination nodes can be arranged on a 

routing path, and such that the tota l routing cost is minimized, which is measured 

as the sum of the weights of the edges on the routing paths.

3
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For every instance o f the &MPR problem, supposing its optim al solution is W*, an 

approximation algorithm  proposed in [18] guarantees to return a routing scheme w ith  

cost W  <  4W*. By Definition 1.1.1, this algorithm is a 4-approximation, which in 

fact is the previous best. We design later a 3-approximation for the fcMPR problem.

Another version of the routing problem is the so-called Multicast k-Tree Routing 

(&MTR), again to be detailed. In the &MTR problem, the routing is along a tree 

rooted at the source node and transmission nodes have broadcasting capability. The 

previous best approximation algorithm for the fcMTR problem has a performance 

guarantee of 2.4 +  p [22]. We introduce some new design techniques to  achieve a 

(2 +  /^-approximation, where p is the best approximation ratio  for the Metric Steiner 

Tree Problem [27] (which was about 1.55 at the w riting  o f this thesis).

1.2 Exact Algorithm s

The M ulticast Routing problem is modeled from real world applications, such as 

streaming continuous media, where a fast solution is required as usually there are a 

huge number of such routing requests in  a short amount o f time. There are other 

problems where better solutions are preferred instead o f running time, and some­

times the best solutions are desired. One such problem is the Assignment Clustering 

Problem abstracted out of DNA micro-array analysis, to cluster a set of binarized 

oligonucleotide fingerprint vectors. The input to the problem is a set o f n vectors of 

dimension m, and each vector entry takes a value o f 1, 0 or unknown value TV. The 

goal is to assign every TV either a 1 or a 0 such tha t in  the set of resolved vectors 

which contain no TV’s the number of distinct vectors is minimized. When vectors 

contain more than two TV-entries, the clustering problem is hard. Nonetheless, opti­

mal solutions im plying the least clusters would help save a lo t o f experimental cost 

and thus are desired. Previous work was mostly involved in  the design of better ap­

proximations and heuristics [18, 22]. In the second part of the thesis, we apply the 

A *  search algorithm [21], borrowed from the A rtific ia l Intelligence community, to the 

clustering problem. We take advantage of the previously designed approximations 

and heuristics and design some new heuristics to speed up the search.

4
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The A * search algorithm guarantees an optimal solution to every input and thus 

its effectiveness is measured by its running time. We test the A * search algorithm 

on existing datasets and also generate a number of random datasets for testing. The 

experimental results, as well as our discussions, are detailed in  the second part of the 

thesis.

1.3 Organization

The remainder of the thesis is organized as follows. In the first part, two versions of 

the Multicast Routing problems are introduced and studied. Specifically, Chapter 2 

introduces the M ulticast Routing problem and its various versions in  detail. Chapter 

3 reviews the previous best 4-approximation algorithm for fcMPR and its key design 

ideas, explores our new techniques, and describes our 3-approximation algorithm. The 

existing approximation algorithms for the fcMTR problem are reviewed in Chapter 4, 

where we explore some new techniques to design the (2 + /^-approximation algorithm. 

Chapter 5 summarizes our contributions in this study and points out some promising 

future work.

The second part of the thesis deals w ith  the Assignment Clustering problem, 

which is introduced in  detail in Chapter 6. Chapter 7 reviews existing approximation 

algorithms and heuristics and describes our A * search algorithm. We also describe in 

detail the heuristic evaluation functions used in the search. The experimental results 

are included and discussed in  Chapter 8. Chapter 9 concludes the study w ith  some 

future work.

5
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Part I 

M ulticast R outing

6
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Chapter 2 

Introduction to  M ulticast R outing

There are three communication methods in networks: unicast, broadcast and m u lti­

cast as shown in Figure 2.1 [29]. In  unicast, a source node sends one copy of a message 

packet to a specified destination. In multicast is the one where a source node sends 

one copy of message packet to all members of a multicast group. I f  a source node 

sends one copy of message packet to all the other nodes in the network, then i t  is 

called broadcast. We focus on multicast routing in  this dissertation.

■  Source node ®  Destination node

Figure 2.1: Unicast, M ulticast and Broadcast

Multicast is a one-to-many communication method where data can be sent from 

a source node to m ultip le destination nodes. We usually consider multicast routing 

problems in Local Area Networks (LANs) and W ide Area Networks (WANs). The 

LANs span a small geographical area but the WANs span a larger area as shown 

in  Figure 2.2. Usually the nodes connected to LANs communicate over a broadcast 

network, while nodes connected to WANs ta lk  to each other via a switched or router

7
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network [18, 34, 15]. I t  is easy to implement a multicast communication in  LANs, 

but difficult in switched or router networks. In  th is study, we focus on multicast in 

WANs, where packet d istribution trees need to be b u ilt for multicast routing. These 

trees help a source node to send packets to all the receivers. M inim izing the amount 

o f network resources employed by multicasting is one of the challenges in network 

communications.

Host2

Switch

Hostl

Switch
Switch

Switch

Host"

□
Host3

LAN WAN

Figure 2.2: LANs and WANs.

There exist many multicast applications in  WANs, such as file distribution, in­

teractive games, news feeds and video conferences. The implementations o f most of 

these applications are not efficient because most of them only support point-to-point 

(unicast) communications. Efficient multicasting support in  WANs is necessary in 

order to make these applications more popular and less bandwidth-intensive.

2.1 Problem s and M otivation

The underlying communication network is modeled as an edge-weighted complete 

graph G(s, V, D),  where s is the source node, D  is the destination node set and V  is 

the set of all the nodes in the network including those nodes tha t can be used only as 

intermediate nodes (called Steiner nodes) [19]. In  general the edge weight function is 

additive. Since every node can act as an intermediate medium for forwarding data, 

we may assume w ithout loss of generality tha t the edge weight is equal to the cost of 

the shortest path connecting the two ending nodes in G. Therefore, the edge weight 

function naturally satisfies the triangle inequality.

In  order to  perform multicast communications in  WANs, the source node and all

8
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the destination nodes must be interconnected by a tree. The problem of multicast 

routing in WANs is thus treated as finding a multicast tree in  a network tha t spans 

the source and all the destination nodes. The goal is to m inimize the to ta l cost of the 

multicast tree, which is defined as the sum of the costs of all the edges in the tree.

We focus on the Capacitated M ulticast Routing problem where messages w ill be 

sent out one at a time. Each time, only the nodes on one path (tree) can receive the 

message because not all of the switches or routers in the network have the broadcasting 

ab ility  and this path (tree) can contain a lim ited number o f nodes. There are two 

such multicast routing models. The first one is the M ulticast fc-Path Model which can 

be regarded as a generalization o f the one-to-one connection. The purpose is to  find a 

set of paths where the nodes on the path can receive data and the to ta l cost, which is 

measured as the sum of the weights o f the edges on the routing paths, is minimized. 

When the number of destination nodes in a path is lim ited to  k, we call it  Multicast 

fc-Path Routing (A;MPR) problem. The second model is the M ulticast k-Tree Model 

which can also be regarded as a generalization of the one-to-one connection. Under 

this model, multicast routing is to find a set of trees such tha t each tree includes only 

a lim ited number of destination nodes which are supposed to  receive data and every 

destination node must be designated to receive the data in  one o f the trees. The goal 

is to  partition  the destination node set D  in to a collection o f subsets such that each 

subset o f destination nodes can be arranged into a routing tree and the to ta l routing 

cost is minimized. When the number of destination nodes in  a tree is lim ited to k, 

we call i t  the M ulticast &-Tree Routing (&MTR) problem.

2.2 Contributions

For the &MPR problem, we propose a 3-approximation algorithm  which improves 

on the previous best approximation w ith  performance ra tio  4 [18]. Another (2 +  p)- 

approximation algorithm  for the &MTR problem is also presented. The previous best 

approximation algorithm  for fcMTR is given in  [22] w ith  performance ratio (2.4 +  p). 

In the following chapters, these two approximation algorithms w ill be described in 

detail.

9
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Chapter 3 

M ulticast /c-Path R outing

The M ulticast A>Path Routing (fcMPR) problem has mentioned above. Unidirectional 

transmissions are used here. Data needs to be transm itted from the source to all 

destination nodes. I t  is assumed that i f  there is a lin k  between two nodes (switches or 

routers) u and v in the network, then there are two paths between them, one carrying 

the transmission from u to v and the other from v to  u. Data can be transmitted on 

these two paths simultaneously.

The fcMPR problem, for k — 1 or k =  2, is not NP-hard. There exist polynomial 

time algorithms for 1MPR and 2MPR [14, 18].

3.1 Polynom ial Tim e Algorithm s for 1M PR and
2M PR

For the /cMPR problem, the solution to the case k — 1 is just a star centered at the 

source s. The optim al solution to the 1MPR problem thus consists of |£)| shortest 

paths [1] from the source node s to each of the |D| destination nodes. I t  can be solved 

in  polynomial time. The following theorem is on 2MPR.

T h e o re m  3.1.1 [18] The 2MPR problem is polynomial time solvable.

To prove the theorem, we present a polynomial tim e algorithm  for 2MPR in the 

following part. In  fact, the 2MPR problem can be reduced to a graph matching prob­

lem and thus can be solved in  polynomial time [18]. F irstly, a multicast connection

10
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(s, D) is obtained in  the network G(s, V, D), where D  — {d i, d2, (Figure 3.1

contains four destination nodes in  black). The reduction can be done as follows.

di S4

S2 S3d2

Figure 3.1: Reduction from the 2MPR problem to a m inimum  weight matching prob­

lem.

For di, dj e D  and i ^  j ,  denote the shortest path between these two nodes as 

pG(di,dj) w ith  the weight c(pG(di: dj)) and the shortest path between source s and 

node di as pG(s,di) w ith  the weight c(pG(s,di))- Then construct an auxiliary graph 

G'(D  U {s l5 S2 , E ')  (Figure 3.1). For di ^  dj there is an edge between di and

dj w ith  given weight w(di,dj), where

w(di,dj) =  min {c(pG(s, di)) +  c(pG(di, d j)), c(pG{s, dj)) +  c(pG(dj, di))}.

For i ^  j  there is an edge w ith  given weight w(si, Sj) =  0 between s,- and Sj. There is 

an edge between Sj and di for each i w ith  given weight w(si,di) =  c(pG(s,di)). The 

m inimum weight matching M  o f G', which is a perfect matching o f G', can be found 

efficiently. From M  we can obtain an optimal 2-routing of (s, D )  on G in the following 

way. For each edge (di, dj) € M ,  i f  w(di, dj) =  c(pG(s, dj)) +  c(pG(di, dj)), we produce 

a 2-path from s to dj v ia dj tha t consists of pG(s, di) and pG(di, dj), otherwise we 

produce 2-path from s to dj via dj that consists of pG(s, dj) and pG(dj, dj) [18]. For 

each edge (sj, dj) € M ,  produce a 1-path from s to  dj [18]. Since each of the possible 

shortest 2-path or 1-path is associated w ith  exactly one edge in  G!, the to ta l cost is 

the to ta l weight of the edges, and each o f the destination nodes is incident to  exactly 

one edge in M  [18], we can obtain an optimal solution to the 2MPR problem. I t  is 

obvious tha t this optim al solution of 2MPR can be obtained in polynomial tim e [18].

11
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3.2 fcMPR is N P-hard

The general case o f the fcMPR problem is more d ifficult. According to the specification 

of our problem, we model the network as an arc-weighted digraph G{V, A, c), where 

the vertex-set V  is the set of nodes in  the network representing switches/ routers and 

the arc-set A is the set of links between nodes representing wires. For arc (u, v) € A, 

a cost function c : A  —> R+ measures the desirability of using a particular arc. We 

also assume that G(V, A, c) is to ta lly  symmetric [18]. We w ill consider the decision 

version of the &MPR problem. Given a m ulticast connection (s, D) in  a network G, 

an integer k >  2 and a bound B  >  0, the problem asks i f  there exists a ^-routing for 

(s, D)  whose cost is at most B.

Vo

G (V , E)

Vo

G (V ', E’)

Figure 3.2: Constructing a new graph G(V', E') from a given 3-regular graph G(V. E).

I t  was proven in  [25, 12] tha t the Hamiltonian C ircu it Problem for the 3-regular 

graphs in which a ll nodes are of degree three (the left graph in Figure 3.2) is NP- 

complete. I t  was also proven in [25] tha t Ham ilton Path Problem is NP-complete 

through a simple reduction [18] as follows. Given a 3-regular graph G(V, E ), construct 

a new graph G {V ', E') where

V' =  V U  {x ,y ,z }  and E' =  E  U {(y, z), (x, u0) }  U {(y , n)|(u, v0) € E },

for some fixed v0 E V. I t  can be verified tha t G(V, E)  has a Hamilton circuit i f  and 

only i f  G(V', E ')  has a Hamilton path (see Figure 3.2) [18].

The Hamilton Path Problem for the above defined graph G(V', E 1) can be reduced 

in polynomial tim e to the &MPR problem. F irst, construct G(V'. A, c) by substituting 

each edge (u, v) *E E 1 w ith  a pair of arcs (u , v) and (u, u) whose costs are equal to 

1. Then, set s =  x, D  — W \{x } ,  B — \V'\ and k — \V'\. I t  is easy to verify tha t

12
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G(V', E') has a Hamilton path i f  and only i f  G(V', A, c) has a fc-routing for (s, D)  

whose cost is at most B  [18].

In the following section we w ill review a 4-approximation algorithm for the feMPR 

problem which was the previous best approximation algorithm [18].

3.3 Previous B est A pproxim ation A lgorithm  for 
th e  &MPR Problem

Before we describe the algorithm, the M inimum  Spanning Tree problem needs to be 

introduced first.

D e fin it io n  3.3.1 [6] A minimum spanning tree of an edge-weighted graph is a tree 

which connects all the vertices and has minimal total weight.

A  m inim um  spanning tree can be found in polynomial time. The most famous 

algorithm is described in Prim  [26]. This algorithm  can compute a m inimum spanning 

tree for a graph w ith  n vertices and m edges in tim e 0 (m  +  nlogn). In  the previous 

best approximation algorithm for the &MPR problem, the m inimum spanning tree is 

used. In  the following part, we introduce that algorithm.

Given a network G — (s, D), let Px*, P2*, • • •, P^ be the set of paths in  an optimal 

fc-path routing. Let c(Pf) denote the cost o f path Pf,  which is the sum of the costs
771

of the edges on the path. Let R* — c(Pf) be the cost of the path routing. The
i = 1

4-approximation algorithm proposed in  [18] constructs a m inimum spanning tree T  

on s U D,  duplicates the edges in T  to  produce a Hamiltonian cycle [6] C  via suitable 

short-cutting, and then partitions the cycle C  into segments each containing exactly k 

d istinct destinations (the last segment m ight contain less than k d istinct destinations). 

Every segment is connected to the source s via a shortest path from s. Since the cost 

o f a m inimum spanning tree T  is at most R* (Note that Px, P2*, ■ • ■, P „_ j and P^ 

themselves form a spanning tree), the cost o f the cycle C  is no more than 2R*. I t  is 

obvious that the to ta l cost of the shortest-paths added in  order to connect segments 

to the source s is at most R*. However, since for every segment the shortest path 

connecting from the source s to i t  could designate at an internal node on the path,

13
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the algorithm uses two copies of the added path to generate two paths in  order 

to  produce feasible routings. Therefore, the cost of the resultant &-path routing 

could be as large as 4R*. In fact, the following example shows tha t the ra tio  4 is 

asymptotically tight. In  this example, the optim al fc-path routing is 

where — s dmk—i di ■ d^ —21 P2 ® d^—i d  ̂ d^ - \ . 1 • • ■ d2k—2 i ■ ■ '■>

Pm — s d^m — 1 rf(m—i))fc ^(m—i)fc+i ' dmk—2 - The weights are w(s, <kk-i) =  M  

for i =  1, 2, • • ■, m, and w(dj, dj+1) =  1 when j  #  — 2. We can see the tree in  Figure

3.3. Note that the cost of the optim al A>path routing is R* — m (M  +  k — 1). The 

minimum spanning tree has a cost which is the same as the one for the optim al 

routing, and the cost of the Hamiltonian cycle is exactly twice of R*. According to 

the partitioning, di, ^ 2 , * • • > <4 are on the same segment and d ^ i  is the closest to  the 

source s. Therefore, the final fc-path routing has a cost of m (4M  +  2k — 3), which is 

asymptotically 4 times R*.

d m k -ll

dmki

dk+1 d (m - l)k + l

dk-20  Od2k-2 dmk-20 

Figure 3.3: O ptim al fc-path routing

3.4 A 3-A pproxim ation A lgorithm  for the &MPR 
Problem

We propose another way to partition  the obtained Hamiltonian cycle into segments. 

Each segment contains exactly k d istinct destinations (again, the last segment m ight

14
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contain less than k distinct destinations), by which the added paths connecting them 

to  the source can be made to  be from one of the end destination nodes. The to ta l 

length of these added paths is no more than R*.

Observe tha t in P f, P%, ■ • ■, P ^, the distance from every destination node di to 

the source s is an upper bound on the actual distance dG(di, s) calculated in the 

underlying network G. Suppose the destination nodes are dj,d2, ■ ■ ■, dn. I t  follows 

that
n

y~yj dG(di, s) <  k x P*,
i = 1

since there are at most k destination nodes on every path P* for j  =  1, 2. - ■ •, rn. 

Suppose the destination nodes on the obtained Hamiltonian cycle are indexed con­

secutively from 1 to  n (w ith  source s ly ing between di and dn), pa rtition  the term
n

dG(di, s) in to k subterms:

m
'y dG(dik+j, s), j  — 1, 2, • ■ •, k.
i~ 0

(Note: when the index is out of range, there is no such destination node.) I t  

follows that there exists at least one index j *  such that

LtJ
y   ̂do(djfc+j*, s) ^  R  .
i - 0

Now partition  the Hamiltonian cycle in to segments. The first one contains the 

destination nodes dj*,dj*+i, dj*+2 , ■ - •, dp+*_ i, the second one contains the destina­

tion nodes dj*+k, dj*+k+1 , dj*+k+2 , • • ■, dj*+2k-i, • • ■, and so on. For the ith  segment, 

the path used to connect i t  to the source s is the edge d7*+p_1)fe. I t  is clear tha t 

every segment appended w ith  the connecting path is s till a path and thus they form 

a feasible routing. Note that the cost of the segments is no more than 2R* and the 

cost of the added edges/paths is no more than R*. Therefore, the cost of this routing 

has cost no more than 3R*.

T he ore m  3.4.1 The kMPR (k >  3) problem admits a 3-approximation algorithm 

which runs in 0 ( \ V f )  time.

15
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P r o o f . Note tha t completing the graph might take 0 ( | F | 3) time. A fter that, 

computing a minimum spanning tree can be done in 0 ( |D |2) tim e and forming the 

Hamiltonian cycle in 0 { \D \2) time. I t  takes 0 ( \D \)  time to compute the partition 

which is the optimal index j* .  Therefore, the overall running tim e is 0 ( ) j 3). The 

performance ratio follows from the the above discussion. ■

16
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Chapter 4 

M ulticast &-Tree R outing

In this chapter, we introduce another problem (ZcMTR) in M ulticast Routing. In the 

fcMTR problem, the underlying communication network is an edge-weighted complete 

graph G(s, V, D )  where s is a source node, D  — {di, d,2 , .. ■, dn} is a destination 

node set, and V  is a superset o f D  containing Steiner nodes which can be used as 

intermediate nodes to reduce the routing cost. The edge weight function satisfies the 

triangle inequality. The goal is to find a least cost A;-tree routing, which contains a set 

of Steiner trees rooting at s and spanning a ll destination nodes. Every tree contains 

at most k destination nodes. Note tha t in  a feasible k-tree routing, one destination 

node assigned in some trees can be used as a Steiner node in others.

4.1 Polynom ial T im e Algorithm s for 1MTR and 
2MTR

For the fcMTR problem, 1MTP and 2MTP can be solved in  polynomial time. When 

k =  1, the graph is just a star centering at the source, which is the same as 1MPR. 

When k =  2, the problem can be reduced to a graph matching problem and can 

be solved in polynomial time which is also the same as 2MPR. We have given the 

algorithms for 1MPR and 2MPR in the previous chapter 3. In the following section 

we w ill prove that &MTR is NP-hard when k >  3 and give a (2 +  /^-approximation 

algorithm for the &MTR problem.

17
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4.2 3M TR  is NP-hard

Given a collection of 3-sets C — Ci, C2 , ■ ■ •, Cm, each o f them is a set containing 3 

elements from a base set S. The Exact 3-Set Cover problem asks for a subcollection 

of disjoint 3-sets whose union is S. The Exact 3-Set Cover problem is NP-hard [6].

T he o re m  4.2.1 The 3MTR problem is NP-hard.

P r o o f .  Suppose S contains n — 3q elements which are denoted as s j ,  s2, • • •, sn. 

Create one destination node for every element s,-, 1 <  i <  n, one Steiner point for

source

Steiner
n o d e i

Steiner
nodem

3 n

Figure 4.1: Transforming the 3-set cover to  3MTR.

every 3-set C,- and an edge connecting this Steiner point to  every destination node 

inside the set. Create a source node s which is adjacent to  every Steiner point. I t  

is clear that so far the source node has degree m  and every Steiner point has degree 

4. The edges constructed at this point all have cost 1. Finally, complete the graph 

to obtain G (for example, every pair of destination nodes are connected via an edge 

w ith  cost 2). I t  is easy to  check tha t for the instance constructed above, there is a 

3-tree routing of cost 4q i f  and only i f  there is a subcollection C'0 — C^, Ci2, ■ - ■, Ciq 

such that S =  U j^ C ^ .  Therefore, 3M TR is NP-hard. ■

4.3 Currently B est Approxim ation Algorithm  for 
Steiner Tree

D e fin it io n  4.3.1 [13] Given a graph G — {V, E ), a set R  C V  of terminals and a 

weight function of the edges, a Steiner tree is a connected subgraph of G that spans

18
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all the nodes in R. We call this problem the Steiner tree problem. The Minimum 

Steiner Tree problem (SMT) in a graph is to find a tree, whose total edge length is the 

minimum. We denote the total edge length of S M T  by smt and extend the definition 

of the length function | • j from a single edge to arbitrary sets of edges by defining

|J*f | :=  \x \ f or X  C E. Similarly we define |G| for a graph G — {V, E) as the total
xe x

length of all of its edges. In this way we have smt — \SMT\.

The first step in  our algorithm and the previous best algorithm [22] is to apply 

the currently best approximation algorithm, the Loss Contracting A lgorithm  (LCA), 

for the metric Steiner tree problem. This algorithm  w ill be described below.

The solution o f the minimum spanning tree w ill be used to obtain the approxi­

mation result of the m inimum Steiner tree. We denote the minimum spanning tree 

by M S T  w ith  to ta l edge length mst. The m inimum  Spanning tree can be found in 

polynomial tim e [6].

Figure 4.2: The fu ll components of a Steiner tree

I t  is well known that the Steiner tree problem is NP-hard. The best approxima­

tion algorithm, the Loss Contracting A lgorithm  (LCA), was proposed by Karpinski 

and Zelikovsky in  [27]. They used the ^-Steiner trees to obtain an approximation 

algorithm for the Steiner tree. A  fu ll Steiner tree is a Steiner tree where all the ter­

minals (destination nodes) are leaves of the tree. A  Steiner tree can be decomposed 

into the so-called fu ll components by sp litting  term inals that are interior vertices. A  

fc-Steiner tree is a collection of fu ll components each w ith  at most k terminals Figure

19
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4.2. An optim al &;-Steiner tree is denoted by S M T k and its to ta l edge length is smtk. 

I t  has been proven that when k <  3, an optim al solution to  S M Tk can be found in 

polynomial time.

Since i t  is hard to design a good approximation algorithm  of S M T,  the currently 

best approximation algorithm for Steiner tree tries to obtain a good approximation 

algorithm for &-Steiner tree. Borchers and Du [5] have proved that for the Steiner 

ratio pk which defined as pk :=  , when k -» oo, pk —>• 1. So the performance

ratio  of the algorithm for k-Steiner tree is the one for fc-Steiner tree when k —> oo.

The LCA algorithm is a greedy approaches. I t  fits in to the general framework 

shown in  Figure 4.3 [13, 33]. k £ N  is fixed. Consider the subsets K '  of R  w ith  at 

most k terminals and let K  be the collection of those t e K '  for which SM T(t) is a 

fu ll Steiner tree. The algorithm start w ith  a Steiner tree tha t is obtained by taking 

a m inimum spanning tree in the distance graph which only includes the terminals. 

In each step the algorithm try  to add element o f K  to improve the current solution 

by using a Steiner minimum tree. I t  is more than one t € K  that could improve the 

current solution, the algorithm use a selection function /  to  decide which t w ill be 

chosen next. Then how to decide the selection function /  is the key point of this 

approximation algorithm [13]. We w ill describe the /  in  LCA later.

Let K  be the set of fu ll components of each up to  k terminals;
i i— 0;

W hile a component which can improve the solution exists do:
Choose ti+i € K  tha t minimizes the selection function fp
i t— i T  1;

I 'm a x  ^ b
Output a Steiner tree using t i ,  • • ■, tmax.

Figure 4.3: A  general framework for greedy algorithms

Contraction is a concept that w ill be used in  LCA. Denote the m inimum spanning 

tree in the graph for a set of required vertices R by M S T (R ).  Assume we add a new 

edge e between a pair of terminals. Define as:

M S T (R /e )  a m inimum spanning tree for R  in G +  e.

20
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For the Contraction Lemma [27], assume tha t we insert a certain fu ll component by 

adding a set E\ of new edges to the graph. Denote E0 as a set o f edges which has 

already been added for earlier fu ll components. The length of the current intermediate 

solution is denoted by m st(R /E0). Then given another fu ll component E 2, we can 

obtain the Contraction Lemma.

mst(R/Eo) — m st(R /E0E 2 ) >  m st(R /E0E i)  — m st(R /E0E iE 2 ).

The loss o f a Steiner tree introduced by [20] measures the length needed to connect the 

Steiner po int of a fu ll component to its terminals. The loss of a set of Steiner vertices 

A  C  U  is a m inimum length forest Loss(A) C  E  in  which every Steiner vertex v E S 

is connected to a terminal r  E R. Contracting the loss o f a fu ll component means 

tha t for every edge between the loss components, a new edge w ith  the same weight 

is inserted between the corresponding terminals. We denote i t  as loss :=  |Lossj.

We use the Contraction Lemma in th is problem as well since i t  is required tha t the 

length of the newly inserted edges do not depend on the previous loss contractions 

involving the same Steiner vertices. By a simple preprocessing (duplicating Steiner 

vertices), we can achieve that no two fu ll components of the graph share a Steiner 

vertex. W hile the length of SMTk  does not change, the instance grows by a factor 

which is at most a polynomial of the inpu t size. The set K  from the general framework 

w ill refer to the preprocessed instance.

Le m m a  4.3.1 (Karpinski, Zelikovsky [27]) The length of the loss of a Steiner tree is 

at most half of its total length.

P r o o f . I t  is not d ifficu lt to prove the inequality loss <  for fu ll components. 

I t  is easy to see tha t any fu ll component can be transformed into a complete binary 

tree o f which the leaves are exactly the terminals. This can be obtained by adding 

some new terminals and new edges of length 0. A fte r that, for each internal vertex, 

choose from the two edges leading to its children the cheapest one. This w ill generate 

a subgraph that includes the loss o f the fu ll component w ith  length at most ha lf of 

the to ta l length. ■
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The currently best (1 + ^^-approx im a tion  algorithm  is presented in the following. 

Its general framework is the same as the one for greedy algorithms, and i t  does not 

entirely contract the selected fu ll component but the loss component.

This equation is used for its length: [13]

where m is the length of a m inimum spanning tree after the loss of certain fu ll 

components has been contracted. Because of the preprocessing, after adding some 

new edges between terminals we can get the effect of a loss contraction. We use the 

contraction lemma to  prove as follows.

Suppose that some of the fu ll components Tx, T2, • • •, I )  have already been chosen, 

then the length of the corresponding Steiner tree is [13]

By the preprocessing step and the definition of m. The selection function [13]

is applied to compare the loss o f a new fu ll component T  w ith  the reduction of m. 

Then the loss contracting algorithm fits in to the general framework. Now we w ill see 

tha t fi{T i+1 ) <  1 for all i.

T he o re m  4.3.2 (Robins, Zelikovsky [27]) The loss contracting algorithm computes 

a ( 1  +  “ ) approximation for S M T k.

Before proving the theorem, we s till need to  describe some notations. As we mentioned 

before, costi =  m, +  loss. Let T*, T f, - - •, Tfmax be the fu ll components of a Steiner 

m inimum tree. Then smtk — m* +  loss*, where m* m (T f, T f, ■ • •, T*max).

T h e o re m  4.3.3 [13] The Steiner tree with full components T * ,T f , - - - ,  T*max re­

turned by the loss contracting algorithm satisfies.

m(-) :=  mst(R/loss(-)),

M T ) : =
loss(T)

(4.2)
m(T1}T2, - " ,T i )  -  m(Tu T2, ■ • • ,TfT)

cost(Tf, T f , T*max) <  smtk +  loss* In ( l  +

22
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P r o o f .  A  fu ll component T  reduces the length of the current intermediate solu­

tion i f  and only i f  /,(T )  <  1 because [13]

cost(Ti, - • • ,T imax) -  costiTi, • ■ •, T jT)
=  m(Ti ■ ■ ■ ,Ti) +  loss(Ti • • ■,T)) — m (T j • • • ,T{T) — loss{T\ • • • , T,T)

-  m ( r j • • •, Ti) -  m (7 i ••• ,  T»T) -  ioss(T).

Then the next step is to bound the value o f fi(T i+ 1 ). Let T f,  T |,  • • •, T/moi be the fu ll

components o f an optimal Steiner tree. The greedy choice implies,

fi(T i+ i) <  m in / j(T * ) .  (4.4)
3

Using the inequality [13]

E i r ; i

/i(T<+ l) 5  E mst(R/Tt ■ ■ ■ , ’ <4'5)
3

we can get [13]
Hloss\T*\

fi(T i+ 1 ) <  sr- {rp T ' l - m C TE ' ' '  iT j) m [T\ • ■ • , TjTj )
3

Due to the Contraction Lemma the denominator is bounded from below by [13]

m(Ti • • •, 7*7" ■ • ■, T*max) <  m (Tx • ■ •, T{T* (4.7)

By monotonicity [13]

m(T, ■ • -, TjT,* ■ ■ •, TJmaJ  <  m (IT  ■ ■ ■, T ^ aI), (4.8)

we obtain the inequality [13]

f /'T> 4 <   loSs{Tx ■ ■ ■ , T jmax)______ _  loss*

Using fi(T i+1 ) <  1 and the previous equation we can estimate [13]

loss(Ti ■■■, Timax) =  loss(Ti) =  Y 2 f i- i(T i)(rr ii-i -  ny)
i

loss*
<  y ^ m in  ( l , -----— — -  rry).

\  m i-i — m* Jm ^  i — n r
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Clearly m0 — mst >  smtk, and we w ill show that smtk >  mimax■ Therefore the 

previous equation is bounded by [13]

r st . c  loss*/ mm 1 1 ,  — 1 ax
Jmtr, V x — m* / 

r ^ m i n  ( l ^ ) d x
J m i m o x  \  X  /

f loss* _ , , * r m e t - m *  ^
— 1 ox +  toss • I —

J m i m a x  ~m* ^ X
7 * * 7 * , ( mst — m *\=  ^oss -  m imax +  m +  /oss • In ^ — —  J

7 * i (  mst — smtk \
=  sm tfc -  mimax +  loss • In (1 + ------------ J

and the lemma follows.

Then we can prove Theorem 3.3.2. Since smtk >  we have mst — smtk <  smtk■ 

I t  follows that

cost(T„ ■ ■ •, Tim. , )  <  smtk ( l  +  ^  • In ( l  +  ).. (4.10)

Now we apply the inequality /oss* <  Elementary calculus shows that

m a x{x  • ln ( l +  4) | 0 <  x <  | }  is attained for x =  Therefore,

cost{Ti, ■ ■ • ,T imax) <  smtk{^l  +  - y - ) -  (4-n )

So the performance ratio  is (1 +  ^ ) .

4.4 Previous B est Approxim ation A lgorithm  for 
the &MTR Problem

Let T f, T2*, • • •, TJJj be the set o f trees in an optim al k-tree routing. Recall that every 

T* m ight contain some Steiner nodes and m ight also contain some destination nodes 

which are not allowed to receive data (but act as Steiner nodes).

Let c(T*) denote the cost of tree T*, which is defined to be the sum of the weights
m

of the edges in the tree. Let R* — c(T.•*) be the cost o f the routing tree. Since
i- 1

every destination node di in the tree T? satisfies w(s, dj) <  c(T*), we have

n

^  w(s, di) <  k x R*. (4.12)
i = l
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In the (2.4+p)-approximation algorithm [20], the first step is to  apply the currently 

best approximation algorithm for the metric Steiner tree problem (which has the 

worst-case performance ratio p) to obtain a Steiner tree T  on s U D  in  the underlying 

network G. Since the cost of an optimal Steiner tree is a lower bound of R*, we know 

that the cost o f tree T  is upper bounded by pR*. Note tha t tree T  is not necessarily 

a feasible routing tree since some branch rooted at the source s m ight contain more 

than k destination nodes. Nonetheless, i f  there is any branch which contains at most 

k destination nodes, we can just leave the branch alone in the next step. For branches 

containing more than k destination nodes, we perform the following partition  on each 

of them in the second step. To present the partition  technique, we need the following 

lemmas.

Lem m a 4.4.1 [18] Given a tree T  containing n  >  3 nodes, it is always possible to 

partition it into two subtrees which have at most one common node and the number 

of the nodes in both subtrees fall in the closed interval [ |n , |n j.

P r o o f .  Root tree T  at any node, say node v . For every node u in T ,  let c(u) 

denote the number of the nodes in the subtree rooted at u, inclusive. Let r  be the 

bottommost node w ith  its c(r) >  | n. Note tha t r  is unique and i t  could be the root 

node v. Now re-root tree T  at node r. I t  is easy to  see tha t in  the newly rooted tree 

none except r  can have c-value greater than |n . ■

I f  there exists a child node w of r  satisfying c(w) €  [ |n , |n ], then cutting off edge 

(r, w) from T  gives two subtrees which do not overlap and the number of the nodes 

in  both subtrees fa ll in  the closed interval [ |n , §n}. In another case, every child node 

w of r  has c(w) <  Numbering these child nodes as W\, u/2, • • ■, u/j. There is some 

i such tha t the number of the nodes in the subtree obtained by elim inating subtrees 

rooted at child nodes w\, w2, ■ ■ ■, Wi falls in the interval [ |n , |n ]; and the number 

of the nodes in  the subtree obtained by elim inating subtrees rooted at child nodes 

Wi+i,Wi+2 , ■ ■ ■, Wi falls in the interval [~n, | n] too. Note that these two subtrees only 

have one common node which is the root node r.

Lem m a 4.4.2 [18] Given a Steiner tree T  containing n >  3 destination nodes, it 

is always possible to partition it into two subtrees which have at most one common
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node, either Steiner or destination, and the number of the destination nodes in both 

subtrees falls in the dosed interval [ |n , |n j.

P r o o f . T h e  p ro o f is s im ila r  to  th e  above p ro o f  e xp e c t th a t  w he n  c a lc u la tin g  c-values 

o n ly  those d e s tin a tio n  nodes are co un ted . ■

For a branch of T  (rooted at the source s) containing more than k destination 

nodes, delete the edge incident at s to  get a subtree denoted as T). The second 

step of the approximation algorithm is to  recursively partition  T\ in to subtrees each 

containing no more than k destination nodes using Lemma 4.4.2. We distinguish two 

cases. In  the first case, T\ contains more than |k  destination nodes. In this case, we 

apply Lemma 4.4.2 directly to partition  i t  in to two subtrees denoted by Tn and T12. 

I t  is clear tha t both subtrees contain at least j^k destination nodes. The partition 

stops when each subtree contains no more than k destination nodes, which is called 

a final subtree for convenience. A  final subtree resulted from the first case is called 

a type-1 final subtree. In  the second case, 7\ contains more than k but at most |k  

destination nodes. In this case, the farthest |k  destination nodes from the source s 

are treated temporarily as Steiner nodes during the partition  and their identities are 

recovered after the partition . In  this way, the number of the destination nodes in each 

of the two derived subtrees falls in  the interval (|& , =  (|fc, k]. Therefore,

both subtrees become final. Such final subtrees are called type - 2  final subtrees. Note 

that type - 2  final subtrees always come in  pairs, meaning tha t a pair o f them results 

from one direct partition  in  the second case.

After all the subtrees become final, for every type-1 final subtree, pick exactly ^ k  

destination nodes therein and order them according to their distances from the source 

s increasingly. For every pair o f type-2 final subtrees, pick exactly the first ~k closest 

destination nodes (from the source s) in  each subtree and order them according to 

their distances from the source s increasingly. In  addition, the \k  farthest destination 

nodes le ft out during the last partition  are also picked. These destination nodes 

are distributed half to each pair of final subtrees. In this way, each final subtree 

has been associated w ith  exactly -^k destination nodes, where the first closest 

of them reside in the final subtree (while the other |A: may not). For simplicity, 

we leave out the branches o f the Steiner tree T  each of which contains no more
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than k destination nodes and only consider these final subtrees. We denote these 

final subtrees as B \, B2, ■ - •, J3j. For each Bi, le t the associated destination nodes be 

ii, i2, ■ ■ •, where dG(s, ii)dc(s , if) • • • dc(s, ^  follows that

This indicates that after the partition , we obtain a set o f subtrees each containing 

at most k destination nodes and adding the shortest paths to  connect them to the 

source s gives us a feasible A;-tree routing. This resultant routing tree has a cost no 

more than (2.4 +  p)R*. We have known that p — 1.55, so the performance ratio is 

about 3.95.

4.5 A  (2 4-  /^-Approxim ation A lgorithm  for the  
&MTR Problem

In  the (2 +  ^-approxim ation algorithm, we firs tly  apply the currently best approx-

performance ratio p) to obtain a Steiner tree T  on s U D  in  the underlying network 

G. Since the cost of an optimal Steiner tree is a lower bound of R*, we know that 

the cost o f the tree T  is upper bounded by pR*, tha t is, c(T ) <  pR*. Note that the 

tree T  is not necessarily a feasible routing tree yet since some branch rooted at the 

source s m ight contain more than k destination nodes. We treat T  in  the following 

way: i f  there is any branch that contains no more than k destination nodes, leave i t  

alone for the next step.

L e m m a  4.5.1 [22] Given a Steiner tree T  containing n destination nodes, where

k <  n <  ^k and k >  3, randomly select n — \k  +  1 destination nodes from the tree 

to form a set D 0. Then, it is always possible to partition the tree into two subtrees

(4.13)
i = l  j = 1

Using the order dG(s, i\)  <  dG(s, if) <  ■ • ■ <  dG(s, u j ,  we have

(4.14)

im ation algorithm  for the metric Steiner tree problem (which has the worst-case
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T\ with destination node set D \ and T2 with destination node set D 2 which have at 

most one common node (either destination node or Steiner node). 0  <  |£>i|, \D2\ <  k, 

D \ n  Dq ^  0, and D 2 n D 0 ^  0.

P r o o f . Root tree T  at any node, which could be either a destination node or a 

Steiner node.

In this rooted tree, for every node v, le t c(v) denote the number of the destination 

nodes in the subtree rooted at v (inclusive). Let r  denote the farthest (from the root) 

node which has c(r) >  n — \k . Note tha t in  the case that there is no node having a 

c-value greater than n — r  is set to  be the root. Since k <  n <  §k, r  is uniquely 

defined. Re-root the tree T  at node r.

By duplicating the root node r, we can pa rtition  T  into two subtrees (both rooted 

at r) Ti w ith  destination node set D j and T2 w ith  destination node set D 2. Our 

partition  goal is to minimize \D2\ — |-Di|, assuming w ithout loss of generality tha t 

|Z>2| >  \D i |. I f  i t  already holds that 0  <  \D i\, \D2\ <  k, D i n D 0 /  0, and D 2 n D 0 ^  0, 

then we can obtain the two desired subtrees. Otherwise, \Di | <  \k  and \D2\ >  n — ~k 

must hold. We proceed to examine subtree T2 which must have m ultip le branches 

and each o f them contains at most n — ~k destination nodes.

Number these branches as T21, T22, ■ • •, T2£, w ith  the destination node sets D 21, £)22, 

• • •, D 2i , respectively. We distinguish two cases. In  the first case, there is a branch, 

say T 2 i, such tha t |D2i| >  I t  follows from  \D2i\ <  n — ~k <  k that re-partitioning 

T  to have only T 2i in  subtree T2, while all the other branches rooted at r  are included 

into subtree T), gives the desired partition . That is, 0 <  iLfi), \D2\ <  k, D i D D 0 ^  0, 

and D 2 f! D 0 ^  0- In  another case, every branch contains less than destination 

nodes: \D2i\ <  for i — Since \D0\ =  n -  \ k  +  1 >  \k  +  1, there are

at least two branches, say T 2\  and T22, tha t both contain destination nodes from D q 

(which is not the root node r). Again, we do the re-partitioning by removing T 2l 

from T2 while including i t  in T \ . This gives us a new pair of subtrees 2 ) and T 2 tha t 

satisfies 0 < |Th|, \D2\ <  k ,  D \ ft D q ^  0 and D 2 D D q ^  0, which proves the Lemma.

Recall that every branch of T  rooted at the source s is ignored for further consid­

eration. In the following, we w ill focus on the operations performed on one branch 

of T  (rooted at the source s) containing more than k destination nodes. F irst o f
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all, we delete the edge incident at s from the branch to get a subtree denoted as Tx. 

Secondly, i f  T\ contains more than §k destination nodes, we apply Lemma 4.4.2 to 

partition  T i in to two subtrees. We then repeatedly apply Lemma 4.4.2 to partition 

the resultant subtrees i f  they contain more than |k  destination nodes. A t the end 

of this repeated partition , there w ill be a set of subtrees such that each contains no 

more than § k destination nodes. I t  should be noted that each of them contains at 

least destination nodes since we started w ith  Ti which contains more than |k  

destination nodes. A t this point, for those subtrees which contain no more than k 

destination nodes, we may leave them alone. For ease of presentation, we call the 

subtrees containing at most k destination nodes final trees. The subtrees become final 

at this point are called type-1 final trees. The non-final subtrees w ill become type-2 

final trees after the next step o f partition .

For each non-final-yet subtree again denoted by T\, our th ird  step is to  apply 

Lemma 4.5.1 to partition  i t  in to two final subtrees. Let D0 denote the set of closest 

n — +  1  (to the source s) destination nodes in T i, where n is the to ta l number of

destination nodes in  Tx. Let Tn  and T12  denote the two resultant subtrees having 

destination node sets D \ and T>2, respectively. By Lemma 4.5.1, 0 <  |T i|  <  k, 

D 1HD0 ^  0 , 0 <  \D2\ < k, and D2n D 0 /  0 . I t  is clear tha t type-2 final trees always 

come in a pair, since they result from  one single partition by Lemma 4.5.1.

For each final tree, we pick the closest destination node therein and connect i t  to 

the source s. This gives a feasible fc-tree routing. In what follows, we w ill estimate 

the to ta l cost of these added edges and show that this to ta l cost is at most twice o f 

R*.

First of all, for every type-1 fina l tree, we pick the \k  closest destination nodes 

therein to be the representatives for the tree. Suppose there are l x type - 1  final trees 

Tx, T2, • • -, T L e t  the representatives for Ti be dii2, • • •, d̂  *, in the order o f 

non-decreasing distance from the source s. Secondly, for every pair of type - 2  final 

trees T i and T2, i f  any one of them contains no less than l2k destination nodes, then 

the \k  closest ones are picked to  be the representatives for the tree; otherwise all the 

destination nodes, say m, are picked to be the representatives and additionally the 

~k — m  farthest (to the source s) destination nodes in the other tree are picked to be
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the representatives. Therefore, every type-2 final tree has exactly \k  representatives, 

although some of them m ight not come from its own but its partner. Note tha t the 

reason we can do so is tha t the to ta l number of the destination nodes in this pair 

of type - 2  final trees is greater than k. Similarly, assume tha t there are l 2 pairs of 

type - 2  final trees Tn , T i2, T21, T22, • • -,T(2i, T ^2. Let the representatives for Tih be 

dih,i, dih,2 i ■ ■ dih t̂, where h is either 1 or 2 , in the order o f non-decreasing distance

from the source s. Also for every tree pair Tn and Tj2, let df2, • • •, d°k be the
’  ’  * ’ 2

\k  closest destination nodes among all the destination nodes in both o f them, and let 

d ° !+1, d®k+2, ■ • d^k be the |k  farthest destination nodes among all the destination 

nodes in both of them.

I t  follows that

<1 I  I 2 k  n

1212 w(s>d^ )  +  1212 d%) ^  12 w{s,di) <  k x R*. (4.15)
i = 1 j = 1 i = 1 j — 1

Using the non-increasing distance orderings of these destination nodes, we have

ti ti
1 2  w{s, diA) +  1 2  (w(s, (fiA) +  w(s, dPih+1)) < 2 R*. (4.16)
i=  1 2=1 ’2

Clearly, for every type-1 final tree Ti: the destination node is connected to 

the source s; also i t  is true that d^x must serve as a representative for either type- 

2  final tree Tn or type - 2  final tree T i 2  and thus i t  is connected to  the source s. 

Suppose w ithout loss of generality tha t dPiX is a representative for T* 1 , then the closest 

destination node d in  T& which is picked to be a representative has a distance no 

larger than the distance from the source to  the destination node d° k ■ I t  follows 

tha t the to ta l cost of the edges added to connect the source to the final trees to 

produce a feasible A;-tree routing is at most 2R*. Therefore, the produced routing 

tree has a cost no more than (2 +  p)R*.

T h e o re m  4.5.2 kM TR  (k >  3) admits a (2 +  p)-approximation algorithm, where p 

is the best performance ratio for approximating the metric Steiner tree problem.

I t  is known tha t p is about 1.55 [13, 27]. Therefore, our approximation algorithm 

has a performance ratio of about 3.55. I t  is worth mentioning tha t the running time 

is dominated by the approximation algorithm  for the metric Steiner tree problem.
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4.6 Conclusion

We design a better approximation algorithm for the multicast k-tiee routing problems 

w ith the worst case performance ratio (2 +p). On the way to  this better approxima­

tion, an interesting tree partition ing technique has been developed. We believe this 

promising partition ing  technique can be further combined w ith  other existing meth­

ods to achieve better approximation algorithms.
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Chapter 5 

Conclusion

We have developed an averaging technique and a tree partition  technique for designing 

better approximation algorithms for both of the &MPR and fcMTR problems when 

k >  3. We present a 3-approximation algorithm for the &MPR problem. The previous 

best approximation algorithm has a performance ratio o f 4. For the &M TR problem, 

our algorithm has the worst case performance ratio ( 2  +  p), where p is the best 

approximation ra tio  for the metric Steiner tree problem (which is about 1.55). The 

previous best approximation algorithm has a performance ratio  of (2.4 +  p).
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Part II 

Binary Fingerprint Vector 
Clustering
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Chapter 6 

Clustering Binary Fingerprint 
Vectors w ith M issing Values

Designing approximation algorithms is a good way to get suboptimal solutions for 

many NP-hard optim ization problems [12], typically in application domains such as 

networking. Nonetheless, in some other applications, we care more about the quality 

o f the solution than the actual running time. In such circumstances, we choose to 

design exact algorithms to solve the problems as fast as possible, although they might 

s till run in exponential time in  the worst case.

In this part of the thesis, we w ill examine the problem of clustering binary oligonu­

cleotide fingerprint vectors w ith  missing values, which is an application model from 

the DN A microarray analysis. We w ill present an A * search algorithm to both m in i­

mize the number o f clusters and resolve the missing values in the fingerprint vectors. 

Except the tr iv ia l exhaustive enumeration method, our search algorithm  is the first 

exact algorithm tha t solves the problem optimally. Our search algorithm employs 

some existing work [11] on this problem. Experimental results on real datasets show 

tha t in terms of running time, our search algorithm is very competitive to a heuristic 

greedy search algorithm proposed in  the literature, and in terms of quality, our search 

algorithm  guarantees an optim al solution while the heuristic greedy search algorithm 

does not.
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6.1 Introduction

I t  is widely believed that, in a liv ing organism, thousands of its genes and their prod­

ucts (i.e., R N A  and proteins) function in  a complicated but orchestrated way. In 

the past several years, a new technology, called DNA microarray [23], has attracted 

tremendous interest among biologists. This technology can be used to m onitor the 

whole genome on a single chip so tha t one can have a whole picture of the interactions 

among thousands of genes simultaneously. A  DN A array is an orderly arrangement 

of known or unknown DNA samples, in  order to provide a medium for matching 

these samples based on Watson-Crick base-pairing rules. Various array designs exist 

depending on the applications, e.g. Oligonucleotide Fingerprinting [16, 17, 7, 24, 8 ] , 

in which an array of oligonucleotide (20 to  80 oligos) or peptide nucleic acid (PNA) 

sequences (cadled clones) is synthesized either in situ (on-chip) or by conventional 

synthesis followed by on-chip im m obilization. The array is then exposed to labeled 

sample DN A (called probes), hybridized, and the identity or abundance of complemen­

tary sequences is determined. Generally, a probe is a type of short, single-stranded 

fluorescence-labeled DNA. I t  w ill hybridize to  the spot on the chip when the probe 

occurs as a substring of the clone on the spot. A fter hybridizing, all of the unbound 

probes w ill be washed off and the hybrid ization intensity values between the probe 

and the clones can be measured. The hybridization experiment, where a fingerprint 

is simply a vector consisting of the hybridization intensity values between the clone 

and the probes, is repeated for a set o f probes to create fingerprints of the clones. In 

this way, oligonucleotide fingerprints [8 , 28, 30, 32] are regarded as vectors containing 

hybridizing signal intensities.

Oligonucleotide fingerprinting [8 , 24, 28, 30] is one of the best methods to char­

acterize DNA clone libraries. I t  was adopted in  many applications, such as gene 

expression profiling and DN A clone classification. In particular, i t  offers an effective 

way to extensively analyze m icrobial communities. In  this part, we focus on the ap­

plication of classification o f the D N A clones, a problem arisen from the classifications 

of microorganisms [28, 30, 3, 9, 10].
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In order to cluster the clone fingerprints, usually we distinguish hybridization 

intensity values by binary values where 1  means hybridization and 0  means the op­

posite. However, i t  is in general hard to  determine whether the clones are hybridized 

or not. In fact, most of the current methods do not offer an effective way to clearly 

determine whether the clones are hybridized or not. Recently, a discrete approach, 

where reference intensity values are decided by controlling clones w ith  known charac­

teristics w ith  respect to  the probes tha t are included in the DN A array experiments, 

has been applied to the classification o f m icrobial rD N A clones [11, 4]. By doing so, 

the oligonucleotide fingerprinting data can be normalized and binarized using these 

reference intensity values. The intensity value is set to 1 meaning hybridization, 0 no 

hybridization, and N  means a missing value.

After normalizing and binarizing oligonucleotide fingerprinting data, the problem 

is transformed to identifying clusters and solving the problem of missing values in the 

fingerprints. Suppose there are to ta lly  n clones on the DN A array, and m  probes. 

The oligonucleotide fingerprinting data is a set o f n vectors of dimension m, and ev­

ery vector entry takes a value of 1, 0, or N . We consider the problem of identifying 

clusters and resolving the missing values in the fingerprints simultaneously. A  vector 

containing no N  entry is called a resolved vector. For a pair of vectors containing 

some N  entries, i t  is possible tha t through assigning a 1  or a 0  to every N , the two 

resolved vectors become identical. I f  this is the case, we say that these two vectors 

can be resolved into a cluster. Our task is to assign a 1 or a 0 to every N  in the given 

set of n vectors so that the number o f d istinct resolved vectors , which represent the 

number of clusters, is minimized. We call this combinatorial optim ization problem 

the Assignment Clustering Problem or AGP for short.

One natural parameter in AGP is the maximum number of TV’s in a vector. When 

every vector contains no more than k TV’s, the problem is called fcACP. I t  is known 

tha t 1ACP can be solved in polynomial time and kACP where k >  3 is NP-hard [1 1 ]. 

The complexity of 2ACP is unknown. On the approximability aspect, kACP where
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k >  2  admits a 2 fc-approximation algorithm [2 ],

The main task in  this part is to  solve kACP optimally. To achieve our target, we 

propose to employ A* [21], a heuristic search algorithm, from the A rtific ia l Intelligence 

community w ith  some carefully designed heuristics and evaluation functions. As the 

reader w ill see, the 2 fc-approximation algorithm for kACP serves as an evaluation 

function for our purpose. We tested our search algorithm on real datasets. The 

experimental results demonstrated that our exact algorithm runs fast. I t  could be 

used to produce some benchmark data for evaluating other algorithms developed in 

the past and in  the future.

6.2 Previous Work

In  [1 1 ], a greedy heuristic algorithm  GCP based on Clique Partitioning was proposed. 

The key idea in the algorithm  is to transform an instance of kACP in to  an instance 

of Minimum Clique Partitioning. For each given vector i / ,  create a vertex denoted 

as v \ For every pair of given vectors, i f  they can be resolved into a cluster through 

assigning suitable values to  the ir N  entries, then there is an edge connecting two 

corresponding vertices. Denote the obtained graph as G — (V, E). I t  can be seen tha t 

the vectors residing in  a common clique in G can be resolved into a cluster. Thus, the 

corresponding goal in  the Clique Partition ing problem is to find a m inim um number o f 

cliques that include /  cover all the vertices. Targeting at the m inim ization objective, 

GCP picks the maximum clique at every iteration, removes the vertices therein from 

the graph, and repeats this process t i l l  the graph becomes empty. I t  runs in tim e 

0 (k2kn2), where n is the number of given vectors. The theoretical performance 

guarantee of GCP [11] is much worse than its performance on real datasets, as the 

reader w ill see in  the experiment results.

6.3 A 2 k- Approxim ation Algorithm  for k A C P

D e fin it io n  6.3.1 A given vector set E  — {a l 5  a2, ct3 , ■ • -, an}, we transform all the 

given vectors into resolved vector by assigning either 0 or 1 to those N ’s. The set
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of the resolved vector is P  =  {pi,P 2 ,p$, • - • ,pm}- Then we can obtain the subsets 

{S i, 5 2 , S3 , ■ - -, Sm} C E. Subset (1 <  k <  m) includes the given vectors which 

the resolved vector pk represents. The goal is to find a minimum number of subsets 

that cover all of the elements in E. When each given vector contains at most k N's, 

we call this problem the kACP problem.

To implement this goal, we first design the kACP program in  terms of integer 

programming, and create a variable Xj for each subset Sj.  I f  the subset is chosen, 

then Xj — 1 ; otherwise Xj =  0 .

As we know that the general integer program cannot be solved in polynomial 

time, but the resulting linear program (LP) can be solved in polynomial time, so we 

transform i t  to a linear program.

Let OPT be the optim al result o f th is problem. For the fcACP, an element can 

belong to at most 2k subsets. Denote x*j as a result o f the LP.

m
rnin T. Xi

3=1

subject to :

Xj > 1 ,  V Oi € E

Xj e { 0 , 1 }

m

subject to  :

y: ^ >1, Voi E e
j  'fl j G Sj

Xj e [0 , 1 ]

(6.1)

P r o o f .  T  is a solution of kACP, and |T| <  2*OPT.

I f  there is an element Oj ^  T , then

(6.2)
j . a i E S j
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The equation (6.2) violates the linear programming constraint for a*. 

Next step we should prove that \T\ <  2k OPT

m

i

algorithm for kACP.
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Chapter 7 

Exact Algorithm s for ACP

7.1 A Polynom ial Tim e A lgorithm  for the 1ACP 
Problem

For 1ACP problem, suppose there is a given vector set V. In the first step, we delete 

the given vectors which do not contain N  from set V  and store them to  the set De 

so that all the vectors in De are resolved vectors. Then next step we delete the given 

vectors from set V  which can be represented by the vectors in De. A fter this step we 

can obtain a new given vector set V' =  u i, V2 , ■ ■ ■, um, where v, (1 <  i <  m) contains 

one N . Now we transform each given vector V{ in two resolved vectors and store them 

in the set R  =  r\, r 2, • • ■ , r*. Each resolved vector in  R  is represented by a vertex in 

a graph. I f  two resolved vectors can represent the same given vectors in V', connect 

these two nodes w ith  an edge. P artition  the set R  to two sets. One is X  which 

includes nodes w ith  odd number of l ’s, the other is Y  which includes nodes w ith  even 

number of l ’s. Then the graph can be denoted as G (X , Y, E). Since any two resolved 

vectors in X  or Y  cannot represent a given vector, the edges exist only between nodes 

in set X  and nodes in set Y. Thus the graph G is a b ipartite graph. Each of the given 

vectors can be represented by an edge in  G. The 1ACP is transformed into finding 

a minimum number of vertices tha t can cover all o f the edges. This is the m in im u m  

vertex cover problem. I t  is well known tha t the m inimum vertex cover problem in 

b ipartite graphs can be solved in  polynomial time.
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7.2 H euristic Search for k A C P

In this section, we describe our exact algorithm  to find an optimal solution for an 

instance o f kACP and i t  can be generalized to deal w ith  kACP for any k. We adopted 

A *, one o f the most famous heuristic search algorithms developed originally in A r t i­

ficial Intelligence (A I), in our algorithm. A * is a Best-First search algorithm which 

has been used extensively in many areas of A I and has been successfully applied to 

various bioinformatics problems, the most notable o f which is probably Multiple Se­

quence Alignment (MSA). MSA is a controversial problem in  computational biology. 

This particular problem computes the s im ila rity  based on the biological properties of 

nuclei acid (or amino acid) among the D N A strands (or protein sequences). When 

this biological problem is mapped to a computing science problem, the formulation 

becomes finding the sim ilarity between m ultip le strings. The sim ilarity of two aligned 

characters relies on the cost function, which w ill return a distance (or score value). 

The sim ilarity of the alignment, then, is the sum of all pair aligned characters dis­

tances (or all pair scores). The optim al pair-wise alignment is referred to align two 

strings and spaces could be inserted into each string to  obtain the optimal sim ilarity. 

The basic idea of A *  is that rather than try ing  all possible search paths, try ing  and 

focusing on paths tha t seem to be getting nearer to  the goal. For each state, A * uses 

both the exact distance from the root state, which is denoted as g, and a heuristic 

estimate of the remaining distance to  the goal state (the heuristic evaluation func­

tion), which is denoted as h. The state w ith  the smallest (g -f h) value is always 

expanded next by the algorithm and the algorithm  is guaranteed to find the optimal 

(i.e. m inimum weight) solution provided tha t h always underestimates the true dis­

tance to  the goal state. Note that in this problem, the distance measures the number 

of clusters. A *  fits for the MSA. A  popular admissible heuristic function used is the 

sum of optim al pairwise alignments. The heuristic value is a lower bound since the 

cost of the actual alignment of each pair is at least as good as the cost of the optimal 

pair-wise alignment. The algorithm w ill first put the in it ia l node into the OPEN list, 

which stores the nodes that are not fu lly  considered. Then, at each step, i t  w ill select 

the best /-value node from the OPEN lis t to explore, and the algorithm terminates
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when the goal node is found (or no solution when OPEN list becomes empty). I f  the 

solution cannot be found after such node is explored, we w ill put i t  in to the CLOSE 

list, which prevents the repeated search.

The implementation of A * search for AGP problem follows the graph transforma­

tion used in  the GCP [11]. The first step is to construct the graph G =  (V., E ), where 

V  contains all the given vectors and again a pair of vectors are adjacent only i f  they 

can be resolved in to a cluster. Note tha t when there is a singleton in  G, the isolated 

vector can be resolved a rb itra rily  and the resultant cluster contains only this vector. 

We may remove these singletons (and put the corresponding clusters, i.e. resolved 

vectors, in  the solution) from the graph. A fte r this, i f  there is any vector which be­

longs to only one maximal clique o f G, then i t  is always a good idea to create a cluster 

to  include all the vectors in  the maximal clique. Therefore, again we can remove such 

maximal cliques from the graph G (and again put the corresponding resolved vectors 

in the solution). A fte r all these preprocessing steps, in the resultant graph G every 

vector must belong to at least 2 maximal cliques and we are ready to  start the A * 

search.

A t every state in the search tree, the algorithm  picks one maximum clique remain­

ing in the graph G. I t  then chooses one arb itrary (random) vector, say v, from the 

clique. Since v belongs to at least 2 maximal cliques, there are different ways to assign 

values for iV ’s in  v to  resolve it. The child states of the current state correspond to  all 

the possible ways o f resolving. For each child state, the heuristics can also be applied 

to remove possibly produced singletons and vectors belonging to unique maximal 

cliques together w ith  the unique cliques. In  the search, the distance g from the root 

state is defined as the number of clusters /  cliques created so far. To estimate the 

h-value The 2fc-approximation algorithm  [11] is run on the graph to obtain a clique 

partition . The number o f cliques in the output clique partition  divided by 2fe is taken 

as an estimated distance h to  the goal state. The sum, g +  h, is the value stored at 

the child state. The A * algorithm chooses the state w ith  the m inimum g +  h value 

to  expand next. The algorithm terminates when the state to be expanded contains 

no more given vectors and i t  returns the g +  h value stored at the state as a solution.

The pseudocode of our implementation for the A * search algorithm  on kACP is
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provided in  Figure 7.1. For convenience, we call the process to remove singletons 

heuristic # 1 , and the process to remove vectors belonging to unique maximal cliques 

together w ith  their unique maximal cliques heuristic #2 . We use h( ) to  denote 

the evaluation function to estimate the distance from current state to  the goal state, 

which is taken as the number of clusters returned by the 2^-approximation algorithm 

divided by 2k.

fu n c t io n  A_Star(state) 
i f  Solution, found ( ) 

re tu rn  f(state); 
f o r  each successor Ui of state do 

apply heuristic #1; 

apply heuristic #2; 

f(u i)  =  g(ui) +  h(ui); 
add Ui to  L ist T ; 

remove state from L ist T;
find a state new- state in List T  having the m inimum /  value;

A_Star (new- state) ;

Figure 7.1: A * implementation for AA.CP Function Solution, found( ) checks i f  a 

solution has been found; Function g( ) returns the exact distance from root state to 
state Ui, Function h( ) is the heuristic evaluation function; This implementation also 

uses an open lis t T  to  store the states waiting to  be expanded.
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Chapter 8 

Experim ental R esults

We tested our implementation o f the A *  search algorithm on two real fingerprint 

datasets, provided by the authors of [11]. One of them is the bacterial small subunit 

rRNA genes set where n =  1491, m =  27. A  vector in this dataset may contain 

up to 11 N ’s. The other set is fungal small subunit rRNA genes, where n =  1507, 

m =  26, and a vector in  this dataset may contain up to 14 N ’s. The implementation 

was tested on all /cACP instances generated from the datasets, where k =  2,3, • • •, 14. 

For every specific k >  2, the vectors in  the datasets which contain more than k IV’s 

must be modified to be legitimate vectors. This was done by retaining the first k 

N ’s and assigning the value 0 to  the others. We use two methods to  implement 

both A * and GCP algorithms. These two methods are different from the step which 

remove the maximal cliques tha t contain a node only belong to one maximum clique. 

For the first method, we called Methodi We create graph G — (V, E ), and get the 

information o f all the maximal cliques. Each time we go through all the nodes on 

graph. Once we find tha t there exist a node only belong to one maximal clique, we 

remove this maximum clique from the graph. This step is ended when there are none 

of nodes in graph tha t only belong to one clique. For the second method, Methodi, 

we do not need all the maximum cliques information at first. A fter creating the graph 

G =  (V, E), We go through each node and its neighbor nodes. I f  all o f its neighbor 

nodes are connected pairwise, I t  means tha t this node only belong to  one clique. We 

remove this node and its neighbor nodes from graph, this step is ended i f  there are 

no such kind of nodes in the graph.
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Table 8-1 illustrates the results o f our implementation by using Method\. We 

have also coded the GCP algorithm proposed in [11], using the same preprocessing 

strategies as in  the A * search implementation. On Table 8.2, we implemented both 

A * and GCP by Method,?. The running time of both A * and GCP algorithms imple­

mented by Method? are much faster than the running time of these two algorithms 

implemented by Method\.

The results of our GCP algorithm implementation on all the generated datasets 

are also included in  Table 8.1 and Table 8.2. I t  is interesting to note tha t the outputs 

from these two algorithms are the same for a ll the generated datasets. This might 

indicate tha t in practice, the GCP algorithm  performs very well. On the other hand, 

more interestingly, the running times of these two implementations on the datasets 

differ insignificantly. This implies tha t in the case when an optim al solution must 

be guaranteed, the A * search algorithm  could be a good candidate. Nonetheless, the 

preprocessing followed by the 2fc-approximation algorithm m ight not be a good choice, 

although i t  does run fast and does have a certain level of performance guarantee.

8.1 The O ptim ality of A* Search

From Tables 8.1 and 8.2, i t  is easy to  notice tha t the 2fe-approximation algorithm 

doesn’t  usually produce optim al solutions; However, the heuristic GCP algorithm 

performs as good as the A * search on a ll generated instances. The instance in Figure

8.1 shows where GCP algorithm fails to  compare the optimum. The solution by 

the GCP algorithm contains 7 clusters and the solution by the A * search algorithm 

contains only 6 clusters. Therefore, in the case where optimal solutions should be 

found, the A * search is preferable.
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Dataset n m k k A * 7 a * GCP T g c p Approx -^A pp rox

2 1.94 904 19.093 904 15.625 904 16.023
3 2.73 841 28.650 841 28.260 841 28.450
4 3.28 798 44.883 798 43.923 800(+2) 43.965
5 3.59 786 51.103 786 50.993 786 51.102

Bacteria 1491 27 6 3.74 778 69.209 778 66.415 780(+2) 67.507
7 3.79 773 77.640 773 76.800 775 (+2) 76.560
8 3.82 770 93.153 770 90.279 772(+2) 91.657
9 3.83 769 104.770 769 104.800 771 (+2) 104.670

11 3.84 769 122.636 769 122.504 771 (+2) 122.580

2 1.99 890 9.894 890 9.889 890 9.413
3 2.91 783 32.146 783 30.994 785(+2) 31.035
4 3.61 694 71.763 694 68.688 702(+8) 70.654
5 4.04 633 113.603 633 108.876 635(+2) 110.876

Fungi 1507 26 6 4.29 595 154.360 595 154.330 597(+2) 154.330
7 4.43 572 196.041 572 196.592 572 196.006
8 4.49 563 248.206 563 246.354 563 248.201
9 4.52 559 277.609 559 276.708 559 277.012

14 4.54 556 746.623 556 736.619 556 742.890

Table 8.1: The experimental results o f A * search, GCP by Method^, and the 2k- 
approximation on all the generated datasets from the datasets in  [11]. k is the average 

number of N's in the generated instance of the kACP problem. Talg records the 
running time(seconds) of the algorithm alg in a Linux PC w ith  1.0 GHz processor.
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Dataset n m k k A * Ta* GCP Tqcp Approx -^Approx

2 1.94 904 0.851 904 0.851 904 0.849
3 2.73 841 2.273 841 2.274 841 2.271
4 3.28 798 3.120 798 3.160 800(+2) 3.080
5 3.59 786 3.194 786 3.193 786 3.193

Bacteria 1491 27 6 3.74 778 3.835 778 4.115 780(+2) 3.829
7 3.79 773 3.965 773 3.785 775(+2) 3.961
8 3.82 770 3.847 770 3.849 772(+2) 3.843
9 3.83 769 4.047 769 4.125 771 (+2) 4.043

11 3.84 769 3.967 769 4.035 771 (+2) 3.959

2 1.99 890 0.861 890 0.841 890 0.841
3 2.91 783 2.664 783 2.756 785 (+2) 2.660
4 3.61 694 3.965 694 4.001 702(+8) 3.368
5 4.04 633 4.438 633 4.486 635(+2) 4.429

Fungi 1507 26 6 4.29 595 5.407 595 5.467 597(+2) 5.405
7 4.43 572 5.197 572 5.196 572 5.197
8 4.49 563 5.557 563 5.557 563 5.557
9 4.52 559 5.698 559 5.697 559 5.696

14 4.54 556 6.289 556 6.289 556 6.289

Table 8.2: Experimental results of A * search, GCP by Method2, and the 2k- 
approximation on all the generated datasets from the datasets in  [11]. k is the average 

number of JV’s in  the generated instance o f the kACP problem. Tatg records the run­
ning time(seconds) o f the algorithm alg in  a L inux PC w ith  1.0 GHz processor.
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vi, -©  V(i

Figure 8.1: A n  instance of 2ACP where A * returns an optim al solution of 6 while the 
GCP algorithm  doesn’t. This instance contains 12 vectors: v\ =  ACVOOOOOOO, v9 =  

OlATOOOOOO, v3 =  iVllOOOOOO, vA =  1UV000000, v5 =  0001V1V0000, v6 =  000011V000, 
v7 =  0001V11000, v8 =  OOOlliVOOO, v9 =  000000AW0, v1Q =  00000001N, vn =  
0000001V11, V\2 =  00000011A.
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Chapter 9 

Contributions and Future Work

We studied the problem of clustering binary fingerprint vectors w ith  missing values. 

We applied the heuristic search algorithm A * from the A I community to  solve kACP 

optim ally where each vector contains at most k missing values.

By now there are no exact algorithms to solve the &ACP problem. The A *  search 

algorithm  provides a good way to  obtain the optim al solutions. Compared w ith  some 

existing greedy algorithms, the running time and experimental results demonstrated 

tha t this proposed exact algorithm is efficient.

Some subjects o f interest in my future work are 1) examining the computational 

complexity for 2ACP; 2) i f  the problem is NP-hard, then designing better approxi­

mation algorithms for 2ACP in  order to provide better evaluation functions for A* 

search; 3) when generalizing A * search to kACP, designing better approximation al­

gorithms and thus better evaluation functions; and 4) designing or composing bench­

mark datasets for evaluation, such tha t algorithms can be fa irly  compared.
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