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Abstract 

Although a number of definitions of mixing have been proposed in the 

literature, no single definition accurately and clearly describes the full range of 

problems in the field of industrial mixing. Based on the review of mixing and 

segregation characterization techniques in chemical engineering, spatial statistics 

and population studies, a definition of industrial mixing is proposed in this thesis, 

based on three separate dimensions of segregation. The first dimension is the 

intensity of segregation which quantifies the uniformity of concentration; the 

second dimension is the scale of segregation or clustering; and the last dimension 

is the exposure or the potential to reduce segregation. The first dimension focuses 

on the instantaneous concentration variance; the second on the instantaneous 

length scales in the mixing field; and the third on the driving force for change, i.e. 

the mixing time scale, or the instantaneous rate of reduction in segregation. The 

definition is introduced using concepts, theory and mathematical equations. This 

definition provides a theoretical framework for the rigorous analysis of mixing 

problems, encompassing all industrial mixing processes and allowing a clear 

evaluation of experimental methods. In this work, the three dimensions of 

segregation are presented and defined in the context of previous definitions of 

mixing, and then applied to a range of industrial mixing problems to test their 

accuracy and robustness. Suitable quantities for direct measurement of the 

dimensions of segregation are then investigated in detail. The result is a toolkit of 

ready-to-use methods for the measurement of the intensity (CoV) and the scale of 

segregation (maximum striation thickness on a transect, point-to-nearest 



          

neighbour distributions and variogram), provided as Matlab codes. The chosen 

methods are thoroughly investigated by testing their applicability, limitations, 

sampling strategies and meaningfulness of the results using selected sets of 

mixing data, resulting in creation of guidelines for the use of each of the provided 

methods. The developed definition of mixing, together with tools and guidelines 

for measurement of mixing will help researches to further develop the field of 

mixing, engineers to solve practical industrial mixing problems, and instructors of 

chemical engineering courses to introduce mixing concepts more easily.   
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Chapter 1: Introduction 

History of Mixing 

Mixing is almost as old as humankind. Mixing is involved in kneading dough and 

scientific evidence shows that prehistoric man may have eaten a type of bread 

30,000 years ago in Europe (Revedin et al., 2010). As soon as cooking vessels 

were first created in rock depressions or made of clay (Glasse, 2010), stews and 

soups could be cooked and mixing was used to speed up the heat transfer. In the 

beginning, the mixing equipment used was most probably just hands or a stick 

and a clay pot. As the time passed, mixing was used not only for producing food, 

which we can see in Figure 1-1, but also for manufacturing purposes, e. g. fabric 

dyeing as shown in Figure 1-2. A range of materials including wood, metal and 

ceramics were then used for the construction of mixing equipment.  

 

 
Figure 1-1. Medieval kitchen. 
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Figure 1-2. Dyeing . 

 

With the onset of the industrial revolution in the 18th century and the 

invention of steam engines to power processes, large scale manufacturing of food, 

textiles and chemicals in factories began, with a need for industrial mixers to mix 

large quantities of materials. From then on, the development of mixing processes 

shifted into a higher gear.  

When looking around now, mixing is present everywhere – from the 

kitchen to virtually every manufacturing process. A mixer can be as simple as a 

spoon or a whisk or more sophisticated as an electronic blender, mixer or an 

industrial impeller. Mixing vessels can be a cup, pot, barrel, test tube, beaker or 

industrial tank and are made of a variety of traditional and new materials (glass, 

plastic or composite materials), depending on the purpose. Mixers can be found in 

unexpected places as well; e. g. washing machines and pumps are both good 

mixers. From the history, it can be seen that mixing is a very old unit operation 

that is still important today and that it occurs in many processes, ranging from 

household to large industrial operations. 
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Industrial Mixing Processes and Studies 

Industrial mixing includes a wide variety of processes where liquid is the 

major phase, as well as the cases of solid-solid and powder mixing. Mixing 

processes can be divided into classes, according to various criteria, for example 

according to process objectives, mixing equipment or flow regimes (laminar, 

turbulent or transitional). The criterion that will emerge as the most important in 

this thesis is the process objective. Based on the process objective, mixing 

processes belong in one of these three categories: 

1. Blending of miscible liquids. 

2. Multiphase mixing. 

3. Chemical reactions. 

Blending of miscible liquids is a common mixing operation. The goal of 

blending is to achieve uniformity of concentration of the minor species to a 

specified degree. Blending of low viscosity fluids is usually performed in a 

turbulent regime and for highly viscous fluids in a laminar regime. For turbulent 

blending, the homogeneity of concentration is the process objective. In laminar 

blending, mixing occurs as large striations of the minor phase decrease in time. 

The objective here is to reach a specified size of striations. 

Multiphase mixing can be further divided into liquid-liquid, gas-liquid, 

solid-liquid and solid-solid mixing. In the case of immiscible liquid-liquid mixing, 

one of the phases usually forms drops dispersed in the continuous phase (Paul et 

al., 2004). Production of cosmetic lotions is an example of such a process. Here, 

oil droplets are dispersed in a water phase. The oil phase has to be broken down 

by an agitator to drops of a very small size, such that the two phases will not 

separate.  

An example of gas-liquid mixing can be found in waste water treatment. 

Bacteria need oxygen in order to decompose organic waste material in the water, 

so the waste waters must be aerated with oxygen bubbles and the dissolved 

oxygen has to be well distributed to reach all the bacteria.  

As the name suggests, solid-liquid mixing involves particles of solid phase 

being mixed into a liquid phase. When producing most paints, small particles of 
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solid pigment are suspended in a liquid such as oil or water. The quality and the 

resulting colour of the paint strongly depend on the size and distribution of the 

pigment particles throughout the carrier liquid.  

Solid-solid powder mixing is important for example in the pharmaceutical 

industry, where active ingredient has to be homogeneously mixed into a carrier 

substance, in order to produce tablets with known amount of the active ingredient. 

 Several objectives can be sought in multiphase mixing. One objective 

may be to achieve a specified size of drops, bubbles or particles. For other 

processes, the goal is to disperse the drops, bubbles or particles homogeneously in 

the liquid. In some cases, the minor phase does not have to be dispersed 

homogeneously but it is sufficient to stop at a point where the macro-scale 

segregation is disrupted, e.g. using the impeller speed at which particles with 

higher density than the fluid are just suspended from the vessel bottom (just 

suspended speed). In other cases, multiphase mixing is done to maximize the rate 

of mass transfer. Mass transfer is dependent on the contact area between the two 

phases and therefore mixing is needed to disperse the bubbles, drops or particles 

of the minor phase in the fluid to expose as much surface area as possible. In 

addition to this, mixing is responsible for circulating the fluid and bringing fresh 

fluid to the interface to keep the concentration gradient at the interface as high as 

possible, thus facilitating the mass transfer.  

The effect of mixing on chemical reactions is most apparent for reactions 

where the mixing rate and the reaction rate are similar or when the mixing rate is 

slower than the reaction rate (Paul et al., 2004). Mixing is critical for the so-called 

‘mixing-sensitive reactions’ where undesired byproduct forms from the reactants 

or by decomposition of the desired product if given the opportunity and time. In 

the pharmaceutical industry, if the mixing is not fast enough the drugs may 

contain impurities, which can be dangerous for patients. In addition to the speed 

of the mixing process, mixing has to reach a small enough scale to allow for the 

molecular contact of reactants in order for the reaction to happen. For 

heterogeneous reactions, the drops, bubbles or particles of one phase have to be 

dispersed in the continuous phase in order to maximize the surface contact area to 
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enable reaction and maximize the reaction yield. Mixing also serves here to bring 

fresh reactants to the particle surface and remove the product to keep the surface 

available for further reaction, thus ensuring a concentration gradient between the 

minor and major phases to promote the reaction.  

There are many different categories of mixing processes, as explained 

above. Each of them deals with different physical phenomena, different objectives 

and applications, different materials and their interactions, different flow regimes 

and moreover; there is also a variety of mixing equipment used for their 

application. All this variety makes the study of mixing a substantial task to 

undertake. However, in order to manufacture products with a desired quality, with 

high yields and minimal energy or material losses, comprehensive understanding 

of mixing is critical. 

Because the physical phenomena in industrial mixing vary considerably, 

knowledge about mixing was initially gained through the design of specific 

processes and the troubleshooting of existing installations. Over the years, many 

experimental and numerical studies of mixing processes have been made (Paul, 

2004), and today, there is an extensive body of research on various mixing 

processes. Specific applications are well researched and general observations have 

been summarized into correlations and design rules, e. g. Zwietering’s solids 

suspension correlation (Zwietering, 1958) or Grenville’s blend time correlation 

(Grenville, 1992).  

In addition to the study of specific mixing processes, there have been 

many attempts to define mixing as a state. One of the major steps in 

understanding mixing is the realization that mixing is not only the physical 

process of mixing but also the state of the system. In a mixing process, the 

system’s components usually move from a segregated to a more homogeneous 

state of mixing. In order to characterize the state of mixing, exact quantitative 

measures are needed for engineering applications. The first attempts at 

characterizing the state of mixing were done in the 1950’s by Danckwerts 

(Danckwerts, 1958). His idealized approach defines perfect mixing as a state 

when everything is instantaneously mixed on a molecular scale and perfect 
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segregation as the condition when components never mix. These concepts are 

useful but are not sufficient to provide a good definition for real-life problems, all 

of which exist between these two limits. Later, researchers characterized mixing 

using different quantities. A literature review of these methods can be found 

distributed through the introductions of all of the following chapters.  

Despite all of these attempts, the field of industrial mixing still lacks a 

single rigorous definition of mixing which embraces all of the important 

applications and process objectives. This lack of formal definition became vivid, 

when the editors had to introduce the concept of mixing in the introductory 

chapter of the Handbook of Industrial Mixing (Paul et al., 2004), which is the 

most comprehensive collection of mixing knowledge up-to-date. A second 

example is the fact that even though mixing is present in most industrial processes 

and that it is often a central operation for ensuring desired product quality, it is a 

subject that is almost completely missing in the basic chemical engineering 

curriculum. The place of mixing in engineering courses and the basic concepts 

that could be introduced are discussed in the following section. A rigorous 

definition of mixing would not only provide a natural introduction to mixing but 

would also form the framework for the theoretical development of the field, and 

for the well grounded evaluation of experimental methods.  

Mixing in Undergraduate Engineering Curriculum 

Mixing is a central operation in most industrial processes; however, 

mixing concepts are almost completely missing in the basic undergraduate 

chemical engineering curriculum. Following is a list of courses where mixing is 

relevant and suggestions where introducing mixing concepts might be both 

beneficial and transparent. 

In the introduction to materials course, mixing influences the development 

of material properties during processing. For example, carbon nanotubes are 

added in a polymer matrix to create a nanocomposite material with electrically 

conducting properties, which can be used for antistatic or electromagnetic 

shielding applications. The electric properties of the resulting material strongly 
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depend on how well the carbon nanotubes are dispersed throughout the polymer 

which is achieved by mixing (Lin et al., 2006).  

In introductory fluid mechanics, the concepts of flow in pipes, T-junctions, 

jets and pumps would be enriched and complemented by also discussing their role 

as mixing equipment and including simple and reliable blend time correlations for 

this equipment. Occasionally, unit operations labs address one of these topics 

(Sharp et al., 2008). 

In transport phenomena courses, mixing plays a significant role in heat 

and mass transfer. Heat and mass transfer are increased with convective flow 

driven by mixing; mixing also serves to increase the contact surface area where 

the heat or mass transfer takes place, particularly in multiphase flow. This is 

normally discussed implicitly as the area for mass transfer. Adding the mixing 

step, where the area is generated, would make the concept more concrete and 

closer to engineering design. 

A whole new chapter about mixing could be included in unit operations 

courses. Once the definition of mixing is complete, the concept of mixing as a 

process and as a state should be explained here, together with the ways to measure 

mixedness. This could be followed by a description of different mixing 

applications (blending, multiphase mixing, reactions) and equipment (pipes, 

stirred tanks…), the design guidelines, as well as the impact of mixing on surface 

area generation and phase equilibria. 

In many reactor design courses, most of the course is devoted to cases 

where mixing is considered to be either perfect (continuous stirred tank reactor) or 

perfectly segregated (plug flow reactor) in order to make the calculations simpler. 

Mixing effects are also considered but the calculations are based on the 

measurement of the residence time distributions which can produce identical 

results for a wide variety of mixing scenarios. A new definition of mixing might 

be helpful in development of this field to include real mixing effects on the 

process results. 
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Thesis Objective and Scientific Approach 

The objective of this thesis is to introduce a rigorous definition of mixing, 

which is based on theory and is quantifiable by equations, and to identify the 

methods that can be used to measure mixing in industrial applications according 

to this definition. 

In the initial stages of the thesis, an extensive review of mixing 

characterization and measurement methods was made. A review of the quantities 

used for the measurement of mixing in chemical engineering applications 

revealed that a wide spectrum of approaches (e. g. Danckwerts, 1958; Gates et al, 

1975; Ottino, 1989; Bałdyga and Bourne, 1999; Paul et al, 2004) exist, and also 

that no single definition or quantity is applicable to the whole range of industrial 

mixing problems. A detailed review of quantities used to measure mixing in 

chemical engineering can be found in the introductions of Chapters 2 - 4.   

The apparent lack of a well grounded definition of mixing in chemical 

engineering lead the focus to other fields of research where mixing and 

segregation has been also been studied. Literature reviews of segregation in the 

fields of spatial statistics (Diggle, 2003; Cressie, 1993), geostatistics (Deutsch, 

2002), plant ecology (Perry, 1979; Mead 1974), zoology (McGarvey, 2005) and 

population segregation studies (Morrill, 1991; Wong, 2004) provided insight on 

additional measures and measurement strategies. The residential segregation 

researchers Massey and Denton (1988) provide the most rigorous definition of 

segregation based on five independent dimensions of segregation of human 

populations.  

Using the analogy between mixing and segregation of human populations 

and mixing and segregation in industrial processes, Massey and Denton’s (1988) 

definition was then applied to mixing problems in chemical engineering as the 

next step in this thesis. It was found that only three of Massey and Denton’s 

(1988) five dimensions of segregation are relevant to industrial mixing. Based on 

this investigation, a rigorous definition of mixing was developed: 

Mixing can be quantified as a control of segregation. Segregation has three 

independent dimensions. The first is the intensity of segregation, which quantifies 
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the uniformity of concentration. It is usually expressed in terms of the 

concentration variance. The second is the scale of segregation or clustering, which 

quantifies the distribution of length scales in the mixing field or the spatial 

dispersion of a population (particles, drops or bubbles). The third dimension is 

exposure, which quantifies the rate of reduction of segregation. Exposure is 

dependent on the strength of interaction of the populations, their opportunity to 

interact and the distance from minimum segregation. 

Through this definition the state of mixing of any system at any instant in 

time can be fully characterized by three dimensions of segregation. This is 

illustrated in the bottom part of Figure 1-3. Using the proposed definition of 

mixing and segregation, any mixing field can be exactly placed in a three 

dimensional system of mixing coordinates, composed of the intensity of 

segregation, the scale of segregation and exposure. Looking at the eight simplified 

mixing fields shown inside of the cube below, it can be seen that the size of the 

black drops is smaller for the pictures on the left side, which translates to a 

smaller scale of segregation. Comparing the top pictures with the bottom pictures, 

the scale of segregation is the same but the concentration difference between the 

drops and the surrounding fluid gets smaller from top to bottom. The 

concentration variance therefore drops from top to bottom, which is quantified by 

a decrease in the intensity of segregation. A change in the third dimension of 

segregation, exposure, is shown when moving from the front face of the cube to 

the back face. Comparing the picture pairs on the front and back face of the cube, 

both the intensity of segregation and the drop size (or the scale of segregation) 

stay the same, however, the interface between the black and white phases has 

increased significantly. This increase in interfacial area gives the two phases 

much larger opportunity to interact, which increases the exposure.  

In order to quantify the dimensions of segregation for different mixing 

applications, the previously reviewed measures of mixing coming from chemical 

engineering and other disciplines were considered and the appropriate ones for 

each dimension of segregation were selected and thoroughly investigated. The 

whole process of selecting methods to characterize different mixing problems 
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within the proposed framework of the three dimensions of segregation is 

illustrated in Figure 1-3. The main focus was then put on the final objective of the 

thesis, which was the creation of a toolkit of ready-to-use methods for the 

measurement of segregation with guidelines for their use. This was done by 

creating Matlab programs of selected methods and by testing their applicability, 

advantages, disadvantages, limitations, sampling strategies and meaningfulness of 

the results using selected sets of mixing data. 

 
Figure 1-3. Thesis visual abstract. 

Thesis Structure 

The thesis is based on three extensive papers on the dimensions of 

segregation. The first defines the three dimensions of segregation, the second 

investigates the intensity of segregation, and the third the scale of segregation.  
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Chapter 2 explains the problems with current definitions of mixing in 

detail. The initial definition of mixing based on the three separate dimensions of 

segregation is described here. The first dimension focuses on the instantaneous 

concentration variance; the second on the instantaneous length scales in the 

mixing field; and the third on the driving force for change, i.e. the mixing time 

scale, or the instantaneous rate of reduction in segregation. With these three 

dimensions in hand, it is possible to speak more clearly about what is meant by 

the control of segregation in industrial mixing processes. In this paper, the three 

dimensions of segregation are presented and defined in the context of previous 

definitions of mixing, and then applied to a range of industrial mixing problems to 

test their accuracy and robustness. 

Chapter 3 explores the effect of the sampling scale and sampling method 

on two distinct measures of mixedness: the coefficient of variance CoV (intensity 

of segregation) and the maximum striation thickness (scale of segregation). Three 

methods of sampling: quadrats, probes and transects, were used. Two data sets 

from CFD simulations were used as test cases. The first test case is the dispersion 

and dissolution of floating particles in a turbulent stirred tank and the second test 

case is the laminar mixing of mass-less tracer particles in a staggered herringbone 

micromixer. A large number of probes (>100) are needed to accurately track the 

CoV of the mixing field as it evolves, and the scale of measurement at each probe 

should be matched to the smallest mixing scale of interest. The final value of the 

CoV is shown to vary by up to a factor of 5 as the probe size changes. The most 

useful data was obtained from the measurement which changed the most in the 

later stages of mixing: intensity of segregation, or CoV, for the turbulent case and 

scale of segregation, or maximum striation thickness on a transect, for the laminar 

case. 

Chapter 4 investigates the use of four methods to extract length scales 

from mixing data: the maximum striation thickness, point to nearest neighbour 

distributions (PNN) the correlogram and the variogram. Four test data sets were 

analysed: blending in a micromixer; particle dispersion in a stirred tank; 

dispersion of a smoke plume; and a pulse tracer test in a reactor. The maximum 
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striation thickness captures the largest length scale. The PNN method quantifies 

differences between clustered, random and regular spatial distributions. The 

correlogram calculation cannot be consistently used for all types of mixing data 

and has therefore been rejected. The variogram reveals both large scale 

segregation and periodicity. Sub-sampling is needed to isolate smaller structures. 

The variogram, PNN, and transect methods all successfully extracted mixing 

length scales from large 2D data sets. 

Chapter 5 contains overall conclusions drawn from this work and 

recommendations for future work.  
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Chapter 2: A Rigorous Definition of Mixing and 
Segregation: Three Dimensions of a Key Process Variable* 

Early Definitions of Mixing 

The study of mixing dates back many years before the first journal 

publications, and the idea of “well mixed” is easily discarded as intuitively 

obvious. A search of the early literature provides a range of qualitative concepts 

and limiting cases. Several of these papers marked the beginning of three major 

areas of investigation: mixing in reaction engineering, solids mixing, and polymer 

processing. Starting from the late 1950’s, Danckwerts (1952, 1958) and 

Zwietering (1959) discussed the difference between complete segregation and 

perfect mixing in the context of reactor design, particularly for binary mixtures of 

liquids. Danckwerts (1952) defined the intensity of segregation:  
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where xA is the fraction of the component A at a point in space and an instant in 

time, Ax  is its average fraction in a binary mixture and M is the number of 

measurement locations. In this context, a point is defined in the continuum sense: 

large enough to contain a meaningful number of molecules, but small enough to 

have uniform concentration. The molecules in a homogeneous mixture are 

uniformly distributed down to the molecular scale and I is equal to 0; in a 

completely segregated mixture, as defined at a fixed scale of investigation, I is 

equal to 1. When the mean concentrations of component A and B are equal, 

0.5Ax = , the denominator is the biggest and the intensity of segregation the 

smallest. The limit of perfectly mixed allows instantaneous contact of two 

reagents, A and B, on a molecular scale throughout the reactor. The limit of 

                                                 
* A version of this chapter has been published in Chem. Eng. Res. Des., 87 (2009), 

p. 633-647. 
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completely segregated is best illustrated as drops of A and drops of B, both 

suspended in an inert C, with no possibility for dissolution or diffusion of A or B 

in C. These two limiting definitions are useful, but fail to describe any realistic 

industrial mixing problem. Danckwerts (1952) also discussed the scale of 

segregation in some detail. He recognized the difficulty of defining striations 

when the concentration varies continuously due to diffusion, and discusses in 

some detail the use of the autocorrelation of concentration, which he calls the 

coefficient of correlation, or the correlogram. Several early papers on solids 

mixing (Lacey, 1954, 1976a,b; Harnby, 1967; Hersey, 1970) also discuss the 

intensity and scale of segregation, using the normalized coefficient of variance 

and addressing the problem of selecting the best sample size (Lacey, 1954, 

Harnby, 1967), and later considering the scale of segregation, particularly with 

respect to the auto and cross correlation functions (Lacey, 1976a, b). At that time, 

it was extraordinarily labor intensive to collect the data densities needed to 

calculate scales of segregation, and the authors concluded that this measure was 

not accessible for the solution of realistic problems. Mohr et al. (1957) attempted 

to relate the rate of reduction in striation thickness to the shear rate in laminar 

flow systems, with applications to polymer processing, thus marking the 

beginning of a third parallel path in the history of industrial mixing. 

During the 1970’s, Chemineer published the Chemscale (Gates et al, 1975) as 

a qualitative description of the intensity of mixing in a tank and this concept was 

widely used for process design for many years. From the 1960’s to the 1980’s, 

Bourne, Villermaux and others (Baldyga and Bourne, 1999) developed more 

refined ideas about macromixing, mesomixing, and micromixing, but again the 

definitions are somewhat indirect: clear to the expert, but difficult to explain to a 

novice. Concurrently, Corrsin (1957, 1964), Toor (1969), and Brodkey (Lee and 

Brodkey, 1964, McKelvey et al., 1975) all investigated the impact of turbulence 

on mixing through measurements of concentration fluctuations at a point, 

sometimes calling this the segregation, with the idea that as the variance in 

concentration drops to zero, the fluid approaches perfect homogeneity. In the 

early 1990’s, chaos theory examined laminar chaotic mixing with a fresh 
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analytical perspective (Ottino, 1989), and computational fluid dynamics promised 

numerical solutions to many complex problems (Paul et al, 2004, Chapter 5). In 

spite of this increasing body of work, the field of industrial mixing lacks a single 

definition of mixing that allows one to proceed directly from  

1. a rigorous conceptual definition to  
2. experiments which directly measure “mixing,” and 
3. equations and theory which quantify the definition. 

Figure 2-1 shows a selection of important mixing problems encountered in 

industry. In all of these problems, there is global progress from a segregated state 

toward a more homogeneous state, but the physical phenomena vary widely. 

Figure 2-1a is the concentration field in a turbulent jet, measured using PLIF 

(Planar Laser Induced Fluorescence). The dispersion of minor species by 

turbulent eddies is evident, as is the range of length scales. This concentration 

field underlies the problem of byproduct formation in a feed plume, known as the 

mesomixing limit. The critical mixing objective is to achieve dilution of the feed 

plume before the undesired reaction has time to proceed. Figure 2-1b shows 

mixing in a pipeline at a high laminar Reynolds number. The feed jet is efficiently 

dispersed using an SMV static mixer. The mixer elements are yellow. Figure 2-1c 

shows the concentration field in a cross section of an SMX static mixer in laminar 

flow. Again, the initial objective is to achieve homogeneity in the fluid, but there 

can also be tight process specifications on the smallest allowable striation. 

Striations larger or smaller than the specified size can lead to unacceptable final 

products, particularly where optical clarity or color are key properties. Figure 2-1d 

is a composite material (Corian™ counter top) where several minor phases must 

be evenly but randomly dispersed in the final product. This is an example of a 

mixing specification that requires attention to the spatial organization of the minor 

phase. Figure 2-1e shows the initial stages of liquid drawdown in a liquid-liquid 

mixing application. For this application, the optimal geometry and the rotational 

speed required to draw down the liquid are needed. The final process specification 

may involve the rotational speed and time required to achieve some final drop 

size. This application may also require the addition of surfactants or stabilizers, 
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kill solution to stop a reaction, phase inversion, and/or mass transfer in a mixer 

settler or liquid-liquid extraction application. Figure 2-1f shows the entrainment 

of gas bubbles from the surface of a stirred tank. In gas-liquid mixing, the 

objective is most often gas-liquid mass transfer, but the problem can be 

substantially complicated by loss of power due to flooding of the impeller and 

changing conditions in boiling or coalescing systems. In many of these 

applications, several mixing objectives occur simultaneously in a single vessel or 

application. These objectives can be grouped into three categories:  

• blending of miscible liquids, with possible complications due to high 
viscosity or non-Newtonian behavior 

• multiphase mixing with at least one of several objectives: “just contacted”, 
completely distributed throughout the vessel, size reduction, or mass 
transfer, 

• reaction: either homogeneous or heterogeneous 

A closer examination of these applications, and a number of others, reveals three 

variables which are directly related to mixing: a reduction in the segregation of 

concentration; a reduction in the scale of segregation; and/or a mixing time scale 

that must be accomplished or predicted.  
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Figure 2-1. Illustrations of the range of mixing objectives encountered in 
industrial applications.* 

                                                 
* Image credits for Figure 2-1 are as follows: a) Paul et al., 2004, cover image b) and c) 

Sultzer ChemTech: http://www.sulzerchemtech.com, Jul 15, 2008 d) DuPont Corian Products: 

http://www2.dupont.com, Sep 29, 2008 e) Paul et al., 2004, Figure 4.24b f) Bhattacharya et al., 

2007, Figure 4c  
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In Danckwerts’ (1958) perfectly mixed limit, all three variables approach 

zero, and in the simplest mixing problems, the measurement of one variable (e.g. 

homogeneity of concentration) is often used to infer information about the others. 

In a second class of problems, for example liquid-liquid dispersions, the 

concentration remains infinitely segregated but a specific scale of segregation 

(e.g. drop size) must be achieved. For more difficult mixing problems, there may 

be a limiting time scale or mixing rate needed to reach homogeneity of 

concentration over a sub-volume of the vessel (e.g. the mesomixing and reaction 

problem, or the heterogeneous reaction problem with simultaneous mass transfer). 

In this case the intensity of segregation, the scale of segregation, and the local 

mixing time are all important, but the relationship between these variables is not 

as straightforward as our intuition suggests. 

In this paper, a definition of mixing is proposed which provides a bridge 

between our current understanding of industrial mixing and more theoretical 

models of mixing (Fox, 2003; Paul et al., 2004 (Ch3)) to give a framework for 

further research, development, and design. The proposed definition is based on a 

literature review of theories of segregation in a number of other disciplines: 

spatial statistics, population ecology, segregation of human populations, 

geostatistics, and image analysis. The definition is introduced with a thought 

experiment which illustrates the three key concepts: intensity of segregation, scale 

of segregation, and exposure. 

Figure 2-2 shows twelve checkerboard patterns which are organized from left 

to right by the size of the pattern, and from top to bottom by the variation in 

concentration. The mean concentration is the same for all 12 checkerboards: black 

squares have Ci = 1, white squares have Ci = 0, gray squares have Ci = 0.5 and the 

mean concentration Cmean = 0.25. The intensity of segregation for each 

checkerboard is calculated as the CoV: 
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The CoV is identical in each row, with the middle two rows showing a change in 

pattern with no change in the number of black, gray and white squares. The scales 

of segregation start with the largest possible scales on the left, and reducing to the 

smallest possible scales on the right of each row. As the patterns become more 

complex, the number of scales present in a single checkerboard increases. The 

exposure is calculated from 
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where Nt = 256 = total number of squares in the checkerboard, Nb = 2,3, or 

4 = number of neighbouring squares, K = 1 is the strength of interaction, aij = 1 is 

the contact area per side, and (Ci - Cj) is the concentration difference between two 

consecutive neighbors. This is analogous to a simplified calculation of the rate of 

mass transfer. 
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Figure 2-2. Three dimensions of mixing and segregation: intensity of segregation 
(CoV), scale of segregation (striation thickness) and exposure (rate of change in 
segregation). 
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A non-expert observer would undoubtedly say that the mixing improves from 

left to right in Figure 2-2. The intensity of segregation (CoV); however, remains 

constant. It is the scale of segregation which decreases from left to right. The 

intensity of segregation quantifies how widely the concentration varies, but 

contains no information about the arrangement of black and white squares. A 

second look at the equation for the coefficient of variance makes this point clear. 

From this we conclude that the intensity of segregation is not enough to 

completely define mixing. The scale of segregation also plays an important role. 

It is also possible to normalize the CoV to remove effects of initial 

concentration by dividing by the initial CoV. In the checkerboard case, the initial 

CoV is 1.73, giving CoV/CoVo=1.0 for the first row equal, indicating complete 

segregation. For the second and third rows, CoV/CoVo=0.709, and for the last row, 

CoV/CoVo=0.578. 

The exposure dimension is related to both the concentration variance and the 

scales of segregation, but in quite a complicated way. Before discussing the 

exposure results in Figure 2-2, consider the illustration of exposure in Figure 2-3. 

In this figure, the exposure increases from left to right. In (a) both the contact area 

and the concentration difference are at a minimum, while in (f), both the area and 

concentration difference are at a maximum. The intermediate pairs (b and c) and 

(d and e) must have at least a doubling of the total interfacial area to overcome the 

drop in concentration difference from 1.0 to 0.5. Because the interface has been 

distorted and folded, the exposure will increase slightly from (b) to (c) and from 

(d) to (e). Figure 2-3 differs from what we would see in an experiment, where the 

contact area increases rapidly under the influence of turbulent mixing at the same 

time as the concentration difference continuously drops due to convective mass 

transfer. The counteracting local effects of scale and intensity make the exposure 

dimension behave in ways that can be quite complex. 
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Figure 2-3. Example of increasing exposure showing the effects of concentration 
difference and area of contact between the two populations.  The first case has 
less exposure than the second, because the concentration difference is smaller in 
the first case.  Each pair, moving from left to right, has an increasing area of 
contact. 

In the first row of Figure 2-2, the exposure increases from 16 to 48 to 240 as 

the scale of segregation drops. Comparing the top and bottom rows suggests that 

the exposure decreases when the CoV decreases, but as the scale of segregation 

gets smaller, the effect of concentration variance becomes less important. A closer 

look shows that at intermediate values of CoV with slightly more complicated 

patterns and a range of length scales, the relationship between CoV and exposure 

is unpredictable due to the coupling between interfacial area and concentration 

difference. Decreasing the scale of segregation rapidly increases the exposure for 

all values of CoV. These results are collected in Figure 2-4 where the exposure 

dimension is plotted against the intensity and minimum scale of segregation. This 

figure clearly illustrates the need for a third dimension: in Figure 2-4a the 

relationship between CoV and exposure alone is random; in Figure 2-4b the 

exposure decreases rapidly as the minimum scale increases, but there is a wide 

range of results for exposure at small scales. This simple thought experiment 

clearly shows that the exposure dimension is not a simple linear combination of 

intensity and scale of segregation. The scales of segregation are distributed over a 

range of values, and are correlated to the interfacial contact area in a complex and 

non-linear way. In the calculation of exposure, the interfacial area is further 

coupled with local concentration differences. The exposure dimension combines 

these effects to describe a third dimension of mixing and segregation, the rate of 

change of segregation. 
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Figure 2-4. Relationship between exposure and a) intensity of segregation and b) 
minimum scale of segregation for the checkerboard patterns in Figure 2-2. 

In summary, the CoV (intensity of segregation) tells us nothing about the 

scale of mixing because the definition contains no information about the 

characteristic length scales or the arrangement of the fluid volumes in the mixing 

field. This requires a second dimension, the scale of segregation. Exposure is 

proposed as a third variable, which is a non-linear function of both the intensity 

and scale of segregation. All three variables play an important role in industrial 

mixing problems, which are becoming more and more focused on the control of 

segregation, often at intermediate length scales. This is a more complex problem 

than the classical perfectly mixed limit. 

Segregation Studies in Other Disciplines 

A literature search reveals that segregation has been studied in a number of 

fields, and a broad spectrum of useful knowledge has developed in parallel with 

industrial mixing. The mathematical foundation is defined primarily by the field 

of spatial statistics. The fields of geostatistics and image analysis describe 

segregation in data sets that are fixed in time, but may require three dimensional 

reconstruction from limited data sets (e.g. geological core samples). Both 

population ecology and forest management grapple with the interaction of 

populations, and with extracting meaningful information from limited data. The 

population ecologists focus on quadrat samples, originally a 1m × 1m square area, 
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and the foresters use transect sampling (typically a 2m wide line sample) 

extensively. The tendency of populations to cluster, and the opportunities for 

species to interact with their environment and with other species are both central 

questions in these fields. This has led to some very useful ways to reconstruct the 

scale of segregation from limited data sets. Finally, the study of segregation in 

human populations considers both the instantaneous distribution of populations, 

and their potential for integration. All of these fields have well developed theory 

and formalisms, including partial definitions of segregation (Diggle, 2003), but 

the work by Massey and Denton (1988) is the most complete and quantitative 

analysis of the dimensions of segregation, integrating all of the key ideas in one 

overarching definition. 

Massey and Denton (1988) reviewed the literature in population segregation 

and identified 20 different proposed measures of segregation. They applied these 

measures to 180 independent data sets and used PCA (principal components 

analysis) to determine which measures contain the most information, which 

measures are highly correlated with each other, and which measures contain a 

negligible amount of information. PCA, or PLS (partial least squares) is a 

regression technique applied to large multivariate data sets to determine which 

input variables describe the principle dimensions of variance in the results (Kresta 

et al., 1991). Variables grouped together in a single dimension are collinear and 

contain similar information (e.g. tray temperatures in a distillation column). 

Variables appearing in separate dimensions are orthogonal and contain 

information which pushes the result in a different direction. Massey and Denton’s 

analysis revealed that the data sets contain independent information about 5 

distinct dimensions of segregation. The remaining 15 measures did not provide 

any additional information. The PCA analysis is very significant because it 

provides a quantitative measure of which variables contribute significantly to the 

variance in the data. The fact that 5 dimensions are required reflects the 

complexity of the underlying data sets; the fact that only 5 of the 20 proposed 

measures of segregation provided independent information gives us some 

confidence that the 5 proposed dimensions enable a complete description of 



 

26 
 

segregation. We have retained the meaning of Massey and Denton’s 5 proposed 

dimensions, but reworded them to obtain rigorous definitions that can be applied 

to a wide range of problems: 

1. Evenness is the uniformity of concentration of the minor species. Evenness is 
defined relative to the volume of investigation and the scale of resolution of the 
measurement. 

2. Clustering is the degree of spatial continuity or adjacency of members of a 
population, and is highly correlated to the spatial proximity of members of the 
population. Clustering is inversely correlated to the degree of spatial dispersion 
of the species. 

3. Exposure determines the rate of reduction in segregation. It depends on the 
deviation from the minimum state of segregation, the physical contact between 
populations, and the strength of interaction between members of the 
populations (either attractive or repulsive). Exposure may be thought of as the 
driving force for change. 

4. Density is the population density expressed as (number or mass) per (volume 
or area). The population density includes all species, not just the minor species, 
so it is distinct from evenness and clustering. 

5. Centralization is the tendency of a population to concentrate spatially around 
some central or specified point. 

Each of these measures applies at a single instant in time. The five dimensions of 

segregation are now discussed in more detail and evaluated for their usefulness 

and applicability to the field of industrial mixing. 

Evenness is the first and simplest definition of “good mixing” - perfect 

homogeneity of the concentration field. The intensity of segregation measures the 

deviation from homogeneity at an instant in time. The cleanest measure of 

evenness in the mixing literature is the CoV (coefficient of variation) which is the 

standard deviation over the mean. The spatial statistics literature provides two 

other measures: I, the index of dispersion, which is the variance of the population 

relative to the variance of a completely random distribution; and D, the 

dissimilarity index, which is the fraction of the minor population that would have 

to move to eliminate segregation and achieve perfect homogeneity. The index of 

dispersion is interesting, because in a perfectly random Poisson distribution, the 

variance is equal to the mean (I = variance/mean) and I = 1 if the distribution is 
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perfectly random. An index of dispersion, I < 1, indicates a more regular or 

homogeneous distribution, and I > 1 when there is significant clustering in the 

population (Diggle, 2003). This provides a more physically meaningful 

interpretation of the intensity of segregation, should the user be willing to address 

the issue of dimensional scaling. In multiphase mixing, evenness is achieved 

when the second phase is homogeneously distributed over the volume of the 

vessel. This does not require that the bubbles, drops, or particles be monodisperse 

or small, only that the volume fraction of the minor phase be the same 

everywhere. The interaction of the scale of segregation with the scale of 

measurement remains important: as the size of the dispersed particles increases, 

the size of the averaging volume must also increase in order to retain a meaningful 

volume averaged concentration. As in the checkerboard example, a large intensity 

of segregation contains no information about where the non-homogeneity appears 

in the vessel, or how large the areas of segregation are. In this case, the intensity 

of segregation only reveals that the concentration is not uniform. 

Clustering appears in the mixing literature as the instantaneous scales of 

segregation. The study of clustering is well developed in chaotic mixing (Szalai et 

al., 2004); in population ecology where the clustering of populations is a key 

indicator of behavior, food sources, and mating (McGarvey et al., 2005; 

Mugglestone and Renshaw, 2001; Keeling et al., 1997); in geostatistics, where the 

location of ore bodies from limited data is the main objective (Cressie, 1993), and 

in image analysis (Mattfeldt, 2005, Anson and Gruzleski, 1999). Measures of 

clustering include the striation thickness distribution, the stretching distribution, 

and a family of nearest neighbor methods from spatial statistics. Partial sampling 

of the scales of segregation in a population can be done using either a transect 

(line scan) across the volume of interest, or using nearest neighbor analysis over a 

regular sampling grid. In the past, it was very difficult to obtain enough data to 

accurately capture all of the scales of segregation in a process, but with increasing 

resolution in both computational and experimental data, it is now frequently 

possible to obtain a whole plane of data at quite high resolution, so these methods 

deserve renewed consideration. In multiphase flow, clustering can characterize 
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bubble swarms, stratified flow, slugging, and other meso-scale phenomena. Direct 

measures of clustering may provide the means to quantify these different flow 

regimes. Drop size, particle size, and bubble size distributions are also measures 

of the scale of segregation, and where the objective is dispersion of a minor phase 

to a specific scale of segregation, this dimension defines the process. 

Exposure is a way of seeing mixing that is implicit in most multi-mechanism 

models of mixing, but is usually not explicitly addressed. It quantifies the physical 

contact between two (or more) populations, the strength of interaction between 

members of the populations (either attractive or repulsive), and the instantaneous 

departure from the state of maximum mixedness. Together, these terms determine 

the rate of change of segregation. As an illustrative first example, exposure can be 

related to Fick’s first law for mass transfer: 

∫∫ ∇=⋅∇==
V

BBA
a

BBAB dVCDdanCDNExposure 2

   (2-4)
 

Where the rate of mass transfer (NB in moles/s) equals the molecular diffusivity 

(DBA in m2/s) times the interfacial area (a in m2) and the concentration gradient (cB 

in mol/m3/m). While the mixing literature is quite distinct from the large literature 

on mass transfer, the creation of surface area, a, is certainly a key role of mixing 

equipment. Exposure measures postulated by Wong and others for racial 

segregation studies also use concentration differences and areas of contact 

between populations, combined with distance weights and estimated interaction 

functions between humans (Wong, 2002, 2005). Their interaction function is 

directly analogous to the molecular diffusivity. In the design of process equipment 

the objective is mass transfer. Detailed local measurements of area and 

concentration are usually not possible. The engineering solution is to lump 

everything into a single empirical mass transfer coefficient, kLa, which depends 

on the equipment used, and use a single average concentration driving force. 

Returning to an understanding based on the underlying physics, however, often 

leads to improved understanding and better designs. Exposure can also be related 
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to the rate of reaction, drop breakup and coalescence kernels in population 

balance equations, and the Corrsin model of scalar dispersion by turbulence. 

Density is the total population density, or the mass density. It is distinct from 

the concentration, or fraction, of the minor species. Both total density and 

concentration may vary locally, as is the case for high density housing in low 

income areas vs. low density housing in higher income suburbs. In population 

studies, there may be a correlation between the concentration of a minority group 

and the total population density, but this is not necessarily the case. The situation 

is quite different in industrial mixing. In liquid mixing problems, the total 

population density per volume (eg molecules/ml or kg/m3) is constant and the 

density dimension is not useful as a measure of segregation. In multiphase mixing 

problems, the mass density may vary substantially over the vessel due to spatial 

variations in the concentration of the dispersed species. Local concentration 

measurements, however, will exactly track density changes, so the density 

dimension of segregation does not provide any new and useful information for a 

definition of segregation in industrial mixing. 

Centralization is the tendency of a population to concentrate spatially at 

some central point. It can be expressed in physical terms as the centroid or the 

moment of mass. In population studies this has relevance for the location of 

populations relative to the city center. In terms of process objectives, this 

dimension of segregation could be calculated for demixing problems in, for 

example, centrifuges, cyclones, and rotary kilns, but again, it does not add 

information about the mixing problem beyond the scale and intensity of 

segregation. 

In summary, the first two dimensions of segregation, evenness and clustering, 

are directly analogous to the intensity and the scale of segregation. Exposure can 

be related to the rate of mass transfer, reaction, drop breakup, and a number of 

other phenomena where the mixing field interacts with some other property to 

achieve a process objective over some elapsed time. Density and centralization are 

not useful for a definition of segregation in industrial mixing. 
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Definiton of Segregation in Industrial Mixing 

Building on the reviews of mixing and segregation literature, the following 

definition of industrial mixing is proposed: 

Industrial mixing is the control of segregation in unit operations. The 
instantaneous segregation of a minor species has three dimensions, the intensity 
of segregation, the scale of segregation, and the rate of reduction in segregation. 
The intensity of segregation is the uniformity of concentration of the minor 
species. Intensity of segregation is defined relative to a fixed volume of 
investigation and scale of measurement. The scale of segregation is the degree of 
spatial proximity, or clustering, of members of a population, and is inversely 
correlated with the degree of spatial dispersion of the minor species. The rate of 
reduction in segregation is determined by the exposure, or potential for reduction 
in segregation. The exposure is determined by three factors: the deviation from 
the minimum state of segregation, the physical contact between populations, and 
the strength of interaction between members of the populations (either attractive 
or repulsive). 
 
In summary, three variables are needed to characterize the state of segregation: 
 
Intensity of segregation = variance in concentration 
 
Scale of segregation = distribution of length scales 
 
Exposure = rate of change of segregation 
    = (strength of interaction) × (distance from minimum segregation) × 

      × (opportunity to interact) 

Before evaluating the definition more closely, the reader may ask why the 

definitions are useful and important. In any field of study, definitions provide a 

foundation for the development of questions, theory, and design. In engineering, it 

is often said that defining the right problem is halfway to the solution. A good 

definition of mixing forces us to clarify the way we define the field. It will allow 

us to classify problems more easily, to describe problems more clearly, and to 

explain mixing problems unambiguously to non-experts. Clear definition naturally 

leads to fruitful mathematical modeling and more focussed and powerful 

experimental investigations because it identifies the key variables for a particular 

unit operation and their place in the problem definition. In short, a strong 

definition of mixing and segregation will provide clarity, focus and insight for 

teaching, research, and engineering applications. 
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Tests of the Adequacy of the Definition 

The definition is tested against the three following criteria: 

1. A good conceptual definition will clarify what is mixing, and what is not 
mixing. It will allow problems to be clearly described and classified, with 
specifications and explanations which are unambiguous. 

2. A physically grounded definition identifies the key variables and their place in 
the problem definition, providing a structure for the design of experiments. 

3. A strong theoretically based definition can be expressed as an equation. 

The definition of segregation in industrial mixing is now tested conceptually 

through application to the body of industrial mixing problems, illustrated by 

application to three test cases, and placed in the context of existing mathematical 

models of mixing. At each stage, the definition is evaluated for its usefulness, 

rigor, and completeness using the criteria identified above. 

Conceptual 

Table 2-1 provides a classification of all of the classical industrial mixing 

problems in terms of the intensity, scale, and exposure dimensions. Each problem 

is first identified as either a rate problem, or a state of mixing problem. The 

dominant dimension of mixing is then highlighted, and all of the important 

dimensions are marked with an X. Multiphase mixing problems have been 

grouped together, rather than separating them into gas-liquid, liquid-liquid, solid-

liquid, and solid-solid classes. The scale of segregation dimension has been 

subdivided into the familiar macro- meso- and micromixing subclasses. The 

physical meaning of these subclasses emerges from exploring the definition of 

mixing. Macromixing is the volume filling stage of mixing, which takes place at 

the scale of the vessel. Mesomixing is the scale reduction stage, which in 

turbulent mixing occurs over the inertial convective scales of turbulence and in 

laminar mixing occurs over the full range of length scales. Micromixing occurs at 

the smallest scales of mixing, where molecular diffusivity plays a controlling role 

in the rate of reduction of segregation. For the applications where the exposure 

plays a role, Table 2-2 sets out the process objective, the two populations which 
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interact, and the exposure terms for strength of interaction, minimum segregation, 

and contact between populations. 

Table 2-1. Range of industrial mixing applications with dominant dimension(s) of 
segregation. 

Process specification Scale of segregation Mixing 
operation 

State Timescale 

Intensity of 
segregation 
(CoV → 0) Macro- Meso- Micro- 

Exposure

Blending of miscible liquids 

Turbulent  Blend time X   X X 

Laminar  Blend time X  X X X 
Non-Newtonian Caverns fill volume   X    

Multiphase mixing 

Size reduction Specified size Equilibrium time   X→ X X 
Just contacted Njs, Njd   X    
Homogeneous N for uniform 

suspension 
 X  X   

Mass transfer  Dissolution time X   X X 

Mixing sensitive reactions 

Single phase Minimum by-product 
or maximum yield 

Feed time X  X→ X X 

Multiphase Minimum by-product 
or maximum yield 

Mass transfer limited X  X→ X X 

* Highlighted values indicated the dominant variable. 

Table 2-2. Exposure definitions for mixing applications involving a timescale or 
rate. 

Mixing 
operation 

Process 
objective 

Population 1 Population 2 Strength of 
interaction 
given by 

Minimum 
segregation 
occurs at 

Contact of 
populations is 
given by 

Turbulent 
blending 

CoV → 0 Minor species Eddies of major 
species 

Turbulent 
diffusivity 

CoV = 0 Time in high ε 
zone 

Laminar blending Scale → 0 Minor species Shear field of 
major species 

Stretching 
distribution 

Scale = 0 Surface area of 
lamellae 

Liquid-liquid 
dispersion  
(size reduction) 

Specified drop 
size 

Drops of 
dispersed phase 

Eddies of 
continuous phase 

Interfacial tension 
and attractive 
forces 

Equilibrium drop 
size 

Time in high ε 
zone 

Solids dissolution 
(mass transfer) 

Large exposure 
→ MTF 

Particles Eddies of 
continuous phase 

MTF coefficient, 
kL 

Saturation or 
complete 
dissolution 

Interfacial 
surface area, a 

Homogeneous 
reactions 

Minimum 
by-product 

Limiting 
reactant B (feed) 

Excess reactant A 
(bulk) 

Competing 
reaction rates 

CoV = 0 or 
scale = 0 or 
complete 
consumption of B 

Time in high ε 
zone or surface 
area of lamellae 

Heterogeneous 
reactions 
(mass transfer 
limited) 

Minimum 
by-product 

Dispersed 
species B 

Continuous 
species A 

Mass transfer 
coefficient 

Saturation or 
complete 
consumption of B 

Interfacial 
surface area, a 
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Taking the major applications in turn, turbulent blend time is dominated by a 

reduction in CoV.  The blend time is defined as the point where the CoV drops 

below a fixed threshold, usually 5% from the perfectly mixed state. The injected 

minor species is dispersed throughout the vessel through interaction with turbulent 

eddies. While the mean flow plays a role in the volume filling, or macro mixing 

stage, it is the inertial convective eddies which reduce the scale of segregation 

below the required limit. This explains why the Corrsin scaling approach gives a 

better result for the blend time correlation than a fixed number of tank turnover 

times. 

For laminar blending, the process specification often involves a minimum 

scale of segregation. Chaotic mixing analysis has repeatedly shown that the 

stretching distribution function for a particular mixer geometry determines the rate 

of reduction in scale of segregation (Zalc et al., 2002; Alvarez et al., 1998). 

Laminar blending is an interesting process specification because the scale of 

mixing is the process objective, but the exposure determines the length of pipe, or 

the mixing time, required to achieve that objective. In contrast, cavern formation 

in yield stress fluids is strictly a macro-scale mixing problem, where the mixer 

must be designed to eliminate dead volumes in the mixer. No time scales or 

concentration scales come into play, so the exposure dimension and the intensity 

of segregation are not interesting. 

Multiphase mixing provides the largest challenges to a general definition of 

mixing, because the mixing objectives are so varied. The first objective of 

multiphase mixing occurs at the largest scale of mixing. The just contacted 

objective (just suspended solids, just drawn down buoyant liquids and solids, the 

point of air entrainment from the head space, and the flooding point of a gassed 

impeller) identify a macro-scale segregation. The design criterion is the point at 

which the macro-scale segregation is disrupted, but this is far from the point of 

complete homogeneity of the second phase. The second objective is the complete 

dispersion. In this state of mixing, the CoV (measured on a meso-scale 

significantly larger than a single bubble, drop, or particle) drops to zero and the 

volume averaged concentration is uniform throughout the vessel. The third 
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objective of multiphase mixing considers size reduction, particularly of liquid 

drops in emulsions and suspensions, but sometimes also of solids (e.g. milling 

machines), and possibly of gases in foams. In the drop break-up application, the 

exposure dimension appears in the breakage and coalescence kernels of 

population balances, giving the instantaneous rate of change of the drop size 

distribution as it moves toward the final equilibrium drop size. The strength of 

interaction between the drops and the turbulent eddies is associated with the 

turbulent energy dissipation rate, the opportunity for contact between drops and 

eddies is given by the number of drops in each size, and the distance from 

equilibrium is associated with the distance from the equilibrium drop size, usually 

given by some kind of exponential decay function where the probability of a 

change in drop size gets smaller as the drops approach the final equilibrium size. 

The process objective is the scale of segregation, but the design specification is 

the strength of interaction (dissipation, or power per mass) required to achieve a 

fixed scale of segregation (drop size). The fourth objective identified for 

multiphase mixing is the mass transfer requirement. In this step, the dissolution 

time (for solids) or the rate of mass transfer (for liquids and gases) is the key 

mixing specification, and the exposure is the dominant dimension. When the 

solids are completely dissolved, the scale of segregation and the intensity of 

segregation both drop to zero. The rate of mass transfer and the dissolution time 

are determined by the mass transfer coefficient (the strength of interaction), the 

interfacial area (contact between phases), and the concentration difference 

(distance from minimum segregation). 

The final class of industrial mixing problems involves mixing sensitive 

reactions. This is the most varied and complex class of mixing problems, as these 

reactions typically encompass multiple mixing objectives, often simultaneously. 

The single phase homogeneous reaction problem is considered first. In this 

problem, the objective is to minimize by-product formation by ensuring that the 

reagents are well mixed at a rate that is much faster than the rate of undesired 

reaction. When meso-scales of segregation are present, more by-product is 

formed. Increasing exposure quickly and eliminating meso-scales ensures the 
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success of the mixing operation. The equations for the exposure dimension for 

homogeneous reactions are discussed in more detail in the next section. 

Heterogeneous reactions are a second class of mixing sensitive reactions, with 

most of the more difficult problems limited by mass transfer or contact between 

the two phases. Once the reaction is mass transfer limited, the exposure dimension 

reduces to the same terms as discussed earlier under multiphase mass transfer, 

with the added possibility of having zero concentration in the continuous phase if 

the reaction goes to completion as soon as the dispersed species B is able to 

contact with the bulk species A. 

Heat transfer in mixing vessels is not consistent with this definition of mixing 

problem, because no minor species is present. All of the core problems identified 

in Chapters 9-15 of the Handbook of Industrial Mixing (2004) are encompassed 

by the new definition, thus satisfying criterion 1. The definition provides a clearer 

focus for identifying the key design criteria, and also allows us to consider 

secondary design criteria and primary variables in the problem definition. 

Physical and Experimental 

Three quantitative examples have been chosen to illustrate the dimensions of 

segregation. The first two focus on blending problems, the first for turbulent 

dispersion of dissolving particles in a stirred tank, where the intensity of 

segregation dominates, the second is the maximum striation thickness in a laminar 

micromixer, and the third is the break up and dissolution of dissolving drops in a 

stirred tank, where the exposure dimension is of greatest interest. These three 

examples illustrate the different approaches to analysis of mixing problems that 

can be taken when different dimensions of segregation dominate. They also 

illustrate how the three dimensions interact in practical applications. 

Intensity of Segregation 

Figure 2-5 shows the reduction in intensity of segregation for turbulent 

dissolution of particles in a tank (Hartmann et al., 2006). The last four images 

illustrate the reduction in scale of segregation (mesomixing), while the first two 
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clearly illustrate the volume filling stage (macromixing). Time steps beyond sixty 

rotations of the impeller complete the micromixing and dissolution stage. The 

CoV analysis is reported more extensively in Kukukova et al. (2008). Considering 

the scale of segregation in parallel with the intensity of segregation reveals the 

sensitivity of CoV to the scale of measurement. Note that the reduction in CoV is 

very rapid for macromixing, but slower for mesomixing. Attempts to track the 

scale of segregation for this problem were less successful because turbulent 

dispersion rapidly smears out striation boundaries. 

 

Figure 2-5. Turbulent dissolution in a stirred tank: two-stage process showing the 
volume filling, or macromixing stage, and the scale reduction, or mesomixing 
stage. 

Scale of Segregation 

Figure 2-6 illustrates the importance of the scale of segregation in laminar 

mixing. For this work (Aubin et al., 2005), the CoV was not able to accurately 

track the differences in performance for three different micromixers, but a transect 

of the striation thicknesses shows the smooth reduction in maximum striation 

thickness (s) and accurately characterizes the different mixers. In this case, the 
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volume filling and scale reduction stages occur simultaneously, so the mesoscale 

dominates. Because the mixing is laminar, the striations remain coherent and 

accurate measurement of the CoV requires measurement resolution at the scale of 

individual striations. As the smallest scales of segregation shrink, this becomes 

impractical. 

 

Figure 2-6. Maximum striation thickness (s) on a transect for a laminar 
micromixer. 

Exposure 

Figure 2-7a illustrates the interaction of the three dimensions of segregation 

in a mixing and dissolution problem. In this example, an additive is injected close 

to the impeller. The amount injected is equal to the solubility limit of the additive. 

On each pass through the impeller, the drop size is reduced, initially very rapidly, 

but then much more slowly as the equilibrium drop size is approached. As the 

drops travel through the bulk of the tank, they dissolve and the bulk concentration 

in the tank increases. Figure 2-7b shows snapshots of the volume of fluid as time 

progresses. The steps (1→2, 3→4, 5→6, and 7→8) show drop break-up at the 

impeller. The steps (2→3, 4→5, 6→7, 8→9 and 9→10) show dissolution in the 
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bulk. The values for time, drop size, CoV, and exposure are given in the table 

below, and then plotted in Figure 2-7c. The values for drop size and dissolution 

rate used for this illustrative example are based on the work by Ibemere and 

Kresta (2007). 

 

 

Figure 2-7a. Progress of an injected additive as drops break up and dissolve over 
time. Drop break-up is restricted to the impeller zone, and dissolution is restricted 
to the bulk. 

In this example, the intensity, scale, and rate of change of segregation all drop to 

zero over time. The scale drops in a stepwise way, the CoV drops off smoothly, 

and the exposure shows a sawtooth behavior as the concentration difference 

drops, but the interfacial area increases. On the first pass through the impeller, the 

exposure more than doubles from its initial value and stays quite high over most 

of the dissolution time. As the drops approach their equilibrium size, the functions 

for both scale and exposure become smoother. This complicated interaction 

between drop size reduction and concentration difference may explain the wide 

variation in the drop size exponent reported in liquid-liquid mass transfer 

correlations for stirred tanks (Ibemere, 2005). 
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Figure 2-7b. Snapshots of the sample volume over the dissolution process.  Dissolution steps are from the top row to the bottom row, and the 
corresponding values of time, drop size, CoV, and exposure are given in the table. 



 

40 
 

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25

time (s)

di
m

en
si

on
 o

f s
eg

re
ga

tio
n/

di
m

en
si

on
 a

t t
=0

exposure
scale (drop size)
intensity (CoV)

 

Figure 2-7c. Comparison of the scale, intensity, and rate of change of 
segregation as they change over time, all normalized with the initial values in 
step 1. 



Mathematical 

Criterion 3 requires that the three dimensions of mixing have direct 

translations to physically meaningful equations which describe industrial mixing 

problems. The full range of equations that have been proposed to describe the 

dimensions of segregation across all mixing applications is enormous, with new 

attempts appearing in the literature on a regular basis. The reader is referred to 

individual review papers and texts presented earlier in the paper for the full 

mathematical details of specific applications. In this section, the objective is to 

illustrate how the core concepts of the dimensions of segregation consistently 

appear in the most successful model equations. 

Taking the three dimensions in turn, the intensity of segregation is described 

by Equation 2-2 for the CoV. Many other variations of a coefficient of variation 

have been proposed in the literature. All of the equations contain the same 

essential features, with the key differences being the variable used to normalize 

the variance, and whether the variance or the standard deviation is reported. 

Kukukova et al. (2008) have discussed the impact of sampling on the value of 

CoV, and considered the impact of the classical MAUP (modifiable areal unit 

problem) on measurements of the variance in mixing applications. Both of these 

principles, developed for other applications of segregation, provided new insights 

for the measurement of mixing. 

The scale of segregation is a rich problem with more work needed on 

mathematical descriptions of the scale of segregation, particularly now that 

experimental techniques and computational power are able to capture the full 

complexity of coupled multiscale mechanisms. Early researchers (e.g. 

Danckwerts, 1952 and Lacey, 1976b) recognized methods that can only recently 

be fully exploited as experimental data moves to high resolution full field 

instruments. As these new instruments come into play, the field of spatial statistics 

provides a rich new selection of measures and methods that can extract useful 

information in a mathematically sound way (see the review under Clustering in 

section 4 for references). Diffusion and turbulence lead to systems where the 



 

 42

concentration varies continuously and the edges of striations are diffuse rather 

than sharp. In many of these problems, it will be the time scale related to the 

reduction in segregation, rather than the scale of segregation, which is the defining 

variable. Equations exist to describe both the diffusing case (Danckwerts, 1952, 

Cressie, 1993). The timescale, or exposure dimension, is discussed below. 

The reader may also legitimately ask what is to be done with the full 

spectrum of scales of segregation often observed in realistic problems. First, the 

physics often offers an elegant simplification, returning self-similarity in drop size 

distributions (Mishra et al., 1998), striation thickness distributions and stretching 

distributions (Alvarez et al. 1998; Hobbs and Muzzio, 1998), aggregate and 

crystal size distributions (Marchisio et al 2003 a, b) and many others. This means 

that given an initial distribution and the correct scaling parameters over time (e.g. 

decay of the mean drop size), the distributions all collapse onto a single line. This 

enormously simplifies the modelling and computational demands, since the 

complete distribution can be tracked using a small number of variables (e.g. 

Marchisio et al., 2003 a, b). The scale of segregation is increasingly used as a 

specification for consumer products, cosmetics, crystals, polymer composites, and 

some pharmaceuticals, so the industrial need for solutions will undoubtedly drive 

further research in this area. 

Finally, the rate of change of segregation, or the exposure dimension, appears 

in many existing models of mixing processes. Typical mixing variables are related 

to the exposure dimension in Table 2-2. Taking three illustrative examples from 

mass transfer, population balances, and the reaction-diffusion equation, the model 

equations are shown to follow the form of the exposure definition: 

1. Mass transfer: in this case, the exposure is related to the flow of component 

A in moles/s through the standard diffusion equation: 

AB A
A

Exposure D c n dA= ∇ ⋅∫       (2-5) 

The diffusivity ABD  is the strength of interaction, or the willingness of the two 

populations to interact; the minimum segregation is complete homogeneity and 
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the concentration gradient Ac∇  gives the distance from minimum segregation; and 

the interfacial area, A provides the opportunity for molecules to interact. Note that 

A is not always the surface of a sharp striation, but can also be the surface of a 

computational cell or control volume of interest where the concentration varies 

continuously throughout the system. 

2. Population balances: the literature on population balance modeling is 

extensive, and has applications over a wide range of processes. The general form 

of the population balance for a flow system is (Paul et al, 2004): 

.( ) 0d
d d d

n Un B D
t

∂
+ ∇ − + =

∂
      (2-6) 

where dn  is the number of drops or particles being balanced, so the first two terms 

are the accumulation and convection terms, and dB and dD are the birth and death 

rates, respectively. The exposure dimension is found in the birth and death terms 

of the population balance. To illustrate this, three examples of the birth or death 

terms in drop breakup, aggregation kinetics, and crystallization are examined in 

more detail. 

a) Drop breakup (Ibemere, 2007): 
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        (2-7) 

The death term of this drop breakup model represents the death by drop breakage. 

By close examination of the expression, all three components of exposure can be 

observed. The term in front of the curly brackets combines the physical properties 

of drops, the dispersion characteristics and the hydrodynamic conditions to find 

the strength of interaction; the term inside the brackets and including jL∆  

represents the distance from the equilibrium drop size with the gamma function 

showing how the drops are increasingly likely to break when they are much larger 

than the equilibrium drop size; and the number of drops of size i, present at time t  



 

 44

( ( , )iN L t ) determines the opportunity for drops to interact with the flow and break 

up. 

b) Aggregation kinetics (Lattuada, 2004): 
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In this example of aggregation kinetics, the birth by aggregation also has a form 

of exposure. The first fraction term again represents the strength of interaction by 

including the fluid physical properties, temperature and hydrodynamic and Van 

der Waals interactions in the system. The second fraction term contains the fractal 

dimension Df, together with the sizes of interacting clusters (i and j are the 

numbers of particles in the cluster) which defines the distance from aggregate 

equilibrium size. The last term describe the number of clusters of particular sizes 

in the system ( ( ) ( )i j jN t N t− ) and quantifies the opportunity clusters have to 

interact with each other. 

c) Crystallization (Sato, 2008): 
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         (2-9) 

This death term represents the death by breakage of crystals with width L1and 

length L2. All exposure components can be again found in this expression. The 

strength of crystal interaction is given by the hydrodynamic conditions in the 

system described by the impeller diameter and rotational frequency, properties of 

the mixture like crystal dimensions, crystallizer volume V and crystal density, all 

included in the first term before the multiplier. The middle term describes the 

distance from equilibrium crystal size: ARtr is the threshold aspect ratio and 

crystals are only prone to breakage when their aspect ratio exceeds this value; the 

tanh function again adds the increasing probability for breakage as the crystal size 
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moves further away from the equilibrium point. The last term, the number of 

crystals, again quantifies their opportunity to meet and interact. 

3. Reaction Kinetics 

When studying the mixing time scale for reactions, two types of exposure 

can be identified. When all reactants are present in sufficient quantities and the 

only concern is to get them into molecular contact in order for the reaction to 

proceed, the reaction is mass-transfer limited and the exposure expression that 

dominates this problem is the mass transfer exposure defined in 1. If, on the other 

hand, reactant A is limiting e. g. for a reaction  

kA B Products+ ⎯⎯→ , 0Ac →      (2-10) 

the reaction rate is integrated over the volume of the reactor to obtain the 

expression for exposure, which in this example is also the rate of consumption of 

species A, where B is present in large excess: 

A B
V

Exposure k c c dV= ⋅ ⋅∫       (2-11) 

Here, the strength of interaction is represented by the rate constant k, the 

concentration of reactant A, Ac , is the distance from the equilibrium state with the 

reaction no longer proceeding after the reactant A has been depleted, and the 

concentration of reactant B, Bc , is the opportunity for reactants to interact if A is 

present. The field of mixing sensitive reactions is a complex one, with no 

consideration given here to the question of continuous systems with the added 

complication of backmixing in time. From a mathematical perspective, this is 

treated as a fourth dimension in the data, but the practical application of this 

fourth dimension can be very challenging. 

The reaction rate equation, break up and coalescence kernels in population 

balance equations for crystals, aggregates, and drops, Corrsin’s model for the 

dispersion of scalar in a turbulent mixing field, and as illustrated in this paper, the 

mass transfer equation, all follow the form suggested by the definition of 

exposure. Additional examples are available in a number of detailed models 
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where direct computation of the interaction between the scale and intensity of 

segregation with reaction and/or mass transfer have been carried out through high 

resolution computations (see Fox, 2003; Kresta et al., 2004; Alvarez et al, 1998, 

and many others). More work is warranted here, particularly using experimental 

data where the key scales of segregation can be measured. The concept of 

exposure provides a clearer path to model development and validation, and may 

help to identify the problems where detailed modeling of many scales with 

coupled mechanisms will prove most productive. 

Conclusions 

A definition of industrial mixing is proposed based on three dimensions of 

segregation: intensity of segregation (concentration scale), scale of segregation 

(length scale), and exposure (rate of change of segregation). A series of 

checkerboard patterns are used to illustrate the three dimensions. These variables 

are well established in the fields of spatial statistics, population ecology, and 

population segregation both conceptually and mathematically, and provide an 

expanded theoretical and experimental toolkit for the analysis of mixing 

problems. 

The proposed definition satisfies three criteria for a good definition: 

conceptual, physical and mathematical; and provides a direct path from the 

definition to equations and measurements. Three examples are used to illustrate 

how the definition can improve our understanding of mixing problems. The first 

two examples clarify the distinction between macro- meso- and micromixing, and 

highlight the utility of considering the scale of segregation instead of intensity of 

segregation for laminar mixing problems. The exposure dimension is introduced 

through an example of drop break up and dissolution, showing both the distinct 

behavior of exposure, and its dependence on the scale and intensity of 

segregation. The exposure dimension is essential for mixing problems that are 

dominated by a mixing time scale, such as mixing sensitive reactions and mass 

transfer. 
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Given a strong definition, the physical phenomena and process objectives can 

be framed in ways that match both the complexity of the problem and our intuitive 

understanding. This provides clarity, focus, and insight for teaching, research, and 

engineering applications. While this definition may subsequently prove to be 

incomplete or require clarification, it is our hope that it is general enough to 

encompass the full range and complexity of industrial mixing problems, but 

specific enough to be clear. 
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Chapter 3: Impact of Sampling Method and Scale on the 
Measurement of Mixing and the Coefficient of Variance* 

Introduction 

Many measures of mixing have been proposed in the literature, including 

mixing entropy (Ogawa, 2007), various dimensions of chaotic flows (Ottino, 

1989; Szalai et. al., 2004), Bourne reaction models (Baldyga and Bourne, 1999), 

and population balance modeling (Ramkrishna, 2001; Fox, 2003). In this paper, it 

is not our intent to review all of these methods in detail, but rather to focus on the 

accurate determination of two measures of mixing: the CoV, which is used 

directly for the design of static mixers, and indirectly for determination of the 

blend time in stirred tanks, and the maximum striation thickness on a transect, 

which is of significant interest as a contrasting measure, particularly for laminar 

mixing (Aubin et. al., 2005). 

Dankwerts (Danckwerts, 1958) defined two extreme states of mixedness: 

complete and instantaneous mixing on the molecular scale, where each molecule 

experiences the same environment at all times, and complete segregation. 

Dankwerts gives a description of complete segregation, “The incoming fluid is 

broken up into discrete fragments or streaks which are small compared to the tank 

and uniformly dispersed in it, but in which molecules entering together remain 

together indefinitely…” This might be physically realized as drops of one 

component, A, and a second component, B, both suspended in an inert medium in 

which they are both completely insoluble and where no coalescence can occur. In 

the completely segregated case, the size of the drops does not matter, but in many 

real flows and practical applications the size of the segregated regions is critically 

important, and molecules are neither completely segregated nor perfectly mixed. 

Moreover, real times greater than zero and smaller than infinity are of interest.  

                                                 
*A version of this chapter has been published in AIChE Journal, 54 (2008), p. 3068-3083. 
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Dankwerts’ initial ideas eventually evolved into the definition of various 

mixing scales which are now widely used in the mixing literature. Macromixing is 

identified with the scale of the equipment, e.g. the tank diameter, and with the 

blend time. Mesomixing occurs at intermediate scales and is identified primarily 

with reaction effects due to mixing limitations in the feed plume. Micromixing is 

identified with the smallest scales of motion and concentration segregation, where 

molecular viscosity and diffusivity dominate. These definitions have proven 

difficult to explain to non-experts, which suggests that their current formulation is 

somewhat less than crystal clear. This difficulty is partly due to the differences 

between mixing in turbulent flows and mixing in laminar flows. In this paper, the 

two regimes are compared side by side to highlight the differences and similarities 

in their behavior. 

Turbulent mixing is a complex multiscale process ranging from macromixing 

on the scale of the vessel, usually characterized as the blend time, to micromixing 

on the scale of the smallest eddies, often characterized using the Kolmogorov time 

scale, or the engulfment rate (Baldyga and Bourne, 1999). Turbulence is three 

dimensional, random, and time varying, and is normally characterized using the 

local mean and rms (standard deviation) of the velocity and concentration. A 

statistical approach is therefore a natural fit to the characterization of turbulent 

mixing, and point-based statistics collected over time have been applied to 

turbulent mixing for many decades. 

Laminar mixing is ultimately limited by molecular diffusion. For efficient 

mixing, the fluids must be manipulated to increase the interfacial area and 

decrease the thickness of fluid lamellae in order to promote diffusional mixing. 

Laminar mixing measurements need to be able to resolve the fine structures of the 

fluid lamellae. Some spatial statistics and similarity analyses have been applied to 

this problem, but characterization methods that are both practical and powerful are 

still a subject of active research (Arratia and Gollub, 2005). 

The field of spatial statistics (Diggle, 2003) includes applications ranging 

from population ecology to the study of human populations, disease, and racial 
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segregation, to forestry and geostatistics. All of these applications have one thing 

in common: the underlying data has a complex pattern, and the local 

concentration of each species is of interest for understanding the problem. Spatial 

statistics provides a set of knowledge not previously applied to mixing problems 

in the field of chemical engineering. Two principles are of particular interest. 

First, mixing is a multidimensional problem which cannot be completely 

characterized with a single variable, or dimension. Second, the goal of statistical 

analysis is to extract the maximum information from the minimum amount of 

data. The penalty to be paid for this efficient use of data is that the sampling 

method becomes very important. 

From a review of the wide ranging literature on spatial statistics, three 

dimensions of segregation emerge as important to the study of mixing in chemical 

processes: the scale of segregation, the intensity of segregation, and the exposure 

(Kresta and Aubin, 2006). The scale of segregation is most easily defined for this 

paper as the striation thickness distribution. The intensity of segregation is directly 

related to the CoV. The exposure dimension is related to the ease and rate of 

reduction in segregation but is not of interest for this paper. A simple thought 

experiment is used to illustrate the importance of distinguishing between the 

intensity and scale of segregation. Taking a square that measures 

16 mm × 16 mm, consider two mixing fields: in the first, there are four squares 

which measure 8 mm × 8 mm each, two of them black and two of them white; in 

the second, there are 256 squares each measuring 1 mm × 1mm, again, half black 

and half white. Both fields are arranged in a checkerboard pattern. We might 

quickly conclude that the mixing is better in the second case because the scale of 

segregation has been reduced by a factor of 8, but calculation of the CoV will 

return exactly the same result for both mixing fields. The intensity of segregation 

is independent of how the squares are arranged. Further exploration of this 

example shows that the scale of averaging used to calculate the CoV can also 

dramatically affect the result (Kresta and Aubin, 2006). 

In this work, two test cases were used to evaluate two measures of “well-

mixed”: the CoV, which characterizes the intensity of segregation, and the 
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maximum striation thickness, which characterizes the scale of segregation. The 

objectives of the investigation are: 

1. to explore the data density and sampling protocols needed to get 

accurate measures of CoV for two ideal data sets, 

2. to explore the data density needed to get an accurate measure of 

striation thickness for the same data sets, 

3. to compare the CoV and the maximum striation thickness for laminar 

mixing at a very small scale and turbulent mixing at a relatively large 

scale to better understand the strengths and weaknesses of each 

approach. 

Before detailing the test cases and the sampling experiments which were 

performed, the definitions and background theory for the coefficient of variance 

and for the three sampling strategies of interest are reviewed. 

Definition of the Coefficient of Variance 

Two quantities are widely used in the mixing literature to evaluate the 

intensity of segregation: the blend time for batch stirred tanks and the decay of the 

coefficient of variance (CoVr) in continuous static mixers. Both measures are 

evaluated from concentration measurements at several locations. 

The batch blend time is based on the decay of the normalized concentration 

variance: 
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where ,0mC  is the initial concentration at probe m, mC  is the concentration at time 

t, C  is the average concentration for a homogeneous mixture and M is the number 

of measurement locations. When the initial concentration is zero at all 

measurement locations, Equation 3-1 reduces to:  
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The blend time is defined as the time when 2 0.0025Mσ = and 2log 2.6Mσ = − , 

which is a 95% approach to the perfectly mixed state (Brown et. al., 2004).  

The second measure of intensity of segregation is known as the CoV, or the 

coefficient of variance. This criterion is usually applied to static mixers, 

particularly for laminar blending applications. The CoV is the ratio of the standard 

deviation of the concentration measurements to the mean concentration (Etchells 

and Meyer, 2004), and it is exactly equal to the square root of the blend time 

variance decay criterion: 
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In this case, a well mixed threshold corresponding to 95% of the perfectly mixed 

state can also be set such that 2 0.0025Mσ = . 

Laminar static mixer data for a well designed mixer typically follows an 

exponential decay of the CoV following the relations (Etchells and Meyer, 2004): 
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where vC  is the volume fraction of unmixed additive. CoV0 is 1.0 for 50% 

additive and increases to 3 for 10% additive. Using CoVr collapses the data for 

static mixers onto a single line for a range of inlet concentrations.  

Both definitions of CoV require the use of multiple concentration samples, 

but minimal guidance is available as to the required number of samples, or 
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regarding limitations on the size of the probe. To resolve some of these questions, 

we begin by reviewing what is known about sampling requirements for spatial 

statistics. 

Sampling Methods used for Spatial Statistics 

In order to calculate the intensity of segregation, a concentration data set must 

be extracted from a three dimensional mixing field. Two types of concentration 

data are available from experiments and/or numerical simulations. The first is the 

concentration of a second chemical species, the second is the concentration of 

tracer particles which have been released into the mixing field. Where a full three 

dimensional data set is not available, a representative plane must be selected, and 

where a full plane of data is not available, a representative transect or traverse or a 

set of sampling points may be selected. As the available data becomes sparser, the 

sampling method and statistical analysis become more important. The choice of 

the sampling strategy will be constrained by the amount of data available, but it 

must also be well matched to the problem statement and definition. 

Figure 3-1 illustrates three classes of sampling strategies used in spatial 

statistics: quadrats, probes and transects. The term quadrat was originally defined 

as a 1 m × 1 m sample area for ecological studies (Clements, 1905). Today, the 

term quadrat refers to any two dimensional sample area. Its size and shape is 

arbitrary, and is not necessarily uniform (e.g. census data). Quadrat sampling 

covers a full plane of data: in statistical terms it is an area filling sampling 

method. Point probes are mathematically zero dimensional, in the sense that they 

are centered at a point in space and occupy no volume. Practically, however, they 

must have a finite sampling area or measurement volume in order to sample a 

physically and statistically meaningful number of molecules, or tracer particles 

(Danckwerts, 1958). Transects are one dimensional and traverse the measurement 

volume along a single line. Again, the line is mathematically of zero thickness, 

but a finite thickness is required to sample a statistically and physically 

meaningful number of real particles or molecules. The purpose of the transect 

sample differs from the quadrat and probe samples. While the mean and variance 
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along the transect can be calculated to give a measure of the intensity of 

segregation, the transect is primarily used to profile concentration (Hessel et. al., 

2003) and to determine a striation thickness distribution, thus giving information 

about the scales of segregation. Quadrats, probes, and transects can all be used to 

sample either a plane or a volume of data. 

 
(a)           (b)       (c) 
 
Figure 3-1. Illustration of sampling strategies: (a) rectangular quadrats (b) point 
probes (c) transect of thickness ∆z. 

In quadrat analysis, the plane of interest is divided into a number of areas 

(quadrats), often of the same size and shape. The number of quadrats, and thus 

their size, depends on the desired level of spatial resolution. Ideally, the 

concentration in a quadrat is uniform and the quadrat size is matched to the 

smallest scale of the concentration striations. However this is not always possible, 

either because the smallest scales are unknown, or because it is not possible to 

measure concentration with such a high resolution. When the quadrat is larger 

than the local scale of segregation, the mean quadrat concentration depends on the 

size and shape of the quadrat. This dilemma, most simply illustrated by the 

checkerboard thought experiment, causes a number of difficulties for analysis, and 

is known as the modifiable areal unit problem (MAUP) in population studies. It is 

discussed in some detail in the literature (Reardon and Sullivan, 2004; Wong, 

2004; Mead, 1974; McGarvey et. al., 2005). Once the size and shape of the 

quadrats has been defined, the mean concentration in each quadrat is calculated 

from the raw data. The CoV is then evaluated using Equation 3-3, where M is now 

the number of quadrats. 

When using probes to get concentration data, a set of probe locations is 

selected. As with the quadrat selection, some attention to the sampling strategy is 

warranted. If the underlying data has a regular pattern, the probe locations must 
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either be randomized, or there must be enough probes to accurately sample the 

entire mixing field. When the data set is complete and the mixing field is either 

irregular or can be densely sampled, a regular sampling grid is both useful and 

efficient. If the number of probes available is very limited, however; as is the case 

for typical blend time measurements, then the probe placement must be based on 

sound physical reasoning and an understanding of the process. At least one of the 

probes must be located in the last-mixed region if accurate blend times are to be 

obtained (Brown et. al., 2004). 

Once the probe locations are selected, the probe size must be identified. 

Ideally, the probe size should match the smallest scales of mixing that are to be 

measured, however; practical limitations mean that the scale of resolution of the 

measurement method is usually limited by the actual size of the probe. If a 

physical probe is used, the concentration is averaged over the measurement 

volume and is assumed to be uniform within the measurement volume. If a CFD 

simulation is used with scalar transport, the concentration is averaged over the cell 

volume. If CFD with particle tracking is used, the resolution of particle motion is 

limited by the step size in the particle paths, and the resolution of striations at any 

instant in time is limited by the number of particles in the simulation. When 

particle concentration is calculated from discrete particle data, the particle 

concentration is based on the number of particles in the probe. The probe size 

should be small enough to get local data, but also large enough to contain a 

statistically significant number of particles. As a result, the smallest scale of 

resolution of the concentration probes is limited by the number of particles in the 

simulation. To avoid counting tracking particles twice, the probe areas should not 

overlap, so the maximum probe size is limited by the number of points in the 

sampling grid. 

To get the most valuable information about mixing, a transect should pass 

through the worst mixed part of the mixing field, and as much as possible should 

be oriented to be perpendicular to the striations of greatest interest. A transect has 

two variable dimensions: the height of the transect, ∆z, and the striation thickness 
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threshold. In forestry studies, the width of a foresters’ arms, or a ∆z = 2 m is used 

to sample a forest. A particle is included in the transect if its z-coordinate equals 

the z-coordinate of the transect ± ∆z/2. Aubin et al.(2005) selected a transect 

height, ∆z, equal to the mean particle spacing in the mixing field. The height of 

the transect, ∆z, allows for the capture of a single particle, and transect sampling 

then assumes that all particles in the 2D transect are associated with the equivalent 

1D line through the mixing field. The striation thicknesses on the transect are 

determined using the function f, which has the following properties: 

∆x(neighbours) ≤ ∆x:  f(x) = 1 

∆x(neighbours) > ∆x:  f(x) = 0 (3-7) 

Striation thicknesses on the transect are calculated directly from the function 

f(x): when two consecutive particles in the transect are within ∆x of each other, 

they are both in the same striation. If ∆x is too large, the striations will be 

unrealistically large; if it is too small, no striations will be detected. In a real 

striation, the particles will be closer together than the mean particle spacing, so we 

expect the ∆x value to be smaller than the ∆z value. If concentration data are used 

to determine striation thickness distributions on a transect, a concentration 

threshold must be defined to replace ∆x, the threshold distance between tracking 

particles. No full field concentration data is available to test this thresholding 

requirement in the current work, but some initial thresholding work in the time 

domain is reported by Hilderman and Wilson (1999) and Hilderman et al. (1999). 

Note that transects through time at a single point in space are statistically and 

mathematically equivalent to transects through space at a single instant in time 

(Diggle, 2003).  

Experimental 

The CoV obtained from both probe and quadrat sampling methods and the 

maximum striation thickness measured on a transect are all affected by the size 

and shape of the sample. Probe sampling can be affected by the location, number, 

and size of the probes, while quadrat sampling requires attention to the modifiable 
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areal unit problem, MAUP. Transects require the user to define the threshold 

value for particle separation, and the thickness of the transect. These requirements 

are well documented in other fields of study, as discussed earlier in the paper. 

The two objectives of the sampling experiment are to compare quadrat and 

probe sampling methods in the context of blend time calculations for two test 

cases, and to compare measurements of the scale and intensity of segregation. 

Quadrat and probe sampling are compared on the basis of number of probes or 

quadrats, size of probes or quadrats, and the resulting CoV. Transect sampling is 

explored for different transect heights and separation thresholds to determine the 

effect of spatial resolution on the maximum striation thickness. The results are 

compared globally to better understand what each measure reveals about mixing. 

Test Cases 

Two test cases were used to study the effect of sampling on measurements of 

mixing.  The first test case is the dispersion and dissolution of floating particles in 

a turbulent stirred tank, shown in Figure 3-2 and Figure 3-3. The second test case 

is the laminar mixing of mass-less tracer particles in a staggered herringbone 

micromixer, shown in Figure 3-4. These test cases represent two extremes of scale 

(tank diameter T = 0.2335 m and the micromixer width w = 200 µm); two 

extremes of mixing and dispersion (multiphase turbulent mixing and dissolution 

in the first case; single phase laminar blending in the second); and widely varying 

data densities (7×106 particles versus 2 480 particles). In both cases, planes of 

data are extracted from three dimensional CFD simulations of mixing. These 

simulations provide exceptionally complete data sets for the evaluation of 

statistical sampling and data analysis methods. 
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Figure 3-2. Particle distribution in the mid-baffle plane of the turbulent stirred 
tank, T = 0.2335 m, D = T/3, C = T/3, N = 990 rpm; Nt = number of impeller 
revolutions. 

 
Figure 3-3. Magnified view of the particle distribution in a window T/10 × T/10 
big centered at r = T/4 and z (axial coordinate) = 0.75T. 
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Figure 3-4. Geometry of the rectangular micromixer. Channel height (h = 77 µm) 
and channel width (w = 200 µm). Three groove depths are tested (dg = 0.23h, 
0.30h, and 0.35h). The three cross sectional sampling planes at three locations 
along the laminar micromixer illustrate the particle distribution for a groove depth 
of 0.23h. 

The first test case is the dispersion and dissolution of floating particles 

suspended in a tank stirred by a Rushton turbine. The cylindrical, flat bottomed 

tank has a diameter T = 0.2335 and is fitted with four standard baffles of width 

0.1T and a six-bladed Rushton turbine impeller of diameter D = T/3. The impeller 

is mounted at height of Cimp = T/3 above the vessel bottom and rotates at a speed 

of N = 990 rpm (fully turbulent). It was filled with water (ρl  = 1000 kg/m3) to a 

height of H = T. At the beginning of the simulation, 7×106 mono-disperse 

spherical particles with diameter dp = 0.3 mm and density ρp = 2150 kg/m3 were 

released in the upper part of the tank. The particle distribution and dissolution 

simulation was performed using a transient large eddy simulation with the 

Eulerian-Lagrangian particle tracking approach. More details about the simulation 

can be found in the paper by Hartmann et al. (Hartmann et. Al, 2006). Figure 3-2 

and Figure 3-3 show the data set extracted from the simulation for analysis: 

particle positions in a vertical cross-section mid-way between two baffles at six 

different times during the simulation. In this case, the particles dissolve and move 

randomly in and out of the sampling plane and as a result the number of particles 

in the slice varies between 28 000 and 56 000. Figure 3-3 illustrates the spatial 

resolution of the simulation: in this case a mean particle separation of 1 mm, or 

roughly 0.5% of the tank diameter. 
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The second test case is laminar mixing in a staggered herringbone 

micromixer, as shown in Figure 3-4. The mixer is a rectangular channel with a 

width of w = 200 µm, height h = 77 µm and length L = 0.01 m, with grooves of 

depth dg = 0.23h, 0.30h and 0.35h and width Wg = 50 µm. A total of 2480 

uniformly distributed mass-less particles were placed on the right hand side of the 

solved flow field at the mixer inlet and were followed using the Lagrangian 

particle tracking method. The details of the simulation procedure are described by 

Aubin et al. (2005). The objective of the simulation is to compare the mixing 

efficiency for three different groove depths. Vertical planes along the micromixer 

were sampled at intervals of 100 µm in order to compare the designs. 

Sampling Experiments 

The first sampling method considered is probes. Figure 3-5 shows the regular 

hexagonal grid (Aubin et. al., 2005) used to set the probe locations in both the 

tank and the micromixer. For the stirred tank case, grids containing 36, 142, 274, 

536, 1093 and 2209 probe points were tested. The points located in the shaft and 

impeller areas were omitted. The probe area Ak was set equal to the area of a circle 

that would contain a fixed number of particles, k, in a perfectly homogeneous 

distribution: 

k
AA k
p

=  (3-8) 

where A is the area of the slice minus the area of the impeller and shaft and p is 

the total number of particles in the slice. Three aspects of the probe sampling were 

studied here; namely the effect of the probe location, size, and number. To 

investigate the effect of probe location, six sets of 3 probes were selected as 

shown in Figure 3-6. The probe locations are summarized in Table 3-1. To 

analyze the effect of the probe size on the resulting CoV, the 536-probe grid was 

used with probe sizes of k = 3, 10, 30 and 180 particles. The effect of the number 

of probes was studied by calculating the CoV for all grids with a constant 10-

particle-probe size (k = 10). For the micromixer case, only the effects of probe 
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number (using hexagonal grids of 30, 60, 105, 198 and 640 points) and probe size 

(k = 3, 5, 10, 20, 50) on the CoV were evaluated.  

 

 
 
Figure 3-5. Hexagonal grid used for setting probe locations in the stirred tank and 
the micromixer. In the tank dx = dz and in the laminar micromixer dx ≈ dz. 
 
 

 
 
Figure 3-6. Location and size of probes and transects at three time steps (Nt = 5, 
d = 3.59 mm; Nt = 20, d = 4.55 mm; Nt = 60, d = 4.89 mm, where d is the probe 
diameter). The transect height is z = 2T/3. 

The effects of the quadrat sampling parameters on CoV were studied using 

the herringbone micromixer test case. At each cross-sectional plane along the 

micromixer, the data was divided into 10, 24, 40 and 640 equal rectangular 

quadrats and the CoV was calculated. Here, the quadrat size is inversely 

proportional to the number of quadrats (since quadrats cover the whole region of 

study). To compare the probe and quadrat analyses, the CoV was calculated from 

the grid containing 640 circular probes (with a maximum probe size of 2.92 

particles per probe) and compared with the CoV calculated from 640 rectangular 

quadrats. 
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Table 3-1. Positions of probes used to study the effect of probe location. All 
probes lie in the vertical mid-baffle plane, θ = 0°. 

x/m z/m used in sets 

-0.1050 0.2375 up, left 

-0.0650 0.2375 up, middle 

0.0550 0.2375 up, right 

-0.0850 0.0775 center, left 

-0.0650 0.0775 center, middle 

0.0550 0.0775 center, right 

-0.0950 0.0125 down, left 

-0.0350 0.0125 down, middle 

0.0650 0.0125 down, right 

Transect sampling was used to determine the maximum striation thickness in 

both the stirred tank and the micromixer test cases. The maximum striation 

thickness on a transect in the stirred tank was calculated using Equation 3-3. The 

transect was located at two thirds of the tank height, as shown in Figure 3-6. For 

the base case, the resolution in the axial direction, ∆z, was set equal to the mean 

particle spacing for a perfectly homogeneous distribution of 39 330 particles: 

1 mmAz
p

∆ ≅ ≅  (3-9) 

where A is the area of the tank cross section after substracting the impeller and 

shaft areas and p is the average number of particles in the data plane. The effect of 

transect thickness, ∆z, on the maximum striation thickness was examined by 

varying ∆z = ∆x = 0.5 mm, 1 mm and 2 mm. 

Different resolutions in the x-direction, ∆x, were used to isolate the effect of 

∆x on the striation thickness. The transect thickness was fixed at ∆z = 1 mm for 

∆x resolutions of 2 mm, 1 mm, 0.75 mm and 0.5 mm. A finer resolution would 

require more tracer particles, with the number of particles required increasing as 

1/∆x2. For the staggered herringbone micromixer, the striation thickness 
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calculation was performed using a single resolution of ∆z = ∆y = 5 µm, which is 

equal to the mean particle spacing given in Equation 3-9. 

Results and Discussion 

The case of the turbulent stirred tank with dissolving solid particles is 

discussed first, followed by the herringbone micromixer case. Both cases are used 

to explore the effect of probe location, number and size on the CoV. The 

maximum striation thickness on a transect is also calculated as the mixing 

evolves, using varying transect resolutions. In the laminar mixing case, probe and 

quadrat sampling strategies are compared and contrasted with the evolution of the 

maximum striation thickness on a transect. The results shed additional light on the 

information contained in the two different measures of mixing. 

Turbulent Mixing: CoV Results 

The selection of the number and location of the probes is a partially 

unresolved issue for the CoV calculation, and thus for the measurement of blend 

time, or the decay of intensity of segregation. In order to obtain full spatial 

resolution of the three dimensional mixing field, a very large number of probes 

would be required. When a limited number of probes are available, at least one 

probe must be located in the worst-mixed part of the vessel if the CoV is to detect 

the final stages of mixing (Brown et. al., 2004). Figure 3-7 illustrates the impact 

of the probe location for the six different sets of three probes shown in Figure 3-6 

and a seventh set of three randomly selected probe locations. These results are 

compared with the true CoV determined using 4292 probes evenly spaced 

throughout the mixing field. For each set of three probes, the evolution of the CoV 

is different, and none of the sets of three probes tracks the true CoV. When three 

probes are used, as recommended in the blend time protocol given by Brown et al. 

(2004), the evolution of the CoV strongly depends on the location of the probes. 
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Figure 3-7. CoV for the seven different sets of three 10-particle probes shown in 
Figure 3-6. The dark solid line for a large number of probes provides a reference 
to the true evolution of the CoV in the tank. 

Three probes are clearly not enough to correctly sample a complex mixing 

field. The next question to address is, “How many probes are needed, given an 

ideal data set?” As the number of probes increases, the CoV calculated from a full 

plane of data will approach the true CoV in the tank. In most experimental 

applications, the use of a large number of probes is impractical, and could change 

the flow field enough to endanger the accuracy of the measurement. The optimum 

balance between the number of probes and the accuracy of the CoV measurement 

is illustrated in Figure 3-8. For a small number of probes, the measured evolution 

of CoV is unreliable, but as the number of probes increases to 274 and beyond, the 

curves converge onto one curve which is representative of the whole population, 

as highlighted in Figure 3-8(b). 
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Figure 3-8. Influence of the number of probes on CoV. A 10-particle probe size was 
used for each time-step, causing the probe size to vary slightly as the number of 
particles in the plane varied over time. Figure 3-8(a) shows all of the data, while 
Figure 3-8(b) focuses on the data which is independent of the number of probes. 
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Returning to Figure 3-8(a), note that for Nt ≥ 40, the curves for 36 probes or 

more converge. From this, one might conclude that for long times, or for a small 

threshold on the final CoV, even the curve for three probes may approach the true 

value. This is an important finding because if only a very small number of probes 

are available, then setting a “well mixed” criterion to a very small CoV value will 

ensure that the required degree of mixing is achieved. Referring back to the blend 

time protocol (Brown et. al., 2004), we find a very small equivalent CoV threshold 

of 0.0025. This conservative limit ensures that measured blend times are 

consistent between experimenters and provides an accurate measure of “complete 

mixedness” which scales up reliably. This is in agreement with both industrial 

experience, and a number of blend time papers in the open literature (Grenville 

and Nienow, 2004; Kresta et. al., 2006; Nienow, 1997). 

Although the data in this test case is for particle dispersion, rather than blend 

time, it is interesting to compare the blend time ( 1/3 2
95 5.20 / ( / ) 27PN N T Dθ = × =  

(eq. 0-10) in Grenville and Nienow, 2004) with these CoV curves. Note the rapid 

decay of CoV up to Nt = 10 – clearly the volume filling stage in Figure 3-2 – 

followed by the slower decay in CoV during the scale reduction phase. This 

suggests that the blend time, or the macromixing time, is primarily related to the 

inital dispersion of the tracer throughout the volume of the vessel, with a 

conservative design factor added in to compensate for the small number of probes. 

We might then redefine “macromixing” as the volume filling stage of mixing, 

“mesomixing” as the scale reduction stage, which in turbulent mixing is closely 

related to the inertial convective range of eddies, and “micromixing” as the stage 

of mixing when the scale of segregation is reduced to the point where molecular 

mechanisms such as viscous dissipation and molecular diffusivity become 

dominant. 

While the number of probes determines the total area sampled, the spatial 

resolution of the CoV measurement is determined by the probe size. In selecting 

the size of the probe for a fixed data set, two competing requirements must be 

satisfied. On one hand, it is important to have enough particles in the probe to 
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give a statistically meaningful result. If the probe contains only one or two 

particles on average, the data will be highly variable. On the other hand, if the 

probe is too big, it will contain many particles, but the spatial resolution of the 

measurement will be poor and many details of the mixing field will be lost. The 

goal should be to capture the required scales of mixing using the minimum 

number of tracking particles, while at the same time maintaining the statistical 

significance of the measurement. 

Setting the mean number of particles in the probe volume to 10, under 

perfectly homogeneous conditions, means that a deviation from the mean of one 

particle will cause a 10% deviation in probe concentration. Using a 3-particle 

probe means that the probe size is smaller and the concentration data has high 

spatial resolution, but the importance of 1 particle is high, impacting the probe 

concentration by 33%. This will increase the measured variance significantly. One 

particle in a 100-particle probe only impacts the probe concentration by 1% but at 

the expense of the low spatial resolution of the probe. 

Figure 3-9 shows the effect of the number of particles in the probe on the 

calculated CoV. As the number of particles increases, the probe size increases and 

the calculated CoV gets smaller. Spatial resolution is lost because the local 

concentration differences (striations or clusters) are averaged over the 

increasingly large probe volume. To get local data, the probe needs to be smaller 

than the smallest scale of interest, but large enough to contain a statistically 

meaningful number of particles. A 10-particle probe size was chosen for all 

subsequent calculations for the stirred tank test case.  
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Figure 3-9. Influence of the probe size on CoV. The open symbols correspond to a 
fixed probe diameter for all timesteps, based on the average number of particles in 
the plane. The filled symbols correspond to a probe diameter which was allowed 
to vary with time, depending on the number of particles in the plane at that 
timestep. The number of probes was (M = 536) for all calculations. 

Because the particles in this simulation were tracked in three dimensions, and 

were allowed to dissolve over time, the number of particles in the data plane 

varied slightly. Two methods were used for setting the probe diameter. The first 

approach was to calculate the probe diameter from the average number of 

particles in the plane over all timesteps. The result was a fixed probe diameter for 

all timesteps for each k-particle probe. The second method used calculated the 

probe diameter at each timestep for each k-particle probe. This results in a probe 

diameter that varies slightly over time. A comparison of the two approaches given 

in Figure 3-9 shows that there is no significant effect on the CoV curves. 
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In future studies, the probe size should first be set equal to the smallest scale 

of interest. The number of tracer particles required in the simulation can then be 

set to  

2

4k Ap
dπ

=  (3-11) 

which ensures that there will be k-particles in each probe when the mixing is 

perfectly homogeneous. This gives a clear physical meaning to the probe size, and 

ensures that the number of particles in the simulation is large enough to achieve 

the desired spatial resolution. 

The CoV calculations for the stirred tank clearly show the limitations of using 

3 probes for the measurement of CoV, particularly during the early stages of 

mixing when the mixing patterns are complex. The sensitivity of CoV to the 

diameter of the probe, or to the number of particles in the probe, emphasizes that 

CoV measures intensity of segregation, not scale of segregation; and that the 

probe size must be defined based on both the mixing field of interest and the 

spatial resolution required by the problem. To provide some direct insight into the 

scale of segregation, the measurement of striation thickness along a transect is 

considered next. 

Turbulent Mixing: Transect Results 

Figures 3-10(a)-(f) presents the function f(x) used to calculate the maximum 

striation thickness on a transect using different spatial resolutions in the x- and z-

directions. All plots were created for the time step corresponding to 60 impeller 

revolutions because at this time the particle distribution is the closest to a 

homogeneous distribution. The bar widths correspond to the striation thicknesses 

along the transect. The plots also include a picture of the particle distribution in 

each transect. Note that the transect widths are not to scale because in reality, they 

are so small that nothing would be visible from the correct scale.  
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(d) 
 

 
(e) 
 

 
(f) 

Figure 3-10. Striation thickness in the tank at a resolution of (a) ∆x = ∆z = 2 mm 
(b) ∆x = ∆z = 1 mm  and (c) ∆x = ∆z = 0.5 mm (d) ∆x = 2 mm, ∆z = 1 mm 
(e) ∆x = 0.75 mm, ∆z = 1 mm (f) ∆x = 0.5 mm, ∆z = 1 mm. The function f(x) is 
plotted for the transect at z = 2T/3 at Nt = 60. To compare the striation function 
f(x) with the real particle distribution in the vessel, the particle positions in the 
transect are shown at the bottom. The height of the transect is not to scale. The 
black area at the centre of the transect is a part of the shaft.  
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The striation thicknesses determined with resolutions of ∆x = ∆z = 2 mm, 

shown in Figure 3-10(a), indicate that there are very big striations inside the 

vessel, but visually, the distribution of particles at this time step is very good, as 

shown in Figure 3-3. The 2 mm resolution is therefore too coarse. A resolution of 

∆x = ∆z = 0.5 mm detects only five very thin striations, as shown in Figure 

3-10(c), but since on average a transect that is only half as thick as the mean 

particle spacing will detect particles only half of the time, this is also a non-

physical result. The resolution of ∆x = ∆z = 1 mm, shown in Figure 3-10(b), has 

an exact physical meaning. It corresponds to the mean interparticle distance in the 

case of a homogeneous distribution, and results in a number of striations with 

small thicknesses.  This ∆z is used for further calculations. 

The effect of ∆x is illustrated by comparing Figure 3-10 (b, d-f). It can be 

seen that as the resolution in the x-direction increases, the striation thicknesses 

decrease. Weighing the physical meaning of a striation, the ∆x resolution should 

be smaller than the mean particle spacing to indicate that two particles are closer 

together than expected. Comparing the results for ∆x = 1 mm, 0.75 mm, and 

0.5 mm (b, e and f) shows very little change in the f profiles. The maximum 

striation thicknesses give a closer view of the differences between these ∆x’s.  

Figure 3-11 presents the evolution of the maximum striation thickness. The 

curves with coarser resolution, in either the z- or x- directions, return higher 

values of maximum striation thicknesses. With the resolution 

of  ∆x =  ∆z = 2 mm, the maximum striation thickness on the transect decreases at 

the beginning but starts to increase rapidly as the particles get spread out more 

evenly. This is non-physical and indicates that the resolution is too coarse. When 

∆z is reduced to 1 mm, the mean particle spacing, the maximum striation 

thickness follows a more physical evolution, but for ∆z = ∆x = 0.5 mm, the 

striations essentially disappear after Nt = 10. A similar evolution is observed when 

a constant ∆z = 1 mm is used and the x resolution is varied from ∆x =  2 mm to 

1 mm, 0.75 mm and 0.5 mm. For ∆x less than the mean particle spacing, no 

significant reduction in the scale of segregation is detected after 10 or 20 impeller 
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revolutions. From a visual examination of the particle distributions in Figure 3-6 

and Figure 3-3, it is clear that this is not true, but the particle density is quite 

sparse at the smaller scales of segregation. Comparing the striation thickness 

curves with the CoV results in Figure 3-8 reveals that the CoV is more sensitive to 

the later stages of turbulent mixing than the decay of maximum striation thickness 

on a single transect. The post-processing computational requirement for the 

accurate calculation of CoV is, however; much higher. 
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Figure 3-11. Maximum striation thickness on the transect located at z = 2/3H for 
varying transect and striation resolutions (a) ∆x = ∆z = 0.5 mm, 1 mm and 2 mm 
(b) comparison of the previous plot with curves resulting from a fixed transect 
width ∆z = 1 mm. The mean interparticle distance in the tank is 1 mm. 

The transect results are most meaningful when the thickness, ∆z, is set equal 

to the mean particle spacing, and the interparticle spacing threshold is set to be 

equal to or less than the mean particle spacing. The finest spatial resolution of a 

transect can be no finer than the mean particle spacing in the flow. The maximum 

striation thickness within these constraints is not sensitive to the interparticle 

spacing threshold, and the CoV provides more information about the scale 
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reduction stage of mixing than the direct measure of maximum striation thickness 

on a single transect. 

Laminar Mixing: Transect Results 

Figure 3-12 shows the evolution of the maximum striation thickness along the 

length of the micromixer. The striation thickness calculation in the micromixer 

was performed using a single resolution of ∆z = ∆x = 5 µm which is twice the 

mean particle spacing. The width of the largest striation decreases exponentially 

as the fluid passes along the mixer. This is characteristic of chaotic flows. This is 

in contrast with the turbulent case, where the decay in both CoV and maximum 

striation thickness is initially quite sharp, and then levels off. In the laminar 

micromixer, volume filling and scale reduction happen simultaneously and the 

decay in the maximum striation thickness is a much smoother curve. 
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Figure 3-12. Maximum striation thickness decay in the micromixer on a transect 
of thickness ∆z = ∆x = 5 µm for a microchannel of 77 µm × 200 µm with 2 480 
particle tracks, and an interparticle distance of approximately 2.5 µm. 
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As the groove depth, dg, of the mixer increases, the maximum striation 

thickness at any position along the mixer decreases. This is in agreement with the 

qualitative visualizations of the spatial distribution of flow followers made by 

Aubin7. The ability of the different mixer designs to reduce striation thickness and 

improve mixing performance in the laminar micromixer can be clearly 

distinguished by tracking the decay of the maximum striation thickness, even at 

this coarse resolution of twice the mean particle spacing. This result is quite 

different from the turbulent case.  

Laminar Mixing: CoV Results 

The intensity of segregation in the laminar micromixer was determined at 

different positions using both the quadrat and probe sampling strategies. The 

spatial positions of the flow followers on 100 equally spaced cross-sections along 

the mixer were available for each geometry. 

Figure 3-13 shows the influence of the number of 10-particle probes on the 

CoV for the laminar herringbone micromixer. When less than 105 probes are used, 

the CoV curves are noisy. The curves for 105 and more probes tend to converge 

after 0.6 cm. Although there is an overall decrease in CoV along the mixer, 

fluctuations of the CoV are clearly visible. These fluctuations are periodic and 

correspond to the periodicity of the staggered herringbone geometry. The 

magnitude of these fluctuations decreases along the mixer length. 
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Figure 3-13. Influence of the number of probes on CoV in the micromixer for a 
constant 10-particle probe size (d = 8.89 µm), dg = 0.23h. 

The effect of the probe size on the CoV is shown in Figure 3-14. In this 

figure, the number of probes is constant and equal to 105. As for the turbulent 

stirred tank case, the smaller probe size and thus the finer scale of resolution 

results in a higher CoV. For small probe sizes, the CoV curves are noisy and are 

clearly affected by the relative importance of the local concentration fluctuations, 

as well as statistical error. As the probe size increases, the noise is damped and the 

curves become smoother. It should be pointed out that a reduction in noise and the 

consequent smoothing of the CoV with increasing probe size was not observed in 

the previous turbulent flow example because the CoV was determined at only six 

distinct time steps separated by relatively large time intervals.  
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Figure 3-14. Influence of the number of particles in the probe on CoV for a 
constant number of 105 probes in the micromixer, dg = 0.23h. 

The combined effect of the probe size and number is shown in Figure 3-15. 

For each probe size, the number of probes was maximized such that almost all of 

the area in the data plane was sampled. Only the small areas between the non-

overlapping circles remained unsampled. As the probe size increases, the CoV 

decreases because the concentration fluctuations are averaged over increasingly 

larger probe areas. In the previous section on turbulent mixing, it was 

recommended that the probe size be set to the smallest scale of interest and to 

have at least 10 particles per probe. Considering the maximum striation thickness 

in the micromixer geometry at the end of the mixer (Figure 3-12), the probe size 

for this case would need to be of the order of 5 µm. With the current simulations, 

which used 2480 flow followers, this probe size would contain less than 3 

particles. In order to obtain higher spatial resolution and reduced statistical error, 

the number of flow followers used in this simulation would have to be increased. 
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Figure 3-15. Effect of the probe size on CoV when the maximum number of 
probes is used so that the whole population in the micromixer cross-section is 
sampled; dg = 0.23h. 

Because it is not possible to sample the entire data plane with circular probes, 

the point probe method and the quadrat sampling method are compared in Figure 

3-16. The spatial resolution was fixed to be the smallest possible for the given 

data set, i.e. 640 probes or quadrats. The mean number of particles expected in 

one circular probe area is 2.92 and 3.88 particles can be expected in one quadrat. 

As was mentioned earlier, probes or quadrats with a concentration of 3 particles 

are not enough for sampling if a limited number of probes are used. However, in 

this case the whole population is sampled and therefore the result reflects the true 

standard deviation of the data even though the probe size is small. Smoother plots 

were obtained when using the quadrat method than with the probe method 

because quadrats sample the entire area occupied by the population, which is 

greater than the total area sampled by the circular probes. As a result, the 

concentration is averaged over a slightly larger area when using quadrats and the 

CoV is less noisy. Nevertheless, there is little difference in the resulting CoV when 
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using either the quadrat sampling or probe sampling, providing that the probe 

diameter is the largest possible without overlapping of the circular areas. This 

shows that the shape of the probes/quadrats does not play an important role if a 

large number of sampling probes/quadrats is used and their size is matched to the 

smallest scale of mixing. 
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(a) (b) 

Figure 3-16. Comparison of the CoV calculated using 640 probes (a) vs. the CoV 
calculated using 640 quadrats (b). The probes have a size equivalent to a circle 
containing 2.92 particles, whilst the quadrats contain an average of 3.88 particles. 
The quadrat calculation gives the true population CoV at the smallest statistically 
meaningful scale of measurement for this number of tracer particles. 

Figures 3-17(a)–(d) show the effect of quadrat size (and therefore spatial 

resolution) on the CoV while comparing the performance of micromixers with 

different groove depths. Grids of 10, 24, 40 and 640 quadrats have a quadrat size 

of 40 µm × 40 µm, 25 µm × 25 µm, 20 µm × 20 µm and 5 µm × 5 µm, 

respectively. When the grid of 10 quadrats is used (Figure 3-17 a), the CoV curves 

of the different geometries converge to the same value at the end of the mixer. As 

the number of quadrats increases and the quadrat size approaches the smallest 

scale of striations, two things happen. The CoV increases, and it is easier to 

differentiate the mixing performance obtained with the deeper grooves (0.30h and 

0.35h) compared with the groove depth of 0.23h. This reinforces the fact that 

special attention should be paid to the physical meaning of the probe size with 
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respect to the desired level of mixing. The quadrat size of 5 µm × 5 µm (640 

quadrats) approaches the scale of the largest striation present at the end of the 

micromixer with dg= 0.35h. The CoV curves for the smallest quadrat size (Figure 

3-17d) show a distinctly better performance of the 0.30h and 0.35h groove depths, 

relative to the mixer with 0.23h groove depth. However, the differences between 

the CoV of the 0.30h and 0.35h groove depth geometries are not as pronounced as 

those seen in the maximum striation thickness curves.  

Figure 3-18 shows the effect of probe or quadrat size on the final CoV value 

for the stirred tank from Figure 3-9, and for the laminar micromixers from Figure 

3-15 and Figure 3-17. In order to show all three curves on one plot, the probe or 

quadrat size is normalized by the maximum probe/quadrat size used in each case. 

This normalization changes the y-intercept value but has no effect on the slope of 

the curves. In all three cases, the final CoV decreases logarithmically with an 

increasing scale of observation. 
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(a) (b)            
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Figure 3-17. Influence of the number of quadrats (and quadrat size) on the CoV 
for varying groove depths (a) 10 quadrats with dimensions 40 µm × 40 µm (b) 24 
quadrats – 25 µm × 25 µm (c) 40 quadrats – 20 µm × 20 µm and (d) 640 quadrats 
– 5 µm × 5 µm. 
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Figure 3-18. Effect of probe or quadrat size on the final CoV for the stirred tank 
from Figure 3-9, and for the laminar micromixer from Figure 3-15 and 
Figure 3-17. 

Figure 3-18 hints at another important result from the two test cases. The 

CoV, or intensity of segregation, is the dominant characteristic of mixing for the 

stirred tank, changing by a factor of 5 (from 2.5 to 0.5). In contrast, the CoV drops 

by only 30% over the length of the laminar micromixer (from 1.4 to 1.0). The 

maximum striation thickness dominates for the laminar micromixer, dropping by 

a factor of 10 over a smooth progression, while for the stirred tank, no change in 

maximum striation thickness could be detected after the initial volume filling 

stage (Nt > 10). The most useful data is obtained in each case from the 

measurement which changes the most in the later stages of mixing: intensity of 

segregation for the turbulent case, and scale of segregation for the laminar case. 
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Conclusions 

The objectives of this investigation were to explore the data resolution and 

sampling protocols needed to get accurate measures of CoV and striation 

thickness for two ideal data sets, one turbulent and one laminar; and then to 

compare the CoV and striation thickness results to better understand the strengths 

and weaknesses of each approach. The results allow us to define accurate 

sampling methods for a variety of applications in laminar and turbulent mixing. 

For the turbulent tank data, the calculated CoV depends on the number of 

probes, the probe size, and the probe placement. The CoV based on 3 or 6 probes 

is far different from the CoV obtained from a full field measurement. A small 

number of probes should only be used to define the perfectly homogeneous 

endpoint, and accurate determination of the endpoint requires that at least one 

probe is located in a worst mixed region. The smaller the number of probes used, 

the tighter the tolerance on the endpoint should be to ensure accurate results. To 

fully sample the mixing field as it evolves, a minimum of 250 probes were needed 

for the test data set. 

For the laminar micromixer, the CoV also depended on the number of probes 

and the probe size. When the true population CoV was measured, it accurately 

tracked oscillations in CoV over each mixing element, and a steady decay over the 

length of the mixer. Note that the purely logarithmic decay of CoV postulated by 

Equation 3-6 is based on data taken at integer numbers of static mixing elements. 

This data necessarily omits the local oscillations in CoV. 

For both cases, the CoV increases as the probe size shrinks and smaller scales 

of variation are detected. The absolute value of the final CoV changed by up to 

four times as the probe size was varied. This serves to emphasize the importance 

of identifying the smallest scale of interest before beginning experiments or 

simulations. For a laminar mixing field, this scale is the largest acceptable 

striation thickness. Once this scale is identified, the probe or quadrat size must 

match the smallest scale of interest. If discrete particle concentrations are being 

used to determine the CoV, the number of particles required for the simulation 
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should be set to allow at least 10 particles to populate each probe area in a 

perfectly homogenous distribution. Again, to track the evolution of CoV, enough 

probes must be used to fully sample the mixing field of interest. 

Striation thickness measurements provide an alternate measure of mixing, as 

they focus on the scale of segregation rather than the intensity of segregation. The 

maximum striation thickness measured depended on both the transect thickness 

and the particle separation threshold, ∆x. Based on the results, a transect 

thickness, ∆z, equal to the mean particle spacing is recommended, with a particle 

spacing threshold of ∆x ≤ (mean particle spacing). This means that, on average, a 

particle will be detected in the 2D slice, and only particles closer together than 

expected will be assigned to the same striation. As with the CoV, the number of 

particle tracks required for a simulation can be determined directly if the smallest 

mixing scales of interest are known. 

Two stages of mixing were directly observed in the test data: volume filling, 

or macromixing, and reduction in scale, or mesomixing. In the turbulent case, the 

volume filling stage happens quickly, while the scale reduction process is slower. 

The tank shows an initial rapid decay in CoV followed by slower reduction in 

intensity of segregation. In the static mixer, the self-similarity, or fractal nature of 

the mixing field means that volume filling and scale reduction happen 

simultaneously so the two stages cannot easily be distinguished. These 

observations suggest that “macromixing” be redefined as the volume filling stage 

of mixing, “mesomixing” as the scale reduction stage, which in turbulent mixing 

is closely related to the inertial convective range of eddies and in laminar mixing 

is closely related to the striation thickness distribution, and “micromixing” be 

defined as the stage of mixing when the scale of segregation is reduced to a point 

where molecular mechanisms such as viscous dissipation and molecular 

diffusivity become dominant. 

The most useful mixing data was obtained from the measurement which 

changes the most in the later stages of mixing: intensity of segregation, or CoV, 
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for the turbulent case and scale of segregation, or maximum striation thickness on 

a transect, for the laminar case. 
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Chapter 4: Measuring the Scale of Segregation in Mixing 
Data* 

Introduction 

The scale of segregation is one of three measures of mixing defined by 

Kukukova et al. (2009). The scale of segregation is important for laminar mixing 

where the maximum striation thickness determines product quality, and for multi-

phase mixing where the size of the particles drops and bubbles either determines 

mass transfer rates, or is the main objective of the operation. Industrial examples 

where the scale of segregation is the primary process objective are the formation 

of emulsions of a specified drop size (Atiemo-Obeng and Calabrese, 2004; Liu et 

al., 2005; Chu et al., 2007), the production of nanoparticles (Johnson and 

Prud'homme, 2003), the deliberate use of micro-mixing to reduce both the 

quantity of chemicals used and the environmental impact of the pulp and paper 

industry (Bennington, 2004), or to maximize reaction yield in mixing sensitive 

reactions (Bałdyga and Bourne, 1999), or to minimize NOx emissions from rotary 

kilns (Nathan et al., 2006; Newbold et al., 2000). In all of these processes, the 

scale of segregation is the determining variable in the process. A simple 

illustration of the reduction of the scale of segregation as mixing progresses is 

shown in Figure 4-1. 

 

Figure 4-1. The classical checkerboard problem. The scale of segregation 
decreases from left to right while the intensity of segregation stays the same. 
                                                 

* A version of this chapter has been accepted for publication in the Special Mixing Issue of 

Can. J. Chem. Eng. 
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A survey of the literature shows that the scale of segregation is important 

in a surprisingly wide spectrum of disciplines and a number of methods for its 

calculation have been proposed. The concept of the scale of segregation in 

engineering was introduced by Danckwerts in 1952. He suggested the calculation 

of a mean length scale based on the correlogram – a plot of the coefficient of 

correlation of concentration, or concentration autocorrelation, versus the distance 

separating the data points. The scale of segregation based on autocorrelation was 

revisited by Lacey and Mirza in 1976. At that time, the calculation was not 

deemed practical because of the large number of data pairs that have to be 

measured and analyzed in order to get meaningful results. Due to the exponential 

increase of computer power and the increasing resolution and accessibility of 

digital images, the correlogram and related calculation methods are now practical 

for the analysis of quite common experimental data sets. 

The scale of segregation can also be represented by the physical thickness 

of striations in a mixing field. In polymer processing applications, Mohr et al. 

(1957) developed a relationship between striation thickness and shear rate. Later, 

Muzzio et al. (1991) used a model mixing field with several million tracer 

particles to study the relationship between the striation thickness distribution and 

the stretching distribution. While the stretching distribution is the more 

mathematically transparent approach because it is directly related to the shear 

field, the striation thickness distribution is the result needed for engineering 

design. They were able to show that the stretching distribution and the striation 

thickness distribution are directly coupled and inversely proportional, so that the 

striation thickness distribution can be directly calculated from the stretching 

distribution. If the stretching distribution can be calculated from the velocity field, 

the need to track millions of tracer particles in order to resolve the finest striations 

can be eliminated. When resolution of the finest scales of mixing is required, this 

can significantly reduce the computational requirements for a numerical solution. 

When macro-scale segregation is the variable of interest, a small number of tracer 

particles can be used and the maximum striation thickness can be determined 
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along a single reference transect. The maximum striation thickness on a transect is 

an important measure of equipment performance and product quality in laminar 

mixing (Aubin et al., 2005). 

There is also a well developed literature on segregation problems and 

measures of segregation in population ecology, geostatistics, segregation of 

minority populations, forestry, medical imaging and basic applied statistics. These 

data take the form of locations of members of a population at an instant in time, 

resulting in a spatial point pattern. A number of distance methods for analysing 

spatial point patterns which were developed in the American forestry literature 

(Cottam and Curtis, 1949) are based on the distribution of distances between 

neighbours (Diggle, 2003). Three methods for analysing spatial point patterns are 

identified in the spatial statistics literature. Since all of the spatial point patterns in 

this paper are made up of tracking particles, and the particles are located within a 

set of grid points, we refer to the data as particles and the grid points as points. 

The first method analyses all inter-particle distances within a population; the 

second calculates the distribution of distances between each particle and its 

nearest neighbour; and the third and most common method measures the distance 

from a set of grid points to the nearest particle (point-to-nearest-neighbour 

method). The spatial distribution of the population is evaluated by comparing the 

nearest neighbour distribution to a completely random Poisson distribution. When 

the PNN distribution is random, the match with the Poisson distribution is close, 

and when clustering is present, the distribution is distorted. Spatial point patterns 

have only recently been used to assess the scale of segregation and the quality of 

mixing (Aubin et al., 2005 and Kukuková et al., 2008). 

Carle and Fogg (1996) evaluated the mean length scale in geostatistics 

using variograms, which quantify the spatial correlation of data based on the 

variance between data versus the distance separating them. A similar approach is 

to use the variance of the average of several contiguous concentrations (Gullett et 

al., 1993). Although the variogram is used primarily for modeling when only 

limited data are available (Deutsch, 2002), this calculation also appears useful for 

the analysis of dense data sets. The variogram is closely related to the Danckwerts 
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correlogram (1952). Correlograms and variograms both show the spatial 

variability or continuity of the underlying data set. The resulting curves can reveal 

both large-scale segregation and periodicity in the data. Correlograms and 

variograms also allow the calculation of length scales. The scale of segregation 

can be evaluated in several directions of interest or, if all data are combined 

together, an average length scale of the whole field can be obtained. 

The authors’ previous work (Kukukova et al., 2009) presents an 

introduction into the three dimensions of segregation, their definitions and 

possible applications. A second paper (Kukuková et al., 2008) explores the first 

dimension – the intensity of segregation – in detail and focuses on accurate 

sampling strategies. This work concentrates on the second dimension – the scale 

of segregation. In this study, four methods of measuring the scale of segregation 

were considered for application to mixing data: the maximum striation thickness 

on a transect, point-to-nearest neighbour distribution, the correlogram and the 

variogram. The methods are compared to determine their strengths and limitations 

for the analysis of mixing data. Five questions are of interest when evaluating the 

four measures: 

1. What type of data is the method suitable for? 

2. What information does it provide? 

3. Are the results physically meaningful? 

4. What is the smallest scale of mixing resolved by the method?  

5. How fast is the calculation? 

While conditions 1 and 5 have straightforward answers, the other questions 

require testing and illustration with representative data sets. The goal of this work 

is to provide a toolkit of fast methods for length scale characterization, as well as 

benchmarks for the proper use and limitations of each tool. In the next section, 

each of the methods is discussed in detail. 
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Methods 

This section will review the four methods chosen to measure the scale of 

segregation: the maximum striation thickness on a transect, the point-to-nearest-

neighbour distributions, the correlogram and the variogram. The four test cases 

are presented after this section, and details about the practical application of the 

methods to the test cases are given in the Results and Discussion. Calculation 

algorithms for all of the methods are available as supplementary material from the 

in the Appendix of this thesis. 

Maximum Striation Thickness on a Transect 

For spatial point patterns, the maximum striation thickness on a transect 

can be evaluated using inter-particle distances (Aubin et al., 2005). In such 

applications, a transect through a data plane or volume is chosen and the distance 

between two consecutive particles lying on the transect is measured. The 

inter-particle distances are then compared with a threshold value to determine if 

they are part of the same striation or not. A distribution of striation thicknesses is 

obtained and the thickness of the largest striation can be found. The latter is a 

measure of the limiting scale of segregation. 

To get the most valuable information about mixing, a transect should pass 

through the worst mixed part of the mixing field, and should be perpendicular to 

the striations of greatest interest, as shown in Figure 4-2. Transects are of zero 

thickness mathematically, but numerically, a finite thickness is required to sample 

a statistically and physically meaningful number of particles. A transect has two 

variable dimensions: the height of the transect, ∆z, and the particle separation 

threshold ∆x. A particle is included in the transect if its z-coordinate equals the z-

coordinate of the transect ± ∆z/2. Aubin et al. (2005) recommend a transect 

height, ∆z, equal to the mean particle spacing in the mixing field. The height of 

the transect, ∆z, allows for the capture of a single particle so that all particles in 

the 2D transect are associated with the equivalent 1D line through the mixing 
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field. The striation thicknesses on the transect are determined using the function f, 

which has the following properties: 

∆x(neighbours) ≤ ∆x:  f(x) = 1 

∆x(neighbours) > ∆x:  f(x) = 0     (4-1) 

Striation thicknesses on the transect are calculated directly from the function f(x): 

when two consecutive particles in the transect are within ∆x of each other, they 

are both in the same striation. If ∆x is too large, the striations will be 

unrealistically large; if it is too small, no striations will be detected. In our 

previous work (Kukuková et al., 2008), several transect heights, ∆z, and striation 

thickness thresholds, ∆x, were studied. It was concluded that a value of ∆x = ∆z 

equal to the mean particle spacing gives the best resolution. 

 
Figure 4-2. Example of transect sampling in a plane of data. 

Point-to-Nearest-Neighbour Distributions (PNN) 

The point-to-nearest-neighbour method measures the distance xi from each 

of m grid points to the nearest of the n particles, as illustrated in Figure 4-3. In 

fields of demography, ecology, geography, and forestry, this distance data is 

analyzed using a test of complete spatial randomness (CSR). The CSR hypothesis 

asserts that for a completely random distribution of particles in region A, any 

particle has an equal probability of being at any position in region A and the 

position of any particle is independent of the position of any other particle. If the 

particles are randomly distributed in space, the PNN distances should follow a 

Poisson distribution. Deviations from the random Poisson distribution allow 

regular and clustered spatial patterns to be distinguished. 
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Figure 4-3. Illustration of the PNN method: (a) Hexagonal grid in a stirred tank. 
(b) Enlarged grid. (c) Construction of the base unit of the grid. (d) Particle 
locations in the tank. (e) Search for nearest neighbours of each grid point. 

For PNN measurement on a plane of data, m grid points are arranged in a 

regular k × k grid. Diggle and Matern (1980) recommend using a number of grid 

points equal to the number of tracking particles, giving nk ≈ . Using a grid that 

is well matched to the number of particles maximizes the use of each particle in 

the analysis, and also optimizes the resolution of the PNN distribution. The most 
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uniform pattern for a set of points occurs in a regular hexagonal lattice. The mean 

grid spacing, xG, for the hexagonal lattice shown in Figure 4-3(c) is: 

2 4 1.08
6G

dx dxzx dx+
= ≅       (4-2) 

where dx is the horizontal spacing, and dx = dz and dxz is the diagonal grid 

spacing. When the number of grid points is matched to the number of particles, xG 

also approximates the spatial resolution of the measurement. 

Clustering can be qualitatively evaluated from the shape of the PNN 

distribution. A wide distribution indicates clustering; a narrow distribution 

corresponds to a regular spatial distribution of particles. Another indicator that the 

particles are well mixed is the mean point-to-nearest-neighbor distance ix . As the 

PNN distribution approaches perfect homogeneity, ix  approaches the point-

particle distance for a perfectly homogeneous distribution. 

A more quantitative measure of clustering and departure from CSR is the 

index of dispersion, Idisp (Diggle, 2003), which is the ratio between the variance of 

the PNN distribution and the mean of the distribution: 

2

disp
i

I
x

σ
=         (4-3) 

Because the Poisson distribution has a variance equal to its mean, the index of 

dispersion will be equal to 1 for a random distribution, larger than 1 for a 

clustered distribution and smaller than 1 for a regular distribution of particles. 

A filtered variance of the PNN distribution can be used to evaluate the 

deviation of the spatial arrangement of particles with respect to the expected 

homogeneous distribution defined by the grid points. A filter threshold, xR is 

imposed such that at any value of xi < xR, the particle is considered to be close 

enough to the grid point and xi is assigned a value to xR. A variance of zero 

corresponds to the situation where the nearest neighbours of all grid points lie 

inside virtual circles with a radius of xR and centered at grid points, thereby lying 
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close enough to the grid points to be considered homogeneously distributed. The 

filtered point-particle variance is given by: 

2 2

1

1 ( )
1

m

R i R
i

x x
m

σ
=

= −
− ∑  where xi = xR if xi < xR   (4-4) 

The choice of xR depends on the scale of interest but is limited by the resolution of 

the sampling grid, which is in turn dependent on the number of particles. The 

maximum meaningful value of xR is one half of the mean grid spacing xG, in order 

not to have overlapping filter areas. As xR decreases, the homogeneous criterion 

becomes stricter. 

Correlograms and Variograms 

The correlogram probes the underlying structure in the data by plotting the 

coefficient of correlation versus the distance separating data points. For 

concentration data, the coefficient of correlation is given by:  

( )
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1 ( ( ) )( ( ) )
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N h
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R h
σ

− + −
=

∑
   (4-5) 

where N(h) is the total number of pairs of data separated by distance h, and C  and 
2σ  are the mean and variance of the full 2D data set. 

The variogram is calculated from: 

( )2

( )

1( ) ( ) ( )
2 ( )x is is

N h

h C x C x h
N h

γ ≡ − +∑     (4-6) 

where Cis is the standardized concentration value at location x, which is the 

concentration centered with the mean and normalized with the standard deviation: 

( )( ) i
is

C x CC x
σ

−
=        (4-7) 



 

 100

The variogram is closely related to the coefficient of correlation. For data where 

the mean and the variance of the population do not change with sample location, 

the following relationship holds: 

( ) 1 ( )x xh R hγ = −        (4-8) 

This equation will not hold exactly for data with large scale segregation because 

the mean and variance of the data will vary with location in the field and the 

normalizing of the data occurs in a different order for the correlogram and the 

variogram. For these situations, the two measures should be calculated separately. 

The coefficient of correlation and variogram are very similar. Both are 

performed for a number of separation distances, with a maximum distance equal 

to about the half of the studied field in order to have enough pairs to statistically 

represent the entire field. The correlogram and variogram curves can be obtained 

for several directions of interest to reveal directional anisotropy. If the number of 

available data points is very small, all directions can be combined in one omni-

directional plot, creating a picture of average spatial correlation or variability in 

the mixing field.  

A comparison of the correlogram and the variogram is shown in Figure 

4-4. The coefficient of correlation is always one at zero separation distance, which 

means that the concentration is perfectly correlated with itself, and falls towards 

zero as the separation distance increases. A value of zero indicates no correlation. 

If the correlogram crosses zero and reaches negative values, as shown in Figure 

4-4, there is large-scale segregation. The variogram shape is exactly opposite to 

the correlogram. Variograms start with a value of zero at zero separation distance, 

meaning there is no variability. The curve then increases towards one, and 

sometimes exceeds it. A variogram equal to one means that the variability at h has 

reached the variance of the whole data set and there is no remaining spatial 

correlation in the data. Similar to the correlogram, when the variogram increases 

beyond one, there is large-scale segregation. Periodic oscillations in both the 

correlogram and variogram plots indicate underlying periodicity in the data. 
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Figure 4-4. Comparison of the correlogram and the variogram for a representative 
sample of the smoke data. 

If good mixing is characterized as the random spatial distribution of 

concentrations, the correlogram of a perfectly mixed population will drop to zero 

for all separation distances bigger than zero, showing there is no correlation in the 

data. Similarly, the variogram will rise instantly to one for separation distances 

bigger than zero, indicating that the variability everywhere is equal to the overall 

data variance. 

Integration of the correlogram curve from h = 0 to the point where the 

coefficient of correlation Rx equals zero gives a mean length scale (Danckwerts, 

1952):  

0

( )D xL R h dh
ξ

= ∫        (4-9) 

as shown in Figure 4-5(a). The length scale obtained in this calculation is not the 

exact size of clumps or clusters but an average over the mixing field. Danckwerts 

specified that this calculation should only be used for data with no large-scale 
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segregation and no periodic patterns, giving correlograms that are always positive 

and non-periodic. In the context of today’s mixing research, this seems unrealistic. 

 
Figure 4-5. Length scale calculation from the correlogram and variogram: 
(a) Mean length scale evaluated as the area under the correlogram curve. 
(b) Sample variogram length scale proportional to the inverse of the initial slope. 

For variograms, a more flexible length scale calculation was proposed by 

geostatisticians Carle and Fogg (1996), who evaluated the mean length scale from 

the inverse of the initial variogram slope: 

1

0

x
V

h

L P
h
γ −

→

∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦  
      (4-10) 

as illustrated in Figure 4-5(b). In this calculation, P is the proportion of the minor 

species in the sample region. They showed that the resulting scale of segregation 

is proportional to the average length scale in the sample region. The reasoning 

behind this calculation is the following: if we place the origin at the centre of an 

average-sized blob of diffusive tracer in the field and move from the origin toward 

the blob boundaries and to the surroundings, the variability of concentration will 

increase much faster for small blobs due to the jump of concentration at the 

boundaries and slower for bigger blobs. This length scale calculation can be 

performed for all kinds of data and variogram plots, regardless of oscillations or 

large-scale segregation.  
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Test Cases 

Two types of data were used for the scale of segregation measurements: 

particle tracking data, and concentration field data. The particle tracking data 

provide spatial point patterns where the locations of discrete particles, or members 

of a population, are known. The second data type is concentration maps, also 

called lattice data because the data values are available for a complete lattice of 

points. In digital images, the lattice is made up of pixels. Two data sets of each 

type were used to evaluate the measurement methods. The first test case is the 

laminar mixing of mass-less tracer particles in a staggered herringbone 

micromixer, shown in Figure 4-6. The second test case is the dispersion of 

floating particles in a turbulent stirred tank, shown in Figure 4-7. The third test 

case is the dispersion of smoke in a wind tunnel for a range of laminar to turbulent 

flow regimes, shown in Figure 4-8. The last test case is a concentration step 

change experiment in a continuous flow industrial reactor geometry, shown in 

Figure 4-9. In the first two cases, CFD provided complete 3D data sets and planes 

of data were extracted for analysis. In the third and fourth test cases, planar 

experimental data from digital images was used. While only 2D data sets were 

analyzed in this work, the extension of the calculations to 3D analysis is 

straightforward. 

 
Figure 4-6. Staggered herringbone micromixer geometry and sample data for 
2480 tracer particles and 10 mixer elements. 
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Figure 4-7. Stirred tank particle tracking data; T = 0.2335 m, D = T/3, impeller 
off-bottom clearance Cimp = T/3; 7×106 particles; Nt = number of impeller 
rotations. 
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Figure 4-8. Jet-in-crossflow photographs of different flow regimes: (a) Free jet, 
Red = 570. (b) Relaminarized jet, Red = 660. (c) Flow with upstream-pointing 
vortex structures, Red = 1130. (d) Flow with downstream-pointing vortex 
structures, Red = 1130. (e) Turbulent jet, Red = 1500. The flow is visualized by 
seeding the jet flow (pictures on the left) and the crossflow (pictures on the right) 
with smoke. The image size is 3008×1960 pixels. 
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Figure 4-9. Reactor concentration data for two Reynolds numbers with the frame 
numbers shown below the images: (a) Re = 17. (b) Re = 1478. The average image 
size is 1290×225 pixels. 

Detailed specifications of the first and second test cases are described in 

Aubin et al. (2005) and Hartmann et al. (2006), so only a brief summary is given 
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here. For the herringbone micromixer shown in Figure 4-6, a total of 2480 

uniformly distributed mass-less particles were placed on the right hand side of the 

solved flow field at the mixer inlet and were followed using the Lagrangian 

particle tracking method. Vertical planes along the micromixer were sampled at 

intervals of 100 µm to be used for analysis. The geometry used was the reference 

geometry with a width W = 200 µm, height H = 77 µm, groove depth dg = 0.23H 

and groove width wg = 50 µm.  

The second test case is the dispersion of floating particles suspended in a 

baffled tank stirred by a Rushton turbine, shown in Figure 4-7. In this simulation, 

7×106 mono-disperse spherical particles were tracked during a transient large 

eddy simulation. The data extracted from the simulation is the particle positions in 

a vertical cross-section mid-way between two baffles at six different times during 

the simulation.  

The third test case is a jet in cross-flow forced with a synthetic jet of 

increasing strength (Watson, 2007 and Watson and Sigurdson, 2008), as shown in 

Figure 4-8. In these experiments, a pipe with outer diameter Dpipe = 2.54 cm was 

inserted in a rectangular 30.5×30.5 cm wind tunnel with a turbulence intensity of 

16%. Inside the outer pipe, an inner pipe of 20.6 mm was inserted, through which 

a jet flow was introduced at a range of Reynolds numbers, Red. This flow was 

further controlled and modified by velocity oscillations in the annular flow 

between the two pipes. This resulted in a “synthetic jet” in different flow regimes 

spreading from the pipes into the wind tunnel. More experimental details can be 

found in Watson (2007) and in Watson and Sigurdson (2008). To visualize the 

flow, either the jet or the cross-flow was seeded with a glycerol and water based 

fog vapour, giving two photographs for each configuration. The 3008×1960 pixel 

greyscale images were analyzed based on the greyscale intensity of the pixels 

corresponding to the smoke concentration. 

The fourth data set is concentration maps of a glycerin-water mixture in a 

continuous flow industrial stirred tank reactor. The reactor is filled with dyed fluid 

at the beginning of the experiment. At time zero, a clear fluid is introduced into 
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the reactor, mixing with and continuously washing out the dyed fluid. The feed 

location is on the side of the reactor and the exit is at the top. The experiment was 

performed for a range of Reynolds numbers from laminar to high transitional: 

Re = 17, 165, 1478 and 4498. The fluorescent dye is illuminated by a laser sheet 

and images of the reactor are captured by a camera as the experiment progresses. 

The image dimensions are approximately 1290×225 pixels. The resulting data are 

normalized tracer concentration measurements at each pixel. The concentrations 

of the tracer fluid change from 1 at the beginning to 0 when all the dyed fluid is 

washed out. Several image frames from the experiments are shown in Figure 4-9. 

Before further processing, the experimental data was filtered to eliminate the 

Gaussian white noise coming from the camera.  

Results and Discussion 

 The four methods of measuring the scale of segregation were applied to 

the four test cases and the results are discussed with respect to the five criteria 

defined in the introduction. First, the suitability of the methods for either point 

pattern or concentration data is noted. For each method, the practical 

considerations for application to the test cases are given, together with directions 

and suggestions on the best settings to use. This is followed by a comparison of 

the results of the length scale analysis with the scales visualized in the images and 

the physical meaning of the calculated scales is discussed. The conclusions for 

each method summarize the results of the evaluation criteria. Finally, the speed of 

the calculations for each method is compared at the end of the section. 

Maximum Striation Thickness on a Transect  

Transect sampling is suitable for both point and concentration data. It was 

used to determine the maximum striation thickness in the micromixer, stirred tank 

and the smoke test cases.  

For the staggered herringbone micromixer, the transect was located at mid-

height of the microchannel, as illustrated in Figure 4-2, and the striation thickness 
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calculation was performed using a resolution of ∆z = ∆x = 5 µm, which is equal to 

the mean particle spacing. 

The calculated maximum striation thickness along the micromixer is 

shown in Figure 4-10. The width of the largest striation decreases exponentially as 

the fluid passes along the mixer. This is characteristic of chaotic flows as the flow 

is divided and reoriented at each element in the mixer, so the number of striations 

is expected to increase as Ko
n, where Ko is the number of times the fluid is divided 

in each mixer element and n is the number of elements (Etchells and Meyer, 

2004). As the number of striations increases, the CoV and the maximum striation 

thickness will necessarily decrease, but the rate of decrease cannot easily be 

predicted from the mixer geometry. In the laminar micromixer, volume filling and 

scale reduction happen simultaneously and the decay in the maximum striation 

thickness is a smooth curve. Based on the slope of the curve in Figure 4-10, Ko is 

estimated to be 1.33. Using this value, 1.33, 4.2, and 17.3 striations are calculated 

for 1, 5, and 10 mixer elements, respectively, which agrees well with the data in 

Figure 4-6. 

For particle dispersion in the stirred tank, the transect was located at two 

thirds of the tank height, as shown in the first image of Figure 4-7. The transect 

resolution was based on the mean particle spacing, in the same way as for the 

micromixer data, giving a transect height, 1 mmz∆ ≅ , and a striation thickness 

threshold, 1 mmx∆ ≅ . 
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Figure 4-10. Maximum striation thickness as it decays along the micromixer. 

Figure 4-11 shows a rapid decay of maximum striation thickness during 

the initial stages of mixing, but no significant reduction in the scale of segregation 

after 10 impeller revolutions. Referring to Figure 4-7, and recalling that the only 

striations measured are for the black particles, not for the white spaces, the initial 

cluster sizes are less than one tenth of the tank diameter, and the particles are 

rapidly dispersed throughout the tank: the first stage is dominated by 

macromixing with a rapid decay of the maximum striation thickness and CoV 

(Kukuková et al., 2008). During the later stages of turbulent mixing, accurate 

definition of a maximum striation thickness is difficult due to the sparse particle 

density at the smaller scales of segregation, and the fact that the particles disperse 

randomly in all directions, rather than through stretching distributions in the 

underlying velocity field. 
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Figure 4-11. Maximum striation thickness on a transect in the stirred tank; 
Nt = number of impeller revolutions. 

The species concentration data in the last two test cases covers a 

continuous range of intensities due to the effects of molecular diffusion and 

turbulent eddies. As a result, the evaluation of striation thickness is based on a 

threshold concentration, instead of a threshold distance between tracking particles. 

For the smoke distribution test case, the saturated white smoke was assigned a 

concentration of 1 and the black background was assigned a concentration of 0. 

Several concentration thresholds were tested. By analogy with equation 4-1, the f 

function was used to identify striations: 

C > Cmin  f(x) = 1 

C  ≤ Cmin  f(x) = 0      (4-11) 

where Cmin = 0.2, 0.3, 0.4, 0.5 and 0.6 and the mean concentration is close to 0.2, 

but varies from image to image. When the lower concentration limit is set too low, 

too much data is included and the striations blur together, making them hard to 

distinguish. In contrast, when the limit is set too high, visible striations of low 

concentration may not be detected. The maximum striation thickness for the 
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smoke test case was measured on 15 vertical transects distributed along the 

streamwise direction, as shown in Figure 4-12 and Figure 4-13. 

 
Figure 4-12. Maximum striation thickness on 15 transects for the smoke image in 
Figure 4-8(e) jet flow, showing a strong dependence on the concentration 
threshold. The image is 3008 pixels wide and 1960 pixels high. A greyscale 
intensity of 0.2 is equal to 82% of the mean concentration (0.24) for the whole 
image. 
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Figure 4-13. Maximum striation thickness on 15 transects for the smoke image in 
Figure 4-8(d) crossflow, showing a strong dependence on the threshold 
concentration range. The image is 3008 pixels wide and 1960 pixels high. A 
grayscale intensity of 0.2 is 103 % of the mean concentration (0.195) for the 
whole image. 

Figure 4-12 shows the maximum striation thickness on 15 transects for the 

smoke distribution in Figure 4-8(e). The maximum striation thickness gets higher 

as the concentration threshold drops. The smoke plume spreads as it flows from 

the jet outlet towards the right side of the picture, while the smallest scales of 

segregation get smaller and less distinct. The plume width, or the macro-scale of 

segregation, is accurately captured with a concentration threshold of 0.2. 
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Increasing the concentration threshold leads to the detection of the meso-scales of 

segregation, which decrease in size from left to right. The smaller scales of 

segregation are difficult to confirm because the striations are not very well defined 

in the image. 

 The maximum striation thickness for an image with clearly distinguishable 

striations is plotted in Figure 4-13. As in the previous case, the lowest 

concentration threshold accurately captures the macro-scale of the smoke. In the 

first few transects where no large structures are present, the calculation gives the 

size of the visible small striations (15-20 pixels). Further along the image, the 

smallest striations cannot be detected by the maximum striation thickness 

measurement because the transects cut across much bigger smoke eddies. We 

conclude that if striations or any other small to moderate sized structures are to be 

detected using this method, the data set has to be free of structures bigger than the 

scale of interest. This can be accomplished by sub-sampling part of the image in a 

section that contains only striations, or only the meso-sized structures. 

 To compare the results more directly with a homogeneous mixing field, 

two additional concentration thresholds were tested. A concentration threshold of 

95% of the mean concentration min 0.95C C=  was chosen in analogy to the mixing 

time criterion, and a limit of 200% of the mean concentration min 2C C=  was 

tested in an attempt to reveal scales smaller than the macro-scale, based on the 

observation that the initial results presented in the previous section tend to change 

from macro-scale characterization to measurement of smaller scales at around 

Cmin = 0.4, which is about 200% of the mean concentration. These limits were 

tested on a series of three images shown in Figure 4-14. Figure 4-14(a) shows the 

first image, originally part of Figure 4-8(a). For this image, the transect is located 

at 2/15 of the image width, corresponding to the second transect in Figure 4-12 

and Figure 4-13. This transect location was chosen because only striations and no 

bigger structures cross this transect. The first enlarged sample, shown in Figure 

4-14(b), is 1/6 of the big image and contains only striations and no other 

structures. The third sample, shown in Figure 4-14(c), is a 200×200 pixel sample 
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showing three striations. The transects for both enlarged images are located at one 

half of the sample width. The maximum striation thicknesses for the 95% 

threshold were 34, 30 and 33 pixels, for the big, medium and small images, 

respectively. The calculated scales are very similar to each other for all analyzed 

images. This shows that the maximum striation thickness on a transect accurately 

and consistently captures the largest scales in the data. For the 200% threshold, 

the maximum striation thicknesses were 13, 16 and 18 pixels, for the big, medium 

and small images, respectively. This measurement produces smaller scales than 

the 95% threshold and is well matched to the visual observation. The resulting 

length scales are obviously very sensitive to the concentration threshold. When 

the scale of smaller structures is needed, the data have to be re-sampled to isolate 

the small striations or eddies. There is no general recommendation for the 

selection of Cmin. Different thresholds reveal different scales in the data, so a 

meaningful Cmin threshold has to be chosen for each problem. 
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Figure 4-14. A series of zoomed-in smoke crossflow images showing the transect 
locations.  

The maximum striation thickness accurately captures the maximum length 

scale on a transect for either point or concentration data. The spatial resolution 

matches the mean particle spacing for particle data, and the pixel spacing for 

concentration data. The method is very fast to apply, but the results represent only 

a small sample of the population. Also, care must be taken to orient the transects 

perpendicular to the striations of interest and to let them pass through the worst 

mixed part of the mixing field. If smaller structures are to be captured, sub-

sampling of the image may be required to isolate these structures. The maximum 

striation thickness is easiest to apply to point pattern data since the mean particle 

spacing for a perfectly regular distribution is easily determined. If concentration 

data is analyzed, a concentration threshold has to be selected in order to define the 

striations and the results are very sensitive to this choice.  
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PNN 

The point-to-nearest neighbour method is specifically suited to point 

pattern data and cannot be applied to concentration data. In this paper, it will be 

used for the micromixer and the stirred tank test cases. For both cases, a 

hexagonal grid of sampling points was used, as shown in Figure 4-3(c). Figure 

4-3(d) shows an example of the stirred tank particle data and Figure 4-3(e) 

illustrates the procedure used to find the nearest neighbours for each grid point. 

For meaningful statistical analysis, the distribution of distances has to be 

normalized with some characteristic length scale. For mixing analysis, this scale 

should be independent of time or measurement resolution. The mean of the 

distribution changes with time and the grid spacing and the mean homogeneous 

particle spacing depend on the grid resolution and the number of particles, 

respectively. The maximum separation distance between two particles in the plane 

offers a physically meaningful measure, which is both time and resolution 

independent. In addition, the diagonal of a rectangle, or the diameter of a pipe 

could both be used so this normalization can accommodate a range of mixing 

equipment. All PNN distances were normalized with the maximum separation 

distance and then multiplied by 100, giving distributions in terms of the percent of 

maximum separation for both geometries. 

The effect of grid resolution was tested to verify the recommended 

selection of nk ≈  (Diggle and Matern, 1980). For the stirred tank data, an 

image containing 32 000 particles was evaluated using sampling grids ranging 

from 130 grid points to 136 000 grid points. The mean PNN distance was 

consistent down to 512 grid points, and a smooth PNN distribution was obtained 

for grids of 8600 grid points and higher. To maximize the use of the particle 

tracking data, the number of grid points was matched to the number of particles 

for all subsequent calculations. The number of points in the grid was 2480 for the 

micromixer and ranged from 28 000 to 56 000 for the stirred tank to allow for the 

variation in the number of particles. The mean grid spacing for the micromixer is 

2.7 microns and for the stirred tank, it ranges from 1.1 to 1.5 mm. 
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The normalized PNN distributions are compared with a Poisson 

distribution in Figure 4-15 and Figure 4-16. The Poisson distribution has a mean 

and variance equal to the mean of the PNN distribution in all plots. Figure 4-15 

shows the PNN distributions for the micromixer test case. Moving along the 

length of the micromixer, the distributions evolve from clustered to more random, 

which is illustrated by their approach to the random Poisson distribution. 

However, even at the micromixer outlet, the PNN distribution is more clustered 

than a random distribution. This accurately reflects the presence of visible 

striations at the end of the mixer in Figure 4-6. Notice that on the x-axis, the 

maximum measured separation drops from 40% of the diagonal to 10% of the 

diagonal over the length of the mixer. 

 
Figure 4-15. Comparison of the nearest distance distributions (histogram) with the 
Poisson distribution (curve) for several sampling planes along the micromixer. 



 

 119

 
Figure 4-16. Comparison of the nearest distance distributions (histogram) with the 
Poisson distribution (curve) for each time step in the stirred tank.  

Figure 4-16 compares the PNN distribution with the Poisson distribution 

for the stirred tank test case shown in Figure 4-7. As the mixing progresses, the 

PNN distribution approaches the random Poisson distribution, and the maximum 

measured separation decreases from 40% of the diagonal to less than 1% of the 

diagonal. At the beginning, the particle distribution is clustered, indicated by a 

wide distribution with a peak at a small distance. A skewed bell-shaped 

distribution appears at Nt = 10, which is the time when the particles have filled the 

volume of the tank. As the PNN distribution approaches the Poisson distribution, 

clustering is reduced and the particles are more evenly distributed at the smallest 

detectable scales. 

In further studies, it might be interesting to investigate how the PNN 

distribution relates to the distribution of striation thicknesses in a sample area. 

This comparison was not completed in this work because the total number of 

measured striation thicknesses on a 1D transect did not provide enough data to 

represent the whole population of striation thicknesses in the 2D sample area.  
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The evolution of the index of dispersion is shown in Figure 4-17 and 

Figure 4-18. The index of dispersion is the ratio of the population variance to the 

population mean. For a random distribution of particles, the index of dispersion is 

equal to one. For the micromixer test case in Figure 4-17, the curve decreases 

along the micromixer and tends to a value of one at the end of the micromixer as 

the particle distribution approaches a random state. 

 
Figure 4-17. Evolution of the index of dispersion for the laminar micromixer. 
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Figure 4-18. Evolution of the index of dispersion for the turbulent stirred tank. 

Figure 4-18 shows the index of dispersion curve for the stirred tank. The 

curve rapidly decreases and drops below a value of one after the first 10 time 

steps. Thereafter it decreases only slightly. These two parts of the curve indicate a 

two-stage process of mixing: the volume filling stage over the first 10 time steps, 

followed by a scale reduction stage in the later time steps (Kukuková et al., 2008). 

Index of dispersion values that are less than one show that the particle distribution 

quickly becomes more regular than a Poisson distribution. 

The filtered point-particle variance, as defined in Equation 4-4, is shown in 

Figure 4-19 and Figure 4-20 for several values of the filter threshold xR. Figure 

4-19 shows the evolution of the mixing quality in the micromixer expressed as the 

filtered PNN variance normalized by the variance at the inlet. Four PNN variance 

curves for xR values of 0.5 µm, 1.0 µm, 2.5 µm and 5 µm correspond to 

approximately 20%, 40%, 100% and 200% of the mean grid spacing, respectively. 

As xR increases, the PNN variance decreases because the criterion of what is 

considered close enough to the expected homogeneous distribution is more 

relaxed and it is easier to achieve the required scale of segregation.  



 

 122

 
Figure 4-19. Normalized PNN variance for the micromixer test data showing the 
effect of the filter threshold, xR. The mixing quality is expressed as the filtered 
PNN variance normalized by the PNN variance at the inlet. 

 
Figure 4-20. Normalized PNN variance for the stirred tank test data showing the 
effect of the filter threshold, xR. The mixing quality is expressed as the filtered 
PNN variance normalized by the filtered PNN variance at time = 0. 
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Figure 4-20 presents the evolution of the filtered PNN variance over time 

in the stirred tank test case. The local point-particle variance is normalized by the 

point-particle variance at time equal to zero. Four xR values of 0.5 mm, 1.0 mm, 

1.5 mm and 3 mm, corresponding to approximately 33-50%, 67-100%, 100-150% 

and 200-300% of the mean grid spacing, were used. The percentage varies here 

since the number of particles – and therefore the number of grid points – varies 

slightly with each time step. The filtered variance shows a trend similar to the 

index of dispersion curve: a rapid decrease in the variance at the beginning, 

followed by a gradual decrease after 10 time steps. As expected, the PNN 

variance decreases as xR increases and the scale of segregation requirement is 

relaxed. It can also be seen that the values of the filtered PNN variance for the 

turbulent stirred tank drop to a much smaller fraction of the initial variance than 

for the laminar micromixer. 

The PNN method is only suitable for point pattern data. It is able to 

distinguish between segregated, clustered, and regular distributions of particles. 

The index of dispersion provides a more quantitative measure of these 

characteristics, while the filtered PNN variance measures the uniformity of the 

distribution relative to a minimum acceptable scale of segregation. The advantage 

of the PNN method is that the results always represent the whole population and 

have an underlying physical meaning. The disadvantage of this method is that the 

calculation is time-consuming. The resolution of the PNN method ultimately 

depends on the number of tracking particles in the data set, and the matching of 

the grid to the number of particles, both of which increase the computational time. 

Correlograms and Variograms 

In order to use correlograms and variograms for point pattern data, 

concentrations would have to be calculated from quadrat sampling. Since it is 

known that quadrat sampling reduces the spatial resolution of the data, this 

approach is not recommended. Correlograms and variograms are best suited for 

full field concentration data. 
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The difference between the correlogram and the variogram was illustrated 

in Figure 4-4. We now return to a quantitative discussion of the plot, which shows 

the horizontal variogram and correlogram for the smoke image in Figure 

4-8(b) cross-flow. The correlogram curve drops below zero and the variogram 

curve exceeds the value of one, indicating the presence of large scale segregation. 

The original image reveals a large black area and another large unmixed area 

containing smoke striations. The evaluation of length scales from the correlogram 

is not defined for this kind of data because of the presence of macro-segregation 

and small oscillations due to local striations. Since large scale segregation is 

common in the initial stages of mixing and the quantification of scales is desirable 

even for this type of mixing field, the correlogram cannot be used consistently and 

only variogram results are discussed for subsequent calculations. 

The length scale calculation from the variogram slope (Eq. (10)) involves a 

quantity P which characterizes the proportion of minor species in the sample 

region. For the analysed images, the concentrations have a form of intensity with 

the scale going from zero to one, so P can be evaluated as the mean intensity in 

the image.  

 The variograms and the associated length scale calculations for the reactor 

test case were performed for all time steps and Reynolds numbers and 

representative results are shown in Figure 4-21. For both Reynolds numbers, the 

variograms approach one as time progresses, indicating little remaining 

correlation and thus good mixing. Both cases show a steadily increasing 

variogram curve, indicating large-scale segregation in the mixing field. Over time, 

the large-scale segregation diminishes for the higher Reynolds number case but 

remains in the laminar case. The persistent macro-scale segregation, or lack 

thereof, is clearly visible in Figure 4-9. The variograms for the higher Reynolds 

number flow have periodic oscillations, which indicate an underlying periodicity 

in the data – in this case striations. Comparison of the horizontal and vertical 

variograms reveals a much bigger segregation in the vertical direction, where the 

variogram curves significantly exceed the value of one. In both directions, the 

macro-segregation reduces with time.  
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Figure 4-21. Reactor variograms and length scales; from top to bottom: horizontal 
variogram, vertical variogram and mean length scales; (a) Re = 17 (b) Re = 1478. 

 Horizontal and vertical length scales calculated from the variograms are 

shown in the bottom row of Figure 4-21. The length scales for the higher Re are 

about ten times smaller than for the lower Re, which is expected. The scales 

increase initially as the clear fluid begins to fill the vessel, reach a peak, and 
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decrease as the injected fluid mixes with the contents of the reactor. The length 

scales at the end of the experiment are much lower for the higher Re case. The 

horizontal and vertical length scales are comparable for the higher Re flow, but 

for the laminar case, the vertical length scale is larger than the horizontal one. 

When the length scale is compared with the image and the pixel size of the image, 

some interesting results emerge. Comparing the horizontal and vertical length 

scales for the low Re case with the original image, the white area in frame 100 is 

about 190 pixels wide by 430 pixels high. The measured average length scale is 

50 pixels in the horizontal direction and 200 pixels in the vertical direction. If the 

actual horizontal length scale is multiplied by the fraction of the vertical space 

taken up by the blob, the estimated mean length scale is 62, which approaches the 

variogram result of 50. Applying this same logic to the vertical length scale gives 

an estimate of 360 pixels, which is much larger than the reported result of 200 

pixels. Similar comparisons can be applied to the rest of the images. The 

inevitable conclusion is that the mean length scale correctly tracks the progress 

over time to a better mixed image, but contains very little information about the 

complex mixing structures in the image, which necessarily contain a wide 

distribution of length scales. The length scale obtained from the variogram does 

not give a direct measure of the striation thickness. 

 Variograms for the smoke data are shown in Figure 4-22. The positive 

slope of the curves, which persists over most of the calculation range, arises from 

the large-scale segregation in the mixing field. The large black areas in the 

photographs dominate the results. The variograms also reveal periodicity in the 

concentration, which is most visible for the vertical cross-flow case. For some jet 

images, there is a slight periodicity of flow in the horizontal direction, but it is not 

as easily observed as the striations in the cross-flow case. This is due to the 

periodic repetition of smoke eddy structures, which can be seen in Figure 4-8 (a), 

(c) and (d). For the laminar (a) and turbulent (e) smoke images, no periodicity can 

be either visually observed or detected using the variogram. 
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Figure 4-22. Horizontal (top) and vertical (bottom) variograms for the smoke data: 
(a) jet flow (b) crossflow; results for data from Figure 4-8 (a)-(e), as shown in the 
legend. 

 The horizontal and vertical mean length scales calculated from the initial 

slope of the variogram are presented in Figure 4-23. A first look at the figure 

reveals that the scales for the cross-flow images are always smaller than for the jet 

images. Indeed, the size of the smoke structures is smaller when the cross-flow is 

seeded with smoke, in contrast with the seeded jet flow. Further examination 

shows that the length scales in the horizontal direction are always bigger than in 

the vertical direction. For all the jet pictures, this is caused by the dimensions of 

the smoke cloud structure; its length is always bigger than its height. For the 

cross-flow image, this phenomenon arises because the horizontal direction cuts 

through the length of the smoke striations and the vertical direction cuts across 

their width. 
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Figure 4-23. Mean horizontal and vertical length scales for the jet images. 

Length scales calculated from variograms contain information about the 

mean macro-scale of the concentration field. To investigate whether smaller 

scales can be captured, e.g. the width of smoke striations in the smoke images, the 

same enlarged images that were used for the maximum striation thickness 

analysis, shown in Figure 4-14, were used for the length scale calculation. The 

calculated vertical length-scales were 11, 2.2 and 2.8 pixels for the big, medium 

and small images, respectively. The length scale was smaller for the enlarged 

images that contained striations only. The scale did not change much as the 

medium image was magnified further to show three striations only. These results 

show that smaller scales can be captured if a sub-sample containing only 

structures at the scale of interest is used for analysis, provided that a good data 

resolution is maintained. Comparing these variogram length scales with the 

maximum striation thicknesses for the same data clearly illustrates the difference 

between the two methods – the maximum striation thickness is sensitive to the 

concentration threshold, but accurately captures the striation size of 30 pixels; the 

variogram length scale of 2 pixels has no adjustable parameters, but also does not 

give the striation thickness directly. 



 

 129

 The variogram is a useful tool for characterizing the correlation or 

variability in concentration fields and has a resolution equal to the pixel resolution 

of the data. The variogram reveals both large-scale segregation and periodicity. 

The length scales calculated from variograms represent the average of the whole 

population in the concentration field, so sub-sampling is required if smaller 

structures in the mixing field are of interest. When interpreting the length scales, 

one must also bear in mind that they are not a direct measure of the striation 

thickness, or even an area averaged striation thickness. No simple method has yet 

been proposed to extract a distribution of length scales directly from variogram 

data. In comparison to the maximum striation thickness and PNN calculations, 

this method is moderately fast. 

Conclusions 

The objective of this work was to examine four methods of measuring the 

scale of segregation and to test their application to 2D fields of mixing data: the 

maximum striation thickness on a transect, point-to-nearest neighbour 

distributions, the correlogram and the variogram. Two types of data were used to 

evaluate the measurement methods: particle tracking data and concentration field 

data, with two test cases of each type. The particle tracking data was obtained 

from laminar mixing of particles in a staggered herringbone micromixer and 

turbulent dispersion of particles in a stirred tank. The concentration field data was 

for a jet in cross-flow and for a concentration step change experiment in a 

continuous flow industrial reactor. 

The methods were compared and evaluated in order to determine their 

strengths and limitations for the analysis of mixing data. Five questions were 

addressed during the evaluation of the four measures: 

1. What type of data is the method suitable for? 

2. What information does it provide? 

3. Are the results physically meaningful? 

4. What is the smallest scale of mixing resolved by the method?  
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5. How fast is the calculation? 

The answers to this set of questions are conveniently summarized in Table 4-1, 

followed by a more detailed discussion of each of the criteria.  

Table 4-1. Comparison of the four methods for measuring the scale of 
segregation.  

 Maximum striation 
thickness on a transect 

PNN Correlogram Variogram 

What type of data is 
the method suitable 
for? 

Location data 
(point patterns) 
Concentration data 
(not so easy) 

Location data 
(point patterns) 

Concentration data; 
no large scale 
segregation,  
no periodicity 

Concentration data 
 

What information 
does it provide? 

Maximum length scale; 
sampled data 

Clustering character, 
closeness to homogeneous 
distribution;  
whole population 

N/A Integral length scale;  
whole population 

Are the results 
physically 
meaningful? 

Exact length scale Exact distance distribution N/A Proportional to real 
scales 

What is the smallest 
scale of mixing 
resolved by the 
method? 

Mean inter-particle 
spacing 

Mean grid spacing  N/A Measured data spacing 
(e. g. 1 pixel) 

How fast is the 
calculation?   

Fast 
7 s* 

Time consuming 
9 min* 

N/A Moderately fast 
6 min 25 s* 

* The calculation times are for one frame, calculated in Matlab R 2009a using the AMD Athlon 64 processor, 
2.41 GHz and 2 GB RAM. 

The suitability of a measurement method varies for different types of data. 

The maximum striation thickness on a transect is easiest to apply to point pattern 

data since the sharp striation interfaces are easily determined. If concentration 

data is analyzed, a concentration threshold has to be selected in order to define the 

striations and the results are very sensitive to this choice. The PNN method is only 

suitable for point pattern data and cannot be used for concentration data. Both the 

variogram and correlogram are useful for characterizing concentration data, 

however, only the variogram can be used to determine length scales from data 

containing large scale segregation or periodicity. Because this type of data is 

common in today’s mixing research, correlogram calculations were not pursued. 

The methods provide scale measurements in different forms. The 

maximum striation thickness accurately captures the maximum length scale on a 
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transect. The PNN method is able to distinguish between segregated, clustered, 

and regular distributions. The index of dispersion calculated from the PNN 

distributions provides a more quantitative characterization of the distribution of 

the population. The filtered PNN variance measures the uniformity of the 

distribution relative to a reference scale of segregation, xR. The variogram is a 

useful tool for characterizing the correlation or variability in concentration data 

and can reveal both large scale segregation and periodicity. The length scales 

calculated from variograms represent a proportional average of the whole data 

field. 

The physical meaning of the results depends on the quality of sampling. 

The maximum striation thickness on a transect represents only a small sample of 

the population, so to get meaningful results, care must be taken to orient transects 

perpendicular to the striations of interest and to let them pass through the worst 

mixed part of the mixing field. If smaller structures need to be captured, sub-

sampling of the image may be required. The PNN distributions always represent 

the whole population and have an underlying physical meaning provided enough 

tracking particles are used to resolve the scales of interest, and the number of grid 

points is matched to the number of particles. The index of dispersion provides a 

measure of departure from a random distribution for the whole population. The 

filtered PNN variance uses a sample of the population, which depends on the filter 

size xR. Increasing the filter size relaxes the homogeneity criterion. The length 

scales calculated from variograms represent the average of the whole population 

in the data field, so sub-sampling is required if smaller structures in the mixing 

field are of interest. When interpreting the variogram length scales, one also has to 

bear in mind that they are not exact length scales but proportional length scales, 

and no simple method has yet been proposed to extract a distribution of real 

length scales from variogram data. 

The smallest length scale that can be obtained from the striation thickness 

calculation is slightly smaller than the mean particle spacing that is used to define 

the striation threshold. For complex data sets, sub-sampling of data is needed to 

measure the size of small structures. For the PNN distributions, the smallest scales 
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are given by the mean grid spacing. The minimum scale of the variogram 

measurement is fixed by the image resolution.  

The speed of calculation is directly proportional to the size of the data set 

and the number of operations for each frame. The maximum striation thickness on 

a transect calculation is the fastest because it involves just one or a few line 

samples of the data. The PNN calculations were the most time consuming because 

the number of grid points was matched to the number of particles and the 

distances from all grid points to all particles were calculated. The variogram 

calculations were moderately fast compared to the other methods. Both the PNN 

and the variogram algorithms could be optimized to get faster results, but in both 

cases the computations were fast enough that this was not deemed necessary. 

This study provides a toolkit of methods for length scale characterization, 

together with benchmarks for the use and limitations of each tool. The calculation 

algorithms for each method are available as supplementary material in the 

Appendix of this thesis. 

References 

Atiemo-Obeng, V. A. and Calabrese, R. V., 2004, Rotor Stator Mixing Devices, In 

Paul, E.L.; Atiemo-Obeng, V.A. and Kresta, S.M. (Editors), Handbook of 

Industrial Mixing: Science and Practice, John Wiley & Sons, Inc., New 

Jersey, USA. 

Aubin, J.; Fletcher, D. F. and Xuereb, C., 2005, Design of Micromixers using 

CFD Modelling, Chem. Eng. Sci. 60, 2503-2516. 

Bałdyga, J. and Bourne, J. R., 1999, Turbulent Mixing and Chemical Reactions, 

Wiley, New York, USA. 

Bennington, C. P. J., 2004, Mixing in the Pulp and Paper Industry, In Paul, E.L.; 

Atiemo-Obeng, V.A. and Kresta, S.M. (Editors), Handbook of Industrial 

Mixing: Science and Practice, John Wiley & Sons, Inc., New Jersey, USA. 

Carle, S. F. and Fogg, G. E., 1996, Transition Probability-Based Indicator 

Geostatistics, Mat. Geol. 28, 453-476. 



 

 133

Chu, L. Y.; Utada, A.; Shah, R.; Kim, J. W. and Weitz, D., 2007, Controllable 

Monodisperse Multiple Emulsions, Angew. Chem. Int. Ed. 46, 8970-897. 

Cottam, G. and Curtis, J. T., 1949, A Method for Making Rapid Surveys of 

Woodlands by Means of Pairs of Randomly Selected Trees, Ecol. 30, 101-

104. 

Danckwerts, P. V., 1952, The Definition and Measurement of Some 

Characteristics of Mixtures, Appl. Sci. Res. Sect. A - Mech. Heat Chem. Eng. 

Mat. Methods 3, 279-296. 

Deutsch, C. V., Geostatistical Reservoir Modeling, 2002, In Applied Geostatistics 

Series, G., J. A., Ed., Oxford University Press, New York, USA. 

Diggle, P. J., 2003, Statistical Analysis of Spatial Point Patterns, Oxford 

University Press, New York. 

Diggle, P. J. and Matern, B., 1980, On Sampling Designs for the Study of Point-

Event Nearest Neighbor Distributions in R2, Scand. J. Stat., 7, 80-84. 

Etchells, A. W. and Meyer, C. F., 2004, Mixing in Pipelines, In Paul, E.L.; 

Atiemo-Obeng, V.A. and Kresta, S.M. (Editors), Handbook of Industrial 

Mixing: Science and Practice, John Wiley & Sons, Inc., New Jersey, USA. 

Gullett, B. K.; Groff, P. W. and Stefanski, L. A., 1993, Mixing Quantification by 

Visual Imaging Analysis, Exp. Fluids 15, 443-451. 

Hartmann, H.; Derksen, J. J. and Van den Akker, H. E. A., 2006, Numerical 

Simulation of a Dissolution Process in a Stirred Tank Reactor, Chem. Eng. 

Sci. 61, 3025-3032. 

Johnson, B. K. and Prud'homme, R. K., 2003, Chemical Processing and 

Micromixing in Confined Impinging Jets, AlChE J. 49, 2264-2282. 

Kukukova, A.; Aubin, J. and Kresta, S. M., 2009, A New Definition of Mixing and 

Segregation: Three Dimensions of a Key Process Variable, Chem. Eng. Res. 

Des. 87, 633-647. 

Kukuková, A.; Noël, B.; Kresta, S. M. and Aubin, J., 2008, Impact of Sampling 

Method and Scale on the Measurement of Mixing and the Coefficient of 

Variance, AlChE J. 54, 3068-3083. 



 

 134

Lacey, P. M. C. and Mirza, F., 1976, Study of Structure of Imperfect Mixtures of 

Particles 2. Correlational Analysis, Powder Technol. 14, 25-33. 

Liu, S. P.; Hrymak, A. N. and Wood, P. E., 2005, Drop Breakup in an SMX Static 

Mixer in Laminar Flow, Can. J. Chem. Eng. 83, 793-807. 

Mohr, W. D.; Saxton, R. L. and Jepson, C. H., 1957, Mixing in Laminar-Flow 

Systems, Ind. Eng. Chem. 49, 1855-1856. 

Muzzio, F. J.; Swanson, P. D. and Ottino, J. M., 1991, The Statistics of Stretching 

and Stirring in Chaotic Flows, Phys. Fluids A: Fluid Dyn. 3, 822-834. 

Nathan, G. J.; Mi, J.; Alwahabi, Z. T.; Newbold, G. J. R. and Nobes, D. S., 2006, 

Impacts of a Jet's Exit Flow Pattern on Mixing and Combustion Performance, 

Prog. Energy Combust. Sci. 32, 496-538. 

Newbold, G. J. R.; Nathan, G. J.; Nobes, D. S. and Turns, S. R., 2000, 

Measurement and Prediction of NOx Emissions from Unconfined Propane 

Flames from Turbulent-Jet, Bluff-Body, Swirl, and Precessing Jet Burners, 

Proc. Combust. Inst. 28, 481-487. 

Watson, G. M. G. and Sigurdson, L. W., 2008, The Controlled Relaminarization 

of Low Velocity Ratio Elevated Jets-in-Crossflow, Phys. Fluids 20, 15. 

Watson, M. G. G., 2007, The Structure and the Controlled Relaminarization of 

Low Momentum Elevated Jets-in-Crossflow, MSc. Thesis, University of 

Alberta, Edmonton. 



 

 135

Chapter 5: Conclusions and Future Work 

This chapter presents the summary of conclusions drawn from the thesis 

and suggestions for future work. The objective of this work was to propose a 

rigorous definition of mixing and to provide a theoretical and experimental toolkit 

of methods to measure mixing in industrial applications. 

Definition of Mixing 

Based on the review of mixing and segregation characterization techniques 

in chemical engineering, spatial statistics and population studies, a definition of 

industrial mixing was proposed based on three dimensions of segregation: the 

intensity of segregation, the scale of segregation and exposure. The definition was 

introduced using concepts, theory and mathematical equations. Suitable quantities 

for direct measurement of the dimensions of segregation were chosen and 

investigated. The definition clearly defines what mixing is and it provides a 

framework for analyzing mixing problems and for future development of the field. 

Intensity of Segregation 

For measurement of the intensity of segregation, the coefficient of 

variance CoV was chosen to represent the deviation of homogeneity based on the 

concentration variance in a mixing field. This quantity has been widely used in the 

mixing literature. It is useful for both concentration and point pattern data. 

Investigation of CoV sampling strategies revealed that the resulting value strongly 

depends on the number and size of probes or quadrats and probe placement. A 

minimum of 250 probes were needed to accurately determine the intensity of 

segregation for the turbulent data set tested. The smaller the number of probes, the 

stricter the mixing criterion determining the closeness to homogeneity should be. 

CoV increases with decreasing probe size as smaller scales of variation are 

detected. The probe and quadrat size should be matched to the smallest scale of 

interest in the mixing field. For particle data, at least 10 particles should populate 

each probe or quadrat area in a perfectly homogeneous distribution, in order to 
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obtain statistically meaningful results. If the number of probes is limited, they 

should be placed in the worst mixed regions of the vessel to accurately track the 

homogeneous endpoint. The intensity of segregation is the dominant dimension of 

segregation for turbulent blending and for ensuring homogeneous dispersion. The 

observation of CoV in a turbulent case led to distinguishing between the initial 

volume filling stage (macromixing) and the following scale reduction stages 

(mesomixing). The measurement is also useful for processes where concentration 

changes are important i. e. laminar blending, mass transfer and reactions.  

Scale of Segregation 

The scale of segregation was investigated using four quantities: the 

maximum striation thickness, the point-to-nearest neighbour (PNN) distributions, 

the correlogram and the variogram. The maximum striation thickness accurately 

captures the maximum length scale on a transect and is available for both particle 

and concentration data. The results represent only a small sample of the 

population so careful sampling is required to capture the structures of interest. The 

PNN distributions are able to distinguish between clustered, random and 

homogeneous distributions of point patterns. In order to obtain the best results, the 

number of grid points used in the calculation should be matched to the number of 

particles. An additional quantity, index of dispersion, can be used to quantify the 

deviation from homogeneity of the PNN distribution. Filtered PNN variance can 

be used to relax the mixing criterion using a scale of interest. The correlogram 

calculation cannot be consistently used for all types of mixing data, because it is 

not suitable for data with large scale segregation or periodicity, and has therefore 

been rejected. The variogram characterizes the variability in the data and is able to 

reveal both large-scale segregation and periodicity. The length scales calculated 

from the variogram represent the proportional average scales from the whole 

mixing field. In order to capture smaller scales, sub-sampling is useful. The scale 

of segregation measurement is useful for all industrial mixing processes but is 

critical for laminar or non-Newtonian blending, where the size of striations or 
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cavities is of interest and for multiphase mixing, especially when tracking the size 

of particles, bubbles and drops or the size of their clusters.  

Exposure 

The exposure dimension is the most complex dimension of segregation, 

especially because its mathematical expression is different for different industrial 

mixing applications. Exposure is the time-scale of segregation and quantifies the 

potential to reduce segregation. Increasing the exposure will speed up the mixing 

process. Generally, exposure is the product of the strength of interaction, the 

distance from the minimum segregation and the opportunity to interact. It is the 

dominant dimension in mass transfer processes and mixing sensitive reactions. 

For mass transfer processes, exposure can be quantified by the mass transfer rate. 

For reactions, exposure follows the form of the reaction rate. Exposure terms can 

also be found in expressions for aggregation and crystallization kinetics, as well 

as in the birth and death terms in population balances, which are particularly 

relevant in liquid-liquid mixing. 

Thesis Outcomes  

The first important result of this thesis is the definition of mixing. This 

definition provides a theoretical framework for the rigorous analysis of mixing, 

encompassing all industrial mixing processes and allowing a clear evaluation of 

experimental methods.  

The second outcome is a toolkit of methods for the measurement of the 

intensity and scale of segregation, provided as Matlab codes in the Appendix. 

The third contribution is the guidelines for the use of each of the provided 

methods, with thoroughly investigated sampling procedures, settings, data 

suitability, meaningfulness of results and limitations of each tool.   

The developed definition of mixing, together with tools and guidelines for 

measurement of mixing will help researches to further develop the field of 

mixing, engineers to solve practical industrial mixing problems, and instructors of 

chemical engineering courses to introduce mixing concepts more easily.   
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Future Work 

This thesis focused on the development of the definition of mixing, based 

on the three dimensions of segregation and the investigation of methods used to 

measure the intensity and the scale of segregation. In the course of the paper 

reviewing, other approaches to measuring the scale of segregation e. g. a Multiple 

Spanning Tree theory came to our attention. Although the results are similar to the 

PNN analysis, it could prove to be useful to investigate this theory as well. The 

logical next step in this work would be to investigate the third measure of 

segregation ‘exposure’ with a focus on studying different measuring and sampling 

strategies. Another useful step would be to take the developed theory and 

measurement methods and directly apply them to solve particular industrial 

mixing problems. The knowledge and the tools created in the course of this thesis 

will be used as a foundation of a new chapter on segregation in the next edition of 

the Handbook of Industrial Mixing.   
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Appendix I. Intensity of Segregation Toolkit 

This section contains Matlab codes for calculation of the coefficient of 

variance, CoV, from planar data using probes and quadrats. 

CoV Calculation from Probes  
function CoV = CoV_probes(A, particle_data, probe_data, 
probe_size) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% CoV calculation for particle data in a plane using a set of 
probe points 
% 
% input: A = area of the data plane 
%        particle_data = file containing particle locations  
%                        first column: x positions, second column: 
y positions 
%        probe data = file containing probe locations 
%                     first column: x positions, second column: y 
positions 
%        probe_size = radius of the circular probe 
% 
% output: CoV 
% 
% Alena Kukukova, 2010 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
%% open and read file containing particle locations 
[X,Y] = textread(particle_data, '%f %f'); 
L = length(X); 
  
%% open and read data file containing sampling point positions 
[Xref, Yref] = textread(probe_data, '%f %f'); 
Npr = length(Xref); 
  
%% mean particle concentration in the plane 
Cmean = L/A;   
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
%% Calculate particle counts in all probe areas 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
Pt_count = zeros(Npr, 1);  % initialization  
for n = 1:Npr          % loop through all probe locations 
     
   % Create column vectors Xp & Yp with L lines 
   % All values in each column are the same and correspond to the  
   % coordinates of probe point 'n', i.e. (Xref(n), Yref(n)) 
   % The function ones(m,n) creates a m x n matrix with m lines 
   % and n columns 
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   Xp = ones(L,1)*Xref(n); 
   Yp = ones(L,1)*Yref(n); 
    
   % Calculate the distance between all particles (X, Y) and probe 
location 'n'(Xp, Yp) 
   D = sqrt((X - Xp).^2 + (Y - Yp).^2); 
    
   % Sort the elements of D in increasing order. D is a column 
vector. 
   Dsort = sort(D); 
    
   no_part = 0; 
   for i = 2:length(Dsort)         
       if (Dsort(i) <= probe_size) 
          no_part = no_part + 1; 
       else break     
       end  
   end 
   Pt_count(i) = no_part; 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculate particle concentrations from particle counts by 
dividing with 
%  probe area and make dimensionless with mean concentration 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A_probe = pi*probe_size^2; 
Conc = (Pt_count/A_probe)/Cmean; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% CoV calculation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
sum = 0;    % sum of squares initialization 
for i = 1:length(Conc) 
    sum = sum + (Conc(i) - 1)^2; 
end 
CoV = (sqrt(1/(Npr - 1)*sum))/1; 
 

CoV Calculation from Quadrats 
function CoV = CoV_quadrats(width, height, nx, ny, particle_data) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% CoV calculation for particle data in a plane using a rectangular 
quadrats 
% 
% input:    width = width of the data plane, x-direction 
%           height = height of the data plane, y-direction 
%           nx = number of quadrats in x-direction 
%           ny = number of quadrats in y-direction 
%           particle_data = file containing particle locations  
%                           first column: x positions, second 
column: y positions 
% output: CoV 
% 
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% Alena Kukukova and Joelle Aubin, 2010 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% open and read file containing particle locations 
[X,Y] = textread(particle_data, '%f %f'); 
L = length(X); 
  
%% mean particle concentration in the plane 
A = width*height;   % data plane area 
Cmean = L/A;   
  
%% quadrat settings 
xmin = 0; 
ymin = 0; 
Total_quadrats = nx*ny; 
quadrat_counts = zeros(ny, nx); % matrix storing the number of 
particles for each quadrat 
  
%% loop through all particles and place them in corresponding 
quadrats 
for n = 1:L 
    for j = 1:nx 
        xpos = xmin+(width/nx)*j; 
        if X(n) < xpos 
            x_cell = j; 
            break  % terminates execution of the 'for' loop to 
start 
                           % the next 'for' loop immediately 
        end 
    end 
    for k = 1:ny 
        ypos = ymin+(height/ny)*k; 
        if Y(n) < ypos 
           y_cell = k; 
           break 
        end 
    end 
    quadrat_counts(y_cell, x_cell) = quadrat_counts(y_cell, 
x_cell) + 1; 
end 
  
%% Calculate particle concentrations from particle counts by 
dividing with 
%  quadrat area and make dimensionless with mean concentration 
A_quadrat = A/Total_quadrats; 
Conc = (quadrat_counts/A_quadrat)/Cmean; 
  
%% CoV calculation 
sum = 0;    % sum of squares initialization 
for i = 1:ny 
    for j = 1:nx 
        sum = sum + (Conc(i, j) - 1)^2; 
    end 
end 
CoV = (sqrt(1/(Total_quadrats - 1)*sum))/1; 



 

 142

Appendix II. Scale of Segregation Toolkit 
 

This material is a collection of generic codes for calculation of four chosen 

methods for measurement of the scale of segregation: maximum striation 

thickness on a transect, point-to-nearest-neigbour distributions (PNN), 

correlogram and variogram. Each sub-section contains the calculation algorithm 

in a flowchart, followed by a code generated in Matlab, which can be modified for 

other programming languages.  

Maximum Striation Thickness on a Transect  
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function maximum_striation_thickness(particle_file, transect_z, 
dz, dx) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Maximum striation thickness on a transect calculation 
% 
% input: particle_data = file containing particle locations  
%                        first column: x positions, second column: 
z 
%                        positions 
%        transect_z = position of the transect 
%        dz = transect height 
%        dx = striation threshold 
% 
% output: file 'striation_f_function.txt' containing x positions 
of 
%         particles in the first column and the calculated 'f' 
function 
%         in the second column 
%         max_str = the maximum striation thickness on a transect   
% 
% Alena Kukukova, 2010 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Open & read particle data file 
[X, Z] = textread(particle_file, '%f %f ');     
L = length(X); 
% 
% Find all particles that lie on the transect = transect_z +- 
1/2*dz and 
% store their x coordinates 
x_transect = []; 
for i = 1:L; 
    if (Z(i) <= (transect_z + 0.5*dz)) && (z(i) >= (transect_z - 
0.5*dz)) 
        x_transect = [x_transect x(i)]; 
    end 
end 
 
if length(x_transect) > 2  
    % Calculation for more than two particles in the transect 
     
    % Sort x coordinates of particles in the transect with 
increasing x 
    x_transect = sort(x_transect); 
 
    % Calculate the function f: 
    % f(x) = 1 for consecutive particles belonging to the same 
striation (separ. distance <= dx) 
    % f(x) = 0 for consecutive particles belonging to different 
striations (separ. distance > dx) 
    % f = zeros(1, length(x_transect)); 
     
    % Calculation for the first particle 
    distance_right = x_transect(2) - x_transect(1);     % distance 
of the first particle to its right neighbour 
     
    if distance_right > dx 
       % particle doesn't belong to any striation  
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       f = [0]; 
       xs = [x_transect(1)]; 
    elseif distance_right <= delta 
       % particle belongs to the striation with its right neighbor 
       f = [0 1]; 
       xs = [x_transect(1) x_transect(1)]; 
    end 
     
    % Calculation for the middle particles 
    for i = 2:(length(x_transect)-1) 
        distance_left = x_transect(i) - x_transect(i-1); 
        distance_right = x_transect(i+1) - x_transect(i); 
         
        if (distance_left <= delta) && (distance_right <= delta) 
           % particle belongs to the striation with both 
neighboring 
           % particles 
            f = [f 1]; 
            xs = [xs x_transect(i)]; 
        elseif (distance_left > delta) && (distance_right > delta) 
            % particle doesn't belong to any striation  
            f = [f 0]; 
            xs = [xs x_transect(i)]; 
        elseif (distance_left <= delta) && (distance_right > 
delta) 
            % particle belongs to the striation with only its left 
neighbor 
            f = [f 1 0]; 
            xs = [xs x_transect(i) x_transect(i)]; 
        elseif (distance_left > delta) && (distance_right <= 
delta) 
           % particle belongs to the striation with only its right 
neighbor 
            f = [f 0 1]; 
            xs = [xs x_transect(i) x_transect(i)]; 
        end 
    end 
     
    % Calculation for the last particle 
    last = length(x_transect); 
    distance = x_transect(last) - x_transect(last-1); 
    if (distance <= delta) 
       f = [f 1 0]; 
       xs = [xs x_transect(last) x_transect(last)]; 
    else f = [f 0]; 
       xs = [xs x_transect(last)]; 
    end 
  
    % Save the f function in a file 
    file_name = 'striation_f_function.txt'; 
    fid = fopen(file_name, 'a'); 
    fprintf(fid, 'x(m) f\n'); 
    for i = 1:length(f) 
        fprintf(fid, '%5.4f %1.0f\n', xs(i), f(i)); 
    end 
    fclose(fid);     
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Maximum striation thickness calculation 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    thicknesses = []; 
     
    % find the beg of the first striation 
    for i = 1:length(f) 
        if f(i) == 1 
           beg = i; 
           break 
        end 
    end 
    value = 1; 
     
    % Calculate the striation thicknesses on the transect 
    index = beg; 
    while index < length(f) 
        while value == 1 
            index = index + 1; 
            value = f(index); 
        end 
 
        thickness = xs(index - 1) - xs(beg); 
        thicknesses = [thicknesses thickness]; 
         
        % find the beginning of the next striation 
        if index < length(f) 
            for i = (index+1):length(f) 
                if f(i) == 1 
                    beg = i; 
                    break 
                end 
            end 
            index = i; 
            if i < length(f) 
                value = 1;  
                index = beg; 
            end     
        end     
    end 
     
    % The maximum striation thickness calculation 
    max_str = max(thicknesses); 
    
elseif length(x_transect) == 2 
    % If there are two particles in the transect: 
    if abs(x_transect(1) - x_transect(2)) <= dx 
       max_str = x_transect(1) - x_transect(2) 
    else max_str = 0; 
    end 
     
elseif length(x_transect) == 1 
    % If there is only one particle in the transect, there are no 
    % striations: 
       max_str = 0; 
 
else   max_str = 0;     % No particles in the transect 
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end 
 
fprintf('\nmaximum striation thickness on the transect = %5.4\n', 
max_str) 
fprintf('if the result is 0, no striations were detected\n'); 

Point-to-Nearest-Neighbour Distributions (PNN) 
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function PNN(particle_data, grid_data) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculation of Point-to-nearest-neigbour (PNN) distances 
% (= for each sampling point in the grid, find the distance to the 
nearest 
% particle) 
% 
% input: particle_data = file containing particle locations  
%                        first column: x positions, second column: 
y positions 
%        grid data = file containing positions of sampling points 
%                    first column: x positions, second column: y 
positions 
% 
% output: file 'nearest_distances.txt' containing nearest 
distances for all 
%         sampling points 
% 
% Joelle Aubin and Alena Kukukova, 2010 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% open and read file containing particle locations 
[X,Y] = textread(particle_data, '%f %f'); 
L = length(X); 
 
% open and read data file containing sampling point positions 
[Xref, Yref] = textread(grid_data, '%f %f'); 
Nsamp = length(Xref); 
     
for n = 1:Nsamp          % loop through all sampling points 
     
   % Create column vectors Xp & Yp with L lines 
   % All values in each column are the same and correspond to the  
   % coordinates of point 'n', i.e. (Xref(n), Yref(n)) 
   % The function ones(m,n) creates a m x n matrix with m lines 
   % and n columns 
   Xp = ones(L,1)*Xref(n); 
   Yp = ones(L,1)*Yref(n); 
    
   % Calculate the distance between all events (X, Y) and point 
'n'(Xp, Yp) 
   D = sqrt((X - Xp).^2 + (Y - Yp).^2); 
    
   % Sort the elements of D in increasing order. D is a column 
vector. 
   Dsort = sort(D); 
    
   % Take the second element of Dsort as the nearest point-event 
distance 
   % (The 1st element is always 0) 
   dist = Dsort(2); 
    
   % Write nearest point-event distances to file 
   file_name = 'nearest_distances.txt'; 
   fid = fopen(file_name,'a'); 
   fprintf(fid, '%e\n', dist); 
 end 
fclose(fid); 
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Correlogram 
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Horizontal Correlogram 

function horizontal_correlogram(data, mean, var) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% Horizontal correlogram calculation 
% 
% input: data = matrix of concentrations 
%        mean = mean of the data 
%        var = variance of the data 
% 
% output: file 'data_hor_cor.txt' containing separation distances 
in the 
%         first column and correlogram values in the second column 
% 
% Alena Kukukova, 2010 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% get data dimensions 
[rows, cols] = size(data); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% calculate the correlogram in horizontal direction 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
max_dist = floor(cols/2);                   % maximum separation 
distance is one half of the field 
distances = [0:max_dist];                   % create a vector of 
separation distances 
no_distances = length(distances);           % calculate the total 
# of sep. distances 
correlogram = ones(no_distances, 1);        % initialize the 
correlogram vector 
last_row = rows;                            % last row of the data 
to be used for calculation 
 
for i = 2:no_distances                      % loop through all 
separation distances; for zero dist, cor is 1, so we don't need to 
calculate 
    dist = distances(i); 
    sum_multiples = 0;                      % initialization  
    N_h = 0;                                % initialization, 
total number of data pairs for each sep. dist. 
    last_col = cols - dist;                 % last row to be used 
for calculation 
    for row = 1:last_row                    % loop through all 
rows (horizontal direction) 
        for col = 1:last_col                % for each row, loop 
through columns 
            sum_multiples = sum_multiples + (data(row, col) - 
mean)*(data(row, (col + dist)) - mean); 
            N_h = N_h + 1; 
        end 
    end 
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    correlogram(i) = sum_multiples/N_h/var;       % correlogram 
calculation from Equation* 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% save results in a text file 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
out_name = 'data_hor_cor.txt';              % name of the output 
file 
 
% open the output file 
fid = fopen(out_name, 'a');    
 
% print information about the data 
fprintf(fid, 'horizontal correlogram\n'); 
fprintf(fid, 'separation distance (pixels)\t correlogram\n'); 
 
% print the results 
for j = 1:no_distances 
     fprintf(fid, '%5.0f\t %5.4f\n', distances(j), 
correlogram(j)); 
end 
 
% close the output file 
fclose(fid); 
 

Vertical Correlogram 

function vertical_correlogram(data, mean, var) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% Vertical correlogram calculation 
% 
% input: data = matrix of concentrations 
%        mean = mean of the data 
%        var = variance of the data 
% 
% output: file 'data_vert_cor.txt' containing separation distances 
in the 
%         first rowumn and correlogram values in the second rowumn 
% 
% Alena Kukukova, 2010 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% get data dimensions 
[rows, cols] = size(data); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% calculate the correlogram in vertical direction 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
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max_dist = floor(cols/2);                   % maximum separation 
distance is one half of the field 
distances = [0:max_dist];                   % create a vector of 
separation distances 
no_distances = length(distances);           % calculate the total 
# of sep. distances 
correlogram = ones(no_distances, 1);        % initialize the 
correlogram vector 
last_col = cols;                            % last col of the data 
to be used for calculation 
 
for i = 2:no_distances                      % loop through all 
separation distances; for zero dist, cor is 1, so we don't need to 
calculate 
    dist = distances(i); 
    sum_multiples = 0;                      % initialization  
    N_h = 0;                                % initialization, 
total number of data pairs for each sep. dist. 
    last_row = rows - dist;                 % last col to be used 
for calculation 
    for col = 1:last_col                    % loop through all 
columns (vertical direction) 
        for row = 1:last_row                % for each column, 
loop through rows 
            sum_multiples = sum_multiples + (data(row, col) - 
mean)*(data((row + dist), col) - mean); 
            N_h = N_h + 1; 
        end 
    end 
    correlogram(i) = sum_multiples/N_h/var;       % correlogram 
calculation from Equation* 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% save results in a text file 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
out_name = 'data_vert_cor.txt';              % name of the output 
file 
 
% open the output file 
fid = fopen(out_name, 'a');    
 
% print information about the data 
fprintf(fid, 'vertical correlogram\n'); 
fprintf(fid, 'separation distance (pixels)\t correlogram\n'); 
 
% print the results 
for j = 1:no_distances 
     fprintf(fid, '%5.0f\t %5.4f\n', distances(j), 
correlogram(j)); 
end 
 
% close the output file 
fclose(fid); 
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Variogram  

 

 



 

 153

Horizontal Variogram 

function horizontal_variogram(data, mean, stdev) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% Horizontal variogram calculation 
% 
% input: data = matrix of concentrations 
%        mean = mean of the data 
%        stdev = standard deviation of the data 
% 
% output: file 'data_hor_var.txt' containing separation distances 
in the 
%         first column and variogram values in the second column 
% 
% Alena Kukukova, 2010 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% get data dimensions 
[rows, cols] = size(data); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% standardize data with mean and standard deviation: 
% Z = original data; stand. data: Y = (Z - mean)/stdev 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
for i = 1:rows 
    for j = 1:cols 
        data(i, j) = (data(i, j) - mean)/stdev; 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% calculate the variogram in horizontal direction 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
max_dist = floor(cols/2);                   % maximum separation 
distance is one half of the field 
distances = [0:max_dist];                   % create a vector of 
separation distances 
no_distances = length(distances);           % calculate the total 
# of sep. distances 
variogram = zeros(no_distances, 1);         % initialize the 
variogram vector 
last_row = rows;                            % last row of the data 
to be used for calculation 
 
for i = 2:no_distances                      % loop through all 
separation distances; for zero dist, var is 0, so we don't need to 
calculate 
    dist = distances(i); 
    sum_squares = 0;                        % initialization  
    N_h = 0;                                % initialization, 
total number of data pairs for each sep. dist. 
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    last_col = cols - dist;                 % last col to be used 
for calculation 
    for row = 1:last_row                    % loop through all 
rows (horizontal direction) 
        for col = 1:last_col                % for each row, loop 
through columns 
            sum_squares = sum_squares + (data(row, col) - 
data(row, (col + dist)))^2; 
            N_h = N_h + 1; 
        end 
    end 
    variogram(i) = sum_squares/2/N_h;       % variogram 
calculation from Equation* 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% save results in a text file 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
out_name = 'data_hor_var.txt';              % name of the output 
file 
 
% open the output file 
fid = fopen(out_name, 'a');    
 
% print information about the data 
fprintf(fid, 'horizontal variogram\n'); 
fprintf(fid, 'separation distance (pixels)\t variogram\n'); 
 
% print the results 
for j = 1:no_distances 
     fprintf(fid, '%5.0f\t %5.4f\n', distances(j), variogram(j)); 
end 
 
% close the output file 
fclose(fid); 
 

Vertical Variogram 

function vertical_variogram(data, mean, stdev) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% Vertical variogram calculation 
% 
% input: data = matrix of concentrations 
%        mean = mean of the data 
%        stdev = standard deviation of the data 
% 
% output: file 'data_vert_var.txt' containing separation distances 
in the 
%         first column and variogram values in the second column 
% 
% Alena Kukukova, 2010 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% get data dimensions 
[rows, cols] = size(data); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% standardize data with mean and standard deviation: 
% Z = original data; stand. data: Y = (Z - mean)/stdev 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
for i = 1:rows 
    for j = 1:cols 
        data(i, j) = (data(i, j) - mean)/stdev; 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% calculate the variogram in vertical direction 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
max_dist = floor(rows/2);               % maximum separation 
distance is one half of the field 
distances = [0:max_dist];               % create a vector of 
separation distances 
no_distances = length(distances);       % calculate the total # of 
sep. distances 
variogram = zeros(no_distances, 1);     % initialize the variogram 
vector 
last_col = cols;                        % last column of the data 
to be used for calculation 
 
for i = 2:no_distances                  % loop through all 
separation distances; for zero dist, var is 0, so we don't need to 
calculate 
    dist = distances(i);     
    sum_squares = 0;                    % initialization  
    N_h = 0;                            % initialization, total 
number of data pairs for each sep. dist.   
    last_row = rows - dist;             % last row to be used for 
calculation 
    for col = 1:last_col                % loop through all columns 
(vertical direction) 
        for row = 1:last_row            % for each column, loop 
through rows 
            sum_squares = sum_squares + (data(row, col) - 
data((row + dist), col))^2; 
            N_h = N_h + 1; 
        end 
    end 
    variogram(i) = sum_squares/2/N_h;   % variogram calculation 
from Equation* 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
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% save results in a text file 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
out_name = 'data_vert_var.txt';         % name of the output file 
 
% open the output file 
fid = fopen(out_name, 'a');    
 
% print information about the data 
fprintf(fid, 'vertical variogram\n'); 
fprintf(fid, 'separation distance (pixels)\t variogram\n'); 
 
% print the results 
for j = 1:no_distances 
     fprintf(fid, '%5.0f\t %5.4f\n', distances(j), variogram(j)); 
end 
 
% close the output file 
fclose(fid); 
 

Mean Length Scale Calculation from Variogram 

function length_scale_variogram(var_name, mean) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% Calculation of the mean length scale from variogram 
% 
% input: var_name = name of the variogram text file containing 
separation 
%                   distances in the first column and variogram 
values 
%                   in the second column (output from the 
variogram 
%                   calculation) 
%        mean = mean of the data 
% 
% output: mean length scale in units of the separation distance 
%  
% Alena Kukukova, 2010 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% read variogram data 
[dist, var] = textread(var_name, '%d %f', 'headerlines', 2); 
 
% mean length scale calculation (Equation *) 
slope = (var(2) - var(1))/(dist(2) - dist(1)); 
mean_length_scale = 1/slope*mean;  
      
% print the result on the screen 
fprintf('\nmean length scale = %5.4f\n', mean_length_scale); 
 
 
 
 


