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Abstract

The use oi adaptive control in industry has been limited due 1o
problems in the theory and implementation of recursive identification
algcrithms. This work addresses a few of the problems involved with model
structures, algorithms, data forgetting and bounded noise descriptions.

Guidelines for choos'ng a model structure are presented from a survey
of recent literature of linear models and recursive parameter  estimation
methods.

Problems with modeling the steady state displacement by dift. . encing
the data are examined. The C polynomial allows the disturbance to be
described as a combination of Brownian motion and white noise hence the
value of the C parameters may be related to some physical interpretaticn of
the system. The C polynomial is equivalent to a Kalman tilter for estimating
the displacement term u.

A new exponential forgetting factor which maintains the determinant of
the P matrix equal to a constant is presented. It is compared to others
using both a simulated example and an application to closed loop data from 2
pilot scale distillation column. This approach is robust under noisy, and
non-persistently excited conditions.

The directional forgetting algorithm of Kulhavy and Karny, (1984) s
applied to the simulation example and distillation column data. This
approach has several advantages over exponential forgetting. The algorithm
is inherently robust, and the value of the forgetting factor is not related
to the dimension of the problem.

The effect of the width of a prediction error dead zone on the

estimation accuracy is evaluated using the distillation column data Smaller



dead zones provided a diminishing return on accuracy at the expense of
dramatically increased computation ioad.

The new variable dead zone algorithm of Dasgupta and Huang (1987) was
also applied to the distillation column data. Large initial variations in
the parameters and lack of tolerance to underestimation of the noise bound

exclude the use of this algorithm for process applications.
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Chapter 1

Iatroduction

1.1 Introduction to Recursive Identification

Modern control systems in use today frequently rely on linear dynamic
models of a system to describe transient behavior. A major portion of the
work involved in designing a control system is the development of these
models. In general, there are two approaches that may be taken to obtain the
model. If the physical system is well known and there is sufficient
mathematical theory available to describe all of its internal mechanisms
then the dynamic model may be written as a set of differential equations,
whose structure and constants correspond directly to physical relationships
and quantities. For many realistic situations, however this approach s
impractical because of the lack of sufficient knowledge of the system, or
the complexity of the resulting differential equations. A more direct and
often more practical approach is made by analysis of dyramic data gathered
from the system. This approach is known as model identification. Typically
the steps involved in model identification may be classified in the

following general categories:

1. Design of experimental conditions

2. Collecting suitable data

3. Choosing the model structure

4, Estimating the parameters of the model

s. Verifying the resulting model choice



In off-line or non-recursive model identification each of the above
steps is well defined All of the steps, perhaps with the exclusion of step
2, may be carried out independent of the operation of the system and hence
any reasonable amount of time and effort may be taken to ensure that the
resulting model is valid and appropriate. In some instances, however, it is
found that decisions relating to the dynamic behavior of the process must be
made in a changing environment; one in which the dynamic model derived from
a previous range of operating conditions is, for some reason, invalid or too
inaccurate to be applied to the present conditions. This situation motivates
the use of recursive identification, in which the model is continually
modified with each new piece of information to improve its accuracy and to
track any time varying or non-linear behavior in the system. Such an
approach attempts to ensu:e that the model is derived from current data, and
therefore is the most appropriate under the present operating conditions.
Clearly this approach to identification cannot be easily dissected in terms
of the five steps previously defined, since all of these must be occurring,
in some form, each time the model is updated. Since the identification of
the model must be cencurrent with the operation of the process, the
decisions relating to the model identification steps must be made in a
limited time frame, with limited information available, and possibly limited
computing power.

Recursive identification of a dvnamic model is a cornerstone of any
model based adaptive controller. The success or failure of an adaptive
controller in practice will be highly dependent on how well the recursive
identification performs. Indeed much of the reluctance to the adoption of
adaptive control in industry is due to problems and unfamiliar theory

associated with recursive identification (Tjokro, 1984). Numerous recent

t9



studies have focused cn improving the robustness of the control law (Cluett,
1987, Song et al. 1986) in order to reduce the reliance on model accuracy,
however these are often made at the direct expense of performance.
Heuristically  speaking, model insensitivity (robustness) is necessary 1o
provide giobal stability and hence reliatility of the control. However it is
argued here that the accuracy and relizb lity of the model, and consequently
the recursive identification scheme are ccsential to improve the performance
of a model based adaptive control :yst:m. This statement 1s the main
motivation behind the preseiit work, alt”:.<a the study of adaptive control
per se will not be pursued. The present wo:. was undertaken to examine some
of the problems in recursive identification which have inhibited the
acceptance of adaptive control, to critically review the existing methods
available in handling those problems, and to suggest new solutions and
approaches. A major effort in the work was in providing understandable
interpretations of many of the recent innovations in the field.

The major distinctions of this work are:

1. A unified approach to the choice of model structure is presented

which includes the problem of dealing with the steady state levels.

2. A new interpretation of the C polynomial of the ARIMAX model
structure is proposed. This observes that the root locations indicate
the proportion of stationary noise to a Brownian-motion disturbance,
and hence the value of the C parameters may be related to some physical

interpretation of the system,

3. A new forgetting factor which maintains the determinant of P at a
user specified value. Such a choice will inherently avoid matrix

singularity, and from a statistical point of view, is a more meaningful



measure of the P matrix than the trace. When - U-D factorisation
method of Bierman (1976) is employed, det(P) - tr{P), is easily
computed and monitored without requiring re .uastruction of  the
P-matrix at each interval. The constant determinant method is shown to

be robust when applicd to rank deficient data in the presence of noise.

4. The directional forgetting algorithm of Kulhavy and Karny (1984) is
shown to be an inherently robust approach when applied to rank

deficient datu.

S. The effect of applying a prediction error dead zone criterion on the
identification step is examined by application to an off line data set
from a pilot scale distillation column. It is observed that larger

dead zones increase the sensitivity of the estimates to outliers.

1.2 Organisation of the Thesis

The basic approaches to constructing a linear model of a process are
reviewed in Chapter 2. Various forms of the resulting model structure are
presented with recommendations for their application. A discussion of the
problem of including the steady-state information in a dynamic model is
presented. Various commonly employed approaches to the problem are presented
and critically discussed.

The output error and equation error forms of the linear dynamic model
and methods for treating non-zero equilibrium levels are unified by the
consideration of a general mode! structure from which any of these may be
subsumed. Recommendations are made for choosing a particular model within
the framework defined.

In Chapter 3 a review of the recursive algorithms for estimating the

parameters of the general model structure is presented. The algorithms are



interpreted within a general recursive prediction error method framework.
Ordinary recursive least squares, recursive maximum likelihood, extended
least squares, Landau’s model reference output error method, generalised
least squares and instrument>]l variable methods are presented and reviewed.
Recommendations for the use of these methods based on a review of the
literature are provided.

An examination of the use of the "Brownian" motion model as a method of
describing the steady state closure term is the subject of Chapter 4. The
inherent problems with this approach are examined and methods of overcoming
them are presented. The ARIMAX model structure is interpreted as a linear
combination  of Brownian and  stationary noise signals. This new
interpretation sheds some understanding of how the root locations of the C
polynomial are related to the structure of the noise and disturbance
processes. An interpretation of the ARlMAX model as an “optimal® or Kalman
filtering approach to estimating the displacement or closure term s
explained and demonstrated with a simulated example.

Chapter S5 examines various approaches to the idea of exponenual data
forgetting in the application of ordinary least squares. The variable
forgetting factor is interpreted as a way of incorporating the ad: .ntages of
the “constant gain” projection algorithm methods to the “least-squares type”
methods which wuse the Gauss-Newton updating direction. The constant
information forgetting factor of Fortescue ¢ al. (1981), the constant trace
forgetting factor of Sripada et al. (1987) and a new forgetting factor based
on maintaining a constant determinant are presented and compared by
application to a simple simulated example using reduced rank data and to a
closed loop experimental data set from a pilot scale distillation column.

The effect of the choice of forgetting factor on the propagation of the P



matrix is compared by examination of the parameter confidence bound
ellipses.

Chapter 6 presents a new approach to the forgetting problem due to
Kulhavy and Karny, (1984) which is substantially different from the
exponential forgetting algorithms of Chapter 5. The motivating arguments for
the algorithm are presented with an interpretation of the resulting
equations. The algorithm is applied to the simulation and distillation
column examples of Chapter 5 to provide a direct comparison.

Chapter 7 presents a review of various modifications to the basic least
squares algorithm which result from the assumption that the process
disturbance is bounded. The prediction error dead-zone method is discussed,
and a set thecoretic approach to identification is described. A modified
least squares method of Dasgupta and Huang (1987) based on the bounded noise
assumption which incorporates data-dependant updating and exponential
forgetting is examined and reviewed with comparative examples.

Chapter 8 summarises the results of the entire thesis. Conclusions are
drawn and recommendations for the direction of future work are

outlined.



Chapter 2
Process Models For Self Tuming Control

2.1 Introduction

The field of process control relies on the use of linear, or livearised
models of systems in order to describe dynamic behavior. The many ava'lable
approaches to linear modeling, and their potential problems and pitfalls
have led to many mis-applications and false notions in this field. For
example the inappropriate treatment of non-zero mean steady states and low
frequency disturbances by simpie differencing of the daia has been
recognised as a problem in numerous works (Vermeer, 1987; Tuffs 198S).

This chapter focuses on the problems involved in the representation of
discrete-time, time-invariant transfer function models to real-world
processes. The broad objective is to provide a general overview of the
models available and to present guideline- and recommendations for their
use. The study is generally constraincd 1o the choice of the "form", or
structure of the model. The more specific problems related to modeling such
as model order and delay determination o the choice of appropriate sampling
rates are treated well elsewhere (eg. Ljung, 1987, Box and Jenkins, 1970),
and hence are not discussed. The chapter covers the problem of including
non-zero steady state levels in a dynamic model, and reviews numerous

specific linear model structures from existing literature.



2.2 The Deterministic Dynamic Modei

Linear, time-invariant systems form the most important ciass of dynamic
systems considered for the design of controllers and in particular
self-tuning controllers. A general description of a linear system is given
as follows (Ljung, 1987).

A system is linear if its ouiput response lo a linear combination

of nputs is the same linear combination of the output responses

of the individual inputs. It is time-invariant if the outpul

response to a certain signal does not depend on absolute time.

Most real plant systems do not in general hold to these conditions,
however a common and often valid approximation is to assume that they are
linear in local regions of interest.

It is well known that a sampled linear time-invariant system whose
input is constant between sample intervals may be described by its Markov

sequence:

o0

y(0=Gla Huw ; Ga™= ) 48
k=0

. (2.1)

where y(t) and u(t) are the outputs and inputs of the model at discrete
intervals of time denoted by t. This model is a rather inconvenient method
of describing the process because it requires an infinite number of
parameters. If G(q’l) is a rational function then it may be factorised into
finite numerator and dcaominator polynomials (Box and Jenkins, 1970). This
more useful form of the linear model is the deterministic auto regressive

moving average (DARMA) model which may be written as:



A@@ Hy(t) = q'dB(q'l)u(t) 2.

with A(q’l) and B(q'l) as polynomials in the backshift operator a given

by:

A@h) = 1+ alq'l + zn,q'z ...anq'" (2.32)
B(q)) = b, + blq-l + bzq'z + .. bmq'm (2.3b)

The term d is the process delay specified as an integer number of sample
intervals of t (d>1). Equivalentlv. d may be interpreted as the number of

leading terms of G(q’') that are equal to zero.

2.3 Disturbances

According to the deterministic model (2.1) the output of a system can
be exactly calculated once the input is known. In practice however, there
are usually unmeasurable signals such as noise and disturbances that affect
the system. These may be accommodated by lumping them into a general

disturbance term v(t):
y(t) = G(q u(r) + v(1) (2.4)

The lumped term v(t) considers the total effect of all classes of
disturbances including load disturbances, measurement errors, parameter
variations and noise.

The need for considering these disturbances in the model arises from

the requirement to predict the future outputs based on information available



at the present. When a model 15 to be used for control or prediction the
effect «f the unmeasurable signals on the prediction error (the difference
between the actual future output and the predicted future output) must be
canceled or eliminated for optimum performance (Astrdm and Wittenmark 1973).
The model must therefore be capable of predicting the output based on some
assumed knowledge of the disturbance behavior or based on some projection
from a model of the past estimates of the disturbance. Since v(t) is assumed
to be unmeasurable and of a general nature, a reasonatle approach to its
characterisation is to consider it as a random process (a sequence of random
variables) and model and predict its behavior as the output of a linear
filter driven by white noise. This idea was originally explored by Wold
(1938) and has been much used in the study of linear dynamic systems, such
as time series analysis (Box and Jenkins, 1970). A linear model of v(t)
driven by a zero mean discrete white noise sequence, denoted by £(t) is thus

written as:
v(t) = H(@ M) (2.5)

with H(q'l) defined as:

[o o]
-1 -k
HQq ) =1+ Zq h, (2.6)
k=1
This yields a general linear stochastic model as:
y(t) = G(@ Hu(r) + Hg e 2.7)

If H(q'l) is considered to be a rational function then (2.5) may be

factorised into finite numerator and denominator polynomials:

10



1 c@™h
vt = H@hew = =926 (2.8)

D{q )

Such a form is known as the time series or auto-regressive moving average
(ARMA) model (Box and Jenkins, 1970). The time series representation of
general disturbances by filtered white noise is supported by the theorems of
spectral factorisation which are developed from statistical and  signal
processing literature (Box and Jenkins, 1970). A basic theorem of spectral

factorisation may be stated as the following (Astrdm and Wittenmark, 1984):

"Given a spectral density &(w) which s rational in  cos( - there

exists a linear system with the pulse transfer function

H(z)= E&) (2.9)

D(z)

such that the output obtained when the system is driven by anute
noise is a stationary random process with spectral density &. "he
polynomial D has all its zeros outside the wunit disk. The
polynomial C has all its zeros outside the unit disk or on the unil

circle.”

The proof and discussion of this theorem can be found in the literature on
stochastic processes or stochastic control (Astrom, 1970). It suffices to
note that thic rheorem requires that the filter H(q'l) be stable and its
inverse be stable or marginally stable.

Note that choosing the leading term of H(q'l) to be | does not reduce
the generality of the description since the variance of €£(t) may take any

value.



The invertability  condition  given by the theorem  of  spectral
factorisation may be viewed as a condition on H(q'l) for it to be wuseful as
a predictor. For example suppose that the values of v(k) for kst-1 have been
observed and it is required to predict the value of v(t). Such a prediction
will be given by:

Cta’h) . 1
vt = =g = [1-D@ )| vn+Cla g =

D(q )

f(t)+cl€(t- I )...+cn E(t—nc)—dIV(t- 1 )...-dndv(t-m!) (210}

The prediction (2.10) requires not only the value of &(t) (in this case £&(1)
must be replaced by its expected value), but a means of determining the
previous values of &(k). Since §&(k) is not directly observable it must be

estimated by inverting the noise model:

g = 200 oy @11

If C(q'l) has all its roots inside the wunit circle of the z-plane then the
effect of the initial condition ¢(0) on &(k) will decay exponentially with
time and may be ignored. However in the case that C(q'l) has a root on (or
near) the unit circle, equation (2.11) will be marginally stable and the
influence of initial conditions £0) on £k) will not diminish (or diminish
very slowly) with time. For example if D(q'l)=l and C(q'1)=l-q'1 then (2.11)

may be written as:
§(k) = v(k) + &(k-1) (2.12)

Attempting to calculate &(k-1) from v(k-1), v(k-2)...v(0) gives:



k-1
gk ) vk-i) + €0) (213)

i =0

The presence of the unknown term §(0) as k—oo shows the consequences of
C being unstable. Methods of handling this problem using a time-varying
predictor such as a Kalman Filter have been presented (Astrdm and
Wittenmark, 1984), however these authors point out that there are usually
ways of reformulating the model to avoid using an unstable C. An example of
such a situation is described in section 2.12.

The stability requirement on H(q'l) given by the theorem of spectral
factorisation implies that the disturbance will be bounded and:

o0

1 *nleh"l < 00 (2.14)

From (2.14) v(t) must be zero mean since:

E{v(t)) = H(1)E{&(t)) =1 + °f hk 0=20 (2.15)
k=1

The disturbance models for which this stability requirement is strictly held
are termed stationary because for a stationary input signal such as white
noise the output v(t) will also be stationary (Box and Jenkins, {970). The
term stationary in this context may be interpreted as meaning that the
statistical properties given by the moments of the distribution function are
constant for any arbitrary period of time over which the signal is examined.
A signal is termed “weakly" stationary if only the first two moments (the

mean and the variance) are constant.



2.4 Steady State Information and Low Frequency Disturbances

The dynamic model written in the form of (2.2) requires that the inputs
and outputs have a constant ratio at steady state, given by the gain of the

process:

Ju . B0,
u A(l)

GAIN (2.16)

This is clearly not a reasonable constraint for the model of a process,
because the input and output data in their raw or positional form, given by
um(t) and ym(t) are non-zero mean measurements of real quantities such as
temperature or flow, whose steady state values do not generally have a
constant "ratio” relationship as in (2.16).

Consider a linear process where the full scale deviation of 0 to 100%
in control valve signal u_~causes a deviation of 80°C to 180°C in the
measured temperature variable Y. The gain of this process is unity because
a change of one input unit gives a change of one output unit. Its steady
state ratio given by (2.16) varies from infinity at u”=0% to 1.8 at
u"-lOO%. A proportional controller acting on the measured signals ym(t) and
um(t) of this process would therefore have to be non-linear to operate
properly, although this is clearly unnecessary because the dynamics are
linear. The problem with using positional data is due to the offset or
dispiacement of 80°C which exists on the measured variable.

Two different approaches may be applied to this problem:

1. Remove the steady state or nominal levels by pre-treatment of the

measured data.



2. Consider the disturbance v(t) to have a non-zero mean component by
modifying the structure of the disturbance model. This allows the

mode! to be written in terms of positional data.

Several methods falling into each of these categories have been
presented and evaluated for the case of off-line identification (Ljung,
1987). The first is perhaps more meaningful in terms of a physical
interpretation and more analogous to the Lapiace domain models which require
that the input and output are exactly zero mean. The second, however must
completely describe the steady states and load disturbances within its
structure, hence it is usefu!l in the design of regulatory controllers. A
summary and discussion of these approaches is outlined in sections 2.5 and

2.6

2.5 Methods of Pre-Treating the Data

Removing the low frequency information by pre-treatment of the data is
perhaps the most natural approach, since the objective is to build a dynamic
model which is linearised about a particular steady state. In practice

however it becomes difficult to draw a distinction between valuable low

frequency information and the steady state or no levels. As a result
the methods which fall into this category are gen: - in nature and
often defy theoretical analysis. In general this - ‘rs from the
second because the measured data ym(t) and um(f 1 ectly applied
to the model as the inputs and outputs y(t) anc . examples of

data pre-treatment are described in the following sub-sectivi..



2.5.1 Deviations from Physical Equilibrium

The most natural approach is to determine an estimate of Y denoted by
y which corresponds to a steady state value of u_ denoted by y close to the
desired operating point. The values of y and y may be determined by a steady
state model, or some historical knowledge of the operating conditions. Then

define:

y(t) = ym(t)-y_(t) (2.17a)

u(t) = u_(t)-u(t) (2.17b)
This approach, although perhaps the most desirable in terms of the physical
interpretation, is impractical if steady state data are not available or if

the steady states are affected by unmeasurable load changes.

2.5.2 The Incremental Approach

The low frequency information such as the steady state levels in a
dynamic model may be eliminated by redefining y(t1) and u(t) as the

increments of the measured input and output
y(t)= y ()-y (t-1) = Ay (2.18a)
m m m
u(t)= um(t)-um(t-l)a Au_ (2.18b)

Using the increments of the data Aum and Aym approximates the

derivative of the input and output of the process whose values are zero at



steady state. Such an approach is in practice identical to wusing a noise

model with integration (Section 2.6b).

2.5.3 A Mean Deviational Approach

Another approach is to use the sample means as estimates of the steady

states. The sample means are calculated from off-line or batch data as:
N , N
Y=y Z y (k) u =& X u_(k) (2.19)
k=1 k=1
or in a recursive manner by the moving averages given by:
y(t) = ay(t-1) + (I—a)ym(t-l); 0 <ac<l (2.20a)
u(t) = ay(t-1) + (l-a)um(t-l) (2.20b)

The model inputs and outputs y(t) and u(t) are definel! as in (2.17). Such an
approach is known as mean deviational. A problem with this method is that
the estimated mean may not be a good estimate of the steady state. For
example in the offline case the sample mean is constant while the steady
states may be changing due to disturbances or setpoint changes within the
data set.

In the recursive approach the moving average mean uses the parameter a
to estimate the steady states, thus its behavior may vary depending on how a
is chosen. Note that as a approaches zero the method becomes equivalent to
using incremental data as in (2.18). Using the moving average mean equations

(2.20) to estimate the steady states is also similar in practice to using a



noise model with integration (Section 2.3.2b).

An ad-hoc approach similar to the above method was suggested (Tham et
al. 1987) in which y is taken as the setpoint of a closed loop control
system and u as calculated in (2.20b). This approach is based on the
assumption that the steady state is indeed given by the setpoint (implying
no control offset), but has the problem that the filter (2.20b) will
introduce new dynamic modes to the system, since the mean deviational filter

does not cancel out of the resulting closed loop transfer function.

2.6 Including the Displacement In the Disturbance Model

Considering the displacement to be a non-zero mean component of v(t)
violates condition (2.14) and implies that H(q'l) will not be . stationary
process. This situation is usually remedied by either including an arbitrary
constant value or closure term as part of v(t), or factoring one or more
marginally stable components from H(q'l) and modeling the resulting form of
the disturbance as a stable process The disturbance model approach differs
from the methods of 2.5 in that it allows the measured variables ym(t) and
um(t) to be directly applied to the model inputs and outputs y(t) and u(t).
The main advantage of this approach is that it models the steady states and
load disturbances within the overall model structure, hence it is useful for
the design of regulatory controllers by the ‘“Internal Model Principle”
(Francis and Wonham, 1976).

The following sections present several methods of including the steady

state information in the model structure,

18



2.6.1 The Positional Model

A common simplification that may be made for linear processes that are

not affected by load changes is to consider the steady states u and Yy to
(] ) .0

be linearly related, and combine them in a closure term 4. This term

eliminates the need to consider the data in terms of deviations from a

particular steady state. It may be interpreted as specifying a family of

"constant load" steady states, and thus has the advantage of being

unaffected by servo or setpoint changes. For the DARMA model (2.2) the value

“ - A l)y - [; )u ‘a..‘ )
( s (l [ ] ] I

Rewriting equation (2.2) in terms of the positional data and including

the y term yields the "positional” form of the model:
-1 -dy,, -1
A(Q )y (1) = q B(q Ju (1) + 4 (2.22)
m m

In offline identification applications, this method of incorporating
the steady states in the dynamic model is only a slight variant of the mean
deviational methods described in section 2.5¢ (Ljung, 1987), hence the
latter method is generally preferred because it requires fewer model

parameters to be estimated.



262 A Noise Model with Integration

In contrast to the stability condition (2.14) stated for H(q l) it s
often convenient to lump the nominal values Y. and u, 3as non-zero mean
components of v(t) by considering the noise model to be unstable.

The constart u given by (2.22) may be modeled as a step disturbance of

magnitude u at time zero:

8(1) (2.23)

where &(t) is a unit impulse at time zero. If the value of p is subject to
random step changes at each interval then the closure term y may be modeled

as a series of step disturbances of random heights given by the sequence

€, (1)

WO = —— €0 (2.24)
1-q

The disturbance v(t) may therefore be modeled as the sum of u(t) and other
strictly stationary disturbances given by L(q'l)€z(t) to give a marginally

stable integrated disturbance model:

1 -1 ca™h
e €0 + L@ EW) = =2—E() (2.25)

v(t)=

The integrated disturbance model may be equivalently applied by forcing
A to appear as a common factor of A@Q Y and B(q'l) by over parameterising

each by an order of one. This is equivalent to considering A to be a factor

]

>



of D(q'l), with the disadvantage that it increases the number of parameters
which must be estimated.

Using a disturbance model with integration such as (2.25) difters from
the incremental data approach of 2.5b in that it allows the measured data to
be directly applied to the model. A main advantage of this structure is that
it allows the design of controllers with inherent reset or integral action
(Clarke et al. 1983). This type of model is an important case which has been
widely used for theoretical study and practical application (Vermeer, 1987).
A more comprehensive discussion of its properties and applicability s the
subject of Chapter 4.

A similar approach to the integrating noise model is the k-incremental
process model (Clarke et al. 1983) in which the differencing operator A is
replaced by a more general integrating term I—q’k with k21. This approach
was considered in order to facilitate k-step ahead predictions of the
process output in the design of a predictive controiler (Tuffs and Clarke,
1985). The advantages of such an approach however are, for most practical
situations. outweighed by the increased senmsitivity to noise and the
existence of better approaches to the multi-step prediction problem such as
Generalised Predictive Control (Clarke et al. 1987).

The disturbance model with integration could be further generalised, to
give moie flexibility in describing the behavior of the disturbance by
taking the polynomial D(q'l) to be of higher order. For example periodic
variations in the value of u may be accounted for by allowing D(q'l) to
assume the form of a pair of complex poles on the unit circle (Goodwin et
al. 1986). This general approach is suited to specific applications in  which
the disturbances may be well described by higher order transfer functions,

however for most situations this is not the case, and the added complexity



is not justified.

2.7 A Family of Transfer Function Model-

The rational disturbance model defined by equation (2.8) may be
included as an unmeasurable disturbance in a linear process model in
different arrangements to describe a large class of disturbance situations.
The following sections describe several important classes of models based on

equations (2.8) and (2.4) that are worthy of consideration.

2.8 The Equation Error Description

A common approach to modelling the disturbance is to assume that it
acts as an additional or exogenous input to a DARMA type system such as
(2.2). These models are classed as equation error forms because the
disturbance appears as a direct error in the difference equation of the
model. For example the DARMA model with an equation error type disturbance

is written as a difference equation as follows:

y(t) = -aly(t-l) . an.y(t-n.)

+ bou(t-d) + blu(t-d-l) + ...bnb(t-nb)+e(t) (2.26)

Where e(t) describes the overall effect of the disturbance. In
such a model the polynomial A(q'l) is a common factor in the

denominators of G(q'l) and l-l(q'1

).

A signal flow diagram for this situation is as depicted in

Figure 2.1.
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Figure 2.1 Equation Error Model Form

2.8.1 The ARX Form

The simplest form of an equation error model is that for whick the

disturbance is modeled as white noise:

A@ (1) = a*Bla@ Hu(t)+&n) (2.27)

Equation (2.25) is written in difference equation form as:

y(t) = -aly(t- 1 )...-an.y(t-n)+bou(t-d)...+bnbu(t-m-d)+£(l) (2.28)

which corresponds to equation (2.7) with:

-d -1
Gla™ly = ~Bla ) (2.29)
Alq )
H@™") = —— & (2.30)
A(q )

This model has been widely studied in many confexts (Astrém, 1968; Box



and Jenkins, 1970) and is usually referred to as the ARX structure where AR
refers to the auto-regressive part, A(q'l), and X refers to the exogenous
input B(q'l)u(t). In the special case where the order of A (denoted by n‘)
is zero, the model is known as the finite impulse response structure (FIR).
This form has a large advantage over the ARX form in that it allows the
identification regressor to be constructed of only delayed inputs, hence
reducing the sensitivity of the parameter estimates to the effects of
disturbances (see Section 3.7). Approximating an ARX process by a
suffic 'ntly high order FIR model eliminates the need for explicit knowledge
of the order of the numerator and denominator polynomials, hence the FIR
model is useful for describing unusual (high order) process dynamics (Ljung,
1987).

The ARX model form is probably the most favored for adaptive control
applications, because its predictor defines a linear regression. The linear
regression form allows the application of the method of least squares for
the identification of the model parameters (this point is explained and
further discussed in section 3.2). The applicability of least squares is a
strong advantage for a model to possess, hence the ARX form is naturally
appropriate  for recursive identification applications, such as adaptive

control.
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2.8.2 The ARMAX Model Structure

The main disadvantage with the ARX structure is its lack of flexibility
in describing the properties of the disturbance term. A simple method of
adding flexibility to the disturbance is to consider H(q'l) to be a moving

average process (choose the order of D to be zero):

A@@ Hy(t) = a 9B@ Hu)+C@ hHew (2.31)

This model is well known in statistical literature (Astrém and Bohlin, 1965)
as the "autoregressive moving average - €XOgenous variable® (ARMAX) model.
It has been examined in terms of its relationship to an underlying
continuous time (Laplace domain) process with the observation (Clarke, 1975;
Astrom, 1970) that the roots of C(q')) will aiways lie outside the unit

circle of the z-plane.

2.8.3 Other Equation Error Forms

Other variations of the exogenous variable description may be derived
by considering v(t) as a purely auto-regressive  process, (Clarke, 1967,
Cochrane and Orcutt, 1949) yielding the auto-regressive auto-regressive

exogenous input (ARARX) structure:

1
-1

D(q ")

A@ My = qB@ Hu) +

£(t) (2.32)

or considering v(t) as an auto-regressive moving average process yielding



the ARARMAX (defined similar to ARMAX) structure (Ljung,l%./):

-1 dg, -1 c@h)
A(q )y(t) = @ B(q Hu(t) + —— (1) (2.33)

D(q )

An important special case of (2.33) is that for which D(q'l) is the
differencing operator A. Such a model is termed the ARIMAX (auto-regressive
integrated moving average with exogenous input) model or, in some control
literature (Tuffs and Clarke, 1985) as the CARIMA {controlled-input
auto-regressive integrated moving average) model:

-1 -dp, -1 cqa™h
A@ )y(t) = a "B(q Ju(t) + —z—¢(t) (2.34)
The integrating noise model is further examined and interpreted in Chapter

4,

2.9 The Output Error Model Structure

The equation error model structures all correspond to descriptions
where the transfer functions G(q'l) and H(q'l) have A(q'l) as a common
factor in their denominators. In many cases this restriction on the
structure does not reflect the true disturbance mechanism, and a more
realistic form would be to consider G(q-l) and H(q-x) as independent
transfer functions. Such a structure is known as the output error model and

the signal flow diagram for this configuration is given in Figure 2.2.
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Figure 2.2 The Ouput Error Model Form

The main advantage of the output error form is that modelling errors of
the plant or disturbance parts of the model do not affect (bias) the
identification of the other part. Application of this structure effectively
"decouples” the effect of the disturbance and input signals on the output
(Ljung, 1987). For this reason the Box-Jenkins structure is a desirable
structure for general use in off-line identification applications because
the identification of the process polynomials (B(q'l) and F(q'l)) will be
"unbiased” by the disturbance even if the disturbance is not correctly
modeled, or not modeled at all (eg. the OE model).

Appropriate application of the output error form can, in  some
situations, avoid introducing a noise model with numerator roots near the
unit circle. For example consider a process whose ARMAX representation gives

-1 . . ..
a C(q~ ") polynomial with roots near the unit circle:

(1 - 0.9q )y(t) =u(t-1) + (1 - 0.95q &) (2.35)

This process may be very closely approximated by the output error form:



yit) = ———u(t-n+ (1 - 0.0597 (V) (2.36)
1 - 0.9q

The disturbance for the output error model given by equation (2.36) is
practically white noise and the roots of the numerator of the disturbance
model are no longer near the unit circle. In general such situations result
when the disturbance acts dircctly on the output measurements

(eg. measurement noise).

2.9.1 The Measurement Noise Structure

The simplest form of output error form is the measurement noise case
where it is assumed that the output y(t) is an undisturbed internal output
w(t) that is corrupted by measurement error. In the simplest case white

noise is assumed:

a ‘Ba™h
y(t) = _—-_1_"(‘) + &(1) (2.37)
F(q ’)
This model uses:
L a’B@h .
G@ )= ———= H@ )= I (2.38)
F(q )

therefore it is a special model whose predictions do not depend on past
values of the disturbance. The model given by equation (3.34) is often
referred to as the output error (OE) structure (Ljung, 1987) and was used
for the design of a model reference adaptive control scheme (Landau, 1976).

Note that this model is identical to the ARMAX structure with C(q'1)=A(q'1).
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A general disadvantage of output error models is that the identification of
their parameters is more difficult since w(t) is unobservable (see Scctions

39 -3.10).

2.9.2 The Box-Jenkins Model Structure

A more general form of the output error model is developed by further
modelling the properties of the output error. If we choose to describe it as

an ARMA structure we obtain the model:

-d -1 -1
yo = BE )y, £ )gyy (2.39)
F(a ’) D(q 7)

This is possibly the most natural finite dimensional parameterisation
starting from (2.7) since G(q-l) and H(q'l) are independently parameterised
as rational functions. It has been used (Bohlin, 1971) for general
identification problems and (Young and Jakeman (1979)) for a refined
instrumental variable recursive identification, however it was previously
treated by, and is most commonly associated with the work of Box and Jenkins

hence it is known as the Box-Jenkins structure.



2.10 The General Model Structure

Each of the previously discussed model structures may be considered as

special cases of a general model description given by:

Ay = QB CE e (2.40)
Fla') D)

where the value of u in (2.40) is given by:

b= AU, - v, (2.41)
if the positional form is required.

The model (2.40) is too general to be used in practicality. It is
useful to consider the generalised case because algorithms and results
generated from it also cover all the previously discussed cases which
correspond to setting one or more of the five polynomials to unity or some
known value (Ljung and Soderstrdm, 1983). Some of the more commonly used

special cases of (2.40) are summarised in Table 2.0,
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Table 2.1 Some Common Special Cases of
the General Model Structure

Special Case Polynomials Used Name of Model Structure
A=C=D=F=l B FIR Finite Impulse Response
C=D=F=l AB ARX Structure

D=F=] ABC ARMAX Structure

B=0 D=l AC ARMA Structure

C=F=| ABD ARARX Structure

F=1 ABCD ARARMAX Structure
A=C=D=] BF Measurement Noise Structure
A=] BFCD Box-Jenkins

D=A F=i ABC ARIMAX or CARIMA structure
u#0 Positional form

2.11 Summary

Chapter 2 presents a review and discussion of linear discrete models
and provides design guidelines for the choice of suitable modelling
approaches.

The DARMA model given by equation (2.2) is a convenient means of
describing a deterministic system in a form which uses a finite (and usually
small) number of parameters.

A common approach to modelling a stochastic process is to consider the
unmeasured disturbance signal as a time series. The theorem of spectral

factorisation allows such a sequence to be modeled as white noise, filtered
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by a rational transfer function, whose poles must be within the region of
stability and whose zeros must be within or upon the stability boundary of
the z plane. Disturbance models whose zeros are near the unit circle
(stability boundary) should be avoided because in these cases the influence
of the initial values of the noise sequence will linger for long periods of
time. These cases are often indicative of an inappropriate choice of model

structure.

A common problem in modelling real systems is that the input ar put
data have nominal, or steady-state values which are non-zero. Chapter 2
presents two main approaches to the problem:

1. Pre-treat the data by subtracting out estimates of the steady
states, and re-defining the input and output of the model in terms of

"deviations" from real or estimated physical equilibria.

2. Write the mode! in terms of the actual or "positional” data values
by lumping the steady-state values in a displacement term u. The
displacement term may appear explicitly in the model or be considered part

of a non-zero mean disturbance.

The former is more meaningful in terms of physical interpretation
because it describes the data as "deviations” from some steady state .evel
This approach, however does not attempt to model low frequency disturbances
such as load changes, and hence the controllers derived directly from the
resulting models do not incorporate integral control.

The later however, requires that the model describes the load

disturbances as well as the steady states by some internal model, hence the
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resulting model is useful in the design of regulators. For example a model
which includes the differencing operator A as a factor of D(q") will lead
to the design of a co.atroller with integral action to eliminate control
offset due to load disturbances.

Model structures in wide use generally fall into one of two main
classes based on diffecent assumptions of how the disturbance affects the
output. The equation error description takes the disturbance to be an extra
input to the system, hence the process and disturbance models will have
common poles (given by the A(q'l) polynomial). This class is so named
becausc the disturbance appears as an error term in the difference equation
form of the model. The ARX model is perhaps the most important model
structure of this class because its predictor defines a linear regression,
allowing the method of least squares to be used for identification of the
parameters. This structure is generally the most favored for adaptive
control applications for this reason. The output error description s
motivated by the assumption that the disturbance acts upon the measurement
of the output by an independent mechanism, hence the process and disturbance
parts of the model are independently parameterised. The output error (OE)
and the Box-Jenkins (BJ) model are important examples in this class.

The choice of a model structure from one of the two broad classes
should ideally be based on how well the physical situation conforms to the
assumptions implied by that class, hence the choice of structure should be
made based on an analysis of the sources of the disturbances affecting the
output. Clearly, the situations whose disturbances affect the process as
unmeasured inputs should be modeled using the equation error form, while
situations where the disturbance affects the output by an independent

process should be modeled using the output error form. In practice the
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choice is often made based on he identification tools available, however in
these situations the designer is forced to make undesirable compromises if
the algorithm is not sufficiently flexible or computing power is
unavailable.

In general the output error form is preferred for off-line (or
non-recursive) identification problems because the parameters of the process
part of the model ( B(q"l) and F(q'l)) are unaffected by modelling errors in
the disturbance part ( C(q'l) and D(q_l)) (Ljung, 1987). Application of an
output error model to a system with input uncertainties may however require
more parameters than the equation error model to describe the same system.

The output error structures however are less preferred for recursive
applications because they require powerful iterative methods for high levels
of accuracy and are more sensitive to errors in the model order and the
delay (Ljung and Soderstrdm, 1983). Furthermore, the corresponding recursive
identification algorithms feor the output error structures generally have
slower convergence properties.

The equation error forms are generally preferred for recursive
applications because the identification methods available for these are
simpler to implement and have faster convergence properties. Applying the
equation error model form to the independent measurement disturbance
situation requires higher order disturbance models to be used, or will cause
the process polynomials A(q'l) and B(q-l) to be b affects the
measurement by an independent r-ocess.

A general model structure may be written which includes, as special
cases, ail of the models of the equation error and output error classes. The
consideration of this structure allows a unified approach to the treatment

of identification methods for both classes of model. Chapter 3 presents a
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Chapter 3

Recursive Identification and Adaptive Filtering

3.1 lntroducti_cm

For many applications the model is needed to support decisions that
must be made on-line, ie. during the operation of the system. For this
reason it is often necessary to estimate the model parameters at the same
time as the data is collected from the system. Such an approach to
identification affords numerous advantages. The model arameters are ideally
being continuously improved, and each measurement be discarded after it
has been applied to the identification aigorithm 'ne need for storing a
large batch of data is eliminated, allowing the algorithm to be applied to
an indefinitely long series of data. A disadvantage of recursive methods is
that the decision of model structure must be made u-pniori, and in general,
on-line compariscns of model structure are usually impractical.

The term "adaptive filtering” as applied to the recursive
identification of a process model refers specifically to the identification
of the disturbance model. Adaptive filtering is so named because the inverse
of the disturbance model is applied as a filter to "adaptively” mask the
effects of the disturbance on the data.

Adaptive control is a classic example of the wuse of recursive
identification to provide a model to support on-line decisions pertaining to
the control of the system. Recursive identification is considered centrzl to
the success or failure of adaptive control because the behavior of the
estimation algorithm and hence the quality of the model will directl. affect

control performance.
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It is useful to consider some definitions of the terminology and
notation used in the following sections in order to facilitate the
discussion and analysis of recursive identification. The system is defined
as the mechanism from which the input and output signals are gathered. In
the analysis of the rroperties of an algorithm it is often convenient to
consider that the signals have been taken from a sy em which may be
perfectly represented by a linear model with parameters denoted by 00. I'he
parameters which "best” describe the system by a particular criterion are
denoted by 0.. This generally refers to the convergence point of a
particular identification algorithm.

The choice of model structur: for identification defines the parameter
space R™ which is termed the model set, within which particular models may
be chosen by giving values to the various parameters. Such a definition 1s
useful because it allows any system to be classed as being within (or not
within) the rmodel <et if the system may (or may not) be pi-fectly
represented by one or more models in that set.

In the following sections a large family of recursive identification
methods is considered within the framework of a general prediction error
method approach. Important implementation aspects are considered, and

recommendations for practical applications are provided.

3.2 The Prediction Error Methods in Identification

The linear regression methods applied to the models of Chapter 2 are
based on the prediction of a dependant variable, y(t) from a set of
observations of the system at time t, given by a regressor or data vector

(t):



T
) = [ ¢1(t). ¢2(l)....¢n(t)] (3.1)

The linear regression method requires that such a prediction be written as a
linear combination of the observations, or the inner product of a vector of

paramcters § ang the regressor ¢(t) :

ey = 8T H1) (3.2)
with

T
6 =|: 01, 92""9:1] (3.3)

(the argument (t§) implies that the value is a function of time conditioned
on a particular value of 4)

The objective of a linear regression problem is to choose parameters g
to give estimates of y that are in some sense good. For instance one measure

of the "goodness™ or accuracy of fit is the prediction error given by:

(1.8) = y(t) - (o) (3.4)
Prediction error methods are defined as linear regressions which choose % in
order to minimise V(8), the expected value of some scalar function of the
prediction error [

v(g) = E{/(t,&,e(t.&))} (3.5)

The parameter estimate 9(() is given by:
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9(() = arg min{V(&)} (3.6)

The function f() 15 a design parameter in prediction error
identification methods. Certain choices of f lead to estimation algonthms
with desirable properties such as an analytic solution of (3.6) or a
solution which may be performed recursively. A reasonable approach 1o
finding the best estimate 9 is to minimise the expected value of the square

of the r.edi ction errors, thus choose f() as:

2
J(t,0.e(t,0)) = [y(t)-§'(l|0)] = €(th)” (3.7

This choice is the most common one made among a class of prediction error
based methods of identification, although other variants have been suggested
(Ljung and Sdderstrom, 1983).

The prediction error methods based on the function (3.7) may be
"fooled” by the existence of false local minima in the cost function V(4).
The following section provides a brief review of studies of the existence of
local minima in order to provide guidelines for the choice of model

structure



3.3 False Local Min.ma

False local minima are local minima or valleys in the cost function
that do not correspond to global minima. The existence or these is
undesirable because they may prevent the identification algorithm from
reaching the “"best” parameters. There is no guarantee that a false local
minimum will give a model that is good or even "acceptable”. Some limited
results are nvailable concerning the existence of false local minima of the
cost function V() for various systems, subject (o certain assumgptions.
These results provide useful guidelines for the choice of model structure.

If the following conditions hold:

1. The inputs are persistenti, exciting

[ 9]

The system is operating in open loop, and may be perfectly described

ny”

-1 q'dBo(q'l) Co(q-l)
Aa () = - ———u(t) + —{(1) (3.8)
Fo(q ) Do(q ’

3. The system is a member of the model set, ie. the system polynomials

do not have higher degrees than the model polynomials.
then:

- If Bs0 and D=F=l (ie. ARMA models) then there are no false local
minima. (Astrc 7 and Soderstrédm, 1974).

- If C=D=F=1 (the ARX model) then there are no false local minima since

the cost function is quadratic in 4, and the minimum is unique.
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- If CsF=! (ARARX model) then there are no ftalse local mirima provided
that the signal to noise ratio is sufficiently large. False minima may

occur for noisy systems (Sdderstrdm, 1974)

- If A=l and nral (Output error or Box-Jenkins structures) then there
are no false local minima. If nl>l then false local minima may exist Iin

some cases (Soderstrdm, 1975).

- If A=C=D=l (Qutput error model) and the input s white nonse then
there are no false local minima. For other inputs false focal minima

may exist (S6derstréom, 1975)

Recursive solutions to (3.6) which correspond to choosing the function /f(9)
as the square of the prediction error are special cases of prediction error

methods which are examined in the following sections.

3.4 Recursive Prediction Error Methods

A recursive prediction error method (RPEM) is one that uses the
prediction error multiplied by a gain vector, K(t) to provide the mapping ot
the regressor ¢(t) to the parameter estimate 9(1) at each interval. It has
been shown (Ljung, 1978, Astrdm, 1980) that the general objective of such
methods is the minimisation of a prediction error cost function ie. equation

(3.6).

3.5 The Projection Algorithm

Using the regressor #(1) multiplied by a positive constant k to obtain
the gain K(t) was suggested as an algorithm for minimising the prediction

error function (Robbins and Monro, 1951). This method is commonly known as
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the projection algorithm:

B = dt-10 + KKV (3.9)

The value of k may be chosen as simply a constant scalar or matrix, or 2

normalised gain factor:

k(t) = ___;___ (3.10)
b + ¢ ()e(t)

(a and b are user chosen constants).

Algorithms of this torm have been widely examined in the literature
(eg. Goodwin and Sin, 1984, Shah, 1987 and have been tound to possess
interes..ng and desirable properties. The ,rojection algorithm will converge
under a very general set of conditions, and the algorithm gain does not
dimish  to zero (hence eliminating the need for forgetting factors).
Convergence rates for these algorithms, however are relatively slow (Ljung
and Soderstrdm, 1983) thus they are usually only used in situations which
require an algorithm of minimum complexity.

Another important sub-class of RPEMs is given by choosing the gain
vector as the product of some non-singular positive definite matrix P and
the negative gradient of the cost function with respect 1o the parameters,
denoted by -V(6). 1f P is chosen to be an approximation of the inverse of
the second derivative or "Hessian® matrix of V(§) with respect to 6, then
the numerical m~ misation of V(8) is similar to a "Newton Method" or
"Quasi-Newton Met- ung and Soderstrom, 1983). The Newton method may be

summarised as:



vy = B(e-1) - %Tx—; (3.11)
For these methods the update of the parameters is very efficient in the
neighborhood of a solution, but can be inefficient or even divergent when
the parameters are not close to the solution. In practical algorithms the
true Hessian matrix V~ is approximated by a matrix with guaranteed positive
definite conditions, thus assuring that the update s in the corredt
(downhill) direction. The following sections describe several important

algorithms within this category.

3.6 The Method of Least Squares

Consider the problem of estimating the parameters of a single-input,

single-output ARX model of the form:

-1 -dg,, -1
A(q y(t) = g B(q u(t) + v(1) (3.12)
and assume that the variables u(t) and y(t) have steady state or nominal

vales equal to zero. The ARX model (3.12) may be written as a linear

regression problem:

y(t) = 0T¢(t) + v(t) (3.13)

by choosing ¢(t) and ¢ as:

T
6= [a a . b b.b ] (3.14)
1 2 na 0 1 nb



1) = [-y(t-l) —y(t-2)...-y(t-n‘)

T
u(t-d) u(t-d—l)...u(t-d-nb)] (3.15)

With no knowledge of v(t), a logical prediction of wy(t) based on t) and

the parameter estimate (E

o= 470 (3.16)

Approximating the cost function (3.5) by replacing the expected value by

the weighted sample mean gives V(@) as:

t
v = —:— ¥ ake(kla)z (3.17)

k=1

t
. + ) ak(yu)-@’(t)«t))’
k=1

where a is a series of scalar weighting factors. For simplicity of notation

(and where not otherwise specified) it is assumed that the weighting
t

sequence a is normalized such that zqu 1. In recursive applications a 1s
k=1

often chosen to discount or forget old or obsolete observations (see Section
4.2).
The criterion (3.17) may be analytically minimised to give an

estimation eguation:
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t -1
3 - [ {akas(k)f(k)] Zakct(k)y(k) (3.13)
k k

=1 =1

which yields the least squares solution. Equation (3.18) may be re-arranged

to a recursive form by defining the matrix to be inverted as R(t) hence:

t

Rt = Ja s(k)¢"(k) = R(t-1) + a 1) (1) (3.19)

k=1

The parameters may be updated recursively by:

Bty = Be-1) atE“(x)m)[y(:)-ﬁT(t-l)as(x)] (3 20)

This equation is not well suited for online applications since the matrix
E(t) must be inverted at each interval. The practical application of
recursive least squares uses the inverse of R(t) denoted by P(t), which is

jated by applying the matrix inversion lemma (Plackett, 1950) giving:

T
Pr)= Pt-1) - P08 (1P
L/a, + 6OP-1)8 (1)

Updating P(t) by (3.19) has the advantage that the matrix inversion at each
interval in equation (3.20) is replaced by a scalar division. The parameter

update equations are:

) = Be-1) + K(t)[y(t)-?T(t-naz)] (322)
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P(r-1)¢() (3.23)
l/a + S()P(t-1)e(1)

K(t) = a POK1) =

In equation (3.22) K(t) is a vector known as the Kalman gain. It is the
determination of this vector that is the most powerful result of the
recursive least squares (RLS) method, since it may be interpreted as an
optimal solution to the recursive linear regression problem (Goodwin and

Sin, 1984).

3.7 Asymptotical Properties of the RLS Algorithm

It has been shown (Ljung and Soderstrdm, 1983) that the RLS estimates
will asymptotically be equal to the off-line least squares estimates if the
initial value of P(0) is chosen sufficiently large, and the weighting
sequence  a is chosen equivalently. The two methods are therefore
asymptotically equivalent, and results obtained for the off-line version are
applicable to the recursive version if those conditions are held. The
criterion from which the least squares method was derived ensures that the
prediction errors are minimised but does not guarantee that the parameter
estimates 2 converge to 00‘ If the data have been generated by a system

given by:

y(t) = 0z¢(t) + v(t) (3.24)

then the parameter estimates obtained by least squares are given by

inserting the right side of equation (3.24) into equation (3.18) in place
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of y(t), and letting t become large. This gives an expression for the

asymptotic value of ?:

t -1 t
b = |} o:kauk)af(k)1 ) ak[«k)os"(k)ao ‘ ak)v(k)]

k=] k=1

r t t

Z ak¢(k)¢T(k) % Y a skvik) (3.25)

k=1 k=1

]
C
+

|

If the disturbance v(t) is very small or zero then 2 will converge to some
value close to or equal to 00. If there is any correlation between ¢(t) and

v(t) then

. l
lim ? ZQI’" v+ 0

t—Oo0

and there will be a bias between 00 and 9((). It has bec.. demonstrated
(Ljung and Soderstrdm, 1983) that this bias will be zero in either ot the

following cases:

1) If v(t) is a sequence of independent random variables with a mean of
zero (white noise). In this case v(t) will not depend on events

previous to time t hence E{v(t)§(t)} = O.

2) If u(t) is independent of v(t) and n = 0. In this case ¢(t) will not

contain terms which are correlated with v(t) thus E{v(t)¢(t) = 0.

For many applications it is not necessary for the parameters o

converge to 00 A common objective, particularly in e field of predictuve



control, is to find a model of the system that gives the best prediction of
the output. If the disturbance s a truly independent sequence then the
minimisation of (3.18) guarantees that the best prediction is obtained. The
following example (Ljung and Soderstrom, 1983 pp.196) presents a case where
v(t) is a3 correlated (non-independent) sequence and convergence to the true
parameters gives a higher pred 'on error variance than the least squares
estimate:

Suppose that the true system is given by:

y(t) + ay(t-1) = bu(t-1) + £(t) +c&(t-1) (3.26)
where u(t) and £(t) are independent sequences of independent random

variables with zero mean and unit variance. If an ARX model is applied to

the system:

vit) + Ay(t-1) = Bu(t-1) + & (3.27)
then the regressor ¢(t) will be constructed as:
T
M) = [ -ylt-1) u(t-1) ] 12.28a)
and the corresponding parameter vector will be:
A T
%= [ ab ] (3.28b)

The variance of y(t) will be given from ('.20) :s:
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2 b® + ¢ - 2ac + 1
rO- E{y} - - (3:‘))

The true or best prediction of y(t) from (3.26) is:

’y‘(two) = -ay(t-1) + bu(t-1) + ce(t-1) (3 30)

where ¢(t-1) is an estimate of &(t-1) calculated from previous values of vy,

u and € as:

et-1) ~ y(t-1) - [-ay(t—l) + bu(t-1) + ce(t-2) ] (3.31)

rhe actual disturbance is correlated because it contains terms in  £(1) and
£(t-1). The model does not account for this correlation directly bt
considers the overall effect of the disturbance within the data given b
#t). The value of ¢£(t-1) is independent of wu(t-1) but is related to - ')

(from (3.29)) by:

E{&(t-l)ly(t-l)} = — ¥t (3.32)

0

Substituting this expected value into (3.30) for e(t-1) gives the best or

&
minimum variance prediction y (t) within the model set:

9‘(0 = -[a - —:—o]y(t-l) + bu(t-1) (3.33)

L4 L J
“ . . A
The minimum variance values of a and B are denoted by a and b and are

given from (3.33) as:
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a =a- — b =b (3.34)

The value of the cost function based on these estimates is:

L * * .2 2 -
V(a ,b) = E{c(tla b )} =1 +¢ - — (3.3))

If the algorithm converged to the true parameters a,b then the cost function

would be given by:

V(a.b) = E{e(ﬂa.b)’} =1+c (3.36)

which is clearly greater than the minimum value given by (3.35). The method
of least squares always gives a minimum variance prediction error thus the
estimates will be given by a‘and b. and since these are not the true
parameters the estimates are said to be biased. The example clearly
demonstrates that biased estimates are beneficial for the prediction.

In the previous example, the best or "true” predictor of the output
(3.33) would have yielded an even smaller prediction error variance equal
to unity if the model included ¢ and the parameters approached the system
parameters a,b and c¢. The least squares method however, cannot be applied to
the problem of estimating ¢ because the prediction error is a function of
the model parameters and therefore is not a directly observable quantity. To
include «(t¥) in the regressor would violate the definition of a linear

regression since the predictor will be a non-linear expression:



T
S = 2 et (3.37)
The following section demonstrates a Newton method form of the RPEM
which has been derived v g approximations which  llow consideration ot

more complicated mode: . ures, such as the ARMAX model.

3.8 The Generalised Recursive Maximum Likelihood Method

In the method of least squares the criterion for how well the model
performs is an approximation of the expected value of the square of the
prediction error (3.17). This function could be analytically minimised
the RLS case because it was quadratic in the parameters. For more
complicated models such as the ARMAX model this function is non-linear, and
cannot be minimised analytically. In off line identification this problem i
solved by using numerical minimisation techniques with several iterative
passes through the entire data set. Such an approach is wusually not feasible
for on-line applications and as a result some approximations must be made 1o
derive a Newton Method RPEM for these situations.

The recursive maximum likelihood (RML) method was originally denved
for the ARMAX structure based on a Taylor series expansion of the cost
function V‘(O) about the estimate of the parameters 9(!-1) (Astrom  and
Bohiin, 1965). From this expansion a simple "Newton method" procedure 15
used to f'nd 9(() that will approximately minimise that cost function, i 2
recursive fashion.

The following derivation demonstrates the approx:mations which are made
to implement this recursive minimisation. It follows the derivation of the

RML method presented in Ljung and Sdderstrdm (1983) but is not specific to
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the ARMAX structure. The results are applicable to the general model
structure 2.40). hence the resulting algorithm is referred to in this work
as the generalised recursive naximum likelihood (GRML) algorithm.

The Taylor series expansion of V(§) about 2(t-1) is written as:

v (0) = V‘(?(t-l)) . V'(@(t-l))[o - Q(t-l)] .
T
ﬁlﬂ[a Baen] v:(@(:-l))[o - ,ﬁn-n] + x[lﬂ - 9(:-|)|] (3

)
)
oc

x(x) denotes a residual function with the property that x(x)/|xj—0 as |x]—0.

Minimisation of this fur tion with respect to 6 gives:
-l T
Bty = Be-1) - [v:(z(t-x))] vda-1) + x[w - 9(:-1”] (3.39)

The negative derivative of €(t,§) with -espect to #§ is known as the

¥ do ’ '

Since the gradient defined by (3.40) and the prediction error are ?2.ways
tunctions of the para..eiers the rotation ¥(t,6) and €(1,6) may for
simplicity be replaced by ¥(t) 1) with the implicit assumption of
parameter dependence. Thus in the follc ing references to these variables
the parameter dependence is dropped where no ambiguity may exist.

An expression for V;(G) may be written in terms of the gradient (1) by
taking the derivative of the cost function from equation (3.!7) with

re;oect to ¢



t

' T dvde ' T
lV;(G)] = §ecdé --X a‘wb(k)e(k)- lV;_l(O)] -G‘W(l)e(t) (340
k=1

and differentiating again gives a recursive expansion for V::
Ve = VT (0 + a‘(w)w"m + (D) (3.42)

Where ¢”(1.8) is the second derivative matrix of (1) wil.a respect to 9.
In order to evaluate %) from (3.39) a number of assumptions must be

made to allow certain approximations:

1. The estimate 2(1) is to be found in a small neighborhood of -1,
therefore x(|¢ - 9(t-l)|) may be neglected, and V;’(@(t)) S V;’(@(t-l)).

2. Assume that the estimate 9(1-1) is optimal at time t-1, thus

v;_l(ﬁ(t- 1))=0.

3. Assume that the parameter estimates are close to the true
parameters, therefore the prediction error (1) is approximately white
noise, independent of events previous 10 time t-1, and in partootar
¢”’(t), therefore a reasonable approximation 15 1o take €“()e(t) to  be

zZero.

Using these approximations it is possible to evaluate a recursive  estimate

for the second derivative matrix V:(@), which is denoted by R(1):
R() = Rt-1) + e’ (1 (3.43)

The second 2} proximation allows (3.41) to be written:



v;(ﬁ(t-n)) = -a WD) (3.44)
The parameter update expression (3.39) can be expressed as:
) = Be-1) + a‘§-lw(t)c(t) (3.45)

For the least squares case (ie. an ARX model structure:, 1!l the above
approximations are exact and the resulting algorithm  (3.43) to  (3.45)
corresponds exactly to least squares, with the gradient ) from (3.40)
exactly equal to the regressor ¢(t). The RML method was however specifically
derived for more complex structures such as the ARMAX and therefore mav be
applied to the general model description  (2.40), with the appropriate
choice of w(t). The next -‘'ction demonstrates how the gradient may be chosen

for tt general model structure.

3.9 Choice of the Gradient for the General Model Structure

The gradient (t) is defined as the negative slot = of the prediction
error with respect to each of the parameters (equation (3.40). This is

equivaient to the slope of the prediction 9(t|0):

Cde() | d9(ue)
de de

W) = (3.46)
A gradient ¥(t) can therefore be written for any model strucwure if the
prediction is differentiable in 4. For the general model structure (2.40) a
differentiable expression for the prediction may be derived as tollows.

Arranging to a more useful form :
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1 -1 -d -1 -1 -1
é(-‘l——?[—l)ﬂ—) y() = 9 B‘Q_I)D(q_l) wt) + ) + Eﬂj) " (347
Cq ) Fq )C(a ) Cq )
allows the predictor to be written as:
A AQ Hbah
y(te) = |1 - — y(t) +
C(a )
-d -1 -1 -1
q B(Qﬂ)D(q-l) u(t) + D(q"l) u (3 48)
F(q ")C(q ) C(a )

The polynomials A(q'l). D(q'l) and C(q'l) are all monic (leading terms equal
to unity), thus the right hand side of (3.48) contains values of y only up
to time t-1. If the root of C(q'l) and F(q'l) are inside the unit circle of
the z plane then the predictor will be stable and the effect of initial
conditions on the predictions will diminish in time

Equation (3.48) is still not easily differentiated in 6 therefore the
unobserved variables ¢(t), w(t) and v(t) must be introduced Re-arranging
equation (3.45) to give the prediction error «(t)

-1 -d -1
e(t) = D@ ) A(q_l)y(() . q _B@)

c@™h Fa@ h

u(t) - p (3.49)

The undisturbed output state w(t) and the disturbance v(1) are estimated  a
A N . . . .
w(t|¢) and {(4g) (for simplicity the parameter dependence notation "

dropped where no ambiguity may exist):

Aoy o a ‘Ba’t)

w(t) - u(t) (3.50)
F(q )



Y = A Hy(t) - w(t) - u (3.51)
Combining equations (3.49), (3.50) and (3 5I) gives an expression for the
predicuon error as:
-1
() = 29 Ny (3.52)
Ca )
The prediction /)\'(tlt)) required by equation (3.46) may be written as:
Yoy = [l- A(q")]y(t) P W)+ YO+ s
A . A
= -aly(t-l)...~ amy(t-n‘) - flw(t-l)...- tnrw(l-n{)
+ bou((-d)...+ bnbu(t-d—nb) + cle(t-l)...+ cncc(t—nc)
A A
- dlv(t-l)...- dndv(t-nd) + Y (3.53)

This may be written as the product of 3 parameter ‘ector 6 and a ata vector

#(119) by choosing:

T
§ = [al,...am.fl.. fnr'bo"'bnb‘cx'"Cnc‘dl“'dnd’”] {3.54)
and
A A
Ht6) = [-y(t-l)...—y(t—n )o-wit-1)..-w(t-n),
3 i
u(i Jd)...u(t-d-n ).e(t-1)...€(t-n ),
b T c
-Ou-lyuou-ndxl] (3.55)
The gra'ient ¥t) is given by the parual derivau. 0)  with
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respect '@ €ach aiament of (3.54):

A
dy

9y 3% 9y 9
) = |33 37 oy & X ¥ L 2 2l
w(tl a,"33” "3f,"3f 36 @b 'dc ~Bc_'3d 3d_ ‘3u

b

ns 1 nf 0 nb

which gives:

2 D(g ' ,
(;i = - ﬂ“—l—) y(['l)
3, Cq )

A -1

‘% . D@ ) -d-i)

. c@ HF@Mh

A 1

%y D@ ) gy
of = - -1 1
1 C(q YF(gq ')
A

9y . n €(t-1)

%, c@h

a9 . 1 t-1

od, Ca )

The GRML ajgqrithm therefore proceeds as follows:

1) The vajues of y(t) and u(t-1) are obtained.

2) The ypobserved variables w(1), and V()

(3.50) anqg (3.5!) using

3y

a3y

T

(357

are estimated

urrent parameter estimates.

3 NXa)

(3.58b)

(3 58¢)

(3.58d4)

(3.58¢)

{3581

(3.49),
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3) The regressor @(t) is constructed as in (3.55),
error 1s evaluated as:
T
e(t) = y(t) - BT (t-Ne(e)
4) The gradient (t) is generated as in equation
the data values sing the filters given by equation

from the paramet. estimates at time t-1.

5) The covariance matrix P is updated as:
-1 . T
Pty =P tt-1) + a‘wmw (v

or using the matrix inversion lemma:

POW(1) ¥ ()P(1)
1/a + T (OP(H(D)

P(t) - P(t-1) -

6) The parameters are updated by:

P(t-Dy(t)e(t)
La, + ¢T(OP@E-DH)

o =

t-1) +

3.10 4 Posteriori Variables

An improvement may be made to step

the regressor ¢(t) and the gradient y(t) -equire

only up to time t-1. It is reasonable therefore

the values of w, ¢,

to calculate

and the prediction

(3.59)

(3.57) by filtering

(3.38) constructed

(3.60)

(3.61)

of the algorithm by noting that

and v

these values a



posteriori, using the more recent set of parameters

dy, -1
N-18t-1)) = q—B(q_—llu((-l) Lo3a)

F(q )
S-181-1) = A@ My(t-1) - W(-118t-1) - u (3.031)
PR = () - SR (3630

The a posteriori prediction error given by (3.63c) is known as the
residual. Using the residual in place of the prediction error in the
calculation of the gradient has teen examined theoretically and n
simulation and it has been shown to give faster parameter convergence and
greater accuracy _(Ljung and Soderstrom, 1983). Use of « posteriort values
has the most significant effect on the parameters that affect the prediction
error non-linearly, eg. the parameters of C(q-l) (Ljung and Soéderstrom,
1983). The residual requires only slightly more computation than the «
priori prediction error, and the a posteriori values of Q(Ll) and C(t-l)
require no additional calculations to evaluate a posteriori (they are  not
required for any other caiculations). This improvement to the algorithm 15

widely accepted as common practice.

3.11 The Pseudo-Linear Regression

The simplicity of the linear regression method has led 1o the
development of methods which attempt to cast models that are not “true”
linear regressions into the linear regression form in  order to directly

apply the linear regression methods. This is commonly done by including n

3



the regressor ¢(t) unobservable variables whose values are estimated from
the data and the most recent parameter estimates. The combined procedure of
estimating 6 by least squares and re-constructing the unobserved elements of
#t) from the data and the parameters is commonly referred to as a
pseudo-linear regression. (Ljung and Soderstrdm, 1983, Solo, 1979). The most
common of these is the extended least squares (ELS) method (Panuska, 1968)
which is applicable to the ARMAX structure. The algorithm is implemented by

choosing the regressor as:

¢(t)-[ -y(t-1 )...y(t-n‘) u(t-d)...u(t-d-nb)

T
e(t-1 )...e(t-nc)] (3.64)
and

T
6 = [al...az bo"'bnb cl...cm] (3.63)
Parameter updating is by the usual RLS equations given by (3.21)- (3.23).
This algorithm differs from the RML algorithm only in the way that the
regressor is calculated. Comparing (3.64) to (3.55) gives the relation

between ¢(t) and y¥{t) in the ELS case as:

Cla™h

wt) = 1) (3.66)

Therefore the approximation made by using ¢&t) in place of ¥(t) is in taking
C(@ M1 in equation (3.66).
Another important PLR method is the Model Reference Output Error Method

(Landau, 1976) which uses the model:
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a %B(@a™hH

y(t) = —
F(q )

u(t) +v(t) (3.0

Such a model considers the existence of the undisturbed output w(t) given

by:

d -1
G ) g

w(t) = — 1
Feo )

(3.5

The regressor ¢(t) is constructed using the estimates of the output
A . . .
w(tl@(t- 1)) which are calculated using only the input sequence u(t) and

previous output estimates:
A A T
o(t) = [ —w(t-l),..—w(t-nf) u(t-d)....u(t-d-»nb)] (3.690)

In this case 4 is defined as:

T
6 = [ fx"'fnf b "'bnb] (3.69b)

The parameter estimates for this algorithm are given (Landau, 19760) by the
usual RLS equations (3.19)- (3.21). This scheme has the advantage that he
parameter estimates should be less sensitive to the properties of v(t) sipce
n‘=0 (see Section 3.8). It may be viewed as an approximate gradient method
since the true gradient w(t) is actually given in terms of the regresso.

o(t) as:

I
Fla™)

Yy = ) (3.70)



The approximation made by using &t) in place of the gradient ¥(t) given byv
(3.70) is in taking F(q'l)-”ll.

The PLR methods are often termed approximate gradieat methods (Ljune
and Soderstrom  (1983)) because the implicit dependence of the regressor
#(18) on the parameters is ignored in the calculation of the gradient, the

general approximation s
wv) = e = ¢v) (3.71)
dé :

Comparing this to  (3.55) Jemonstrates that the quality of this
approximation will depend on how close the polynomials C,D and F are to
unity. The interpretation of the PLR methods as "approximations” does not
necessarily imply that they are inferior. In a comparison between the RML
and PLR methods it is concluded (Ljung and Soderstrom, 1983) that there are
differences in convergence properties, algorithm complexity, asymptotical
accuracy, and traisient behavior and that there are certain advantages to
each algorithm. The following sections summarise the convergence and
asymptotical properties that have been derived for the RML and PLR

algorithms.

3.12 Convergence and Asymptotical Properties of the RML Method

The RML method has been shown to converge to a local minimum of the
selected cost function unaer a very general set of conditions (Ljung and
Soderstrom, 1983).

For both the RML and the PLR methods a condition for convergence to the



true parameters 00 was that the polynomials Co(q'l) and Fo(q l) be stiicthy

stable, ie:
|C0(e“") -l <1l Vw (3 70
|F0(e“") S <l Y w (3720

and that the input be persistently exciting and that the 00 belongs to the
model set. It has been shown that the RML method does not require the last
condition in order to converge to a local minimum of the cost function
(Ljung and Soderstrdm, 1983). This means that the algorithm will pick the
best (measured by the performance criterion) approximation of the system
within the medel set. This value will however depend on the particular input
used. The recursive algorithm converges to that approximation that is best
under the input signal used in the experiment. If the true system is
member of the model set then the "best approximation” is equal to the true
system description, and the algorithm will converge to that description
regardless of the input, as long as it is sufficiently rich (ljung and

Saderstréom 1983).

3.13 Transient Behavior of the RML Algorithm

In practical application of the RML method it ‘, clear that condition
(3.72) must be held not only for the true system polynomials, but also " r
the estimated polynomials at each interval, since an unstabie ’f(q'l) or
?(q'l) will cause the gradient to become unbounded (this may be seen by

examining equation (3.66)). This condition theretore requires that 4



stability constraint be placed on C(q'l) and F(q_l) at each interval 0
prevent unboundedness in the gradient. The practical necessity of this
constraint has been demonstrated (Ljung and Soderstrédm, 1983) and 2
projection method for its implementation is presented as the subject of
Section 4.5.

In general transiert behavior of RML algo-ithms is inferior to the
PLR algorithms. By comparative studies (Ljung and Soéderc-om, 1983) it was
concluded that the RML algorithms have slower convergence than the PLR
algorithms, although the asymptotic accuracy is better. It was postulated
(Ljung and Soderstrom, 1983) that the convergence is slower because using
poor estimates of C(q'l) and F(q'l) for filtering the regressor (equations
(3.64)- (5.68)) is actually worse than not filtering at all. They recommend
that in order to speed convergence the filtering step (3.66)- (3.70) be

omitted from the algorithm during the initial transient period.

3.14 Convergence and Asymptotical Results of the PLR Method

The PLR methods have been shown to converge to the true system
description under slightly more restrictive conditions than the RML methods.
Convergence has been explicitly proven only with the assumption that the
system description is a member of the model set (Ljung and Sdderstrom,
1983).

The PLR method was analvsed by making a comparison to an associated
differential equation (Ljung et al. 1975). Stability results could be proven
by choosing explicit forms ot this differential equation, however only the
ELS (F(q'l)-D(q'l)zl) and the output error (-\(q'l)cb(q'l)=C(q'l)=l) forms

were examined. For these cases it was found that strict positive realness ot
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Co(q'l) and Fo(q'l) was a sufficient but not necessary condition ot
ccnvergence to the true values of the parameters. It was concluded (Ljung
al. 1975) that the PLR method will not converge if:

Re[Co(z)] < 0 for z¢ D (373
or

Re[FO(z)] < 0 for ze D (3730

when D is a subset of the unit disk within whicihv the polynomial Ao(” at
has a zero. A numerical example of such a system was given (Lyung ol

1975) as an ARMA process desctibed by:

y(t) + 0.9y(t-1) + 0.95y(t-2)

= e(t) + 1.5e(t-1) +0.75e(t-2) (3.74)
T2 a z) polynomial is "1 chis case:
A2) = 2" 2 09z + 095 (3.75)
The zeros of Ao(z) are:
z, = -0.45 + 0.855 (3.76)

The correspor.ding values of the Co polynomial are:



C(z )= -0.0845 £ 0.71% (3.77)
01,2

The ELS mcthod applied to this example does not converge according to
(3.73), since the real parts of CO(Z) are less than zero at the root
locations Of Ao(z). It was predicted (Ljung, 1975) that the values of the C
parameters would oscillate below the true values with an approximate
amplitude ot U5 ne per ¢ aould vaiy with the log of tm- and would te
slower and slower. It was later demonstrated (L])1ng, 1980) that a full
oscillation starting from t=1000 will take 150,000 time intervals.

The Jonvergeace or non-convergence of this particular example has been
a contentious point in the literature (Panuska,1980a,b; Ljung,1975;
Ljung,1980} It has been counter-argued (Panuska.1980a) that the exampie
(3.74) is not truly described by the associated differential equations due
to the roundoff eifects ¢. digital computer implementation. Simulation runs
(Panuska, 1980) demonstrate that the example system converges to con.tant
parameter values, because the gain becomes smulier than the minimum finite
word length of the digital computer. Comparative simulations were presented
(Ljung and Soderstrom, 1983) with the parameters initialised at their true
values. In this demonstration the parameters from the RML method retained
the true values while those from the ELS method drifted away from the true
values.

It is generally agreed (eg. Ljung, ll980) that (he non-convergence
probiem is rare in practice and that using a PLR on such a system compares
favorably to the alternative of using RLS and identifying biased parameters
(Panuska, 1980).

It has been demonstrated, (Solo, 1979) that implementing the stbility

constraint (3.72) on the parameter est.mates is not necessary tor the PLR
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methods. since for these the stability problem takes care ot atselt. A
formal proof of this point has leen presented (So0l0,1979) however, the dea
may be heuristically understood by considering that the existence of the
prediction (as ¢(t) or Q(t) in the regressor) cr .tes a feedback loop in the
identification  algorithm  that is inherently stable (Solo, 1979). 1his
stability guarantees that the predictor will be stable and wili not converge

to the stability boundary.

3.15 Generalised Least Squares

The generalised least squares (GLS) method (Hastings-James and  Sage,
1969) 15 a variation of the RLS and RMI methods that is appiicable to the

A "~ { structure given by equation (2.32):

A Hy(t) = ¢ 9B@ Hu(n) + L £(t) (2.32)
D(q )

The algorithm considers that the modei given kv (2.32) may be written n 4
linear regression form with an approximately white noise  disturbance  v(t)

in terms of filtered inputs and outputs:

A@ My 1) = aB@ Huft) + vv (3.78)

The filtered data y{(t) and uf(t) are computed from the uactual nputs and

outputs using the current estimate of D(q'l) as a filter:

y (0 = Ba Hyin ;e = Ba M v (3.79)
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If the disturbance v(1) is truly uncorrelated or "white” then the RLS method
applied to the model (3.78) will give unbiased estimates of A(q'l) and

B(q '). The RLS method is applied to the model (3.79) by defining:

T
¢AB(I) = [—yf(t-l),..-y{(t-n.) ufwd)...u{(t—d-nb)] (3.80)

and
T
- a.a b.b } (3.31)
] 1 na O nb

and arplyiag the parameter update equations:

P T

3 = - H ( - -

() @ABU 1)+ P i, (DY) QAB(t 16, 0] (3.82)

and

T
P t-1 t )P (-1
P ()= P _(t-1) - AZCOAICAMAPY —) (3.83)
AB AB + 3T (OP _(t-1)¢ (1)
a‘ AB A AB

B

The polynomial [)(q’l) required in the filter equations (3.79) is est.mated
by calculaiing the model error of equation (3.78) in  terms ot the
unfiltered data:

(v = A@ Dy - a*Bq Hun (3.84)

The sequence «(t) is modeled as an AR process:
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e De) = &) (3.83)

The parameters of D(q'l) are estimated by applying RLS to the model given by

(3.85) by defining.

T
=1 - 1Y et~ 1‘ )
oD(t) [t(l Y et nd;] (3.8t
and
6, na | (3.87)
The est: 1) is given by the RLS equations:
T
= - ) - N
B (=8 (-1) + P (0 (Ol B (t-1g, () (3.8%)
and

T
P (t-1j¢ (t)¢ ()P (t-i)

Pom = PD“'!‘ B TD D D — (3.89)
a‘+ dbD!:)}'D(t-IMD(t)

The RGLS algorithm defined by equations (3.79)- (3.89) is equivalent tooan

RML algorithm written for C=F=1 in which the regressor 1s formed as:
T T T
- (3 9
¢ (0 [ 50 %“’] 190

and the off-diagonal blocks of the matrix ¢T¢> tormed by the cross terme



¢M’x¢>b are forced 1o zero (Ljung and Sdderstcdm, 1983 pp.116-117). The RGLS
algorithm does not use approximate gradients as do the PLR .cthnds therefore
it is generally classified as an RML type method (Ljung and Sdderstrom,

1983, pp.116-117).

3.16 1_”_}_13_lns_71r9{pye_r_u§_l~\/uriables Method

In the dic ssich of the least squares method it was determi~.d that HU

was the solution to the minimisation of the prediction error crieron:

00 = min arg E{' 2 r:((,9)} iff E{¢(t)v(t)} = 0, 80€ 1 (3.91)

This implies that v(t) mu 1 be zero mean and uncorrelated with p(t). which
will t  irue in the cases discussed in Secticn 3.8.

YW chooses a vector ¢(t) that is

The Instrumental variables (IV) apr--
known i ve uncorrelated with v.) .place ity in  the least squares
parameter  estimation  ai; rithm.  Appropriaic  choice of this  vector should

cause the parameter a2stimates 2 to approach ‘he true s\ fem  representation

0

’

it 00 is 3 member of the model set.
In order to demonstrate the motivation of the IV algorithm in the same
way that the RPE methods were demonstrated consider the nstrumental

prediction error e(tlf; given by:
etlf) = y(t) - () (3.92)

A prediction error cost tunction may be written to include e(t) and et} as:

-



v(g) = F{ee} = E{[y(l=-4TC(U]|y(t)-&T¢(t)]} (3.93%)

Minimisation of (3 93) with respect to 9 yives:

0 = E{C(t)lw)-ﬂT:(:il + ¢(t)[y(t)~0Tm)]} RICEY)

It is desired to nunimise ‘ne parameter bias by ehmnating the terms whach
contribute to the correlation between v(t) and ¢(t). Since ¢(t) is chosen to
be uncorrelated with v(t) the first term 1w (3.94) will not be affected by
the disturbance. The second term. bSowever comtains the term ¢yt which
will contribute to the paramete; bias. If the WV alsoritm s therefore

derived based on the tirst term of (3.94) only.

0= E{C(t)(y(t)-oTw)]} (3.9))

then the parameters should be wunaffected by the disturbance, therefore
unoiased.

The ord: IV =nlgorithm is derived from this cost ftunction 2
manner similar to the RLS method as:

-1
9(t) = E[{(IMT“)] E[gmm)] 1390,
J

or in a recursive form:

P(t-1)c(t)e(t)

ey = t-1) + =
l/a‘ + ¢ (V)P(t-1)c(t)




=%t a P(tc(e(t) (3.97)

P(t-i'c(ye()P(t-1) (398)
a v $T(OP-1S(D)

P(y) = P(r 1) -
If the actual system to be identified s def'ned by:
T o
y(t) = 00¢(t) s ov(t) (3.99)
for which v(1) = a zero-mean, not necessarily white noise sequence then the

parameter  estimate  vector 9(() will asymptotically approach  the actual

parameter vector 00 if the foll wing conditions are satistied:

0 m
E{{(t)»m} =0 (3.100)
.zlld
Tl s
Al< E{C(t)¢(t) <Al A>x50 (3.101)
; j 2 2771
The last condition ensures that the P matrix ive detinite and that

the input sequence u(t) is sufficiently rich.

The unbiased parameter properties ot the 1V methods allow the designer
to ignore the properties of the noise model entirely provided that the
steadv states have been suitably dealt with. This usually leads to a simple
choice of model structure such as the ARX form given by (2.27) or the
measurement noise ovutput error form given by (2.37).

A uumber of variations of the basic IV algorithm have been explored



including the symiictric IV algorithm .n which the regressor ¢(t) is replaced
by the instrumenta: vector ¢(t) in both positions of the IV ntormation

matrix, thus giving the new algorithm:

2 = Bt-1) + P“';M“)‘“) (3 102)
1/0‘ + ¢ (O)P(t-1)¢(t)
P(t) = Pt-1) - P (tmDOcuPae-1) (3.10%)

La, + ¢TOP- 15 (1)

It has been observed (Young, 1984) that this form of the 1V method
somewhat less reliable and slower to converge in practice. By performing 2
convergence analvsis for this algorithm (Ljung and Saderstréom, 1983
pp.464-468) it was concluded that the asymptotic properties of  the synune(ric
version coincide with the non-symmetric version undc. some o incuve

assumptions regarding the . oice of the instrumental vector ¢(1).

3.17 Choice of the Instrumental Vector

Many ways of choosing the instrumental variables  ¢(t) have been
proposed in the literature. Some typical choices have been reviewed (Ljung
and Soderstrdm, 1983: Soderstrom and Stoica, 1981). The elements of 7(1) e
usually formed from delayed and possibly filtered values of t 1 and
outputs.

A common choice (eg. Finigan and Rowe, 1974) is to choose <(t) tu
correspond with  #(t) by replacing the delayed outputs with  estimuated
outputs. These output =2stimates given by x(1) are caiculated from the

inputs by a constant filter which is chosen as an a prior estimate of the



plant model:
o(t) -[-x(t- !),..x(l-n.) u(l-d)...u(t-d-nb)] (3.104)
with:
Al Dxn = q ‘B Hu (3.105)
It has been demonstrated (Ljung and Sdderstrom pp.242-248) that an optimal

or ide! choice of A(q ) B is Ao(q'x‘; nd hu(qu) and th. if these

values were known then the IV estimate would have the highest accuracy of

any estimation method f reasonably posed problem (a general output error
model structure eg. Figure 2.2). Su-k algorithm is of course impractical
bocause the true system parameters aown 0 the designer. A practical

variation of this ic»a however is to generate x(t) by adaptive filters; eg.
the  last available estimates are used to compute the instrumental variables.
Thus ¢(t) would be given by (3.104) with x(t) gonerated by:

x(t) = 8T(e- 1)) (3.1006)

This choice has been proposed (Wong and Polack, 1967; Young, 1970) with
variations to impruve stability such as using delayed and filtered parameter
estimates 6 in place of 2(t-1) e

aux

W) = ofuxu-d)c(t) (3.1°7)

6 (D= (1-9)%  (t-1) + 89(t-1); £€(0.02, 0.05) (3.108)



This choice of the IV algorithm has been compared to t adentitication
methods (Isermann et al ,1974) and found to be reasonatbly robust and
accurate.

A refined IV (RIV) method has been proposed (Young, 1976) 1. which the

data are prefiltered by a constant filter T(q ) which 1 an approumation

u! ihe disturbance moder H(q It s impiemented as tollows
y () = — y(); ¢ (v = - ¥V (3.109)
T(q ") T(q )
T
e(t) = y (0 - ¢Iu)9n-|) (3.110)

P(t-l)c(‘)c,(l)
A = Ba-1) = (3.1:1)
La, + o (DP(t-1)(1)

P(t~l)§(()¢f(t)P(t-l
P(t) = P(t-1) - T (3.112)
Ha + ¢r(t)P(t-l)§(t)

An extension of the RIV algorithm is the RIV-AML (Refined nstrumental
variable approximate maximum likelihood) (Young, 1976) method in which the

model is assumed to be a Box-Jenkins structure (equation (2.39)):

-d -1 -1
qQ_Bta ) ult) + C————(q —)

y(t) = ) 7
F(q ") D(q )

£t)

. : . . 4 '
An IV algorithm is used to estimate the dynamic pait ¢ "Biq !)u(t)/Hq J
while the disturbance part C(q l)f(t)/D(q' x) IS estumale.. C©° deting

difference y(t)-w(t) as an ARMA process using the ELS method (the term A ML



(approximate maximum likelihood) is a wonym for ELS). The

Structure is re-arranged to the regression forrn as:

b Yy = a ®B@ Hulty + Fg Hwn

with

-1
v(t) = gﬂ__l_) {49)]
D(q )
Ihe filtered data are given by
D(q ')
y() = ——— y(t}

‘ F(q “)Ca™

D(q ')
‘25{(1) e o(t)
F(g )C(q )

D ') |
¢(t) = ————— ¢(t
f F(q )C(q™hH

with:

T
1) = {-y(t—l)...y(t-n() u(t-d)...u(t‘d‘nb)]

[ 1T
T = pew(ts 1) wlt-n u(t-d)..uli d-nb*‘l

a Bt
w(t) = — u(t)
F(q )

Box feskins

(3.1123)

(3.113b)

(3.114a)

(3.114b)

(3.114c¢)

(2.115a)

3.115b)

(3.116)
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The IV estimation of B(. ) and F(qll) is peitormed by defining

T
oBr = [ fx"'fnf bo"‘bnb] 3.umn

and applying the RIV equations (3.110) (3.1il) and (3.112) with  ¢(1)
replaced by Cf(l). and ¢'{t). er(l) and ¢ defined by equations Vld)  and
(3.117).

The disturbance model given by equation (3.113b) is estimated by

calculating the disturbance v(t):

(D) = y(O-w(n) (3.118)

and applying the method of ELS to the estimation of the AKMA model given Ly

c@@h
V(t) = - 1
D(q )

£(t) (3.119)

Such an estimuaon is carried out by defining:

) - T b
€ (1) = V(1) (] cp (M (U (3.120)
T
= |-v(t-1)...-v(t- . - 21
¢CD [ v(t-1)...-v(t nd) (v(l l)...ev(t nc)] (3.121a)
T
= 1215t
GCD [dx"'dnd cl..lcnc] (3.121b)

and updating zco(t) by.



9CD(‘) - QCD(H) + a‘P(t)ﬂt)[-/(t)—a‘;D(t-l)¢CD(l)] (3.12)

T
P(t-1)¢ () (t-1)P(t-1)
P(t)= P(1-1) - cb __¢D - (3.123)
Va, + ¢ (DPC=1)60 (1)

Of course the true values of the polynomials F(q'l). Cq@’ ") and D ') are
unavailable for use in equations (3.114) and (3.116) thus they are
replaced by the current estimates.

The RIV-AML algorithm has been shown to have greater statistical efficiency
but is less robust than the comparable IV methods (Young, 1984 pp.175-204).
It is recommended for situations where reasonable estimates of the B(q'l)
and F(q'l) polynomials are available and greater statistical efficiency is

required.

3.18 Summary

The many variations available for choice of model structure, described
in Chapter 2 generate a need for “customised” approaches to the recursive
parameter identification problem. Recursive prediction error methods hcve
been wicely studied in the literature, and discussed in Chapter 3. A
comprehensive treatment of the subject has been developed in the form of
numerous algorithms, each of which may be interpreted as a variation or
extension of the basic recursive least squares method.

In practice it is intuitively favorable to a choose a system model
whose corresponding adaptation algorithm is of minimal compiexity, and

identifies the minimum number of paramete;s. A practical algorithm must



posses favorable convergence properties, such as an efficient rate of
convergence, and a guarantee that the parameters will  asymptotically
converge to constant values. Indeed, it is often the case that the choice of
model structure is based on or at least influenced by the availability of an
identification algorithm with thece properties. For instance, the output
error model structures cannot be directly written in a linear regression
form hence they are often avoided in favor of the equation error models.

RLS is a prediction error identification algorithm which updates the
parameters using an estimate of the "Newton Method” direction. Since RLS is
only applicable to the ARX structure, various approximations have been
invoked in order to apply its principles to more complicated structures.
These approximate methods are generally derived from off-line  methods.

Chapter 3 describes three main classes of these algorithms:

1) The GRML method defined by equations (3.55)- (3.63) is applicable to
each of the model structures discussed in Chapter 2. It has been
demonsirated (Ljung and  Sdderstrém, 1983) to possess  valuable
asymptotic  properties under relatively  general conditions, however
convergence rates are generally slower than the PLR methods. GLS is a
variant of the GRML applied to the ARARMAX model which constrains the
off-diagonal blocks of the matrix ¢T¢ formed by the cross terms ¢ABxd>D

to zero.

2) The PLR method is an approximation of the GRML in which the gradient
vector ¥(t) is replaced with the data vector ¢t). ELS is a PLR method
applied to the ARMAX structure. ELS has been demonstrated (Liung and
Sdderstrom, 1983) to converge faster than the RML method, and have the

additional advantage of inherent stability.

3) IV and RIV methods are a modification of least squares which are

designed to give "unbiased” estimates of the parameters. They generally
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employ an instrumental vector ¢(t) constructed from filtered or delayed
inputs. IV methods are, in general, slower to converge and lacking in
inherent stability in comparison to the PLR methods, however their
properties of asymptotic accuracy make them valuable in  many

applications.

In general, the more complicated identification algorithms (es. GRML,
PLR, IV) should be avoided in favor of RLS whenever possible because tor
real-world problems the properties of the disturbance are often not uniform,
and the noise models are difficult to estimate by recursive riethods. In
choosing the model to be idertified it is always advisable to incorporate as
much a priori knowledge of the system as possible in order to reduce the
number of parameters to be identified. The integrating noise model is a
special application of a priori knowledge to the disturbance model, ie. the
assumption that the disturbance model has a pole on the unit circle. Chapter

4 presents a more detailed analysis of its properties and applicability
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Chapter 4

Application of the Differencing Operator

4.1 Introduction

The differencing operator A (A= l-q'l) is commonly applied to the
input and output measurements to eiiminate the closure or displacement term
p from the postional form of the dynamic model. In off-line identification
analysis (Box and Jenkins, 1970) differencing is recommended when the input
or output series are non-stationary. In adaptive control work differencing
has been introduced arbitrarily to simplify controller design (Tuffs et al,
1985, Vermeer et al., 1987). In this a common assumption made is that the C
polynomial is equal to unity (Vermeer et al., 1987,. However in processes
with significant levels of stationary disturbances such as measurement noise
the differencing approach leads to poor results (Wahlberg and Ljung, 1986)
because it increases the sensitivity of the estimator to high frequency
components in the data. In the presence of stationary noise disturbances the
C polynomial has an important role in “filtering" the effects of stationary
noise on the non-stationary random walk disturbance process. The C
polynomial allows the ARIMAX structure to model the combined effects of
filtered "white noise®” and a "Brownian motion" disturbance component in the
data.

In this chapter it is demonstrated that independent sources of
stat.nary and non-stationary noise will cause the C polynomial to have
positive, real roots and the location of these roots represent the
proportion of stationary to non-stationary noise.

This observation sheds some understanding on the C polynomial and
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allows the designer to make reasonable a priori choices or at least place
reasonable boundaries on the parameters of C based on knowledge of the
disturbance and noise characteristics of the system.

It is demonstrated that the true or “best” choice of the C(q'l)
polynomial for a particular system is equivalent to a Kalman filter for
tracking the value of the time-varying closure term 4. Furthurmore, the ELS
and RML schemes are methods for estimating the parameters of that Kaiman

filter.

4.2 The Integrating o1 Brownian Motion Noise Model

The Brownian motion noise model —;e(t) is useful for eliminating the
steady-state displacement term pu from the model because it describes the
disturbance in terms of a series of random steps. In practi-cal situations
however this description is inadequate, because the measurements are
typically affected by various independent disturbances each of which may be
stationary or non-stationary. Some examples of those disturbances which fall
into the stationary category are measurement noise or small fluctuations in
process conditions about a nominal level, perhaps due to inadequate mixing.
The latter type are usually seen as process load changes, such as feed
disturbances or changes in ambient conditions which affect the process
output.

Figure 4.1 illustrates a  system representation  with independent

stationary and non-stationary disturbances.
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Figure 4.1 Equivalent Representations of the ARIMAX Structure

If the disturbance sequences fl and 52 are completely independent then they
-1
may be combined iato the disturbance term -C—(g—)f(t). With such a

factorisation the ARIMAX model is written as:

-1 do, -1 -1 M@h
A(Q ) y(t) =q B(q ) u(t) + L(q )fz + —T—fl (4.1)

where L(q'l) and M(q") are stable, monic polynomials. In the simple case
when L(q'l):M(q'l)z 1, the polynomial C(q'l) will be first order and the

value of ¢, may be calculated in terms of the variances of 61 and fz denoted
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by a: and a: from:

(1 +caxl + clz'l)oz = (1 - 201 - z“)a: + a: (4.

Equating terms in similar powers of z gives:

9
Cl - - (4.3)
o
and:
2.2 .2 2
(1 + (1)0 20, + 0, (4.4)

-

Combining these gives a quadratic expression for ¢ in terms of 9, and o
for which all the solutions are real and the root pairs < and c‘x correspond

to the roots of C(z) and C(z'l);

aucu*)-(|+chl+c3*) (4.5)
2 2 2 2 2
0, * (2:7z + a‘)cl +o, = 0 (4.6)
2
al al 2 2
cl,c; = -] - Tt /402+ o (4.7)
202 202

The roots < and c; are a symmetric pair (cl-c'l- 1). They are real and less
2 .. . .

than zero because o, and a? are positive. This constrains the value of < to

the range (0, -1) because only the stable solutions of c, are admissible. A

1

negative value of < corresponds to a positive root of the Clq )

polynomial.



In the first order case the value of Cx may be interpreted as a measure
of the relative magnitudes of the stationary and non-stationary noise
components, with c= 0 corresponding to "pure® Brownian motion and c = -1
corresponding to  white noise. Positive values of < mean that the
disturbance cannot be factorised into independent stationary and
non-stationary modes. This observation can be extended to higher order C
polynomials describing numerous independent inputs. Assuming that the

non-stationary component of the disturbance is a single Brownian motion

signel.  then all the roots of the C ~nlyr - ° will be positive, and the
number of roots will be given by the .’ o  independen* inr - This is
demonstrated by the following example. Consider a sys.m ‘v ree

independent inputs, two white signals and one Brownian motion signal:

¢y

v(t)-fl+fz+ -

The stationary sequences El and fz may be equivalently described by a single

filtered signal:

§

3

-1
vit) = (1 +1q ) + x

or partially combined into - filtered signal (I +rlq'x)f5 and a white
signal €e' This partial combination allows the value of r to be chosen to

allow the following spectral combinations:

1

v(:)-(|+rlq' )5s+ £ + s
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v(t) = (1 ¢+ rlq_l)f +

{
P

-1 -1
i (1 + rlq W1 + r,a )‘
AY

A

This example demonstrates how the order and the root locations T and r_ of

are related to a description of a system with multiple inde »endent inputs.

4.3 Frequency Response Properties of the Differencing Operator

A considerable deterrent to the use of the differencing operator n
process identification is that it places undue emphasis on the frequency
bandwidth close to the Nyquist frequency. This is a problem in process

control applications for two reasons:

1) Tvpically the model is intended as low order approximation of a
system which has high frequency dynamics and non-linearities. In these
cases it is important that the model is fitted to the fower frequency

bandwidth (Ljung, 1987).

2) High frequency bandwidths generally contain a higher proportion of

noise and random effects hence the models are less accur:'e.

To understand the effect of the differencing operator as a high-pass filter

consider its gain as a function of frequency given by:

Gain(G@@'Y)) = 1G(e™"“T")

Gain(a) = [(1-¢ " “T*y



« |1-cos(wTa)+isin(wTe) = V(1-cos(wTe))?- sin’(wTs) (4.8)

This function is plotted in Figure 4.2a. For frequencies approaching zero.
the sain of the differencing filter tends to zero, effectively removing the
steady state information. The gain increases however, with frequency to a
ma.imum of 2 occurring at the Nyquist frequency, wT.-x. The result is that
increased emphasis or weighting is placed on the high frequency components
when the data is differenced. This amplification effect s undesirable
because high frequency bandwidths (approaching the Nyquist frequency) often
contain significant proportions of noise, and these are usually not of
interest for control purposes (assuming that the sampling rate is

appropriately chosen).
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Figure 4.2a Bode Plot of the Differeacing Operator A

Examination of the cumulative spectral density of a differenced white
noise signal clearly demonstrates the emphasis placed on the high frequency
bandwidths of a signal. The cumulative spectral density of a signal wut) 18
calculated by integrating over the spectral density of the output denoted by

fw). For differenced white noise it is given by:

w) = %; (l_le_z-l) - _;? Q - ele- _ e-le-) (4.9)

The cumulative spectral density is given as a function of frequency w,
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w€(0,27] (Astrom and Wittenmark, 1984) as:

")
P(w) ® ,% 1[(2 C e Ty T (4.10)
= w/n - sin(w)
which is plotted in Figure 4.2b.
2 . - , -~
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Figure 4.2b Cumulative Spectral Density
of a Differenced White Noise Signal

Note that the power gain, given by the integral taken over the complete
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spectrum, 1s equal to X

E((a&(tn’) p |
. ;:_' I(z ) eMT' X e-le-y-an-d((uw) -
E(§(t)") -

A simple approach to the high frequency problems ntroduced by
differencin, is low pass filtering of the data. A filtering scheme was

suggested for the ARIMAX model (Tuffs, 1985) in which a “tailoring™ Ctilter

— was chosen to dampen the effects of sudden disturbances by low pasi
T(q )

filtering. The polynomial T(q") is monic and the filter is strictly stable

(has all poles within the wunit circle of the 2! plane). The filtered

incremental data variables u' and y' are given as:

-1
y'(1) = -l—'—‘_‘—l— y(v) (4.11)
T(q )

l - -1
u'(t) = ———“;— u(t) (4.12)

T(q )

and the filtered ARIMAX model representation was written as:

-1
A(q")——A—y(—f% - B(q"y—A—“i—f—: N gqfl—)em (4.13)
T(a ') T(q ) T(a )

In the work of Tuffs (1985), the polynomial T(q") was a user specified
constant polynomial based on a priori knowledge of the disturbance

characteristics. The choice of the filter structure and parameters
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introduced more tuning knobs for the designer to leal with. An idc
filtering scheme has been described (Ljung and Soderstrom, 1983) based on
the objective of modifying or “frequency shaping” of the prediction error
cost function, in orde to place less emphasis on frequency bandwidths which
contain less useful information.

The T(q'l) filter should be chosen as an a priori estimate of the
C(q") filter which best describes the true system. Application of this
value of T(q'l) will filter the data by an approximate inverse of the

Jisturbance model, thus  the resulting filtered  disturbance will be

approximately white.

4.4 Interpretation of the T Filter

A physically meaningful interpretation may be made of the T-filtering
scheme given by equations (4.11) and (4.12). Consider the case where

T(q") is chosen as first order:

-1

y(®) = —3— yo (4.14)
Il + t q
1
1 - -1
u'(t) = -——q——lu(:) (4.15)
1 + th'

Applving filters of this form is equivalent to subtracting the moving

average means from the measured data as given by equations (2.17):

u'(t) = um(t) - u(t) (4.16)
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y'(t) =y (0 - x(t) (4.17)

with the means y and u given by exponential moving averages:
u(t) = (l-a)um(t-l) - ayft-1) (4.18)
¥(t) = (l-a)y_(t-1) + ay(t-1) (4.19)
The moving average weighting coefficient a is clearly related to ihe

parameter as

am= -t1 (4.20)
The filtered data values u’ and y' may be described as "mean deviational” in

a sense, with the "mean sample length® (MSL) (a measure of the number of

data points over which the exponential moving average is taken) given by :

MSL = - = (4.21)

The frequency response of the mean deviational filter with tx’ -0.8 s
plotted in Figure 4.3 with the differencing filter (corresponding 1o

!1=0.0) also plotted for comparison.
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The benefit of the T filter is clearly apparent, since the high
frequency amplification is significantly reduced, and the gain is nearly
unity in the useful bandwidth w/T €(10""%).

Another interpretation of the T(q'l) filter and its application to the
ARIMAX model is seen in its equivalence to Kalman f..tering, as explained in

the following section.



4.5 Kalman Filter Interpretation of the ARIMAX Structure

In Chapter 2 it was explained that linear dynamic models are properly
expressed in terms of deviations from steady state (eg. equations (2.17a)
and (2.17b)). Several approaches were presented for estimating the steady
states u and y. The most useful for control purposes are those which lump
the steady states into the disturbance model as a non-zero displacement term
us. The integrating noise models consider the closure term to be a
non-siationary non-zero mean component of the disturbance whose behavior s
described as a Brownian motion or Weiner process (Astrom and Wittenmark,
1984). Such models use an internal estimate of u which is not calculated
explicitly but is an important state variable which allows the model to be
used as a predictor. The quality of predictions available from a model is
clearly dependent on the accuracy of the estimate of u, even if it does not
appear explicitly in the mode! equation.

An optimal method for the estimation of u is derived from the
application of a Kalman filter to the state equation describing its motion.
For the integrating noise models the state equation describing the Brownian

motion behavior of the closure term u is given by:
x(t+1) = x(t) + €1(t) (4.22)

. . . . 2
where sl(t) is a zero mean random variable with variance o The observer
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equation is written as:
z(t) = x(t) + 62(1) (4.23)

, . . . 2 .
where fz(t) is random zero mean signal with variance o,, and z(t) is an

observed variable. The Kalman filter estimation equations are as follows:

Q(Hllt) = Q(tlt-l) + K(t)[ 2(t) - Q(tlt-l)] (4.24)
, -1
P(t+l) = P(t) + ai - P(t)"a2 +P(t)] P(1) (4.25)
2 -1
K(t) = P(t)[az + P(()] (4.26)

If the initial estimate of x(t) is close to the true value then the time
varying nature of the equations may be neziected .y taking P{t+1)=P(t) in

equation (4.25). The resulting ste.iy-state Kalman gain simplifies tc:

-a: : 3 al\/af +4a§
K = (4.27)
202
2

The steady state estimation equation is given by substituting K  for the
[ ]

Kalman gain in equation (4.24):
Rta1yt) = R(he-1) + K“[ 2(t) - ’i(tlt~l)] (4.28)

Consider an ARX process in terms of the measured variables y (t) and um(t):
m
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A(q“)ym(t) - q"’B(q")um(t) + ) + £ (4.29)

with the closure term given by a Brownian motion process:

W) = €, (4.30)

For this case the observed variable z(t) is the estimate of p given in terms

of the positional measurements ym(t) and um(t) and the model parameters:
-1 -d -1
z(t) = A(@ )y (1) - q@ B(@ Ju (v (431)
m m

The estimate of the state Q(t) in equation (4.28) corresponds to the
estimate of . Substituting the right hand side of equation (4.31) into

(4.28) for z(t) gives:
pta)= By + K“[(A(q")ym(t)-q"’e(q")um(m-ﬁ(x)]

= (1K Jut) + K“(A(q“)ym(t.\—q'dB(q")um(t))

K

- — — (A@ Yy (- 'Bl@ u (1) (4.32)
1-(1 - K“)q

Writing the estimate (4.32) for u(t) and substituting in the model equation

(4.29) gives:
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Ala Dy () = a'Bq Hu (v
m m

K
My _(0-a"B@ Hu_(Nf + & (4.33)
I-(1-K )q "
which reduces to:
A@ Hay = a“B@ Hau (1 + (1 + (K_-1a e (4.34)

This is equivalent to the ARIMAX model with C(q'l) given by:
Cla= 1+ (K,-ha’ (4.35)

hence the value of < corresponds to (K“-I), and its value is given by:

~-
-a: 3 al\/ ai +4a2

c =K -1 = -1

1 s

2
20
2

/40 + o (4.36)

N NI;—-

This result is identical to equation (4.7) which was derived as a linear
combination of the stationary and non-stat.onary disturbances. The ARIMAX
structure is hence equivalent to estimating the closure term p by a Kalman
filter. Using a transfer function such as the ARIMAX model however, would

appear to have an advantage over the use of Kalman filter since it does not
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require direct knowledge of o, and LR If the parameter < is known or can
be directly estimated then results approaching or equivalent to the exact
Kalman gain predictions may be obtained. The recursive methods for
estimating ¢, in the ARIMA structure such as RML and ELS may be interpreted
as direct methods for estimating the Kalman filter gain, and hence indirect
methods of estimating o, and 9, The following numerical example provides a
practical demonstration of this equivalence.

The foilowing disturbance process was simulated:

e

yi) = 1+ ¢ (4.37)

>

. . 2 2 ..
with the variances o and g, chosen to span a range of conditions as
summarised in Table 4.1. The true or best values of the parameter ¢, ~were

calculated from a"; and a; using equation (4.36) are also presented in Table

4.1.

Table 4.1 Experimental Conditions for Simulation Example

Run # az a2 ¢ (calculated)
1 2 1
1 0.1 0.01 -0.08392
2 0.05 0.05 -0.38297
0.01 0.2 -0.80000

The system was modeled as a simplified ARIMA process, given by:
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A -1
I + ¢.q

y(t) = ———— £ 1) (4.38)
1 - q

The parameter el was estimated by two methods corresponding to the ELS and
RML algorithms as described in Chapter 3. These were implemented by choosing

the regressor ¢ and the parameter vector § as scalar values:
1) = [e(t-llt-l)] Bt) = [31]

with the prediction error given by:
e(tt) = Ay(t)- ()

‘he ELS method was implemented using ¢(t) as the gradient of the prediction

error:

(t-1)$(,6 ()P(t-1)

b+ GOP(1-1)47 (1)

Ao = Be-1) + P(t-1)¢(t)e(tit-1)
I+ $(OP-1)87(1)

P(t) = P(t-1) - T

The RML method was implemented using a "true” gradient given by:

1

WO = ——— §(1) = H1) - € WD)
¢

For this system the closure term u is an independent function of time

because it is the non-zero mean component of the system, and it is time

varying. Its value is given as:
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W) = —113" fl(t) (4.39)

The estimate of u(t) was caiculated by:
(l+c )

By = ——— y (4.40)

and a comparison is made between three diffe: nt choices for the value of

Cc.:
1

1) The value calculated from (4.3%) v.ih thr “ilnss of a: and °, known

(equivalent to the Kalman filter)

2) The estimate ’c\l(t) from the application of RML to the model given by
eauation (4.38).

3) The estimate el(t) from the application of ELS to the same model.

The comparison is made by examining the integral of the squared error in the

estimation of u(t) given by:

(B)-p) (3.41)
1

<
'l
Z|—
e~z

The simulations were programmed in Microsoft FORTRAN-77 and run on an
IBM AT computer. The source code for the program is included in Appendix B.
Each case was run for 1000 intervals and the results are presented in Table

4.2. The reported values of 31 for the RML and ELS cases are the estimates

at t=1000.
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Run =

Table 4.2 Comparison of Transfer Function Estimation

versus Kalman Filtering Estimation

of the Closure term

Kalman Filter
Method EILS Method RML Method

0.00943 -0.0839 0.01017 -0.0617 0.01039 -0.0620
0.03243  -0.3820 0.03251 -0.3583 0.03272  -0.3231

0.04539 -0.8000 0.04521 -0.7746 0.05742 -0.6149

The parameter trajectories for each run are plotted in Figures 4.4a,b,c

respectively.

Since an exact convergence proof has been demonstrated for

both the RML and ELS methods under these conditions (Ljung and Soderstrom,

1983) the estimate of ¢ should asymptotically reach the true value of s

if the noise sequences were perfectly white.
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In all three cases the estimated value of < after 1000 intervals
approached a constant value, however no significant improvement was noted
for longer runs. It is postulated that round-off effects of the computer
prevent exact convergence. It is interesting to note that the RML algorithm
gives poorer estimates of < (compared to the ELS method) as the actual
value of ¢ becomes closer to -1. This phenomenon may also be attributabie
to round-off effects, since the RML method involves a data filtering step at
each interval that is avoided in ELS method. It is recommended that this be
examined as a topic for future research.

The estimates of u(t) obtained by modeling the system as an ARIMA
process are close to the optimal Kalman filter estimation of u(t) in all
three cases examined. The RML method was generally slower to converge and

not as accurate in the final estimation of the < parameter than the ELS

103



method. This example demonstrates that the estimate of sut) given bv the
ARIMA model is nearly equivalent to the optimal estimate of u(l) given by
the Kalman filter with the noise properties exactly known. The results
presented support the use of the ELS method for the estimation of the Kalman
gain in situations where the noise properties are unknown or subject to slow

variations in time.

46 Summary

Chapter 4 examines some theoretical and practical interpretations of
using an integrating (or Brownian motion) noise model to describe
disturbances. The practice of differencing the input and output measurements
from a system in order to fit the data to a discrete transfer function model
is based on an underlying assumption that a component of ke disturbance may
be described by a Brownian motion model.

It is demonstrated that a basic admissibility condition on a first order
C polynomial is that the value of < must ue ir. the range [0,-1]. This is
coasistent with the postulate that the ARIMAY.  model results from an
unfiltered Brownian motion process plus a filtered white noise signal. A
generalised admissitility criterion is derived based on the postulate.

It is well known that simple differencing of the data leads to problems
in the presence of noise. Examination of the frequency domain properties of
the differencing filter reveals that it places undue emphas:s on data in the
higher frequency bandwidths, (close to the Nyquist frequency), and that the
overall power spectrum is doubled. This is a significant problem in

identification because typically the model is a reduced order representation
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of the system, and in these cases it is more important to closely model the
low frequency bandwidths. Furthermore the higher frequency bandwidths
generally have a higher proportion of noise and random effects hence the
data is less reliable. These problems may be reduced or eliminated by the
addition of a low pass T filter to the differencing operator, which in the
first order case reduces to a "mean deviational® fiiter as presented in
Chapter 2.

In Section 4.5 it was demonstrated that the C polynomial of the ARIMAX
structure is mathematically equivalent to a Kalman filter for tracking the
value of the displacement term u. The mathematical equivalence of the
equations is proven and a numerical example using the RML and ELS methods
was presented to demonstrate the practicality of this result. In the example
i+ is concluded that the ELS method, although less rigorously supported in
theory (than the RML method) gives superior performance. Its general use is
therefore recommended for applications for which the noise properties are

unknown or are subject to slow variations in time.
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Chapter §

Exponential Forgetting Factors

5.1 Introduction

A key problem with the application of least-squares type algorithms for
recursive  applications is that of estimator “shut-off” due to  the
continually diminishing update gain. There have been many proposed
modifications which offer solutions (a brief review is presented in Shah,

1986), however this subject apparently remains problematic, and a

significant  barrier to the general acceptance of adaptive control in
industry.

Chapt 5 considers three different methods for calculating variable
forgetting factors for wuse in exp . forgetting schemes. All of the
methods considered maintain estima. ness by keeping an arbitrary

measure of the P matrix equal to a con ..nt. The methods differ as to which
measure is used, and correspondingly, each has at least one “tuning knob"
relating to that magnitude.

One of the forgetting factors presented is new and based on the idea of
maintaining the determinant of the P matrix equal to a constant. The basic
advantage of this approach is that singularity of the P matrix is inherently
avoided, and the resulting equations are therefore less susceptible to
numerical problems which may be associated with the value of this "tuning
knob®. Furthermore, if the determinant is held constant then both the
largest and smallest eigenvalues of P are bounded by tr{P), therefore the
algorithm is easily monitored and constrained.

A key observation by Kulhavy (1987) is that the data vector 1)
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must contain information which is uniformly distributed over time and the
parameter space. If this condition is not fulfilled then application of the
exponential forgetting factor results in the loss of a piece of so-far
accumulated information, which is not compensated for by gain of new
information. In practice this effect is recognised as covariance windup.
Kulhavy (1987) concluded that this restriction occurs regardless of the type
of variable forgetting factor used, and in theory all methods which use
exponential forgetting algorithms will require some mechanism which prevents
windup. In practice however, it is found that some forgetting factors go 10
unity when the system is not uniformly excited. For these the windup
phenomenon is avoided in a natural way by causing the forgetting to cease.

A simulation example and an experimental evaluation using process
data were performed to  compare the three  previously mentioned
exponential forgetting factor algorithms under conditions of non-informative
data, and in the pfesence of noise. In the simulation example the algorithms
were applied to a simple linear system operating under closed loop
proportional feedback conditions. This situation represents a particularly
difficult problem in recursive identification because the data available
from the process are insufficient to identify the parameters, regardless of
the duration of the run.

The experimental study was conducted by applying the algorithms to
experimental process data which were collected from operation of a pilot
scale distillation column under closed loop conditions. The results from
the simulation are verified and the practicality of the new constant
determinant forgetting factor is demonstrated under realistic conditions.

The confidence bound ellipsoid is presented as a tool for analysis of

the numerical properties of the P matrix, and it is used to graphically
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examine the effect of the forgetting factor on these properties in the
simulation example. The ellipsoid provides interesting insight into the
geometric properties of the algorithms and is useful for interpreting and

comparing the effects of the forgetting factor in adaptive control studies.

5.2 Estimation Shut-off In RLS Methods

A recognised problem of the RLS type methods in adaptive applications
is that the P'l(t) matrix defined in equation (3.19) is non-decreasing and
grows without bound in time because the rank one, positive semi-definite

matrix given by a‘¢(t)¢’r(t) is continually added to it

t
Pl = Zakqs(k)f(k) = R(t-1) + a‘¢(t)¢T(t) 10)

k=1

The matrix P(t) will asymptotically decrease with time, and n-
estimator gain vector given by P(t){(t) diminishes to zero causing
parameter updating to asymptotically shut off or "sieep”. This effect cus

cause the parameter estimates to be biased in two situations:

1) The initial estimate %(0) is not sufficiently close to 6. The P(t)
matrix and the update gain P(t)¢{t) become very small before ?(t)

L 4
reaches 6 .

2) The value of 90 is time varying, hence the parameter estimates are

unable to track chauges after P(t) becomes small.

The first problem is solved by choosing P(0) sufficiently large that the



initial parameter covariance bound “encloses” the optimal estimate 6 . The
P(0) matrix must be chosen sufficiently large to satisfy the following

relation:

7T0)P1(0)5(0) < 1/0° (5.1)

A common approach to the second problem is to inflate the P matrix in
some arbitrary manner, either periodically or at each interval Such methods
effectively maintain the “alertness” of the least squares algorithm by
artificially  increasing the estimate of the parameter covariance. This
process is generally known as forgetting, since it increases the apparent
uncertainty about the parameter estimates.

The following section describes a geometric interpretation of the P

matrix which allows some interpretation of the methods of forgetting.

5.3 A Geometric Interpretation of the P Matrix

The matrix P(t) is related to the covariance of the joint distribution

of the parameter vector estimates, ?(t) by a Lyapunov-type function:

@-3N) TP (N)E-9(N)) € x*(N-n,c)/N (5.2)

This equation states that the probability that:

@-3N) TP NY@E-B(NY) > /N (5.3)

109



is xz(N-n.c). the c-level of the x’ distribution with N-n degrees of

freedom. The expressions given by values of ¢ in (5.3) define ellipsoids
in R" centred at @(N), whose shapes are defined by P(N). The lengths of the
semi axes of the ellipsoid are proportional to the square root of the
eigenvalues of P(N), or equivalently the eigenvalues of the square root
factorisation of P(N). The axes of the ellipsoid correspond to the
eigenvectors of the P matrix. Recall that the determinant of the P matrix is
the product of its eigenvalues hence |P| is proportional to the square of
the area of the ellipse. The condition number (given by the ratio of the
largest to the smallest eigenvalue) is geometrically indicated by the degree
of elongation or distortion of the ellipse from a circular shape.

Figure 5.1 depicts a covariance bound ellipse in two dimensions

corresponding to the values:

2 1
F = :¢/N = 1.0
1 1
The length of semi-axes a and b correspond to the square roots of the

eigenvalues of P, C‘s v/_3- and Cbs 1. The rotation of the axes is due to the

. v2/2 v2/2
eigenvectors Vil and ok
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Figure S.1 Confidence Bound in R’

A series of plots of the confidence bound ellipses provide a graphical
"view" of the P matrix, useful for analysing its evolution during an
experiment. In the following sections this tool 1is used to graphically

compare the behavior of different forgetting factor algorithms. The ellipse
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interpretation is also useful in understanding the upplication of a
recursive least squares type algorithm to the problem of the bounded noise

description as will be described in Chapter 7.

5.4 Exponential Forgetting Factors

A simple method for inflating the P matrix in a recursive fashion is to
introduce a forgetting factor A into the covariance update equation which
reduces the weighting on old data observations in an exponential manner. The
value of X is usually taken in the interval 09-10. The effect of the
forgetting factor is that P(t) and hence the gain Pug(t) will not tend to
zero and the algorithm will remain alert to track changing dynamics.

The RLS equations with a forgetting factor may be derived from weighted
least squares by taking the weighting sequence a to be a geometric series
with an exponential profile. If )\ is chosen as a time dependent variable

then the weighting sequence is given in terms of A(j), O<jst as:

a= 1 c:‘_l=,\(t); a‘_zaz\(t)/\(t—l);

t
cgl =M A4); 1»>1 (5.4)

j=i+l

The recursive update of P’l(t) will be given as:

t

t t
P(1) = [_n A(i)]P"m) +) [n A(j)]dxn«»
1=1 j=i+l



t-1

t-1 -1
= X0 g AMP O + ) fn A(j)]es(i)f(i) + B0 (1)

1=1 =i+l
i=1 !

= AP (t-1) + e’ (5.5)

Writing the update equations in terms of the P(t) matrix and applying the

matrix inversion lemma as equation (3.21) gives:

T
o - |pen) - PUZDBOOTOP(ED | L 5.6)
At) + ¢ ()P(t-1)9(1)
) = Be-1) + P(t-1)é(t)e(t) (5.7)

A(t)+¢ (1) P(t-1)d(t)

Exponential forgetting may be derived from ordinary LS in a slightly
different manner by assuming that the forgetting step should occur between
sample intervals. In this approach the covariance update is thus performed
in two steps, necessitating the use of more explicit time subscripts. The

resulting algorithm is given as follows:

1) The forgetting step which occurs between sample intervals gives the
update P(tjt-1)—P(tit) as:

P(tit) = P(tjit-1)/A(t) (5.8)

2) With each new data observation the update P(tjt)—P(t+l]t) is given

as:

Pleslit) = PR + (0T () (5.9)
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Bs i) = B(tit-1) + P+ YD) (5.10)

Applying the matrix inversion lemma, equations (5.9) and (5.10) may

be written in terms of P(tjt) as:

T
P(t+1[t) = P(H|t) + P(t|t)¢(t)¢ (OP(t)
I+ ¢ (OP(tt)e(t)

(5.1

sty = B(ue-1) + P(;")d’(‘)‘“) (5.12)
1 + ¢ (OP(tit)e()

In practice it is found that equations (5.11) and (5.12) behave similarly
to those derived from weighted least squares (equations (5.6) and (57).

An interesting interpretation of the exponential forgetting factor may
be made by examining the effect of the covariance update equations on the
confidence bound ellipsoid. Figure 5.2 provides a graphical picture of
this. The data update step causes one dimension of the ellipse to contract,
in the direction of the vector P(t-1)§(t), while the exponential forgetting

step causes the ellipse to be proportionately expanded in all directions.
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Figure 5.2 Eff:ct of Exponential Forgetting on the Confidence Bound Ellipse

A common problem with using a forgetting factor 1s that as the term

¢T(t)P(t~l)¢(t) becomes small the update equation (5.6) reduces to:

1

P(t) = P(t-1) (5.13)

]

Under these conditions the P(t) matrix will grow without bound, a condition
which is commonly termed covariance windup (Wittenmark and Astrom, 1984).
The parameter update gain vector P(t)¢(t) will aiso grow causing the
parameter estimates to drift excessively. In adaptive control schemes the

parameter drift effect can lead to a phenomenon known as bursting
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(Wittenmark and Astrdm, 1984), which occurs when the parameter dnift causes
the closed loop to move towards a condition of instability When this
occurs, the system may react wildly to slight perturbations, hence the term
bursting. A large advantage of projection algorithms for time varving
parameter identification applications is that the wupdate gain is constant,
and no covariance matrix is used. Such an algorithm is "robust® in the sense
that the problems of shutoff and covariance windup are inherently avoided,
although this valuable property is generally gained at the expense of
convergence rate (Goodwin and Sin, 1983). The idea of maintaining a constant
gain in a least squares type method was suggested by LLandauvu and l.ozano
(1979). In this work it was proposed that the forgetting factor Mt) be
chosen to maintain some measure of the magnitude of P(t) equal to a
constant. The directional properties of the resulting algorithms should
approximate those of least squares (hence one would expect rapid convergence
if the estimate is near the convergence point) while the gain vector will be
non-diminishing and have an upper bound. The following sections outline
different approaches to the idea of choosing A(t) to maintain a measure of

the P matrix equal to a constant.

5.5 Constant Information Forgetting Factor

The variable forgetting factor due to Fortescue et al. (1981) s
computed with the objective of maintaining a constant measure of information
in the parameter estimates. The information measure considered is the

cumulative sum of the residuals, computed by:
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t a
v =) —y 3T’ (5.14)

=1 0
The weighting sequence a is chosen to artificially increase the variance of
old measurements as they age. If the true value of o® is known th-n the
expected value of the information measure W‘ will simply be t, and W‘ may be
interpreted as an effective memory length. The weighting factor a is

related to the forgetting factor as in equation (5.4).

a " 1, a‘_u-A(t); a‘_zlt-/\(t)A(l-I)

t
a = j) ;i 4
it n AQ) 5 >l (5.4)
) =i+l
By neglecting the contribution of initial information a recursive expression

may be derived for W‘ from equation (5.16) in terms of the forgetting

factor:

2
€(t)/r
\P‘ = ,\(t)[W‘_ﬁ (———A(t)+G(t))] (5.15)

with: G(1) = ¢ (t)P(t- 1)

and r chosen as an estimate of .
The variable forgetting factor A(t) may be calculated from equation
(5.14) in terms of the prediction error and G(t) to maintain the information

measure ¥ at a constant by setting "’z"";-l’wo in equation (5.15):

A(0)e 2 (v

MO =1 - R Gy,

(5.16)
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since  G(1)>0, this equation has a strnctly  positive  root  which  satisties

X1)e(0,1] givea by:

At) -[m‘ « V' ml 4 4G ]/2 ; (5.17)
J

with: m = 1-Gw - e’(t)/(rwo)

. 2 . g “ e .
In practice the actual ‘alue of o° is unknown, but if the effects of

the initial conditions are ignored ithen the true covariance marc of  the

parameter estimates is given by the P(t) matrix scaled by the vanance of

. . 2
the innovations sequence o .

E(A)-6 ) B(t)-61)T) = tlim (P(t)o’) (5.18)

t—N

The estimate of the noise variance r may be assumed equal to unity and
omitted from equation (5.14) without loss of generality.

Fortescue et al. (1981) observed that the second term of equation
(5.16) will be small, causing At) to approach unity in any of the following

cases:
1. The process is quiet i.e. 1) is small hence ¢(t) is small.

2. The parameter estimates a(t) are close to the correct values, hence

e(t) i1s small.

3. The uncertainty in the estimates 9(:) given by P(t-1) s large,
hence G(t) is large.
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4. The effective memory length Wo is large.

Values of A(t) significantly less than unity occur h. wever when the
error ¢(t) is large and G(t) is small. Du:ing long periods of steady
operation (during which the process is not persistent'y excited) the data
may be only due to noise, hence it is likely that the information content of
the P matrix will be due to only noise, allowing all the important
information to be forgotten. It is therefore possible f the covariance
matrix to become large, causing the parameters to drift and potentially lead
to the bursting phenomenon.

The inclusion of the prediction error in the calculation of the
forgetting iactor (Fortescue et al. 1981) is based on an underlying
assumption that inflating the P matrix will increase parameter adcptation,
wkich will in turn reduce prediction errors. This presumes that a stable
feedback loop must exist between the prediction ervors and the magnitude of
P. If this loop does not exist or it is not stable then the P martrix will
inflate without bound, or until a bursting phenomenon occurs.

An on/off criterion which shuts off the covariance matrix update when
the trace of P exceeds an upper bound was proposed to protect ihe algorithm
from the problem c¢f matrix inflation (Shah, 1986). In this algorithm the

matrix update step 1s given by:

M(t) tr{M(t))s «
P(t) =
P(t-1) tr{(M(D)}> «

with:
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P(t-1)¢()e (1) P(t-1)] |

M(t) = [P(t-l) - 0

L I+ $T(OP(t-1)8(1)

(5.19)

and x is chosen as a user specified upper bound on tr{P). This effectively
shuts off the matrix update when the system is not uniformly excited,
however a kev problem with it, as with other methods which arbitrarily skip
the update of P is that it does not allow "learning” to occur in other

directions for which there may be useful information.

5.6 Constant Trace Forgetting Factor

A practical strategy for constraining the magnitude of P is to chose
Mt) in order to maintain tr(P} equal to a constant (Landau and l.ozano,
1979). The trace of a matrix is the sum of its diagonal elements and is thus
a useful measure of the gain of the estimator as it also corresponds to the
sum of eigenvalues of the P matrix. A formula for such a forgetting factor

has been derived (Sripada and Fisher, 1987) as:

- 2 4|P(0s(0) A" R

Bty = 1 + G(t)

The basic advantage of the constant trace forgetting factor algorithm
is that it efi vely maintains estimator alertness while placing an upper
bound on the estimator gain. Certain other properties of the matrix are lost
however if the data are not persistently exciting. Under these conditions

the estimator gain may approa. zero in rtain  directions, (corresponding
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to one or more eigenvalues of the P matrix approaching zero). This
phenomenon may be detected by monitoring another property of the matrix,
such as the determinant or the condition number. An on/off criterion based
on cond(P.) has been proposed (Sripada and Fisher, 1987) where P' is an
"optimally scaled” (Noble, B., 1969) version of the P matrix.

The calculation of the forgetting factor by equation (5.20) s
numerically robust, since it has been shown (Vien, 1989) that the value of
the terms under the square root will always be positive. However the choice
of tr(P) is important since it specifies the confidence level which is to be
maintained. Choosing the trace too large will result in forgetting factors
which are unreasunably small, and choosing it too smali will  reciit in
forgetting factors equal to unity.

A disadvantage of wusing tr{P} as a tuning knob is that it 1s a
d: .ensional quantity, therefore its value will depend on the scaling of the

variables in the data vector, which is problem specific.

5.7 Constant Determinant Forgetting Factor

An alternative to using tr{P) as a measure of its magnitude is the
determinant, |P(t). Maintaining a constant determinant has the advantage of
providing estimator alertness while 1nherently avoiding matrix singularity.
The constant determinant idea, however does not place an upper or lower
bound on the eigenvalues of the P matrix, but rather it forces the product
of all the eigenvalues to be equal to a constant. In order to place an upper
or lower bound on t. eigenvalues it is necessary to monitor and limit some
other measure of P, such as tr{P} or cond{P}.

A forgetting factor which maintains [P(t)l={P(t-1)] is computed by
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setting equal the determinants of both sides of the matrix update equation.
An equation for the determinant of P(t) is derived from Theorem 5.1, stated

as follows.

Theorem 5.1: Determinant of the Rank One Update

The determinant of the sum of an nxn positive definite matrix Al multiplied
by a scalar a, and the rank one matrix yuv(T (x is a vector with column

dimension n) is given by the identity:

A '+ xle = |Arl|an'l(a+xTAx) (5.21)

O

The proof of Theorem 5.1 is preseinted in Appendix 1.

Remarks:

Theorem 5.1 applied to the covarianc~ matrix update equations (5.8) -

(5.12) gives the value |P(t)] in terms of . -1)| by the formula:

|P(t-1)]
A"+ G(Y)

[P(t)] =

Setting |P(t)] = |P(t-1)} gives:

AO™N + GY) = 1

At) = (1 + Gy /1 (5.23)
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From equation (5.23) it is clear that the forgetting fac r has a
solution within the range [0,1] for any value of 1), since G(t) > 0. The
constant determinant algorithm  will therefore be free from numerical
difficulties associated with the choice of |P|, but the computation of A(t)
by equation (5.23) may be inaccurate when applied to a computer because it
involves an exponential term. As a result some drift in the value of |P| may
be expected over long periods. Application of the upper diagonally factored
RLS algorithm known as RUD (Bierman, 1977) to the update equation (5.11)
allows the determinant to be easily monitored, and hence periodically
corrected as necessary. In the RUD algorithm, the P matrix 1s factorised as
P = UT-D~U, where U is an upper triangular matrix with diagonal elements
equal to unity, and D is a diagonal matrix. With such a factorisation the

value of |P| may be computed directly from D by the relation:

n

|P| = |D| = 1D,
i=1

Corrections may be made to |P(t)| by suitable adjustment of A(t).

5.8 Rank Deficient Data

It has been observed (Kulhavy, 1987) that an implicit assumption behind
the use of the exponential forgetting factor is that the measured signals
contain information which is uniformly distributed over the entire parameter
space, and is also uniformly distributed in time. Furthermore, if the data

are rank deficient (do not span the parameter space) over a period of time,



the application of an exponential forgetting factor will cause numerical
problems in the calculation of the P matrix. Consider a set of data vectors
#i) of dimension nxl collected from a system which span only n-1 dimensions
of the parameter space over some interval j<ick. Under these conditions a
vector x usts such that xT¢(i)-0 . When no forgetting factor is employed

the P! matrix update is given as:

k
-1 -1 LT,
Pt = PO+ ) e ()
i=)
The x-direction component of the P matrix will remain constant, which can be

seen by pre-multiplying both sides by vector xT, and post-multiplying by x:

k
TP ix = xTP O + xT Z¢(i)¢T(i) x = x P l0)x (5.24)

=)
The second term on the right hand side of (5.24) is equal to zero, hence
the left side will remain constant, equal to the initial value, xTP'l(O)x.

If, however, a forgetting factor is employed which takes values less than

unity in the interval j—k the rciation (5.24) becomes:

xTP Ht)x =
k S ol & k-1 -
N [A(i)]x P "(0O)x + x z n [A(m)]ai)d’ (i) x (5.25)
i=j i=j m=i
Again, the second term on the right hand side of (5.25) is equal to zero.
The first term, however, will exponentially tend to zero as the interval j—k

becomes large, causing the left hand side to correspondingly diminish toward
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zero. This implies that at least one eigenvalue of P'l(t) is approaching
zero. therefore one eigenvalue of P(t) must become large. This inflation of
P(t) in the direction of x s unbounded, and in practice would result in a
very large estimator gain in that direction. Large parameter variations

would result if the character of the data were to change even slightly.

5.9 Simulation Example

A challenging test of the exponential forgetting factor algorithms
results from their application to rank deficient data records over a long
period of time. Under such conditions it is interesting to compare how
effectively an algorithm prevents the tendency for the P matrix to inflate
excessively. In order to test this the previously described forgetting
factor algorithms were applied by simulation to the identification of the

parameters of the two parameter first order discrete system expressed as:

(1 - 0.6q ")y(t) = 0.4u(t-1) + &) (5.26)

The noise term ¢(t) was chosen to be zero mean with variance of 0.1. The
input u(t) was generated by proportional feedback with the gain K calculated

us.ng the parameters of the estimated model:

u(t) = Ky(t)
with
K = lA— a)
b



These conditions were chosen to generate data  with  restnicted
excitation, since proportional feedback will cause rank deficiency. Shnee
only two parameters are being identified and the elements of the datx e
linearly related by feedback, the data vectors x(t) will be parallel, hence
the information has only one directional component.

01
9(0) = [82] The basic algorithm used for updating the parameters and the P

The identification algorithms were initialised with P(0) = [I 0] and
matrix is given by equations (5.6) and (5.7).

Figures 5.3a,b, and ¢ are plots of the parameter and forgetting factor
trajectories for the three cases. Parameter estimates shown have been
normalised by dividing by the true (known) parameter value.

The smallest parameter variation occurs with the constant  trace
forgetting factor method and the largest with the constant information. In
the constant determinant and constant trace cases the value of  A(t)
asymptotically approaches unity. The constant information forgetting factor

however, apparently does not approach unity over the course of the

experiment, and a windup effect is evident.
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Figures 5 “ and c illustrate the evolution of the covariance bound
defined bv e...on (53), after each 100 intervals. Note that the
initial ellipse is circular since P(O) = I, and the subsequent ellipses
become more distorted in the direction perpendicular to the ¢ vector. The
ellipses provide a clear understanding of how covariance windup occurs, as
well as how it is affected by different choices of the forgetting factors.
In the constant trace case the maximum dimension of the ellipse will be
constrained while in the constant determinant case the area of the ellipses
remains constant.

In the previous section it was concluded that if exponential forgettir
is used under rank deficient conditions then covariance windup Wil
necessarily result. In the case of constant trace and constant determinant
forgetting factors, the growth becomes asymptotically slower as the matrix
expands, because exponential forgetting ceases when the forgetting factor
goes to unity. In the constant information case, the forgetting factor does
not go to unity, therefore exponential forgetting is allowed to continue
under rank deficient conditions, resulting in covariance windup.

It is concluded that the forgetting factors which were derived based on
maintaining a matrix norm equal to a constant are more robust, since these

cause the forgetting factor to go to unity under rank deficient conditions.
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Table 5.1 presents a summary of the determinant, trace and condition
numbers of the P matrix after 400 intervals of the experiment. These

results are provided as a numerical verification of the results.

Table $.1 Summary of Final Conditions of the P Mastrix

Tr(P(400)) {P(400)| Cond(P(400))
Initial Conditions 2.00 1.00 1.00
Coastant Information 9.34 2.36 34.93
Constant Determinant 5.13 1.00 24.27
Constant Trace 2.00 0.25 14.01

Table 5.1 reveals that the constant trace forgetting factor takes the



most conservative approach to using the information available to it since it
maintains the smallest matrix trace of the three cases considered. The
constant determinant method is ~nparently less conservative based un that
measure. The constant information algorithm is apparently the least
conservative by the previous arguments. In this case the trace of the

matrix grows rapidly due to he covariance windup effect.

5.10 Experimental Evaluation

The three exponential forgetting factors previously descrnibed  were
applied to an off-line recursive estimation problem wusing a set of closed
loop process data. The objectives were to verify the conclusions drawn from
the simulation re s by using operating data, and to demonstrate the
practicality of ~«w constant determinant forgetting factor under more
realistic conditions. .e evaluations were all carried out wusing the same
off-line data set in order to guarantee that other factors, such as random
process disturbances, are held constant and do not influence the results.

The data were gathered from a distillation column separating a 50 mass
percent methanol-water feed into a 95 mass percent methanol top product and
a 5 mass percent bottom product. Figure 5.5 provides a schematic diagram of
the equipment involved. The details of the column are provided elsewhere
(Langman J. 1986, Pacey W.C. 1973, Svrcek W.Y. 1967). The column was
interfaced to a LSI 11/23 microcomputer system which performed the
composition control and the data collection functions.

All the comparisons presented in this evaluation, and those n
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subsequent chapters use the same data set which was gathered from a test of
a single-input, single-output, adaptive, proportional and integral
controller of Vermeer (1987). During this test the distillate composition
was controiled using the reflux flow. The bottom composition was regulated
at S percent methanol by a fixed parameter PI controller, and the feed to
the column was held constant.

The data, which is plotted in Figure 5.6, consists of 1C ) measurements
of .ne distillate composition and the reflux flow taken each minute. The
setpoint of the overhead composition control was changed by tl percent every

150 minutes in a reversing step pattern.

Distillate
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Figure 5.6 Distillatioa Column Data



because they were gathered under closed loop conditions and all  the
excitation is due to infrequent setpoint changes. Furthermore there is a
significant level of noise on the measurement of the distillate composition
which is due to incomplete mixing in the overhead accumulator.

The model of the system is assumed to be of the ARIMAX form, with first
order A and C polynomials. The time delay was assumed to be one minute, and
the order of the B polynomial was taken as zero. The model parameters a,
b0 and c 1ofined hv equation (5.27) were estimated using the recursive
ELS algorithm described in Chapter 4, with the three different types of

forgetting factors described in this chapter.
Ay(t) = -a Ay(t-1) + b Au(-1) + (1 + clq")s(x) (5.27)

The data and parameter vectors were constructed as' follows:

-Ay(t-1)
#t) = | aut-1) |, 8 =
e(t-1{' 1)

O> _O> W>

with the a posteriori prediction error calculated as:

e(tlt) = Ay(t) - B(t)g(r)

Initial conditions for each test were chosen as follows:

100 0.99
P0)= |0 10];: %0 =lo.01
001 -0.8



The off-line evaluations of the recursive identificatica c'gorithms were
conducted on an IBM PC-AT computer using the PC-Matlab packase. An example
of the actual code used is included in Appendix B.

The parameter estimates, forgetting factor, matrix determinant, and
condition number for each run are plotted in Figures 5.7a,b,c,d, 5.8a,b.c.d,

and 5.9a,b,c.d.
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5.11 Experimental Observations

No significant difference was observed between the parameter estimates
obtained using the three different forgetting factor methods. The
differences are very subtle and may not have a noticeable affect on
parameter .stimates for thousands of intervals. The effects on the
properties of the P matrix are, however, quite apparent and distinct in this
evaluation. These effects are interesting because they reveal the impact of
the forgetting factor on the properties of the P matrix under excited and
non-excited conditions.

The forgetting factors calculated for the constant determinant d
constant trace cases are very similar, remaining very close to unity during
periods of no excitation, and decreasing to approximately 0.85 when setp int
changes occurred. In these cases the matrix properties (det(P}, Cond{P))
remain nearly constant when the process was quiet. In the constant
information case, however, the forgetting factors were generally lower
during the quiet periods because they were affected by process noise. As a
result, the values of Tr{P} and |[P(t) tended to inflate, indicating
covariance windup.

In all three cases the condition number increased dramatically during
periods of rich excitation, but remained fairly constant when the process
was quiet. When the process is quiet, the condition number is unaffected by
exponential forgetting since under these conditions all the elements (hence
the eigenvalues) of the P matrix are increased proportionately. For this
reason, the condition number by itself does not provide a good indication of

covariance windup.



5.12 Conclusions

Under both simulation and experimental conditions it was found that the
constant information forgetting factor of Fortescue e al. (1981), the
constant trace forgetting factor of Sripada and Fisher, (1987), and the . «

constant determinant  forgetting  factor were effective in maintaining

estimator alertness. In the experimental example considered. the ¢ of
different exponential forgetting factors on the parameter estin. WS
indistinguishable.

It was found that the constant trace and constant determinant
forgetting factors tend to unity during periods of low excitation and are
relatively unaffected by process noise, a result which was supported by the
experimental as well as the simulation tests. It is concluded that these
forgetting factor methods provide superior pri.tection against the problem of
covariance windup. In contrast, it was f that the constant information
forgetting factor of Fortescue et al. (1981) 1is not effective in .nting
covariance windup when the system is not excited, since proc.© noise

directly affects the forgetting factor.

5.13 Summary

Chapter 5 examines the use of exponential forgetting forgetting factors
for maintaining estimator alertness. The problem of covariance windup and
"bursting” are identified as potential hazards in the use of exponential
forgetting under non-informative conditions.

Three different variable forgetting forgetting factors are presented
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and compared, each of which is derived by causing some measure of the P
matrix to remain equal to a constant. The constant information approach of
Fortescue ef al. (1981) is found to be the least robust, since it does not
cause forgetting to cease when the are data non-informative, and is
sensitive to process nNoise. The constant trace algorithm of Sripada and
Fisher (1987), was found to be a very robust and conservative approach which
effectively prevents covariance windup. A new forgetting factor which s
based on maintaining the dete-minant of the P matrix equal to a constant 1S
derived and compared to the others. It is found that this approach is r1obust
in the sense that forgetting is shut off when data are not informative,
however it is a less conservative approach because it allows the trace of
the matrix to increase.

The confidence bound ellipse is presented as a valuable tool for
graphically examining a number of fundamental properties of the P matrix.
The eigenvalues, eigenvectors, trace, determinant and condition number of a
2x2 matrix may be interpreted by examination of the ellipse.

A comparison between the three forgetting factor methods is made under
simulated, closed loop proportional feedback conditions These conditions
providle a challenging test of the performance of the for:eti.ig fact.
because they restrict the rank of the information matrix and the <*7ta are
not persistently excited. The algorithms were compares basec on the
parameter trajectories and the behavior of the P matrix & time, ziaphically
presented as ellipses. The results and conclusions drawn from the
simulation were verified by application of the forgetting factots to a
recursive identification problem using experimenta: .ata. It was fouad that
the constant trace and constant determinant foryetiing factors were robust

and practical methods. The constant informaton “orgetting factor however
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was considered less robust since it showed a tendency to allow covarance
windup.

Chapter 6 examines an alternative idea to exponential data forgetting
known as directional forgetting which, aithough simple, is ar elegant
approach to the problem. Comparisons are made to the results presented in

this chapter.
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Chapter 6

Directional Forgettiag

6.1 Introduction

In Chapter 5 the idea of exponential forgetting was introduced which
applied a factor Mt) to previous data which increases the elements of the
P matrix in a uniform manner. A novel approach to maintaining alertness,
derived from  Bavesian arguments apphed to  parameter estimation  is$
directional forgetting (Peterka, 1981; Kulhavy and Karny, 1984), (also
termed restricted exponential forgetting (Kulhavy, 1987)). The directional
forgetting idea is based on the assertion that only the "evidently" obsolete
piece of posterior knowledge should be updated, hence the P matrix should
only be modified in the direction of the current Kalman gain  vector
P(t-1)¢(t). The resulting algorithm works in such a manner that only those
directional components of the P matrix which are improved or innovated by
the vector @t) are taken as obsolete and therefore replaced. The main
advantage of this approach over exponential forgetting is that it avoids the
restriction that the system be uniformly excited. Those directions which are
unexcited are unaffected by forgetting, therefore the covariance windup
problem is inherently avoided.

Chapter 6 provides a brief discussion of the motivating theory behind
directional  forgetting. The rigorous derivation of the algorithm s
necessarily complicated and is provided elsewhere (Kulhavy, 1987). The
resulting algorithm is interpreted and compared to exponential forgetting.

The algorithm was applied to the simulation example of Chapter 5 to

allow a direct comparison to the exponential forgetting results. Application
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to the distillation column data are presented as a turther senticaton, and
a demonstration of the practicality of the method under realisug

conditions.

6.2 The Bayesian Approach to Identification

The conditional prob density function (CPDF) of an event (1)
conditioned on the observation of a data value at time t denoted bv &),

and a set of previously gathered observations D, is denoted by:

7"/‘ l(y(t)lcb(t).D) (6.1)

If u(t) is the only observed input to a process then the input-output

relation:

yiy) = 0T¢(t) + &) (6.2)

is written in terms of the CPDF of y(t) as:

63
?‘/‘_l(y(l)lu(t)ﬁ) (6.3)

If the input u(t) is independent of the system parameters (Peterka, 1981)

such that:

p = (¢ 4
?‘/t_l(uw) Pm_l(u) ) 4)

then Bayes rule may be applied to system identification, resuling in uan
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expression for the CPDF of the parameter estimate 9(() conditioned on

observed data given by:

?m(o) & ?‘/‘_l(ylu,ﬂ)-?‘/'_lw) t=1,2... (6.5)
If the parameters are considered to be time varying then evaluation of the
CPDF :P‘/‘(a)—o{"l/‘ (6) must be computed to complete the recursion. An exact
evaluation of this requires a probabilistic model of the time variauon of
the parameters. Ordinarldy, o’ 1 rough descripti © of the opehavior ot the
parameters is available, #g. "the parameters vary slowly", and an
heuristic procedure must be used. The simplest way to consider that the
parameters change in the next interval is to directly increase  the
uncertainty of old estimates ?m(o) by the “flattening” operation (Peterka,
1981):

A
Pooipld) [?m(o)] (6.6)

where A is a forgetting factor which may be time dependent. The directionai
forgetting idea, however observes that there are some directions in  which
the CPDF of unknown parameters remains constant (due to the lack of new
information) and should not %»e arbitrarily increased. The exponential
foryctting  factor reduces the whole CPDF, ‘Pm(ﬁ), and as a result the
algorithm can become very sensitive to even small changes in the information
content of the data, leading to covariance wiudup and possible "blowup” as
described in Section 5.2.

The directional forgetting  algorithm (Kulhavy and Karny, 1984)

determines a parameter subspace on which the probability distribution



remains unchanged by the recent data. This region 1s spanned by the
non-excited directions or modes of the process. Ordinary exponential
forgetting is applied on the complimentary parameter subspace. The two
regions are chosen to be stochastically independent so that ‘“forgetting” in
one subspace does not affect the other.

The development of the directional forgetting algorithin considers the
existence of an operator ?}‘ idependent on the direction of the data) which
maps the parameter space into two conditionally independent subspaces, 1.c.

the generic point 4 in parameter space 1s transformed into @ such that
0:{‘#,4’}:‘.’}(0) (6.7)
1’2 '

The conditional independence of the two CPDFs is expressed by:

Pm(d?) = ?‘/‘Ml)-?‘/th) (6.8)
and

?‘/t—l(¢) = T"/"l(¢l).?l/t-](¢2) (fy )

The recent data ¢(t) does not affect the CPDF of ¢l. theretore

= = (
?l'l/t(ol) ?t/z(¢1) ?g/‘ 1(¢1) (6.10)

Orc iary exponential forgetting is applied to the comphmentery subspuce &

by:

te+

: A
P ,‘(02, x T‘/‘(¢2) = [?t/‘_1(02)] (6.11)
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The directional forgetting scheme updates 7" t_l(<l>) as:

/

ux/z(‘d’) = ?ul/t(ol)'?ul/zwz)

(] A "\
« P (@) [7"/“"’2)] (6.12)

The derivation of a practical form of the directional forgetting alg :rithm
from this formulation 1s necessarily difficult and s described 1n the pagper
by Kulhavy (1987). The algorithm, as it applies to least squares is however,

quite simple, and is presented in the following section.

4.3 Direcuional Forgetting Applied to the Least Squares Method

The matrix update equations . wuthavy and Karny, 1984) which correspond

to the ure of the CPDF, equations  (6.10), (6.11), and  (6.12)
are:
Pl = P lvt-1) + at)é (1) (6.13)
-1 -1 T
P (t+ljt) = P (tt) + (of(t) - 1g{t)e (1) (6.14)

with parameter estimates given by:

P(t]t-1 ) ¢(t)e(t)
B i) = B(ye-1) + (6.15)
1 + G(t)

In practice, the update and forgetting steps given by equations (6.13) and



(6.14) may be combined. Kulhavy (1987) also introduces an updaung
criterion 62 which prevents division by zero when the value of a becomes

very small. Applying the matrix invers.)n lemma to the resulting algorithm

gives:
iﬂa(t)l>62:
P(tit-1)(08 (OP(t]t-1)
P(t+1jt) = P(tit-1) - T (6.100)
ra(t) + ¢ (P t-1)é(t)
iﬂa(t)ls&zz

P(t+1jt) = P(yt-1) (6.16b)

The weighting factor ao(t) is computed as a function of the forgething

factor A(1)e(0,1] and G(t) as:

a(t) = Mt) - B (6.17)

G(t)

This choice ensures that the matrix P(t+1|t) remains positive defimie
for any G(t)>0 as long as the condition A€(0,1] holds (see Appendix C for a
proof of this). It is also of interes note that the value of alt) will
always be less than A(t).

In equation (6.16) the update of P(tt-1) s suppressed  when
la(t) < 62, where 0 < 62 << |, because in that case the effects of dau
updating P(t-1|1t)—P(1t) and directional forgetting POy P+ Lty
exactly offset by one another. In practice it 1S recommended that the value
of 82 be chosen in the interval (10°2,10"% depending on machine precision

(Kulhavy and Karny, 1984).

are



If the value of G(t) is zero then the data are "singular®, in the sense
that they contain no useful information and the updating/forgetting steps
should cease entirely. It is necessary to introduce an on/off criterion 1o
ensure that such singular data points are discarded, to avoid division by
zern n equations (6.16) and (6.17). If G(t) < 61 then equations (6.15) ana

(£, 0a,b) are replaced bhy:

) = Be-1) (6.18)

P(t+1jt) = P(tjt) = P(tjt-1) 6.19)

6.4 Chaoice of the Forgetting Factor

A critical identifiability requirement in any problem is that the
degrees of freedom defined by N-n is greater than |, or that the number of
data observations be greater than or equal to the number of parameters. In
recursive problems the number of data observations is wusually very large,
and the forgetting factor defines a window of recent data observations whose
length is approximated by the mean sample length (MSL) defined as A/(1-X)
(Ljung and Soderstrom, 1973). Exponential forgetting is applied to the
whole parameter space hence the valu: of the MSL must be related to the
total number of parameters. Directional forgetting, however, applies the
usual exponential type forgetting to only a rank one subspace of the P
matrix, which corresponds to identification of only one parameter, therefore
the MSL may be chosen on a one parameter basis and the value of the
forgetting factor is independent of the number of parameters in the problem.

For instance 1t forgetting tactor of 095 is used tor a three parameter



problem using exponential forgetting, then the mean sample length s 19
Assuming that the data uniformly span the parameter space, then the
corresponding directic forgetting factor depends on the number of samples
per parameter which in this case is 6.33 and the directional forgetting
factor is 0.86. Since the forgetting factor relates directly to the MSL of
each individual parameter in the system, it is a more meaningful tuming knob
than those proposed for exponential forgetting in Chapter 5.

Kulhavy and Karny (1984) observed that the directional torgetting
algorithm 1s 'ess sensitive to the choice of forgetung factor than swndard
exponential forgetting factors due to the inherent robustness of  the
formulation. It was found however that periodic adjustment of this factor
was beneficial to speed convergence. Kulhavy (1987) proposed a time varying
forgetting factor A(t) which s derived from a mathematical formulation of
the time updating model given by eqﬁation (6.6). This wuses the prediction
error to lower the forgetting factor when prediction errors are large, and

correspondingly raise the forgetting factor when they are small.

(6.20)

G(t)( e :m-l)]

M) = |1 + (l+p)[ln(l+G(t)) +
1 +G(y)

. - 2 ..
The normalised square of the prediction error € 15 given by:

’ tz(l)
(N(t) = (6.21)
o’ (1 + G(1))

The value p is a tuning knob which is roughly related to a “steady state”

forgetting factor A“ by the relation:

(IRE
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A [ 1+ Zp] (6.22)
L]

The value of A“ s derived from (6.20) by considering that under true

steady state conditions the covariance update becomes insignificant:
$T(OP(I- A1) = T (DP(t+1])g(1) (6.23)
and the normalised prediction e >r should approach unity:
€ & 1 (6.24)

Equation (6.22) is a relation which ma: it possible to choose a value for
p by means of the value of ,\” which ma. be casier to specify. Based on a
series of simulated experiments with an adaptive controller, Kulhavy (1987)
concluded that a value of p=0.2 resulted in good performance over a wide
range of conditions. This value corresponds to Aus 0.714, or a MSL of 2.5,
which is significantly lower than the values normally used for exponential
forgetting factors (0.95-1.0).

Kulhavy (1987) notes that the forgetting factor given by equations
(0.20) and (6.21) is comparable in some respects to that of Fortescue er al
(1981) since the result of the 'r may be derived from equatiou (6.20) by
certain simplifications and approximations. The constant information idea of
Fortescue ¢t al. (1981) applied to equations (5.16),(5.17) and (5.18)

results in the torgetting factor (Kulhavy, 1987):

wh
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At) = [1 v L e;(t)] (6.2%)
0

where the factor \PO is chosen a priori. The similarity to equation (6.20)
is revealed by considering Wo to be time varying, given by Nu-(l +

1/G(1))/(1-p). The resulting formula is an approximation of (6.20):

(1 -p)Ge 41
MO = (14 (6 26)
(1« Gy )

In an experimental comparison (Kulhavy, 1987) concluded that performance of
the directional forgetting algorithm was superior to the constant
information approach of Fortescue e al. (1981) and in general much less

sensitive to the heuristic factor p than the corresponding factor I/WU.

6.5 Interpretations of the Directional Forgetting Method

The directional forgetiing algorithm described by equations
(6.15), (6.16) and (6.17) has distinct advantages  over exponential
forgetting since its forgetting factor does not affect the entire P matnix
as it does in the exponential forgetting algorithms. Lhe algorithm differs
markedly, however from the usual form of weighted least squares algorithm,
since a is allowed to take negative values, hence forget data, when G(t) is
small. Its effect is best understood by considering the P matrix in terms
of the confidence bound ellipsoid, and examining the citect of the data
update and the forgetting steps separately. Figure 6.1 provides such an

illustration for a two ARMA parameter system. The data update step given by
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equation (6.13) causes the diameter of the ellipsoid to be reduced in the
direction of the Kalman gain vector P(t-1)¢(t). The forgetting step,
corresponding to equation (6.14), will involve subtraction from the P'l(tlt)
matrix, since (a(t)-1) is always negative, therefore the diameter of the
covariance ellinsoid will be increased in the direction of the vector

P(tjt- 1)g(t).

A,

Figure 6.1 Effect of Directional Forgetting on the Confidence
Bound Ellipse

The forgetting step in the directional forgetting algorithm is "data
dependent” since the value of the data weight o(t) is calculated based on
the information measure G(t). The following three cases illustrate how the
forgetting factor acts as a “tuning knob" which distinguishes useful data

from redundant data, based on the value of G(t).

/
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1. At the point where 1/G(t) = A/(1-2) = MSL the data is redundant,

the weighting a(t) is zero, and no covariance update takes place.

2. When G(t) > (1-1)/2 the data vector is relatively large, the value
of aft) will be positive, and the covariance matrix P s

correspondingly shrunk in the direction of P(tjt-1)¢(t).

3. When G(t) < (1-A)/A the data is “"small" and a(t) < O, hence the
covariance matrix 15 correspondingly  increased in  the direction ot

P(tit-1)e(t).

6.6 Reduced Rank Data

An important difference between the directional and exponential
forgetting algorithms is the requirement of “persistence of excitation” to
prevent covariance windup. In Chapter 5 it was demonstrated that exponential
forgetting requires that the data be persistently exciting in order 0 cuuse
the P matrix to converge to a constant non-singular matrix. It is easily
shown that this restriction does not apply to directional forgetting. Recall
the example from Chapter 5 in which the the data vectors from a system over
a period of time i=0—k do not span the entire parameter space, but ure
orthogonal to a vector x. The matrix update equatiun is written in terms of

P! as

k
Plw = P0) + Yalielidg (i) (6.27)
-0
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Prc-multiplying  both sides of equation (6.27) by the .»ctor x , and

post-multiplying by x gives:

k
xTP Y Ox = xTPHO)x + xT Za(i)¢(i)¢T(i) X 6.2
1=0
= xP0)x

It is clear that the components of the P! matrix which correspond to the
null space of the data matrix will remain constant. This is seen by noting
that the second term on the right hand side of (6.28) is equal to zero,
hence the left sids will remain constant, equal to the initial value,
xTP'l(O)x. From this result it is straightforward to demonstrate that the
vrlue of xTP(t)x will never reach zero. This result is totally independent
of the choice of the weighting factors a(t), hence it is also a property of
the ordinary recursive least squares method. From this result it can be
seen that the variable forgetting factor scheme of Kulhavy (1987), given by
equations (6.20) and (6.21) will not cause the covariance windup problems,
as did that of Fortescue et al. (1981), even though it introduces a

predict 'n error term into the equations.

6.7 Simulation Example

The directional forgetting algorithm defined by equations
(615), (6.16) and (6.17) was applied to the simulated closed-loop
nroportional feedback example of Chapter 5 to allow direct comparison to the
exponential forgetting algorithms. The value of the forgetting factor was

calculated by equation (6.20), with .=0.2. Figure 6.2a,b,c contain the

1 5()
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Forgetting factor trajectory for the Directional Forgetting algorithm
applied to the simulation example.
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Figure 6.2¢
Data weighti. , factor trajectory for the DF algorithm
applied to simulation example.

parameter and forgetting factor trajectories, as well as a plot of the

weighting factor aft). Figure 6.3 illustrates the evolution of the
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this example s that one diameter of the covariance ellipse remains
unaffected during the course of the experiment, because the data vectors
provide no information about that direction. In each of the exponential
forgetting cases this direction was observed to inflate to some extent. It
is also interesting to note that in Figure A 2c the data weighting factors
approach zero over the c¢c » of the simuisucn. The data available from the
system becomes redundant because the excitation is restricted by a simple

proportional feedback controller.
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Figure 6.3
Evolution of the Covariance Bounds - Directional Forgetting applied
to the simulation example.



6.8 Experimental Evaluation

The directional forgetting algorithm was applied to ihe same off-line
distillation column data set as was used in Section 5.11, in order 1o
directly compare its performance to exponential forgetting, and to
demonstrate the practicality of the algorithm under realistic conditions.

The choice of model structure and initial conditions were identical to
those used for the examples in Chapter 5. The directuional (forgetting
algorithm  defined by equations (6.15), (616) and (6.17) was used.  with
the variable forgetting factor calcu'ated by equation (6.20), with p = 0.2.

The parameter trajectories, forgettng fuoo s and  data wetghting
factors of the experiment are presented in rigure .d4a*. ard o The “alues

of |P{ and cond{P)} are plotted in Figures 6.4 d and e.

to!
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The parameter trajectories exhibit no appareat differences from those
in the exponential forgetting examples.

The forgetting factor rema very close to unity between setpoint
change , indicating that no forget ikes place when the system is not
~-zited. The plots of the matrix properties indicate no indication of

covariance windup.

6.9 Summary

The directi‘onal ‘orgetting algorithm (Kulhavy and Karny, 1984) s bt
on the assertion that old data should not be forgotten or reduced in
importance until there is new information with which to replace it. Such an
approach offers fundamental advantages over the ordinary exponential
forgetting algorithm presented in Chapter S, because the problem of
covariance windup is inherently avoided by the structure of the resuluiy
equations. An illustrative example is presented which demon trates that the
directional forgetting method is robust to rank deficient data.

It is observed that the value of the forgetting tfactor in the

Jdirectional  forgetting  formul~tion is not related to the number of

LN



parameters 1n t(ne identification problem, because it applies to onl. o 1ank
one subspace of the P matrix. This i1s n contrast to the ordinary
exponential forgetting factor which, in general increases to the power of n,
the dimension of the problem.

A variable forgeting  factoer {Kuthavy, 1987)  speci’ to the
directionai forgetting algorithm has been developed to adjust the rate of
adaptation based on the current value - the normalised predict 0 error.

It is con:luded that directiona, torgetting offers at least  two

distinct advantao-s over exponential forgetting:

1 The mecthod is not subject to co :-.anc. * 1dup when data are rank

deficient, hence blowup probic o necents aveided.

2. The forge'tine factor refers to ‘ASL ot the information content
of each « parameter in the system, hence it is a2 less
sensitive, ' . meaningful tuning knob than those proposed fur
exponenuis] g in Chapter 5.

It is recommended that directional forgeti:ng be used in new dapnve
control applications. In view of the two main advintages th. algorithm  has
over exponential forgetiing, .5 recommended that <current applications
which use exponential forgetti.3 be modified to use directional forgetting

if protlems of covariar : windup or adaptivity are ¢xperienced.

leo



Chapter 7
Application of Least Squares Type Methods
to Bounded Disturbances

71 Introduction

Chapters 2 and 3 describe methods of modelling and identification which
are based 'n the assumption that the disturbances are modeled as ‘iitered
white noise. It is often the case that the statistics of the wnoise can not
be descnibed by the onear filter methods presented in Clapter 2 A m
general approach to d ribing disturbances (Peterson and Narendra, 1982,
to assume na® they are bounded within known limits. This approach is often
useful to describe situations where te disturbance properties are complex
or non-linear. In these c¢oases '« ~ ver, the arguments made deriving
methods based on the “"minimisa'on  of prediction errors” are t valid
(Fogel and Huang, 1982). A cla ic exumple of bounded roise is the fintw
accuracy or -uantisation error  which occurs in digital sampline and finite
word length arithmetic.

The bound. noise  description 1S Us.lu he 0 mulation  of  fault
diagnosis problems where the J -urbance correspon .. to a fluctuation of the
¢omponent values around their nominal values (Isermcnn, 1984) In these
rroblems a fault is recognised when the disturban. estimate  falls  outside
the pre-specified bounds.

An interesting geometrical interpretation of the bounded disturbance
type algorithms results from the graphical analysis of the P matrix as
described in Chapter 5. The boundea noise disturbance model allows the
identification prob’em to be interpreted from o« set theoretic" viewpaint,

sirce the confidence bounds of the parameter es' :ates will be absolute, and

[5,)
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form an exact closed set in parameter space.

Chapter ~ present 1 brnief survey oi recent approaches to the probiem
of identification with  the bounded disturbance assumption, and includes .
critical review of a novel algorithm due to Dasgupta and tluang (1987) known
as "moditicd least squares” (MLS).

The performance of MLS is Hi-e~tt- compared to the algonthms ot
Thapter 5 ty applying this algorithm i the distillaticn  column  data
direct compar: on 1s made between the optimally boundiay ellipses of the M
algorithm and  the ancicgou oot ¢ owund celhipse ot the ordinany dea

squares type algorithms.

7.2 Systems with Bounded Disturbances

There hav: been rum ous approaches tu the problem of identutication
motivated by the assumption of bounded disturkances (Pe  .on and Narendra,
1982; Fogel and Huang, 1982; Goodwin and Sin, 1985). A substantial result an

tneoretical analysis of the recursive least squares algorithm in  the

oresence  of bounded disturbance or “finite accuracy” data s 3 new version

(Niederlinski, 1984b) the now classic least squares convergence theorem
(Ljung. 1976) which the property of consistency of the least squares
estimates. Niederlinski xd4a) cobserved that the idea of a “true” parameter

vector being a unique quantity which has infinite accuracy and may be
approached with probability one is absurd, since it contradicts  an

"engineering axiom"

It 1s not possible to ncrease the accuracv of an estimate andefmutely by

simply increasing the nurber of measurements.

(N



The conclusion drawn from the analysis is that no matter how large the
number of .neasurements, the least s¢ ires estimate will have an asymptotc
uncertainty bound equal to the "mean squarec: error” of the measurer.ent, and
that after that bound 1s reached no improverient in the estimate is realised
by additional ohservations. Niederhinsk: (1984a) concludes that shutting oft
the estimation algorithm when the wrror is within a certain be 3 is an
intuitive ind natural result  which 15 supported from a theoretical
Slan o
"3 The Prediction bu .+ Dead Zone

', “as been demonstrated (Goodwin and Sin, 1984) thit shutting oft an
1 aation algorithm when the p:-diction error is within a certain  bound
> jances estimator robustness and improves performance for systems with a
vide range of noise structures. Consider that a system with a bounded

disturhance 1s described by the following mc:ie!
A T b
Y o= ¢ (08 + V(1) (7.1)
with the disturbance bound given by v such that
2 2
v(t)” <7 (7.2)

The dead-zone prediction error method resulting from this model (Goodwin,

and Sin, 1984; Peterson and Narendra, 1982) is given us:
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KOyt - AT-DHDY o8
2 = -1 RY

0 e<d

The dead zone § is chosen to be twice the assumed < 10r bound:

6=27

This clone results in  prediction errors which asymptotically  approach 2
bounded region twice the width of the assumed errcr bound (Goodwin and Sin

1984):

lim sup (1) < 29 (7.4
t — 00

Larger dead zones imply that adaptation will take place over 2 shurter
period of time, and in general, larger output and patameter errors  will
necessarily r~sult (Peterson and Narendra, 1982).

A clear disadvantage to ! simple dead zone modification g: -n by
(7.3) is that if v is overesumated then the prediction error w:ll  ave
limiting values no smaller than twice the assumed bound. The modified least
squares algorithm (Dasgupta and Huang, 1987) introduces a tine varying dead
zone which nas been proposed as a potential solution to this hmitation,

This algorithm is discussed further in Section 7.5



74  Experimental t .sluation of the Dead Zone Modification

Some practical insight into the ‘alue of the dead zone modifications
may be drawn from applying s .- .n algorithm to a data set containing
process noise. Such a study was undertaken using the distillation column
data set described in Chapter S, in which ordinary recursive least squares
with a dead zone was applied to the data. The experiment was repeated ten
times with values of ~ varying from 00 to 03. The accuracy of the
parameters was measured by V., the sum of the prediction errors squared:

N

v = T - aToun)’

t=1

These values are plotted against ‘he size of the dead zone in Figure "l
During each run the fraction o ¢ total number of data values which wus
actually used for estimation was recorc these values are plotted

against dead zone in Figure 7.1n.

ﬁDisnlluion Column Data_
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3 !
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Figure 7.1 a
The sum of the prediction error squared versus the width of
the dead zone for the application of RLS to the distillation
column data.
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The traction of the total data used -ersus the width of
the Jdead zone for the applicuon of RLS to the disullation
column data.

For ~ >025 nc updating occurred, hence that value of V = 3445
corresponds to the accuracy of the initial parameter estimates only. As 7
was decreased to the range 0.2-0.25 only a few data + .es are used tor
estimation, however an unexpected result occurs. The e¢sumanun algorithm
used the data values with the largest prediction errors, and the value or
increased, rather than decreased. In this case the daia points with he
largest nrediction errors are probably outuers due to unusual disturbances
or non-linearities. These have an obvious adverse effect -n the parameters,
acd it is interesting to note that larger values of the dead zone actually
increases the influence of these points

As ~ continues to decrease more dJita is used for parameter estmation,
and the accuracy improves. By examining the slope of the V curve it appears
that the most valuable data occurs in the dead zone rcnge 00015,

although there is a diminishing return on accuracy rhat s eV

| 7o



little improvement in accuracy is achieved by lowering the dead zone below
0.05, even though less than half of the data in the set hus been usea at
that point

From this example two valuable observations n . be mad: reiating the

practical application of an estimation dead zone:

|. Decreasing the dead zone will increase the fraction of uat in
the estimation, but will have a diminishing return -n the = y of

the estimation

> The influence of outliers on the estimation error is inc.eased as

the dead zone is increased.

The fir-t observation is consistent with that of Neiderlinski {(1484a),
that the value of 4 may increase over a fairly wide range without having

+ strong impact on accuracy. Increasing < is generally beneficial because it
reduces computational load and variation in the parameters. The second
observation however, implies that choosing a value of v which s too large
can have a very dJetrimental effect on parameter estimation bec.'<: of th
increased influence of outliers. Clearly the value of the dead zone is an
important paramet-r which should be chosen based on consideration of these
two effects.

The subject of dealing with outliers is beyond the scope of this work,
however its 1mportance and impact on recursive estimation should not be
overlooked, and the similarity of the techniques to those proposed for
handling bounded disturbances make it worthy of mention. There have been

different methods proposed for tne elimination of outliers by fauli

detection techniques. These generally detect an outlier by some form of



statistical  confidence test applied 0o the current  observation. I'he
resulting algorithms reject & data valus when the prediction ciior v oo
large. A survey of these is presented in Icermann (1984). Ljung and
Soderstrom (1983) use a diffc.eat approach for dealing with outliers which
uses a modified criterion function to reduce the weighting placed on dJdata
values associated with large prediction err-rs.

The idea of a bounded disturbance model motivates an nteresting and
useful geometric interpretation of identification (Fogel and tHuang, 1987
which © quite analogous to the confidence ellipsoid discussed in Chapter 5
.ne following section describes this geometric interpretation, employing 2
"membership set” concept as an analogy of the covariance bounds of the

parameter estimate.

7.5 A Set Theoretic Approach to Parameter Estimation

Recursive identification  algorithms applied to bounded  disturbance
models may be formulated as set membership problems in which the size and
boundaries of the membership set are sequentially updated, rather than a
covariance matrix as is used in the ordinary least squares type methods.
This idea has been explored by numerous authors (Schweppe, 1971; Fogel and
Huang, 1982; Niederlinski, 1984a; Norton 1987, Lozano-Leal and Ortega, 1947,
Dasgupta and Huang, 1987).

In this approach the parameter membership set represents a boundeu
volume in parameter space which contains the intersection of ‘t'te regiony
defined by all of the previous observations. The true parameters ¢ should
always lie within that membership set, hence there is an incentive to reduce

the size of the set as efficiently as possible with the data available.



The set membership identification problem (Fogel and Huang, 1981) may

be re-stated as follows:

Given the datu { y(t), &), t-l....k} find a set © in R" which s

consistent with the system description given by equations (7.1) and

(7.2).

The region © is the membership set of the estimates of the unknown yector
00. The bYest or optimal set denoted by 60 is given by the intersection of
all the constraints S(t) imposed by the disturbance bounds of each data

point:

t
e, = n (i) (1.5)

i=1

Any other set ©(t) which is consistent with (7.1) and (7.2) for each

cbservation must also satisfy:

8,1 C &) (1.6)

An expression for the polytope (region bounded by a set of planes in R")

S(t) is given by combining equations (7.1) and (7.2):

(y(t)-éi':;tb(t))2 <7 (1.7)

The polytope S(t) is defined as:



S(t) = { & (y()-0"o): < 7 ; b€ R” } (7.8)

The regions defined by S(t) are formally termed “"degenerate ellipsoids” in

R" (Fogel and Huang, 1982). Geometrically, the S(t) region is the space
bounded by two parallel hyperplanes s.parated by a distance given by
29/ | #t)}|. Each region S(t) must contain the true , ‘rameters 00 between the
hyperplanes hence the intersection of many such regions will define a volume
which also encloses 00. Note that the volume will be closed if and only if
the set of vectors #(t) span n dimensions.

The problem of determining the tightly bounded set given by (7.5) is
intractable for large values of t because it involves the solution of
2-N n'h crder inequalities. A reformulation of the problem was posed (Fogel
and Huang, 1982) which finds a set ©(t) which tightly contains 60 (subject
to (7.6)) and is computationally simple to evaluate. The simplest set

satisfying (7.6) is mathematically derived (Fogel znd Huang, 1982) from the

weighted sum of the S(t) polytopes:

t t
e(1) = {5: ) o (y)-8T8kNY /" < ¥

@ akZO} (7.9)
k=1 k

1

This equation is similar to the least squares cost function given by
(3.17). however its solution is not given by a single value of B(v), as in
ordinary least squares. A solution to (7.9), due to Dasgupta and Huang

(1987) is an ellipsoidal volume in rR" given by:

e(t) = {a(o-O(r»TP"(t)(o-ﬁ(t»/v’ < a’(t)}

where:



t t
Pl = z aké(k)th(k) and o(t) = ) ahyz
k=1 k=1

The data weighting factor a is clearly analogous to that wused in the
development of ordinary least squares in Chapter 3. The centre of the
ellipsoid corresponds tc the weighted least squares estimate (given by
equation (3.17)). The problem of recursively finding ©(t) is reduced to
choosing the value of the weighting sequence a. The weighting factor
introduces an additional degree of freedom to the resuiting algorithm which
may be used to satisfy any other requirements which are imposed on the
problem.

Figure 7.2 illustrates the intersection of an elliptical set ©(t-1)
with a typical data value S(t). In this case the polytope S(t) is simply a
pair of lines perpendicular to the vector ¢(t), separated by a distance

29/ ()

|, with 02 axis intercepts of (y(t)tq)/¢z.

~ 3
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Figure 7.2 Intersection of 8(t-1) with S(t)
The intersection between the region def ined by 6(t-1) (solid
line) and S(t) (broken lines) is shaded.

7.6 The Modified Least Squares Method

Most recursive algorithms are designed to continually update the
parameters without regard to the benefits provided, or to merely shut off
the update when an arbitrary criterion such as the prediction error falls
withina certain bounds. The MLS algorithm of Dasgupta and Huang (1987),
however has been shown to possess superior properties to standard dead-zone
type modifications, due to its incorporation of “information dependent”
updating and exponential forgetting. Asymptotic cessation of parameter
updates and parameter convergence has been proven (Dasgupta and Huang, 1987)
under the assumption that the input sequence is persistently exciting.

While the prediction error for standard dead-zone algorithms has



limiting values given by twice the assumed noise bound, it was demonstrated
(Dasgupta and Huang, 1987) that with even up to 20 percent overestimation of
7, the prediction error asymptotically approaches values smaller than the
actua! noise bound.

Consider a bounding ellipsoid A(t- 1) that is sufficiently large to

cover all the likely values of 90, given by:

Alt-1) = {&.(o-@(t-l))rp"(z-1)(0-9(:-1)) < 82(:-1)} (71.10)

2 . ) . .
Where &°(t-1) is a scalar parameter error function which provides an upper

bound on the Lyapunov function V(t-1), defined by:

V(t-1) = (oo-a(t-l))TP"(:-n)(oo-z(t-l)) (7.11)

g%(t-1) 2 V(t-1) >0 iff € At-1)

When the data point [y(t),/(t)] is acquired at each interval the algorithm
finds an ellipsoid A(t) which bounds the intersecticn of the ellipsoid
A(t-1) and the polytope S(t), which is in some sense optimal. Such an

ellipsoid is given by the linear combination of (7.10) and (7.8) as:

At = {ez(l-ﬂ(t)xo-ﬁ(t—l))TP"w-@(t-l)) + B(y(1)-8" $(1))

< (l-ﬂ(t))gz(t-l) + ﬂ(t)'yz} (7.12)

The data weighting parameter, A(t), is chosen to satisfy p€(0.8 J B <l
max max
An illustration of its effect on the size and shape of the ellipse A(t) is

depicted in Figure 7.3. Note that the region defined by the intersection of
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the ellipse A(t-1) and $(t) is completely enclosed by A(t), for all A(t).

Figure 7.3 Effect of 8 Weighting on the Bounding Ellipse
The resulting region ©6(t) may take a range of sizes and
shapes depending on the data weighting 5(t). Ellipses for
p=0.4, f=0.8, A=0.95 are drawn in dotted lines.

The algorithm due to Dasgupta and Huang (1987) for the update step

A(t-1) — A(t) which guarantees the existance of Sl(t) and P(t) such that

AY) = {m-ﬁ(t))rp"(txa-é(t)) < 8’(:)} (7.13)

is given as:



PHO) = (1-BMP 1 1) + BODS (1) (7.14)
) = B(-1) + B(P((1)e(t) (7.15)
b
€2() = (1-AE-1) + By’ - LLU=A)e ) (7.16)

1-8(1) + B(1G(Y)

with:

ety = y(1) - 3Tt-ngn (7.17)

The value of B(t) is calculated in order to minimise 82(1) with respect 10
82(t-l), hence "optimally" bounding the Lyapunov function V(1) given by
(7.11). This strategy is based on the need to minimise the extent of the
"feasible” parameter estimate (measured by Sz(t)), in contrast to other
variable forgetting factors (suc: as those presented in Chapter 5) which are
based on the desire to maintain some measure of the magnitude or information
conteni of P at a constant level. The details of the calculation of B(t) are
presented elsewhere (Dasgupta and Huang, 1987). The update equations
(7.14)-(7.16) are similar to the ordinary least squares algorithm with an
exponential forgetting factor. The weighting series a; i<t is related to

B(t) as:

t
a= Bt o= U-1)(1-BV).a, = AW T (1-AG) (7.18)

=i+l

This sequence is directly related to tue forgetting factor defined by

equation (5.4), with the value of XAt) given by (1-B(1)). The key
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difference between this and the ordinary forgetting factor algorithms is
that the weighting a. time t, a is chosen as A(t), rather than unity, hence
(1) appears as a gain factor in the update equations. Making this
modification to the weighting sequence gives the algorithm a built-in dead
zone because the updating is shut-off when the weighting parameter B(t) is
chosen as zero.

The convergence proof presented for the MLS algorithm (Dasgupta and
Huang. 1987) assumes tha .«(t) are bounded, and that the data
matrix P is of full rank. The v .1 demonstrates ' > meter  error
converges to a region in which:

2

by -0, ° < 1’/«11 (7.19)

where:
0<dls Pl < dl (7.20)

The parameter error is bounded by a value which is directly proportional to
the noise bound '72 and inversely proportional to the minimum eigenvalue of
p .

An important aspect of the algorithm is the interpretation of the
parameter error bound &(t). If the true parameters lie within the bounding

ellipsoid A(t) at time t then &(t) will remain a non-increasing positive

value which provides an upper bound on a Lyapunov function given by:

V() = @,-B() P, -8(1) (7.21)
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) > v iff o, € MO (720

The asymptotic cessation of parameter updating has been theoretically proven

(Dagupta and Huang, 1987) based on this result.

7.7 Experimental Evaluation

A PC-Matlab implementation of the MLS algorithm was developed and i«
included in Appendix B. This implementation was applied to the distillauon
column data described in Chapter 5 as evaluatior of its practicality under
realistic conditions.

The algorithm was applied to the estimation of the two parameters of

an ARIMA model given by:

Ay(t) = -alAy((—l) + boAu(t-l) (1.23)

In order to investigate the sensitivity to the estimate of the noise bound
4, the test was repeated three times with different values of 7. From Figure
7.1b it 5 estimated that the actual bound will be in the range of 0.18-0.25
hence the values 12 = 0.07, 0.04 and 0.03 were used.

The parameter trajectories for each case are plotted in Figure 7.4 a,b
and c¢. The weighting factors A(t) for each run are plotted in  Figures 7.5

a,b and ¢ and the Lyapunov bound Sz(t) is plotted in Figure 7.6 a,b and c.
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7.8 Observations on the MLS Algorithm

Figures 7.4a,b.c indicate  remarkably  different behavior  of this
algorithm over those previously examined in Chapters 5 and 6 After an
initial convergence period the updates 1in the parameter are intrequent,
occuring only with setpoint changes. The final values of the parameter
estimates are verv close to those achieved by the more conventional
estimation methods in Chapters 5 and 6, atthough in the niual 300
intervals the variation in the estimates was very large.

The large parameter variation was clearly due to the for.m. of equations



(7.14)(7.15) and (7.16) which use A(t) as both a data weight and an
exponential forgctting factor. As a result a great deal of weight is placed
on those points with large prediction errors, and elimination of outliers is
much more important than in the usual least squares type algorithms.

A critical weakness in the algorithm is revealed when the value of the
assumed bound '12 is ciiosen smaller than the actual bound. Comparing Figures
7.6a,b,c it is apparent that '72 directly influences the asymptotic value of
& In Figure 7 6¢c, in which 72 = 0.03, the value of &’ actually drops below
zero. This is an irrational result which precedes total numerical failure of
the algorithm. The algorithm is therefore intolerant to underestimation of
the noise bound, and outliers. The non-increasing nature of g% is a
potential numerical problem  which limits the applicability of  this
algorithm.

Comparing the algorithm for '72-0.07 to '12-0.04 it is clear that
moderate overestimation of the noise bound apparently does not adversely
affect the resulting parameter estimates, and the value of &> remains

positive.

7.9 Summary

The bounded disturbance description is a very practical and general
method for modelling system noise and disturbances. The idea of shutting off
the estimation when the error is smaller than some lower bound is an
intuitive and natural modification which results from this description.

An experimental evaluation of this modification was made by applying
the RLS algorithm to the distillation column data of Chapter 5, and varying

the width of a prediction error dead-zone. From this it is concluded that
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decreasing the width of the dead zone will increase the amount of data used
for identification, but will provide a diminishing return on the accuracy of
the estimation. Furthermore it was observed that the influence of outliers on
the estimation error is increased as the dead zone is increased. Itois
concluded that the width of the dead zonme is an important parameter which
should be chosen based on consideration of these two effects.

The bounded description model allows the estimation algorithm to be
constructed as a membership set problem. This idea has motivated numerous
approaches to recursive identification with the bounded noise description
(Schweppe, 1971; Fogel and Huang, 1982; Niederlinski 1984a; Norton, 1987,
Lozano-Leal and Ortega, 1987; Dasgupta and Huang, 1987). The analogy of the
membership set to the covariance bound ellipse is illustrated and discussed.

The MLS algorithm of Dasgupta and Huang (1987) was evaluated by
application tc the distillation column data of Chapter 5. The algorithm has
several advantages over the ordinary application of a dead zone modification
because it uses a time varying dead zone which makes efficient use of data
and allows some over-estimation of the dead zone without significant
penalty. I+ is observed that the algorithm is very  senmsilive to
under-estimation of the noise bounds, and that this generally leads to
numerical problems.

A general observation that may be made of the MLS algorithm is that
uses the available information very efficiently, since very few of the daia
values are actually used for estimation. I[ts large parameter variation und
numerical intolerance of outliers, however place a great restriction on the
general applicability of the algorithm in its present form. It s
recommended that further development of the algorithm be undertaken 10

improve its robustness, and reduce its sensitivity to underestimation of 1.



Chapter 8

Conclusions and Recommendations

8.1 Conclusions

A broad study of various aspects of recursive estimation has been
conducted, covering the topics of choice of model st-ucture, cho .e of
estimation algorithm, use of the differencing operator fo: .atment  of
non-zero steady states, exponential forgetting, directional forgetting, and
treatment of the bounded disturbance description. The main conclusions of
the thesis are summarised as follows:

A common problem in modeling real systems is that the input and output
data have nominal, or steady state values which are non-zero. Two approaches

to the problem have been identified:

1. Pre-treat the data by subtracting out estimates of the steady
states, and re-defining the input and output of the model in terms

of "deviations” from real or estimated physical equilibria.

2. Write the model in terms of the actual or "positional" data values
by lumping the steady state values 1 u displacement term u. The
displacement term may appear explicitlty in the model or be

considered part of a non-zero mean disturbance.

Model structures in wide use generally fall into one of two main
classes based on different assumptions of how the disturbance affects the
output. The equation error description which assumes the disturbance to be
an extra input to the system, hence the process and disturbance models will

have common poles (given by the A(q'l) polynomial), and the output error
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description which assumes that the disturbance acts upon the measurement of
the output by an independent mechanism. The choice of a model structure from
one of these two broad classes should ideally be based on how well the
physical situation conforms to the structurc of the model.

The equation error forms are generally preferred for recursive
applications because the identification methods available for these are
simpler to implement and convergence is faster.

The many variations available for choice of model structure described
in Chapter 2 generate a need for “customised” approaches to the recursive
parameter identification problem. Recursive prediction error methods have
been widely studied in the literature, and discussed in Chapter 3. A
comprehensive treatment of the subject has been developed in the form of
numerous algorithms, each of which may be interpreted 1s 2a variation or
extension of the basic recursive least squares method.

In general, the more complicated identification algorithms (eg. GRML,
PLR, IV) should be avoided in favor of RLS whenever possible because for
process data problems the properties of the disturbance are often not
uniform, and the noise models are difficult to estimate by recursive
methods. In choosing the model to be identified it is always advisable 10
incorporate as much a priori knowledge of the system as possible in order to
reduce the number of parameters to be identified. The integrating noise
model is a special application of a priori knowledge to the disturbance
model.

It is demonstrated that a basic admissibility condition on the C
polynomial is that all of its roots must remain in the right half of the z
plane. This is based on the observation that the ARIMAX model results from an

unfiltered Brownian motion process plus a filtered white noise signal.
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In Section 4.5 it was demonstrated that the C polynomial of the ARIMAX
structure is mathematically equivalent to a Kalman filter for tracking the
value of the displacement term u. The mathematical equivalence of the
equations is proven and a numerical example using the RML and ELS methods
was presented to demonstraie the practicality of this result. From the
example considered it is concluded that the ELS method, although Iless
rigorously supported in theory than the RML method gives superior
performance with re.pect to rate of convergence. No apparent explanation is
available for this result, hence it is suggested as a topic for future
investigation.

A new exponential forgetting factor which is based on maintaining the
determinant of the P matrix equal to a constant is derived and evaluated. It
is found by simulation and by using exper: ~ntal data that this approach is
robust since it causes th~ forgetting factor to go to unity when the data is
not persistently excited.

A comparison of this method to a constant trace (Sripada and Fisher,
1987) and a constant information forgetting factor (Fortescue et al., 1981)
was made using simulated and real process data. The constant trace and
constant determinant were found to behave quite similarly. It was concluded
that the constant information forgetting factor however was less robust
because it was found to cause covariance windup due to process noise.

The confidence bound ellipse is presented as a valuable tool for
graphically examining a number of fundamental properties of the P matrix.
The eigenvalues, eigenvectors, trace, determinant and condition number of a
2x2 matrix may be interpreted by examination of the ellipse. The ellipse is
found to be wuseful in interpreting the various approaches to data

forgetting.
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The directional forgetting algorithm (Kulhavy and Karny, [984) was

found to have at least two distinct advantages over exponential forgetting:

1. The method is not subject to covariance windup when data is rank

deficient, hence blowup problems are inherently avoided.

2. The forgetting factor refers to the MSL of the information content
of each individual parameter in the system, hence it is a less
sensitive, but more meaningful tuning knob than those proposed for

exponential forgetting in Chapter 3.

An important observation made of the directional forgetting algorithm
is that the value of the forgetting factor is not related the number of
parameters in the identification problem. This contrasts with the ordinary
exponential forgetting factor which, in general must increase to the power
of n.

The bounded disturbance description is a very general and practical
approach to the problem of dealing with  disturbances in tecursive
identification. The idea of shutting off the estimation when the error is
smaller than some lower dead-zone bound is an intuitive and naturul
modification which results from this de ription. An experimental eviduatinn
of this modification is made by applying an RLS algorithm to the
distillation column data of Chapter 5, and varying the width of the
prediction error dead zone. From this it is concluded that decreasing the
width of the dead zone will increase the amount of data used for
identification, but will provide a diminishing return on the accuracy of the
estimation. Furthermore it was observed that the influence of outliers on

the estimation error is increased as the dead zone is increased. It 1s
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concluded that the width of the dead zone is an important parameter which
should be chosen based on consideration of these two effects.

It was concluded based on an application of the MLS algorithm of
Dasgupta and Huang (1987) to the distillation column data that the algorithm
uses available information very efficiently, and it allows moderate
overestimation of the assumed disturbance bound. Its large parameter
variation and numerical intolerance of  outliers, however limits its
applicability.

It may be concluded that the field of recursive estimation is not yet
fully explored but still evolving, judging from the number of new ideas and
innovations that have appeared in the last five years. In the current
state, however there are remarkably few problems which remain to be solved.
The acceptance and adoption of this technology in industry in the form of
adaptive control is still not at all common. This is perhaps inhibited by
past failures and a generally poor understanding of the latest techniques

available.

8.2 E(_gcommendation;_for Future Work

Several areas of future study in the area of recursive identification

and adaptive control may be considered.

- A comparative study of the numerical aspects of the ELS and the RML
algorithms is suggested to provide an explanation for the results of

the siinulated example presented in Chapter 4.
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- The convergence properties of recursive least squares with 1 constant

determinant forgetting factor should be investigated.

- The convergence properties  of recursive least squares with

directional forgetting should be investigated.

- Experimental and industrial trials of the constant determinant, as
well as the directional forgetting algorithms should be conducted n

order to further investigate any practical problems in their use.

- The main problem with the "one in the data vector method” is that
explicit estimation of s adversely affects estimation of  other
parameters when there are load disturbances. This problem is at least
partially solved by the use of directional forgetting, and it is

therefore recommended that this idea be investigated further.

- The MLS algorithm of Dasgupta and Huang (1985) should be
re-formulated to increase its robustness to underestimation of the

noise bound.

-  The confidence ellipse analysis provides a useful basis for
evaluating the statistical significance of a measurement. Its uses in
the field of fault detection and elimination of outliers should be

further investigated.
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Appendix A

Proof of Theorem .l Determinant of the Rank One Update

. .. . . . -1

The determinant of the sum of an naxn positive definite matrix A °,
- . T .

multiplied by a scalar a and the outer product matrix xx (x is a vector

with column dimension n) is given by the identity:

n-1 T
laa Le xnT| = G (oHX AX) (A1)
[A]

Eroof:

The proof is adapted from the derivation of the UDUT factorisation of P(t)

(Bierman, 1977).

Let:
-1 !
A= [aA + XX ] (A.2)
Consider the factorisation;

A=UDUT (A.3)

The matrix U is upper triangular with all diagonal elements equal to unity

and the matrix D is diagonal, therefore:

Al = JUNDHUT| = Dy (A.4)
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siuce |UI=UT|=1.

Defining the variables:

[jl R 2/1‘41

i=1
g = a+ xTAx

n
B, = a
Then from the matrix invers:on lemma:
T 1 T Ugg' U’ l
uUD'u = —[UDU - —] =
a B

n

If the part in brackets may be further factorised as:

88T
T
D - = UDU
ﬂn
with:
U = UU

and

(D)

(/\.5[‘)

(A S0

(ASd)

(/\.SC)

(A.6)

(A7)

(A8)
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D' = D/a (A.9)
then in order to find |A'l from JA| it is only necessary to find D in terms
of D since:

. 1= l = ,
|A] = ID'} = |=Df = — |Df (A.10)
e n
a
Introducing the notation:
(1 U ..U ]
1,2 1,n
U = [U U] = | ‘. (A.11)
1 n
0 [§]
n-1,n
= l -
5 o]
_ 1
D = ' (A.12)
0
D 0
1
D = " (A.13)
0 D
L n

and let e be the unit vector of dimension i, then the factorization given

by equation (A./) implies:

XU;UTE = TDee’ - -}; GGT (A.14)

Introducing also:



vV =G (ALY

and let the :th component of the column vector V is denoted by V , and:
n n

v ]
n,l
\" o= ) (A 10)
n-i v .
n,n-1
L 0
Then equation (A.7) may be written:
n n
JUU'D, = [Dee’ - s (A7)
i IS B nn
i=1 1=1 n

The elements of D and U may be determined from B, D and V by this

relationship. Consider the matrix:

n n
—T= T | T
M = ZUiUiDi - ZDieiei EANN (A 18)
1=1 =1 n
The choices:
D =D - n.n (A.19a)
n n B
n
U =1 (A.19b)
n,n
. A"
U = -— 2.0y ; i=1...., n-| (A.19¢)
1,n D ﬂ n,2
n n

will make the last row and column of M equal to zero. The matrix M may thus

20T
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be written:

2
v | T
M = “"2‘ * 3 V.oV, (A.20)
Dnﬂn n
and from equations (A.5)
2
\Y%
n,n ] |
'.,*"‘:- (A2
6 /3“ ﬁn 5n 1
nn
and:
D =DA /8 (A22)
n n n-1 n

By a similar argument each element of D may be calculated from D and g8 as:

D = Dg /B, (A.23)

The determinants may therefore be directly calculated from (A.23) and (A.3)

as:
Dl = DD....D = ?ED ZLD ﬁ'—‘D (A2
- l 2--- n ﬁ lﬂ zao-ﬂ n -
1 2 n
ﬂo a
=7 ID| = ———— A (A.25)
n (ax + X AX)
From (A.10) the proof is given:
AT = |Al (A.26)

a"—l(a + xTPx)
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rearranging and substituting (A 2) gives.

a”! ( arxTAX)

Al

(A2T)

-1 T
jdA "+ xx | =



