
U n iv e rs ity o f A lb e r ta

I m p r o v e d A l g o r it h m s f o r M u l t i c a s t R o u t i n g a n d B i n a r y F i n g e r p r i n t

V e c t o r C l u s t e r i n g

by

Z h ipen g C a i ©

A thesis submitted to the Faculty of Graduate Studies and Research in partia l fu lf ill­

ment of the requirements for the degree of M a s te r o f Science.

Department o f Computing Science

Edmonton, Alberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95715-2
Our file Notre reference
ISBN: 0-612-95715-2

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Giving one a fish is only for a meal, but teaching one to fish can benefit one for a life.
— Chinese Proverb

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ent s

Computer science is where I w ill deeply dedicate myself, where my happiness lies,

and where my life w ill scintillate. I would like to thank all the people who help me
in such a spectacular field.

F irst and the foremost, I would like to thank my advisor, Guohui Lin, for his

patient instruction. My discussion w ith h im always leads to new insights in depth
and w idth. He opens one black box after another for me and gives me theoretical and

practical ab ility in problem formation and solving. I have learned from him not only

the ab ility of doing research, but an attitude for doing research.
Next, I would like to thank my fam ily for their support in all the phases of my

life. Thank my lovely wife, Yingshu Li, for her love, her help in my research, her

encouragement and her cares. W ithout her, this thesis would not have been possible.
Also, thanks to my colleagues Xiang Wan and Gang Wu for the creative dis­

cussions. I really enjoy the many chats w ith them tha t have enriched my view of

algorithms.
Finally, I felicitate and cherish the opportun ity to study in my department. Here,

I find myself studying in a distinguished environment encompassed by an academic
atmosphere where originality is promoted and individual potential is tapped.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 In tro d u c t io n and O rg a n iza tio n 1
1.1 Approximation A lg o rith m s .. 3

1.2 Exact A lg o r ith m s ... 4

1.3 Organization .. 5

1 M ulticast R outing 6

2 In tro d u c t io n to M u lt ic a s t R o u tin g 7

2.1 Problems and M o tiva tio n .. 8

2.2 C o n tr ib u tio n s .. 9

3 M u lt ic a s t A;-Path R o u tin g 10
3.1 Polynomial Time Algorithms for 1MPR and 2 M P R 10
3.2 &MPR is N P -hard .. 12
3.3 Previous Best Approximation A lgorithm for

the &MPR P rob lem ... 13
3.4 A 3-Approximation A lgorithm for the &MPR Problem 14

4 M u lt ic a s t k-Tree R o u tin g 17

4.1 Polynomial Time Algorithms for 1M TR and 2 M T R 17
4.2 3M TR is N P -ha rd ... 18

4.3 Currently Best Approximation A lgorithm for Steiner Tree 18
4.4 Previous Best Approximation A lgorithm for

the &MTR P rob lem ... 24
4.5 A (2 + /^-Approxim ation A lgorithm for the

&MTR P ro b le m .. 27

4.6 Conclusion.. 31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 C o nc lu s ion 32

II B inary Fingerprint V ector C lustering 33

6 C lu s te r in g B in a ry F in g e rp r in t V ecto rs w ith M iss in g Values 34
6.1 In tro d u c tio n .. 35
6.2 Previous Work .. 37

6.3 A 2fe-Approximation A lgorithm for AACP ... 37

7 E xa c t A lg o r ith m s fo r A G P 40

7.1 A Polynomial Time A lgorithm for the 1ACP P rob lem 40
7.2 Heuristic Search for A A C P .. 41

8 E x p e r im e n ta l R esu lts 44
8.1 The O ptim a lity of A * Search... 45

9 C o n tr ib u t io n s and F u tu re W o rk 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

8.1 The experimental results o f A * search, GCP by Methodi, and the 2k-
approximation on all the generated datasets from the datasets in [11].
A is the average number o f iV ’s in the generated instance of the AACP
problem. T^g records the running time(seconds) of the algorithm alg
in a Linux PC w ith 1.0 GHz processor... 46

8.2 Experimental results of A * search, GCP by Method?, and the 2k-
approximation on all the generated datasets from the datasets in [11],

A is the average number of IV’s in the generated instance of the AACP
problem. T records the running time (seconds) of the algorithm alg
in a Linux PC w ith 1.0 GHz processor... 47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Unicast, M ulticast and B ro a d ca s t... 7

2.2 LANs and W ANs... 8

3.1 Reduction from the 2MPR problem to a m inimum weight matching
problem.. 11

3.2 Constructing a new graph G(V', E') from a given 3-regular graph

G(V, E) ... 12
3.3 Optimal ft-path ro u tin g .. 14

4.1 Transforming the 3-set cover to 3M TR.. 18

4.2 The fu ll components o f a Steiner t r e e .. 19

4.3 A general framework for greedy a lg o rith m s ... 20

7.1 A * implementation for &ACP Function Solution Mound () checks i f a

solution has been found; Function g {) returns the exact distance from
root state to state Ui\ Function h () is the heuristic evaluation function;
This implementation also uses an open lis t T to store the states waiting

to be expanded... 43

8.1 An instance o f 2ACP where A * returns an optimal solution of 6 while

the GCP algorithm doesn’t. This instance contains 12 vectors: V\ —

ACV0000000, v2 = OliVOOOOOO, v3 = A l l 000000, v4 = lliVOOOQOO,
v5 = OOOAWOOOO, v6 = OOOOliVOOO, v7 = OOOiVllOOO, vs = 00011JV000,
v9 = 0000Q0NN0, v10 = 00000001A, vn = OOOOOOAll, v12 = 00000011A. 48

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction and Organization

Computational Complexity is one part of the study in the Theory of Computation

dealing w ith the resources required during the computation to solve a given problem.

The most commonly examined resources are time and space [21]. W hile the given

computational problem can be of arbitrary form, as long as i t specifies the input and

the desired output, there are two categories of problems which are of practical inter­

est in Computer Science. One category is optim ization problems, where the input

includes an objective function and the output is the best of all possible solutions.

The other category is decision problems, where the output is either “yes” or “no” .

Considering decision problems using two computational models, namely, the deter­

ministic Turing machine and the non-deterministic Turing machine, two classical

complexity classes can be defined. The class P consists of all the decision problems

that can be solved on a deterministic Turing machine in an amount of time that is

polynomial in the size o f the input. The class NP consists of all the decision problems

whose positive solutions can be verified, given the right information, on a determinis­

tic Turing machine in polynomial time; or equivalently, i t consists of all the decision

problems whose solutions can be found in polynomial tim e on a non-deterministic

Turing machine [21].

For a decision problem I I in class NP, i f solving i t in polynomial time means that

every problem in class NP can be solved in polynomial time, then II is a hardest

problem in class NP. A hardest problem in class NP is also called an NP-complete

problem. A well-known, NP-complete problem firs t proven by Cook is the Satisfia-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bility problem [2, 25].

In general, proof o f NP-completeness can be divided into two phases, one of which

is to show tha t the decision problem belongs to class NP and the other is to show that

i t is a hardest problem. Failing in the first phase gives another notion of “hardness”

— NP-hard. A computational problem is non-deterministic polynomial-time hard

(NP-hard) i f an algorithm for solving i t can be translated, for any decision problem

n in class NP, in to an algorithm in polynomial tim e to solve II. Clearly, an NP-hard

problem is not easier than any NP-complete problem [12, 31, 21].

For an optim ization problem, sometimes we are able to transform i t into a decision

problem via adding a parameter associated w ith the objective function. For this

reason, an algorithm solving the optim ization version implies an algorithm for solving

the decision version, and vice versa. Therefore, i f i t happens tha t the decision version

is NP-complete, then the optim ization version is NP-hard, as an optim ization problem

doesn’t belong to class NP. Our real computational problems in the world are usually

this kind of optim ization problems, and i t occurs quite often tha t these problems are

NP-hard. In this thesis, two such problems are considered, which are the Multicast

Routing problem and the Binary Fingerprint Clustering problem, to be detailed.

The NP-hardness of an optim ization problem I I implies that, i f P ^ NP, an op­

tim al solution o f I I cannot be obtained in polynomial time. Depending on practical

needs, usually there are two ways to approach the problem. I f time is one of the key

considerations while non-optimal solutions are allowed, then heuristics and approxi­

mation algorithms which run in polynomial tim e are suitable; on the other hand, i f

time is not really an issue but the quality o f the solutions is the first consideration,

then exact algorithms, which hopefully run fast although s till in exponential time in

the worst case, are desired.

We note tha t the difference between heuristics and approximation algorithms is

usually characterized as follow: approximation algorithms provide a certain level of

performance guarantee (in the worst case) while heuristics don’t. In the next two

sections, we w ill provide some basic notions used in the studies of approximation

algorithms and exact algorithms, respectively.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Approxim ation A lgorithm s

As stated above, for those NP-hard optim ization problems in which fast near-optimal

solutions are required, design and analysis o f approximation algorithms come to play.

Obviously, two key ingredients of an approximation algorithm are polynomial run­

ning tim e and guaranteed performance in the worst case. One additional advantage

of designing approximation algorithms is that, often we do not need extra assump­

tions about inputs. Nonetheless, we should note tha t not every NP-haxd optim ization

problem admits good approximation algorithms. In fact, for some NP-hard optimiza­

tion problems, designing a “good” approximation algorithm is itse lf a hard problem.

Bu t tha t falls in to the study of inapproximability which we w ill not get into in this

thesis. In the literature, there are various existing general techniques for designing

approximation algorithms, such as linear programming and rounding, the primal-dual

method, and greedy method.

D e fin it io n 1.1.1 [2] An algorithm A is an a-approximation algorithm for an opti­

mization problem I I containing a minimization (maximization) objective function, if

A runs in polynomial time and always produces a solution that is within a factor of

a > 1 (< 1 , respectively) to the optimal solution.

In the first part o f this thesis, we w ill concentrate on Multicast Routing problems. One

version o f the routing problem is the so-called Multicast k-Path Routing (fcMPR), to

be detailed. In &MPR, the underlying communication network is modeled as an edge-

weighted complete graph G(s, V, D), where s is the source node, D is the destination

node set and V is the set of all the nodes in the network including those nodes that

can only be used as intermediate nodes (called Steiner nodes). During the routing,

a message is sent out from the source node s along a routing path meaning that

only those destination nodes on the path can receive the message. Furthermore, the

number o f such receiving destination nodes is not greater than k, a prespecified routing

parameter. The goal o f the routing is to partition the destination node set D into a

collection o f subsets such that each subset o f destination nodes can be arranged on a

routing path, and such that the tota l routing cost is minimized, which is measured

as the sum of the weights of the edges on the routing paths.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For every instance o f the &MPR problem, supposing its optim al solution is W*, an

approximation algorithm proposed in [18] guarantees to return a routing scheme w ith

cost W < 4W*. By Definition 1.1.1, this algorithm is a 4-approximation, which in

fact is the previous best. We design later a 3-approximation for the fcMPR problem.

Another version of the routing problem is the so-called Multicast k-Tree Routing

(&MTR), again to be detailed. In the &MTR problem, the routing is along a tree

rooted at the source node and transmission nodes have broadcasting capability. The

previous best approximation algorithm for the fcMTR problem has a performance

guarantee of 2.4 + p [22]. We introduce some new design techniques to achieve a

(2 + /^-approximation, where p is the best approximation ratio for the Metric Steiner

Tree Problem [27] (which was about 1.55 at the w riting o f this thesis).

1.2 Exact Algorithm s

The M ulticast Routing problem is modeled from real world applications, such as

streaming continuous media, where a fast solution is required as usually there are a

huge number of such routing requests in a short amount o f time. There are other

problems where better solutions are preferred instead o f running time, and some­

times the best solutions are desired. One such problem is the Assignment Clustering

Problem abstracted out of DNA micro-array analysis, to cluster a set of binarized

oligonucleotide fingerprint vectors. The input to the problem is a set o f n vectors of

dimension m, and each vector entry takes a value o f 1, 0 or unknown value TV. The

goal is to assign every TV either a 1 or a 0 such tha t in the set of resolved vectors

which contain no TV’s the number of distinct vectors is minimized. When vectors

contain more than two TV-entries, the clustering problem is hard. Nonetheless, opti­

mal solutions im plying the least clusters would help save a lo t o f experimental cost

and thus are desired. Previous work was mostly involved in the design of better ap­

proximations and heuristics [18, 22]. In the second part of the thesis, we apply the

A * search algorithm [21], borrowed from the A rtific ia l Intelligence community, to the

clustering problem. We take advantage of the previously designed approximations

and heuristics and design some new heuristics to speed up the search.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The A * search algorithm guarantees an optimal solution to every input and thus

its effectiveness is measured by its running time. We test the A * search algorithm

on existing datasets and also generate a number of random datasets for testing. The

experimental results, as well as our discussions, are detailed in the second part of the

thesis.

1.3 Organization

The remainder of the thesis is organized as follows. In the first part, two versions of

the Multicast Routing problems are introduced and studied. Specifically, Chapter 2

introduces the M ulticast Routing problem and its various versions in detail. Chapter

3 reviews the previous best 4-approximation algorithm for fcMPR and its key design

ideas, explores our new techniques, and describes our 3-approximation algorithm. The

existing approximation algorithms for the fcMTR problem are reviewed in Chapter 4,

where we explore some new techniques to design the (2 + /^-approximation algorithm.

Chapter 5 summarizes our contributions in this study and points out some promising

future work.

The second part of the thesis deals w ith the Assignment Clustering problem,

which is introduced in detail in Chapter 6. Chapter 7 reviews existing approximation

algorithms and heuristics and describes our A * search algorithm. We also describe in

detail the heuristic evaluation functions used in the search. The experimental results

are included and discussed in Chapter 8. Chapter 9 concludes the study w ith some

future work.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Part I

M ulticast R outing

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Introduction to M ulticast R outing

There are three communication methods in networks: unicast, broadcast and m u lti­

cast as shown in Figure 2.1 [29]. In unicast, a source node sends one copy of a message

packet to a specified destination. In multicast is the one where a source node sends

one copy of message packet to all members of a multicast group. I f a source node

sends one copy of message packet to all the other nodes in the network, then i t is

called broadcast. We focus on multicast routing in this dissertation.

■ Source node ® Destination node

Figure 2.1: Unicast, M ulticast and Broadcast

Multicast is a one-to-many communication method where data can be sent from

a source node to m ultip le destination nodes. We usually consider multicast routing

problems in Local Area Networks (LANs) and W ide Area Networks (WANs). The

LANs span a small geographical area but the WANs span a larger area as shown

in Figure 2.2. Usually the nodes connected to LANs communicate over a broadcast

network, while nodes connected to WANs ta lk to each other via a switched or router

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

network [18, 34, 15]. I t is easy to implement a multicast communication in LANs,

but difficult in switched or router networks. In th is study, we focus on multicast in

WANs, where packet d istribution trees need to be b u ilt for multicast routing. These

trees help a source node to send packets to all the receivers. M inim izing the amount

o f network resources employed by multicasting is one of the challenges in network

communications.

Host2

Switch

Hostl

Switch
Switch

Switch

Host"

□
Host3

LAN WAN

Figure 2.2: LANs and WANs.

There exist many multicast applications in WANs, such as file distribution, in­

teractive games, news feeds and video conferences. The implementations o f most of

these applications are not efficient because most of them only support point-to-point

(unicast) communications. Efficient multicasting support in WANs is necessary in

order to make these applications more popular and less bandwidth-intensive.

2.1 Problem s and M otivation

The underlying communication network is modeled as an edge-weighted complete

graph G(s, V, D), where s is the source node, D is the destination node set and V is

the set of all the nodes in the network including those nodes tha t can be used only as

intermediate nodes (called Steiner nodes) [19]. In general the edge weight function is

additive. Since every node can act as an intermediate medium for forwarding data,

we may assume w ithout loss of generality tha t the edge weight is equal to the cost of

the shortest path connecting the two ending nodes in G. Therefore, the edge weight

function naturally satisfies the triangle inequality.

In order to perform multicast communications in WANs, the source node and all

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the destination nodes must be interconnected by a tree. The problem of multicast

routing in WANs is thus treated as finding a multicast tree in a network tha t spans

the source and all the destination nodes. The goal is to m inimize the to ta l cost of the

multicast tree, which is defined as the sum of the costs of all the edges in the tree.

We focus on the Capacitated M ulticast Routing problem where messages w ill be

sent out one at a time. Each time, only the nodes on one path (tree) can receive the

message because not all of the switches or routers in the network have the broadcasting

ab ility and this path (tree) can contain a lim ited number o f nodes. There are two

such multicast routing models. The first one is the M ulticast fc-Path Model which can

be regarded as a generalization o f the one-to-one connection. The purpose is to find a

set of paths where the nodes on the path can receive data and the to ta l cost, which is

measured as the sum of the weights o f the edges on the routing paths, is minimized.

When the number of destination nodes in a path is lim ited to k, we call it Multicast

fc-Path Routing (A;MPR) problem. The second model is the M ulticast k-Tree Model

which can also be regarded as a generalization of the one-to-one connection. Under

this model, multicast routing is to find a set of trees such tha t each tree includes only

a lim ited number of destination nodes which are supposed to receive data and every

destination node must be designated to receive the data in one o f the trees. The goal

is to partition the destination node set D in to a collection o f subsets such that each

subset o f destination nodes can be arranged into a routing tree and the to ta l routing

cost is minimized. When the number of destination nodes in a tree is lim ited to k,

we call i t the M ulticast &-Tree Routing (&MTR) problem.

2.2 Contributions

For the &MPR problem, we propose a 3-approximation algorithm which improves

on the previous best approximation w ith performance ra tio 4 [18]. Another (2 + p)-

approximation algorithm for the &MTR problem is also presented. The previous best

approximation algorithm for fcMTR is given in [22] w ith performance ratio (2.4 + p).

In the following chapters, these two approximation algorithms w ill be described in

detail.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

M ulticast /c-Path R outing

The M ulticast A>Path Routing (fcMPR) problem has mentioned above. Unidirectional

transmissions are used here. Data needs to be transm itted from the source to all

destination nodes. I t is assumed that i f there is a lin k between two nodes (switches or

routers) u and v in the network, then there are two paths between them, one carrying

the transmission from u to v and the other from v to u. Data can be transmitted on

these two paths simultaneously.

The fcMPR problem, for k — 1 or k = 2, is not NP-hard. There exist polynomial

time algorithms for 1MPR and 2MPR [14, 18].

3.1 Polynom ial Tim e Algorithm s for 1M PR and
2M PR

For the /cMPR problem, the solution to the case k — 1 is just a star centered at the

source s. The optim al solution to the 1MPR problem thus consists of |£)| shortest

paths [1] from the source node s to each of the |D| destination nodes. I t can be solved

in polynomial time. The following theorem is on 2MPR.

T h e o re m 3.1.1 [18] The 2MPR problem is polynomial time solvable.

To prove the theorem, we present a polynomial tim e algorithm for 2MPR in the

following part. In fact, the 2MPR problem can be reduced to a graph matching prob­

lem and thus can be solved in polynomial time [18]. F irstly, a multicast connection

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(s, D) is obtained in the network G(s, V, D), where D — {d i, d2, (Figure 3.1

contains four destination nodes in black). The reduction can be done as follows.

di S4

S2 S3d2

Figure 3.1: Reduction from the 2MPR problem to a m inimum weight matching prob­

lem.

For di, dj e D and i ^ j , denote the shortest path between these two nodes as

pG(di,dj) w ith the weight c(pG(di: dj)) and the shortest path between source s and

node di as pG(s,di) w ith the weight c(pG(s,di))- Then construct an auxiliary graph

G'(D U {s l5 S2 , E ') (Figure 3.1). For di ^ dj there is an edge between di and

dj w ith given weight w(di,dj), where

w(di,dj) = min {c(pG(s, di)) + c(pG(di, d j)), c(pG{s, dj)) + c(pG(dj, di))}.

For i ^ j there is an edge w ith given weight w(si, Sj) = 0 between s,- and Sj. There is

an edge between Sj and di for each i w ith given weight w(si,di) = c(pG(s,di)). The

m inimum weight matching M o f G', which is a perfect matching o f G', can be found

efficiently. From M we can obtain an optimal 2-routing of (s, D) on G in the following

way. For each edge (di, dj) € M , i f w(di, dj) = c(pG(s, dj)) + c(pG(di, dj)), we produce

a 2-path from s to dj v ia dj tha t consists of pG(s, di) and pG(di, dj), otherwise we

produce 2-path from s to dj via dj that consists of pG(s, dj) and pG(dj, dj) [18]. For

each edge (sj, dj) € M , produce a 1-path from s to dj [18]. Since each of the possible

shortest 2-path or 1-path is associated w ith exactly one edge in G!, the to ta l cost is

the to ta l weight of the edges, and each o f the destination nodes is incident to exactly

one edge in M [18], we can obtain an optimal solution to the 2MPR problem. I t is

obvious tha t this optim al solution of 2MPR can be obtained in polynomial tim e [18].

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 fcMPR is N P-hard

The general case o f the fcMPR problem is more d ifficult. According to the specification

of our problem, we model the network as an arc-weighted digraph G{V, A, c), where

the vertex-set V is the set of nodes in the network representing switches/ routers and

the arc-set A is the set of links between nodes representing wires. For arc (u, v) € A,

a cost function c : A —> R+ measures the desirability of using a particular arc. We

also assume that G(V, A, c) is to ta lly symmetric [18]. We w ill consider the decision

version of the &MPR problem. Given a m ulticast connection (s, D) in a network G,

an integer k > 2 and a bound B > 0, the problem asks i f there exists a ^-routing for

(s, D) whose cost is at most B.

Vo

G (V , E)

Vo

G (V ', E’)

Figure 3.2: Constructing a new graph G(V', E') from a given 3-regular graph G(V. E).

I t was proven in [25, 12] tha t the Hamiltonian C ircu it Problem for the 3-regular

graphs in which a ll nodes are of degree three (the left graph in Figure 3.2) is NP-

complete. I t was also proven in [25] tha t Ham ilton Path Problem is NP-complete

through a simple reduction [18] as follows. Given a 3-regular graph G(V, E), construct

a new graph G {V ', E') where

V' = V U {x ,y ,z } and E' = E U {(y, z), (x, u0) } U {(y , n)|(u, v0) € E },

for some fixed v0 E V. I t can be verified tha t G(V, E) has a Hamilton circuit i f and

only i f G(V', E ') has a Hamilton path (see Figure 3.2) [18].

The Hamilton Path Problem for the above defined graph G(V', E 1) can be reduced

in polynomial tim e to the &MPR problem. F irst, construct G(V'. A, c) by substituting

each edge (u, v) *E E 1 w ith a pair of arcs (u , v) and (u, u) whose costs are equal to

1. Then, set s = x, D — W \{x } , B — \V'\ and k — \V'\. I t is easy to verify tha t

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G(V', E') has a Hamilton path i f and only i f G(V', A, c) has a fc-routing for (s, D)

whose cost is at most B [18].

In the following section we w ill review a 4-approximation algorithm for the feMPR

problem which was the previous best approximation algorithm [18].

3.3 Previous B est A pproxim ation A lgorithm for
th e &MPR Problem

Before we describe the algorithm, the M inimum Spanning Tree problem needs to be

introduced first.

D e fin it io n 3.3.1 [6] A minimum spanning tree of an edge-weighted graph is a tree

which connects all the vertices and has minimal total weight.

A m inim um spanning tree can be found in polynomial time. The most famous

algorithm is described in Prim [26]. This algorithm can compute a m inimum spanning

tree for a graph w ith n vertices and m edges in tim e 0 (m + nlogn). In the previous

best approximation algorithm for the &MPR problem, the m inimum spanning tree is

used. In the following part, we introduce that algorithm.

Given a network G — (s, D), let Px*, P2*, • • •, P^ be the set of paths in an optimal

fc-path routing. Let c(Pf) denote the cost o f path Pf, which is the sum of the costs
771

of the edges on the path. Let R* — c(Pf) be the cost of the path routing. The
i = 1

4-approximation algorithm proposed in [18] constructs a m inimum spanning tree T

on s U D, duplicates the edges in T to produce a Hamiltonian cycle [6] C via suitable

short-cutting, and then partitions the cycle C into segments each containing exactly k

d istinct destinations (the last segment m ight contain less than k d istinct destinations).

Every segment is connected to the source s via a shortest path from s. Since the cost

o f a m inimum spanning tree T is at most R* (Note that Px, P2*, ■ • ■, P „_ j and P^

themselves form a spanning tree), the cost o f the cycle C is no more than 2R*. I t is

obvious that the to ta l cost of the shortest-paths added in order to connect segments

to the source s is at most R*. However, since for every segment the shortest path

connecting from the source s to i t could designate at an internal node on the path,

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the algorithm uses two copies of the added path to generate two paths in order

to produce feasible routings. Therefore, the cost of the resultant &-path routing

could be as large as 4R*. In fact, the following example shows tha t the ra tio 4 is

asymptotically tight. In this example, the optim al fc-path routing is

where — s dmk—i di ■ d^ —21 P2 ® d^—i d ̂ d^ - \ . 1 • • ■ d2k—2 i ■ ■ '■>

Pm — s d^m — 1 rf(m—i))fc ^(m—i)fc+i ' dmk—2 - The weights are w(s, <kk-i) = M

for i = 1, 2, • • ■, m, and w(dj, dj+1) = 1 when j # — 2. We can see the tree in Figure

3.3. Note that the cost of the optim al A>path routing is R* — m (M + k — 1). The

minimum spanning tree has a cost which is the same as the one for the optim al

routing, and the cost of the Hamiltonian cycle is exactly twice of R*. According to

the partitioning, di, ^ 2 , * • • > <4 are on the same segment and d ^ i is the closest to the

source s. Therefore, the final fc-path routing has a cost of m (4M + 2k — 3), which is

asymptotically 4 times R*.

d m k -ll

dmki

dk+1 d (m - l)k + l

dk-20 Od2k-2 dmk-20

Figure 3.3: O ptim al fc-path routing

3.4 A 3-A pproxim ation A lgorithm for the &MPR
Problem

We propose another way to partition the obtained Hamiltonian cycle into segments.

Each segment contains exactly k d istinct destinations (again, the last segment m ight

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contain less than k distinct destinations), by which the added paths connecting them

to the source can be made to be from one of the end destination nodes. The to ta l

length of these added paths is no more than R*.

Observe tha t in P f, P%, ■ • ■, P ^, the distance from every destination node di to

the source s is an upper bound on the actual distance dG(di, s) calculated in the

underlying network G. Suppose the destination nodes are dj,d2, ■ ■ ■, dn. I t follows

that
n

y~yj dG(di, s) < k x P*,
i = 1

since there are at most k destination nodes on every path P* for j = 1, 2. - ■ •, rn.

Suppose the destination nodes on the obtained Hamiltonian cycle are indexed con­

secutively from 1 to n (w ith source s ly ing between di and dn), pa rtition the term
n

dG(di, s) in to k subterms:

m
'y dG(dik+j, s), j — 1, 2, • ■ •, k.
i~ 0

(Note: when the index is out of range, there is no such destination node.) I t

follows that there exists at least one index j * such that

LtJ
y ̂do(djfc+j*, s) ^ R .
i - 0

Now partition the Hamiltonian cycle in to segments. The first one contains the

destination nodes dj*,dj*+i, dj*+2 , ■ - •, dp+*_ i, the second one contains the destina­

tion nodes dj*+k, dj*+k+1 , dj*+k+2 , • • ■, dj*+2k-i, • • ■, and so on. For the ith segment,

the path used to connect i t to the source s is the edge d7*+p_1)fe. I t is clear tha t

every segment appended w ith the connecting path is s till a path and thus they form

a feasible routing. Note that the cost of the segments is no more than 2R* and the

cost of the added edges/paths is no more than R*. Therefore, the cost of this routing

has cost no more than 3R*.

T he ore m 3.4.1 The kMPR (k > 3) problem admits a 3-approximation algorithm

which runs in 0 (\ V f) time.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P r o o f . Note tha t completing the graph might take 0 (| F | 3) time. A fter that,

computing a minimum spanning tree can be done in 0 (|D |2) tim e and forming the

Hamiltonian cycle in 0 { \D \2) time. I t takes 0 (\D \) time to compute the partition

which is the optimal index j* . Therefore, the overall running tim e is 0 () j 3). The

performance ratio follows from the the above discussion. ■

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

M ulticast &-Tree R outing

In this chapter, we introduce another problem (ZcMTR) in M ulticast Routing. In the

fcMTR problem, the underlying communication network is an edge-weighted complete

graph G(s, V, D) where s is a source node, D — {di, d,2 , .. ■, dn} is a destination

node set, and V is a superset o f D containing Steiner nodes which can be used as

intermediate nodes to reduce the routing cost. The edge weight function satisfies the

triangle inequality. The goal is to find a least cost A;-tree routing, which contains a set

of Steiner trees rooting at s and spanning a ll destination nodes. Every tree contains

at most k destination nodes. Note tha t in a feasible k-tree routing, one destination

node assigned in some trees can be used as a Steiner node in others.

4.1 Polynom ial T im e Algorithm s for 1MTR and
2MTR

For the fcMTR problem, 1MTP and 2MTP can be solved in polynomial time. When

k = 1, the graph is just a star centering at the source, which is the same as 1MPR.

When k = 2, the problem can be reduced to a graph matching problem and can

be solved in polynomial time which is also the same as 2MPR. We have given the

algorithms for 1MPR and 2MPR in the previous chapter 3. In the following section

we w ill prove that &MTR is NP-hard when k > 3 and give a (2 + /^-approximation

algorithm for the &MTR problem.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 3M TR is NP-hard

Given a collection of 3-sets C — Ci, C2 , ■ ■ •, Cm, each o f them is a set containing 3

elements from a base set S. The Exact 3-Set Cover problem asks for a subcollection

of disjoint 3-sets whose union is S. The Exact 3-Set Cover problem is NP-hard [6].

T he o re m 4.2.1 The 3MTR problem is NP-hard.

P r o o f . Suppose S contains n — 3q elements which are denoted as s j , s2, • • •, sn.

Create one destination node for every element s,-, 1 < i < n, one Steiner point for

source

Steiner
n o d e i

Steiner
nodem

3 n

Figure 4.1: Transforming the 3-set cover to 3MTR.

every 3-set C,- and an edge connecting this Steiner point to every destination node

inside the set. Create a source node s which is adjacent to every Steiner point. I t

is clear that so far the source node has degree m and every Steiner point has degree

4. The edges constructed at this point all have cost 1. Finally, complete the graph

to obtain G (for example, every pair of destination nodes are connected via an edge

w ith cost 2). I t is easy to check tha t for the instance constructed above, there is a

3-tree routing of cost 4q i f and only i f there is a subcollection C'0 — C^, Ci2, ■ - ■, Ciq

such that S = U j^ C ^ . Therefore, 3M TR is NP-hard. ■

4.3 Currently B est Approxim ation Algorithm for
Steiner Tree

D e fin it io n 4.3.1 [13] Given a graph G — {V, E), a set R C V of terminals and a

weight function of the edges, a Steiner tree is a connected subgraph of G that spans

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all the nodes in R. We call this problem the Steiner tree problem. The Minimum

Steiner Tree problem (SMT) in a graph is to find a tree, whose total edge length is the

minimum. We denote the total edge length of S M T by smt and extend the definition

of the length function | • j from a single edge to arbitrary sets of edges by defining

|J*f | := \x \ f or X C E. Similarly we define |G| for a graph G — {V, E) as the total
xe x

length of all of its edges. In this way we have smt — \SMT\.

The first step in our algorithm and the previous best algorithm [22] is to apply

the currently best approximation algorithm, the Loss Contracting A lgorithm (LCA),

for the metric Steiner tree problem. This algorithm w ill be described below.

The solution o f the minimum spanning tree w ill be used to obtain the approxi­

mation result of the m inimum Steiner tree. We denote the minimum spanning tree

by M S T w ith to ta l edge length mst. The m inimum Spanning tree can be found in

polynomial tim e [6].

Figure 4.2: The fu ll components of a Steiner tree

I t is well known that the Steiner tree problem is NP-hard. The best approxima­

tion algorithm, the Loss Contracting A lgorithm (LCA), was proposed by Karpinski

and Zelikovsky in [27]. They used the ^-Steiner trees to obtain an approximation

algorithm for the Steiner tree. A fu ll Steiner tree is a Steiner tree where all the ter­

minals (destination nodes) are leaves of the tree. A Steiner tree can be decomposed

into the so-called fu ll components by sp litting term inals that are interior vertices. A

fc-Steiner tree is a collection of fu ll components each w ith at most k terminals Figure

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2. An optim al &;-Steiner tree is denoted by S M T k and its to ta l edge length is smtk.

I t has been proven that when k < 3, an optim al solution to S M Tk can be found in

polynomial time.

Since i t is hard to design a good approximation algorithm of S M T, the currently

best approximation algorithm for Steiner tree tries to obtain a good approximation

algorithm for &-Steiner tree. Borchers and Du [5] have proved that for the Steiner

ratio pk which defined as pk := , when k -» oo, pk —>• 1. So the performance

ratio of the algorithm for k-Steiner tree is the one for fc-Steiner tree when k —> oo.

The LCA algorithm is a greedy approaches. I t fits in to the general framework

shown in Figure 4.3 [13, 33]. k £ N is fixed. Consider the subsets K ' of R w ith at

most k terminals and let K be the collection of those t e K ' for which SM T(t) is a

fu ll Steiner tree. The algorithm start w ith a Steiner tree tha t is obtained by taking

a m inimum spanning tree in the distance graph which only includes the terminals.

In each step the algorithm try to add element o f K to improve the current solution

by using a Steiner minimum tree. I t is more than one t € K that could improve the

current solution, the algorithm use a selection function / to decide which t w ill be

chosen next. Then how to decide the selection function / is the key point of this

approximation algorithm [13]. We w ill describe the / in LCA later.

Let K be the set of fu ll components of each up to k terminals;
i i— 0;

W hile a component which can improve the solution exists do:
Choose ti+i € K tha t minimizes the selection function fp
i t— i T 1;

I 'm a x ^ b
Output a Steiner tree using t i , • • ■, tmax.

Figure 4.3: A general framework for greedy algorithms

Contraction is a concept that w ill be used in LCA. Denote the m inimum spanning

tree in the graph for a set of required vertices R by M S T (R). Assume we add a new

edge e between a pair of terminals. Define as:

M S T (R /e) a m inimum spanning tree for R in G + e.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the Contraction Lemma [27], assume tha t we insert a certain fu ll component by

adding a set E\ of new edges to the graph. Denote E0 as a set o f edges which has

already been added for earlier fu ll components. The length of the current intermediate

solution is denoted by m st(R /E0). Then given another fu ll component E 2, we can

obtain the Contraction Lemma.

mst(R/Eo) — m st(R /E0E 2) > m st(R /E0E i) — m st(R /E0E iE 2).

The loss o f a Steiner tree introduced by [20] measures the length needed to connect the

Steiner po int of a fu ll component to its terminals. The loss of a set of Steiner vertices

A C U is a m inimum length forest Loss(A) C E in which every Steiner vertex v E S

is connected to a terminal r E R. Contracting the loss o f a fu ll component means

tha t for every edge between the loss components, a new edge w ith the same weight

is inserted between the corresponding terminals. We denote i t as loss := |Lossj.

We use the Contraction Lemma in th is problem as well since i t is required tha t the

length of the newly inserted edges do not depend on the previous loss contractions

involving the same Steiner vertices. By a simple preprocessing (duplicating Steiner

vertices), we can achieve that no two fu ll components of the graph share a Steiner

vertex. W hile the length of SMTk does not change, the instance grows by a factor

which is at most a polynomial of the inpu t size. The set K from the general framework

w ill refer to the preprocessed instance.

Le m m a 4.3.1 (Karpinski, Zelikovsky [27]) The length of the loss of a Steiner tree is

at most half of its total length.

P r o o f . I t is not d ifficu lt to prove the inequality loss < for fu ll components.

I t is easy to see tha t any fu ll component can be transformed into a complete binary

tree o f which the leaves are exactly the terminals. This can be obtained by adding

some new terminals and new edges of length 0. A fte r that, for each internal vertex,

choose from the two edges leading to its children the cheapest one. This w ill generate

a subgraph that includes the loss o f the fu ll component w ith length at most ha lf of

the to ta l length. ■

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The currently best (1 + ^^-approx im a tion algorithm is presented in the following.

Its general framework is the same as the one for greedy algorithms, and i t does not

entirely contract the selected fu ll component but the loss component.

This equation is used for its length: [13]

where m is the length of a m inimum spanning tree after the loss of certain fu ll

components has been contracted. Because of the preprocessing, after adding some

new edges between terminals we can get the effect of a loss contraction. We use the

contraction lemma to prove as follows.

Suppose that some of the fu ll components Tx, T2, • • •, I) have already been chosen,

then the length of the corresponding Steiner tree is [13]

By the preprocessing step and the definition of m. The selection function [13]

is applied to compare the loss o f a new fu ll component T w ith the reduction of m.

Then the loss contracting algorithm fits in to the general framework. Now we w ill see

tha t fi{T i+1) < 1 for all i.

T he o re m 4.3.2 (Robins, Zelikovsky [27]) The loss contracting algorithm computes

a (1 + “) approximation for S M T k.

Before proving the theorem, we s till need to describe some notations. As we mentioned

before, costi = m, + loss. Let T*, T f, - - •, Tfmax be the fu ll components of a Steiner

m inimum tree. Then smtk — m* + loss*, where m* m (T f, T f, ■ • •, T*max).

T h e o re m 4.3.3 [13] The Steiner tree with full components T * ,T f , - - - , T*max re­

turned by the loss contracting algorithm satisfies.

m(-) := mst(R/loss(-)),

M T) : =
loss(T)

(4.2)
m(T1}T2, - " ,T i) - m(Tu T2, ■ • • ,TfT)

cost(Tf, T f , T*max) < smtk + loss* In (l +

22

mst — smtk
) (4-3)loss*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P r o o f . A fu ll component T reduces the length of the current intermediate solu­

tion i f and only i f /,(T) < 1 because [13]

cost(Ti, - • • ,T imax) - costiTi, • ■ •, T jT)
= m(Ti ■ ■ ■ ,Ti) + loss(Ti • • ■,T)) — m (T j • • • ,T{T) — loss{T\ • • • , T,T)

- m (r j • • •, Ti) - m (7 i ••• , T»T) - ioss(T).

Then the next step is to bound the value o f fi(T i+ 1). Let T f, T |, • • •, T/moi be the fu ll

components o f an optimal Steiner tree. The greedy choice implies,

fi(T i+ i) < m in / j(T *) . (4.4)
3

Using the inequality [13]

E i r ; i

/i(T<+ l) 5 E mst(R/Tt ■ ■ ■ , ’ <4'5)
3

we can get [13]
Hloss\T*\

fi(T i+ 1) < sr- {rp T ' l - m C TE ' ' ' iT j) m [T\ • ■ • , TjTj)
3

Due to the Contraction Lemma the denominator is bounded from below by [13]

m(Ti • • •, 7*7" ■ • ■, T*max) < m (Tx • ■ •, T{T* (4.7)

By monotonicity [13]

m(T, ■ • -, TjT,* ■ ■ •, TJmaJ < m (IT ■ ■ ■, T ^ aI), (4.8)

we obtain the inequality [13]

f /'T> 4 < loSs{Tx ■ ■ ■ , T jmax)______ _ loss*

Using fi(T i+1) < 1 and the previous equation we can estimate [13]

loss(Ti ■■■, Timax) = loss(Ti) = Y 2 f i- i(T i)(rr ii-i - ny)
i

loss*
< y ^ m in (l , -----— — - rry).

\ m i-i — m* Jm ^ i — n r

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clearly m0 — mst > smtk, and we w ill show that smtk > mimax■ Therefore the

previous equation is bounded by [13]

r st . c loss*/ mm 1 1 , — 1 ax
Jmtr, V x — m* /

r ^ m i n (l ^) d x
J m i m o x \ X /

f loss* _ , , * r m e t - m * ^
— 1 ox + toss • I —

J m i m a x ~m* ^ X
7 * * 7 * , (mst — m *\= ^oss - m imax + m + /oss • In ^ — — J

7 * i (mst — smtk \
= sm tfc - mimax + loss • In (1 + ------------ J

and the lemma follows.

Then we can prove Theorem 3.3.2. Since smtk > we have mst — smtk < smtk■

I t follows that

cost(T„ ■ ■ •, Tim. ,) < smtk (l + ^ • In (l +).. (4.10)

Now we apply the inequality /oss* < Elementary calculus shows that

m a x{x • ln (l + 4) | 0 < x < | } is attained for x = Therefore,

cost{Ti, ■ ■ • ,T imax) < smtk{^l + - y -) - (4-n)

So the performance ratio is (1 + ^) .

4.4 Previous B est Approxim ation A lgorithm for
the &MTR Problem

Let T f, T2*, • • •, TJJj be the set o f trees in an optim al k-tree routing. Recall that every

T* m ight contain some Steiner nodes and m ight also contain some destination nodes

which are not allowed to receive data (but act as Steiner nodes).

Let c(T*) denote the cost of tree T*, which is defined to be the sum of the weights
m

of the edges in the tree. Let R* — c(T.•*) be the cost o f the routing tree. Since
i- 1

every destination node di in the tree T? satisfies w(s, dj) < c(T*), we have

n

^ w(s, di) < k x R*. (4.12)
i = l

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the (2.4+p)-approximation algorithm [20], the first step is to apply the currently

best approximation algorithm for the metric Steiner tree problem (which has the

worst-case performance ratio p) to obtain a Steiner tree T on s U D in the underlying

network G. Since the cost of an optimal Steiner tree is a lower bound of R*, we know

that the cost o f tree T is upper bounded by pR*. Note tha t tree T is not necessarily

a feasible routing tree since some branch rooted at the source s m ight contain more

than k destination nodes. Nonetheless, i f there is any branch which contains at most

k destination nodes, we can just leave the branch alone in the next step. For branches

containing more than k destination nodes, we perform the following partition on each

of them in the second step. To present the partition technique, we need the following

lemmas.

Lem m a 4.4.1 [18] Given a tree T containing n > 3 nodes, it is always possible to

partition it into two subtrees which have at most one common node and the number

of the nodes in both subtrees fall in the closed interval [|n , |n j.

P r o o f . Root tree T at any node, say node v . For every node u in T , let c(u)

denote the number of the nodes in the subtree rooted at u, inclusive. Let r be the

bottommost node w ith its c(r) > | n. Note tha t r is unique and i t could be the root

node v. Now re-root tree T at node r. I t is easy to see tha t in the newly rooted tree

none except r can have c-value greater than |n . ■

I f there exists a child node w of r satisfying c(w) € [|n , |n], then cutting off edge

(r, w) from T gives two subtrees which do not overlap and the number of the nodes

in both subtrees fa ll in the closed interval [|n , §n}. In another case, every child node

w of r has c(w) < Numbering these child nodes as W\, u/2, • • ■, u/j. There is some

i such tha t the number of the nodes in the subtree obtained by elim inating subtrees

rooted at child nodes w\, w2, ■ ■ ■, Wi falls in the interval [|n , |n]; and the number

of the nodes in the subtree obtained by elim inating subtrees rooted at child nodes

Wi+i,Wi+2 , ■ ■ ■, Wi falls in the interval [~n, | n] too. Note that these two subtrees only

have one common node which is the root node r.

Lem m a 4.4.2 [18] Given a Steiner tree T containing n > 3 destination nodes, it

is always possible to partition it into two subtrees which have at most one common

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node, either Steiner or destination, and the number of the destination nodes in both

subtrees falls in the dosed interval [|n , |n j.

P r o o f . T h e p ro o f is s im ila r to th e above p ro o f e xp e c t th a t w he n c a lc u la tin g c-values

o n ly those d e s tin a tio n nodes are co un ted . ■

For a branch of T (rooted at the source s) containing more than k destination

nodes, delete the edge incident at s to get a subtree denoted as T). The second

step of the approximation algorithm is to recursively partition T\ in to subtrees each

containing no more than k destination nodes using Lemma 4.4.2. We distinguish two

cases. In the first case, T\ contains more than |k destination nodes. In this case, we

apply Lemma 4.4.2 directly to partition i t in to two subtrees denoted by Tn and T12.

I t is clear tha t both subtrees contain at least j^k destination nodes. The partition

stops when each subtree contains no more than k destination nodes, which is called

a final subtree for convenience. A final subtree resulted from the first case is called

a type-1 final subtree. In the second case, 7\ contains more than k but at most |k

destination nodes. In this case, the farthest |k destination nodes from the source s

are treated temporarily as Steiner nodes during the partition and their identities are

recovered after the partition . In this way, the number of the destination nodes in each

of the two derived subtrees falls in the interval (|& , = (|fc, k]. Therefore,

both subtrees become final. Such final subtrees are called type - 2 final subtrees. Note

that type - 2 final subtrees always come in pairs, meaning tha t a pair o f them results

from one direct partition in the second case.

After all the subtrees become final, for every type-1 final subtree, pick exactly ^ k

destination nodes therein and order them according to their distances from the source

s increasingly. For every pair o f type-2 final subtrees, pick exactly the first ~k closest

destination nodes (from the source s) in each subtree and order them according to

their distances from the source s increasingly. In addition, the \k farthest destination

nodes le ft out during the last partition are also picked. These destination nodes

are distributed half to each pair of final subtrees. In this way, each final subtree

has been associated w ith exactly -^k destination nodes, where the first closest

of them reside in the final subtree (while the other |A: may not). For simplicity,

we leave out the branches o f the Steiner tree T each of which contains no more

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

than k destination nodes and only consider these final subtrees. We denote these

final subtrees as B \, B2, ■ - •, J3j. For each Bi, le t the associated destination nodes be

ii, i2, ■ ■ •, where dG(s, ii)dc(s , if) • • • dc(s, ^ follows that

This indicates that after the partition , we obtain a set o f subtrees each containing

at most k destination nodes and adding the shortest paths to connect them to the

source s gives us a feasible A;-tree routing. This resultant routing tree has a cost no

more than (2.4 + p)R*. We have known that p — 1.55, so the performance ratio is

about 3.95.

4.5 A (2 4- /^-Approxim ation A lgorithm for the
&MTR Problem

In the (2 + ^-approxim ation algorithm, we firs tly apply the currently best approx-

performance ratio p) to obtain a Steiner tree T on s U D in the underlying network

G. Since the cost of an optimal Steiner tree is a lower bound of R*, we know that

the cost o f the tree T is upper bounded by pR*, tha t is, c(T) < pR*. Note that the

tree T is not necessarily a feasible routing tree yet since some branch rooted at the

source s m ight contain more than k destination nodes. We treat T in the following

way: i f there is any branch that contains no more than k destination nodes, leave i t

alone for the next step.

L e m m a 4.5.1 [22] Given a Steiner tree T containing n destination nodes, where

k < n < ^k and k > 3, randomly select n — \k + 1 destination nodes from the tree

to form a set D 0. Then, it is always possible to partition the tree into two subtrees

(4.13)
i = l j = 1

Using the order dG(s, i\) < dG(s, if) < ■ • ■ < dG(s, u j , we have

(4.14)

im ation algorithm for the metric Steiner tree problem (which has the worst-case

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T\ with destination node set D \ and T2 with destination node set D 2 which have at

most one common node (either destination node or Steiner node). 0 < |£>i|, \D2\ < k,

D \ n Dq ^ 0, and D 2 n D 0 ^ 0.

P r o o f . Root tree T at any node, which could be either a destination node or a

Steiner node.

In this rooted tree, for every node v, le t c(v) denote the number of the destination

nodes in the subtree rooted at v (inclusive). Let r denote the farthest (from the root)

node which has c(r) > n — \k . Note tha t in the case that there is no node having a

c-value greater than n — r is set to be the root. Since k < n < §k, r is uniquely

defined. Re-root the tree T at node r.

By duplicating the root node r, we can pa rtition T into two subtrees (both rooted

at r) Ti w ith destination node set D j and T2 w ith destination node set D 2. Our

partition goal is to minimize \D2\ — |-Di|, assuming w ithout loss of generality tha t

|Z>2| > \D i |. I f i t already holds that 0 < \D i\, \D2\ < k, D i n D 0 / 0, and D 2 n D 0 ^ 0,

then we can obtain the two desired subtrees. Otherwise, \Di | < \k and \D2\ > n — ~k

must hold. We proceed to examine subtree T2 which must have m ultip le branches

and each o f them contains at most n — ~k destination nodes.

Number these branches as T21, T22, ■ • •, T2£, w ith the destination node sets D 21, £)22,

• • •, D 2i , respectively. We distinguish two cases. In the first case, there is a branch,

say T 2 i, such tha t |D2i| > I t follows from \D2i\ < n — ~k < k that re-partitioning

T to have only T 2i in subtree T2, while all the other branches rooted at r are included

into subtree T), gives the desired partition . That is, 0 < iLfi), \D2\ < k, D i D D 0 ^ 0,

and D 2 f! D 0 ^ 0- In another case, every branch contains less than destination

nodes: \D2i\ < for i — Since \D0\ = n - \ k + 1 > \k + 1, there are

at least two branches, say T 2\ and T22, tha t both contain destination nodes from D q

(which is not the root node r). Again, we do the re-partitioning by removing T 2l

from T2 while including i t in T \ . This gives us a new pair of subtrees 2) and T 2 tha t

satisfies 0 < |Th|, \D2\ < k , D \ ft D q ^ 0 and D 2 D D q ^ 0, which proves the Lemma.

Recall that every branch of T rooted at the source s is ignored for further consid­

eration. In the following, we w ill focus on the operations performed on one branch

of T (rooted at the source s) containing more than k destination nodes. F irst o f

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all, we delete the edge incident at s from the branch to get a subtree denoted as Tx.

Secondly, i f T\ contains more than §k destination nodes, we apply Lemma 4.4.2 to

partition T i in to two subtrees. We then repeatedly apply Lemma 4.4.2 to partition

the resultant subtrees i f they contain more than |k destination nodes. A t the end

of this repeated partition , there w ill be a set of subtrees such that each contains no

more than § k destination nodes. I t should be noted that each of them contains at

least destination nodes since we started w ith Ti which contains more than |k

destination nodes. A t this point, for those subtrees which contain no more than k

destination nodes, we may leave them alone. For ease of presentation, we call the

subtrees containing at most k destination nodes final trees. The subtrees become final

at this point are called type-1 final trees. The non-final subtrees w ill become type-2

final trees after the next step o f partition .

For each non-final-yet subtree again denoted by T\, our th ird step is to apply

Lemma 4.5.1 to partition i t in to two final subtrees. Let D0 denote the set of closest

n — + 1 (to the source s) destination nodes in T i, where n is the to ta l number of

destination nodes in Tx. Let Tn and T12 denote the two resultant subtrees having

destination node sets D \ and T>2, respectively. By Lemma 4.5.1, 0 < |T i| < k,

D 1HD0 ^ 0 , 0 < \D2\ < k, and D2n D 0 / 0 . I t is clear tha t type-2 final trees always

come in a pair, since they result from one single partition by Lemma 4.5.1.

For each final tree, we pick the closest destination node therein and connect i t to

the source s. This gives a feasible fc-tree routing. In what follows, we w ill estimate

the to ta l cost of these added edges and show that this to ta l cost is at most twice o f

R*.

First of all, for every type-1 fina l tree, we pick the \k closest destination nodes

therein to be the representatives for the tree. Suppose there are l x type - 1 final trees

Tx, T2, • • -, T L e t the representatives for Ti be dii2, • • •, d̂ *, in the order o f

non-decreasing distance from the source s. Secondly, for every pair of type - 2 final

trees T i and T2, i f any one of them contains no less than l2k destination nodes, then

the \k closest ones are picked to be the representatives for the tree; otherwise all the

destination nodes, say m, are picked to be the representatives and additionally the

~k — m farthest (to the source s) destination nodes in the other tree are picked to be

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the representatives. Therefore, every type-2 final tree has exactly \k representatives,

although some of them m ight not come from its own but its partner. Note tha t the

reason we can do so is tha t the to ta l number of the destination nodes in this pair

of type - 2 final trees is greater than k. Similarly, assume tha t there are l 2 pairs of

type - 2 final trees Tn , T i2, T21, T22, • • -,T(2i, T ^2. Let the representatives for Tih be

dih,i, dih,2 i ■ ■ dih t̂, where h is either 1 or 2 , in the order o f non-decreasing distance

from the source s. Also for every tree pair Tn and Tj2, let df2, • • •, d°k be the
’ ’ * ’ 2

\k closest destination nodes among all the destination nodes in both o f them, and let

d ° !+1, d®k+2, ■ • d^k be the |k farthest destination nodes among all the destination

nodes in both of them.

I t follows that

<1 I I 2 k n

1212 w(s>d^) + 1212 d%) ^ 12 w{s,di) < k x R*. (4.15)
i = 1 j = 1 i = 1 j — 1

Using the non-increasing distance orderings of these destination nodes, we have

ti ti
1 2 w{s, diA) + 1 2 (w(s, (fiA) + w(s, dPih+1)) < 2 R*. (4.16)
i= 1 2=1 ’2

Clearly, for every type-1 final tree Ti: the destination node is connected to

the source s; also i t is true that d^x must serve as a representative for either type-

2 final tree Tn or type - 2 final tree T i 2 and thus i t is connected to the source s.

Suppose w ithout loss of generality tha t dPiX is a representative for T* 1 , then the closest

destination node d in T& which is picked to be a representative has a distance no

larger than the distance from the source to the destination node d° k ■ I t follows

tha t the to ta l cost of the edges added to connect the source to the final trees to

produce a feasible A;-tree routing is at most 2R*. Therefore, the produced routing

tree has a cost no more than (2 + p)R*.

T h e o re m 4.5.2 kM TR (k > 3) admits a (2 + p)-approximation algorithm, where p

is the best performance ratio for approximating the metric Steiner tree problem.

I t is known tha t p is about 1.55 [13, 27]. Therefore, our approximation algorithm

has a performance ratio of about 3.55. I t is worth mentioning tha t the running time

is dominated by the approximation algorithm for the metric Steiner tree problem.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Conclusion

We design a better approximation algorithm for the multicast k-tiee routing problems

w ith the worst case performance ratio (2 +p). On the way to this better approxima­

tion, an interesting tree partition ing technique has been developed. We believe this

promising partition ing technique can be further combined w ith other existing meth­

ods to achieve better approximation algorithms.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusion

We have developed an averaging technique and a tree partition technique for designing

better approximation algorithms for both of the &MPR and fcMTR problems when

k > 3. We present a 3-approximation algorithm for the &MPR problem. The previous

best approximation algorithm has a performance ratio o f 4. For the &M TR problem,

our algorithm has the worst case performance ratio (2 + p), where p is the best

approximation ra tio for the metric Steiner tree problem (which is about 1.55). The

previous best approximation algorithm has a performance ratio of (2.4 + p).

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Part II

Binary Fingerprint Vector
Clustering

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Clustering Binary Fingerprint
Vectors w ith M issing Values

Designing approximation algorithms is a good way to get suboptimal solutions for

many NP-hard optim ization problems [12], typically in application domains such as

networking. Nonetheless, in some other applications, we care more about the quality

o f the solution than the actual running time. In such circumstances, we choose to

design exact algorithms to solve the problems as fast as possible, although they might

s till run in exponential time in the worst case.

In this part of the thesis, we w ill examine the problem of clustering binary oligonu­

cleotide fingerprint vectors w ith missing values, which is an application model from

the DN A microarray analysis. We w ill present an A * search algorithm to both m in i­

mize the number o f clusters and resolve the missing values in the fingerprint vectors.

Except the tr iv ia l exhaustive enumeration method, our search algorithm is the first

exact algorithm tha t solves the problem optimally. Our search algorithm employs

some existing work [11] on this problem. Experimental results on real datasets show

tha t in terms of running time, our search algorithm is very competitive to a heuristic

greedy search algorithm proposed in the literature, and in terms of quality, our search

algorithm guarantees an optim al solution while the heuristic greedy search algorithm

does not.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Introduction

I t is widely believed that, in a liv ing organism, thousands of its genes and their prod­

ucts (i.e., R N A and proteins) function in a complicated but orchestrated way. In

the past several years, a new technology, called DNA microarray [23], has attracted

tremendous interest among biologists. This technology can be used to m onitor the

whole genome on a single chip so tha t one can have a whole picture of the interactions

among thousands of genes simultaneously. A DN A array is an orderly arrangement

of known or unknown DNA samples, in order to provide a medium for matching

these samples based on Watson-Crick base-pairing rules. Various array designs exist

depending on the applications, e.g. Oligonucleotide Fingerprinting [16, 17, 7, 24, 8] ,

in which an array of oligonucleotide (20 to 80 oligos) or peptide nucleic acid (PNA)

sequences (cadled clones) is synthesized either in situ (on-chip) or by conventional

synthesis followed by on-chip im m obilization. The array is then exposed to labeled

sample DN A (called probes), hybridized, and the identity or abundance of complemen­

tary sequences is determined. Generally, a probe is a type of short, single-stranded

fluorescence-labeled DNA. I t w ill hybridize to the spot on the chip when the probe

occurs as a substring of the clone on the spot. A fter hybridizing, all of the unbound

probes w ill be washed off and the hybrid ization intensity values between the probe

and the clones can be measured. The hybridization experiment, where a fingerprint

is simply a vector consisting of the hybridization intensity values between the clone

and the probes, is repeated for a set o f probes to create fingerprints of the clones. In

this way, oligonucleotide fingerprints [8 , 28, 30, 32] are regarded as vectors containing

hybridizing signal intensities.

Oligonucleotide fingerprinting [8 , 24, 28, 30] is one of the best methods to char­

acterize DNA clone libraries. I t was adopted in many applications, such as gene

expression profiling and DN A clone classification. In particular, i t offers an effective

way to extensively analyze m icrobial communities. In this part, we focus on the ap­

plication of classification o f the D N A clones, a problem arisen from the classifications

of microorganisms [28, 30, 3, 9, 10].

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to cluster the clone fingerprints, usually we distinguish hybridization

intensity values by binary values where 1 means hybridization and 0 means the op­

posite. However, i t is in general hard to determine whether the clones are hybridized

or not. In fact, most of the current methods do not offer an effective way to clearly

determine whether the clones are hybridized or not. Recently, a discrete approach,

where reference intensity values are decided by controlling clones w ith known charac­

teristics w ith respect to the probes tha t are included in the DN A array experiments,

has been applied to the classification o f m icrobial rD N A clones [11, 4]. By doing so,

the oligonucleotide fingerprinting data can be normalized and binarized using these

reference intensity values. The intensity value is set to 1 meaning hybridization, 0 no

hybridization, and N means a missing value.

After normalizing and binarizing oligonucleotide fingerprinting data, the problem

is transformed to identifying clusters and solving the problem of missing values in the

fingerprints. Suppose there are to ta lly n clones on the DN A array, and m probes.

The oligonucleotide fingerprinting data is a set o f n vectors of dimension m, and ev­

ery vector entry takes a value of 1, 0, or N . We consider the problem of identifying

clusters and resolving the missing values in the fingerprints simultaneously. A vector

containing no N entry is called a resolved vector. For a pair of vectors containing

some N entries, i t is possible tha t through assigning a 1 or a 0 to every N , the two

resolved vectors become identical. I f this is the case, we say that these two vectors

can be resolved into a cluster. Our task is to assign a 1 or a 0 to every N in the given

set of n vectors so that the number o f d istinct resolved vectors , which represent the

number of clusters, is minimized. We call this combinatorial optim ization problem

the Assignment Clustering Problem or AGP for short.

One natural parameter in AGP is the maximum number of TV’s in a vector. When

every vector contains no more than k TV’s, the problem is called fcACP. I t is known

tha t 1ACP can be solved in polynomial time and kACP where k > 3 is NP-hard [1 1].

The complexity of 2ACP is unknown. On the approximability aspect, kACP where

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k > 2 admits a 2 fc-approximation algorithm [2],

The main task in this part is to solve kACP optimally. To achieve our target, we

propose to employ A* [21], a heuristic search algorithm, from the A rtific ia l Intelligence

community w ith some carefully designed heuristics and evaluation functions. As the

reader w ill see, the 2 fc-approximation algorithm for kACP serves as an evaluation

function for our purpose. We tested our search algorithm on real datasets. The

experimental results demonstrated that our exact algorithm runs fast. I t could be

used to produce some benchmark data for evaluating other algorithms developed in

the past and in the future.

6.2 Previous Work

In [1 1], a greedy heuristic algorithm GCP based on Clique Partitioning was proposed.

The key idea in the algorithm is to transform an instance of kACP in to an instance

of Minimum Clique Partitioning. For each given vector i / , create a vertex denoted

as v \ For every pair of given vectors, i f they can be resolved into a cluster through

assigning suitable values to the ir N entries, then there is an edge connecting two

corresponding vertices. Denote the obtained graph as G — (V, E). I t can be seen tha t

the vectors residing in a common clique in G can be resolved into a cluster. Thus, the

corresponding goal in the Clique Partition ing problem is to find a m inim um number o f

cliques that include / cover all the vertices. Targeting at the m inim ization objective,

GCP picks the maximum clique at every iteration, removes the vertices therein from

the graph, and repeats this process t i l l the graph becomes empty. I t runs in tim e

0 (k2kn2), where n is the number of given vectors. The theoretical performance

guarantee of GCP [11] is much worse than its performance on real datasets, as the

reader w ill see in the experiment results.

6.3 A 2 k- Approxim ation Algorithm for k A C P

D e fin it io n 6.3.1 A given vector set E — {a l 5 a2, ct3 , ■ • -, an}, we transform all the

given vectors into resolved vector by assigning either 0 or 1 to those N ’s. The set

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the resolved vector is P = {pi,P 2 ,p$, • - • ,pm}- Then we can obtain the subsets

{S i, 5 2 , S3 , ■ - -, Sm} C E. Subset (1 < k < m) includes the given vectors which

the resolved vector pk represents. The goal is to find a minimum number of subsets

that cover all of the elements in E. When each given vector contains at most k N's,

we call this problem the kACP problem.

To implement this goal, we first design the kACP program in terms of integer

programming, and create a variable Xj for each subset Sj. I f the subset is chosen,

then Xj — 1 ; otherwise Xj = 0 .

As we know that the general integer program cannot be solved in polynomial

time, but the resulting linear program (LP) can be solved in polynomial time, so we

transform i t to a linear program.

Let OPT be the optim al result o f th is problem. For the fcACP, an element can

belong to at most 2k subsets. Denote x*j as a result o f the LP.

m
rnin T. Xi

3=1

subject to :

Xj > 1 , V Oi € E

Xj e { 0 , 1 }

m

subject to :

y: ^ >1, Voi E e
j 'fl j G Sj

Xj e [0 , 1]

(6.1)

P r o o f . T is a solution of kACP, and |T| < 2*OPT.

I f there is an element Oj ^ T , then

(6.2)
j . a i E S j

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The equation (6.2) violates the linear programming constraint for a*.

Next step we should prove that \T\ < 2k OPT

m

i

algorithm for kACP.

39

5 > j < £ > * . * •) = 2*
j =i j=i

So we can use LP to design a 2*-approximation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Exact Algorithm s for ACP

7.1 A Polynom ial Tim e A lgorithm for the 1ACP
Problem

For 1ACP problem, suppose there is a given vector set V. In the first step, we delete

the given vectors which do not contain N from set V and store them to the set De

so that all the vectors in De are resolved vectors. Then next step we delete the given

vectors from set V which can be represented by the vectors in De. A fter this step we

can obtain a new given vector set V' = u i, V2 , ■ ■ ■, um, where v, (1 < i < m) contains

one N . Now we transform each given vector V{ in two resolved vectors and store them

in the set R = r\, r 2, • • ■ , r*. Each resolved vector in R is represented by a vertex in

a graph. I f two resolved vectors can represent the same given vectors in V', connect

these two nodes w ith an edge. P artition the set R to two sets. One is X which

includes nodes w ith odd number of l ’s, the other is Y which includes nodes w ith even

number of l ’s. Then the graph can be denoted as G (X , Y, E). Since any two resolved

vectors in X or Y cannot represent a given vector, the edges exist only between nodes

in set X and nodes in set Y. Thus the graph G is a b ipartite graph. Each of the given

vectors can be represented by an edge in G. The 1ACP is transformed into finding

a minimum number of vertices tha t can cover all o f the edges. This is the m in im u m

vertex cover problem. I t is well known tha t the m inimum vertex cover problem in

b ipartite graphs can be solved in polynomial time.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 H euristic Search for k A C P

In this section, we describe our exact algorithm to find an optimal solution for an

instance o f kACP and i t can be generalized to deal w ith kACP for any k. We adopted

A *, one o f the most famous heuristic search algorithms developed originally in A r t i­

ficial Intelligence (A I), in our algorithm. A * is a Best-First search algorithm which

has been used extensively in many areas of A I and has been successfully applied to

various bioinformatics problems, the most notable o f which is probably Multiple Se­

quence Alignment (MSA). MSA is a controversial problem in computational biology.

This particular problem computes the s im ila rity based on the biological properties of

nuclei acid (or amino acid) among the D N A strands (or protein sequences). When

this biological problem is mapped to a computing science problem, the formulation

becomes finding the sim ilarity between m ultip le strings. The sim ilarity of two aligned

characters relies on the cost function, which w ill return a distance (or score value).

The sim ilarity of the alignment, then, is the sum of all pair aligned characters dis­

tances (or all pair scores). The optim al pair-wise alignment is referred to align two

strings and spaces could be inserted into each string to obtain the optimal sim ilarity.

The basic idea of A * is that rather than try ing all possible search paths, try ing and

focusing on paths tha t seem to be getting nearer to the goal. For each state, A * uses

both the exact distance from the root state, which is denoted as g, and a heuristic

estimate of the remaining distance to the goal state (the heuristic evaluation func­

tion), which is denoted as h. The state w ith the smallest (g -f h) value is always

expanded next by the algorithm and the algorithm is guaranteed to find the optimal

(i.e. m inimum weight) solution provided tha t h always underestimates the true dis­

tance to the goal state. Note that in this problem, the distance measures the number

of clusters. A * fits for the MSA. A popular admissible heuristic function used is the

sum of optim al pairwise alignments. The heuristic value is a lower bound since the

cost of the actual alignment of each pair is at least as good as the cost of the optimal

pair-wise alignment. The algorithm w ill first put the in it ia l node into the OPEN list,

which stores the nodes that are not fu lly considered. Then, at each step, i t w ill select

the best /-value node from the OPEN lis t to explore, and the algorithm terminates

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when the goal node is found (or no solution when OPEN list becomes empty). I f the

solution cannot be found after such node is explored, we w ill put i t in to the CLOSE

list, which prevents the repeated search.

The implementation of A * search for AGP problem follows the graph transforma­

tion used in the GCP [11]. The first step is to construct the graph G = (V., E), where

V contains all the given vectors and again a pair of vectors are adjacent only i f they

can be resolved in to a cluster. Note tha t when there is a singleton in G, the isolated

vector can be resolved a rb itra rily and the resultant cluster contains only this vector.

We may remove these singletons (and put the corresponding clusters, i.e. resolved

vectors, in the solution) from the graph. A fte r this, i f there is any vector which be­

longs to only one maximal clique o f G, then i t is always a good idea to create a cluster

to include all the vectors in the maximal clique. Therefore, again we can remove such

maximal cliques from the graph G (and again put the corresponding resolved vectors

in the solution). A fte r all these preprocessing steps, in the resultant graph G every

vector must belong to at least 2 maximal cliques and we are ready to start the A *

search.

A t every state in the search tree, the algorithm picks one maximum clique remain­

ing in the graph G. I t then chooses one arb itrary (random) vector, say v, from the

clique. Since v belongs to at least 2 maximal cliques, there are different ways to assign

values for iV ’s in v to resolve it. The child states of the current state correspond to all

the possible ways o f resolving. For each child state, the heuristics can also be applied

to remove possibly produced singletons and vectors belonging to unique maximal

cliques together w ith the unique cliques. In the search, the distance g from the root

state is defined as the number of clusters / cliques created so far. To estimate the

h-value The 2fc-approximation algorithm [11] is run on the graph to obtain a clique

partition . The number o f cliques in the output clique partition divided by 2fe is taken

as an estimated distance h to the goal state. The sum, g + h, is the value stored at

the child state. The A * algorithm chooses the state w ith the m inimum g + h value

to expand next. The algorithm terminates when the state to be expanded contains

no more given vectors and i t returns the g + h value stored at the state as a solution.

The pseudocode of our implementation for the A * search algorithm on kACP is

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provided in Figure 7.1. For convenience, we call the process to remove singletons

heuristic # 1 , and the process to remove vectors belonging to unique maximal cliques

together w ith their unique maximal cliques heuristic #2 . We use h() to denote

the evaluation function to estimate the distance from current state to the goal state,

which is taken as the number of clusters returned by the 2^-approximation algorithm

divided by 2k.

fu n c t io n A_Star(state)
i f Solution, found ()

re tu rn f(state);
f o r each successor Ui of state do

apply heuristic #1;

apply heuristic #2;

f(u i) = g(ui) + h(ui);
add Ui to L ist T ;

remove state from L ist T;
find a state new- state in List T having the m inimum / value;

A_Star (new- state) ;

Figure 7.1: A * implementation for AA.CP Function Solution, found() checks i f a

solution has been found; Function g() returns the exact distance from root state to
state Ui, Function h() is the heuristic evaluation function; This implementation also

uses an open lis t T to store the states waiting to be expanded.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Experim ental R esults

We tested our implementation o f the A * search algorithm on two real fingerprint

datasets, provided by the authors of [11]. One of them is the bacterial small subunit

rRNA genes set where n = 1491, m = 27. A vector in this dataset may contain

up to 11 N ’s. The other set is fungal small subunit rRNA genes, where n = 1507,

m = 26, and a vector in this dataset may contain up to 14 N ’s. The implementation

was tested on all /cACP instances generated from the datasets, where k = 2,3, • • •, 14.

For every specific k > 2, the vectors in the datasets which contain more than k IV’s

must be modified to be legitimate vectors. This was done by retaining the first k

N ’s and assigning the value 0 to the others. We use two methods to implement

both A * and GCP algorithms. These two methods are different from the step which

remove the maximal cliques tha t contain a node only belong to one maximum clique.

For the first method, we called Methodi We create graph G — (V, E), and get the

information o f all the maximal cliques. Each time we go through all the nodes on

graph. Once we find tha t there exist a node only belong to one maximal clique, we

remove this maximum clique from the graph. This step is ended when there are none

of nodes in graph tha t only belong to one clique. For the second method, Methodi,

we do not need all the maximum cliques information at first. A fter creating the graph

G = (V, E), We go through each node and its neighbor nodes. I f all o f its neighbor

nodes are connected pairwise, I t means tha t this node only belong to one clique. We

remove this node and its neighbor nodes from graph, this step is ended i f there are

no such kind of nodes in the graph.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8-1 illustrates the results o f our implementation by using Method\. We

have also coded the GCP algorithm proposed in [11], using the same preprocessing

strategies as in the A * search implementation. On Table 8.2, we implemented both

A * and GCP by Method,?. The running time of both A * and GCP algorithms imple­

mented by Method? are much faster than the running time of these two algorithms

implemented by Method\.

The results of our GCP algorithm implementation on all the generated datasets

are also included in Table 8.1 and Table 8.2. I t is interesting to note tha t the outputs

from these two algorithms are the same for a ll the generated datasets. This might

indicate tha t in practice, the GCP algorithm performs very well. On the other hand,

more interestingly, the running times of these two implementations on the datasets

differ insignificantly. This implies tha t in the case when an optim al solution must

be guaranteed, the A * search algorithm could be a good candidate. Nonetheless, the

preprocessing followed by the 2fc-approximation algorithm m ight not be a good choice,

although i t does run fast and does have a certain level of performance guarantee.

8.1 The O ptim ality of A* Search

From Tables 8.1 and 8.2, i t is easy to notice tha t the 2fe-approximation algorithm

doesn’t usually produce optim al solutions; However, the heuristic GCP algorithm

performs as good as the A * search on a ll generated instances. The instance in Figure

8.1 shows where GCP algorithm fails to compare the optimum. The solution by

the GCP algorithm contains 7 clusters and the solution by the A * search algorithm

contains only 6 clusters. Therefore, in the case where optimal solutions should be

found, the A * search is preferable.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dataset n m k k A * 7 a * GCP T g c p Approx -^A pp rox

2 1.94 904 19.093 904 15.625 904 16.023
3 2.73 841 28.650 841 28.260 841 28.450
4 3.28 798 44.883 798 43.923 800(+2) 43.965
5 3.59 786 51.103 786 50.993 786 51.102

Bacteria 1491 27 6 3.74 778 69.209 778 66.415 780(+2) 67.507
7 3.79 773 77.640 773 76.800 775 (+2) 76.560
8 3.82 770 93.153 770 90.279 772(+2) 91.657
9 3.83 769 104.770 769 104.800 771 (+2) 104.670

11 3.84 769 122.636 769 122.504 771 (+2) 122.580

2 1.99 890 9.894 890 9.889 890 9.413
3 2.91 783 32.146 783 30.994 785(+2) 31.035
4 3.61 694 71.763 694 68.688 702(+8) 70.654
5 4.04 633 113.603 633 108.876 635(+2) 110.876

Fungi 1507 26 6 4.29 595 154.360 595 154.330 597(+2) 154.330
7 4.43 572 196.041 572 196.592 572 196.006
8 4.49 563 248.206 563 246.354 563 248.201
9 4.52 559 277.609 559 276.708 559 277.012

14 4.54 556 746.623 556 736.619 556 742.890

Table 8.1: The experimental results o f A * search, GCP by Method^, and the 2k-
approximation on all the generated datasets from the datasets in [11]. k is the average

number of N's in the generated instance of the kACP problem. Talg records the
running time(seconds) of the algorithm alg in a Linux PC w ith 1.0 GHz processor.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dataset n m k k A * Ta* GCP Tqcp Approx -^Approx

2 1.94 904 0.851 904 0.851 904 0.849
3 2.73 841 2.273 841 2.274 841 2.271
4 3.28 798 3.120 798 3.160 800(+2) 3.080
5 3.59 786 3.194 786 3.193 786 3.193

Bacteria 1491 27 6 3.74 778 3.835 778 4.115 780(+2) 3.829
7 3.79 773 3.965 773 3.785 775(+2) 3.961
8 3.82 770 3.847 770 3.849 772(+2) 3.843
9 3.83 769 4.047 769 4.125 771 (+2) 4.043

11 3.84 769 3.967 769 4.035 771 (+2) 3.959

2 1.99 890 0.861 890 0.841 890 0.841
3 2.91 783 2.664 783 2.756 785 (+2) 2.660
4 3.61 694 3.965 694 4.001 702(+8) 3.368
5 4.04 633 4.438 633 4.486 635(+2) 4.429

Fungi 1507 26 6 4.29 595 5.407 595 5.467 597(+2) 5.405
7 4.43 572 5.197 572 5.196 572 5.197
8 4.49 563 5.557 563 5.557 563 5.557
9 4.52 559 5.698 559 5.697 559 5.696

14 4.54 556 6.289 556 6.289 556 6.289

Table 8.2: Experimental results of A * search, GCP by Method2, and the 2k-
approximation on all the generated datasets from the datasets in [11]. k is the average

number of JV’s in the generated instance o f the kACP problem. Tatg records the run­
ning time(seconds) o f the algorithm alg in a L inux PC w ith 1.0 GHz processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi, -© V(i

Figure 8.1: A n instance of 2ACP where A * returns an optim al solution of 6 while the
GCP algorithm doesn’t. This instance contains 12 vectors: v\ = ACVOOOOOOO, v9 =

OlATOOOOOO, v3 = iVllOOOOOO, vA = 1UV000000, v5 = 0001V1V0000, v6 = 000011V000,
v7 = 0001V11000, v8 = OOOlliVOOO, v9 = 000000AW0, v1Q = 00000001N, vn =
0000001V11, V\2 = 00000011A.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Contributions and Future Work

We studied the problem of clustering binary fingerprint vectors w ith missing values.

We applied the heuristic search algorithm A * from the A I community to solve kACP

optim ally where each vector contains at most k missing values.

By now there are no exact algorithms to solve the &ACP problem. The A * search

algorithm provides a good way to obtain the optim al solutions. Compared w ith some

existing greedy algorithms, the running time and experimental results demonstrated

tha t this proposed exact algorithm is efficient.

Some subjects o f interest in my future work are 1) examining the computational

complexity for 2ACP; 2) i f the problem is NP-hard, then designing better approxi­

mation algorithms for 2ACP in order to provide better evaluation functions for A*

search; 3) when generalizing A * search to kACP, designing better approximation al­

gorithms and thus better evaluation functions; and 4) designing or composing bench­

mark datasets for evaluation, such tha t algorithms can be fa irly compared.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algo­
rithms, and Applications. Prentice Hall, Englewood Cliffs, N.J, 1993.

[2] M. J. Atallah. Algorithms and Theory of Computation Handbook. CRC Press
LLC, 1999.

[3] T . Beissbarth, K. Fellenberg, B. Brors, R. Arribas-Prat, J. M. Boer, N. C. Hauser,
M. Scheideler, J. D. Hoheisel, G. Schutz, A. Poustka, and M. Vingron. Processing
and quality control of DNA array hybridization data. Bioinformatics, 16:1014-
1022, 2000.

[4] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns.
Computational Biology, 6:281-297, 1999.

[5] A. Borchers and D.-Z. Du. The fc-Steiner ra tio in graphs. SIAM Journal on
Computing, 32:857-869, 1997.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
McGraw-Hill, 1989.

[7] R. Drmanac and S. Drmanac. cDNA screening by array hybridization. Methods
in Enzymology, 303:165-178, 1999.

[8] S. Drmanac, N. Stavropoulos, I. Labat, J. Vonau, B. Hauser, M. Soares, and
R. Drmanac. Gene representing CDNA clusters defined by hybridization of
57,419 clones from infant brain libraries w ith short oligonucleotide probes. Ge­
nomics, 37:29-40, 1996.

[9] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display
o f genome-wide expression patterns. Proceedings of the National Academy of
Sciences, 25:14863-14868, 1998.

[10] B. Everitt. Cluster Analysis. Edward Arnold, London, 3rd edition, 1993.

[11] A. Figueroa, J. Borneman, and T. Jiang. Clustering binary fingerprint vectors
w ith missing values for DNA array data analysis. In Computational Systems
Bioinformatics(CSB’OS), pages 38-47, 2003.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman and Company, San Francisco, 1980.

[13] C. Gropl, S. Hougardy, T . Nierhok, and H. J. Promel. Approximation algorithms
for the Steiner tree problem in graphs. In D.-Z. Du and X. Cheng, editors, Steiner
Trees in Industries, pages 235-279. Kluwer Academic publishers, 2001.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[14] J. Gu, X. D. Hu, and M. H. Zhang. Algorithms for multicast connection under
m ultipa th routing model. Information Processing Letters, 84:31-39, 2002.

[15] R. L. Hadas. Efficient collective communication in WAN networks. In Proceedings
of IE E E ICGCN, pages 61-66, 2000.

[16] E. Hartuv, A. Schmitt, J. Lange, S. Meier-Ewert, H. Lehrach, and R. Shamir.
An algorithm for clustering cDNA fingerprints. Genomics, 66:249-256, 2000.

[17] R. Herwig, A. Poustka, C. Muller, C. Bull, H. Lehrach, and J. Obrien. Large-
scale clustering of cDNA-fingerprinting data. Genome Research, 9:1093-1105,
1999.

[18] X. D. Hu, X. Jia, and M. H. Zhang. Routing algorithms for multicast under
m ulti-tree model. In Proceedings of IEEE INFOCOM, 2004.

[19] C. Huitema. Routing in the Internet. Prentice Hall, 2000.

[20] M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner
tree problems. Journal of Combinatorial Optimization, 1:47-65, 1997.

[21] Kovitz. W ikipedia, the free encyclopedia. Website, 2001. h t t p : / / e n .
w ik ip e d ia .o rg /w ik i.

[22] G. Lin. An improved approximation algorithm for multicast k-tree routing.
Journal of Combinatorial Optimization, 2004. Submitted.

[23] G. McLachlan, R. Bean, and D. Peel. A m ixture model-based approach to the
clustering of m icroarray expression data. Bioinformatics, 18:413-422, 2002.

[24] S. Meier-Ewert, J. Lange, H. Gerts, R. Herwig, A. Schmitt, J. Freund, T . Elge,
R. M ott, B. Herrmann, and H. Lehrach. Comparative gene expression profiling
by oligonucleotide fingerprinting. Nucleic Acids Research, 26:2216-2223, 1998.

[25] C. H. Papadimitrious and K. Steiglitz. Combinational Optimization: Algorithms
and Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[26] R. C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389— 1401, 1957.

[27] G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In
Proceedings of the 11th Annual ACM -SIAM Symposium on Discrete Algorithms
(SODA 2000), pages 770-779, 2000.

[28] P. Tamayo, J. Slonim, D. Mesirov, J. Zhu, S. Kitareewan, E. Dmitrovsky, E. Lan­
der, and T. Golub. Interpreting patterns o f gene expression w ith selforganizing
maps: methods and applications to hematopoietic differentiation. Proceedings of
the National Academy of Sciences, 96:2907-2912, 1999.

[29] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[30] L. Valinsky, G. D. Vedova, A. Scupham, S. Alvey, A. Figueroa, B. Yin, R. Hartin,
M. Chrobak, D. Crowley, T . Jiang, and J. Borneman. Analysis of bacterial
community composition by oligonucleotide fingerprinting of rR N A genes. Applied
and Environmental Microbiology, 68:3243-3250, 2002.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://en

[31] E. W . Weisstein. Mathworld — a wolfram web resource. Website, 1996. h t tp :
//m a th w o r ld .w o lfram . com/NP-HardProblem.h tm l/.

[32] E. X ing and R. Karp. Cliff: Clustering of highdimensional microarray data
via iterative feature filtering using normalized cuts. Bioinformatics, 17:306-315,
2001.

[33] A. Zelikovsky. An 11/6-approximation algorithm for the network Steiner prob­
lem. Algorithmica, 9:79-83, 1993.

[34] X. Zhang, J. Wei, and C. Qiao. Constrained multicast routing in wdm networks
w ith sparse light splitting. IE E E INFOCOM, pages 1781-1790, 2000.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

