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ABSTRACT

This thesis investigates three problems: cardinal interpolation by fundamental

cardinal splines, cardinal interpolation by certain refinable functions, and Boolean

methods.

Cardinal interpolation is important for smooth approximation of empirical tables,
and has wide applications. We will investigate boundness properties of two cardinal
interpolants. A function f is called fundamental if it satisfies the interpolation condi-
tion f(j) = 6(4), 7 € Z. We shall prove in Chapter 2 that the fundamental cardinal

spline 1, satisfies

sin(7z)

f i, j+1), §=0,1,2,..
— or z€(4,j+1),j=0

(=1) Ym(z) < (—1)

This results improved the existing analogous results in the literature. In Chapter 3,
we shall prove that the DD function ¢,,, which is fundamental and is supported on

[-2N + 1, 2N — 1], N € N, satisfies

sin(7z) sin(mz)

T

0<p,(z) < for z € (0, 1) and |p,(z)| < for z € R.

Boolean methods are effective in computer aided geometric design to produce
surfaces. In Chapter 4, we will demonstrate that the Boolean sum constructed from

%y provides desired polynomial reproducibility and approximation order.
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Chapter 1

Introduction

In this thesis, we shall study cardinal interpolation by cardinal splines and refinable
functions. As outlined in the following sections, we will investigate cardinal interpo-
lation by the fundamental cardinal splines in Chapter 2, and by the DD-functions
in Chapter 3 . As an application, we discuss the Boolean sum constructed from the

DD-functions in Chapter 4.

1.1 Cardinal interpolation and cardinal splines

We are interested in cardinal interpolation, that is, interpolation of given data at the

integer points on the real line.

Let {y;},7=0, £1, £2, .-+, bea doubly-infinite sequence of data. Whittaker



in [36] introduced the so-called cardinal series

F@)=> "y sin(m(z = 7)) (1.1.1)

‘= 7(z ~ )
Obviously, f(j) = y; for all j € Z. The Whittaker cardinal series appears in many
fields, from the theory of entire functions to sampling theory and communication
theory. The modern extensions of the cardinal series have been nicely surveyed by

Jetter [22], Riemenschneider [30] and Higgins [20].

In his paper [31], I. J. Schoenberg introduced the so-called spline functions with
knots at the integers which have come to be known as the birth of (univariate) cardinal
splines. In [32] and [33], Schoenberg initiated a beautiful theory of cardinal interpo-
lation by splines. His initial motivation can be described as follows. Let M, (z) be
the so-called “roof-function” given by My(x) =z + 1 in [-1, 0], Ma(z) = —z + 1 in

[0, 1], and M3(z) = 0 elsewhere, then

=D _viMa(z — ) (1.1.2)

JjEZ

is clearly the piecewise linear interpolant.

Cardinal spline functions are simply defined in the following way: Let n > 0 be
an integer. We denote by 8, the class of functions S satisfying the following two
conditions
(i) SeCc(R),

- (ii) S €I, in each interval (j, j+1), j € Z

2



where II,, represents the class of polynomials of degree at most n, over the field C of

complex numbers.
‘The elements of S, are called cardinal spline functions of degree n.

During the development of cardinal splines, two topics have drawn many math-
ematicians’ attention. The first one is a limit property. Assume that the sequence Yj

in (1.1.1) is fixed, in particular, let y; = 6(4) be the fundamental sequence defined by

1 j=0,
5(5) = ! (1.1.3)

0 Jjez)\ {0}.
How does the interpolant S behave as its degree goes to infinity? In his paper [33]
(also see [32], [34]), Schoenberg proved that the sinc-function, 53‘;&:—”2, is the limit
function for those cardinal splines which interpolate on d;. This beautiful result was
extended to a general class of (multivariate) cardinal series by de Boor, Héllig and

Riemenschneider in 1985 (see [8-10]).

Moreover, observe that the sinc-function has sign-regularity property, i.e.

sign (Slig-x—)) =(-1), j<z<j+1,j=012, .. (1.1.4)

The second topic, which is derived naturally from the limit property, is to investigate
if these cardinal splines which interpolate to 0; have this property. de Boor and
Schoenberg answered this question positively (see [11] and also [26] for a simpler

proof).



The objective of this thesis is to further develop cardinal interpolation with re-
spect to the fundamental sequence d;. For f € C(R), f is called a fundamental

Junction if

f(G)=46@), forall jez.
where §(3) is given in (1.1.3).

Chapter 2 is devoted to further investigation of the behavior of the fundamental
cardinal splines. We prove that the fundamental cardinal splines, denoted by ),
m € N, satisfy a restraint relation with the sinc-function. With the aid of (1.1.4), we

shall prove that for m € N, m > 11,

sin(nz)
_—’

i q i =01,2, .. 1.1.5
— ze€(j, j+1), §=0,1,2, (1.1.5)

0 < (=1)! Ym(z) < (1)

1.2 The DD-functions

Chapter 3 is devoted to another construction of the fundamental functions. Our
initial motivation comes from the observation of the fundamental cardinal splines

Um, m € N,

A difficulty with 1,,, if we can say so, is that they are supported on the whole
real line. In 1986, Dubuc [15] introduced a fundamental function which is compactly
supported. Deslauries and Dubuc [12] extended the idea used in [15] and introduced

a family of compactly supported fundamental functions, which we call them the DD-



functions and denote by ¢,,, N € N.

Recently, more and more properties of ¥, are discovered. In 1988, suggested
by Meyer, Daubechies [4] recognized that ¢, also plays an analogous role to the
Daubechies wavelets [5]. Micchelli [28] further observed a tight connection between

v, and the Daubechies wavelets.

We found that

si
M uniformly.

Hm o, (z) =
But surprisingly, ¢, (z) does not have sign-regularity property anymore as > 2
([15], Theorem 14). This fact could be the biggest difference between the fundamental

cardinal splines and the DD-functions. Due to the failure of sign-regularity property,

an analogous result to (1.1.5) is not valid for ¢,,. But we shall demonstrate that

0< py(z) < w for ze€(—1,0)U(0, 1) (1.2.1)
and
|on (@)] < lSing’”)l forall zeR (1.2.2)

The reader might find that the techniques used in Chapter 2 and 3 are quite
similar. In fact, observe that for either (1.1.5) or (1.2.2), we are essentially required
to measure how large the difference between v, (or @, ) and the sinc-function would

be. Therefore, we are led to consider their Fourier transforms

$@) = 5= [ 7O ae.

5



With the help of the Poisson summation formula, the Fourier transform of Um
(or of ¢, ), combining with the Fourier transform of the sinc-function together, can
be expressed as a doubly-infinite series. We then pick up a main term from the series
such that its (absolute) value dominates the absolute value of the remainder terms of

the series, and consequently we can estimate the difference between Ym (or ,) and

the sinc-function.

1.3 The Boolean sum and the DD-functions

A practical application of the DD-functions is considered in Chapter 4.

In 1968, Gordon [17] developed the so-called Boolean method (see also [13-14])

for interpolation and smoothing of data given on a mesh A :

A:[%, %]x[j“, k—;l] j,k€Z, n, meN. (1.3.1)

This method is more effective than those using tensor product of interpolants in
producing surfaces. But this method requires that all interpolants involved must
commute with each other. Obviously, this assumption has restricted its potential
application. In 1992, R. Q. Jia [23] paid attention to this question. He initiated a

new theory and completely overcame the commutativity restraint.

The results presented in Chapter 4 have heavily benefited from Jia’s work. We

first give a simple expression of Boolean sums in the bivariate case. Then we use the



DD-functions as the interpolants to create bivariate interpolants P. We prove that
those interpolants P reproduce certain (bivariate) polynomials. We then show that
these Boolean interpolants P constructed from the DD-functions ¢y Possess a good
approximation property. The reader might find that this approximation property is
much better than those derived by using the tensor product. Moreover, to interpolate
and smooth down data given on (1.3.1), our result (see §4.2, Theorem 4.5) is more

effective than the Biermann interpolation given in [14].

Finally, as a practical applications, we demonstrate that Boolean interpolants P

constructed from the DD-functions can be used to produce surfaces.



Chapter 2

Cardinal Interpolation by

Fundamental Cardinal Splines

2.1 Some basic properties of the central cardinal
B-splines

We are interested in the following cardinal interpolation problem: Given a con-
tinuous function ¢ on R with compact support and a sequence b € £(Z), find a

sequence a € £, (Z) such that the function

f=3 ak)(-—k) (2.1.1)

kez



interpolates b(j) at j, j € Z, that is,

fG)y=80l) Vjez. (2.1.2)

The basic theory of cardinal interpolation was developed by Schoenberg [32].
It was proved in [33, Lemma 11] that the cardinal interpolation with ¢ is uniquely

solvable if and only if

D (e £0  VeeR (2.1.3)

jeZ
Throughout this chapter, ¢ is assumed to be a central cardinal B-spline which is

defined as follows. Let M; be the function defined as:

(
1/2 =0,
J 1 O<az<l,
M,y (z) = (2.1.4)
1/2  z=1,
0 zeR\]Jo, 1
\

For m > 2, let M,, be defined by
1
Min(5) = Mip_y % My (z) = / Mpi(z — t)dt. (2.1.5)
0

It is well known that M, is a piecewise polynomial function supported on [0, m].
Moreover, M,, is continuous for m > 2. The central cardinal B-spline ¢,, of order

m is a shift of M,,:
b 1= ( + E) . (2.1.6)
m 2

9



It was proved in [32] that the cardinal interpolation problem with ¢m (Mm > 2) is

uniquely solvable.

Let
== [ X4 ez (2.1.7)
am = - —_ , € , A
D=5/ 3, &

where .§'¢m is the symbol of ¢,, given by

‘§¢m (5) = Z ¢m(j)eij€-

jez

Then the function 1, given by

Un(@) =Y am(i)dm(z—5), zeR (2.1.8)

J€Z
has the property ¥,,(5) = 8(4) for all j € Z where & (4) is the fundamental sequence
given in (1.1.3). The function 1., is called the fundamental cardinal spline of

the cardinal interpolation associated with ¢,,. Given b € £5(Z), the unique solution

f of the cardinal interpolation problem can be written in the Lagrange form

F=Y () %m(- — 5).

JEZ
Schoenberg [34] found a striking property of the fundamental cardinal splines ,,,

as m goes to infinity. His result can be stated as follows:

lim gn(z) = S22 R

m—oo T

In [11], de Boor and Schoenberg showed that

sign (¢¥m(z)) = sign (s_u;(;r_:z;)) VzeR.

10



In other words,
(=1 Ym(z) >0 Vze@ j+1), j€Z,. (2.1.9)

where Z, is the set of all nonnegative integers. de Boor, Héllig and Riemenschneider
[8-10] investigated convergence of cardinal series and established a characterization

of the limits of cardinal series.

As usual, we use sinc to denote the function z — 5%, z € R The behavior
of this convergence has attracted interest of many mathematicians. In particular,
de Boor conjectured that 1, converges to the sinc-function monotonically as m goes
to infinity by the parity of m, ie., Yom—1(2) < Yomy1(z) and Yom(z) < Yomsa(z),

m € N.

In this chapter we take the first step toward solving the conjecture of de Boor.

Our main result is the following: Let Z,. := {0, 1,2, ...}

Theorem 2.1 Form > 11,

. sin(wz)

0 < (—1) ¢u(z) < (=1) ——— for z€(j,j+1), jEZs (2.1.10)

Let us compare our theorem with the existent results in the literature. In [29],
Reimer proved that ||¥m||eo = 1 for even m. In his Ph.D thesis [26], using the results

from Schoenberg [35] and de Boor [7], Lee demonstrated that for m € N,
-1 < 9Yn(z) <1 VzeR

11



Figure 2.1: Graphs of 14 and £22) gyer [—5, 5]
nT

Clearly, our theorem presented here has more precise description for the behavior of

Ym (see Figure 2.1).

2.2 Motivation and the main technique

As we mentioned before, the first thing that should be investigated is the relationship
between Sﬂé:—”‘) and ¥m(z). But it is seen that the inequality (2.1.10) describes the
difference between the fundamental function ,,(z) and the sinc-function %;—z) To
measure how great the difference will be we first modify the expression (2.1.8) so

that we have better observation to the structure of ¢,,(z). Recall that a.,(j) has the

12



integral expression (2.1.7) where .§'¢m is the symbol of ¢,, . Then
Um(2) = D am(f)dm(z - J)
JEZ
can be rewritten as
Ym(z) = ———/ <Z Sm(z — j)e~ 1.75) (E¢ (k)etkf) de.
JEZ keZz

With the help of the Poisson summation formula, the first integrand above can be

written as

D ¢ml@—5)e™H = 3" (= (€ + 2km)) e +2km)

JEZ keZ

and by choosing z = 0, it becomes
D (i) =" (= (€ + 2km)).
jez keZ

Since $n(€) = (262)", c e R

s = o (2

For convenience, let us introduce

w(§) = JXGZ: (§(+ ;);W (2.2.1)

After a simple calculation one has
l)km —iz(£+2kw)

43 (=
")/)m(x) = or . (Z (§+2k7{‘)mu(§) )df, z € R.

keZ

Noting that

Z (=1)*"cos(z(£ + 2km)) and Z (=1)*™sin(z(€ + 2km))

(€ + 2km)™u(§) (& + 2km)™u(£)

keZ keZ

13



are even and odd functions of £ respectively, we then obtain an expression of the

fundamental function ¥, (z):

(=1)*™cos(z(¢ + 2kr))
Y () = / (g okl ) d¢, =zeR (2.2.2)

Finally, rewriting S22 — 1 [ cos(éz)d¢ we obtain, for z € R,

T

sin(7z)
m—— (@)

/ (Z (=1)*™sin(kmwz)sin(z(& + k“))) de (2.2.3)

2 (€ + Zkm)mu(e)

_2 emsin (ke ™ sin(z(§ + k)
= kezz —1)*"sin(k )(0 (§+2k7r)mu(§))d§'

I:=

Starting from §3 we shall prove (2.1.10) by estimating the integral (2.2.3). A
main technique we will use repeatedly is to pick up a term from the bi-infinite series
in (2.2.3) such that it dominates all others. The term corresponding to k = —1 is
certainly a good candidate for our purpose. We will show in each following section
that (the absolute value of) this main term is always large enough to control the
absolute value of other terms. To do this, we will frequently use properties of u(§).

Hence we prove the following technical lemma:

Lemma 2.2 The function u given by

(=1
“O=2 Gir o

is decreasing on (0, w]. Consequently,
9(&) = (2m — &)™u(§) (2.2.4)
- 18 decreasing and nonnegative on (0, =].

14



Proof: If m is an even positive integer, then

o0

1
u(é) = Z(zm+§)’" Z<(2J7T+§)m (2(j+1)”‘§)m).

It follows that

o

, B B 1
uw(§) =-m Z ((2]71- + £)m+1 (2(7 + D7 — f)m+1) ‘

Clearly, v/'(§) <0 if 0 <& <7 and v/'(§) =0 if £ =«. Consequently, u(£) is

decreasing on (0, ).
Assume that m is an odd positive integer. Note that the series is absolutely

convergent for £ € (0, 7]. Hence

1)7 1
Z(— ) ( (2jm + &)m (2(j+1)7r—§)m> ’

and

RS R TR Ve 1 1
i) = m(£m+1+;( g ((2j7r—5)m+1+(2j7r+§)"‘+1>)'

Therefore, for 0 < £ <7

ey ) e 1 1
(€)= m{m +1) (D 2 ((2jﬂ+§>m+(2<j+1)w—e)’")>

=0

o0

_ 1
m(m + 1) Z ((237,- + &)m (2(j + 1)7T+§)m)

1
Fmim ) 3 ((m —" @G+ 1)vr—£)’") >

j=1

Moreover, it is easily seen that u/(r) = 0. It follows immediately that u'(¢) < 0 for

0 < & < and consequently, u(£) is decreasing. W

15



2.3 ThecaselO<z<1

Following the notation in (2.2.3), we shall prove that J > 0 for 0 < z < 1 in this

section. For this purpose, write

_ 2sin(7ra:)'
1==2205 4 1) (2.3.1)
where
[ sin(z(r — f)) sin(z(m — f))
L= | g =) g (23.2)
with g(£) in (2.2.4) and
. (=1)*msin(krz) [ sin(z(km + £))
2= Z sin(rz) o (2km + &)mu(f) . (2.3.3)

keZz\{0,—1}

Note that if 0 < z < 1, then sin(:z:('ir - §)) > 0 for 0 < ¢ < w. Moreover, by Lemma
2.2, g(&) > 0. Then I, is positive. We shall prove I; > [I2], under the restriction

0 <z <1, and thereby, combining (2.1.9), the theorem follows immediately.

We first investigate [;. To estimate a lower bound for I;, an upper bound for
g(€), 0 < ¢ < m, should be considered. From Lemma 2.2 this is the case that 13

approaches the lower boundary t¢7 of the interval of the integration

™ sin(z(r — £))
-/t;r PG

where 0 < ¢ < 1. It should be pointed out that g(&) approaches to infinity as £ — 0.
Therefore t should be chosen carefully so that an appropriate lower bound for I; is
. obtained.

16



Let ¢ be a real number such that § <t < 1. Then

™ sin(z(m — €))
nz [ S

For tn <& <mand m >3,

9(6)51+(2”€"£) + 3
k€Z\{0,—1}

2—-t\" N(2—-t\" & [/2-t\"
< —
<(3) 2GS 2 G2

2-t\™

1 T
L > m/t” sin (z (7 — £)) dt.

m

2r — &
&+ 2k

It follows that

But
™ 2
/ sin(z (7 — €)) d¢ = 2 (sin (M>) > 2(1 — t)%z.
tw T 2
Hence
2(1 - t)2%z
hErE

Choosing ¢ = 7/8 in the above estimation, we obtain a lower bound for I:

T
h=z 32(2+ (9/7)™)"

(2.3.4)

Next, let us find an upper bound for [I2]. Since
sin(knz)| < |k|sin(rz), for 0<z <1,

we have

™ |sin(z (€ + km))|
Ll < k de.
Hs > | e de

17



Thus an upper bound for |I;| will be obtained once a lower bound for 1€ + 2k |™u(€),

0 < ¢ <, is provided. But either m being odd or even, we always have

_ =y
ue) = JGZZ (& + 25m)m
ety 11
(r—m = @r—m " gm o (€ +2m)m

2 (1 - (4:— §>m>

1
m(l—éF) for O0<&é<m.
&+ 2km

(%)

1 — —

¢ 3 (2.3.5)
> 2k + 1|™ (1-%) for keZ.

‘Then it follows that, for 0 < ¢ <,

€ + 2k7|™u(€) > ‘

Moreover, for 0 < ¢ < 7,
[sin(z(kr + €))| < zlkr + €] < (k| + 1)

Hence

3mmiz k(k+1) k(k+1)
I .
I 2|—3m (Z (2k+1 Z( 1)m
But note that > 22, f% <D res @=i==r < g for m > 10. Hence
1

k(k+1) <~ k(k+1) 8
Z(Qk-i—l + = 2k—1)m_ Z(Qk_l)m 3m-2"

Therefore we obtained an upper bound for |I,]

Oz
1] < 35— (2.3.6)

18



Combining (2.3.4) and (2.3.6), one can easily verify that for m > 10,

1 > 72
3202+ (/7)) = 37 —1

and we conclude that
sin(mz)

p—— Ym(z) >0

for0<z<landm>10. 1

2.4 Thecasel <z <8

In this section we will extend our theorem to the case 1 < z < 8.

First of all, Lemma 2.3 below suggests that new techniques should be created to
cope with an issue arisen from the alternation of the sign of sin (z(mr — €)) because
of z > 1. On the other hand, 1 < z < 8 is investigated individually because most
of techniques established in the previous section can be used in this case. We still
take, for instance, the interval [77/8, 7] to estimate a lower bound for ;. But more
importantly, one might find that the condition z > 8 will help us to obtain better
estimates in the next section (see (2.5.9) and (2.5.10)). Briefly, this section plays a
role like a bumper so that our estimates either for I, or I, wouldn’t jump sharply as

T across the turning point 1.

Lemma 2.3 Forz > 1,

_ ["sin (z(r - §)) T, 1 1
Il—/o ——W—CEZ/W_%sm(:E(W—E)) (g(f) "g(g_%))df'

19




Consequently, for 1<z <8,

T 1 1
112/%Es1n(a:(7r-—§)) (g(f)—g(f—lz’-))df

Proof: For 1<z <2, wehave-—>7r-—— Then

1=(’/‘+/‘_~ [ )mﬂjéfo)f

=/§ sin(z(r — £)) (g(g) (61— §)> “

= sin(z(r —¢))
A

& 1
> /w—g sin(z(m - &)) (g({) TE- g)) dg.
For 2 <z <38, (ie., 2§ <z<2j+1), j=1,2,3)
™22\ sin (z(m — sin(z(m — £))
h= (/ oot [ ) G

™ sin(z(r — ¢))
2/_ @ %

_/__sm(:r('ir—- )<g(€) (61—2))d€' n

Remark: This lemma will be also used in Chapter 3 and we will restate it for the

reader’s convenience (see §3.4, Lemma 3.14).
To estimate a lower bound for I, Lemma 2.3 motivates us to investigate the

difference between g(¢£) and g(& — 7/x). To this end, we have

Lemma 2.4 For 7/2<&<7 and m >3,

2r — E\™ 2r — €
(—__6 ) Sg(f)52+< g
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Proof: Write

o=s (B2 s 5 com(222)"

j€Z\{0,~1}

Observe that

> ocom(EZE) | s > [Eegr
Jj€z\{0,~1} 2w +¢& JFEZ\{0,~-1} 2T +¢
oo m o m
2n — 2r —
- (27r f) +Z(2W—E£)
=i \2JT+¢& j=2 \HT
/2 —-Z\™ &/ 2r-Z\™
ACHRONES )
JZ—_J: 2jr+ % o 2jm - %
1 1
=3m(_57+7_m+ )

<1 for gsggvr and m>3. N

Lemma 2.5 For Tr/8 <& <7 and m > 10

(E - —) > 39(¢).

Proof: By Lemma 2.4, for 77/8 < £ <7 we have

g(f—%)z(%__g:*/;/s)m and g(§)52+(27r§_§)m.

Thus, to prove g (5 - %) > 3g(€), it suffices to show that

2r — &+ 7w/8\™ 2r — E\™
( §-n/8 ) 26”’( £ ) !

in other words,

(2/“5) (27r _f:/;r/s) >6(27r§_§)m+3-

21



But

3 T
§—7r/827r—-7r/8

27r——§+7r/8>27r—-77r/8+7r/8__1_
2r—-¢ ~ 2r—7n/8 9

= g and
Note that (80/63)™ > 9 for m > 10, we obtain the desired result. M

We now turn to the estimations of I;. We have, for1 < z < 8,

T 1 1
h2 /7_, sinfe(r = ¢)) (9(5) Cg(e- 2)) %

8

Note that g(¢) <2+ (%)m for I < £ < 7. Then it follows from Lemma 2.5 that

T 1 1
b2 /,_, sin(z(r - £)) (g(s) T g(e- g)) @

8

52 /" sin(z(mr — £))

“38J= g9 “

2 T
> 3@+ O/ /181: sin (z(m — €)) d€.

But for 1 <z < 8,

Aj sin(a(r — £)) dé = 25in2(;rx/16) > 2sin(m/16z)§ (mz/16) > sin(z/lG)

Hence a lower bound for I; is given as

n=[ " sin(z(r - £) sin(r/16)

9(§) “= 6(2+ (9/7)m)" (24.1)

To estimate I, we observe that

|sin(k7z)| < |k|[sin(rz)]  and |sin(krz + z€)| < 1.

Moreover, from (2.3.5),

€ + 2km|™u(€) > |2k + 1™ (1 -~ i) for k€Z and 0<é<m.

3m
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Hence

L= > (=1)*msin(knz) [* sin(z(kn + £)) df'

k€Z\{0,~1} sin(7z) o (€ +2km)™u(f)

™ %]
L—mm—— —_—
= 1-(1/3)" > |2k+ 1=

kEZ\{0,~1}
But N
e =3 s

>, + Z
keZ\{0,—1} |2k + 1|™ k=1 2k + 1)’" (2k — 1)m
1 1
21<: - 1)m T R
1 4

<3m_1+3—m=3—m for m > 3.

HM8

This shows that

47

: 2.4.2
T (2.4.2)

L] <

Combining (2.4.1) and (2.4.2), we have, for m > 9,

sin (7 /16) 47r
6(2+ (9/7)™ )

Therefore, we conclude that

sin(rz)

0 < (=1 gn(a) < (-1 =22

forzxe(j, j+1), j=1,---,7and m>10. &

2.5 The case z > 8

The idea used in the previous sections will be applied again in this section. In other
-words, we will show that I; dominates the remainders.
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One might note that in §2.3 and §2.4 we only chose the interval [77/8, 7], instead

of [0, 7], to be the interval of integration of I, to estimate the lower bounds for I,

because this interval contributes the most to the value of I;. This technique, modified

slightly, will be still applied in the case z > 8. More precisely, for a fixed z, let n = 1Z]
and 1 < j < n. Define

—(2j-2 —(2j-1 :
I{ — /‘7" (25 )7r/$+ f” (25-1)n/z 51n(x(7r — f)) d€
—(2j-1)w/z T=2jn/z g(E)

w—(2j—-2)7/x

_ 1
= r—2i—tyn/s SIII(-':U(7r f)) (g(f) g (5_ 2)) d&

Lemma 2.6 I{ s positive for 1 < j < n.

(2.5.1)

Proof: In fact, since

(25 =2)r

T T

then (2j—2)m <z(m—§&) < (2j—1)7 , and hence sin(z(m —£)) > 0. The desired

result follows immediately by applying Lemma 2.2 in §2.2. W
Lemma 2.7 I is positive for z > 1.

Proof: There are two posibilities.

Case 1. If =2N+1t, N€N and 0<t¢ <1, then

7" - su1(:z;(7r — f)) T sm(a:(7r - f))
I = +---+ d§+/ ——t dE.
=38 T 9(5) g(f)
The first IV pairs of integrals must be positive by Lemma 2.6. Moreover, if
2N7w
0 -
<é<m INTT
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then 2N7 < (2N +1t)(m — &) < (2N +¢)r  which implies that the last integral is

also positive.

Case 2. If £ =2N +1+t, then

n m—$wik \ sin (z(m — &)
L= et — = d£
" s i 9(&)
T INIFE -85 sin (z(r - &)
+ / 2N+1 +/  a(&) dE.
T %ﬁ—-}-—l-g 0 g(E)

Again, the first IV pairs of integrals are positive. To see that the sum of the last two

integrals is positive, noting that

_@N+lm o < 2N~
2N+1+t 2N 1+t " aN+1+¢t
and if
_(2N+1)7r<£<7r 2N~
2N +1+1¢ 2N+ 1+t

we have sin(z(r — £)) > 0, then

/w—% sin(z(r — £)) it > /”‘%ﬂ-: sin(z(m — £)) de.

_%v:—ll-g 9(8) INFIFE 9(8)
Therefore
TSR SR sin(a:(7r—§))
(/ vy ) ) @ =
T IN T -G sin(z(m — §))
z (/ +f ) @~
4 ﬁv% 1
>
2 /N__ sin(a(r - £)) (g(s) I g)) “
>0. A

Combining Lemma 2.6 and Lemma 2.7, we have actually proved,
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Corollary 2.8 For 1<j<n, n=|2],

T—(2j—2)m/z

= 1
hz ;/n-(zj-nw/ sin (a(m — €)) (9('5) g (- 2)) o

Conseguently, Iy > 3%, I m

Corollary 2.9 For z > 1. Write

Iy = I + I15

where

4 1
I := /W__ sin (z(r — £)) (g(f) nGE= §)> d¢

and

1
I]_z —/ sin (:z:(7r f)) (g({) P (f — _;L)) df

ThenI;; >0 and I, < 0. W

Remark: Corollary 2.9 will be employed in Chapter 3 only.
We now begin to prove our main theorem for 8 < z < oo in four steps.
Step 1. A lower bound for I where B is given in (2.5.1).

With the help of the mean-value theorem we now estimate a lower bound for I J

for j =1,2, - -+, n. One can easily calculate

LY 2m j+1
(9_(5) (2r — §)m+1 (u(g)z) Z( W

JEZ

26



!
Then a lower bound for (%) will be obtained once we estimate an upper bound for
u(£) (recall that u(§) > 0for 0 < £ < ) and a lower bound for 3, ,(—1)"™ Wﬁ—%ﬂﬁ
respectively.
At first, we claim that for m > 11 and £ € (0, 7],

w0 <z (24 5).

In fact, if m is even

u@) = Z (237r +&m

(”(%f—f)m““. 2 (2jvr§+£)m>

]EZ\{O,—].}

’SIH

1+1+i+i+1+i+
gm " 3m  pm | 5m

The case of m odd is much easier and we omit it here. On the other hand, we observe

that for £ € (0, =],

N 1 1
2V G 2 g (1 - 3—,,,) -

JEZ

Indeed, if m is either even or odd, we always have

m  J+1 1 2 1
R o R

JjEZ
1 £ m+1 ¢ m+1
e () -G




[
Then for m > 11 and £ € (0, 7], a lower bound for (%) is given by

() 2 &5omr (- 5) g

Consequently, (note that £ — Z < n < &):

Il = T /7r7r_(2j_2)m sin(z(m — £)) (é),(n) d§

T Jr—(2-1)m/z
2
N 2mm 1— _1_
- x(2 + 1/310)2 3m
7—(2j—-2)w/x nm—l
X sin(z(w — —d
[r—(2j—1)7r/:z: ( ( f)) (27!' - 77)'"“ §
(r -t )™

S 2mm? (1 1 )
= 102 ~ am : m+1
z(2 4+ 1/310) 3m (21r_7r+£2_7;—1)7r+_;£)

7—(2j-2)w/x
x / ’ sin(z(r — €)) d¢.

—-(2j-1)7/=z
But
m~(2j-2)r/z 9
/n—(zj-l)w/m sm(:z:(ﬂ' — f)) d€ = e
Hence

> 2mm? l—i z? 1 z—27 m_lg
1= z(2+1/310)2 3m ) w2 (z+25)2 \z+25 T
__ 4m (1—i 1 z—27\™""
(2 4+ 1/310)2 3m ) (x+25)2 \z+25 '
Then for m > 10, a lower bound for I{ is given as follows
.\ m—1
- (1—i S
(2 +1/310)2 310/ (z+24)2 \z+2j
. _09m (a:-—- 2j)’”_1
@+22 \z+25)

Step 2. An upper bound for |I2’| + |IZ}| where I} is defined in (2.5.4) below.

(2.5.2)
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Let us now estimate |I|. For k € Z \ {0, -1}, denote
9k (&) = (2km + &)™ u(8).

Then I, can be rewritten as

I, = Z (=1)*™ sin(krz) [~ sin(z(k7 +€)) it

ez Sn(Tz) 0 9x(§)

We will examine I, on the intervals [0, 7 — %22] and [r — — 287 ] respectively. Before
proceeding further, a strategy should be stated. To cope with the new issue arisen
from the alternation of sign of sin(z(r — ¢)), the main term I, has been split up
I{ » 1 < j < n and (2.5.2) describes a lower bound for If ’s. Therefore, I should
be divided to many pieces as well so that each such piece is still controlled by the

(corresponding) I{. Consequently, [I2| would be dominated by I;.

We first estimate |I2| on [ — %%, 7]. Let k € Z \ {0, —1} be fixed for the time

being and let 1 <[ < 2n. Set

Iéc,l := (/w-—(2l—2)1r/z+/1r—(2l—1)7r/:z) sm(:z:(k7r+§)) d€
T

~(@l-1)r/z r—2l7/z gr(€)

n—(20-2)7/z & 1 d
B ‘/1r—(2l—1)1r/ sin(a(km +¢)) ( 6 o (€ - %))

Noting that |sin(z(r — &))| < 1, we have

7—(2-2)7/z 1 1
I’C,l - d
< [ (gk@) gk(f—%)) f

7—(2l-1)n/z
Following the same idea we estimated |T], we will give an upper bound for [Iéc "] with

(2.5.3)

the aid of the mean-value theorem again. For this purpose, let us consider

1 ! oM Lyim j—
(M) (2k7r + §)m+1 (u(8)) 2 J%z:(‘ ) W
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!
Then an upper bound for | (i) I will be obtained as long as we estimate an upper

bound for

Z(_ )Jm (2]7l'+§)m+1

i€z

As a matter of fact, we claim that, for m > 11 and 0< € < 7,

1 2 5
< g <2|k| <1+§I§) +1+ 312)

1)im J—k
Z(_ ) (217(+§)m+1

jEZ

Indeed,

2 ,2ij 7 2 T f =
Enlllte ol
< o (2 6+ (2]._,_1)"‘“)

v (S04 (572))
(2|k| ( 312) 414 351’2)

Moreover, we proved in §2.3 that u(¢) > EL’" (1 — 3%). Therefore we obtain for m > 11

> V" G| S

jez

and 0 < ¢ <,

(i) = s o 1+ ) +1+2) e

Hence for k € Z \ {0, -1} and 1< < 2n, set

L= Y I¥ (2.5.4)

k€Z\{0,—1}
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and noting that [sin(kwz)| < Ik”sin(mz:)l. Then

< > |1

kEZ\{O,—l}

pNCY

1 !
(5) ]
keZ\{0,—1} 7—(Q-1)r/z 9k

s;(—l—% 2 "“l(?""(“?,_?z)*”s??)

keZ\{0,-1}

r—(2=2)7/x m—1
« [ L
m—(2l-1)x/z l2k7l' + 77|m+

w—(20-2)nr [z

IA

Writing
o0 o0

> =X+

k€Z\{0,~1} k=1 k=2

we have

) 5 n—(20-2)m/z 77m—-1
k{2k{1 1+ — e
1l < 1/3m)2 Z (20 (1455) 1+ ) L reyye o
oma2 ) 5 w—~(2=-2)/z nm—l
—_—» k(2k|1 1 ——d
w(l—l/am)zz ( ( +312) i +312) /,,_(2,_1),,/2 @k — et &
Note that both T;W and ﬁg'_’l,;)*m.'_f are increasing functions of . Moreover,

since £ — T <7 <&, then
5 T—(20—2)mw [z §m-—1
< — k<2k(1+ )+1+ )/ ———— d§
l 2| IE( 3m o(1— L) ; 312 7m—(2l-1)w/z (2]‘:7r + €)m+1

oo 2 5 w—(2l-2)r/z fm_l
x(1—1 2Zk<2k<1+ >+1+§-§)/7r Tk — gy %

3m) k=2 —(2-1)r/z (2km —

<t (4 (1 am) + 14 %) e

om 2 5 (@ — 20 +2)m-1
LUC YN PV .
Ta-& 2;_; (2 (1+312) +l+ 312) @k — Dz 5 2l — 2y

The above estimate for |I{| should be simplified before it is employed to the next es-
timate. Obviously, only their first terms contribute the most to the serieses expressed

31



above and one can verify that for m > 11, the remainder of the first series

= 2 5 (z —20+2)m! (z — 20+ 2)m1
k(2k(1+—)+1+—) <
,cz;; 312 32/ ((2k+1)z — 204 2)™" ~ (3z — 204 2)mH

and the the remainder of the second series

= 2 5 (z — 20+ 2)m? (z — 2l +2)™1
> — ) +14+ = < .
k=3k (2k (1+ 312) + 1+ 312) ((2k—~ 1).’D+2l—2)m+1 = (3z + 21 — 2)m+1

Moreover, note that the coefficient of the first term (i.e. k = 1) of the first series is

2 5
2(1+§5)+1+-33< 3.00002

and the coefficient of the first term (i.e. £ = 2) of the second series is

2 5
2 (4 (1 + 33) +1+ 33) < 10.00005.

Then multiplied by the common factor (1_21’7_3’;)2, we obtain an upper bound for |I}|

2(3.00002 + 1)mmr (z—20+2)™1  2(10.00005 + 1)mm (z — 2 + 2)™!

I <

ol < (1- 3_1"7)2 (3z — 21 + 2)m+1 (1- 3%)2 (3z + 21 — 2)m+1
< 2(3.00002+ L)mr (z—20+2)™1 = 2(10.00005 + 1)max (z — 2l + 2)™!
= (1-)? (3z — 21 + 2)m+1 (1-:5)° 3z — 20 + 2)m+1

94.25m (z — 2l + 2)m~!
(1- 3%)2 (3z — 21 + 2)m+1”

For each j, j = 1,2, ---, n, our goal is to use I{ to control two terms of |I5|,
namely, [I;°~!| and |I2?|. For this purpose, replacing ! by 25 — 1 and 27 in the above

inequality, we obtain

94.25m ( (z — 45 + 4)™1 (z — 45 +2)™1 )

IP|+ |17 <
|2| |2 I—-(l—gl,;)z (3x_4j+4)m+1 (33;-—4j+2)m+1
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But

(=4 +9™" _ (z—4j+2)m
8z — 45 + 4)™+1 = (31 — 45 + 2)m+1"

Then an upper bound for the sum of |I3?| and |21 is given by

. . m—1
(1-3%)(Bz—4j+2)2 \3z—4j +4

Step 8. An upper bound for |Ij| where |II| is given in (2.5.6) below.

We now estimate I, on [0, 7 —42%], For 1 < j < n, denote

4nw

e :=/ =500 sin(z(kr + £)) "
w—m—Jr gk(g)
where r := ""4:" £=1Z_ 47 Then
. W—-‘l:—"-— —1)r 1
s [ L
3 -0 ng(f)l
Foreach 1<j<mn, set
= Y
kez\{0,—1}
Then
Bl<s > |5
k€Z\{0,~1}
1 7r—4"—"'—-(] -1)r ™m
= (1 'kl/ in 12k7f+ &m dc
keZ\{O 1} T —gr

4nr

m— 2L —(j-1)r { m
- (1 - 3m /—,.-_521 —Jjr <2k7r+§) d§

4nr

T—22L—(j-1)r 5 m
1—— Zk/,,_m_ﬁ (o=g) %
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— 4 . . .
Recall that r = Z — 2%, Moreover for &k > 1, ﬁ—1€+—§ and %f—_? attain their maximal

values at 7 — 48T — (j — 1) (2 — 287) jp the above interval of integration. Then we

have
,- o 1-%&_(G-1)@E-% \"
IIal< ; <2k+1——.j g)(‘_—>
(1 m_Gon@-g \”
slm);( R Ty . )%—%)>
o 1-2-G-1E-%H \"
5(1_1)162;1‘:<2k;+1——i 1)( ))

"wn i ety
=( Z_:(zkﬂ)(zk - (J(—I)S('i‘y'

3m

Once again, one can verify that for m > 11,

Z(2k+1) (2k+1 Ug(-;- z))ms_( :_—_: BE:::))

Hence we obtain an upper bound for | I

15| < @ fr_) ( ks 1; (; — é)> . (2.5.7)

Step 4. I > |I.

We are now in a position to prove that I; dominates |Iz]. In fact it suffices to

show I > |IZ7Y 4 |I¥| + |H| for 1<j<n, n=[%].

Combining (2.5.2) and (2.5.5), we first show that, for m > 11,

196 B> |IP) + 177, (2.5.8)
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ie.,

9 0.9m (xv2j)m_1 . _188.5m y
10\ (z+25)2 \z+2j —(1_51;2

1 z—45+4\™!
(B3z—4j+2)2 \3z — 45 + 4 '

Observe that for £ >8 and j=1,2, ---, n,
0.9 3 1 1
5 25 - . 2.5.9)
(Z+27)* 72 (1-;4)° (Bz+4j+2)° (

Indeed, let ¢ = 5355 G=y7sm» ~ 1.6667... and
f(z) :== (3z — 45 + 2)® — ¢;(z + 27)%.

Treating the right hand side of the above expression as a (quadratic) polynomial of
J, one can easily calculate that the root of j is not in the domain of j, 1 < j < L£].
Hence the extreme values of f(z) are attained at the two endpoints, j = 1 and j = n.

Substituting these two numbers into f(z), we obtain, for j = 1,
f(@)=(9—~c)z® —4(3 - c1)z + 4(1 — ¢1)

which is positive as £ > 1.2. For j = z/4,

which is positive for any positive z. Consequently, (2.5.9) is valid.

Next we claim that for m > 11,
9 (z—2\"" 2 (z—4j+4\™"!
— - > 1885 | = { —— —— . 2.5.1
10 (:E+2]) = 885(3 (3x—4j+4 ( 0)
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a
In fact, let ¢, = (10x1885x2) 10 ~ ]1.63869... and let

fi(z) == Bz — 45 + 4)(* — 2j) — co(z + 2j)(x — 47 + 4),

then the root of j, 12=2ass8t8a s i [1, n]. Substituting it into fy(z) we obtain

fi(z) = 0.82608z2 — 5.91608z — 5.27738

and this quadratic polynomial is positive if z > 8. Therefore (2.5.10) is valid. In light

of (2.5.9) and (2.5.10), (2.5.8) follows immediately.

Finally, by (2.5.2) and (2.5.7), we show

1 .
75 4 = 18], (2.5.11)

ie.,

1 { 09m [z—2i\™" 4r 1-4n_ G-1)(2 - 4H\"
10 (z+2j)2($+2j) 2( —im) 3-2—(G-1)(z-2))
3 T (n z

Since n = [ £], we write £ =n+t and assume 0 < ¢ < 3 for the time being. Then

- 2umn(3-4) 5 (-252).

(FEEEE) - ()

Note that 0 <¢ < and z > 8. Then

Hence

¢ — i
s (1 - 1) 1 1

2.5.12
2+n+t(1_L)< <8 (5 )
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On the other hand, write

0.9 (:z:—2j)’"_1_ 0.9 (:z:-—2j>m
(z+25)2 \z+25 (z - 25)(z +25) \z+ 27

and note that r =Z — &% = m”i—t) We observe that

167t 167 (2 — 4)
< .
— 4t)z (z—4)z

(@~ 29)a +20)r = (a° — 47°) -

Since the maximal value of (::;*m is 15/8 as z > 8, hence

(z ~ 25)(z + 25)r < 30r. (2.5.13)

Moreover, for m > 11, 1_11/3,,, < 1_11/311. Therefore, to show (2.5.11), in light of

(2.5.12) and (2.5.13), it suffices to show
—924\™ m
(x ]) S 307 x 10 ><24 (l) . (2.5.14)
T+ 2] 09x (1—4g1)"xm/) \8

1
30m x 10 x 4 m
S <18.
0.9x(1—3+1) X m

But for m > 11,

Our desired result then follows from

£—-2 1 1
> — . - 1.
z+92; 3>18(8>

Consequently, (2.5.11) is valid. Therefore, combining (2.5.8) and (2.5.11), we have

proved that for m>11, 2>8 and 1<j<n= I_.ZEJ,
B> |17+ 177 + |H).
Remark: One might observe that our proof above is based on the assumption of

<t % In fact the same proof works for % <t < 1. To see this, if this is the case,
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we choose n = [§] such that § =n — s where 0 < s < 1. We then reset the domain
of l in (2.5.3) to be 1 <! < 2n —1 and hence we have the exact same upper bound of
|I3] as in (2.5.5) except that the interval [r — 22, 7] is replaced by [z — &2=2 7],
Subsequently, we should choose r = "—_@"T_?)ﬂ—”’ . Therefore, (2.5.7) (the estimation
of [I] on [0, m— ¥2=27] | 1 < j < n) is replaced by
4n—2 an—-2y\"
FE{RS <1 :11) (;_ = ( Bg;~ = ) , (2.5.15)

3m z nx

Note that % = n —s. We then obtain

Hence we still have

4(n—s)(1— n) 1-2s <_1_
4%1;4:) (1— )_4(n—s) T

which is the key step in proving (2.5.12). Therefore we have showed that I; dominates

|I2] and the proof of the main theorem is complete. M
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Chapter 3

Cardinal Interpolation by the

DD-functions

3.1 Some basic properties of the DD-functions

In this chapter we shall investigate properties of fundamental and refinable functions

on R with compact support. Recall that a function ¢ is said to be fundamental if

it is continuous and satisfies
w(4) = 8(4), for j € Z,

where §(0) = 1 and 6(j) = 0 for all j € Z \ {0}. With the help of the Poisson

summation formula, we see that a compactly supported continuous function ¢ is
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fundamental if and only if

D e(e+2km)=1, VEeR (3.1.1)
keZ

A function ¢ is said to be refinable if it satisfies the following refinement equation

=2 a(i)e: i), (3.1.2)

jez
where a is a finitely supported sequence on Z, called the refinement mask. If
> jeza(j) = 2, it was proved by Cavaretta, Dahmen and Micchelli (see [2]) that
there exists a unique compactly supported distributional solution ® to the refinement
equation (3.1.2) such that $(0) = 1. Throughout this chapter, we always assume
that >°..za(j) = 2. We call such a solution the normalized solution to (3.1.2)

associated with a and we denote it by ¢,. In fact, @, is given by

) — [ a(e=%/?
2a(8) =] ((*2_)) , £€R
J=1
where @ is the symbol of a defined as
i(2) == Za(j)zj, z € C\{0}.

JEZ

Let H(€) := a(e*)/2, € € R. Note that H is 2r-periodic. Then

2ui6) = (£) 00 (g) ., VEeR

If, in addition, ¢, is fundamental, then for £ € R we have

1= " @a(26 + 2k7) = D CH(E+ km)@a(€ + k)

keZ kez

= H(&) ) ¢al€ +2jm) + H(E + ) > " @al€ + 7 +25m) = H(E) + H(E + 7).
JEZ j€Z
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Thus, a necessary condition for ¢, to be a refinable fundamental function is
HE+HE+7m) =1 V¢ eR, (3.1.3)

which is equivalent to saying that
1 if 7 =0,

a(j) =
0 if j is an even integer.

If a mask a satisfies the above condition and > jez @(7) = 2, then we say that a

is an interpolatory refinement mask.

It should be pointed out that the (forward) cardinal B-spline M,, (see §2.1) is

refinable for Vm € N. In fact, it is evident that

i.e., M is refinable. Moreover, if f and g are refinable with mask a and b respectively,

then so is f * g with mask a * b/2. Indeed,

f@) =) ai)fz~7), (=)= D b(k)g(2z — k).

jeZ k€EZ
Then
[ *g(z) = fR flz —y)g(y)dy = /R]EZZ a(7) f(2z — 2y — 7) ke};b(k)g@y — k)dy
_ - _of,_d _k
=23 a0 [ 1 (2-2(u-1)) o (2(v-£))
= 5 3 A *g2m— i — k) = 3" (&) » 9(22 —
FE€Z keZ €2
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where ¢(£) = 37,5 a(5)b(£—7)/2 = axb/2. It follows immediately that M,, is refinable
for all m € N with a mask a given by its symbol 21-™(1 4 z)™. Similarly, when m
is an even positive integer, the central cardinal B-spline ¢,, satisfies (3.1.2) with a

mask given by its symbol 2!=™(2~! + 2 + 2)™/2, Finally, recall that the fundamental

cardinal spline ,, is given by
Ym(€) = Gm(€)/ 5, (€)

where .§'¢m (€) # 0, given in Chapter 2, is a 2r-periodic function. Therefore, when m

is even, ¥m also satisfies (3.1.2) with its mask a,, given by

IS S -7 (3 T ~i)2—ij¢ ;
(i) = 57 o Bon(26) ° dretyetid,  gek

Obviously an, is not finitely supported and %, is not compactly supported.

In [12], Deslauriers and Dubuc constructed a family of refinable and fundamental
functions with compact support. In what follows we shall take the approach adopted
in [19] to the construction of refinable and fundamental function. For this purpose,
let us recall the definition of sum rules from [6]. For a positive integer &, a mask a is

said to satisfy the sum rules of order k if

D al2)@) = a(l +2j)(1+27)! Vo<i<k
JEZ jez

See [24-25] for an extension of sum rules to multivariate masks. Note that in the

univariate case a mask a satisfies the sum rules of order % if and only if

a(z) = (1 ;’ z) kE(z) (3.1.4)
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for some finitely supported sequence b. The following theorem is taken from [19]:

Theorem 3.1 For each positive integer N, there ezists a unique interpolatory refine-

ment mask b, supported on [1 — 2N, 2N — 1] such that b,, satisfies the sum rules of

order 2N.

Proof: For each positive integer N, if b, is an interpolatory refinement mask, then

b,(0) =1 and b, (27) = 0 for all j € Z \{0}. Then b, satisfies the sum rules of order

2N if and only if

N N
D oby(2i—1)=1 and Y by(2-1)(2—1)¢ =0, O0<L<N-L
j=—N+1 j==N+1

The above equations regarding b, (25 — 1) can be rewritten in the following matrix

form:
[ 1 1 e 1 | rbN (—2N + 1)_ (1-
(—2N +1) (-2N+3) -~ (2N-1) by (—2N + 3) 0
| (2N +1)*M71 (2N +3)2M-1 ... (2N - 1)2V=1) | b,eN-1) | |0]
(3.1.5)

Since ((27 — 1)) _y., <j<No<t<n+1 1S @ Vandermonde matrix, the equation (3.1.5)
has a unique solution for [by (—~2N +1),b, (—2N +38),... ,b, (2N — 1)], which can be

easily found as follows:

N
. . Y n(2e—1)
b,(25 — 1) = (—1)7+N-1 ITe=s-n( —N<j<N.
= O e G e TN SISN .
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The normalized solution to the refinement equation (3.1.2) associated with the
mask b, denoted by ¢, is exactly the fundamental function introduced by Deslauri-
ers and Dubuc (see [15] and [12]). Throughout this chapter we call ¢, the DD-family
of fundamental refinable functions, or simply, the DD-functions. For the reader’s

convenience, we list b, for N = 2, 3 in the following:

Co 1 9 0o 1,
bo(2) =—g#7 T g7 FlH g7 52

.3 o %5 . 75 75 25 , 3 .
b(2) = 557" ~ 367 TTog® Tl Tog7 " 5me% T 3e” -

In this chapter, we focus our attention to the Fourier transform oy of v, given

by
6©=11m (%), cexr (3.1.6)

c=1

where H,, (€) := b, (e7%)/2. Note that the infinite product (3.1.6) is uniformly conver-
gent on each compact subset of R. Indeed, since H,(0) =1 and H ~ 1s continuous,
|H, (&) — H, (0)| < c|¢| for some constant c. It follows that pI et [1— H, (/29|
hence H;'f__l H, (&/27) is convergent. The following expression of H, is given by

Meyer [27] and Micchelli [28].

Proposition 3.2
1 §
Hy(§) =1~ —/ (sint)?N-1d¢ (3.1.7)
Pn Jo
where

Py = / (sint)®N 14y, (3.1.8)
0
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Consequently, 0 < H,(§) <1 for all € R and H,, (r) = 0.

Proof: Since b, satisfies the sum rules of order 2N, b, (2) has a factor (1 + z)2V.

Hence,

b9 (-1) =) =0,  j=1,.. 2N 1.
Moreover, by (3.1.3),
Hy(§)=1-Hy(¢+m), ie, by,(z)=1-b,(—2).

Therefore,
b9 (1)=0, j=1,.. 2N-1.
But ¥, (2) = 272Np(2) for some polynomial of degree at most 4NV — 2. Hence, there

is a constant ¢ such that
7 _ 2N—1 2N—1,-2N _ . -1/ -1 2N-1
b,(2) =c(l+2) (1-2) 2T =cz7H 2zt - 2) .
Letting z = e* in the above equation, we obtain
ib, (e%)e¥ = c(sing)?N-1(—1)N-192N-1

This in connection with b, (¢"") = 0 and by (€27) = 2 yields

[ (sint)2N-1g¢
L™ (sing)2N-14t”

EN (eif) =2

It follows that
J¢ (sint)"ldt  [T(sint)?N 14t — [&(sint)?N-1ds
Jo (sint)2N=1dz [T (sint)2N 14t

H,,(€) = 3B, () =

1 £
=1-—— [ (sint)®" 4. m

N JO
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The following technical lemmas, combining with the propositions given in this

section, will be used to estimate @, (£) in the rest of the chapter.

Lemma 3.3 For N € N,
/N —1/2 1 /N
— < — <3¢/ —.
T Py T
Proof: In fact,for0 <t < o
(sint)*¥*! < (sint)?N < (sint)2N -1,
Integrating the above inequalities from 0 to %, we have
/2 w/2 /2
/ (sint)®N gt < / (sint)®Ndt < / (sint)?V=14t. (3.1.9)
0 0 0

Set
/2
Im 1= / sin"xzdz.
0
Clearly, p,, = 2J,,_,. From elementary calculus we have

(2rn—-1)(2n—-3)---3-17 _ (2n—1)!Ix
2n-(2n—2)--.4.2 2 (2n)Il 2

/2
Jop = / sin??zdz =
0

and
(2n)2n—-2)---4.2  (2n)
2n+1)@2n—-1)---3-17 (@n+ DI’

w/2
Jong1 = / sin®"*lzdr =
0

Therefore, (3.1.9) is rewritten as

@M @eN-1lr (2N -2l

N+~ @M 2 SEeN-Di (3.1.10)
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On the other hand,
1 (aN-1)!
T 2(2N = 2)I

1 _
PN_ZJ

2N~-1

But from the second inequality of (3.1.10),

1 r 1
oy 2N S 2 P¥

and hence ;1; < 4/Z. Similarly, from the first inequality of (3.1.10),

1/ 2N? <1
T \2N +1 P~

Note that 2—21\%_% > N — 1. We have ifﬂl@ < i. [ |

Lemma 3.4 For 0 < ¢ < %, define
1 £
gy (&) = —/ (sint)2N—1dt.
Px Jo
Then

gn(€) < %\/N_vr (sin £)2N-1, (3.1.11)

Proof: Note that for 0 < £ < 5
¢ T
0
with 0 < sin€ < 1. By Lemma 3.3, -p—l; < y/Z. Therefore

gN(E) < %\/? (Sin§)2N_1 = %\/]W (Sin{)zN_l, ]
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Lemma 3.5 For N > 10 andr <n<w+ /4,

HHN (2:) 27
Jj=2
Proof: By (3.1.11), for0<¢< %
1
gy (&) < —2-\/N7r (sing)2V—1,
But for 0 < € < 57/16 and N > 10, we have
1 1 st\*"1 1
gN(f) < §VN7T (sinf)zN_l < §VN’/T (smig) < Z

On the other hand recall that

1—t>e2 for 0<t<

Jklr—l

Hence,
Hy(€) =1-95(8) 2 exp(—29y(€)) 2 exp (—\/JW (sin§)2N“1) .

One can calculate that, for N > 10 and 7 < n<mw+w/4,

e (2) 2 o (- S (n ) ) 2
0= (o (§)) 2 (o (5)
uhere
Rw=3 (VE- e (3112)

k=0

- Consequently, @, is an even function of €.
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Proof: Since b, satisfies the sum rules of order 2N, then it follows from (3.1.4) that

7,0 = (255) e

for some finitely supported sequence p. Moreover, by (3.1.7), H, (£) is nonnegative.

Hence
i€ 2N . ig |2N )
7,0 = (F55) ot = [FEE ey
1+e6\Y f14+e€\Y _ ; e +e €4 2\Y .
- (757) (5 = (S5 ey

2cosé + 2\ _ i N o
= (2252) 191 = (w0 () e
On the other hand
i = IB(e¥)| = [p(e )| = c-e.
J J

Thus, ¢; = c_;. It follows that |5(e¥)| is a polynomial in cos¢, or, equivalently, in
sin?(¢/2). Then there exists a polynomial P, such that P, (sin2(§ /2)) = |p(e¥)].

Therefore,
H, (¢ = (cos2 <-§>)NPN (sin2 (g)) . (3.1.13)
Moreover, since b, is interpolatory, which is equivalent to (3.1.3)
Hy(€) + Hy(6+m) =1.
With y = cos?(£/2) and (3.1.13), the above equation becomes
yYVP,(1-y)+(1-y)¥P,(x) =1 Vye [0, 1]. (3.1.14)
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We now solve the equation (3.1.14) for P,. Note that (see p168, [5]) there exist two

unique polynomials ¢; and ¢» of degree less than N such that
A -9 (y) + vV a(y) =1. (3.1.15)
To find ¢; and g, substituting 1 — y for y iﬁ (3.1.15) lead to
-9l -y)+y a1l -y)=1.

The uniqueness of ¢; and g, implies g2(y) = ¢, (1 — y). It follows that P,(y) = a(y)

is a solution of (3.1.14). From (3.1.15) we obtain
a@) =0 -y [1-y"el-y).

Note that

(=N)(=N —
2

(1—9) N =14 (=) (=) + Dyt

It follows that

N-1
a@) =) (N+,f - 1)y’°+0(yN).

k=0

But ¢; is a polynomial of degree less than N. Hence O(y") = 0. Therefore we obtain

Py(v) =a(y) = NZ_I (N+: B 1)y’°. |

k=0
Theorem 3.7 For each positive integer N, Py 1s integrable and ¢, is a fundamental

function.
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Proof: For every positive integer n € Z.,, define

hu©) =T 2, (£) xerrera®:

J=1

Since 0 < H,(§) < 1 for all £ € R, we observe that fn(.f) >0forallé € R We

demonstrate that

1 - g
o / fa()efdE=6(j) Vjiez, neZ, (3.1.16)
R
or equivalent,
an(f +2km) =1, ae. £€R, neZ,. (3.1.17)
kEZ

It is evident that (3.1.17) holds true for n = 0 since fo(¢) = X{[~m,x}- Assume (3.1.17)

holds true for n. We observe that

fua(6) = H, (g) fa (g) |

Therefore, by induction hypothesis,
an+1 £+ 2km) = (é Z ( +2k7r)
2
keZ
ot (55) S (557 o)

keZ

- (§) o (552)-

where we have used (3.1.3) in the last equality. Since ¢, (€) < fn(€) for all [¢] < 27,

we have

2% "7
[ ovodes [ fuerae= / fe)de=1 VneN

-2nq —2nq
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Note that @, (£) > 0 for all §{ € R. Therefore, by Fatou’s Lemma,
i
fov@ae<im [ o<
R =00 J_ong

which implies that @, is integrable. On the other hand, in the light of (3.1.13),
we observe that H,(§) > O for all ¢ € (—';'r, 7). Since H, (£) is a trigonometric
polynomial and H,(0) =1 and ¢, (§) = 5o1 Hy (£/27), ¢, must be continuous and
@y (§) > 0 for all £ € [—m, . The reason lies in that if @,, (&) = 0 for some &, then
H, (&/2%) = 0 for some j € N. Contradict H, (&) > 0 for all £ € (—m, «). Since

@n(0) = 1, there exists a positive constant ¢ such that ¢, (€) > ¢, for all &€ € [—m, .

Observe that

. en(8)/on(E/2")  if € € [-2mm, 27,
fa(€) =

0 if £ e R\ [-27m, 2n7].

Therefore, we have

fal®)]<c'@,(6) VEeR

It then follows from the Lebesgue dominated convergence theorem that
onli) = 5= [ on©eHde = L 1m [ Fu(e)etag = o(i), jez.
N 27 R N 27 noeo R ™ ’
Hence, ¢, is a fundamental function. W

Finally, it is easily seen that

onllo < 1.

52



Indeed, noting that ¢, is nonnegative, we have
lont@)] = 5 | [ 2n @] < 5 [100©lde = o [ 60 (@02 =0, (0) =1
N 2 R N - 27 R N 2 R N N

More basic properties about ¢, H, and p, will be given individually when they

are needed in the rest of the chapter.

The behaviour of the DD-functions ¢, has drawn attention of several mathe-
maticians. Following Meyer’s suggestion, Daubechies noticed that there is a similarity
between the techniques used in [4], and those in [12]. Micchelli [28] observed a connec-
tion between the DD-functions and the Daubechies wavelets [5]. In [4], Daubechies
constructed a family of orthogonal refinable functions g,, N = 2,3, ... from which or-

thogonal wavelets were derived. Each g, is the normalized solution to the refinement

equation

Iy = Zazv(j)gN(Q )

Jjez
where the mask a, is supported on [0, 2N —1], > jez @y (J) = 2, and a,, satisfies the

sum rules of order N. Moreover, {g,(- —j) : j € Z} forms an orthonormal sequence.

Let f, be the autocorrelation of g,,, that is,

fulz) = /R Iv(T+Y)gy(¥)dy, zTER

Then f is the normalized solution to the refinement equation

v = ZCN(j)fN(z )

JEZ
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Figure 3.1: Graphs of ¢, and %:—“2 over [—3, 3]

where

cv(@) =D ay(+k)a,(k)/2, jez.
keZ

Hence, c, is supported on [1 — 2N, 2N — 1]. Note that a, satisfies the sum rules of

order N. Thus, ¢, satisfies the sum rules of order 2V. Furthermore, since {g, (-—j) :

J € Z} forms an orthonormal sequence, f, is fundamental:

MO /Rg,v (G+y)gn(w)dy =6(3), jez

By Theorem 3.1, ¢,, and b, must be the same. This shows that the DD-function On
is the autocorrelation of the Daubechies orthogonal refinable function g,. This fact

was observed by Micchelli [28].

For us, the DD-functions are also good candidates (see Figure 3.1) to be seen
- whether the techniques and results established in Chapter 2 can be extended to a
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new field or not. We believe that our study could partially answer these questions.
Similar to what we concerned in Chapter 2, we concentrate ourselves to the following
three subjects. First, does the DD-function converges (uniformly) to the sinc-function
as N — oo 7 Second, does ¢, possesses the same sign-regularity property as sinc-

function does? Finally, is ¢, (or its absolute value) bounded above by the sinc-

function?
The answer to the second question is a surprisingly no.

Example 1: Consider ¢, associated with the mask { — &, 0, &, 1, &, 0, -&}.

Let us compute the values of ¢,(-/27), 7 = 1,2,3. By (3.1.2) we have
1 9 9
P2(2) = —7592(22 — 3) + 7592(22 — 1) + ¢2(23) + TgP2(2e+1) - 902(2$ +3).

Note that the DD-functions ¢, are fundamental. Hence we may apply the above

refinement equation iterately to find those ¢(n/27), n € Z, j = 1,2, 3: First

o2 (5) = 35020 = 3) + o= 1) + 02(n) + aln + 1) = mxaln+3).

Thus ¢a(£1/2) = 9/16 and @,(+3/2) = —1/16. Similarly

wz(g) =—11§<P2 (n—G) +i%<,02 (n—%—2>+<p2 (g)+

and




T | p2(z) | p2(z+1) | g2z +2)
0 1 0 0
1| 2 _ 58 9
8 256 1024 2048
2 27 N 1
8 32 128 256
3 1459 _ 207 9
8 2048 4096 4096
4 2 ~L

8 16 16 0
5 837 207 1

8 2048 4096 40986
6| 3 9 0
8 128 256

7 117 33 0
8 1024 2048

8

g 0 0 0

Table 3.1: The values of ¢, at 2

One may observe that ,(21/8) is negative at which the value of the sinc-function is

positive, and also @, has roots at non-integer points (see Table 3.1).
Example 2: Consider o3 with mask {3%,0,—-2%,0,£,0,1,0,%,0, —2.0, 55 }.

3 25 75
== — L2 -1 2
ws(z) T p3(2z — 5) — 356 w32z — 3) + 55 w3(2z — 1) + p3(2z) +

75 25 3
158 w32z + 1) — 556 w3(2z + 3) + — 558 w3(2z + 5).
Let us calculate the values of p3(-/27), j =1, 2.
25 75
903( ) <P3( —5)—ﬁ p3(n — 3)+1—2-8-<Pa(n—1)+903(n)+

75 25 3
138 pa(n+1) — 256 v3(n+3) + — 556 3(n + 5)
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z | ¢3(z) | @s(z+1) | @a(z+2) | ps(z -+ 3)
0 1 0 0 0
1| 57075 _ 1491 1075 _ 15
4 65536 65536 65536 65536
2| 1 _25 3 0
1 128 356 756

3 17175 3375 375 9

4| 653 55536 #5535 85536
28 B 0 0 0

Table 3.2).

(
o

sign-regularity property

Table 3.2: The values of o3 at 1

n—10
2

n+2

—ﬁ%

75

= (")

25

)

(n

956 3

57

T 128 ¥3

n— 2
2

+6 + 3 n+ 10
2 256 7°\ " 2
Thus ¢3(1/2) = 75/128, ¢3(3/2) = —25/256 and p3(5/2) = 3/256. All the (nonzero)

values of 3(-/4) are listed on Table 3.2. Observe that 3(15/4) > 0 at which the

value of the sinc-function is negative, and also 3 has roots at non-integer points (see

Remark. In fact, it was proved that Yy, N € N, have infinitely many roots at

non-integer points ([15], Theorem 14). Therefore, the DD-functions do not possess

‘The structure of this chapter is as follows. In §2, we will show that ., N € N,
converges uniformly to the sinc-function as N goes to infinity. We then show, in

+ §3, that the curves of %, are contained inside the curve of the sinc-function for

) e (3)-



—1 <z < 1 which is the property that we have known for 3,, in Chapter 2, that is,

0< oy (z) < 202 e (-1, 0)U (0, 1).
Finally, in §4, we prove
o (2)] < sin(mrz) VecR
N _ T I

3.2 A limit property of the DD-functions

We prove that ¢, (z), N € N, converges uniformly to the sinc-function as N — oo in

this section.

Recall that in the case of the fundamental cardinal splines ,, there are two

approaches to show this uniformly convergent property. The first one is given in [32],

in which the so-called eigenspline derived from the central cardinal B-splines ¢,, plays

an essential role. The second approach is to consider the Fourier transform of ;.

By showing
.
1 if |¢] < ,
Am Y@ =91 if|g =,
0 if |&] > .

\

The desired result then follows from the dominated convergence theorem.

For the

DD-functions ¢, we adopt the second approach because less information is obtained

-from ¢, themselves. We now show
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Theorem 3.8 Forz € R,

sin(rz) uniformly.

lim ¢y (z) =
N—=oo
For this purpose, we need the following lemma:

Lemma 3.9 For0<é<m

lim @, (€) = 1.
N—oo

Proof: We first prove the theorem by assumption of Lemma 3.7. Note that

sin(rz) _ 1 / " e~ e

T 2 —
and
en(@) = 5= [ u(e e
Hence
. . _
sm;;r:r) —py(z)] < o (/_Wl(l - ¢N(§))|d§+4l>7r I‘ﬁn(f)ldf) _

Moreover, since 0 < ¢, (¢) < 1 and %fk Py ()dE = ¢, (0) = 1, we have

T -7

Sin(ﬂ'.’r) _ (PN(-'E)‘ < %/_:(1 _¢N(£))d§+ 1— 5%7; " @N(g)df

1 w
= ; (1 — PN (5))‘15
-
2 w
=2 ["a-eu@)ee
0
The fact that ¢, () is an even function of £ is used in the last equality above. Since
1-¢,(8) <1and@y(€) —1for & € (0,7) as N — oo by the lemma , therefore by
- the dominated convergence theorem, ¢, (z) — %‘Q uniformly forz €¢ R. B
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Proof of lemma 8.9 By (3.1.6) and (3.1.7)

0@ =18, (§), ¢en

j=1
with
Hy(€) =1-gy(§).
In light of (3.1.11), for sufficiently large N,

H, (&) =1— gy(£) > exp(—2g,(£)) > exp (—\/]—V—ﬂ' (sinf)zN“l) )

It follows that
0 '5 2N-1
1> @, >exp <-—\/N7r§: (sini) ) .

Note that for 0 < £ < 7w and N > 2,

Therefore

12> ¢y(€) > exp (—\/1_\/'7 ((sing) o +2 (g) 2N_1>> -1

as N —oc0. R

3.3 ThecaselO0<z <1

We will show in this section that the curves of ¢, are contained in the curve of the
-sinc-function for 0 < £ < 1 and NV > 42. More precisely, we will show:
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Theorem 3.10 For z € (0, 1) and N > 42, the following inequalities hold:

sin(7z) sin(7rz)
0< p— oy (x) < p——

The proof of Theorem 3.10 is divided in the following five steps:

Step 1: An expression of I = M on(T) .

Motivated by what we did in Chapter 2, we first derive a series-expression of the

Fourier transform of I. Since ¢, (j) = &;, j € Z, then by (3.1.1)

D @ (€ + 2km) = 1.

keZ
Consequently,
sin(wz) 1 / " - / »
—_ = d€ = e,
— B §=5- Z € + 2km)e~ " de

kez

Moreover, since ¢, is real and symmetric, we have

1 ™ ‘
oy (z) = Pn (€)e~%2dg = @ (€ + 2k) e—iz(&+2k) de.
), w2/

It follows from (3.3.1) and (3.3.2) that

sin(wz)

I = - - (PN (23)
@, (€ + 2% ~iz§ __ —iz(£+2kT) d¢
T or IceZZ / ™ (e ° )
=7 Z/ Dy (€ + 2km) [cos(a:f) — cos(z(§ + 21”))]
kez

== Z/ @y (€ + 2km)sin(knz)sin (z(€ + k) de.

keZ
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One might note that (3.3.3) is quite similar to what we obtained for the fundamental

cardinal splines ¥, (see (2.2.3) of §2.2). For convenience we write

I = Smgx) ~ o, (z) = %sin('/r:v) (L +IF + Iy + If +I3),
where
I = / By (27 — E)sin ((r — £))d, (3.3.4)
0
corresponding to k = —1, is the term that plays the same role as I; in Chapter 2 and
.. sin k7r:z:) .
I = Z “n(ra) N(f + 2km)sin (z(€ + kn))de, (3.3.5)
—_— sin(kwz) [”
I = 1:4;2 m)— ; @ (€ + 2km)sin(z (€ + km))dg,
+ . S sin( lc7rz:) _
If = ; () N(§+2k7r)s1n(:z:(§ + k) dE, (3.3.6)
and

I = Z sm(’m) Py (€ + 2km)sin (o (£ + krr))dE.

~ sin(rz)
Step 2: A lower bound for I.

Similarly to what we did in Chapter 2, we intend to demonstrate that I; is what
contributes the most to the bi-infinite series (3.3.3). For this purpose, we need a lower
bound for I; and upper bounds for |I}| and |I; | such that the lower bound for I, is

greater than the sum of the upper bounds for || and I, €= 2,3.
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We first estimate a lower bound for I; where
w T
b= [ gy (em — €)sin(a(r — 6)de = [ outm + Osin(ze)ae.
0
Since 0 <z <1and 0 <{ <, sin(z€) > 0. Moreover,
m /8
L= [ guln+Osin(ae)de > [ eulr+ sineeras
But it follows from (3.1.6) and (3.1.7) that
1 n 7
al — . ! e A
Py (m) = ; 57 tn (2:) gHN (2k)

%} j=1 00
=3 (~z) = () I (3) 1T 7 (3),

N

Consequently, ¢/, (7) < 0 for 0 < < 27 and @,, is decreasing on the interval [0, 27].

Hence for 0 < ¢ < /8, @, (m+&) > ¢,(97/8), so

L>¢, (%”) / * sin(z¢)de. (3.3.7)
0

We now estimate a lower bound for @, (97/8). By (3.1.6) and (3.1.7) again,
. (97 AR O
JORAONLACH

where

or 1 97 /16 ) aN-1
HN (E) =1 - E\/O‘ (smt) dt.

We next examine H, (97/16) and [132, H,, (97/27+%) respectively. Observe that

H,(m) =0. Thus

o 1 97/16 1 7w /16
H (—-) =1- —/ sint)?N-1ds = ——/ sint)2V-1d¢.
N 16 pN 0 ( ) pN 0 ( )
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Therefore, a lower bound for H,, (97/16) is given by

9 1 /7"/16 C NaN-1 T ( . (137r)>'”‘"1
H [—]>— sint)}*" ~'dt > sin | — . 3.3.8
N (16) T Pw 137r/32( ) = 32p, 32 ( )

A lower bound for I; will be obtained once we give a lower bound for [[52, H, (97/27%3)

and this is where Lemma 3.5 comes to play. It follows from Lemma 3.5 and (3.3.8)

that a lower bound for ¢, (97/8) is given by

or ar\ 2 or 37 137\ \ 2V !
. (97 _ 9 ) S . (13 _
oo (F) =2 (55) 12 (%) 2 sy (o= (55))

Finally, for 0 < z < 1,

s 1 7r/82.7ra:2227rz2_:1c
/0 s1n(x§)d§=—;cos(x§)lo =;(sm TG—)) 2;(;%) =

Therefore, in light of (3.3.7), a lower bound for I is given as

3rx 137\ \ V1
> i _— . 3.
Il'"4096pN <sm(32 )) (3.3.9)

Step 8: An upper bound for |I3| and |I;].

We now investigate |I,7| and |I;|, £ = 2,3. The property of exponential decay
of ¢y has been discussed in many papers. See [5], [3], and [16], for example. With
the aid of Proposition 3.4 in §3.1, the following lemma. describes this property more

precisely and it plays a crucial role in the rest of our estimates.

Lemma 3.11 For 2/7 <n < 2/*x, JeN,

o <5 (2(2))
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Proof: Since H,(§) <1lforall¢éeR

ou =10 () =112 (B) T 2 (2) < T (2).

j=J+2 Jj=1

In light of (3.1.13), we obtain

J+2

2N J+2
Gy () < <H cos (%)) I1 2, (si? (-2’1])) . (3.3.10)
Jj=2 Jj=2
2N
We now estimate ( ::22 cos (n/2j)) and ]_[J+2P (sin? (7/27)) respectively.

First observe that

J+2 .
T] cos (L) = 5 nn/2)
. _ -
i 27 27+1sin(n/27+2)
and if 27 < n < 27*'w, 7/4 < 1/27*2 < 1/2, then sin(n/27+?) > 1/+/2. Hence

J+2 n 1 \/5

11 lcos ' < : <
e (2]) 2J+1 ISln (T]/2J+2), 2J+1

and

J+2 2N N
] 1
We now estimate HJ+2P (sin? (n/27)). We first show (see (3], [5]) that for
y = sin® (7/2),

(3.3.12)

=] w

P.(y)<3¥1  if 0<
and
By(s-m)B <3 i doycn (3.3.13)
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In fact, it follows from (3.1.12) that P, (y) is an increasing function of y. Then for

0<y<1/2 by (3.1.14)
yNPN(I - y) + (1 - y)NPN(y) =1,

we have
P <P, (3) =2
For 1/2 < y < 1, we claim that

Pu(y) < (4y)VL.

Indeed, if 1/2 <y < 1, then 1 < 2y. Hence

Py(y) = I:g: (N +: - l)y" = g (N +,f - 1)2“’°(2y)’°
< (29)" ;{;: (" e = e, (3) =

In particular, if 0 < y < 3/4, then P, (y) < 3¥-1. So (3.3.12) is valid.

For 3/4 < y < 1, let us consider P, (4y(1 — ¥)) P, (v). If 0 < 4y(1 — y) < 1/2,
Py(4y(1 — )Py (y) < 2V71P, (y) < 2V~ (dy) V1 = (8y)V-1 < 32V-1),

If1/2 < 4y(1 — y) < 1, since P, (y) < (4y)V-1,

Py (4y(1 - 9)) Py (v) < [4(4y(1 — )]V P, ()
< [4(4y(1 - )]V )V

= [649%(1 — )] .
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It is evident that the function y?(1 — y) = y? — y° attains its maximum at y = 3/4

on the interval [3/4, 1]. Therefore [64y3(1 — y)]N_1 < 3%N-1) and (3.3.13) is valid.
We now estimate H::f P, (sin? (n/27)). First observe that for y = sin?(7/2),
sin?(/29%) = 4y(1 ~ ).
It follows from (3.3.12) and (3.3.13) that if sin?(n/27) < 3/4, then
P, (sin?(n/27)) < 8V-1.
If sin®(n/27) > 3/4, then

P, (sin®*(n/2'~")) P, (sin?(n/2%)) < 32V,

Consequently
J+2 J+2-2
[T 7 (s (3)) < @ (1T 2 (2))) = ecna
j=2 j=2

We now play the same trick for /27~¢ and keep doing so until we can’t go on and at
that moment no term left if J is odd and only the first term P, (sin?(n/22)) left if J

is even. Therefore we obtain

EPN (sin2 (2%)) < (3N-1)J021;21 P, (1).

But P, (y) <4V~ for 0 < y < 1. Therefore

J4-2

[L P (sin* (35)) < (¢-3)™ (3314
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Substituting (3.3.11) and (3.3.14) to (3.3.10), we obtain

N-1
. 1 3\’
Ow () < o (2 (Z) ) for 27r <p<2™*lr. W

Remark: It is evident that, in order to apply this lemma, we require 2(3/4) < 1,
which is the case for J > 3. But recall that (3.3.9) provides a lower bound for I;
with exponential decay (sin(137r/32))2N_1. Observe that sin(137/32) ~ 0.957 and
on the other hand /2(3/4)%? ~ 0.919 which is very close to sin(137/32) . In other
words, the value of J has to be enlarged for better exponential decay of ¢,. Our
computations suggest that J should start from 5 and this is the reason that I . and
I;, £=2,3, are introduced. This lemma serves for estimate of upper bounds for I}

and I3 .

We now estimate upper bounds for I3 and I;". To apply the lemma, we require

2771 <k <27 ~1, J > 5. Consequently, by (3.3.6)

o 27-1

sin(krz)| ™ 1 3\ 7\ V! .
155 5 e (0(2)) et o
J o
—gn-1yn 1 N\ = Jsin(kra)| [T
St () e L

Note that [sin(k7z)| < k|sin(nz)|. Moreover, if
277'<k<2'-1 and 0<€<,
then € + kn < 277. Hence

|sin(z(& + kr))| < z(€ + k) < 227,
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SO

2J 27-1
sin(knz) / 7 2
k d¢ < x2 k.
pa ~1 Sin(rz) |sin(z (¢ + m))|d¢ < 2277 k=2ZJ_1
But
&, @Y @I —1-2ml ) giHgi1
Yo ok= < = 92/-1,
2 2
k=27-1
Therefore,

J
_ 3\ V1 _
|IF| < 2N-1 z ST ((Z) ) 799 29271

J=5

- (0"

J
Observe that the first term of the series > 5, (2 (3/4)" "1) is 32(3/4)°™1, and

its common ratio 2 (3/4)"~! < 1/5 for N > 10. Hence

o 3\ N-1 J 33 5(V-1)
> (2 (Z) <40 (Z) for N > 10.

J=5

Therefore, an upper bound for |I] is given by

17| < (%221*’—1) <40 (Z_)S(N—n)
= 10zn? (2 G) 5) N-1

10z 72 31 5/ 2N
V2[4 (‘/5 (Z) ) '

Similarly, replacing k& by —¢, we have

5| = k:z-z % Oﬂ Py (& + 2km)sin(z(€ + k))dE
< Z Sslﬁl(]::;) / Py (26m — £)|sin (z(r — €))|dé

< (7))
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Therefore

+ - 20z 352\ "
113"+ | I5] < W (\/5 (Z) ) . (3.3.15)

Step 4: An upper bound for [I}| and |I;|.

We next estimate |I37| and |15 |.

Lemma 3.12 For J =1,2,3,4, i.e, 27 < 5 < 327,
2N-1
Bu(m < 2T 43 :
8 9
Proof: We first consider the case J = 1, i.e., 2m < 17 < 4w. Note that
= 7 n n
Pu(m) = [, (3¢) <2 (3) 2 ()
Moreover, recalling that p—:— Jy (sint)2N-1dt = 1, we have
1 /4
H, (g) =1- ;—/ (sint)?N 14t
~ Jo
1 [T 1 [/t
=1 / (sint)2V-1gz — L / (sint)2V~1d
Px Jo P~ Jo
1 n
=-— [ (sint)*V'dt

Px n/4

1 [/t 2N-1
= p_ (sin (t -+ g)) dt.
N JO

Since 0 < ¢t < w—n/4and 27 < 7 < 4m, /2 < n/4 < t +n/4 < w. Therefore

sin(t¢ + n/4) < sin(n/4). Then

H, (g) < p—tv—/ow—n/‘} (sin (g))qu dt = p—i—/oc(sin('fr )
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where 17 = 4(w — ¢). Note that for 2m < 1 < 47, 0 < { < 7/2. Therefore

H, (g) < ;f: GinO)?M! vo<(< g

Similarly
Ty _ 12 2N-1
Hy, ( ) =1 o /0 (sint)*"~dt

2
1 ™ . 1 2(w—¢)
=— / (sint)®*N-ldt — — / (sint)®V~-1dt
Py Jo Py Jo

1 2(r—()
== / (sint)*M1dt
N ™
1 T—2¢

oo
If 0<¢<m/4, we have

2N-1
ot <, (), () < () < = ()" < T ()

N

(sint)?N—1dt.

If /4 <{<n/2, then 0 <7 —2¢ < 7/2. Hence

oun) < Hy (3) Hy (3) < (% /0 ﬂ—x(sint)m‘ldt) (%C(sin()ﬂv_l)

< %(w — 2¢) ¢ (sin2¢ sin¢)? 7,

Observe that

w2 4\/§
-— 2 = e— i 1 _ .
AZEEp T TR C= g end e 2 sin = 75

Moreover, by Lemma 3.3 in §3.1, 1/p, < 1/N/x. Thus
Nm (4\/5) vt

PN < 10 A

Similarly, for J = 2, 3,4, by choosing

)

@n(n) < Hy, (g) Hy (
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@u(n) < Hy (3) Hy (%)

and

bu(m) < Hy (75) Hy (o)

respectively, one can easily verify that

2N -1
Pn(m) < % (4—;@)

using the same procedure we did for J =1. W

We now estimate || and |I;|. It follows from (3.3.5) and the lemma that

16
1<)

fow @ (€ + 2km)|sin(z(€ + km))|dE
k=1

2N-1 14
4

< Nm ( \/5—3) ka(ﬂ' + km)m
k=1

g
_ 163227°N (4\/5) e

sin(k7z)
sin(7z)

9

8 9

Similarly, replacing k& by —£, we have

16 | .
_ sin(énz)| [™ .
< —_ — i —
;] < £§=2: Sin(rz) /o Pu (28m — &)|sin(z(br — £))|dE
2N-1
N7 (43 2
< 2 2Ye
<3 < 3 ) ez=2 Lx(lm)m
_ 14950m°N (4v3\ 7
= 5 5 .
Therefore an upper bound for |I;f| + |I5]| is given by
2N—1
3127z N
1+ 1] < 2227 (4f) | (33.16)
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Step 5: Proof of theorem 8.10

We first show
_ sin(mz)
T nz

I: () > 0.

We are now in a position to demonstrate that I; is the main term in the bi-infinite
series (3.3.3). Comparing with (3.3.9), (3.3.15) and (3.3.16), one can easily verify

that for N> 42 and 0 <z < 1,

9 _ 1 -
mlj_ > II;I + |I2 ' and EII > II;-I + |I3 |

Consequently, we obtain that 7 > 0 for N > 42 and 0 < z < 1, i.e,
oy (z) < sin(wz) /7.

We next show, for N > 30 and 0 < z < 1, @, (z) > 0, or, equivalently,

sin(7x)
T

I<

To this end, it suffices to show

_ _ 1
L+ I+ + B+ ] < 5
For this purpose, instead of considering a lower bound for I;, we need an upper bound

for I;. By cutting the interval [0, 7] of the integration of (3.3.4) to two pieces, we

obtain

I]_ = ‘/0‘ QBN (ﬂ' -+ E)sm(a:f)df = I11 -+ I12
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where

b d

Iy = / " By (1 + £)sin(z€)de
0
and

Ipp = / " G ( + E)sin(ze) de

[A1EY

We first estimate I;;. Note that
ovm <H, (3) =75
and @, (n) is a decreasing function of 5 for 0 < 7 < 27 . Then an upper bound for
I1; is given by
Iy < 6, (m) /0 * sinat)de < ~5eeos@)| =2 (sin (22))" < X (sin (T)),

ie.

I; < i (3.3.17)

4z

We now investigate

Lo = [ @+ Osin(z)d.

cold

Observe that

fe <0, () [Tontege <, (5) [ sineerce.
H, (%73) =1~ ;1;/0T(sint)w'1dt

1 [% ”
= — / (sinz)?V-1dt
,UN 0

<L (®)"E

N

Moreover
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1 /N
But _pN < T and
T 27

/rw sin(z§)d¢ = —-:;cos(xf)l:/s = g-sin (-3—) sin (T) <

V3

’

therefore

s (Y @) L (T @ @)™ o

From (3.3.17) and (3.3.18), an upper bound for I is given by, for N > 22,

1(1 Nm T\ 2N-1 1
f— —_— —_ — 1 . < . —. .3,
I I11+I12<z(4+ 3 (51n(3)) )_ozsx (3.3.19)

On the other hand by (3.3.15)

_ 2072 3\ %2\ '
lfél_l‘*‘lfslﬁm(\/i(Z) ) .

But 0 < £ < 1, then

_ 2072 3\ %2\ "
II;I+II315W<\/§(Z) ) .

Similarly, from (3.3.16)

I+ 5] <

312773V (43"
8z 9 ’

One can calculate that for N > 30,

. s/2\ 2V-1 s 2N-1
7_%5 (\/5 (g) ) + 312? N (4;/5) <0.24.  (3.3.20)

Therefore, it follows from (3.3.19) and (3.3.20) that

1

LA+ 1+ + 1] < o
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Consequently, we proved I < s’—’;(:—”) Therefore we conclude that for N > 42 and

0<z<l,
sin(mz) sin(nz)
O T Ten@ <=

and the proof of Theorem 3.10 is complete. u

3.4 Thecasel<z<2N —1

As we pointed out before, the DD-functions @, do not possess sign-regularity prop-
erty. In other words, the graphs of ¢, usually are not contained inside the graph of

the sinc-function. Therefore, instead of carrying on this mission, we prove

Theorem 3.13 For N > 40 andz € R

sin(7z)

lox (7)] < —

To this end, it suffices to show that for N > 40 and z € (j, 7+1),5 €N,

(=1)iI>0 (3.4.1)

and
; i ( sin(7z)

177 —1)7 Sl 4.2

(-7 < 21y (T222) (342
with

i 2
I="2 - gy (a) = —sin(ra) (b + I + I + I +17)
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where I}, I} and I}, £ = 2,3, are given in §3.3.

First we recall a result which we proved for the fundamental cardinal spline 9., ()
(see §2.4, Lemma 2.3) and it is easily seen that this result is valid for the DD-functions

wy (z) as well.

Lemma 3.14 Forz > 1,

I, = ‘/01r Py (27 — €) sin(z(m — &))d¢

s
2
.

Proof of theorem 3.13: We first show (3.4.1). For the case 1 < z < 8, from the

(cﬁN(27r —& -, (27r —t+ g)) sin(z(r — £))d¢ > 0. W

LIL]

lemma above

L > ﬁr ((,5”(27r —-g, (27r —E+ g)) sin(z(r — £))d€ > 0.

.o

On the other hand, by the mean value theorem, for /8 <€&<Lm,
. R vis . T
u(@m =)~y (2m—€+2) ==, ()5
where 7 depends on ¢ and satisfies 277 — £ < 7 < 27 — €+ /8. Hence
™ . . T .
I, > /77r/8 (goN(27r — &) — &y (27r —-&+ §)) sin(z(r — £))d€

] (3.4.3)
-3/ o (=l ()sin(a(r — €)) e

But recall that

700 =3 (g ) s () T () 1T 1 (2):

=1 k= k=
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Thus

=1 N7 P N k=j+1 (3.4.4)
1 an-1 (7 n
= (2pN> Sin (2) EHN (2’=)
Since
27r—§<77<27r—§+-78£ and ,—7825537?,

then 7 < n < 7+ m/4. It follows from Lemma 3.5 in § 3.1 that, for N > 10,
o
7y 3
I1#, (5) 2 7
Hence

3 5m\)2V? 5T
- 2 —|sin{ — —_ 4.5
oz g (sn(F)) T, me<n< (34)

Moreover, for 1 <z < 8

A;rsin(m(w —§))dé = 2sin';(%) > 2sin (%:3 z (%) > sini%). (3.4.6)

Substituting (3.4.5) and (3.4.6) to (3.4.3), we obtain a lower bound for I; in the case

l<z<8
3wsin (Z) 5\ 2V-1
I > ——2182 (gin [ . 4.7
220 e (5) "

The estimate for I}, £ = 2,3, is much easier than for the case 0 < z < 1.

Instead of using |sin(z(£ + km))| < z(€ + k) < 27+7, we use |sin(z(€ + km))| < 1.
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Consequently, by (3.3.15) and Lemma 3.11 in §3.3

+ o -l sin(knz) 1 3\ 7\ .
5] < ; Z Sn(z) /0 55T | 2 (Z) |sin(z(¢ + km))|dg
=5 k=27-1

Nt 1 3\ N-1 J 2l
<2 7"; 927+1 4 Z k.

k=2J—1

Recall that 2.5}, k < 22/-1. Thus,

J J
1 3\ V! oN-1p 2 [ r3\N-1
N-1 2J-1 __ —-
|| <2 "TZ 22741 ((Z) ) 2 =7 Jz; ((4)

J=5
J
It is easy to verify that for N > 4, 37 . ((3/4)”‘1) < 2(3/4)*"™~Y, therefore an

upper bound for |I3| is given by

155 () - (5()")

and the same result holds for |I;|. Therefore

. ) - /3 3\ 572 2N-1
5+ ] < W ( 2 (Z) ) . (3.4.8)

Similarly, by (3.3.5) and Lemma 3.12 in §3.3

16
<y

k=1

w3\ 13672V 43\
<—8'(9) Z’“— : (9) ’

sin(knz)
sin(7z)

/‘w P (€ + 2km)|sin(z(€ + km))|dé

and
2N-1
- 4v3 IZ“ ,_ 135m2N 43\’
2 9 T8 9
£=2
Therefore
2 2N-1
1|+ |17 ] < 271; i (4;/5) . (3.4.9)
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It follows from (3.4.7), (3.4.8) and (3.4.9) that, for N>35and 1< z < 8,

L > |5 + I + | I + | I5 ).

We next consider the case 8 < z < 2NV —1. Again, by Lemma 3.14 and the mean

value theorem,
L= /0 By (2 — E)sin (a(x — ) de

> /_ (@n(2r =€) = 9y (27— &+ 7)) sin(a(r — £))de > 0

SR

[ @ wsin(atr - &)de.

ul

By (3.4.4)

-, () = (5—;7) sin?1 (1) E{zHN (5)

for 2 — & < < 2m — €+ Z. Observe that in this case, since r—f<n<2mr—-¢+Z

and 7 — £ <& <m, we have 7 <7 <+ Z=. Hence

T_<Q<E+E
D) T

[\

It follows that, for z > 8

an (3) = o (2) > 0 (3).

On the other hand, note that for v < n < 7+ %’1 and z > 8, m < n < w+ . Therefore
for N > 10, by Lemma 3.5 in §3.1 again,
o
7y, 3
kI;IzHN () > 1
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Hence we have

-0z () (DT (B) 2 52 (e ()7 Gamo

N k=2

Finally [7 . sin(z(m — £))d¢ = 2. In the light of (3.4.10), we obtain a lower bound

4

for I) in the case 8 < z < 2N — 1:

L > 4—;7;— (cos (g))ZN_I > 41(.‘2]\/':3—*”1)% (cos (—g))w_l. (3.4.11)

N

Comparing (3.4.9), (3.4.8) and (3.4.11), one can calculate that for 8 < z < 2N — 1

and N > 40

. AN 2N-1 2 /3 2N—1 - 5/2\ 2N-1
m(cw ) >3 N(4g3) AT <‘/5 (Z) ) -

Consequently, we obtain (3.4.1) for 1 < z < 2N — 1 and N > 40.

We now prove (3.4.2). For
2, -
I= ;sm('/rx)(fl + I+ I + I+ 1),
it suffices to show (remember that I; is positive)
1
L+ + I+ | I + I < = (3.4.12)
As was explained before, we only need to give an upper bound for I;. Write
™
b= [ e - oin(atr - £))ae
w
= [ our + Osinag)ag

= (/f +/:) Pp (T + €)sin(z€)dE

=In+ s
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where

fur= [yt sin(ag)ie
and
Iy = /: Py (m+ &)sin(z€) dE.
It is easily seen that Corollary 2.9 in §2.5 is valid for Yy, 1.6, I1 > 0 and [;5 < 0.

Therefore we have

n

0< Il < I]_l = /(;z @N(W-f-{)sm(:vf)df

Rewrite

I = /0; -;: sin(z€)dE — /0; (% — @p(m +€)> sin(z§)d§.

Hence

boo

I < ‘/0; % sin(z€)d§ — /0; (% — Pplm+ f)) sin(z€)dE. (3.4.13)

Observe that the first integral in (3.4.13) is 2. Moreover, since @, (7) < % and ¢, (n)

is a decreasing function on [0, 2],

/Of (.1_ — Pn(m+ 6)) sin(z£)d§ > /" (:21- — @y (m+ f)) sin(z£)d¢ > 0.

T
2 E3
2z

Consequently, in order to obtain (3.4.12), we prove

Ti= [7 (3 0um+9) sinGe)ae > 11+ 71+ 15 + 5l (3419

2z

We now estimate J. Since

X T+ & 1 5 1 =z
Gu(r+&) < H, <_2*> =1---/ (sint)®*V~1dt = P—/o (sint)*N 14t
N N
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and

1 .4
1.1 / ’ (sint)2N-14x,
2 pyJo

we have .
I_g (r+&) > -1—/5 (sint)®N1dt
2 T ooy Szt
1 %
= - [ (cost)®-1ldt
Px Jo
1 min(£/2, 7/8) Y
z - (cost)*N 14t
N JO

1 T\2N-1 (€
> — - 2 -,
> (cos T) m(2 8)

N
Sinceg-;;<§<—;-and1<x<2N—1,then2(2—§:l—)<§<-’25. Therefore for N > 3

% —@y(m+&) > % (cos (Zsr-))w_l 21(7]%_—1) (3.4.15)

Following (3.4.15) and noting that f:/;; sin(z€)d€ = 1, we have

J= /_ (-;- — Gy(m+ 5)) sin(ag)dt > - (eos (5)) " 7T (%) .

N

But since z < 2V — 1, we obtain a lower bound for J as follows:

J 2 Z(2N7—rh1)2p]v (cos (%))ZN_l.

Now it is easily seen that for N > 40

i mav- _orieeN (43T & 3\
v =T, (%) 27 (9) WO (‘@(Z) ) '

Thus (3.4.14) is valid. Consequently (3.4.2) is valid. In the light of (3.4.1), we obtain

sin(wz)
T

, forN24O and z€R

I P (x) I <
~and the proof of Theorem 3.13 is complete. W
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Chapter 4

The Boolean Sum and
Approximation by the

DD-functions

4.1 The Boolean sum

In this chapter we shall investigate a scheme of approximation by the DD-functions.

First, let us review some basic definitions involved in this chapter.

A Boolean algebra (see [1]) is a set B of elements a,b,¢, --- with the following

properties:

(i) B has two binary operations, A (wedge) and V (vee), which satisfy the idem-
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potent laws a Aa =aV a = a, the commutative lawsaAb=bAa, aVb=bVa,

and the associative laws a A (bAc)=(aAb)Ac, aV(bVc)=(aVb) Vec.
(ii) These operations satisfy the absorption laws: aA (aVb) =aV (aAb) =a.

(iii) These operations are mutually distributive: a A (bVe) = (@ Ab) V (a A c),

aV((bnc)y=(aVbA(aVe).

(iv) B contains universal bounds O, I which satisfy OAa =0, OVa = a ,

IhNa=a, IVa=1I.

(v) B has a unary operation a — a' of complementation, which obeys the laws

anNd =0, avVd =1.

A lattice is a set L of elements, with two binary operations A and V which satisfy

(i) and (ii). If in addition the distributive laws (iii) hold, L is called a distributive

lattice.

The theory of distributive lattices was applied by Gordon [17] to multivariate
interpolation. Following [14], we call such a method the Boolean method, since
Boolean algebras play a key role in its development. In its early application, the
Boolean method requires that the operators involved (see (4.1.1) below) must com-
mute with each other [17]. This property is heavily used in [14] as well (see also [13]).
In several important situations, however, some basic approximation operators fail to
meet the requirement (see [18] and [23]). Therefore, new Boolean methods which are

valid for both commutative and noncommutative operators are needed. Recently, a
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general theory of Boolean methods is developed by Jia in such a way that it can be

applied to noncommutative operators (see [23]).

In what follows, we adopt the method used in [23] and apply the new Boolean
method to the bivariate approximation. It should be emphasized that all theorems
presented in this chapter are taken, or, are specified from those in [23] and the author

rewrites them here just for the reader’s convenience.

To begin with, let us introduce some basic notation employed throughout the
chapter. We denote by N and by Z, as usual, the sets of all positive and nonnegative

integers respectively. Let @ = (a1, ;) € Z2. The length of « is defined to be
la] := a; + as.
Given o= (ay,02) and = (61,0:) € N?, a < means
a; < G; forall z=1,2.

We define

a IB = (min{ala ﬁl}: min{a21 ﬁ2})a

and

aV = (max{e, B}, max{cs, Bo}).
Then it is easily seen that (N?,A,V) is a distributive lattice.

Now let G be a free abelian group with a basis {Q, : @ € N*} (see [21]). Then
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any element f of G has a unique representation of the form

f= Z aoQq,

aeN2

where a, are integers and a, = 0 except for finitely many «. Given two elements
[L9€G, f=) ten 0aQe and g= > sene bsQp , the product of f and g, denoted
by f og, is defined by

fog:= E 0absQung.
a,feN?

It is easily seen that
feg=gof, (fegloh=fo(goh), fo(g+h)=fog+foh,

where + is the addition in G. Now the Boolean sum of f and g in G is defined by

the rule
f®g:=f+g~fog. (4.1.1)

In contrast to what were discussed in [17] and [14], here (G, o, &) does not constitute
a (distributive) lattice. But the Boolean addition given in (4.1.1) is commutative and
associative. The commutative follows immediately from the definition of A. To see

the associativity, we let f, g, h € G and observe that
(feg)®h=f+g+h—fog—goh—hof+fogoh=Ff@(g@h).
Thus, for any finitely many elements fi, f5, - -+, f, of G, the Boolean sum

Pr=(0f0 - & fa

i=1
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is well defined.

Let A be a nonempty finite subset of N2 and G be the free abelian group above.

Consider the Boolean sum

PfU=3" 59 (4.1.2)

acA peEN2

We want to determine the coefficients bs, B € N?. For this purpose, we put

R, ={BeN: f<qa}, and Ry := Uaea Ra. In particular
Ey:={(e1,€2): g5=0 or 1 for j =1,2} =R,

where e = (1,1). It is evident that

PBICHLES DY (—1)‘1>( 3 (—1)52> =6p forall a<e (4.1.3)
0

€ER, (0551 <ay <ez<oz

The set R4 is a lower set in the sense that
BERy and y<f = ~¢€ R,

Let Xr, denote the characteristic function of the set R4. The following theorem
provides a practical method to calculate coefficients bs in two-dimensional case, which

is an immediate consequence from Jia’s work ([23], Theorem 3.1).

Theorem 4.1 The coefficients by, € N2, in (4.1.2) are given by

bp= > (=1)llx,, (B+¢€)
seBs (4.1.4)

=Xy (B) = X, (B+(0,1)) — Xz, (B+ (1,0)) + x, (8+ (L, 1)).
~In particular, bg =0 if S ¢ Ra or B+e€ R,.
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Of particular interest for us is the case when
A={aecZ:|o|=k} (4.1.5)

for some k € N. In this case, the Boolean sum has the following simple expression.

Corollary 4.2 Let A be a nonempty subset of Z2? ezpressed in (4.1.5). Then

Dw=>9%- > o (4.1.6)

|a)=k 18|=k |8l=k—1
Proof: By Theorem 4.1 we have b5 =0 if || >k or |8] < k — 2. The latter is

true because |8| < k — 2 implies
Br+el=|8+le|]<k—-2+2=kF.

Then B+e € R4 and hence b = 0 by Theorem 4.1. Therefore only those coefficients
bs whose indices 4 satisfy the condition k—1 < |8] < k are nonzero. On the other

hand, observe that
Xp,(B+e)=1<=|f+e| <k |g|<k-|B]

Now, if |8| =k, then Xg, (B+€) = 1 only if ¢ = 0; hence in this case bg = xn,(B) = 1.
If |8 = k—1, then Xn,(B+€) =1ifand only if e = (0,1), (1,0), or (1,1); hence in

this case

b = ~Xa, (6+(0,1)) =Xz, (B+(1,0)) + Xz, (6+ (1, 1)) = —1.

Remark: In the multivariate case, a formula for calculating bg, B € Zi, where d > 2,
- was given by Delvos in [13] in which the commutativity of Q, is required. By using a
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different approach, Jia obtained the same result which is valid for both commutative

and noncommutative operators ([23] p.124).

4.2 Approximation by the DD-functions

In this section, we shall apply the Boolean sum established in (4.1.6) to construct
a bivariate operator P which gives rise to a desirable approximation scheme. Then
P will be used to produce surfaces when initial datas are given. Before proceeding

further, let us introduce some notation.

Let o = (o1,a2) € Z3 and let g, be the monomial z%y** where (z,y) € R2.
We denote by Il the linear span of all bivariate polynomials of total degree at most
k. Under some circumstances, II; also stands for the linear space of all univariate

polynomials of degree < k.

Next let us recall some facts regarding the (univariate) polynomial repro-
ducibility. Assume that ¢ is a compactly supported distribution on R and b is

a sequence in £(Z). The semiconvolution of ¢ with b is defined by

o * bi=>"o(- - )b(j).

JEZ
Let S(¢) denote the linear space {¢*'b: b € £(Z)}. We call S(p) the shift-invariant

space generated by ¢. We say that ¢ has accuracy k, if S(p) > IIx_;.
Now suppose ¢,,, N € N, is the DD-functions introduced in Chapter 3. It was
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proved by Deslauriers and Dubuc ([12] Lemma 4.1) that ¢,, has accuracy 2N for each

N eN

Remark. The fact that ¢, has accuracy 2N can be also derived from a more general

discussion regarding the sum rules (see [24-25] for the details).

Let N € N. We define the cardinal interpolation operator P, associated with

the DD-functions ¢, , N € N, by

ipN (f) = Zf(J)QON( _.7) (4'2'1)

Jj€Z
Since ¢, is a fundamental function, P, (f)(j) = f(j) for all j € Z and P, is a

projector on S(p,) (i.e. P2 =P, ). Note thva.t S(ey) D ay—-1. Thus
Pv@)=p Vp eIy (4.2.2)
We caution the reader that
Py Pu, # P, Py, if N; # Na.
In other words, P, is one of such examples that the commutativity does not hold.

For any n € N, define

Prn(H)(@) =D f(i/n)poy(nz—j), z€R (4.2.3)

J€L

It is evident that
PvnP)=p Vpelly.. (4.2.4)
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In the following, we shall discuss polynomial reproducibility. To distinguish be-

tween univariate and bivariate cases, we always assume that a, B, v € Zi and
ay, :Bi’ Yi € Z-H 1= 1: 2.
Let P, , and PY, . be the parametrically extended cardinal interpolation

operators on C(R?) defined by
ParnlF)(@8) =Y F(G/ny)pa(nz—5), n, o €N,
JEZ
and

P (F)(z,y) = ZF(:L‘, k/m)pq, (my — k), m, ap € N.

keZ

For z, y € R, let P4, 4, be the tensor product of Pe.n and PY . (we omit the

indices n, m if the scalings are clear from the context) given by
:P(cu, az)(F) (:L', y) = szl,n ® UDgzz,m(F) (II:, y)

= Z ZF (%’ —:—z) Py (N = §)Pay,m(my — k).

JEZ keZ

(4.2.5)

‘The following lemma demonstrates that the univariate polynomial reproducibility
(4.2.2) and (4.2.4) can be transferred to the multivariate case (for us, it is bivariate

polynomial reproducibility). Let P(q,, az) be given in (4.2.5).

Lemma 4.3
(2) Plan, az) (@) = ¢y forall v < 2a—e.

(1) Given a = (a1, aa), B = (61 ) and v = (71, 72) € N°. Assume that o, 8 and «
- satisfy the following conditions: a; = B, and T2 < min{2a5—1, 20, -1}, or, an = S,
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and v; < min{20; — 1, 26, — 1} Then
:P(alra2)(q’7) = ‘P(ﬂnﬁz)(q'y)'

Proof: First, observe that if v < 20 — ¢, then v; < 204 — 1 for ¢ = 1,2. Hence a
repeated use of (4.2.4) derives (i). Next, let o and 3 be two elements of N2 satisfying
a; = () or ap = f,. Without loss of any generality, we may assume that the
former holds. Then for fixed z, ¢,(z, -) is a monomial of degree 2. Moreover, since

Y2 < min{2a; — 1, 26, — 1}, by (4.2.4) again we have

(?‘Zh m - T/yg2) m) (q7($’ ‘)) = 0'
On the other hand, since o;; = 5

(:P(al, a2) — P(a, ﬂz)) (q,,(:z:, y)) = ?zl,n(?gz,m - ?%2,7‘".) (q’v(xa 'y))
Combining the above two equalities gives (ii), as desired. M

For practical applications, we usually require that the DD-functions ¢y Mmaintain

some smoothness. Hence, in what follows we assume that N > 2. Set

A={a= (o, »)eN: a1 +oy=k and (o1, ap) > (N, N)} (4.2.6)

One of main reasons that the Boolean methods are investigated and are employed
successfully in many fields is that the Boolean sum of the elements P(a, az) combines
certain properties of every individual member. The precise meaning of this idea is
- formulated as follows. In light of Corollary 4.2, we have
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Theorem 4.4 Let A be a nonempty subset of N?> egpressed in (4.2.6). If k > 2N,

then the operator

Pi= P Paven= 2 Peupy — D Pious (4.2.7)

a1 +az=k Bi+B2=k Br+Pa=k—1
a1, a22N B, B22N : B1, B22N
satisfies
Pled=4q for all g € Ipk—ny-1. (4.2.8)

Proof: Let k and N be fixed for the time being. First it is easily seen that to
show (4.2.8), it suffices to prove that (4.2.8) holds for all g, where || = 71 + 72 =

2(k — N) — 1. Rewrite (4.2.7) to be

k—=2N k—2N-1
P=D Ple-n-iNt)y = D Pok-Noij Nis) (4.2.9)
=0 i=0

Suppose 71 = 2(k—N) ~1—¢ and 7, = £, 0 < ¢ < 2(k—- N) —1. Choose

Pk—N—¢, N+ey from the first sum in (4.2.9), 0 < € < k — 2N, such that
2k—N)—-1-0<2k-N-¢—1 and I <2(N+4) -1,
ie.,

260< 0 <2N+¢)—1. (4.2.10)
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We now regroup (4.2.9) as
P=Pur-n N +Poh-n-1,N41) + -+
+ P—N-t, N+&) + P-N-t—1, Nres1) + -+ + P, k-m)
— Pk-n-1,N) — Ple—N—2, N42) — - -+
= Pe-N-t-1,8+0) — "+ — P, k-N-1)
= (ﬂ’(k—N, Ny — Pa—n-1, N)) + (T(k—N—1,N+1) — Pr-n-2, N+1)) + e
+ P—N—t, N-+£)

+ (ﬂ)(k—N—e—l,N-i-z-l-l) - 9’(k—N—e-1,N+e)) + -+ (fP(N,k-N) — P, Ic—N—l))~

Observe that the indices of all operators involved in the first £ brackets have the same
second components, N, N + 1, --- and N + £ — 1 respectively and the indices of
all operators in the last £k — 2V — £ — 1 brackets have the same first components,
k—N-—-£—1,---, N respectively. We now claim that P reproduce g, i.e.,
fP(q,,) = Gy-
It follows from the choice of Px_n—_¢, n1e) (see (4.2.10) ) and Lemma 4.3 (i) that
Ple-N-t, n+8)(2y) = gy-
Moreover, for the first £ brackets in the above, we want to apply Lemma 4.3 (ii). For
this purpose, we need to verify 1, < 2(k— N —4) —1, 0 < 4 < £. Since ¢ < ¢, then
20— N)—1-20<2(k—N—34)—1.
But by (4.2.10) ¢’ > 2¢. Hence
M=2k=N)—1-£<20k-N)—1-20<2(k—N—i)—1,
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Therefore, it follows from Lemma 4.3 (ii) that
(fP(k—N—i, Ny = Ple-N-1-, N)) () =0 for 0<i<e

Similarly, for the last k — 2N — £ — 1 brackets, we need to check

Yo=0<2(N+£+3j)—1 fo-r 1<j<k—-2N-£-1,
which is obviously true by (4.2.10). Hence by Lemma 4.3 (ii) again
('P(k-N—e-j, N+e+5) — Plk-N—-e—j, N+e-1+j)) (¢;) =0 for 1<j<k—-2N-2-1.
Consequently, we proved that

Plg) =gq forall ¢ €llyp-n)-1. MW

We now apply Theorem 4.4 to an approximation scheme. To this end, let A, ,,

be a mesh of R? defined by

Dpm = [%, %] X [—51—, -k;;—l] J,k€Z, n,meN.

The length |A, ;| of mesh Ap m is defied by

1 1
lAﬂ,mI = max ;, E . (4211)

Denote by D; the partial derivative operator with respect to the jth coordinate, and

by D® the partial differential operator D D22, where a = (a1, 02) € Z2.

Define

[fls,eo = D 11D%Fllco-

lal=s
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Theorem 4.5 Ifk > 2N, then for any s < 2(k — N) — 1, any function f € C*(R?),

the operator given in (4.2.7) satisfies
”f - ?(f)”oo < Ok(lAn,mls)lﬂs,oo- (4-2-12)

where Cy, is a constant depends on k only and |An,m| is the length of mesh Dom

defined in (4.2.11).

Proof: Note that ¢, is continuous and compactly supported on [1-2N, 2N -1).

Hence

Z loy (z — 7)| = const,, (4.2.13)

.1:6[0 1]

Let (z, y) € R? be fixed for the time being. First let us consider the parametri-

cally extended operator fP(al a) defined in (4.2.5) for n =m = 1:
P, a9 (@ 1) = DD (5, k) Pay 1 (& — 5)Pag1 (¥ — ),
JEZ keZ
and the associated Boolean sum operator given in (4.2.7)

11 _ 1,1 1,1
Pl= 37 P - > P, by

Br+pP2=k P1+P2=k~1
B1, B2>2N B, B2>N

Note that in this case the largest support of the DD-functions in the expression of

:Pll

(a1,

az) 18 [L = 2(k — N), 2(k — N) — 1]. Then it is easily seen that

[PHg(z, y)| < Ck max {|9(z',¢)| : lo — 2|, ly—¢/| <26 = N) —1}. (42.14)
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Let g be the Taylor polynomial of f of degree s — 1 about (z,%). By Theorem 4.4,

PL1(g) = q. Consequently
(f - :Pl'lf) (.’L‘, y) = Q(m, y) - :Pl’lf(x’ y) = ?I’I(Q - f)(xa y)

Then it follows from (4.2.14) that

|(F =P ) (@ )] < Ce max {|(f — @) (=,9")] : lz— 2|, ly — ¥/ S 2(k — N) — 1}

(='y')
S Ck,f’s, 0.

The above estimate is valid for every (z, y) € R?. Hence

|[£ = P f]| o < ChlFls, 00 (4.2.15)
Generally, for n, m € N, we define

fa,m(2, y) == f(z/n, y/m).
Then it is easy to see that

(Plas, anfrum) (@ 1) = (PR o)) (mz, my)
where fP?o’:: ag) Stands for P(a,, a,) in (4.2.5). Consequently,
(P4 fo,m) (7, 9) = (V™) (nz, my)

where P™™ is indeed the P given in (4.2.7). Therefore, it follows from (4.2.15) that

”f - ?n,mf“w = ”fn,m - :Pl’lfn,m”w S Cklfn,mls’oo _<_ Ck(IAn,mls)lfls,oo

The last inequality holds since ' fn,m,s, o < (IAn,mls)l fls,c0 by the (bivariate) Taylor
formula. W
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Figure 4.1: The graph of z = 22 — 32

Figure 4.1 and Figure 4.2 demonstrate that P in (4.2.7) can be used to produce
not only smooth surfaces (see Fig 4.1 which shows the quadratic surface z = % — y?)
but also complicate geographic surfaces (see Fig 4.2 which shows a piece of Loon Lake,
Alberta, Canada). To produce these surfaces, we choose N = 2, a;, ao, B1, (o are
either 2 or 3, and k = 5 in Theorem 4.4 to construct those parametrically extended
cardinal interpolation operators P(a,, ay), P(s,, s;) and their Boolean sum P. Hence,
by Theorem 4.4, P can reproduce polynomials with degree up to 5 and thereby has

the accuracy 6.
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Figure 4.2: The graph of Loon Lake area, Alberta, Canada

100



Bibliography

(1] G. Birkhoff and S. MacLane, A Survey of Modern Algebra, Macmillan, New

York, 1965.

[2] A.S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary Subdivision,

Memoirs of Amer. Math. Soc., 93 (1991).

[3] A. Cohen, Wavelet bases, approzimation theory and subdivision schemes, in
Approzimation Theory VII, E. W. Cheney, C. K. Chui and L. L. Schumaker

(eds.), pp. 63-85, Academic Press, Boston, 1992.

[4] 1. Daubechies, Orthonormal bases of compactly supported wavelets, Comm.

Pure Appl. Math., 41 (1988), 906-996.
[5] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

[6] I. Daubechies and J. C. Lagarias, Two-scale difference equations. II. Local
regularity, infinite products of matrices and fractals, SIAM J. Math. Anal.,

23 (1992), 1031-1079.

101



[7]

[10]

[11]

[12]

[13]

C. de Boor, On the cardinal spline interpolant to e*t, SIAM J. Math. Anal.

7 (1976), 930-941.

C. de Boor, K. Hoéllig, and S. Riemenschneider, Convergence of bivariate

cardinal interpolation, Constr. Approx. 1 (1985), 183-193.

C. de Boor, K. Hollig, and S. Riemenschneider, Convergence of cardinal

series, Proc. Amer. Math. Soc., 98 (1986), 457—460.

C. de Boor, K. Héllig, and S. Riemenschneider, The limits of multivariate
cardinal splines, in Multivariate Approrimation III, W. Schempp and K.

Zeller (eds.), pp. 47-50, Birkhiuser, Basel, 1985.

C. de Boor, I. J. Schoenberg, Cardinal interpolation and spline functions
VIII, the Budan-Fourier Theorem for splines and applications, in Spline
Functions, K. Bohmer (ed.), pp. 1-77, Karlsruhe 1975, Springer-Verlag, 501,

1976.

G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes,

Constr. Approx., 5 (1989), 49-68.

F.-J. Delvos, d-variate Boolean interpolation, J. Approx. Theory, 34 (1982),

99-114.

[14] F.-J. Delvos, W. Schempp, Boolean Methods in Interpolation and Approzi-

mation, Longman Scientific & Technical, Harlow, Essex, UK, 1989.

102



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl.,

114 (1986), 185-204.

T. Eirola, Sobolev characterization of solutions of dilation equations, SIAM

J. Math. Anal., 23 (1992), 1015-1030.

W. J. Gordon, Distributive lattices and approzimation of multivariate func-
tions, in Approzimation with Special Emphasis on Spline Functions, 1. J.

Schoenberg (ed.), pp. 223-277, Academic Press, New York, 1969.

W. J. Gordon, E. W. Cheney, Bivariate and multivariate interpolation with
noncommutative projectors, in Linear Spaces and Approzimations, P. L.

Butzer and S. Sz. Nagy (eds.), pp. 381-387, ISNM 40, Birkhsuser, Basel,

1977.

B. Han and R. Q. Jia, Optimal interpolatory subdivision schemes in multi-

dimensional spaces, SIAM J. Numer. Anal., to appear, 1998.

J. R. Higgins, Five short stories about cardinal series, Bull. Amer. Math.

Soc. 12 (1985), 45-89.
T. W. Hungerfold, Algebra, Springer-Verlag, New York, 1980.

K. Jetter, Multivariate approzimation from the cardinal interpolation point
of view in Approzimation Theory VII, E. W. Cheney, C. K. Chui, and L. L.

Schumaker (eds.), pp. 131-161, Academic Press, Boston, 1992.

103



[23]

[24]

[25]

[26]

[27]

[29]

[30]

R. Q. Jia, Approzimation by multivariate splines: an application of Boolean
methods, Numerical Methods of Approximation Theory, Vol 9, D. Braess

and L. L. Schumaker (eds.), pp. 117-134, Birkhiuser Verlag, Basel, 1992.

R. Q. Jia, Approzimation properties of multivariate wavelets, Math. Comp.,

67 (1998), 647-665.

R. Q. Jia, The Toeplitz theorem and its applications to Approzimation The-

ory and linear PDE’s, Trans. Amer. Math. Soc. 347 (1995), 2585-2594.

D. T. Lee, Some problems in cardinal spline interpolation and approxima-

tion, Ph.D. Thesis, University of Wisconsin-Madison, 1985.

Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge,

1992.

C. A. Micchelli, Interpolating subdivision schemes and wavelets , J. Approx.

Theory, 86 (1996), 41-71.
M. Reimer, Eztremal spline bases, J. Approx. Theory, 36 (1982), 91-98.

S. D. Riemenschneider, multivariate cardinal interpolation in Approzimation
Theory VI, Vol. 2, C. K. Chui, L. L. Schumaker , and J. D. Ward (eds), pp.

561-580, Academic Press, Boston, 1989.

104



[31] I. J. Schoenberg, Contributions to the problem of approzimation of equi-
distant data by analytic functions, Parts A and B, Quart. Appl. Math. IV

(1946), 45-99, 112-141.
[32] I. J. Schoenberg, Cardinal spline interpolation, SIAM, Philadelphia, 1973.

[33] I. J. Schoenberg , Cardinal interpolation and spline functions, J. Approx.

Theory, 2 (1969), 167-206.

[34] I. J. Schoenberg, The behavior of cardinal spline interpolants as their degree

tends to infinity, J. Analyse Math., 27 (1974), 205-229.

[35] I. J. Schoenberg, Cardinal interpolation and spline functions IV. The ezpo-
nential Euler splines, in Linear Operators and Approzimation, pp. 382-404,

ISNM. Vol. 20, Birkhauser Verlag, Basel, 1972.

[36] J. M. Whittaker, Interpolatory Function Theory, Cambridge University

Press, Cambridge, 1935.

105



